
Approximating Iterated Multiplication of
Stochastic Matrices in Small Space *

Gil Cohen† Dean Doron‡ Ori Sberlo§ Amnon Ta-Shma¶

Abstract

Matrix powering, and more generally iterated matrix multiplication, is a funda-
mental linear algebraic primitive with myriad applications in computer science. Of
particular interest is the problem’s space complexity as it constitutes the main route
towards resolving the BPL vs. L problem. The seminal work by Saks and Zhou
[SZ99] gives a deterministic algorithm for approximating the product of n stochastic
matrices of dimension w×w in space O(log3/2 n+

√
log n·logw). The first improvement

upon [SZ99] was achieved by Hoza [Hoz21] who gave a logarithmic improvement in
the n = poly(w) regime, attaining O(1√

log logn
· log3/2 n) space.

We give the first polynomial improvement over [SZ99]. Our algorithm achieves
space complexity of

Õ
(
log n+

√
log n · logw

)
.

In particular, in the regime log n > log2w, our algorithm runs in nearly-optimal
Õ(log n) space, improving upon the previous best O(log3/2 n).

To obtain our result for the special case of matrix powering, we harness recent ma-
chinery from time- and space-bounded Laplacian solvers to the [SZ99] framework and
devise an intricate precision-alternating recursive scheme. This enables us to bypass
the bottleneck of paying log n-space per recursion level. The general case of iterated
matrix multiplication poses several additional challenges, the substantial of which is
handled by devising an improved shift and truncate mechanism. The new mechanism
is made possible by a novel use of the Richardson iteration.

*This paper subsumes a manuscript authored by the first three authors [CDS22] which dealt only with
the case of matrix powering.

†Tel Aviv University. gil@tauex.tau.ac.il. Funded by ERC starting grant 949499 and by the Israel
Science Foundation grant 1569/18.

‡Ben Gurion University. deand@bgu.ac.il.
§Tel Aviv University. orisberlo@mail.tau.ac.il. Funded by ERC starting grant 949499 and by ISF

grant 952/18.
¶Tel Aviv University. amnon@tauex.tau.ac.il. Funded by ISF grant 952/18.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 149 (2022)

Contents

1 Introduction 1
1.1 Our result . 2
1.2 The case of matrix powering . 3

2 Proof Overview 4
2.1 Matrix powering . 4
2.2 Iterated matrix multiplication . 8

3 Preliminaries 10
3.1 Matrix notation . 10
3.2 Space-bounded computation . 11
3.3 Read-once branching programs . 12
3.4 Richardson Iteration . 13
3.5 The Nisan Generator . 14

4 Background: The Saks–Zhou Algorithm 17
4.1 Shift and Truncate . 17
4.2 The Saks–Zhou algorithm and its analysis . 18

5 Approximate Powering in Small Space 22
5.1 The algorithm . 22
5.2 Proof of correctness . 24
5.3 A high-accuracy deterministic approximation 27

6 Approximating the Iterated Product 30
6.1 Laying the groundwork . 30
6.2 The algorithm . 33
6.3 Perturbing the input . 36
6.4 Proof of correctness . 39
6.5 The space complexity . 44

A Spectral Algorithm for Matrix Powering 53

B Richardson iteration 54

C Improving the Dependence on the Confidence Parameter in Nisan’s generator 55
C.1 Using non-averaging samplers . 59
C.2 Using averaging samplers . 60

1 Introduction

One of the great open problems of computational complexity is the BPL vs. L prob-
lem: To what extent is randomness necessary for space-bounded algorithms? More con-
cretely, can every probabilistic algorithm be fully derandomized with only a constant fac-
tor blowup in space? The problem withstood countless attempts, even though it is widely
believed that BPL = L (as indeed follows from plausible circuit lower bounds [KvM02]),
and there are no known barriers for the unconditional derandomization of BPL.

The problem of derandomizing BPL is equivalent to the problem of approximating
powers of stochastic matrices. Indeed, a Turing machine M that uses space S = logw

can be converted to a Markov chain A on O(w) states, and vice versa. Assuming M

uses n random bits, one is interested in approximating the probability of reaching some
accepting configuration t starting from the initial configuration s. This clearly translates
to approximating An[s, t].

A (halting) BPL machine is only allowed poly(w) running time and can toss at most
one coin per step. Thus, n = poly(w) is the regime of interest in the context of general
space-bounded derandomization (see, e.g., [Nis92, Nis94, INW94]). Nonetheless, study-
ing the problem for arbitrary n,w has attracted substantial attention in the literature and
proved useful for obtaining important results in the n = poly(w) case. We turn to give a
brief historic account on both regimes.

The n ≪ w regime. Nisan and Zuckerman [NZ96] proved that any space-logw random-
ized algorithm that uses n = poly(logw) coins can be simulated deterministically in space
O(logw). Other works include [Arm98] who considered a different range of parameters,
and the work of Raz and Reingold [RR99] that put forth an approach for significantly
improving upon [NZ96]. Most relevant to us is the work of Saks and Zhou [SZ99] which
builds on Nisan’s work [Nis92]. Interestingly, a recent line of work [PV21, HPV21, PV22,
BHPP22] studies restricted models for unbounded w.

The n ≫ w regime. The other extreme case has been extensively studied in the black-
box model by analyzing the structure of the corresponding non-uniform model of read
once branching programs [RSV13, SVW17, FK18]. In particular, Meka, Reingold and Tal
[MRT19] constructed a PRG against width w = 3 branching programs with seed length
Õ(log n). There has been exciting line of work on more restricted models in this regime
(see, e.g., [BRRY14, KNP11, De11, Ste12, DMR+21] and references therein).

The n ≫ w regime: the white-box model. The focus of this work is the latter regime,
n ≫ w, in the white-box model. I.e., instead of trying to construct a PRG against width-

1

w length-n branching programs, our goal is to approximate An for a stochastic w × w

matrix A in bounded space. Even more ambitiously, we wish to handle the Iterated Matrix
Multiplication (IMM) problem for stochastic matrices, that is, to approximate the product
A1 · · ·An for arbitrary stochastic matrices. We turn to briefly survey the known results.

Savitch’s theorem [Sav70] can be adapted to obtain an exact computation of the prod-
uct of arbitrary matrices in space O(log n · log(nw)) (ignoring bit representation issues,
see Claim 3.6). Allowing for an approximation error ε > 0, one can implement Savitch’s
algorithm using standard techniques in O(log n · (logw + log log n

ε
)) space. For stochastic

matrices the seminal Saks–Zhou algorithm [SZ99] runs in space

O
(√

log n · log nw

ε

)
.1

The dependence on ε was recently improved by Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan [AKM+20] using the Richardson iteration (see Section 3.4), reducing
the space to

O

((√
log n+ log log

1

ε

)
· log nw

)
.

Hoza [Hoz21] gave a poly-logarithmic improvement in the n = poly(w) regime, attain-
ing O(1√

log logn
· log3/2 n) space, also in the small error regime. We refer the reader to the

excellent, very recent survey by Hoza [Hoz22] on the progress on derandomizing space-
bounded computation.

1.1 Our result

The main result of this work is as follows.

Theorem 1.1 (see also Theorem 6.1). For any n,w ∈ N where n ≥ w, and any ε > 0, there
exists a deterministic algorithm that given w × w stochastic matrices A1, . . . , An, approximates
A1 · · ·An to within error ε = 2− polylog(n) in space

Õ
(
log n+

√
log n · logw

)
,

where the Õ notation hides doubly-logarithmic factors in n and w.

Theorem 1.1 gives the first polynomial improvement over [SZ99] (and over [AKM+20])
1[SZ99] considers matrix powering. However, one can reduce IMM to matrix powering via the embed-

ding (A1, . . . , An) 7→ Ā =

(
0
A1 0

...
...
An 0

)
. Indeed, A1 · · ·An appears as an entry in Ān. We note that this

simple reduction, that incurs a “blow up” w 7→ nw, is moot in our regime of interest, n ≫ w.

2

for IMM and even for matrix powering. In particular, in the regime log n > log2w, our
algorithms runs in Õ(log n) space compared to the previous best O(log3/2 n).

1.2 The case of matrix powering

For the case of matrix powering, we osberve that an exact algorithm that is based on the
Cayley–Hamilton theorem yields the following.

Theorem 1.2. For any n,w ∈ N there exists a deterministic algorithm that on input a w × w

matrix A, represented by poly(w) bits, outputs An using space O(log n+ log2w).

Although the proof of Theorem 1.2 uses standard linear algebra and known results
from parallel circuit complexity, we are not aware of any reference in which it is explicitly
stated. For completeness, we give the proof in Appendix A. Our algorithm given by
Theorem 1.1 outperforms previous matrix powering algorithms, including Theorem 1.2,
whenever logw ≪ log n ≪ log2w. We stress that we are not aware of any algorithm,
spectral or otherwise, attaining such a space complexity for IMM as in Theorem 1.2.

There are two natural ways to further interpret our result for matrix powering.

Approximating long random walks. Our result yields approximation of long random
walks on arbitrary digraphs with super-polynomial mixing time. Letting A be a w × w

stochastic matrix, n = n(w) ≫ w, and v ∈ Rw be any initial distribution, Theorem 1.1
gives a space-efficient algorithm for approximating Anv, outperforming previous meth-
ods. When A corresponds to an irreducible and aperiodic Markov chain with a polynomial
mixing time, n = poly(w) already suffices for Anv to be very close to the stationary dis-
tribution. When the underlying Markov chain is not poly-mixing, which is often the case
for arbitrary digraphs, the regime n ≫ w may give us valuable information.

Space-bounded derandomization. In the lens of derandomization, Theorem 1.1 proves
that any randomized algorithm that uses n random bits and S space can be simulated
deterministically in O(log n+

√
log n ·S) space. In the regime n = 2S

c for c > 1, where our
algorithm shines, there is a subtlety that one should bear in mind. Conventionally, ran-
domized algorithms use at most 2O(S) random coins. Otherwise, the algorithm reaches the
same state twice, implying that there are (infinite) sequences of random coins for which
the algorithm never terminates. To settle the halting issue, it is natural to consider the
model in which a randomized algorithm uses S space, and n random coins in expectation.
With this modification, our simulation result holds. We make two additional remarks:
(1) For n = 2O(S), the above modification agrees with the standard model; and (2) Taking

3

n ≫ 2S may decide languages outside BPL, e.g., if n = 22
O(S) then we can decide the

directed connectivity problem which is not known to be in BPL.

Interestingly, as noted by Hoza [Hoz22], the early works on randomized space-bounded
algorithms showed more interest in the “non-halting” model (see, e.g., [Gil77, Sim81,
Jun81, BCP83, Sak96]).

2 Proof Overview

In this section we give a high-level, yet comprehensive, overview of the proof of Theo-
rem 1.1. The proof involves several new ideas, many of which appear already in the spe-
cial case of matrix powering. There, we harness recent machinery from time- and space-
bounded Laplacian solvers to the [SZ99] framework and devise an intricate precision-
alternating recursive scheme. We elaborate on this in Section 2.1. The general case of
iterated matrix multiplication poses additional significant challenges, the substantial of
which is handled by devising an improved shift and truncate mechanism. The new mech-
anism is made possible by a novel use of the Richardson iteration. We present the main
ideas that go into the IMM algorithm in Section 2.2.

2.1 Matrix powering

2.1.1 The [SZ99] algorithm: a refresher

Our result is based on the beautiful Saks–Zhou algorithm which we now briefly recall.
For a more complete exposition, see Section 4. The algorithm consists of two ingredients:

1. The celebrated Nisan generator [Nis92], which is used as a randomized matrix ex-
ponentiation algorithm; and

2. A canonicalization step that is based on the shift and truncate technique. By the latter,
we mean subtracting a small quantity from intermediate calculations (i.e., shift), and
keeping only some of the most significant bits (i.e., truncate).

Roughly speaking the [SZ99] algorithm works as follows, where, for simplicity we
first consider the case w = n. The algorithm gets as input a stochastic matrix A ∈ Rn×n,
auxiliary randomness for the Nisan generator as well as for the shifts, and proceeds as
follows.

1. Set Ã0 = A.

4

2. For i = 1, . . . ,
√
log n,

(a) Invoke the Nisan generator to approximate (Ãi−1)
2
√
logn to withing accuracy

acc1.

(b) Shift (Ãi−1)
2
√

logn by a random shift of magnitude Z · acc1, where Z is chosen
uniformly at random from {0, 1, . . . , L} and truncate it to a precision of acc2 to
obtain the matrix Ãi.

3. Output Ã√
logn.

Setting of parameters. The parameters L, 1
acc1

, 1
acc2

are all set to be sufficiently large poly-
nomials in n that further satisfying certain relations. While the exact setting is not impor-
tant for our current discussion, the reader may take L = na, acc1 = n−4a, and acc2 = n−2a

for some sufficiently large constant a. The reason why acc1 and acc2 have to be polyno-
mially small in n is because errors accumulate additively, and if we raise to a power of n,
the final error is of order n(acc1 + acc2). The reason why L has to be polynomially large
is because we take the union bound over all n2 entries, and over the

√
log n iterations,

resulting in failure probability ≈ n2

L
.

Analyzing the space complexity. The above algorithm is randomized. However, as
usual, to obtain a deterministic algorithm one can average over the choices of the auxiliary
randomness which can be done in additional space that is proportional to the randomness
complexity.

Let us sketch the analysis of the [SZ99] algorithm’s space complexity. The crucial point
in the randomized algorithm above is that the canonicalization step (which is implicit in
(a) and discussed in Section 3.5) allows [SZ99] to reuse the randomness needed for the
different applications of the Nisan generator. This reuse of randomness saves on space
in the resulted deterministic algorithm. One, and hence all, application of Nisan’s gen-
erator with the above parameters, requires O(log3/2 n) random bits. Adding to that the
O(log n) random bits per shift, which we do not reuse, we get randomness complexity of
O(log3/2 n). The space complexity of every iteration can be shown to be O(log n), yield-
ing an overall space complexity of O(log3/2 n) for the randomized algorithm. Hence, the
overall space complexity of the deterministic algorithm is also O(log3/2 n).

2.1.2 Attempting to gain on w ≪ n in Saks–Zhou

We turn to check what changes in the regime w ≪ n. First, let us employ the same
approach as before, i.e., we have

√
log n iterations, each raising the previously computed

5

matrix to a power of 2
√
logn. Then,

• As before, the parameters acc1, acc2 have to be n−Θ(1) because the errors accumulate
additively in n regardless of the matrix’s dimension w.

• However, we can now take L to be smaller as there are only w2 entries in the matrix,
and we only need to take the union bound over these entires and over the

√
log n

iterations, which is negligible. Indeed, our algorithm invests roughly logw random
bits for choosing the shifts.2

Doing the back-of-the-envelope calculation of the overall space complexity, we see that
we gained nothing. Indeed,

• Both the space and randomness complexity of the Nisan generator is still Ω(
√
log n ·

log 1
acc1

) = Ω(log3/2 n), because acc1 is polynomially-small in n; and,

• Each of the
√
log n iterations still requires Ω(log n) space, because the canonicaliza-

tion step has to work with accuracy of n−Θ(1).

Thus, the [SZ99] algorithm does not benefit, as is, from the smaller input matrix it is
given. The crux of the problem lies in the fact that we have to work with accuracy of
n−Θ(1) and then it seems inevitable that each of the

√
log n iterations should take Ω(log n)

space. In an amortized sense, the space complexity that we are shooting for restricts us to√
log n + logw ≪ log n space per iteration which seems insufficient if we are to maintain

accuracy of n−Θ(1).

Despite the seemingly impossible “space vs. accuracy” requirement, the novelty of
our solution allows us to accomplish just that, namely, maintaining accuracy of n−Θ(1)

throughout the computation, at a cost of
√
log n + logw ≪ log n bits per iteration! To

explain how this is done, we pause our description of the modified Saks–Zhou algorithm
to discuss Richardson iteration.

2.1.3 Richardson Iteration

Primarily used as an iterative method for solving linear systems, the Richardson iteration
has been extremely useful in graph algorithms, and was recently applied in the space-
bounded setting. In this work, we use it to obtain a high precision approximation of
matrix powers from mild approximations, as was done in [AKM+20, PV21, CDR+21]. We
turn to describe this algorithm.

2Note, however, that each shift is of magnitude at most L · acc1 = n−Θ(1).

6

The algorithm R gets as input a substochastic matrix A of dimension w, an integer k,
and a sequence of w×w matrices Ã1, . . . , Ãn satisfying ∥Ai−Ãi∥∞ ≤ 1

n
. The output, R, is a

w×w matrix satisfying ∥An−R∥∞ ≤ n · 2−k, computed in space O
(
log2 k + log k · log nw

)
.

Thus, the algorithm R allows us to obtain any desired approximation ε to An given only a
mild, 1

n
, approximation of the powers A2, . . . , An. The algorithm does so with extremely

small space. Indeed, the dependence on ε is only polynomial in log log 1
ε
. We think of

the matrix A as an “anchor” – an error-free object that, information theoretically, stores
all that is needed to compute An. With access to A, the algorithm R is able, in a space-
efficient manner, to improve a modest approximation of A’s powers. We refer the reader
to Section 3.4 for a more complete and formal discussion.

2.1.4 Turning back to our matrix powering algorithm

We employ the following approximation scheme: Throughout the computation our ma-
trices Ãi are kept with n−Θ(1) accuracy. However, before we apply the canonicalization
step, and the Nisan generator that follows, we purposely decrease the precision of the
input matrix to the Nisan generator by truncating its entries to a precision of w−Θ(1) ≫
n−Θ(1). Indeed, with this modest precision, the Nisan generator requires space of order√
log n · logw ≪ log3/2 n. The output of the generator then gives us a “mild” approxi-

mation of the 2
√
logn-th power. To restore the (required) high precision approximation of

n−Θ(1), we invoke the Richardson iteration which can be done space-efficiently.

It is crucial to note that although we decrease the precision before using canonicaliza-
tion and the Nisan generator to save on space, this precision is not lost because we “keep”
the untruncated matrix as an anchor for the correct result: The Richardson iteration com-
bines the untruncated matrix with the mild approximation of its 2

√
logn-th power, to get a

high-precision approximation of that power.

We are now ready to give a rough outline of our matrix powering algorithm (see also
Figure 1). The precise description is given in Section 5. Our algorithm gets as input a
stochastic matrix A ∈ Rw×w, auxiliary randomness for the Nisan generator as well as for
the shifts, and proceeds as follows.

1. Set Ã0 = A.

2. For i = 1, . . . ,
√
log n,

(a) Truncate Ãi−1 to a precision of w−Θ(1) and denote the result by ⌊Ãi−1⌋.

(b) Set the Nisan generator to work with accuracy w−Θ(1) and use it to approximate
⌊Ãi−1⌋2

√
logn . Note that since Ãi−1 approximates ⌊Ãi−1⌋ to within accuracy of

7

w−Θ(1), we have that Ã2
√
logn

i−1 approximates ⌊Ãi−1⌋2
√

logn to within accuracy of
w−Θ(1) · 2

√
logn.

(c) Use the mild approximation obtained above to compute a high precision ap-
proximation Ri ≈ Ã2

√
logn

i−1 by applying the Richardson iteration. We stress that
the Richardson iteration improves our approximation with respect to the pre-
vious high precision approximation Ãi−1 and not its truncation.

(d) Shift Ri by a random shift of magnitude n−Θ(1), and truncate it to a precision of
n−Θ(1), to obtain the matrix Ãi.

3. Output Ã√
logn.

Figure 1 illustrates the alternating nature of the algorithm, zig-zagging between a mild
approximation of w−Θ(1) and a high precision approximation of n−Θ(1). Setting the param-
eters appropriately, we get that with high probability over the auxiliary randomness, i.e.,
the seed for the Nisan generator and the shifts, the algorithm outputs a good approxima-
tion for An using space Õ(log n+

√
log n · logw).

Averaging over the auxiliary randomness, as done in [SZ99], would yield a space-
efficient deterministic algorithm, albeit with accuracy of w−Θ(1). It is thus tempting to try
and apply an additional layer of the Richardson iteration in order to improve the accuracy
to an arbitrary ε > 0 (as done in [AKM+20] for the standard Saks–Zhou algorithm). How-
ever, to apply the Richardson iteration, the initial accuracy needs to be 1

n
. To overcome

this issue, we observe that while the average does not give us a good enough guaran-
tee, the median does. Applying the Richardson iteration after taking the median over the
auxiliary randomness, we get our final high-precision approximation.

2.2 Iterated matrix multiplication

Let us try to naı̈vely extend our powering algorithm, discussed in the previous section, to
compute the product A1A2 · · ·An of arbitrary w×w stochastic matrices. Given A1, . . . , An,
we would proceed as follows:

1. Use Nisan generator to approximate iterated products of 2
√
logn matrices, instead of

the 2
√
logn-th power of a single matrix.

2. Recursively, partition the iterated product to iterated products of 2
√
logn matrices.

After
√
log n iterations, the entire iterated product is approximated.

There are three major issues with this naı̈ve attempt:

8

Working with one shift. When we needed to handle matrix powering, we invested only
O(logw) random bits per shift, and we had

√
log n such shifts, one for every matrix we

encounter in the computation (namely, the approximations for the matrices A2i·
√

logn for
i = 1, . . . ,

√
log n). However, now we have Ω(n) intermediate matrices, and we cannot

afford to use an independent shift for each nor to incur the union-bound over all Ω(n)
sub-sequences.

We therefore put forth a new approach which, in a way, is the most economical ap-
proach we can think of. Instead of shifting “output” matrices (those that arise as inter-
mediate computation, after applying Nisan’s generator), we shift the input matrices. Also,
as we have n input matrices A1, . . . , An, we use the same shift Z on all n input matrices.
We need each of the shifts to work well, so we need to union-bound over n matrices, and
therefore use Ω(log n) bits for choosing the shift Z. Thus, we cannot afford to do such a
shift at each iteration, and instead we study what happens when we just shift the input
without shifting intermediate iterations.

While this saves space (now we can afford O(log n) random bits for shifting the input
since we only worry about one iteration–the first one–rather than

√
log n of them). Ana-

lyzing correctness becomes highly nontrivial since we need to keep track of the way the
matrices (as well as the error) evolve throughout the intermediate computations. We first
show that the single initial perturbation makes all original iterated products “safe”, in the
sense that it does not introduce undesired dependencies. However, the truncation step
makes the approximated matrices unsafe. Surprisingly, this is resolved by introducing a
second Richardson iteration, now for the purpose of handling dependencies rather than
for improving the accuracy. See Section 6.1.2 for a more detailed discussion.

Better space complexity analysis. In the space complexity analysis of the matrix pow-
ering algorithm, we use standard composition of space bounded algorithms, where the
space complexity of each iteration is roughly Θ(logw). However, in IMM there are roughly
n terms in the product, and so the space complexity of each iteration is Ω(log n), even
just for keeping a fresh index to a multiplication interval at each level of the composition.
Thus, seemingly, the total space complexity is Ω(log3/2 n). We resolve this issue by observ-
ing that some of the indices can be maintained globally. See Section 6.5.1 for the details,
and in particular Lemma 6.13 that generalizes the standard space composition theorem.

The confidence parameter. In the matrix powering algorithm, Nisan generator has to
work against all matrices A2i·

√
logn for i = 0, 1, . . . ,

√
log n − 1. As there are only

√
log n

matrices to consider, we could choose a large confidence parameter δ ≈ 1
w

(see, e.g., Sec-
tion 3.5 or Theorem 3.14) and still be certain that with probability 1− δ over the auxiliary

9

M̃0

⌊M̃0⌋ ≈ ⌊M̃0⌋2
√
logn

R0 M̃1

⌊M̃1⌋ ≈ ⌊M̃1⌋2
√
logn

R1 M̃2

. . .

Truncate

Nisan

R
ic

ha
rd

so
n

Richardson
S&T

Truncate

Nisan

R
ic

ha
rd

so
n

Richardson
S&T

Figure 1: Our matrix powering algorithm. “S & T” refers to “shift and truncate”.

randomness for the Nisan generator h, our choice works well for all
√
log n ≪ w matrices

above.

In contrast, for the IMM algorithm, we need to fix a single h that works well against
each of the Ω(n) sub-products. Therefore, the confidence deteriorates to ≈ n · δ which
forces us to take δ < 1

n
. However, in this parameter setting the Nisan generator has seed

length Ω(log3/2 n) which is too much for us. We remedy this by devising a PRG with a
better dependence on the confidence parameter δ. This is done by standard techniques
(see Section 6.1.1 for more details).

3 Preliminaries

3.1 Matrix notation

For a matrix A ∈ Rw×w, we denote ∥A∥max = maxi,j∈[w] |A[i, j]| and by ∥A∥∞ we denote its
induced ℓ∞ norm, i.e., ∥A∥∞ = maxi∈[w]

∑
j∈[w] |A[i, j]|. Clearly,

Claim 3.1. For any matrix M ∈ Rw×w we have that ∥M∥∞ ≤ w ∥M∥max.

We say a real matrix is stochastic if it is row-stochastic, i.e., if its entries are nonnegative
and every row sums to 1. We say that a real matrix is substochastic if its entries are non-
negative and every row sums to at most 1, i.e., ∥A∥∞ ≤ 1. The following claim follows by
a simple induction and the triangle inequality.

Claim 3.2. Let ∥·∥ be a sub-multiplicative matrix norm. Then, for any A1, . . . , Ak, B1, . . . , Bk

10

with norm at most 1 we have that

∥A1 · · ·Ak −B1 · · ·Bk∥ ≤
∑
i

∥Ai −Bi∥ .

In particular, if ∥A∥ , ∥B∥ ≤ 1 then
∥∥Ak −Bk

∥∥ ≤ k · ∥A−B∥.

3.2 Space-bounded computation

A deterministic space-bounded Turing machine has three tapes: an input tape (that is
read-only); a work tape (that is read-write) and an output tape (that is write-only and
uni-directional). The output of the TM is the content of its output tape once the machine
terminates. The space used by a TM M on input x is the rightmost work tape cell that M
visits upon its execution on x. Denoting this quantity by sM(x), the space complexity of
M is thus the function s(n) = maxx:|x|=n sM(x). For further details, see [AB09, Chapter 4]
and [Gol08, Chapter 5].

Claim 3.3 (composition of space-bounded algorithms). Let f1, f2 : {0, 1}⋆ → {0, 1}⋆ be
functions that are computable in space s1, s2 : N → N, respectively, where s1(n), s2(n) ≥ log n.
Then, f1 ◦ f2 : {0, 1}⋆ → {0, 1}⋆ can be computed in space O (s1 (ℓ2(n)) + s2(n)) , where ℓ2(n) is
a bound on the output length of f2 on inputs of length n.

Corollary 3.4. Let f : {0, 1}⋆ → {0, 1}⋆ be computable in space s : N → N, where s(n) ≥ log n.
Then, g(x, k) = f (k)(x), where k ∈ N, can be computed in space

O

(
k−1∑
i=1

s (ℓi(n))

)

where ℓi(n) is a bound on the output length of f (i) on inputs of length n.

Next, we recall the space complexity of computing matrix powers via naı̈ve repeated
squaring. Observe that whenever two numbers are multiplied, their multiplication re-
quires more digits of precision and so we have to account for that as well.

Definition 3.5 (matrix bit complexity). Given a matrix A ∈ Rw×w, we denote its bit complexity,
i.e., the number of bits required to represent all its entries, by |A|. In particular, if we use k bits of
precision for every entry in A then |A| = O(kw2). We will always assume |A| = Ω(w2).

Claim 3.6. The matrix powering function f(A, n) = An can be computed in space O(log2 n +

log n · log |A|).

11

Proof. First, note that the product of two matrices f(A,B) = AB can be computed in space
O(log(|A|+ |B|)), where we use our assumption |A|, |B| = Ω(w2). Composing f(A,A) for
k times, we can compute A2k in space

O

(
k∑

i=1

log
(
2i |A|

))
= O

(
k2 + k log |A|

)
,

following Corollary 3.4. (Note that the number of bits needed to represent each entry
doubles at every iteration). Write n =

∑⌈logn⌉
i=0 bi2

i for bi ∈ {0, 1}. Then, An =
∏

i:bi=1A
2i .

Accounting for the log n additional space needed to compute the product, the proof is
concluded.

3.3 Read-once branching programs

We use the standard definition of layered read-once branching programs. For a length
parameter n ∈ N, a width parameter w ∈ N, and an alphabet Σ, an [n,w,Σ] BP is specified
by an initial state v0 ∈ [w], a set of accept states Vacc ⊆ [w] and a sequence of transition
functions Bi : [w] × Σ → [w] for i ∈ [n]. The BP B naturally defines a function B : Σn →
{0, 1}: Start at v0, and then for i = 1, . . . , n read the input symbol xi and transition to the
state vi = Bi(vi−1, xi). The BP accepts x, i.e., B(x) = 1, if vn ∈ Vacc, and rejects otherwise.

Given a transition function Bi, and σ ∈ Σ, we identify the function Bi(·, σ) : [w] → [w]

with a Boolean stochastic matrix which we denote Bi(σ), wherein Bi(σ)[u, v] = 1 if and
only if Bi(u, σ) = v. The transition matrix of each layer corresponds to the matrix A(Bi) ≜
Eσ∈Σ [Bi(σ)]. The transition matrix of B itself is thus

A(B) ≜ A(B1) · . . . · A(Bn),

which describes a uniformly random walk on B starting at v0. In particular, the proba-
bility that B accepts a random input is given by

∑
v∈Vacc

A(B)[v0, v]. In our work we will
approximate A(B) in a strong sense that would be oblivious to the initial state and the set
of accepting states, so we will never mention them explicitly. Namely, if M is such that
∥A(B)−M∥∞ ≤ ε, we ε-approximate the aforementioned acceptance probability for any
v0 and Vacc.

Finally, when we omit the length of the BP and simply refer to B as a [w,Σ] BP, we
mean that B comprises a single transition function, and we sometimes repeat it for, say,
n times, to mimic the length-n BP in which every transition is the same as this of B. This
notion is very natural, and in fact suffices, when one wishes to approximate powers of
stochastic matrices rather than iterated matrix multiplication. Given a [w,Σ] BP B with

12

A(B) = A, An is thus the transition matrix of the BP with n identical transitions.

3.4 Richardson Iteration

Richardson iteration is a method for improving a given approximation to an inverse
of a matrix. This method is frequently used to construct a preconditioner to a Lapla-
cian system, and has recently been used in the context of space-bounded computation in
[AKM+20, PV21, CDR+21]. We describe it formally.

Definition 3.7 (Richardson iteration). Given A,B ∈ Rw×w, and k ∈ N, we define

R(A,B, k) =
k−1∑
i=0

(I − AB)i A.

Above, one can think of B as the Laplacian of some stochastic matrix, and of A as a
coarse approximation of its inverse.

Lemma 3.8. For any sub-multiplicative norm ∥·∥, let A,B ∈ Rw×w be such that ∥I − AB∥ ≤ ε

and B is invertible. Then, ∥R(A,B, k)−B−1∥ ≤ ∥B−1∥ · εk.

The above lemma can be used to devise an algorithm that improves the accuracy of
matrix powers [AKM+20, PV21, CDR+21], as we state below. For completeness, we pro-
vide the short proof in Appendix B.

Lemma 3.9. There exists an algorithm R that gets as input a sequence of substochastic matrices
(A1, . . . , An) of dimension w × w, an integer k ∈ N, and a sequence substochastic matrices
(Bi,j)1≤i<j≤n satisfying:

• If for all 1 ≤ i < j ≤ n we have that ∥Ai · · ·Aj − (B)i,j∥∞ ≤ 1
4(n+1)

, then

∥R((Bi,j)1≤i<j≤n, (Ai)1≤i≤n, k)− A1 · · ·An∥∞ ≤ (n+ 1) · 2−k.

• R runs in O
(
log2 k + log k · log(nT)

)
space, where T = max {|Ai| , |(B)i,j|} is the maxi-

mum bit-complexity of the given matrices.

In the above lemma, whenever A1 = A2 = . . . = An then it suffices to get as input
matrices (B1, . . . , Bn) satisfying

∥∥Ai −Bi

∥∥
∞ ≤ 1

4(n+ 1)
.

In this case, we shall invoke the algorithm using R(B1, . . . , Bn, A, k), where A = A1 =

A2 = . . . = An.

13

3.5 The Nisan Generator

Nisan, in his seminal work [Nis92], constructed a family of pseudorandom generators
that ε-fool [n,w,Γ] BPs using seed of length d = O

(
log n · log nw|Γ|

ε

)
. We briefly recall the

construction and its properties.

Set the generator’s “working alphabet” Σ, where |Σ| = O
(

nw|Γ|
ε

)
,3 and let H ⊆ Σ → Σ

with |H| = |Σ|2 be a two-universal family of hash functions. The seed for

G = Glogn : {0, 1}d → Γn

comprises log n hash functions h = (h1, . . . , hlogn), each hi ∈ H, and a symbol σ ∈ Σ,
noticing that indeed d = O(log n · log |Σ|). We define

Gi : Σ× {0, 1}i·2 log |Σ| → Γ2i

recursively as follows.

G0(σ) = σ|[1,...,log |Γ|],
Gi(σ;h1, . . . , hi) = Gi−1(σ;h1, . . . , hi−1) ◦Gi−1(hi(σ);h1, . . . , hi−1).

One can verify that the space needed to compute the output of G, given an appropriate
H, is O(log |Σ|) ≪ d. Nisan proved that for every BP B, most h = (h1, . . . , hlogn) are good
in the sense that G(Σ, h) ε-fools B. Formally,

Theorem 3.10 ([Nis92]). Given n,w ∈ N, an accuracy parameter ε > 0, a confidence parameter
δ > 0, and an alphabet Γ, let G : {0, 1}dN × Σ → Σn be the above Nisan generator, where |Σ| =
O
(

nw|Γ|
εδ

)
and dN = O (log n · log |Σ|). Let B be any [n,w,Γ] BP. Then, with probability at least

1− δ over h ∈ {0, 1}dN , it holds that∥∥∥∥A(B)− E
σ∈Σ

[B(G(h, σ))]

∥∥∥∥
∞

≤ ε,

recalling that A(B) = Ez∈Γn [B(z)].4

For every BP B, if we choose h at random and store it then h is good for B with
probability 1 − δ. Thus, we can write h once and never change it. Put differently, the

3If Γ is large enough already, we can simply take Σ = Γ, but the above choice of Σ will not change the
parameters.

4We note that one can view the output of Nisan generator as a [w,Σ] BP B
(n)
h whose transition matrix

A(B
(n)
h) is precisely Eσ∈Σ [B(G(h, σ))].

14

storage needed to keep h is a write-once memory. In contrast, the storage needed to keep σ

is a multiple-read, multiple-write memory, as we need to average over σ. It turns out that
this distinction is incredibly useful. Saks and Zhou call the write-once storage “offline”
randmoness, and the multiple-write storage “online” randomness.

Canonicalization of BPs. As discussed above, a BP B has an associated transition ma-
trix A(B). This association, however, is not one to one, and there are many different BPs
that share the same associated transition matrix A. An important step in [SZ99] is to trans-
form a BP B to a canonical BP B′ that has the same associated transition matrix. We first
make this notion formal.

Given a w × w substochastic matrix M in which every entry is represented using at
most s bits, let B = C(M) be the [w + 1,Σ = [2s]] BP constructed as follows. Given i ∈ [w]

and σ ∈ Σ, B(i, σ) = j where j is the smallest integer satisfying
∑

k≤j M [i, k] ≥ σ · 2−s if
such exists, and w + 1 otherwise. Moreover, we set B(w + 1, σ) = w + 1 for all σ ∈ Σ. The
following claim then follows easily.

Claim 3.11. For a substochastic matrix M , it holds that A(C(M))[1,w] = M , where we denote by
A[a,b] the sub-matrix of A that is formed by taking the rows and columns indexed by a, . . . , b.

In our work, we will also need to work with lossy canonicalizations, in which we trans-
late a substochastic matrix with a large bit-complexity into a BP over a small alphabet.
Given a substochastic M and t ∈ N, we let Ct(M) be the canonicalization of M into a BP
of width w + 1 over the alphabet Σ = {0, 1}t, regardless of the representation of its ele-
ments. Namely, B = Ct(M) is defined such that B(i, σ) = j, where again, j is the smallest
integer satisfying

∑
k≤j M [i, k] ≥ σ · 2−t if such exists, and w + 1 otherwise. We also set

B(w + 1, σ) = w + 1 for all σ ∈ Σ as before.

Claim 3.12. Let M be a w×w substochastic matrix M in which every entry is represented using
at most s bits, and let t ∈ N where t ≤ s. Then,∥∥A(Ct(M))[1,w] −M

∥∥
∞ ≤ w · 2−t.

Moreover, computing Ct takes O(log s+ logw) space.

An Extended Nisan Algorithm. For simplicity, let us only consider a [w,Σ] BP with a
transition matrix A rather than different transitions at each layer. Observe that the Nisan
generator, set with length parameter n, can also approximate all intermediate powers by
truncating its output accordingly. Thus:

15

Theorem 3.13 (following [Nis92]). There exists an algorithm N that gets as input a [w,Σ] BP
B with a transition matrix A = A(B), a length parameter n, an accuracy parameter ε > 0, a
confidence parameter δ > 0, and a seed h ∈ {0, 1}dN where dN = O

(
log n · log nw|Σ|

εδ

)
. The

algorithm runs in space O
(
log nw|Σ|

εδ

)
and outputs

(
M

(1)
h , . . . ,M

(n)
h

)
= Nε,δ(B, h, n),

each M
(i)
h ∈ Rw×w, and satisfies the following. With probability at least 1 − δ over h ∈ BdN , it

holds that for all i ∈ [n], ∥∥∥M (i)
h − Ai

∥∥∥
∞

≤ ε.

We will often want to feed Nisan’s algorithm with stochastic (or even substochastic)
matrices, rather than BPs. The following theorem extends upon Theorem 3.13 by pre-
forming a canonicalization step prior to applying Nisan’s algorithm, and even allows for
a lossy canonicalization step which would be useful toward reducing the space require-
ments. As it will be clear from context, we use N for both the algorithm that gets a BP as
input and for the one that gets a matrix as input.

Theorem 3.14. There exists an algorithm Nε,δ that gets as input:

1. A w × w substochastic matrix A in which every entry is represented using at most s bits.

2. An accuracy parameter ε > 0, a confidence parameter δ > 0, and a canonicalization param-
eter t ∈ N, where t ≤ s.

3. A seed h ∈ {0, 1}dN for dN = O
(
log n ·

(
t+ log nw

εδ

))
.

The algorithm runs in space O
(
t+ log s+ log nw

εδ

)
and outputs(

M
(1)
h , . . . ,M

(n)
h

)
= Nε,δ(A, h, n, t),

each M
(i)
h ∈ Rw×w, and satisfies the following. With probability at least 1 − δ over h ∈ {0, 1}dN ,

it holds that for all i ∈ [n], ∥∥∥M (i)
h − Ai

∥∥∥
∞

≤ ε+ nw · 2−t.

When we omit the parameter t, we implicitly set t = s, and then the error guarantee is simply ε.
Also, when we set N to output a single matrix, we take it to be M (n)

h .

Proof. We compute B = Ct(A) and apply N(B, h, n), which outputs M
(1)
h , . . . ,M

(n)
h . We

then consider only the first w rows and columns of each matrix. By Theorem 3.13, with

16

probability at least 1− δ over h ∈ {0, 1}dN , we are guaranteed that∥∥∥M (i)
h − A(B)i

∥∥∥
∞

≤ ε

for all i ∈ [n]. By Claim 3.12, ∥A(B)− A∥∞ ≤ w · 2−t, and thus, due to Claim 3.2,∥∥∥M (i)
h − Ai

∥∥∥
∞

≤ ε+ iw · 2−t.

The space requirements and the bound for dN readily follows from Claim 3.12 and Theo-
rem 3.13. Note that when t = s, the canonicalization is lossless.

4 Background: The Saks–Zhou Algorithm

We review Saks and Zhou’s algorithm, presenting it using a terminology which would
allow us to lay the groundwork for our improved algorithm given in the next sections.
We begin with recalling the machinery of shift and truncate.

4.1 Shift and Truncate

Definition 4.1 (truncation). For z ∈ R and t ∈ N, we define the truncation operator ⌊z⌋t which
truncates z after t bits. Namely,

⌊z⌋t = max
{
2−t · ⌊2tz⌋, 0

}
.

We extend it to matrices in an entry-wise manner. That is, for a substochastic matrix A, the matrix
⌊A⌋t has entries ⌊A[i, j]⌋t.

Lemma 4.2. Let y, z ∈ [0, 1] be such that |y − z| ≤ 2−2t. Then, for all ℓ < t we have that

Pr
Z

[
⌊z − Z · 2−2t⌋t ̸= ⌊y − Z · 2−2t⌋t

]
≤ 2−ℓ,

where Z is chosen uniformly at random from
{
0, 1, 2, . . . , 2ℓ − 1

}
.

Proof. Without the loss of generality assume z < y. Note that ⌊z − Z2−2t⌋t ̸= ⌊y − Z2−2t⌋t
is equivalent to

∃a ∈ N, a2−t ∈
[
z − Z · 2−2t, y − Z · 2−2t

)
. (1)

17

However, by our assumption |y − z| ≤ 2−2t the following union⋃
Z∈{0,...,2ℓ−1}

[
z − Z · 2−2t, y − Z · 2−2t

)
⊆
[
z − (2ℓ − 1)2−2t, y

)
= I

is disjoint and contained in the interval I which is of length at most |y− z|+(2ℓ−1)2−2t ≤
2−t. Hence, there is at most one point in I which is an integer multiple of 2−t, meaning
that there is at most one Z satisfying Equation (1).

The preceding lemma is an important ingredient in [SZ99], that enables one to elimi-
nate dependencies between consecutive applications of Nisan’s algorithm. Think of z as
an approximation to some y obtained by a randomized algorithm that typically returns
a good approximation z ≈ y. Note that while z, y might be extremely close, their trun-
cation may differ if they are on the boundary values of the truncation operator. The idea
behind Lemma 4.2 is that if we randomly shift both y, z then their truncation is equal
with high probability. Once we fix a good shift, our approximation depends only on the
input (and the fixed shift) and not on the internal randomness used to compute z. See
[Ta-13, HK18, HU21] for additional discussion. Extending Lemma 4.2 to matrices, a sim-
ple union-bound gives us the following corollary.

Corollary 4.3. Let M,M ′ ∈ Rw×w be such that ∥M −M ′∥max ≤ 2−2t. Then, for all ℓ < t, we
have that

Pr
Z

[
⌊M − Z · 2−2tJw⌋t ̸= ⌊M ′ − Z · 2−2tJw⌋t

]
≤ w22−ℓ,

where Z is chosen uniformly at random from
{
0, 1, 2, . . . , 2ℓ − 1

}
and Jw is the all-ones w × w

matrix.

4.2 The Saks–Zhou algorithm and its analysis

Given a w×w stochastic matrix A, we wish to compute An, where n = 2r for some integer
r (n can be assumed to be a power of 2 without loss of generality). In this section we
describe Saks and Zhou’s randomized algorithm that uses only O(r3/2) random bits, and
runs in space O(r3/2). As discussed toward the end of this section, the algorithm can
then be derandomized in a straightforward manner while maintaining space complexity
O(r3/2).

Let ε > 0 be a desired accuracy parameter, and δ > 0 be the desired confidence. Write
r = r1r2 for some r1, r2 ∈ N to be chosen later on. Set δN = δ

2r2
, t = log 2nw2r2

εδ
, ℓ = t

2
,

18

εN = 2−2t, and

dN = O

(
r1 ·
(
t+ r1 + log

w

εNδN

))
= O

(
r21 + r1 log

nw

εδ

)
.

Without loss of generality we may assume that the input matrix A is given to us using
t digits of precision. The algorithm gets as input A ∈ Rw×w, r = r1r2, h ∈ {0, 1}dN , and
Z = (Z1, . . . ,Zr2) ∈

{
0, . . . , 2ℓ − 1

}r2 , and proceeds as follows.

1. Set M̃0 = A.

2. For i = 1, . . . , r2,

(a) Compute M̃
(2r1)
i−1 = NεN,δN

(
M̃i−1, h, 2

r1

)
.

(b) Set M̃i =
⌊
M̃

(2r1)
i−1 − Zi · 2−2tJw

⌋
t
.

3. Output M̃r2 .

Theorem 4.4 ([SZ99]). For any w × w stochastic matrix A, and integers r1, r2 such that r1r2 =
r = log n, the above algorithm satisfies the following. With probability at least 1 − δ over h ∈
{0, 1}dN and Z = (Z1, . . . ,Zr2) ∈

{
0, . . . , 2ℓ − 1

}r2 , the output M̃r2 = SZ(A, r1, r2, h,Z) satisfies∥∥∥An − M̃r2

∥∥∥
∞

≤ ε.

Moreover, SZ(A, r1, r2, h,Z) runs in space O
(
r2 · log nw

εδ

)
.

Proof. We let Mi be the “true” random rounding. That is, M0 = A, and for each i ∈ [r2],

Mi(Z) = ⌊Mi−1(Z)
2r1 − Zi · 2−2tJw⌋t. (2)

Observe that the Mi-s do not depend on h. For brevity, we omit the dependence on Z

whenever it is clear from context. It is important to note that whenever Z1, . . . ,Zi are
fixed, the matrices M1,M2, . . . ,Mi are fixed as well, as opposed to the matrices M̃1, . . . , M̃i,

which depend on the choice of h.

Next, we argue that with high probability (over h and the Z-s), M̃i = Mi. Toward this
end, define for each fixing of Z1, . . . ,Zi,

GOODi,Z =
{
h ∈ {0, 1}dN :

∥∥M2r1
i − NεN,δN (Mi, h, 2

r1)
∥∥
∞ ≤ εN

}
. (3)

19

By Theorem 3.14, we get that for any i ∈ [r2] and Z1, . . . ,Zi,

Pr
h∈{0,1}dN

[h ∈ GOODi,Z] ≥ 1− δN. (4)

Claim 4.5. It holds that

Pr
h,Z

[
∃j ∈ [r2], Mj ̸= M̃j

]
≤ r2w

22−ℓ ≤ δ.

Proof. We prove by induction on i that

Pr
h,Z

[
∃j ≤ i, Mj ̸= M̃j

]
≤
(
δN + w22−ℓ

)
· i.

The base case i = 0 is trivial. Fix some i ≥ 1, and denote by E the “bad” set

E =
{
(h,Z) : ∃j < i such that Mj ̸= M̃j or h ̸∈ GOODi−1,Z

}
.5

Next, we write

Pr
h,Z

[
∃j ≤ i,Mj ̸= M̃j

]
= Pr[E] Pr

[
∃j ≤ i,Mj ̸= M̃j

∣∣ E]+ Pr[¬E] Pr
[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr[E] + Pr

[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr

[
∃j < i,Mj ̸= M̃j

]
+ Pr [h ̸∈ GOODi−1,Z] + Pr

[
Mi ̸= M̃i

∣∣ ¬E] .
By the induction’s hypothesis the first term is at most

(
δN + w22−ℓ

)
(i − 1), and by Equa-

tion (4) the second term is at most δN, so it suffices to show that

Pr
h,Z

[
Mi ̸= M̃i

∣∣ ∀j < i Mj = M̃j and h ∈ GOODi−1,Z

]
≤ w22−ℓ.

In fact, we shall show that for any fixed Z1, . . . ,Zi−1 and h satisfying the above condition-
ing, we have

Pr
Zi

[
Mi ̸= M̃i

]
≤ w22−ℓ.

Since h ∈ GOODi−1,Z, ∥∥M2r1
i−1 − NεN,δN (Mi−1, h, 2

r1)
∥∥
∞ ≤ εN.

5For brevity, we use the notation GOODi,Z even when the Z vector contains more than i elements, in
which case we just ignore the rest of them.

20

Recall that we assumed that M̃i−1 = Mi−1, and so∥∥∥M2r1
i−1 − M̃

(2r1)
i−1

∥∥∥
∞

≤ εN = 2−2t

as well. By Corollary 4.3, with probability at least 1− w22−ℓ over Zi,⌊
M2r1

i−1 − Zi · 2−2tJw
⌋
t
=
⌊
M̃

(2r1)
i−1 − Zi · 2−2tJw

⌋
t
,

which simply amounts to Mi = M̃i, as desired (see Equation (2) for the definition of Mi).
This completes the inductive step.

Next, we handle the accuracy guarantee.

Claim 4.6. For all i ∈ {0, 1, . . . , r2} and all Z it holds that

∥∥∥Mi − A2ir1
∥∥∥
∞

≤ 2−t+1w
i−1∑
j=0

2jr1 .

In particular, ∥Mr2 − An∥∞ ≤ ε.

Proof. We prove the claim by induction on i. The base case follows since M0 = A. Fix
some i ≥ 1. By the definition of Mi we have∥∥Mi −M2r1

i−1

∥∥
max

≤ 2−t + 2−2t+ℓ ≤ 2−t+1,

and so by Claim 3.1,
∥∥Mi −M2r1

i−1

∥∥
∞ ≤ 2−t+1w. Write

∥∥∥Mi − A2ir1
∥∥∥
∞

≤
∥∥Mi −M2r1

i−1

∥∥
∞ +

∥∥∥∥M2r1
i−1 −

(
A2(i−1)r1

)2r1∥∥∥∥
∞
.

By the induction’s hypothesis and Claim 3.2, the second term is at most

2r1 · 2−t+1w
i−2∑
j=0

2jr1 .

Overall, we get

∥∥∥Mi − A2ir1
∥∥∥
∞

≤ 2−t+1w + 2r1 · 2−t+1w

i−2∑
j=0

2jr1 ≤ 2−t+1w
i−1∑
j=0

2jr1 .

21

This completes the induction. The “In particular” part follows from our choice of param-
eters, noting that 2−t+1w · 2r ≤ ε.

Claim 4.5 tells us that with probability at least 1 − δ, M̃r2 = Mr2 . By Claim 4.6 above,∥∥∥M̃r2 − An
∥∥∥ ≤ ε, so the correctness follows.

For the space complexity, by Theorem 3.14, N takes O
(
t+ r1 + log w

εNδN

)
space and the

rest of the operations per iteration are absorbed within the latter term. This yields space
complexity of r2 ·O

(
r1 + log w

εNδN

)
= r2 ·O

(
log nw

εδ

)
.

Given the above theorem, one can readily obtain a deterministic algorithm for matrix
powering by averaging over all seeds, using space

O
(
r2ℓ+ dN + log

nw

εδ

)
= O

(
r2 log

nw

εδ
+ r21 + r1 log

nw

εδ

)
.

Setting r1 = r2 =
√
r =

√
log n, and δ = ε, one gets O(ε) approximation in the induced ℓ∞

norm using space
O
(√

log n · log nw

ε

)
.

We omit the details as we take a different approach for this final step in our improved
algorithm.

5 Approximate Powering in Small Space

In this section, we present our improvement upon the Saks–Zhou algorithm to obtain
better space complexity for approximating large powers of matrices, following the outline
given in Section 2.

5.1 The algorithm

Let ε > 0 be a desired accuracy parameter, and δ > 0 the desired confidence. Let r ∈
N, and write r = r1r2 for some r1, r2 ∈ N to be chosen later on. We set the accuracy
and confidence of Nisan algorithm to be εN = 2−2r1 and δN = δ

2r2
, respectively. Nisan’s

algorithm N will work with each entry represented with t1 = 4r1+logw digits of precision.
Following Theorem 3.14, the seed for Nisan’s algorithm is of length

dN = O

(
r1 ·
(
t1 + r1 + log

w

εNδN

))
= O

(
r21 + r1 log

r2w

δ

)
.

22

For the shift and truncate we take ℓ = log 2w2r2
δ

. Note that ℓ only depends on w and r2, and
not on n or ε. The number of bits required for the shifts is thus

r2 · ℓ = O
(
r2 · log

r2w

δ

)
.

Finally, set t2 = log 16w2r2n
εδ

, and notice that t2 = Ω(log n
ε
). We stress that the key fact that

unlike [SZ99], here we take t1 ≪ t2.

The algorithm SZImp gets as input a stochastic matrix A ∈ Rw×w, h ∈ {0, 1}dN , and
(Z1, . . . ,Zr2) ∈

{
0, . . . , 2ℓ − 1

}r2 . Without loss of generality we may assume that each
entry of the input matrix A is given with t2 digits of precision. The algorithm proceeds as
follows.

1. Set M̃0 = A.

2. For i = 1, . . . , r2,

(a) Compute
(
M̃

(1)
i−1, M̃

(2)
i−1, . . . , M̃

(2r1)
i−1

)
= NεN,δN

(
M̃i−1, h, 2

r1 , t1

)
.

(b) Compute M̃i =
⌊
R
(
M̃

(1)
i−1, . . . , M̃

(2r1)
i−1 , M̃i−1, 3t2

)
− Zi2

−2t2Jw

⌋
t2

.6

3. Output M̃r2 .

We first determine our algorithm’s space complexity.

Lemma 5.1. Computing SZImp(A, r1, r2, h,Z) takes

O

(
(log n+ r2 logw) · log log

nw

εδ
+ r2 log

1

δ
+ r2

(
log log

nw

εδ

)2)
space.

Proof. Consider the function f(M̃i) = M̃i+1 describing one iteration of Item 2. Note that
this function has the same input and output length – a w × w matrix, and that each entry
is represented by t2 bits. The function f is the composition of three functions:

6The Richardson iteration may output a matrix which is not substochastic. This can be addressed by first
rounding all negative entries to 0 and all entries larger than 1 to 1. This step can only improve the accuracy.
Then, if the sum of entries in some row exceeds 1, decrease the largest entry in that row by the smallest
value that will result in its sum being at most 1 (note that we may not be able to get the sum to be exactly 1
as we work with O(t2) bits of precision). In terms of accuracy, the above correction is negligible compared
to the truncation step for a good (h,Z).

23

• The Nisan generator N: By Theorem 3.14, this takes

O

(
t1 + log t2 + r1 + log

w

εNδN

)
= O

(
log log

n

ε
+ r1 + log

w

δ

)
space.

• Richardson Iteration: By Lemma 3.9, this takes

O
(
log2 t2 + log t2 · log(2r1wt2)

)
= O

((
log log

nw

εδ

)2
+ log(2r1w) · log log nw

εδ

)
space.

• Truncation: Takes O(log t2) = O
(
log log nw

ε

)
space.

The algorithm is a composition of f on itself r2 times so by Corollary 3.4 we can sum the
above and multiply by r2, obtaining our desired overall space complexity.

5.2 Proof of correctness

One can verify that by our choice of parameters above, that ℓ < t2, t1 < t2, and

εN + w · 2r1−t1 ≤ 1

4(2r1 + 1)
, (5)

2−t2 ≤ 1

2r1 + 1
. (6)

We abbreviate NεN,δN(A, h, 2
r1 , t1) with N(A, h).

Theorem 5.2. For any w × w stochastic matrix A and integers r1, r2, the above algorithm sat-
isfies the following. With probability at least 1 − δ over h ∈ {0, 1}dN and Z = (Z1, . . . ,Zr2) ∈{
0, . . . , 2ℓ − 1

}r2 , the output M̃r2 = SZImp(A, r1, r2, h,Z) satisfies∥∥∥An − M̃r2

∥∥∥
∞

≤ ε,

where r = r1r2 and n = 2r. Moreover, SZImp(A, r1, r2, h,Z) runs in space

O

(
(log n+ r2 logw) · log log

nw

εδ
+ r2 log

1

δ
+ r2

(
log log

nw

εδ

)2)
.

Proof. We let Mi be the “true” random truncation, similar to the analysis in Section 4. That

24

is, M0 = A, and for each i ∈ [r2],

Mi(Z) =
⌊
Mi−1(Z)

2r1 − Zi · 2−2t2Jw
⌋
t2
. (7)

Observe, again, that the Mi-s do not depend on h. For brevity, we omit the dependence
on h and Z whenever it is clear from context.

Next, we argue that with high probability (over h and the Z-s), M̃i = Mi. Toward this
end, we similarly define for each fixing of Z,

GOODi,Z =
{
h ∈ {0, 1}dN : ∀j ≤ 2r1 ,

∥∥∥M j
i −M

(j)
i

∥∥∥
∞

≤ εN + w · 2r1−t1
}
, (8)

where
(
M

(1)
i , . . . ,M

(2r1)
i

)
= N(Mi, h). (Note that here we feed N with Mi and not M̃i,

similar to what we did in Section 4.) By Theorem 3.14, we get that for any i ∈ [r2] and
Z = (Z1, . . . ,Zi),

Pr
h∈{0,1}dN

[h ∈ GOODi,Z] ≥ 1− δN. (9)

Claim 5.3. It holds that

Pr
h,Z

[
∃k ∈ [r2], Mk ̸= M̃k

]
≤
(
δN + w22−ℓ

)
r2 ≤ δ.

Proof. The proof is similar to the proof of Claim 4.5. We prove by induction on i that

Pr
h,Z

[
∃k ≤ i,Mk ̸= M̃k

]
≤
(
δN + w22−ℓ

)
· i.

The base case i = 0 is trivial. Fixing some i ≥ 1, we denote by E the set

E =
{
(h,Z) : ∃k < i such that Mk ̸= M̃k or h ̸∈ GOODi−1,Z

}
,

and again we have

Pr
h,Z

[
∃k ≤ i,Mk ̸= M̃k

]
= Pr[E] Pr

[
∃k ≤ i,Mk ̸= M̃k

∣∣ E]+ Pr[¬E] Pr
[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr[E] + Pr

[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr

[
∃k < i,Mk ̸= M̃k

]
+ Pr [h ̸∈ GOODi−1,Z] + Pr

[
Mi ̸= M̃i

∣∣ ¬E] .
By the induction’s hypothesis the first term is at most (δN + w22−ℓ) · (i− 1), and by Equa-

25

tion (9) the second term is at most δN. Thus, it suffices to show that

Pr
h,Z

[
Mi ̸= M̃i

∣∣ ∀k < i, Mk = M̃k and h ∈ GOODi−1,Z

]
≤ w22−ℓ.

We show that for any fixed Z1, . . . ,Zi−1 and h satisfying the conditioning, we have

Pr
Zi

[
Mi ̸= M̃i

]
≤ w22−ℓ.

Since h ∈ GOODi−1,Z, for all j ≤ 2r1 we have that∥∥∥M j
i−1 −M

(j)
i−1

∥∥∥
∞

≤ εN + w · 2r1−t1 .

Recall that we assume that M̃i−1 = Mi−1, and so for all j ≤ 2r1 ,∥∥∥M j
i−1 − M̃

(j)
i−1

∥∥∥
∞

≤ εN + w · 2r1−t1 .

Using Lemma 3.9 and the guarantee of Equation (5), we get∥∥∥R(M̃ (1)
i−1, . . . , M̃

(2r1)
i−1 , M̃i−1, 3t2

)
−M2r1

i−1

∥∥∥
∞

≤ (2r1 + 1) · 2−3t2 ≤ 2−2t2 .

Thus, by Corollary 4.3, with probability at least 1− w22−ℓ over Zi,⌊
M2r1

i−1 − Zi · 2−2t2Jw
⌋
t2
=
⌊
R
(
M̃

(1)
i−1, . . . , M̃

(2r1)
i−1 , M̃i−1, 3t2

)
− Zi · 2−2t2Jw

⌋
t2
,

which simply means that Mi = M̃i, recalling the definition of Mi from Equation (7). This
completes the inductive step.

For the accuracy guarantee, we have

Claim 5.4. For all i ∈ {0, 1, . . . , r2} and all Z it holds that

∥∥∥Mi − A2ir1
∥∥∥
∞

≤ 2−t2+1w

i−1∑
j=0

2jr1 .

In particular, ∥Mr2 − An∥∞ ≤ ε.

The proof is identical to the proof of Claim 4.6, so we omit it. To conclude, note that
by Claim 5.3 we have that with probability at least 1− δ, M̃r2 = Mr2 , and by Claim 5.4 we
establish the accuracy guarantee

∥∥∥M̃r2 − An
∥∥∥ ≤ ε. The space requirement was established

26

in Lemma 5.1.

5.3 A high-accuracy deterministic approximation

The dependence of Theorem 5.2 on ε is only double-logarithmic, and so taking a tiny ε

does not deteriorate the space complexity by much. The dependence on δ, however, is
logarithmic. When we fix

r1 = r2 =
√

log n

ε,δ ≥ 1

n
,

in Theorem 5.2, we get space complexity Õ(log n +
√
log n · log w

δ
). This means that to get

space complexity Õ(log n+
√
log n · logw) we cannot take δ much smaller than 1

w
.

Now suppose our goal is to get a deterministic algorithm approximating An to within
1
n

accuracy. We can follow [SZ99] and by averaging over all offline seeds (namely, h and
the Z-s), taking δ = 1

w
, get a deterministic approximation with 1

w
error. However, in this

section we show how to get a much better accuracy 1
n

. Our algorithm is simple. Instead
of averaging over all the good and bad offline randomness strings, we iterate the SZImp

algorithm over all (h,Z)-s and take the entry-wise median of the outputs. This approach
only requires δ = Ω(1) and works because we know more than half of the offline strings
are good.

Formally, given a set of matrices {A1, . . . , Am}, we denote by mediani∈[m] Ai the matrix
M for which M [a, b] is the median of Ai[a, b] over all i ∈ [m]. The algorithm SZ+

Imp proceeds
as follows. We are given a stochastic matrix A ∈ Rw×w, n ∈ N, and a desired accuracy
parameter ε > 0. Set r1 = r2 =

√
log n, δSZImp =

1
4
, and εSZImp =

1
8w(n+1) logn

. For this choice of
parameters, the truncation parameter t2 from Section 5 satisfies

t2 = log
16w2r2n

εSZImpδSZImp

= O (log nw) .

Also, note that dN in SZImp satisfies

dN = O

(
r21 + r1 · log

r2w

δSZImp

)
= O

(
log n+

√
log n · logw

)
,

and the number of bits needed to represent Z1, . . . ,Zr2 is given by

|Z| = O

(
r2 · log

r2w

δSZImp

)
= O

(√
log n · log log n+

√
log n · logw

)
.

27

Then,

1. For i = 1, . . . , log n, compute

M̃2i = median
h,Z

SZImp

(
⌊A⌋t2 ,

√
i,
√
i, h,Z

)
,

where we take the SZImp algorithm with accuracy εSZImp and confidence δSZImp .7

2. For j ∈ [n], we let bi,j ∈ {0, 1} be such that j =
∑⌈logn⌉

i=0 bi,j2
i is the binary representa-

tion of j. Compute
M̃j =

∏
i:bi,j=1

M̃2i .

3. Output M̃ = R
(
M̃1, . . . , M̃n, A, k

)
for k =

⌈
log n

ε
+ 1
⌉
.

Theorem 5.5. Given a w × w stochastic matrix A, the algorithm SZ+
Imp above satisfies∥∥∥An − M̃

∥∥∥
∞

≤ ε,

and runs in space

O

((
log n+

√
log n · logw

)
· log log nw +

(
log log

1

ε

)2

+ log log
1

ε
· log nw

)
.

In particular, for ε = 2− polylog(n), the space complexity is Õ
(
log n+

√
log n · logw

)
.

Proof. First, note that for each i,
∣∣∣M̃2i

∣∣∣ = O(w2t2), and so∣∣∣M̃j

∣∣∣ = O
(
w2 (t2 + logw) log n

)
= O(w2t2 log n).

We start by analyzing the space complexity.

• Following Theorem 5.2, the SZImp algorithm with the prescribed parameters takes

O

(
(log n+ r2 logw) log log

nw

εSZImpδSZImp

+ r2 log
1

δSZImp

+ r2

(
log log

nw

εSZImpδSZImp

)2
)

7To be completely accurate, the second and third arguments to SZImp must be integers and so are taken to
be ⌊

√
i⌋ rather than

√
i. This then yields an approximation to the 2⌊

√
i⌋2 power of A. As i−⌊

√
i⌋2 ≤ 2

√
i+1,

computing the “missing” 2O(
√
i) power can be done in an iterative manner (for ≈ log log i = log log log n

iterations), and without effecting the overall space complexity.

28

space, which is
O
((

log n+
√

log n · logw
)
· log log nw

)
,

and running it for log n times requires only an additional counter of log log n bits.

• Computing the median of m numbers a1, . . . , am each represented via t bits can be
done in O(logm+log t) space. E.g., for a fixed number aj , we can go over all ai-s and
count how many of them are smaller than aj breaking ties lexicographically, i.e.,

ai ≺ ai′ ⇐⇒ (ai < ai′) ∨ ((ai = ai′) ∧ (i < i′)).

In our case, this amount to space

dN + |Z|+O
(
log t2w

2
)
= O

(
log n+

√
log n · logw

)
.

• Computing the powers in Item 2 takes

O
(
log log n · log(t2w2)

)
= O (log log n · log(w log n))

space.

• Applying R takes

O

((
log log

n

ε

)2
+ log log

n

ε
· log

(
(n+ 1) · w2t2 log n

))
space, following Lemma 3.9, which is

O

((
log log

1

ε

)2

+ log log
n

ε
· log(nw)

)
.

Our algorithm is essentially a composition of the above procedures, and so the claim on
the space complexity follows from composition of space-bounded algorithms (Claim 3.3).

We now proceed with the correctness. By Theorem 5.2, for at least 3
4

of the (h,Z)-s, we
have∥∥∥SZImp(⌊A⌋t2 ,

√
i,
√
i, h,Z)− ⌊A⌋2it2

∥∥∥
max

≤
∥∥∥SZImp(⌊A⌋t2 ,

√
i,
√
i, h,Z)− ⌊A⌋2it2

∥∥∥
∞

≤ εSZImp ,

29

and so for at least 3
4

of the (h,Z)-s we get that for all (a, b) ∈ [w]2,∣∣∣SZImp

(
⌊A⌋t2 ,

√
i,
√
i, h,Z

)
[a, b]− ⌊A⌋2it2 [a, b]

∣∣∣ ≤ εSZImp .

Thus, for all (a, b) ∈ [w]2,∣∣∣∣(median
h,Z

SZImp

(
⌊A⌋t2 ,

√
i,
√
i, h,Z

))
[a, b]− ⌊A⌋2it2 [a, b]

∣∣∣∣ ≤ εSZImp .

This is true for all indices (a, b) and all i ∈ [log n] and so by Claim 3.1, for all i ∈ [log n],∥∥∥M̃2i − ⌊A⌋2it2
∥∥∥
∞

≤ wεSZImp .

By Claim 3.2,
∥∥Aj − ⌊A⌋jt2

∥∥
∞ ≤ jw2−t2 , and applying Claim 3.2 again for multiplication

of log n matrices, we get that for every j ≤ n,∥∥∥M̃j − Aj
∥∥∥
∞

≤
∥∥∥M̃j − ⌊A⌋jt2

∥∥∥
∞
+
∥∥⌊A⌋jt2 − Aj

∥∥
∞ ≤ εSZImpw log n+ nw2−t2 ≤ 1

4(n+ 1)
.

Using Lemma 3.9, we obtain∥∥∥R(M̃1, . . . , M̃n, A, k)− An
∥∥∥
∞

≤ (n+ 1) · 2−k ≤ ε,

which completes the proof.

6 Approximating the Iterated Product

In this section, we prove the following theorem which implies Theorem 1.1.

Theorem 6.1. For any n,w ∈ N where n ≥ w, and any ε > 0, there exists a deterministic
algorithm that given w × w stochastic matrices A1, . . . , An, approximates A1 · · ·An to within
error ε in space

O

((
log n+

√
log n · logw

)
· log log n+ log log

1

ε
· log n+

(
log log

1

ε

)2
)
.

6.1 Laying the groundwork

Now that our matrix powering algorithm has been established, we develop some of the
ideas, discussed informally in Section 2.2, in preparation for our complete IMM algo-

30

rithm.

6.1.1 Improving the dependence on the confidence parameter

Recall that the seed length and space complexity of the randomized IMM algorithm in-
duced by the Nisan generator have poor dependence on the confidence parameter δ. The
discussion in Section 2.2 shows that the confidence parameter has to be smaller than 1

n
.

This requires us to use a PRG with a better dependence on the confidence parameter.

Theorem 6.2. There exists an algorithm Λε,δ that gets as input:

1. A sequence of w × w substochastic matrices (A) = (A1, . . . , An) in which every entry is
represented using at most s bits.

2. An accuracy parameter ε > 0, a confidence parameter δ > 0, and a canonicalization param-
eter t ∈ N, where t ≤ s.

3. A seed h ∈ {0, 1}dΛ of length dΛ =
(
log n ·

(
t+ log nw

ε

)
+ log log n · log 1

δ

)
.

The algorithm runs in space O
(
log s+ t+ log nw

ε
+ log log 1

δ

)
and outputs the matrix sequence

(Mh) = Λε,δ((A), h, n, t),

and satisfies the following. With probability at least 1 − δ over h ∈ {0, 1}dΛ , it holds that for all
1 ≤ i < j ≤ n,

∥(Mh)i,j − Ai · · ·Aj∥∞ ≤ ε+ nw · 2−t.

When we omit the parameter t, we implicitly set t = s, and then the error guarantee is simply ε.

Comparing Theorem 6.2 with Theorem 3.14, we see that Theorem 6.2 improves the
dependence on δ both in the the space complexity and in the seed length, dΛ. The con-
struction of Λε,δ starts with Nisan’s PRG with constant confidence, and amplifies its confi-
dence to the desired δ using a sampler, via “Armoni’s sampler trick” [Arm98]. We prove
Theorem 6.2 in Appendix C, where we also discuss the underlying technique.

6.1.2 Dealing with the shifts

As discussed in Section 2.2, the shifts require new ideas and substantial effort. Our first
attempt is the following algorithm, wherein t1 = Θ(logw), t2 = Θ(log n), r1r2 = log n (and
for simplicity, say, r1 = r2 =

√
log n).

1. Shift the entry of each of the input matrices by Z · 2−2t2 where Z ∼ {0, 1, . . . , 2t2 − 1}.

31

2. For i = 1, . . . , r2,

(a) Partition the iterated product to sub-products, each consists of 2r1 matrices.

(b) Truncate the matrices to precision t1 and use ΛεΛ,δΛ to approximate the iterated
sub-products.

(c) Regain the high accuracy via the Richardson iteration, and then truncate to
precision t2.

Note that as in the powering algorithm, at each level we truncate the input to t1 bits of
accuracy, where t1 = Θ(logw+

√
log n), apply ΛεΛ,δΛ , and then use Richardson iteration to

recover t2 bits of accuracy, where recall t2 = Θ(log n). The role of the “outer” rounding,
in (b), is to decorrelate the randomness h from the output, and at this stage it is not clear
whether this step achieves this goal. Notice also that unlike in the powering algorithm,
we shift the input, and we shift all Ai-s by the same shift, using O(log n) bits for that single
shift. There are no other shifts for intermediate levels in the algorithm. Our hope is that
investing O(log n) bits of randomness in this initial single shift “takes care” of all future
iterations.

The analysis of this first attempt boils down to algebraically expressing how a shift of
the input affects the output product, which we accomplish in Section 6.3. In Lemma 6.6
we prove that a shift ζ of each entry of A1, . . . , An results in an error matrix E(ζ), where
0 ≤ E(ζ) ≤ ζ · T , inequalities are entry-wise, and the matrix T is defined by

T = Jw

n∑
k=1

Ak+1 · · ·An. (10)

This implies that each entry of E has magnitude at most n2ζ . However, generalizing
the truncation lemma, Lemma 4.2, to the case where the shifts are given by some error
function E(ζ) reveals that we need to bound E(ζ) not only from above, but also from
below. We give the precise details in Lemma 6.7. Luckily for us, it turns out that

0 < (1− wnζ)ζ · T ≤ E(ζ) ≤ ζ · T,

and that with high probability, a ζ-shift of the input is good, in the sense that the output is
far from the boundary of a truncation. In particular, we conclude that at least in the first
iteration, with high probability over the shift, the truncation indeed decorrelates h from
the output. We give the precise details in Section 6.3.

Furthermore, by taking the union bound over all the true8 matrices that are obtained
8The “true” matrices will be defined similarly to the Mi(Z) in Section 5.2, wherein we apply the random

truncation and the Richardson iteration on the true products.

32

as partial products in the computation, we see that with high probability (over the initial
shift) all these products are ρ-safe, in the sense that their entries are at least ρ-far from
a 2−t2 boundary, for ρ and 2−t2 that may be polynomially-small in n. Thus, if we could
approximate the correct matrices with accuracy better than, say, ρ/2, then that approx-
imation is also ρ/2 safe, and a truncation to t2 bits of accuracy gives a pre-determined
result, independent of h.

However, the main challenge in the analysis is that we need to track the shift effects
not only upon multiplication, but also upon the truncation steps that we have throughout
the computation. Here the approach runs into an unexpected problem: How should we
choose the parameter ρ? Clearly, ρ should be smaller than 2−t2 (as we want to be ρ-far
from a 2−t2 boundary). But when we truncate to t2 bits of accuracy, we introduce an error
of 2−t2 , and so ρ ≥ 2−t2 . Indeed, after the truncation to t2 bits of accuracy, we are always
at a 2−t2 boundary point, and therefore the approximated matrix that we get is never safe
no matter what shift we choose.

To summarize, there are two contradicting forces in our strategy: (1) perturbing the
input, and (2) the truncation. While the initial perturbation makes all correct iterated
products safe, the truncation makes the approximated matrices unsafe. Perhaps a natural
approach is to allow a deterioration in the truncation parameters, namely make t2 smaller
as the algorithm progresses. However, this does not work either because the argument
seemingly loses log 1

ρ
bits of precision at each iteration, which is roughly log n.

Our solution to the problem is to introduce another Richardson iteration step in order
to make ρ smaller than 2−t2 . The fact that we use two Richardson steps at each layer
may look perplexing at first, but the utility of the two Richardson steps can be simply
explained: The inner Richardson iteration, combined with the truncation performed right
after, is designed to decorrelate h, whereas the outer Richardson iteration maintains a
small universal error ρ independent of the inner decorrelation procedure. Thus, while the
matrix after the truncation is not safe, the outer Richardson iteration brings it closer to the
correct value – so close that it must be safe.

6.2 The algorithm

The algorithm partitions the input matrices of the iterated product into groups of size
2r1 , approximates the product of the matrices in each group, and recurses. This defines a
tree of depth r2 = r

r1
and arity 2r1 where the n = 2r inputs are the leaves. Every level of

the tree is a matrix sequence: the bottom level consists of 2r matrices, the level above it
consists of 2r−r1 matrices, and in general the i-th level consists of 2r−r1i matrices.

The above scheme calls for the following useful notation of matrices sequences: (M)

33

denotes a sequence of matrices, namely

(M) = ((M)1, (M)2, . . . , (M)m),

for m being the length of (M). We stress that the notation (Mi) means a matrix sequence
named Mi, and so (Mi)j is the j-th matrix in the sequence Mi. Given B = (b1, b2, . . .) define

(M)B ≜ ((M)b1 , (M)b2 , . . .), and,∏
B

(M) ≜
∏
j

(M)bj .

Let (Mi) denote the matrix sequence in level i9, and consider its j-th matrix (Mi)j . For
simplicity, let us assume for now that the computation is exact, i.e., every node equals
exactly the iterated product of its children. We thus have the following simple recursive
relation: The product of a node’s descendants equals the product of the iterated products
associated with its immediate children. Algebraically, denote by Li,j as the set of leaves
(or, matrix indices) below the j-th node of the i-th level, and by Γi,j the indices in (Mi−1)

that are directly below the j-th node in the i-level. This notation allows us to establish the
following relation: ∏

Li,j

(M0) =
∏

k∈Γi,j

∏
Li−1,k

(Mi−1). (11)

One can work out the exact set Li,j and Γi,j . Concretely, for all i ∈ {0, . . . , r2} and j ∈{
1, . . . , 2r1(r2−i)

}
,

Li,j =
{
(j − 1)2ir1 + 1, (j − 1)2ir1 + 2, . . . , j2ir1

}
,

Γi,j = {k + (j − 1)2r1 : 1 ≤ k ≤ 2r1} .

Note that the indexing of Li,j is with respect to the bottom sequence (M0), and Γi,j is with
respect to the sequence (Mi−1). Also, Γi,j does not really depend on j (although i does
define the range in which the values of j are valid), and we only consider Γi,j with i ≥ 1.

We are now ready to describe our IMM algorithm. The algorithm SZIMM gets as input
a sequence of stochastic matrices A1, . . . , An ∈ Rw×w. Without loss of generality, we may
assume that each entry of the input matrix A is given with t2 digits of precision, where t2 =
12 log n. Set r1 = r2 =

√
log n, ℓ = t2

2
−1 and instantiate the powering algorithm ΛεΛ,δΛ with

the following parameters: accuracy εΛ = 2−2r1 , confidence δΛ = 1
n3 , and canonicalization

parameter t1 = 4r1 + logw. The algorithm proceeds as follows.

1. For j = 1, . . . , n, set (M̃0)j = Aj − Z · 2−2t2Jw, where Z ∼
{
0, 1, . . . , 2ℓ − 1

}
.

9Levels are counted bottom-up and so the leaves are at level 0.

34

2. For i = 1, . . . , r2,

(a) For j = 1, . . . , n
2ir1

, compute

(M̃i)j = R

(⌊
R
(
ΛεΛ,δΛ((M̃i−1)Γi,j

, h, 2r1 , t1), (M̃i−1)Γi,j
, 6t2

)⌋
t2
, (M̃i−1)Γi,j

, 8t2

)
.

3. Output M̃r2 .

The parameters of SZIMM are chosen so that they satisfy the following inequalities:

εΛ + w · 2r1−t1 ≤ 1

4(2r1 + 1)
, (12)

2−t2 ≤ 1

4w(2r1 + 1)
, (13)

so that we can apply the Richardson iteration. Also, assume w ≤ n since this is our regime
of interest. In Section 6.4, we prove:

Theorem 6.3. For any sequence of substochastic matrices (M) = (M1, . . . ,M2r) ∈ Rw×w,

Pr
h,Z

[∥∥SZIMM((M), h,Z)−M1 · · ·M2r
∥∥
∞ ≥ 1

n12

]
≤ 2

n3
.

For the space complexity of the algorithm, we have:

Lemma 6.4. For n ≥ w, the algorithm SZIMM can be implemented in

O
((

log n+
√

log n · logw
)
· log log n

)
space, and using O(

√
log n · logw) random bits.

We prove the above lemma in Section 6.5. The deterministic algorithm given in Theo-
rem 6.1 is obtained from Theorem 6.3 and Lemma 6.4 by employing another Richardson
iteration:

Proof of Theorem 6.1. First, to get a deterministic algorithm that computes A1 · · ·An, we
average over all possible h,Z. Following Lemma 6.4, this can be done in space

O
((

log n+
√

log n · logw
)
· log log n

)
,

recalling that
|Z|+ |h| = O

(
log n · log log n+

√
log n · logw

)
.

35

By Theorem 6.3, the resulting accuracy is at most 1
n12 + 2

n3 ≤ 1
4(n+1)

. Clearly, we can
approximate any sub-product Ai · · ·Aj with the same parameters.

To obtain accuracy ε > 0, we apply the Richardson iteration, Lemma 3.9, with k =

O(log n
ε
). The procedure R takes

O
(
log2 k + log k · log n

ε

)
= O

((
log log

1

ε

)2

+ log n · log log n

ε

)

space, noting that we can assume without loss of generality that T , the maximum bit-
complexity of our input, is poly(w, n, log(1/ε)). The theorem finally follows from compo-
sition of space-bounded algorithm.

6.3 Perturbing the input

Before proceeding to the analysis of our algorithm, which will be given in Section 6.4 and
Section 6.5, we turn our focus to the effect of shifting the input. Suppose we want to
compute the product A1 · · ·An. We shift every matrix Ai by ζ , entry-wise, and compute
the perturbed product

n∏
i=1

(Ai − ζJw).

To analyze the effect of the initial shifting, we consider a robust notion of rounding:

Definition 6.5. We say z ∈ R is (t, ρ)-dangerous if z is ρ-close to a positive multiple of 2−t, i.e.,
if there exists a positive integer n > 0 such that |z − n2−t| ≤ ρ. Otherwise, we say z is (t, ρ)-safe.
Also, we say a matrix M ∈ Rw×w is (t, ρ)-dangerous if one of its entries is (t, ρ)-dangerous, and
otherwise we say it is (t, ρ)-safe.

Notice that a number z ∈ R is (t, ρ)-safe if its ρ-neighborhood is always truncated to
the same number when we truncate it to precision of t digits.

Remark 1. Numbers that are very close to 0 are safe by definition. Also, negative values are
always truncated to zero, and so there are no boundary issues around 0.

The terminology of (t, ρ)-dangerous is used in the original work of Saks and Zhou
[SZ99]. We remark, however, that this terminology is not required for the Saks–Zhou
algorithm as presented in Section 4, while it is essential for our IMM algorithm.

In the powering algorithm of Section 5 we shift output matrices whereas for our IMM
algorithm we shift the input matrices. This yields a more complex behaviour. Let Ei,j

36

denote the difference between the true product and the shifted product at the [i, j]-th cell,

Ei,j(ζ) ≜ (A1 · · ·An)[i, j]−

(
n∏

i=1

(Ai − ζJw)

)
[i, j].

Also, let E(ζ) be the w × w matrix, whose (i, j)-th entry is Ei,j(ζ). The following is an
explicit formula for E.

Lemma 6.6. Let A1, . . . , An ∈ Rw×w be stochastic, and Jw the all-ones matrix. Then,

n∏
i=1

(Ai − ζJw) = A1 · · ·An − ζJw

n∑
k=1

(1− wζ)kAk+1 · · ·An.

In particular, E(ζ) = ζJw
∑n

k=1(1− wζ)kAk+1 · · ·An.

Proof. Expanding the shifted product, we get a summation in which each term is of the
form

(−ζ)j−1 · A1 · · ·Ai1JwAi1+2 · · ·Ai2Jw · · ·AijJwAij+2 · · ·An

for some j ∈ {1, . . . , n} and 1 ≤ i1 < · · · < ij ≤ n−1 (if ij = n−1, we take Aij+2 · · ·An = I).
For any stochastic matrix A we have that AJw = Jw, and also J j

w = wj−1Jw so the above,
for j ≥ 2, simplifies to

(−ζ)j−1J j−1
w Aij+2 · · ·An = (−ζ)j−1wj−2JwAij+2 · · ·An.

We sum over the above terms according to k – the last index of an all-ones matrix term,
and j – the number of Jw instances picked, excluding the last one. We then get that

n∏
i=1

(Ai − ζJw) = A1 · · ·An +
n∑

k=1

k−1∑
j=0

∑
1≤i1<i2<···<ij<k

(−ζ)j+1wjJwAk+1 · · ·An

= A1 · · ·An − ζ
n∑

k=1

k−1∑
j=0

(
k − 1

j

)
(−wζ)jJwAk+1 · · ·An

= A1 · · ·An − ζJw

n∑
k=1

(1− wζ)k−1Ak+1 · · ·An.

It follows from Lemma 6.6 that

T [i, j] · ζ · (1− wnζ) ≤ Ei,j(ζ) ≤ T [i, j] · ζ,

37

where T = Jw
∑n

k=1 Ak+1 · · ·An is as in Equation (10). Furthermore,

0 ≤ (A1 · · ·An)[i, j] ≤ T [i, j] ≤ n2.

Thus, if T [i, j] is very small then so is the true product (A1 · · ·An)[i, j], and in this case we
will truncate to zero.

The next lemma is a generalization of the truncation lemma, Lemma 4.2, to the case
where the shifts are given by some function (e.g., Ei,j), with a fairly controlled behaviour,
rather than by some fixed scalar.

Lemma 6.7. Let t, ℓ, C ∈ N satisfying 0 ≤ C < 2t−ℓ, and define D = 2−2t{0, 1, . . . , 2ℓ − 1}. Let
e : D → R be such that for all ζ ∈ D,

C(1− 2−ℓ−1)ζ ≤ e(ζ) ≤ Cζ.

Then, for all z ≤ C we have

Pr
Z∈{0,1,...,2ℓ−1}

[
z − e(Z · 2−2t) is (t, 2−3t−2)-dangerous

]
≤ 2−ℓ+1.

Proof. First, observe that if z < 2−t−1 then z − e(Z · 2−2t) ≤ z < 2−t−1 and therefore
z− e(Z ·2−2t) is not (t, 2−3t−2)-dangerous. Thus, we may assume that z ≥ 2−t−1. Using our
assumption on e,

C(1− 2−ℓ−1)Z · 2−2t ≤ e(Z · 2−2t) ≤ CZ · 2−2t.

Therefore,

e((Z + 1)2−2t)− e(Z · 2−2t) ≥ C(1− 2−ℓ−1)(Z + 1)2−2t − CZ · 2−2t

= C2−2t(1− 2−ℓ−1(Z + 1)) ≥ C2−2t−1 ≥ 2−3t−2,

where we used that C ≥ z ≥ 2−t−1 and Z ≤ 2ℓ − 1. In other words, e(Z · 2−2t) is increasing
with Z and e(Z · 2−2t)-s for consecutive Z-s are at least 2−3t−2 apart. Moreover,

e((2ℓ − 1)2−2t) ≤ (2ℓ − 1)2−2tC < 2−t,

and so there are at most two Z-s for which z − e(Z · 2−2t) is (t, 2−3t−2)-dangerous.

Corollary 6.8. Let A1, . . . , An ∈ Rw×w be stochastic matrices of dimension w ≤ n. Also, let
ℓ, t ∈ N be such that t ≥ 4 log n and ℓ < t/2. Then,

Pr
Z∈{0,1,...,2ℓ−1}

[
n∏

i=1

(Ai − Z · 2−2tJw) is (t, 2−3t−2)-dangerous

]
≤ w22−ℓ+1.

38

Proof. For each entry (i, j), let z = (A1 · · ·An)[i, j] be the correct value of A1 · · ·An at entry
(i, j). As before, let Ei,j(Z · 2−2t) denote the noise introduced at entry (i, j) by the shift
Z · 2−2t. We know that

T [i, j] · Z · 2−2t · (1− wnZ · 2−2t) ≤ Ei,j(Z · 2−2t) ≤ T [i, j] · Z · 2−2t.

Set C = T [i, j] and observe that

wnZ · 2−2t < n22ℓ2−2t ≤ 2t/22ℓ2−2t ≤ 2−ℓ−1,

and that C < n2 ≤ 2t−ℓ. Furthermore,

z = (A1 · · ·An)[i, j] ≤ T [i, j] = C.

Therefore, by Lemma 6.7, the probability over Z that

n∏
i=1

(Ai − Z · 2−2tJw)[i, j]

is (t, 2−3t−2)-dangerous, is at most 2−ℓ+1. The result then follows by the union bound over
all w2 entries.

We union bound over all n sub-products, and get the following corollary.

Corollary 6.9. Let A1, . . . , An ∈ Rw×w be stochastic matrices of dimension w ≤ n. Also, let
ℓ, t ∈ N, ε ∈ (0, 1) be such that t ≥ 4 log n and ℓ < t/2. Then, for the matrix sequence M(Z) =

(A1 − Z2−2tJw, . . . , An − Z2−2tJw),

Pr
Z∈{0,1,...,2ℓ−1}

∃i, j ∏
Li,j

(M(Z)) is (t, 2−3t−2)-dangerous

 ≤ nw22−ℓ+1.

6.4 Proof of correctness

We recall our setting. Let (M) be a matrix sequence of substochastic matrices (M)1, . . . , (M)2r ∈
Rw×w. For a shift Z, the matrix sequence (M0(Z)) is defined by

(M0(Z))i ≜ (Ai − Z · 2−2t2Jw),

for i = 1, . . . , n. We say Z is good if all sub-products
∏

Li,j
(M0(Z)) are (t2, 2

−3t2−2)-safe. By
Corollary 6.9, except for probability nw22−ℓ+1, Z is good.

39

We now define two matrix sequences that represent evolution throughout the algo-
rithm’s iterations. The first matrix sequence (Mi) describes the situation in our algorithm
if instead of applying ΛεΛ,δΛ we employ a true iterated product. Formally, it is recursively
defined by

(Mi(Z))j ≜ R

∏
Γi,j

(Mi−1(Z))


t2

, (Mi−1(Z))Γi,j
, 8t2

 . (14)

Notice that it only depends on Z (and not on h). We will eventually show that the matrix
sequence (Mi) is very close to the matrix sequence (M̃i). First, we claim that

Claim 6.10. For all i,j, ∥∥∥∥∥∥(Mi)j −
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

≤ 2r1−7t2 .

We defer the proof for later. The second matrix sequence (M̃i(Z, h)) is defined by the
behavior of the actual algorithm, i.e.,

(M̃i(Z, h))j =

R

(⌊
R
(
ΛεΛ,δΛ((M̃i−1(Z, h))Γi,j

, h, 2r1 , t1), (M̃i−1)Γi,j
, 6t2

)⌋
t2
, (M̃i−1(Z, h))Γi,j

, 8t2

)
. (15)

This matrix sequence seemingly depends on both Z and h.

Now, say h is good for Z if h is good, in the sense of Theorem 6.2, for all sequences
(M̃i−1(Z, h))Γi,j

. Namely, that∥∥∥∥∥∥ΛεΛ,δΛ((M̃i−1(Z, h))Γi,j
, h, 2r1 , t1)−

∏
Γi,j

(Mi−1)

∥∥∥∥∥∥
∞

≤ εΛ + w2r1 · 2−t1 (16)

for all i ∈ [r2] and j ∈ [2r−r1i]. The main claim of this subsection is that when Z is good
and h is good for Z, (M̃i(Z, h)) does not depend on h! Formally,

Lemma 6.11. Suppose Z is good and h is good for Z. Then, for every 0 ≤ i ≤ r2,

(M̃i(Z, h)) = (Mi(Z)).

Before proving Claim 6.10 and Lemma 6.11, we deduce the correctness of our algo-
rithm.

Proof of Theorem 6.3. By Theorem 6.2, for every 2r1 matrix sequence, h is good except for
probability at most δΛ over h, and by the union bound, h is good for all these sequences

40

except for probability at most nδΛ. Thus, Z is good except for probability nw22−ℓ+1 and
h is good for Z except for probability nδΛ. By Lemma 6.11 for a good Z and h, the se-
quences (M̃i(Z, h)) that the algorithm constructs are identical to the sequences (Mi(Z)).
By Claim 6.10, ∥∥∥∥∥∥(Mi(Z))j −

∏
Li,j

(M0(Z))

∥∥∥∥∥∥
∞

≤ 2r1−7t2 ,

and as the entry-wise shifts are bounded by 2−3t2/2,∥∥∥∥∥∥
∏
Li,j

(M0(Z))−M1 · · ·Mn

∥∥∥∥∥∥
∞

≤ w ·

∥∥∥∥∥∥
∏
Li,j

(M0(Z))−M1 · · ·Mn

∥∥∥∥∥∥
max

≤ nw2−3t2/2.

Recalling that (M̃r2(Z)) is the output of our algorithm, the above inequalities imply

Pr
Z,h

[∥∥SZIMM((M), h,Z)−M1 · · ·Mn

∥∥
∞ > 2r1−7t2 + nw2−3t2/2

]
≤ n(w22−t2/2+2 + δΛ).

The parameters of Theorem 6.3 follow from our choice of parameters.

Let us now proceed with the proofs of Claim 6.10 and Lemma 6.11.

Proof of Lemma 6.11. Fix any good Z and any h that is good for Z. For brevity, from now
on we omit the dependence of (Mi(Z)) on Z and write (Mi) instead, and we also omit the
dependence of (M̃i(Z, h)) on Z and h and write (M̃i) instead.

The proof is by induction on i. The base case, i = 0 is trivial. Assume correctness for
i − 1, namely that (M̃i−1(Z, h)) = (Mi−1(Z)), and let us prove for i. As h is good for the
matrix sequences (Mi−1)j , see Equation (16), for every i ∈ [r2] and j ∈ [2r−r1i] we have
that ∥∥∥∥∥∥ΛεΛ,δΛ((Mi−1)Γi,j

, h, 2r1 , t1)−
∏
Γi,j

(Mi−1)

∥∥∥∥∥∥
∞

≤ εΛ + w2r1−t1 ≤ 1

4(2r1 + 1)
,

where we have used Equation (12). Therefore, by Lemma 3.9,∥∥∥∥∥∥R
(
ΛεΛ,δΛ((Mi−1)Γi,j

, h, 2r1 , t1), (M̃i−1)Γi,j
, 6t2

)
−
∏
Γi,j

(Mi−1)

∥∥∥∥∥∥
∞

< 2r12−6t2 ≤ 2−5t2 , (17)

using Equation (13). Let

A = R
(
ΛεΛ,δΛ((Mi−1)Γi,j

, h, 2r1 , t1), (M̃i−1)Γi,j
, 6t2

)
.

41

We know that A is close to
∏

Γi,j
(Mi−1). Our strategy is to show that A is close to

∏
Li,j

(M0),
which is a safe matrix (because Z is good) hence A would also be safe. Indeed,∥∥∥∥∥∥

∏
Γi,j

(Mi−1)−
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∏

k∈Γi,j

(Mi−1)k −
∏

k∈Γi,j

∏
Li−1,k

(M0)

∥∥∥∥∥∥
∞

≤
∑
k∈Γi,j

∥∥∥∥∥∥(Mi−1)k −
∏

Li−1,k

(M0)

∥∥∥∥∥∥
∞

≤ 2r1 · 2r1−7t2 ≤ 2−6t2 .

The first equality is Equation (11), and the following inequality is due to Claim 3.2. Finally,
we used Claim 6.10 and that r1 ≤ t2. Thus, by the triangle inequality, A is 2−5t2 + 2−6t2

close to
∏

Li,j
(M0).

We now recall that since Z is good we have that
∏

Li,j
(M0) is (t2, 2−3t2−2)-safe. Thus, by

definition,
∏

Li,j
(M0) is at least 2−3t2−2-far from a 2−t2 boundary. As

2−5t2 + 2−6t2 < 2−3t2−2,

for a good h, both A and
∏

Li,j
(M0) belong to the same 2−t2 segment, i.e.,∏

Γi,j

(Mi−1)


t2

= ⌊A⌋t2 .

As

(Mi)j = R

∏
Γi,j

(Mi−1)


t2

, (Mi−1)Γi,j
, 8t2

,

(M̃i)j = R
(
⌊A⌋t2 , (Mi−1)Γi,j

, 8t2
)
,

we see that (Mi)j = (M̃i)j , as desired. In particular, all good h-s give exactly the same
matrix sequence (Mi).

Proof of Claim 6.10. We recall the setting. (M) is a matrix sequence of sub-stochastic ma-
trices (M)1, . . . , (M)2r ∈ Rw×w. For a shift Z the matrix sequence (M0(Z)) is defined by

(M0(Z))i = (Ai − Z · 2−2t2Jw),

for i = 1, . . . , n. We define a matrix sequence (Mi) that describes the situation in our
algorithm if instead of applying ΛεΛ,δΛ we employ a true iterated product. It is recursively

42

defined by

(Mi(Z))j = R

∏
Γi,j

(Mi−1(Z))


t2

, (Mi−1(Z))Γi,j
, 8t2

 .

Notice that, indeed, the matrices only depend on Z (and not on h). We turn to prove by
induction on i that ∥∥∥∥∥∥(Mi(Z))j −

∏
Li,j

(M0)

∥∥∥∥∥∥
∞

≤ εi ≜ 2r1−8t2 ·
(
2ir1 − 1

)
(18)

for all j = 1, . . . , n
2ir1

.

The base case i = 0 is trivial. By induction,
∥∥∥(Mi−1(Z))k −

∏
Li−1,k

(M0)
∥∥∥
∞

≤ εi−1 for all
k = 1, . . . , n

2(i−1)r1
. Note that∥∥∥∥∥∥
∏

Γi,j

(Mi−1(Z))


t2

−
∏
Γi,j

(Mi−1(Z))

∥∥∥∥∥∥
∞

≤ w2−t2 ≤ 1

4(2r1 + 1)
,

using Equation (13). By the Richardson iteration, Lemma 3.9,∥∥∥∥∥∥(Mi(Z))j −
∏
Γi,j

(Mi−1(Z))

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥R
∏

Γi,j

(Mi−1(Z))


t2

, (Mi−1(Z))Γi,j
, 8t2

−
∏
Γi,j

(Mi−1(Z))

∥∥∥∥∥∥
∞

≤ (2r1 + 1)2−8t2 .

Also, by Equation (11) and by the induction hypothesis,∥∥∥∥∥∥
∏
Γi,j

(Mi−1(Z))−
∏

k∈Γi,j

∏
Li−1,k

(M0)

∥∥∥∥∥∥
∞

≤ 2r1 · εi−1

for all j = 1, . . . , n
2ir1

. The same bound also holds if we consider only a sub-sequence of

43

Γi,j . Putting it altogether, we get∥∥∥∥∥∥(Mi(Z))j −
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

≤ (2r1 + 1)2−8t2 + 2r1−8t2 · 2r1 · (2r1(i−1) − 1)

≤ 2r1−8t2(2r1i − 1) = εi.

This completes the induction. As ir1 ≤ r2r1 = log n ≤ t2, εi ≤ 2r1−8t22ir1 ≤ 2r1−7t2 , as
desired.

6.5 The space complexity

We now analyze the space complexity of the algorithm. To start, let us try to employ the
same approach as in Section 5. Define the functions fi that take a sequence (M) of length
n and output the sequence

fi((M))j = R
(⌊

R
(
ΛεΛ,δΛ((M)Γi,j

, h, 2r1 , t1),M, 6t2
)⌋

t2
, (M)Γi,j

, 8t2

)
which is exactly the computation done in the i-th iteration in the SZIMM algorithm. Clearly,
the composition fr2 ◦ · · · ◦ f1((M0)) computes “row by row” the output of the iterated
Saks–Zhou algorithm on an input (M). The problem is that each fi requires at least
r − ir1 = log n − i

√
log n space just for indexing as j runs from 1 to 2r−ir1 , and this ac-

cumulates to Ω(log3/2 n) space. However, there is a redundancy in the above approach:
Each fi maintains a global index to its location in the recursion tree, and to eliminate this
redundancy we will globally store that index. Each node computes the local function that
takes a sequence (B) of length 2r1 and outputs

fi((B)) = R

(⌊
R
(
ΛεΛ,δΛ((B), h, 2r1 , t1),

∏
(B), 6t2

)⌋
t2
, (M)Γi,j

, 8t2

)
, (19)

where one should think of B as (M)Γi,j
, and the output as (Mi)j . The above function

only maintains indices locally, namely it does not know its location within the recursion.
Knowing the local indices for every level of the recursion in tandem with the global loca-
tion suffices for the algorithm to operate. We now formulate this idea, which results in a
generalized space-bounded composition, and then explain how to instantiate it in order
to derive Lemma 6.4.

44

6.5.1 Improved space bounded composition

We have seen the space composition theorem, Claim 3.3, where the space complexity of
the composition is the sum of the space complexities of each separate layer. However,
sometimes the composition can be implemented in a cheaper way. A notable example
for that is the proof for NC1 ⊆ L. An NC1 circuit has depth O(log n) and elementary
Boolean functions as gates. Applying Claim 3.3, we get a simulation in O(log2 n) space,
because each of the O(log n) layers requires O(log n) bits just for keeping an index to its
input. Looking at the NC1 ⊆ L proof, one sees that the cheaper simulation maintains
indexing in a global way, thus avoiding the need to pay for an index at each layer. This
global indexing is made possible because the computation has a tree structure.

In this section we prove Lemma 6.13 which is a natural combination of the above two
fundamental building blocks in space-bounded computation, i.e.,

• Composing space bounded functions; and

• Computing Boolean formulas in logarithmic space.

Definition 6.12. Let G be a set of functions g : {0, 1}⋆ → {0, 1}⋆. A generalized Boolean formula
F with gates in G over the input variables x1, . . . , xn is a labeled directed acyclic graph as follows.

• Variables: Vertices with no incoming edges are labeled with a variable from {x1, . . . , xn};

• Gates: Vertices with incoming edges are labeled with a function g ∈ G;

• Output: Vertices with no outgoing edges are labeled by a distinct output from yi ∈ {y1, . . . , yℓ};
and

• Degree: All vertices have out-degree exactly 1, except for the output vertices which have
out-degree 0.

The Boolean formula computes the function F : ({0, 1}⋆)n → ({0, 1}⋆)ℓ,

F (x1, . . . , xn) = (y1, . . . , yℓ),

by placing the variables x1, . . . , xn at their corresponding vertices in the graph and propagating
the Boolean values to the output vertices.

Two spacial cases to bear in mind are:

• The case where the graph has O(log n) depth and G is the set of elementary Boolean
functions (And, Or, Negation), which corresponds to an NC1 computation, and,

45

• The case where the graph is a directed path and G is the set of functions in L, which
corresponds to a general composition of logspace functions.

Our generalized space bounded composition statement goes as follows.

Lemma 6.13. Suppose f(x1, . . . , xn) can be computed by a generalized formula with gates in G.
Furthermore,

• Let S0 denote the space complexity required to output the labeled graph with its labels;

• Let sv(m) denote the space complexity required for computing gv ∈ G on inputs of length
m, where gv is the function associated with v; and

• Let ℓ(v) denote an upper bound on the output length of gv.

Then, we can compute the function f in

O

(
S0 + max

(v1,...,vt)∈P

t∑
i=1

(svi(ℓ(vi)) + log ℓ(vi))

)

space, where P is the set of all possible paths in the generalized formula.

For example, for NC1, S0 = O(log n) and s(vi) = ℓ(vi) = O(1). In addition, it is
possible to apply Lemma 6.13 for arbitrary acyclic graphs (that is, circuits rather than
formulas) by first converting them into a formula, paying an additive term of O(log |P|) in
the space complexity. The proof is essentially a combination of composing space bounded
functions and computing Boolean formulas space efficiently, so we only highlight needed
modifications.10

Proof Sketch. We traverse the graph bottom-up, namely starting from the output gates,
recursively computing the values of the children as follows.

1. Globally maintain the current node within the formula. This is stored at the begin-
ning of the work-tape.

2. As in the space composition algorithm (Claim 3.3), we maintain a stack for every
level of the recursion.

10The lemma uses basic principles that are well-known and used throughout the literature. In particu-
lar, the approach bears some similarities to the global-tape oracle machines outlined in Goldreich’s book
[Gol08]. Nonetheless, because it is an integral and subtle part of the argument, we decided to give the full
proof.

46

3. Each stack maintains a “local” index to its input (which takes log ℓ(vi) space), along
with a work-tape for the computation of the relevant function (which takes svi(ℓ(vi))
space).

4. Whenever a specific value of a gate is needed, there are two options:

i. If this is an input gate, we read it from the input-tape using the global index.

ii. If this is not an input gate, then we open another (lower) level of recursion
for computing it. In that case, we update the global location of the algorithm
within the recursion.

6.5.2 Proof of Lemma 6.4

Our algorithm takes the form of a tree of depth r2. The j-th node in the i-th layer corre-
sponds to the matrix (M̃i)j , and is computed from its children in the tree, i.e.,

(M̃i)j = f(A1, . . . , A2r1)

for some suitable f as described above. Using Lemma 6.13, the algorithm can be imple-
mented in space O(S · r2), where S is an upper bound on the space complexity needed to
computed each f . More specifically, recall that our algorithm takes the form of a tree with
arity 2r1 , depth r2, and the local functions being fi as defined in Equation (19). Using the
notation of Lemma 6.13, the gates at depth i are labeled fi, and the layout of this tree can
be computed in space O(log n). Each local function fi can be computed in space

O (log log n · (logw + r1)) .

This follows using the standard space composition theorem, Claim 3.3, applied with the
space complexity guarantees of Theorem 6.2 and Lemma 3.8. Putting it together, and
recalling that r1 = r2 =

√
log n we get that the overall space complexity of our SZIMM

algorithm is
O
(
log log n ·

(√
log n · logw + log n

))
.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 2009.

47

[AKM+20] AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles,
Aaron Sidford, and Salil Vadhan. High-precision estimation of random walks
in small space. In Proceedings of the 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 1295–1306. IEEE, 2020.

[Arm98] Roy Armoni. On the derandomization of space-bounded computations. In
Randomization and approximation techniques in computer science, volume 1518 of
LNCS, pages 47–59. Springer, 1998.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-
optimal error for read-once branching programs. In Proceedings of the 50th
Annual Symposium on Theory of Computing (STOC), pages 353–362. ACM, 2018.

[BCP83] Allan Borodin, Stephen Cook, and Nicholas Pippenger. Parallel computation
for well-endowed rings and space-bounded probabilistic machines. Informa-
tion and Control, 58(1-3):113–136, 1983.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time
using a small number of processors. Information processing letters, 18(3):147–
150, 1984.

[BGG93] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Randomness in inter-
active proofs. computational complexity, 3(4):319–354, 1993.

[BHPP22] Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne.
Hitting sets for regular branching programs. In Proceedings of the 37th
Computational Complexity Conference (CCC), pages 3:1–3:22. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudoran-
dom generators for regular branching programs. SIAM Journal on Computing,
43(3):973–986, 2014.

[CDR+21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Er-
ror reduction for weighted PRGs against read once branching programs. In
Proceedings of the 36th Computational Complexity Conference (CCC), pages 22:1–
22:17. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[CDS22] Gil Cohen, Dean Doron, and Ori Sberlo. Approximating large powers of
stochastic matrices in small space. In Electronic Colloquium on Computational
Complexity (ECCC), volume 8, 2022.

48

[CH20] Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandom-
ization of small space. In Proceedings of the 35th Computational Complexity Con-
ference (CCC), pages 10:1–10:25. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020.

[CL20a] Eshan Chattopadhyay and Xin Li. Non-malleable codes, extractors and secret
sharing for interleaved tampering and composition of tampering. In Theory of
Cryptography Conference, pages 584–613. Springer, 2020.

[CL20b] Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistribu-
tions for read-once branching programs. In Proceedings of the 35th Com-
putational Complexity Conference (CCC), pages 25:1–25:27. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[De11] Anindya De. Pseudorandomness for permutation and regular branching pro-
grams. In Proceedings of the 26th Computational Complexity Conference (CCC),
pages 221–231. IEEE, 2011.

[DMR+21] Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan.
Pseudorandom generators for read-once monotone branching programs. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), pages 58:1–58:21. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

[Ebe89] Wayne Eberly. Very fast parallel polynomial arithmetic. SIAM Journal on Com-
puting, 18(5):955–976, 1989.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-
once branching programs, in any order. In Proceedings of 59th Annual Sympo-
sium on the Foundations of Computer Science (FOCS), pages 946–955. IEEE, 2018.

[Gil77] John Gill. Computational complexity of probabilistic Turing machines. SIAM
Journal on Computing, 6(4):675–695, 1977.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[Gol11] Oded Goldreich. A sample of samplers: a computational perspective on sam-
pling. In Studies in complexity and cryptography, volume 6650 of Lecture Notes
in Computer Science, pages 302–332. Springer, 2011.

49

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced
expanders and randomness extractors from Parvaresh–Vardy codes. Journal
of the ACM, 56(4):20, 2009.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random
properties: A quality-size trade-off for hashing. Random Struct. Algorithms,
11(4):315–343, 1997.

[HAB14] William Hesse, Eric Allender, and David A. Mix Barrington. Corrigendum
to “Uniform constant-depth threshold circuits for division and iterated mul-
tiplication” [J. Comput. System Sci. 65 (4) (2002) 695–716]. Journal of Computer
and System Sciences, 80(2):496–497, 2014.

[HK18] William M. Hoza and Adam R. Klivans. Preserving randomness for adap-
tive algorithms. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (APPROX/RANDOM), pages 43:1–43:19.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-
bounded computation. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques (APPROX/RANDOM), pages 28:1–28:23.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[Hoz22] William Hoza. Recent progress on derandomizing space-bounded compu-
tation. In Electronic Colloquium on Computational Complexity (ECCC), volume
121, 2022.

[HPV21] William M. Hoza, Edward Pyne, and Salil Vadhan. Pseudorandom generators
for unbounded-width permutation branching programs. In Proceedings of the
12th Innovations in Theoretical Computer Science Conference (ITCS), pages 7:1–
7:20. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[HU21] William M. Hoza and Chris Umans. Targeted pseudorandom generators,
simulation advice generators, and derandomizing logspace. SIAM Journal
on Computing, pages STOC17–281, 2021.

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arith-
metic in finite fields of characteristic two. In Proceedings of the 23th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 672–683.
Springer, 2006.

50

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness
for network algorithms. In Proceedings of the 26th Annual Symposium on Theory
of Computing (STOC), pages 356–364. ACM, 1994.

[Jun81] H. Jung. Relationships between probabilistic and deterministic tape complex-
ity. In Mathematical Foundations of Computer Science (MFCS), volume 118 of
LNCS, pages 339–346. Springer, 1981.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom gen-
erators for group products. In Proceedings of the 43rd Annual Symposium on
Theory of Computing (STOC), pages 263–272. ACM, 2011.

[KT22] Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplic-
ity codes. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), pages 12:1–12:14. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has
subexponential size proofs unless the polynomial-time hierarchy collapses.
SIAM Journal on Computing, 31(5):1501–1526, 2002.

[MP00] Carlo Mereghetti and Beatrice Palano. Threshold circuits for iterated ma-
trix product and powering. RAIRO-Theoretical Informatics and Applications,
34(1):39–46, 2000.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators
for width-3 branching programs. In Proceedings of the 51st Annual Symposium
on Theory of Computing (STOC), pages 626–637. ACM, 2019.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation.
Combinatorica, 12(4):449–461, 1992.

[Nis94] Noam Nisan. RL ⊆ SC. computational complexity, 4(1):1–11, 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52(1):43–52, 1996.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions that beat all pseudoran-
dom generators. In Proceedings of the 36th Computational Complexity Conference
(CCC), pages 33:1–33:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2021.

51

[PV22] Edward Pyne and Salil Vadhan. Deterministic approximation of random
walks via queries in graphs of unbounded size. In Symposium on Simplicity
in Algorithms (SOSA), pages 57–67. SIAM, 2022.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space
bounded computation. In 31st Annual Symposium on Theory of Computing
(STOC 1999), pages 159–168. ACM, 1999.

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for
regular branching programs via Fourier analysis. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM), volume 8096 of LNCS, pages 655–670. Springer, 2013.

[RT92] John H. Reif and Stephen R. Tate. On threshold circuits and polynomial com-
putation. SIAM Journal on Computing, 21(5):896–908, 1992.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Annals of Mathematics,
pages 157–187, 2002.

[Sak96] Michael Saks. Randomization and derandomization in space-bounded com-
putation. In Proceedings of the 11th Computational Complexity Conference (CCC),
pages 128–149. IEEE, 1996.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[Sim81] Janos Simon. On tape-bounded probabilistic Turing machine acceptors. The-
oretical Computer Science, 16(1):75–91, 1981.

[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs
without the group theory. In Electronic Colloquium on Computational Complexity
(ECCC), volume 19, page 83, 2012.

[SVW17] Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and
Fourier-growth bounds for width-3 branching programs. Theory of Computing,
13(1):1–50, 2017.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S2/3). Journal
of Computer and System Sciences, 58(2):376–403, 1999.

52

[Ta-13] Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace.
In Proceedings of the 45th Annual Symposium on Theory of Computing (STOC),
pages 881–890. ACM, 2013.

[Vad12] Salil Vadhan. Pseudorandomness. Now, 2012.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struc-
tures & Algorithms, 11(4):345–367, 1997.

A Spectral Algorithm for Matrix Powering

In this section we prove Theorem 1.2. The idea is to use the Cayley-Hamilton Theorem as
was done, e.g., in [MP00]. The algorithm for computing An given A ∈ Rw×w is as follows.

1. Compute the characteristic polynomial of A and denote it by p(X).

2. Compute r(X) = Xn mod p(X), where deg(r) < deg(p) = w.

3. Compute r(A).

To implement the above in a space-efficient manner, we use the following two results
from parallel computation. The first is due to Berkowitz, who gave a parallel algorithm
for computing the characteristic polynomial.

Theorem A.1 ([Ber84]). There exists a logspace uniform family of NC2 circuits that computes
the characteristic polynomial of a given matrix. In terms of space complexity, on input A ∈ Rw×w

the algorithm runs in space O(log |A| · logw).

The second algorithm is for polynomial division.

Theorem A.2 ([Ebe89]). Division of polynomials over the integers can be done in logspace uni-
form NC1.

It turns out that one can even perform polynomial division, and various other polyno-
mial (and integer) arithmetic in TC0 (see, e.g., [RT92] and references therein).

Claim A.3. The above algorithm to compute An can be implemented in space O(log n + logw ·
log |A|).

Proof. By Theorem A.1, Item 1 can be done in O(logw · log |A|) space. Item 2, following
Theorem A.2, can be done in O(log(n · |A|w2)) space, and Item 3 can be done in O(log2w+

53

logw · log |A|) space using Claim 3.6. The overall space complexity then follows from
composition of space-bounded functions.

The correctness of the algorithm follows from the Cayley–Hamilton Theorem which
states that if p(X) is the characteristic polynomial of a matrix A then p(A) = 0. Since
r(X) = Xn mod p(X) there exists a polynomial q(X) such that Xn = q(X)p(X) + r(X)

and so
An = q(A)p(A) + r(A) = r(A).

B Richardson iteration

In this section, for completeness, we prove Lemma 3.9.

Proof of Lemma 3.9. The algorithm constructs the following pair of block matrices which
consists of (n+ 1)× (n+ 1) blocks of w × w matrices. For 0 ≤ i, j ≤ n,

A[i, j] =


−A j = i+ 1,

Iw i = j,

0 otherwise.

B[i, j] =


Bi,j−1 i < j,

Iw i = j,

0 i > j.

The algorithm then outputs the matrix R(A,B, k)[1, n+ 1] as given in Section 3.4.

The space complexity of the algorithm follows by Claim 3.6. As for the correctness,
first observe that

A−1[i, j] =


Ai · · ·Aj−1 i < j,

Iw i = j,

0 i > j.

By our assumption ∥A−1[i, j]−B[i, j]∥∞ ≤ 1
4(n+1)

for every 0 ≤ i, j ≤ n, and so

∥∥A−1 −B
∥∥
∞ ≤ 1

4
.

Lastly, note that ∥A∥∞ ≤ 2 and by the sub-multiplicativity of ∥·∥∞ we get

∥I −BA∥∞ ≤
∥∥(A−1 −B)A

∥∥
∞ ≤

∥∥A−1 −B
∥∥
∞ · ∥A∥∞ ≤ 1

2
.

The correctness now follows by Lemma 3.8.

54

C Improving the Dependence on the Confidence Parame-
ter in Nisan’s generator

In this section we give the proof of Theorem 6.2 and discuss related concepts. Let us start
by giving a different perspective on the Nisan generator (See Section 3.5). Recall that the
Nisan generator has two types of inputs: a symbol x, and a sequence of hash functions
h = (h1, . . . , hk). Define the collection of functions{

Gh(x) ≜ N(x, h) : h ∈ Hk
}
. (20)

Another way to interpret Theorem 3.10 is that for a predetermined BP, if we sample a
function from the collection (20) then, with high probability, it fools that BP with accuracy
εN. This special “sampling property” of the Nisan generator was used to derive two of
the most important derandomization results of BPL [Nis94, SZ99].

In hindsight, the aforementioned special property of the Nisan generator can be ob-
tained generically using a primitive called an averaging sampler. By “generically” we mean
that there is a simple procedure that endows a given PRG with this “sampling property”.
Furthermore, this procedure, which by now known as “Armoni’s sampler trick”, allows
us to get an improved version of the Nisan generator (or any PRG for that matter) with
better dependence on the confidence parameter. Recall that we used the Nisan generator
to devise a randomized algorithm for approximating the powers of stochastic matrices
(Theorem 3.14). Precisely in the same fashion, we use the aforementioned improved ver-
sion of the Nisan generator to derive Theorem 6.2. The idea of using samplers in the
context of PRGs against the class of BPs dates back to the work of Armoni [Arm98] and
was recently used in the context of space-bounded computation in several works (e.g.,
[BCG18, CL20a, Hoz21]).

We now introduce the notion of samplers, towards deriving Theorem 6.2. The presen-
tation mainly follows the highly recommended survey [Gol11].

Definition C.1. An (ε, δ) sampler, is an algorithm Γf : {0, 1}m → [0, 1] with oracle access to a
function f : {0, 1}n → [0, 1] such that

∀f Pr
y

[∣∣∣Γf (y)− E
σ
[f(σ)]

∣∣∣] ≥ ε] ≤ δ.

We refer to ε and δ as the accuracy parameter and confidence parameter, respectively.

55

In our setting, the quality of a sampler is determined by three complexity measures:

i. Space Complexity: The space required to run the sampler.

ii. Query Complexity: The number of oracle calls to the function f : {0, 1}n → [0, 1].

iii. Randomness Complexity: The amount of randomness used by the sampler. In the
above definition, we denoted it by m.

A very important type of samplers is that of averaging samplers, in which the sampler
simply outputs the average of its queries. An averaging sampler can thus be defined via
Γ: {0, 1}m × {0, 1}d → {0, 1}ℓ, where the output of Γf (y) is

Γf (y) = E
z∈{0,1}d

[f(Γ(y, z))],

and so the query complexity of the above sampler is 2d.11

Let us defer the discussion on the existence of efficient samplers, and go back to pseu-
dorandom generators. Suppose that we have a PRG G : {0, 1}ℓ → Σn fooling [n,w,Σ]

BPs with error ε, i.e., for every [n,w,Σ] BP B, ∥Ex[B(G(x))]− Eσ[B(σ)]∥∞ ≤ ε. Note that
G does not necessarily satisfy the guarantee of the Nisan generator discussed above and
can be any PRG. Setting the function f = B ◦ G, it is natural to try and sample from f

using Γf . It is worth pointing out that if Γ is an averaging sampler then GΓ is defined by
GΓ(y, z) = G(Γ(y, z)). Using a non-averaging sampler, we would have obtained a ran-
domized algorithm that approximates the transition matrix in a black-box fashion, and for
non-adaptive samplers the approximation is “oblivious”. (See [CH20] for another discus-
sion on various notions of sampling in the context of space-bounded derandomization.)

As implied by the discussion above, the main advantage of using Γf rather than sim-
ply computing E[f] is the strong guarantee that with high probability, namely, with prob-
ability 1 − δ over the fixing of the input y to the sampler, the approximation is good. Typi-
cally, the sampler’s space complexity is smaller than the seed length of G so we can get
a space-efficient approximation with high probability. Using good enough samplers, we
can guarantee a very small δ without paying for it in the parameters of G. Also, for a good
Γ, the randomness complexity is comparable to the seed length of G. For completeness,
we give the precise details in the following lemma.

Lemma C.2 (the sampler trick for IMM). The following holds for any positive integers n,w

and s, and any ε, δ > 0. Let G : {0, 1}ℓ → Σn be a PRG fooling [n,w,Σ] BPs with error ε
2
.

11More generally, one can consider non-adaptive samplers in which Γf (y) = gy

(
(f(Γ(y, z))

z∈{0,1}d

)
,

where gy are arbitrary functions.

56

Assume that given x ∈ {0, 1}ℓ and i ∈ [n], the symbol G(x)i can be computed in space sG =

sG(n,w, |Σ|, ε). Also, let Γ be an (εsamp, δsamp)-sampler with randomness complexity ℓ′ and space
complexity ssamp, outputting ℓ bits, where εsamp =

ε
2w

and δsamp =
δ

w2n2 .
Then, there exists an algorithm Λ that gets as input a seed h ∈ {0, 1}ℓ

′
and substochastic

matrices (A1, . . . , An) ∈ Rw×w in which every entry is represented using log |Σ| bits, and outputs
(Mh)a,b ∈ Rw×w for all 1 ≤ a < b ≤ n such that the following holds. With probability at least
1− δ over h, for all 1 ≤ a < b ≤ n it holds that

∥(Mh)a,b − Aa · · ·Ab∥∞ ≤ ε.

Λ runs in space O(log(nw · log |Σ|) + sG + ssamp). Moreover, if Γ: {0, 1}ℓ
′
×{0, 1}d → {0, 1}ℓ is

an averaging sampler, Λ runs in

O (log(nw · log |Σ|) + d+ sG + s̄samp)

space, where s̄samp is the space it takes to compute each Γ(y, z) on any given y ∈ {0, 1}ℓ
′

and
z ∈ {0, 1}d.

Proof. Fix A1, . . . , An ∈ Rw×w. Consider the canonical [n,w + 1,Σ] BP B that simulates
A1, . . . , An, in which every layer as described in Section 3.5. Namely, using the terminol-
ogy of Section 3.5, the i-th layer of B is C(Ai), and it holds that A(C(Ai))[1,w] = Ai.

Let B(s,i)→(t,j) be the sub-BP of length t− s whose start node is the i-th state in the s-th
level and its accept node is the j-th state in the t-th level. Fix any 1 ≤ a < b ≤ n and
i ∈ [w]. By our guarantee on G, it holds that∑

j∈[w]

∣∣∣(Aa · · ·Ab)[i, j]− Ex∈{0,1}ℓ
[
B(a−1,i)→(b,j)(G(x))

]∣∣∣ ≤ ε

2
.12

Considering our sampler Γ, define the function

fa,b,i
j (x) = (Aa · · ·Ab)[i, j]− Ex∈{0,1}ℓ

[
B(a−1,i)→(b,j)(G(x))

]
,

noting that
∑

j

∣∣∣E[fa,b,i
j (x)]

∣∣∣ ≤ ε
2
. For brevity, we omit the tuple (a, b, i). Define the set of

bad sample points

Bj =
{
h ∈ {0, 1}ℓ

′
:
∣∣Γfj(h)− E[fj]

∣∣ > εsamp

}
.13

12Here and throughout the proof, we truncate the output of G accordingly.
13Recall that if Γ is an averaging sampler, Γfj (h) corresponds to Ez∈Γ(h)[fj(z)].

57

By the sampler property, we know that µ(Bj) ≤ δsamp. Denoting B =
⋃

j Bj , we get that
µ(B) ≤ wδsamp. For h /∈ B,∑

j∈[w]

∣∣Γfj(h)
∣∣ ≤ ∑

j∈[w]

(|E[fj]|+ εsamp) ≤
ε

2
+ w · εsamp ≤ ε.

Then, for a seed h, the (a, b)-th output of Λ on index [i, j] is computed as follows:
Compute the corresponding sub-BP B = B(a−1,i)→(b,j), and output ΓB◦G(h). When Γ is
an averaging sampler, this corresponds to taking the average of B(G(Γ(h, z))) over all
z ∈ {0, 1}d. To establish correctness, observe that if h /∈ B we get∑

j∈[w]

∣∣∣ΓB◦G(y)− (Aa · · ·Ab)[i, j]
∣∣∣ ≤ ∑

j∈[w]

∣∣Γfj(h)
∣∣ ≤ ε.

To conclude, recall that B was defined with respect to (a, b, i). Union-bounding over
all such tuples, we get that our algorithm works with probability at least 1−n2w ·wδsamp =

1− δ over the h-s.

Finally, we establish the space complexity of outputting a single entry in a single
output matrix. Computing B requires O(log log |Σ| + logw) space. By composition of
space-boudned functions, the sampling takes O(log(nw) + sG + ssamp) space. The “More-
over” part readily follows from noting that when Γ computes the average of 2d samples,
ssamp = O(d+ s̄samp).

In Appendix C.1 we give the following “median-of-averages” sampler.

Lemma C.3 (median-of-averages sampler [BGG93]). For every integer m, and any ε, δ > 0,
there exists an (ε, δ) sampler Γ that queries functions from {0, 1}m → [0, 1] with randomness com-
plexity n = m+O(log log n · log 1

δ
), space complexity O(log m

ε
+log log 1

δ
), and query complexity

2d for d = O(log 1
ε
+ log log 1

δ
).

Instantiating Lemma C.2 with Nisan’s PRG (Theorem 3.10) and the median-of-averages
samplers, we establish the space-efficient Theorem 6.2 with the improved dependence on
δ (that stems only from how the parameters of Γ depends on δ).14

As the name suggests, the median-of-averages sampler is not an averaging sampler
and therefore the improved approximation of Theorem 6.2 is not based on a PRG. While
not strictly necessary for our application of proving our result, for future applications it

14The algorithm in Theorem 6.2 gets a truncation parameter t as well, and incurs an additional nw · 2−t

additive factor in the approximation error. However, going from the t = s case to t < s is done exactly as in
Theorem 3.14, and so we omit the details.

58

may be useful to have a space-efficient PRG with improved dependence on the confidence
parameter δ. In Appendix C.2, we prove:

Lemma C.4 (follows from [RVW02, Gol11]). For every integer m, and any ε, δ > 0, there
exists an (ε, δ) sampler Γ: {0, 1}n × {0, 1}d → {0, 1}m such that

d = O

(
log log

1

δ
+ log

1

ε
+ log logm

)
and n = m + O(log 1

εδ
). Moreover, given x ∈ {0, 1}n and y ∈ {0, 1}d, Γ(x, y) can be computed

in space O(log2m+ logm · log 1
ε
).

Instantiating Lemma C.2 with Nisan’s PRG and the above averaging sampler, we get
parameter that are the same as in Theorem 6.2, up to doubly-logarithmic factors. We note
however, that the non-averaging sampler of Lemma C.3 is significantly simpler so we
choose to give the self-contained construction below.

While the constructions in Lemmas C.3 and C.4 are known, we need a tighther analysis
of their space complexity than appears in the existing literature.

C.1 Using non-averaging samplers

We now describe the sampler of Lemma C.3, which has two ingredients:

1. A pairwise independent distribution over ({0, 1}m)t with t = O
(

1
ε2

)
. Assuming

t ≤ 2m, this can be implemented via taking linear combinations in F2m , and can
be sampled using r = 2m bits (see, e.g., [Vad12, Section 3]). Note that arithmetic
operations over F2m can be done in logarithmic space (see, e.g., [HAB14, HV06]).

2. An expander graphs over the vertex set {0, 1}r with degree D = log n and a small
enough constant spectral gap. Each vertex of the graph indexes an element of the
pairwise independent distribution. We assume that random walks over that ex-
pander graph can be computed space-efficiently. That is, given the labels γ1, . . . , γℓ ∈
[D]ℓ, and a starting vertex v ∈ {0, 1}r, we can compute the corresponding random
walk in O(log ℓ+log logD) space. For such graphs, see, e.g., [CDR+21, Appendix B].

Let f : {0, 1}m → [0, 1] be any function. The sampler Γf (y) then proceeds as follows.

• We use y to take a random walk of length ℓ − 1 = O(log 1
δ
) on the expander graph.

Note that indeed |y| = n = m+ ℓ · logD.

• We use the vertices along the path to obtain ℓ samples (Z(j)
1 , . . . , Z

(j)
t)ℓj=1 of the pair-

wise independent distribution.

59

• We then take the average over every batch, µj = Ei f(Z
(j)
i), and output the median

of those averages, median(µ1, . . . , µℓ).

A detailed analysis is provided in [Gol11]. The query complexity is ℓ · t, as stated. The
space complexity follows from the above assertions, and by composition of space bounded
algorithms (Claim 3.3).

Remark 2. Taking the median in Section 5.3 is in fact a naı̈ve implementation of the
median-of-averages sampler: it takes the median of independent samples, whereas the
median-of-averages sampler takes the median of the dependent samples obtained by tak-
ing a random walk over an expander graph.

C.2 Using averaging samplers

The construction of Lemma C.4 essentially follows [RVW02, Gol11, CL20b]. To the best
of our knowledge, the claim about the space complexity is new, and previous work that
used Lemma C.4 only needed Γ to be computable in linear space. In order to attain good
space complexity, we need to analyze various pseudorandomenss primitives, and some
we only partially describe here.

We use standard notion from the extractors literature, all can be found, e.g., in [GUV09,
Vad12]. Using the equivalence between averaging samplers and extractors [Zuc97], it
suffices to prove the following.

Theorem C.5. For every positive integer m, and any δ, ε > 0, there exists a (k = n − ∆, ε)

extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ∆ = log 1
δ
+ 1, such that d = O(log∆ +

log 1
ε
+ log logm) and n = m + O(∆ + log 1

ε
). Moreover, given x ∈ {0, 1}n and y ∈ {0, 1}d,

Ext(x, y) can be computed in space O(log2m+ logm · log 1
ε
).

We follow the proof in [CL20b, Appendix B], for which we will need two extractors.
The first one is the GUV logarithmic-seed extractor [GUV09].

Theorem C.6 ([GUV09, KT22]). For any positive integers n and k ≤ n, and any ε > 0 and
a constant α > 0, there exists a (k, ε) extractor Ext1 : {0, 1}n × {0, 1}d → {0, 1}m where d =

O(log(n/ε)) and m = (1− α)k. Moreover, given x ∈ {0, 1}n and y ∈ {0, 1}n, Ext1(x, y) can be
computed in space O(log k · log n).

The construction of Ext1 in [GUV09] uses seeded condensers (in fact, constructing suit-
able condensers is the crux of the [GUV09] paper). When computing Ext1 in linear space
suffices, the condenser [GUV09] can be used. Here, for the simplicity of the analysis,

60

we replace the GUV condenser with a recent construction of [KT22] since its (very small)
space complexity follows quite easily. We will analyze the space complexity of Ext1 below.

The second extractor is an extractor for high min-entropy with good dependence on
the input entropy deficiency, given by Goldreich and Wigderson. We instantiate the ex-
tractor with the parameters given in [CDR+21, Appendix B].

Theorem C.7 ([GW97]). For any positive integers m and ∆ < m, and any ε > 0, there exists
a (k = m − ∆, ε) extractor Ext2 : {0, 1}m × {0, 1}d → {0, 1}m where d = O(∆ + log(m/ε)).
Moreover, given x ∈ {0, 1}m and y ∈ {0, 1}d, Ext2(x, y) can be computed in space O(logm·log d).

In the case where the output length is the same as the input length, an application
of Ext2 simply amounts to taking a step on a expander over 2m vertices. By using ex-
panders with better dependence between the degree and the spectral gap, one can get
d = O(∆ + log 1

ε
), as indeed [GW97] do get. However, the space complexity of the GW

extractor as stated in existing literature is linear, i.e., O(m + log 1
ε
), and we need better

space complexity.15 In [CDR+21], we instantiate the GW extractor with a (sub-optimal)
expander that comes from small-biased sets.

Proof of Theorem C.5. We instantiate our two extractors as follows.

• Let Ext2 : {0, 1}m × {0, 1}d1 → {0, 1}m be the (k1 = m − ∆, ε/3) GW extractor from
Theorem C.7. We have that d1 = O(∆+log m

ε
), and we can assume that d1 ≥ ∆+log 3

ε
.

• Let Ext1 : {0, 1}3d1 × {0, 1}d → {0, 1}d1 be the (2d1, ε/3) extractor from Theorem C.6.
Indeed, d = O(log(d1/ε)) = O(log∆ + log 1

ε
+ log logm).

The extractor Ext is constructed as follows. Set n = m + 3d1. Given x ∈ {0, 1}n and
y ∈ {0, 1}d, write x = (x1, x2) ∈ {0, 1}m × {0, 1}3d1 and output

Ext((x1, x2), y) = Ext2(x1,Ext1(x2, y)).

The correctness follows from “block-source extraction”, and we repeat it here, briefly, for
completeness. Given an (n, k) source X , recall that H∞(X) ≥ m+3d1−∆, and it is known
(see, e.g., [GUV09, Lemma 4.15]) that X is close to a block source. Namely, it is (ε/3)-
close to (X1, X2) in which H∞(X1) ≥ m − ∆ and H∞(X2|X1 = x1) ≥ 3d1 − ∆ − log(3/ε)

for every x1 ∼ X1. For any fixing of x1 ∼ X1, Ext1(X2, Ud) is (ε/3)-close to Ud1 , and one

15More precisely, we need to take a single step on a λ-expander with λ ≤ ε2

4·2∆/2 , or alternatively, if
we don’t care about the exact constants, a O(∆ + log 1

ε)-step walk over a constant-gap expander. We do
not know how to implement this with good constant-degree expanders and space complexity polylog(∆ +
log 1

ε).

61

can show that in this case, Ext2(X1,Ext1(X2, Y)) is (2ε/3)-close to Um (see, e.g., [GUV09,
Lemma 4.13]). Incurring the distance from X to (X1, X2), we conclude that Ext(X, Y) is
ε-close to Um.

For the space complexity, note that Ext2 can be computed in

O(logm · log d1) = O

(
logm ·

(
log∆ + log

1

ε
+ log logm

))
space, and Ext1 takes O(log k1 · logm) = O(log2m) space to compute. The theorem then
follows from the composition of space-bounded algorithms (see Claim 3.3).

The GUV Extractor of Theorem C.6. Before we begin, we will need the following con-
denser, whose space complexity we analyze below.

Theorem C.8 ([GUV09, KT22]). For any positive integers n and k ≤ n, and any ε > 0 and a
constant α > 0, there exists a k →ε k + d condenser (i.e., a lossless condenser) Cond : {0, 1}n ×
{0, 1}d → {0, 1}m such that d = Oα(log(n/ε)) and m = (1 + α)k.

Moreover, given x ∈ {0, 1}n and y ∈ {0, 1}d, Cond(x, y) in [KT22] can be computed in space
O(log n+ log log 1

ε
).

We note that the parameters we gave above are rather crude, but suffice for obtaining
Theorem C.6. For the parameter regime of Theorem C.6, computing Ext1 is done recur-
sively as follows. For t = O(log k), we construct E0, . . . ,Et where Ext1 = Et.16 The extrac-
tor E0 makes a constant number of calls to the condenser of Theorem C.8 and a constant
number of calls to an extractor based on the Leftover Hash Lemma (LHL). By invoking
standard two-universal hash functions, an LHL-based extractor can be implemented in
space O(log n).17 Each extractor Ei makes one call to some Ei′ for i′ < i, a constant number
of calls to a condenser, and a constant number of calls to an LHL extractor. We refer the
reader to [GUV09] for the complete details.

Overall, using composition of space-bounded algorithms, the extractor of Theorem C.6
can be implemented in space O(log k · log n).18

The Space Complexity of Theorem C.8. Lastly, we wish to establish the space complex-
ity of the condenser in Theorem C.8. We first give an overview of the construction and

16In fact, to increase the output length, one has to reiterate the construction using different parameters
for a constant number of times. However, this does not change the stated space complexity bound.

17Although the parameters of each extractor invocation are different, we will always take the pessimistic
bound of input length n and error ε

poly(n) , which suffices.
18Note that we assume ε is at most 2−Θ(n), which we can do without loss of generality since we chose to

not output the seed.

62

parameters of [KT22]. The authors set a prime field Fq for q = polyα(n/ε). Also, set m ∈ N
such that 2m = qm+2, and identify each seed in {0, 1}d with an element of Fq.19 The pa-
rameters are set so that we can identify any f ∈ {0, 1}n as a univariate polynomial over
Fq with degree at most n− 1. The output Γ(f, y) is given by

Γ(f, y) =
(
y, f(y), f ′(y), . . . , f (m+1)(y)

)
∈ Fm+2

q .

where f (i) is the (formal) i-th derivative of f . Fix some i ∈ [m + 1], and consider the
computation of some f (i)(y). It is known that iterated addition and multiplication can be
done by logspace-uniform (and even logtime uniform) TC0 circuits, so in particular in L.
More concretely, adding and multiplying t Fq-elements can be done by poly(t log q)-sized
TC0 circuits (see, e.g., [HAB14]).20 Computing f (i)(y) amounts to:

1. Computing f (i): Each coefficient of f (i) is a multiplication of at most m + 2 field
elements, which can be computed in space O(logm+ log log q).

2. Evaluating f (i)(y): Amounts to computing exponentiation up to an n-th power,
and performing addition of up to n elements. This can be done in space O(log n +

log log q).

By composition of space bounded algorithms, the overall space requirement of comput-
ing the m field elements of Γ(f, y) is

O(log n+ log log q + logm) = O

(
log n+ log log

1

ε

)
.

19The fact that q is not a power of 2 can be addressed with a small loss in parameters.
20Computing a field element to the t-th power can even be done in size poly(log t, log q) for specific real-

izations of Fq , see [HV06], but we won’t need this fact.

63

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

