
Efficient resilient functions*

Peter Ivanov Raghu Meka Emanuele Viola

November 11, 2022

Abstract

An n-bit boolean function is resilient to coalitions of size q if no fixed set of q bits
is likely to influence the value of the function when the other n− q bits are chosen uni-
formly at random, even though the function is nearly balanced. We construct explicit
functions resilient to coalitions of size q = n/(log n)O(log logn) = n1−o(1) computable
by linear-size circuits and linear-time algorithms. We also obtain a tight size-depth
tradeoff for computing such resilient functions.

Constructions such as ours were not available even non-explicitly. It was known
that functions resilient to coalitions of size q = n0.63... can be computed by linear-size
circuits [BL85], and functions resilient to coalitions of size q = Θ(n/ log2 n) can be
computed by quadratic-size circuits [AL93].

One component of our proofs is a new composition theorem for resilient functions.

A function f : {0, 1}n → {0, 1} is resilient to coalitions of size q if, informally, no adversary
controlling q input bits can noticeably influence the output of the function, when the other
n − q bits are chosen uniformly at random. A large number of works, many of which are
discussed below, has been devoted to constructing and analyzing resilient functions. Indeed,
the study of resilient functions is fundamental in the analysis of boolean functions [O’D14]
and has found many applications, ranging from the original ones about collective coin-flipping
protocols [BL85, AL93, RZ98] to the construction of randomness extractors [KZ07, GVW15,
CZ16, Mek17, CL18, HIV22], to correlation bounds for polynomials [CHH+20].

Given that resilient functions are such powerful objects, the main question we address is:
what are the minimal resources needed to compute resilient functions? This question was
explicitly raised in [HIV22].

Before we discuss our answers to this question, we give some background on previous
constructions. A standard example of a resilient function is the majority function, which is
resilient to coalitions of size Θ(

√
n). Ben-Or and Linial [BL85] proved that one can improve

the resilience by recursively composing majority on three bits. This yields a function which
is resilient to coalitions of size Θ(nlog3 2) = Θ(n0.63...) and computable by a linear-size circuit.
Jumping ahead, our techniques are flexible enough to recover this result (and show something
much stronger).

*This paper subsumes an unpublished work by Meka. PI and EV are partially supported by NSF grant
CCF-2114116.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 148 (2022)

There is a beautiful result by Ajtai and Linial [AL93] which remains essentially state-
of-the-art to this day. They prove the existence of functions computable by quadratic-size
circuits which are resilient to coalitions of size Θ(n/ log2 n). This is nearly the optimal
resilience one can achieve, as any boolean function on n bits can be controlled by coalitions
of size Θ(n/ log n) [KKL88].

The fact that resilient functions with parameters as in the Ajtai-Linial result exist at all
may be quite shocking. Furthermore, given that the quadratic-size bound for non-explicit
circuits which are resilient to coalitions of size n1−o(1) has not been improved for 30 years,
one might naively conjecture this is optimal.

One might also consider the less demanding conjecture that super-linear circuit size is
required, as was conjectured for a list of combinatorial objects including super-concentrators
[Val77] and universal hash functions [IKOS08] – conjectures which were disproved with signif-
icant impact on our intuition of what can be computed super efficiently. For more discussion
on surprising bounds for seemingly difficult combinatorial objects see [Vio18].

Our contribution is adding resilient functions to the list of objects which can be computed
super efficiently. In other words, we show the existence of functions with almost the same
resiliency as the Ajtai-Linial circuits that can be computed by linear-time algorithms and
linear-size circuits. Furthermore, our techniques also yield explicit functions with similar
parameters. We highlight the fact that before our work, it was not clear how to achieve this
even non-explicitly.

Next we define resiliency. As in the literature, we will in fact give tradeoffs between the
coalition size and how much it can influence the function. We put forth a somewhat different
definition, which is closely related to the standard definition of resiliency (see Definition 9
and Lemma 10) but connects better to our proof strategy.

Definition 1. Let f : {0, 1}n → {0, 1}. For G ⊆ {1, 2, . . . , n} we let fG(x, y) denote

the output of f when the bits indexed by G are set by x ∈ {0, 1}|G| and the others by

y ∈ {0, 1}n−|G|. We say that fG is fixed by x to b ∈ {0, 1} if fG(x, y) = b for every y.
Then f is (ρ, β)-fix resilient if for any set G ⊆ {1, 2, . . . , n} and any b ∈ {0, 1}, with

probability ≥ 1/2− (n− |G|)ρ− β over a uniform x ∈ {0, 1}|G| we have that fG is fixed by
x to b.

One should think of β as the bias of f . Note if β = 0 this implies that f is balanced (by
taking G = {1, 2 . . . , n}). When this is the case, we will write that f is ρ-fix resilient. One
should think of ρ−1 as the maximal coalition size that f is resilient to.

To summarize the discussion in the introduction, all previous constructions either require
quadratic size (and time), or else have fix resiliency ≥ nΩ(1)/n. On the other hand, we prove
the following:

Theorem 2. For all sufficiently large n and b, there are
(
(log n)O(log logb n)/n, 1/nω(1)

)
-fix

resilient functions computable by circuits of size n · poly(b). In particular:

1. There are explicit
(
(log n)O(log logn)/n, 1/nω(1)

)
-fix resilient functions computable by linear-

size circuits (set b := O(1)).

2. There are explicit
(
(log n)O(log(1/ε))/n, 1/nω(1)

)
-fix resilient functions computable by n1+ε

size circuits for any constant ε > 0 (set b := nε).

2

We give a number of related constructions. In particular in Theorem 7 we give non-
explicit constructions as above but with bias zero (the bias in the theorem above is quasi-
polynomially small, and can be traded with the other parameters as will be apparent in the
proof).

The depth of the circuits in Theorem 2 is of interest. To discuss this it is convenient to
work in the unbounded fan-in model (whereas the size bounds in Theorem 2 are with respect
to the bounded fan-in model). In this model, the circuits in Item (1) have depth O(log log n).
Those in Item (2) have depth O(log(1/ε)). The latter matches a result by Chaudhuri and
Radhakrishnan [CR96] which says any circuit of depth log(1/ε)/2 and size n1+ε can be made
constant by fixing O(n1−ε2) = n1−Ω(1) bits. In other words, there is a coalition of size n1−Ω(1)

that controls the circuit.
Define “resiliency loss” as ρn for a ρ-fix resilient function. Recall that by [KKL88] the

smallest possible resiliency loss of any function is Ω(log n), while Theorem 3 yields a function
with O(log2 n) resiliency loss. Since both of these quantities are 2Θ(log logn), the “resiliency
loss” in Item (1) in Theorem 7 is quasi-polynomial in the optimal. At the other end, Item
(2) shows that for any ε we can compute functions with resiliency loss polynomial in the
optimal by circuits of size n1+ε. A natural open problem is to exhibit linear-size circuits
computing a function with resiliency loss polynomial in the optimal.

The complexity of extractors Resilient functions have been used to construct extractors
in [KZ07, GVW15, CZ16] and subsequent works. We briefly discuss the relevance of our
results to this line of works. Resilient functions computable by circuits with small depth are
important for the approach in [CZ16], and we note that the depth of the circuits in Item
(1) is small enough to be used in their framework. This could lead to affine and two-source
extractors computable by linear-size circuits. Also, combined with the work [HIV22] our
results give non-explicit affine extractors computable by constant-depth circuits composed
with a layer of parity gates, a model which lies at the frontier of our understanding of circuit
lower bounds. Specifically, we obtain such extractors computable in size n1+ε and depth
O(log 1/ε). This matches a lower bound for computing such extractors in [CGJ+18].

1 Zero-bias constructions

For ease of presentation, we begin in this section with some simpler constructions based on
balanced functions (i.e., with zero bias). This keeps the parameters to a minimum, while
conveying the main ideas. In addition, we will be able to construct explicit functions which
are monotone and balanced, something which is not given by Theorem 2. Moreover, the
results in this section will recover and generalize classic results in this area (see below).
The drawback is that for some interesting range of parameters the constructions are not
explicit. In the proceeding Section 2, by building on these ideas and applying a result by
Meka [Mek17], we achieve explicit constructions.

The basic building block of the constructions in this section is the classical Ajtai-Linial
construction [AL93], stated next.

Theorem 3. For sufficiently large n, there are O(log2 n
n

)-fix resilient circuits of size O(n2).

3

This result appears to be folklore but as stated does not seem to be in the literature.
The works we are aware of [BL85, AL93, RZ98, CZ16, Mek17, Wel20] either don’t prove a
full tradeoff, or don’t achieve bias zero, or have worse resilience. However because the proof
is somewhat technical and not needed for our main result, we do not include it in this paper.

1.1 A composition lemma

A new tool we introduce is a generic composition lemma for resiliency. The proof in hind-
sight is not involved given our definition of fix resiliency. One can speculate that the lack
of a “correct” definition served as a barrier to proving the result below, despite recursive
constructions based on specific functions already existing in the literature [BL85].

Lemma 4. Let f ′ : {0, 1}n
′
→ {0, 1} be ρ′-fix resilient, and let f ′′ : {0, 1}n

′′
→ {0, 1} be

ρ′′-fix resilient. Then f := f ′ ◦ f ′′ : {0, 1}n
′·n′′ → {0, 1} is 2ρ′ρ′′-fix resilient.

Proof. Let n := n′ · n′′ and fix a set G ⊆ {1, 2, . . . , n} of size n− q. This induces sets Gi of
sizes n− qi for the n′ copies of f ′′.

For 1 ≤ i ≤ n′ we let Ai,0, Ai,1 ⊆ {0, 1}|Gi| be sets of maximal equal density such that for

every xi ∈ Ai,b we have that f ′′Gi
is fixed to b by xi. And let Bi := {0, 1}|Gi| − (Ai,0 ∪ Ai,1).

Note that if xi ∈ {0, 1}|Gi| is uniformly sampled from Ai,0 ∪ Ai,1 then the output of
f ′′Gi

is a uniform bit independent from the rest of the inputs. Furthermore, Bi has density
≤ 2ρ′′qi since f ′′ is ρ′′-fix resilient. We next describe a sampling process which is equivalent
to sampling a uniform x ∈ {0, 1}|G|.

1. For every 1 ≤ i ≤ n′ decide independently whether xi ∈ {0, 1}|Gi| is sampled from Ai,0∪
Ai,1 (in which case xi is good) or from Bi with probability equal to the corresponding
densities.

2. Sample xi uniformly from the set picked in the first step.

After the first step, let G′ ⊆ {1, . . . , n′} index the set of of good xi. The second step can
be viewed as inputting f ′ with |G′| uniform independent bits. The locations of these bits
depend on the first step, but are fixed before the second step. Then by the resiliency of f ′,
the probability after the second step that x fixes f ′G to 1 is ≥ 1/2− (n′ − |G′|)ρ′.

So the probability that an x sampled as above fixes fG to 1 is

≥
n′∑
j=0

P[|G′| = j](1/2− (n′ − |G′|)ρ′) = 1/2− E[n′ − |G′|]ρ′.

Note that n′ − |G′| =
∑n′

i=1 1xi∈Bi
, where 1E is the indicator of the event E. By the afore-

mentioned density of Bi, P[1xi∈Bi
] ≤ 2ρ′′qi which implies that E[n′ − |G′|] ≤ 2ρ′′q.

Combining everything together, the probability that a uniform x ∈ {0, 1}|G| fixes fG to
1 is ≥ 1/2− 2ρ′ρ′′q. The case of fixing fG to 0 is done identically.

4

Recursive majority. Lemma 4 allows us to recover the classic result of Ben-Or and Linial
about the influence of recursive-majority (Theorem 4(a) in [BL90]). Let f : {0, 1}3 → {0, 1}
be the majority function on 3 bits. Note that f is 1/4-fix resilient. Indeed, when |G| = 2 the
the function is 1 with probability ≥ 1/4 = 1/2−1 ·(1/4), and when |G| = 1 then the function
is 1 with trivial probability ≥ 1/2− 2 · (1/4) = 0. If we make a balanced ternary tree with
3t leaves where each node corresponds to f we obtain a function on 3t+1 =: n bits which by
Lemma 4 is fix resilient with resilience 2t·(1/4)t = 2−t = 2−(log3 n−1) = 2·n− log3 2 = 2·n−0.6309....

The proof in [BL90] is tailored to the specific function and does not easily extend to
other functions. On the other hand, our approach allows us to compose arbitrary resilient
functions.

1.2 A regular construction

By Theorem 3 and repeatedly applying Lemma 4 we arrive at the next construction.

Theorem 5. For all sufficiently large n and b, there are
(
nO(log log b)/ log b/n

)
-fix resilient

functions computable by circuits of size O(nb) which can be constructed in time O(nb)+2O(b3).

For some intuition on the parameters, consider setting b to some large enough constant.
Then we obtain a function which is 1/n1−δ-fix resilient and computable in linear time for
some constant δ > 0. Alternatively, we can set b = log1/3 n and obtain a function computable
in time ≤ n+O(nb) < n log n with resiliency nO(log log logn)/ log logn/n = 1/n1−o(1).

Before we start the proof we need the following.

Fact 6. The circuit from Theorem 3 can be brute-forced in time 2O(n3).

Proof of Theorem 5. Theorem 3 gives aO(log2 b)/b-fix resilient function on b bits computable
by a circuit of size O(b2), which itself can be computed in time 2O(b3) by Fact 6.

We recursively compose the previous function t times and obtain a function on n := bt

inputs. The size is asymptotically dominated by the size of the input layer. This layer
consists of n/b functions each taking size O(b2) for a cost of O(nb).

By Lemma 4 the composed function is O((log2 b)/b)t-fix resilient. As t = log n/ log b, this
equals O(log b)2 logn/ log b/bt = nO(log log b)/ log b/n.

1.3 An irregular construction

We are able to significantly improve the parameters by modifying the fan-ins of the functions
in each layer. For intuition on how this is done, consider applying Theorem 5 with b =

√
n;

this results in the composed circuit C := fout(f1, f2, . . . , f√n), where each fi, fout has fan-in√
n. Note the size of C is dominated by the size of the inner layer, which will be O(b2) ·

√
n =

O(n3/2).
Now consider the composition C ′ := fout(f1, f2, . . . , fn2/3) where each fi has fan-in n1/3

and fout has fan-in n2/3. Note the size of both layers are balanced and furthermore, they are
both O(n4/3). Additionally, Lemma 4 implies that C ′ achieves the same resilience as C.

Generalizing this idea allows us to greatly improve on the resilience, size, and depth of
the resulting composition.

5

Theorem 7. For all sufficiently large n and b, there are
(
(log n)O(log logb n)/n

)
-fix resilient

functions computable by circuits of size O(nb).

Proof. Consider a tree of functions of depth t where each function at level i has fan-in bi,
where i = 0 is the level closest to the input with b0 = b. We set bi+1 := bγi for some constant
γ we fix later. Note bi = bγ

i
and n =

∏t−1
i=0 bi.

At level i we use the ρi-fix resilient circuits from Theorem 3 on bi bits, where ρi =
O(log2 bi)/bi. Additionally, there is some universal constant c such that the circuits have
size ≤ cb2

i at every level i.
First we bound the size of the tree. Let si denote the size of the layer at level i. We have

si+1

si
≤ c(bi+1)2

bi+1 · c(bi)2
=
bγ

i+1

b2γi
= bγ

i(γ−2) ≤ 1/2

as long as 1 < γ < 2 and b is sufficiently large. Hence, the size
∑t−1

i=0 si of the tree is O(s0).
Note that s0 = (n/b) · cb2 = O(nb).

Next we compute the resilience. At level i we use functions which are ρi-fix resilient. By
Lemma 4 the final resilience is

t−1∏
i=0

2ρi =
t−1∏
i=0

O(log2 bi)/bi = n−1

t−1∏
i=0

O(log2 bi) ≤ n−1(log n)O(t).

The last inequality follows as bi ≤ n for every i.
To conclude we compute the depth t of the tree in terms of n. We have

n =
t−1∏
i=0

bi = b
∑t−1

i=0 γ
i

= b(γt−1)/(γ−1).

This implies t = O(log logb n).

2 Proof of Theorem 2

In this section we construct explicit and efficient resilient functions building on the ideas
developed in the previous section. The main technical challenge is dealing with the fact
that all existing constructions of explicit tradeoff resilient functions have some amount of
bias. Hence we will need to generalize the previous results which only dealt with balanced
functions.

First we give an analogous version of Lemma 4 that works for unbalanced functions. The
proof is similar to before.

Lemma 8. Let f ′ : {0, 1}n
′
→ {0, 1} be (ρ′, β′)-fix resilient, and let f ′′ : {0, 1}n

′′
→ {0, 1}

be (ρ′′, β′′)-fix resilient. Then f := f ′ ◦ f ′′ : {0, 1}n
′·n′′ → {0, 1} is (2ρ′ρ′′, 2n′ρ′β′′ + β′)-fix

resilient.

For intuition on the parameters, consider some f on m bits which is (d
m
, d
m

)-fix resilient.

The composition f ◦ f will be (3d2

m2 ,
3d2

m
)-fix resilient.

6

Proof of Lemma 8. Let n := n′ ·n′′ and fix a set G ⊆ {1, 2, . . . , n} of size n− q. This induces
sets Gi of sizes n− qi for the n′ copies of f ′′.

Next, for 1 ≤ i ≤ n′ we let Ai,0, Ai,1 ⊆ {0, 1}|Gi| be sets of maximal equal density such that

for every xi ∈ Ai,b we have that f ′′Gi
is fixed to b by xi. And we let Bi := {0, 1}|Gi|−(Ai,0∪Ai,1).

Note that if xi ∈ {0, 1}|Gi| is uniformly sampled from Ai,0 ∪ Ai,1 then the output of
f ′′Gi

is a uniform bit independent from the rest of the inputs. Furthermore, Bi has density
≤ 2(ρ′′qi + β′′) since f ′′ is (ρ′′, β′′)-fix resilient. We next describe a sampling process which

is equivalent to sampling a uniform x ∈ {0, 1}|G|.

1. For every 1 ≤ i ≤ n′ decide independently whether xi ∈ {0, 1}|Gi| is sampled from Ai,0∪
Ai,1 (in which case xi is good) or from Bi with probability equal to the corresponding
densities.

2. Sample xi uniformly from the set picked in the first step.

After the first step, let G′ ⊆ {1, . . . , n′} index the set of good xi. The second step can
be viewed as inputting f ′ with |G′| uniform independent bits. The locations of these bits
depend on the first step, but are fixed before the second step. Then by the resilience of f ′,
the probability after the second step that x fixes f ′G to 1 is ≥ 1/2− (n′ − |G′|)ρ′ − β′.

So the probability that an x sampled as above fixes fG to 1 is

≥
n′∑
j=0

P[|G′| = j](1/2− (n′ − |G′|)ρ′ − β′) = 1/2− E[n′ − |G′|]ρ′ − β′.

Note that n′−|G′| =
∑n′

i=1 1xi∈Bi
. By the aforementioned density of Bi, P[1xi∈Bi

] ≤ 2(ρ′′qi +
β′′) which implies E[n′ − |G′|] ≤ 2(ρ′′q + n′β′′).

Combining everything together, the probability that a uniform x ∈ {0, 1}|G| fixes fG to
1 is ≥ 1/2− 2ρ′ρ′′q − 2n′ρ′β′′ − β′. The case of fixing fG to 0 is done similarly.

We will need another way to compose resilient functions. We seek to drive the bias down
while not damaging the resiliency too much. We accomplish this by simply taking the XOR
of r independent copies. We will use this in conjunction with a result in [Mek17] that gives
explicit tradeoff resilient functions albeit with poor bias.

However, the result in [Mek17] is not stated for fix resilience. So first we state a different
definition of tradeoff resilience (referred to as ‘strong resilience’ in the literature) and then
we relate it to fix resilience.

Definition 9. We say that f is (ρ, β)-change resilient if |P[f = 1]− 1/2| ≤ β and if for any

set G ⊆ {1, 2, . . . , n}, with probability ≥ 1 − (n − |G|)ρ over x ∈ {0, 1}|G| we have that fG
is fixed by x to either 0 or 1.

Lemma 10. If f is (ρ, β)-change resilient then it is (ρ, β)-fix resilient. Moreover, if f is
(ρ, β)-fix resilient then f is (2(ρ+ β), β)-change resilient.

Proof. Suppose f is (ρ, β)-change resilient, and fix some set G ⊂ [n] of size n− q. Then the

probability over x ∈ {0, 1}|G| that fG is fixed by x to 1 is at least

P[f = 1]− Px∼{0,1}|G| [fG not fixed by x] ≥ 1/2− β − ρq.

7

The same proof shows that fG is fixed to 0 with the same probability.
Now suppose that f is (ρ, β)-fix resilient. First note this immediately implies |P[f = 1]−

1/2| ≤ β. Now fix any G of size n−q where q ≥ 1. Over a uniform x ∈ {0, 1}|G| , fG is fixed to
either 0, 1 with probability ≥ (1/2−qρ−β)+(1/2−qρ−β) = 1−2qρ−2β ≥ 1−2q(ρ+β).

Lemma 11 ([Mek17], Theorem 1.2). There are explicit (O(log2m)/m, 1/20)-change resilient
functions on m bits computable by circuits of size poly(m).

Applying the strategy above we obtain the following.

Lemma 12. For every m, r there are explicit (O(log2m)/m, 2−r)-fix resilient functions on
O(mr) bits computable by circuits of size poly(m, r).

Proof. We compose the functions in Lemma 11 on input length m with the XOR on cr bits,
with c a constant set so that the resulting bias is 2−r.

Now fix a coalition Q ⊆ {1, . . . , cmr} of size q. Q induces coalitions of sizes q1, q2, . . . , qcr
for each of the cr subfunctions on m bits. By the definition of change resilience, the proba-
bility the i-th coalition can change the output of the i-th function is ≤ qi ·O(log2m)/m.

So the probability that Q can change the final output is by a union bound at most
q ·O(log2m)/m. We conclude by applying Lemma 10 which implies fix resilience.

Finally we can prove our main result.

Proof of Theorem 2. It suffices to prove the theorem for b ≥ log3 n. The theorem for smaller
b then follows by padding. That is, to obtain the theorem for arbitrary n and b < log3 n use
the construction for n′ := n/ loga n and b′ := log3 n′, padded to n input bits. The circuit
size is n′poly(b′) < n for all sufficiently large a. This change does not affect the resiliency
parameter because

(log n′)O(log logb′ n
′)/n′ ≤ (log n)O(log logb n)/n

up to the constant in the big-Oh. The bias parameter is similarly unaffected.
From this point we assume that b ≥ log3 n. We construct a tree of functions of depth t

where each function at level i has fan-in bi, where i = 0 is the level closest to the input with
b0 = b. We set bi+1 := bγi for some constant γ we fix later. Note bi = bγ

i
and n =

∏t−1
i=0 bi.

On input length bi we apply the explicit (rρi, 2
−r)-fix resilient function on bi bits given

by Lemma 12, for r := log2 n and ρi := O(log2 bi)/bi. Here we use that b ≥ log3 n.
We can fix some universal constant c so that every circuit above on fan-in bi has size

≤ bci . Using this we first analyze the total size of the composed circuit. Let si be the circuit
size of the layer at distance i from the input. We have

si+1

si
≤

bci+1

bi+1 · bic
=

(bγ
i+1

)c−1

(bγi)c
= bγ

i((c−1)γ−c) ≤ 1/2

for a universal γ and all sufficiently large b. Hence, the total size
∑t−1

i=0 si of the circuit is
O(s0). We have s0 ≤ (n/b) · bc = nbc−1.

8

Now we compute the resulting resilience. By Lemma 8, the final resiliency is

t−1∏
i=0

2rρi = n−1

t−1∏
i=0

O(1)r log2 bi ≤ n−1 logO(t) n.

The last inequality follows since bi ≤ n for every i and r = log2 n.
Next we deal with the bias parameter. Let βi denote the bias at level i of the tree. Recall

β0 = 2−r. We bound βi for i > 0 by Lemma 8 which says

βi ≤ 2 · βi−1 · bi · (rρi) + 2−r ≤ O(βi−1 · log4 n).

The last inequality follows as βi is non-decreasing as i increases, and βi ≥ β0 = 2−r. Hence
the final bias βt−1 is

≤ β0 ·
t−1∏
i=0

O(log4 n) ≤ 2− log2 n · (log n)O(t).

Next we bound the depth t of the tree. By construction,

n =
t−1∏
i=0

bi = b(γt−1)/(γ−1).

This implies t = O(log logb n).
Plugging this into the bound above for the resiliency parameter yields the desired result.

For the bias parameter we note that 2− log2 n · (log n)O(log logb n) ≤ 1/nω(1).

References

[AL93] Miklos Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica,
13:129–145, 1993.

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting
schemes and minima of Banzhaf values. In 26th Symposium on Foundations of
Computer Science, pages 408–416, Portland, Oregon, 21–23 October 1985. IEEE.

[BL90] Michael Ben-Or and Nathan Linial. Collective coin-flipping. In Silvio Micali,
editor, Randomness and Computation, pages 91–115. Academic Press, New York,
1990.

[CGJ+18] Mahdi Cheraghchi, Elena Grigorescu, Brendan Juba, Karl Wimmer, and Ning

Xie. AC0◦mod2 lower bounds for the boolean inner product. J. Comput. Syst.
Sci., 97:45–59, 2018.

[CHH+20] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, and
David Zuckerman. XOR lemmas for resilient functions against polynomials. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, ACM Symp. on the Theory of Computing (STOC),
pages 234–246. ACM, 2020.

9

[CL18] Kuan Cheng and Xin Li. Randomness extraction in AC0 and with small locality.
In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA,
volume 116 of LIPIcs, pages 37:1–37:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

[CR96] Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in cir-
cuit complexity. In 28th ACM Symp. on the Theory of Computing (STOC), pages
30–36, 1996.

[CZ16] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and
resilient functions. In ACM Symp. on the Theory of Computing (STOC), pages
670–683, 2016.

[GVW15] Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction
in AC0. In IEEE Conf. on Computational Complexity (CCC), 2015.

[HIV22] Xuangui Huang, Peter Ivanov, and Emanuele Viola. Affine extractors and ac0-
parity. In Workshop on Randomization and Computation (RANDOM), 2022.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
with constant computational overhead. In 40th ACM Symp. on the Theory of
Computing (STOC), pages 433–442, 2008.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean
functions. In 29th IEEE Symp. on Foundations of Computer Science (FOCS),
pages 68–80, 1988.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources
and exposure-resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2007.

[Mek17] Raghu Meka. Explicit resilient functions matching ajtai-linial. In ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 1132–1148, 2017.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

[RZ98] A. Russell and D. Zuckerman. Perfect information leader election in log*n+o(1)
rounds. In Proceedings 39th Annual Symposium on Foundations of Computer
Science, pages 576–583, 1998.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In 6th
Symposium on Mathematical Foundations of Computer Science, volume 53 of
Lecture Notes in Computer Science, pages 162–176. Springer, 1977.

[Vio18] Emanuele Viola, 2018. https://emanueleviola.wordpress.com/2018/02/16/i-
believe-pnp/.

[Wel20] Jake Wellens. Assorted results in boolean function complexity, uniform sampling
and clique partitions of graphs. PhD thesis, Massachusetts Institute of Technol-
ogy, 2020.

10
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

