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Abstract

It is well-known that randomized communication protocols are more powerful than determin-
istic protocols. In particular the Equality function requires Ω(n) deterministic communication
complexity but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett
and Vinyals shows that randomized communication is strictly stronger than what can be solved
by deterministic protocols equipped with an Equality oracle. Despite this separation, we are
far from understanding the exact strength of Equality oracles in the context of communication
complexity.

In this work we focus on nondeterminisic communication equipped with an Equality oracle,
which is a subclass of Merlin-Arthur communication. We show that this inclusion is strict by
proving that the previously-studied Integer Inner Product function, which can be efficiently
computed even with bounded-error randomness, cannot be computed using sublinear commu-
nication in the nondeterministic Equality model. To prove this we give a new matrix-theoretic
characterization of the nondeterministic Equality model: specifically, there is a tight connection
between this model and a covering number based on the blocky matrices of Hambardzumyan,
Hatami, and Hatami, as well as a natural variant of the Gamma-2 factorization norm. Similar
equivalences are shown for the unambiguous nondeterministic model with Equality oracles. A
bonus result arises from these proofs: for the studied communication models, a single Equality
oracle call suffices without loss of generality.

Our results allow us to prove a separation between deterministic and unambiguous nondeter-
minism in the presence of Equality oracles. This stands in contrast to the result of Yannakakis
which shows that these models are polynomially-related without oracles. We suggest a number
of intriguing open questions along this direction of inquiry, as well as others that arise from our
work.

1 Introduction
Two computationally unbounded parties each hold an n-bit string. Their goal is to compute
some function that depends on their inputs. For a given function, how many bits must they
exchange? In the paper that introduced this model, Yao proved that computing the Equality
function — that is, deciding whether or not the two parties’ inputs are equal — requires Ω(n)
bits of communication. This means that Equality is maximally hard in an asymptotic sense, as
n+1 bits of communication always suffices [Yao79]. However, if a public source of randomness is
available and some bounded probability of error is tolerated, Equality only requires O(1) bits
of communication; a proof can be found in most introductory texts on the subject [KN97, RY20].
This means that randomized communication can be exponentially stronger than deterministic
communication. There has been recent interest in determining the power of Equality in
communication. We can sum up this direction of study with the following question:

What total functions can be efficiently computed in a communication model where the only
access to randomness is via reduction to Equality?

Many known functions where randomization is useful can be solved by an efficient determinis-
tic protocol with access to an Equality oracle — for example, the greater-than function [Nis94].
On the other hand, it was recently shown that Equality alone cannot simulate all randomized
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protocols [CLV19]. In both of these results, the model under study is deterministic and the
oracle access resembles Turing reductions in classical complexity: the Equality oracle may be
queried many times and the results may be used however the parties want. In this article we
study what happens when these parameters are changed:

• What functions can be efficiently computed when stronger models of communication
are given Equality oracle access?

• Does restricting to many-one reductions change the power of Equality oracles?

Of specific interest to us is nondeterministic communication with access to an Equality or-
acle. This is a natural restriction of Merlin-Arthur communication, an intriguing model against
which no linear lower bounds for explicit functions are known (see [AW09, Gav21]). Nondeter-
ministic communication with Equality queries has been implicitly studied before; for example,
Göös, Pitassi, and Watson showed a separation between this model and zero-error randomized
communication with access to a single nondeterministic oracle query [GPW18]. Our main results
center around this model.

1.1 Blocky Matrices as Building Blocks
Given a two-party function F : {0, 1}n × {0, 1}n → {0, 1}, its communication matrix M is a
2n×2n matrix that acts as a bipartite truth table for F : each row represents some input x, each
column represents some input y, and entry M [x, y] is the value of F (x, y). Nondeterministic
flavors of communication complexity can be defined as minimization problems for covers of
M , using monochromatic rectangles as the basic building block (a rectangle is a product set
of rows and columns). For example, the nondeterministic communication complexity of M ,
NPcc(M), is characterized by the logarithm of C1(M), the minimum number of 1-monochromatic
rectangles required to cover the ones of M , and co-nondeterministic communication complexity,
coNPcc(M), is the logarithm of C0(M), the minimum cover size for the zeroes of M . Similarly
the unambiguous complexity of M , UPcc(M), is characterized by the logarithm of χ1(M), the
minimum number of disjoint rectangles needed to cover the ones of M , and coUPcc(M) is the
logarithm of χ0(M), the minimum number of disjoint rectangles needed to cover the zeroes of M .
This point of view was highly successful in understanding the relationships between deterministic
and nondeterministic communication. For example, Aho, Ullman, and Yannakakis showed that
Pcc = NPcc ∩ coNPcc and thus deterministic communication complexity is characterized by
the logarithm of χ(M), the size of the minimum partition of M into disjoint monochromatic
rectangles [AUY83]. Moreover, viewing nondeterministic communication as covering problems
brings out some equivalent formulations coming from extremal combinatorics and graph theory.
For example, the proof of superlogarithmic lower bounds on the coNPcc complexity of problems
with efficient UPcc protocols refuted a polynomial version of the Alon-Saks-Seymour conjecture
in graph theory [Yan91, BLT14, Göö15].

In this work we focus on communication complexity classes equipped with an Equality or-
acle and introduce several equivalent characterizations of these classes as covering minimization
problems but now using Equality matrices as the basic building block. The communication
matrix for Equality is simply the 2n × 2n identity matrix. Therefore, the set of inputs on
which an Equality oracle call yields the answer 1 has the same basic structure as the identity
matrix, potentially with some rearrangements as the players may locally map their inputs to
other values in the query to the oracle. We will use the vocabulary of Hambardzumyan, Hatami,
and Hatami [HHH22] who call such blowups of the identity matrix blocky matrices:

Definition 1. A blocky matrix is an identity matrix, perhaps with some rows and columns
deleted, duplicated, or permuted, and perhaps with all-zero rows or columns added. Equiva-
lently, a blocky matrix takes value 1 on a set R of rectangles, where any pair of rectangles in R
have disjoint row and column sets, and value 0 elsewhere.

See Figure 1 for some examples of blocky matrices.
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
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(a) Identity matrices


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


(b) All-ones matrices


1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1


(c) Direct sums of
all-ones matrices


1 0 1 0 1
0 1 0 1 0
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0


(d) Permutations of

(a)-(c)

Figure 1: Some examples of blocky matrices.

We define the blocky cover number of M , CB
1 (M), to be the minumum number of blocky

matrices that are needed to cover the ones of M , and the blocky partition number of M , χB
1 (M),

to be the minimum number of blocky matrices that are needed to disjointly cover the ones of M .
(See Section 2 for formal definitions.) We note that blocky cover number and blocky partition
number are a generalization of the standard notions of cover number and partition number, and
thus understanding properties of blocky cover and partition number is an important tool for
proving lower bounds for models of computation that have access to Equality oracles.

[HHH22] defined the blocky rank of M to be the minimum r such that M can be written as a
linear combination of r blocky matrices. Our definitions of covering and partition minimization
by blocky matrices can be seen as flavors of blocky rank, similar to the various flavors of rank
and γ2 norm (e.g., approximate rank, sign rank, approximate γ2, etc.) Here again we see
that complexity measures based on blocky rank measures are robust and come up naturally
in other areas. For example, Hambardzumyan, Hatami, and Hatami [HHH22] observed that
blocky rank arises in operator theory where it is connected to idempotents in Schur algebras,
and unambiguous blocky complexity is related to covering problems in graph theory. Another
recent result is that a blocky version of sign rank essentially characterizes the size of depth-2
linear threshold circuits [AY22].

1.2 Our Results
New Characterizations. As mentioned above, nondeterministic, co-nondeterministic and
deterministic communication complexity are characterized by 1-cover number, 0-cover number
and partition number, respectively. We prove similar characterizations for nondeterministic
communication classes equipped with an Equality oracle.

Theorem 1. (Simplified) Let F be a communication function on n bits. Let A be its corre-
sponding 2n × 2n Boolean communication matrix. Then

UPEQcc(F ) ≤ logχB
1 (A) ≤ O

(
UPEQcc(F ) · log n

)
.

Also,
NPEQcc(F ) = logCB

1 (A) ≤ O
(
NPEQcc(F ) · log n

)
.

In order to prove the above theorem, we define matrix-analytic characterizations of these
classes by variants of a new binary version of the well-studied γ2 norm. Recall that the γ2
norm of a matrix M is at most r if M can be decomposed into the product of matrices X
and Y such that all rows of X and columns of Y have ℓ2-norm at most r. This norm and its
approximate version are relaxations of the rank and approximate rank of M and have several
equivalent characterizations and many applications. (See [LS09b] for a comprehensive survey.)
For a Boolean matrix M , we define the binary γ2 of M , γ2,B(M) by restricting X and Y to be
Boolean matrices. The binary generalization of the measure γ∞

2 , γ∞
2,B(M), is defined similarly.

(See Section 2 for formal definitions.) En route to proving Theorem 1, we show that γ2,B
characterizes UPEQcc complexity and γ∞

2,B characterizes NPEQcc complexity.
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As a byproduct of the above proofs we obtain the following corollary, showing that multiple
Equality calls is no more powerful than a single Equality call with respect to UPEQcc and
NPEQcc. Note that in contrast this is false with respect to PEQcc as [PSW21] exhibited total
functions easy for deterministic protocols with k Equality calls but hard for deterministic
protocols with less than k Equality calls.

Corollary 2. With respect to unambiguous and nondeterministic communication, Turing-style
and many-one style reductions to Equality are polynomially equivalent. That is, UPEQcc =
U · EQcc and NPEQcc = ∃ · EQcc.

New Separations. In a beautiful paper, [CMS20] disproved the log approximate rank con-
jecture by exhibiting a total function that has low approximate rank but requires large BPPcc

complexity. We observe that the same function also has low UPEQcc complexity, thereby obtain-
ing the following new separation:

Theorem 3. UPEQcc ̸⊂ coMAcc

As a corollary, we show that PEQcc ̸= UPEQcc, and thus Yannakakis’ result [Yan91], showing
that Pcc = UPcc, breaks in the presence of Equality oracles.

Our second separation concerns the strength of deterministic communication equipped with
an Equality oracle versus unrestricted randomized communication. As mentioned above,
Chattopadhyay, Lovett and Vinyals [CLV19] proved that there is a total function in BPPcc

but with linear PEQcc complexity, thus proving BPPcc ̸⊂ PEQcc. (In fact their hard function is
in coRPcc, thus proving coRPcc ̸⊂ PEQcc.) The next theorem strengthens their separation by
showing that their function remains hard even for nondeterministic protocols with an Equality
oracle.

Theorem 4. (Simplified) coRPcc ̸⊂ NPEQcc (and therefore BPPcc ̸⊂ NPEQcc and MAcc ̸⊂
NPEQcc).

The outline of the remainder of the paper is as follows. Section 2 contains background
information, definitions and notation. Section 3 develops basic properties of the new Boolean γ2
measure, which are used to prove our main equivalences (Theorem 1). In Section 4 we prove our
separation theorems (Theorem 3 and Theorem 4). We conclude in Section 5 with a discussion of
our results and how they fit into the communication complexity landscape, and highlight several
intriguing open questions.

2 Preliminaries
A combinatorial rectangle (or simply “rectangle”) is a product set R = X × Y , where X is a set
of rows over some universe X and Y is a set of columns over some universe Y. We say that R
contains a row x if x ∈ X (or a column y if y ∈ Y ).

A rectangle is often interpreted in this paper as a matrix over X × Y where the entries in
X × Y are given value 1 and the other entries are given value 0. For example, if we say that
matrix A is the sum of a set of rectangles, we mean that A is the sum of the matrices based on
those rectangles.

For a matrix A, a monochromatic rectangle of A is a rectangle whose corresponding entries
in A have constant value. Often this value is specified; i.e. a combinatorial rectangle in A that
contains only ones is a 1-monochromatic rectangle.

We say that a set of rectangles R covers a subset S of coordinates in a matrix A if every
coordinate (i, j) ∈ S is contained in some R ∈ R and no coordinates outside of S are contained
in any R ∈ R. Such a set is called a cover of S. For example, if R contains exactly the
coordinates in A whose entries take value 1, R is a cover of the ones of A. Furthermore, if the
rectangles of R are disjoint (i.e. they do not overlap), R is a partition and is said to partition
S.

For two matrices A,A′ of the same size, A ◦A′ represents the entry-wise product.
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Blocky cover number and blocky partition number. We define matrix measures
similar to partition number and cover number, but in terms of blocky matrices instead of com-
binatorial rectangles.

Definition 2. For a {0, 1}-valued matrix A, the blocky partition number of A, denoted χB
1 (A),

is the minimal r such that A can be expressed as the sum of r blocky matrices.

Definition 3. For a {0, 1}-valued matrix A, the blocky cover number of A, denoted CB
1 (A), is

the minimal r such that A can be expressed as the entry-wise Or of r blocky matrices. That
is, if A[i, j] = 1 then the sum of the blocky matrices is at least 1, and otherwise the sum is 0.

An equivalent way to define these would be that χB
1 (A) is the minimum number of blocky

matrices such that their constituent rectangles partition the ones of A, and CB
1 (A) is the mini-

mum number of blocky matrices such that their constituent rectangles cover A — this definition
justifies the names “blocky partition number” and “blocky cover number”. It also motivates the
definition of two related measures: χB

0 (A) is the minimum number of blocky matrices needed
to partition the zeroes of A, and CB

0 (A) is defined similarly.

2.1 Communication complexity
We assume familiarity with the basics of communication complexity [KN97, RY20]. This paper
uses the now-common notation for communication classes and models of Babai, Frankl, and
Simon [BFS86]. Denote the complexity of a function F in a given communication model as
Ccc(F ), where C is an analogous class in classical complexity theory. As a slight abuse of
notation, “Ccc” is used both to refer to the set of functions with Ccc(F ) ≤ polylog(n) and to the
communication model itself.

For most of the standard communication models we reference in this paper — Pcc, BPPcc,
RPcc, NPcc, and MAcc — we point the reader towards Appendix B of the survey by Göös, Pitassi,
and Watson for definitions [GPW18]. The only standard model we will need that is not defined
in that paper is UPcc, the model with unambiguous nondeterminism.

Definition 4. UPcc is the unambiguous nondeterministic model, where a prover sends the
players a witness string, after which the players proceed deterministically. If the correct output
is 1, there must always be exactly one witness that leads the players to accept; if the correct
output is 0, there must never be such a witness. The cost of a protocol in the UPcc model is
the number of bits needed to encode the witness plus the maximum depth of the deterministic
portion.

Classes based on Equality. We are interested in models of communication that are
augmented with the ability to compute the Equality function. To capture this notion, we first
define a model of computation that makes a single call to Equality and outputs the answer
from that call.

Definition 5 (Equality-based communication). A function F has a protocol in the model
EQcc if there exist some functions fX and fY such that F (x, y) ≡ fX(x) = fY (y). The cost of
any such protocol is 1.

This is a strange definition, as it does not assign a cost to most functions: no suitable fX
and fY exist for most F . Indeed, the only functions with a EQcc protocol are those whose
communication matrix is a blocky matrix! The restricted nature of EQcc means that it is only
truly useful when examining its composition with other models. To this end, we next define an
oracle model where Equality may be queried multiple times.

Definition 6 (Communication with Equality oracle queries). Let Ccc be any communication
model in which the parties can send messages deterministically. The model CEQcc is the same
as Ccc except that at any step where a party would send a bit deterministically, the parties
locally compute some functions fX(x, π) and fY (y, π) (where π is the transcript so far) and

5



learn whether or not fX(x, π) = fY (y, π). The cost for computing this equality is 1, and the
cost is otherwise defined the same as in Ccc.

The three models of most interest to us are PEQcc, NPEQcc, and UPEQcc. To aid in our proofs
we will give explicit definitions of these models that highlight the structure of a protocol.

Definition 7. A PEQcc protocol is a decision tree. Each internal node v of the tree corresponds
to oracle queries to the Equality function: that is, it tests whether fX(x, π) = fY (y, π) where π
is the transcript that leads to node v. The internal nodes each have two children, corresponding
to “yes” and “no” answers to the query. Each leaf node w of the tree corresponds to an output
ow. The output of the protocol is computed by starting at the root node, making the oracle
query, traversing to the appropriate child, continuing this process and halting upon reaching a
leaf w, where we output ow. The cost of the PEQcc protocol is the depth of the decision tree.

Definition 8. An NPEQcc protocol is a collection of 2m PEQcc protocols with depth at most
d. The function computed by this NPEQcc is the Or of the functions computed by the PEQcc

protocols. The cost of the NPEQcc protocol is m+ d.

The definition of UPEQcc is similar to the above, and only requires the addition of the
unambiguity constraint.

Definition 9. A UPEQcc protocol is a collection of 2m PEQcc protocols with depth at most d
where no two of these PEQcc protocols have an input on which they both return 1 (that is,
their supports are pairwise disjoint). The function computed by this UPEQcc is the Or of the
functions computed by the PEQcc protocols. The cost of the UPEQcc protocol is m+ d.

Many-one reduction classes. As discussed in the introduction, the model CEQcc repre-
sents a Turing reduction from the model Ccc to the Equality function. In order to reason about
many-one reductions to Equality, we use counting class notation: this notation is standard in
classical complexity, see [HV95].

Definition 10. An ∃ · EQcc (respectively U · EQcc) protocol is an NPEQcc (respectively UPEQcc)
protocol where the constituent PEQcc protocols have depth 1 and simply return the output of
the Equality query.

2.2 The γ2 norm and variants
Let A be a matrix. The γ2 norm of A is defined as:

γ2(A) = min
X,Y

XY ⊤=A

r(X)r(Y )

where r(M) is the maximum ℓ2 norm of any row of M . This is indeed a norm, which can be
proven by examining the semidefinite program that computes it [LSŠ08].

If A is {0, 1}-valued, then γ2(A) ≤ O(
√

rank(M)) — see the book of Lee and Shraib-
man [LS09b] for more details. The γ2 norm turns out to be very closely related with other
natural generalizations of rank. We can write a real matrix as

∑
i αiRi, where the αi are

weights and the Ri are rank-one {0, 1}-matrices (i.e. rectangles). The µ-norm of a matrix is the
minimum of

∑
i |αi| over {αi}, {Ri} where

∑
i αiRi equals the matrix. The ν-norm is defined

similarly, but where the rank-one {0, 1}-matrices are replaced with rank-one {−1, 1}-valued ma-
trices. By an application of norm duality and Grothendieck’s Inequality, for any real matrix A
we have γ2(A) ≤ ν(A) ≤ µ(A) ≤ 4KGγ2(A) where KG is Grothendieck’s constant [LS09c].

The above relationship between γ2 and rank means that the γ2 norm can be used to lower
bound deterministic communication complexity, as log rank(A) lower bounds deterministic com-
munication complexity. This is perhaps uninteresting, as rank itself is a tighter lower bound:
for example, the communication matrix of Equality has constant γ2 but exponentially high
rank. The power of γ2 in currently-known communication lower bounds arises when we consider
its approximate variant.
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Approximate norms. Every matrix measure Φ has an associated α-approximate variant.
Let A be a {0, 1}-valued matrix. We say that A′ α-approximates A if A′ is positive on entries
where A is 1, is non-positive on entries where A is 0, and differs entrywise from A by at most α.
The α-approximate Φ of A, denoted Φα(A), is the minimum Φ(A′) over all A′ that α-approximate
A. See the book of Lee and Shraibman [LS09b] for more discussion on this definition.1

Φα(A) = min
A′ where ∀x,y:

if A[x,y]=0 then A′[x,y]≤0
if A[x,y]=1 then A′[x,y]≥1

∥A−A′∥∞≤α

Φ(A′).

Let AF be the communication matrix of some function F . For any constant α, log γα
2 (AF )

lower bounds randomized communication complexity of F [LS09d]. This can be proven directly
or by using γα

2 (AF ) = Θ(rankα(AF )) [LS09a] and the fact that log rankα(AF ) lower bounds
randomized communication complexity [Kra96]. This demonstrates the power of γα

2 in practice:
whereas the approximate rank of a matrix is not known to be efficiently computable, γα

2 (AF )
can be computed by a semidefinite program.

Motivated by taking the limit as α approaches infinity, we can also define the associated
infinity variant:

Φ∞(A) = min
A′ where ∀x,y:

if A[x,y]=0 then A′[x,y]≤0
if A[x,y]=1 then A′[x,y]≥1

Φ(A′).

Again letting AF be the communication matrix of some function F , there is an asymp-
totically tight connection between log γ∞

2 (AF ) and the discrepancy of combinatorial rectangles
in AF [LS09c], which itself is known to be a tight bound on the so-called weakly-unbounded
randomized communication complexity of F (this model is denoted PPcc) [Kla07].

Binary γ2. We are interested in a variant of the γ2 norm obtained by restricting the matrices
X and Y in the factorization of A to have entries in {0, 1}.

γ2,B(A) = min
{0,1}-matrices X,Y

XY ⊤=A

r(X)r(Y )

This variant is not a norm. In fact, γ2,B(A) is only defined if the entries of A are non-negative
integers. However, some useful properties of norms still hold for γ2,B . See Section 3.1 for some
of these.

For our applications we will also use the infinity variant of γ2,B . Since γ2,B is only defined for
non-negative integer matrices, the constraint on the zeroes of the approximating matrix must
hold with equality. Explicitly:

γ∞
2,B(A) = min

A′ where ∀x,y:
if A[x,y]=0 then A′[x,y]=0
if A[x,y]=1 then A′[x,y]≥1

γ2,B(A
′).

3 Characterizations
In this section we prove the matrix characterizations of nondeterministic communication models
with Equality oracles.

1Lee and Shraibman define α-approximation for {−1, 1}-valued matrices, and the definition ends up being a bit
simpler. However, our results overall are cleaner if we use {0, 1}-valued matrices, so we suffer a bit of mess here.
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3.1 Properties of γ2 variants
First we will prove some helpful properties of γ2,B . We begin by giving an alternate definition
of γ2,B that will be more convenient to work with. Intuitively, optimizing γ2,B is equivalent
to finding a partition of the ones of a matrix into combinatorial rectangles that minimizes the
number of rectangles containing any row or column.

Lemma 5. Let A be a matrix whose values are non-negative integers. Let R be a set of com-
binatorial rectangles with

∑
R∈R R = A that minimizes

√
kxky, where kx (respectively ky) is

the maximum number of rectangles in R that contain any row (respectively column) of A. Then
γ2,B(A) =

√
kxky.

Proof. We begin by rearranging the terms in the definition of γ2,B to focus on the columns of
the factor matrices X and Y . Letting {u} be the columns of X and {v} be the columns of Y ,
it is easy to see that γ2,B can be written as:

γ2,B(A) = min
{u},{v} sets of {0, 1}-valued vectors∑

i uiv
⊤
i =A

max
x,y

√∑
i

⟨ex, ui⟩2
√∑

i

⟨ey, vi⟩2

where ex is the vector that is 1 at location x and 0 elsewhere.
We can now verify that the characterization in the statement of the lemma is correct. Since all

vectors in {u} and {v} are {0, 1}-valued, the outer products uiv
⊤
i are combinatorial rectangles.

The sum of these rectangles is A. The expressions
∑

i⟨ex, ui⟩2 and
∑

i⟨ey, vi⟩2 are exactly kx
and ky, respectively.2 Therefore, finding an optimal R as stated is exactly the same as finding
an optimal factorization of A.

The alternate definition given in Lemma 5 allows for particularly simple proofs of the fol-
lowing properties.

Lemma 6. The measure γ2,B does not increase if a matrix has its rows or columns deleted,
duplicated, or rearranged, or if all-zeros rows or columns are added.

Proof. All of these operations allow us to keep the same structure of decomposition into rect-
angles.

Lemma 7. Any blocky matrix B has γ2,B(B) = 1.

Proof. The identity matrix has a γ2,B of 1 (the factor matrices are both the identity matrix).
Apply Lemma 6.

Lemma 8. Let A1 and A2 be two {0, 1}-valued matrices of the same dimensions. Then

γ2,B(A1 ◦A2) ≤ γ2,B(A1)γ2,B(A2).

Proof. For i = 1, 2, let Ri be a partition of the ones of Ai into 1-monochromatic rectangles
achieving the minimum for γ2,B(Ai). Then {R ◦ R′ : R ∈ R1, R

′ ∈ R2} is a partition of the
ones of A1 ◦ A2 into 1-monochromatic rectangles. If a row or column intersect R ◦ R′ then it
intersects both R and R′.

Lemma 9. Let A1 and A2 be two {0, 1}-valued matrices of the same dimensions whose sets of
1-entries are disjoint. Then

γ2,B(A1 +A2) ≤ γ2,B(A1) + γ2,B(A2).

2Note that the exponents here are unnecessary, as the value of the inner products are always zero or one. We
include these only to highlight the equivalence with the ℓ2-norm in the definition of γ2,B .
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Proof. For i = 1, 2, let Ri be a partition of Ai achieving the minimum for γ2,B(Ai). Then
R1 ∪R2 is a partition of the ones of A1 +A2 into 1-monochromatic rectangles. Every row and
column intersect at most γ2,B(A1) + γ2,B(A2) rectangles in this partition.

Note that Lemma 9 does not give us subadditivity in situations where the ones of A1 and
A2 are not disjoint. In fact, such a property does not hold.

We finish this subsection by proving tight bounds for the γ2,B of matrices of a specific form.
These bounds follow from earlier results about margin complexity, an associated matrix measure.

Lemma 10. γ2,B(Jn − In) = Θ(log n), where Jn is the n× n all-ones matrix.

Proof. Let En = Jn − In. Then the following recursive structure exists:

E2n =

(
En Jn
Jn En

)
.

It follows that γ2,B(E2n) ≤ γ2,B(En) + 1, and therefore γ2,B(En) ≤ O(log n).
The lower bound follows from Claim 7 in [PRS19], which relies of a bound from [Bol65]. The

claim says that if x1, . . . , xn and y1, . . . , yn are Boolean vectors satisfying that xiy
t
j = 0 if and

only if i = j, then there is some i ∈ [n] for which the number of ones in xi plus the number of
ones in yi is at least Ω(log n).

Combining Lemma 6 and Lemma 10 gives us the following useful corollary.

Corollary 11. γ2,B(Jn − B) = O(log n), where Jn is the n × n all-ones matrix and B is any
blocky matrix.

3.2 Connections between blocky measures and γ2 variants
Here we prove that blocky partition has a polynomial relationship with γ2,B and blocky cover
has a polynomial relationship with γ∞

2,B . Again, Lemma 5 helps us keep things simple.

Lemma 12. Let A be a {0, 1}-valued matrix. Then:

γ2,B(A) ≤ χB
1 (A) ≤ (γ2,B(A))2 and γ∞

2,B(A) ≤ CB
1 (A) ≤ (γ∞

2,B(A))2.

Proof. In the following, let A′ be the matrix that ∞-approximates A in the definition of γ∞
2,B(A):

that is, γ2,B(A′) = γ∞
2,B(A) and A′ is a matrix with non-negative integer values and the same

non-zero coordinates as A.
For a matrix M whose entries are non-negative integers let B be a set of blocky matrices

such that
∑

B∈B B = M . Then at most a single rectangle from each of these blocky matrices
can contain any given row or column of M , as the rectangles of each blocky matrix have pairwise
disjoint row and column sets. By Lemma 5, this means that the constituent rectangles of B give
an upper bound of γ2,B(M) ≤

√
|B| · |B| = |B|. If M = A, then B is a partition of the ones of

A into blocky matrices, and so we can set B such that |B| = χB
1 (A). If M = A′, then B is a

cover of the ones of A into blocky matrices, and so we can set B such that |B| = CB
1 (A).

We now prove the other direction. Again, let M be a matrix whose entries are non-negative
integers. Let R be the optimal decomposition of M into combinatorial rectangles as in the
statement of Lemma 5 and let kx/ky be the associated row/column counts. Fix some order on
R. Define a set of kxky blocky matrices B as follows: for integers 0 < i ≤ kx and 0 < j ≤ ky,
blocky matrix Bi,j ∈ B is the set of row-column pairs (x, y) that are in the ith rectangle that
contains row x and the jth rectangle that contains column y (according to the order that we
fixed previously).

One can see that this definition of Bi,j does indeed yield a blocky matrix. Each entry in
the support of Bi,j is also in the support of some rectangle in R, and for any R ∈ R, it is
easy to see that the portion of R included in Bi,j is a product set — inclusion in Bi,j relies
only on fulfilling the ordering property on both the row and column — and that its rows and
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columns are not shared with any other rectangle in Bi,j — only one rectangle R can be the ith
rectangle containing a row or the jth rectangle containing a column. Furthermore, each entry
in the support of R ∈ R is covered by some blocky matrix in B. Given this, we can see that the
sum of the matrices in B is M .

The size of B is kxky = (γ2,B(M))2. If M = A, B is a blocky partition of the ones of M
because R was a partition, and so B witnesses χB

1 (A) ≤ (γ2,B(A))2. If M = A′, then B is a
blocky covering of A and so CB

1 (A) ≤ (γ∞
2,B(A))2.

3.3 Characterizations of Equality-based protocols
We can now move on to proving the characterizations of Equality-based communication
classes. The proof techniques are essentially the same between the two theorems. There-
fore, we will state the intermediate lemmas in terms of both nondeterminism and unambiguous
nondeterminism.

Lemma 13. Let F be a communication function on n bits. Let A be its corresponding 2n × 2n

Boolean communication matrix. Then

log γ2,B(A) ≤ O
(
UPEQcc(F ) · log n

)
and log γ∞

2,B(A) ≤ O
(
NPEQcc(F ) · log n

)
.

Proof. Let Π be either a UPEQcc or NPEQcc protocol for F with 2m constituent PEQcc protocol
trees Ti of depth at most d. We can associate any node v of Ti with a Boolean matrix whose set
of 1-entries characterizes the subset of entries (x, y) on which the protocol reaches v. Denote
this matrix by Mv. As a simple example, for the root of the tree r, the matrix is Mr = J2n .

Let v be any node in Ti, and let uL and uR be its children. Recall that uL will be reached
if the Equality query at v returned 0, and uR will be reached if that query returned 1. Then
there is some blocky matrix B such that:

• MuR
= Mv ◦B.

• MuL
= Mv ◦ (J2n −B).

Therefore, if v has depth d′ in Ti, Mv can be expressed as the entrywise product of d′ matrices
that are either blocky or J2n minus a blocky matrix. By Lemma 7, Lemma 8, and Corollary 11,
this implies that for every node v in T , γ2,B(Mv) ≤ (n)d

′
.3

Now we can prove the desired bounds. Let L be the set of all leaves ℓ of the trees Ti where
the corresponding PEQcc protocol would output 1. There are at most 2d2m such leaves.

If Π is a UPEQcc protocol, then for ℓ ∈ L the corresponding matrices Mℓ have disjoint
1-entries: leaves of a given tree will have disjoint 1-entries, and the inputs on which the trees
output 1 are disjoint. Therefore, A =

∑
ℓ∈L Mℓ, and so by Lemma 9 we have γ2,B(A) ≤ (2n)d+m.

Rearranging, we get log γ2,B(A) ≤ O ((d+m) · log n).
If Π is an NPEQcc protocol, a similar analysis holds, but we no longer have the property that

the inputs on which the trees output 1 are disjoint. Instead, we have that there is some matrix
A′ =

∑
ℓ∈L Mℓ which is non-zero exactly when A is non-zero. As above, by Lemma 9 we have

γ2,B(A
′) ≤ (2n)d+m. By the definition of γ∞

2,B , this means that γ∞
2,B(A) ≤ (2n)d+m. Again, we

can rearrange to yield log γ∞
2,B(A) ≤ O ((d+m) · log n).

Lemma 14. Let F be a communication function on n bits. Let A be its corresponding 2n × 2n

Boolean communication matrix. Then

U · EQcc(F ) = logχB
1 (A) and ∃ · EQcc(F ) = logCB

1 (A).

Proof. If B is a partition (respectively cover) of the ones of A then in a U · EQcc (respectively
∃ ·EQcc) protocol the nondeterministic witness can simply specify which blocky matrix in B has

3Corollary 11 is stated in terms of n× n matrices, whereas the matrices here are of dimension 2n × 2n.
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the input in its support, and the parties can determine whether this is correct using a single
Equality call.

If Π is a U·EQcc (respectively ∃·EQcc) protocol, then the associated matrices of the constituent
PEQcc trees are blocky and form a size 2k partition (respectively covering) of the ones of A, where
k is the cost of Π.

Theorem 1 Let F be a communication function on n bits. Let A be its corresponding 2n × 2n

Boolean communication matrix. Then

UPEQcc(F ) ≤ U · EQcc(F ) = logχB
1 (A) = O(log γ2,B(A)) ≤ O

(
UPEQcc(F ) · log n

)
.

Also,

NPEQcc(F ) ≤ ∃ · EQcc(F ) = logCB
1 (A) = O(log γ∞

2,B(A)) ≤ O
(
NPEQcc(F ) · log n

)
.

Proof. The theorem follows from Lemma 12, Lemma 13, Lemma 14, and the facts that U ·
EQcc(F ) ≥ UPEQcc(F ) and ∃·EQcc(F ) ≥ NPEQcc(F ) which follow easily from the definitions.

4 Lower bounds and separations for Equality protocols
In this section we prove our two separation results, both concerning the nondeterministic com-
munication classes UPEQcc and NPEQcc. The first separation, Theorem 3, establishes that there
is a total function in UPEQcc (and thus also in NPEQcc) that is not in coMAcc. The second
separation, Theorem 4, shows that there is a total function in coRPcc (and thus also in BPPcc

and MAcc) that is not in NPEQcc.

4.1 Proof of Theorem 3
In this section we prove Theorem 3, restated below.

Theorem 3. UPEQcc ̸⊂ coMAcc.

The log rank conjecture is a long-standing open problem that asks whether the deterministic
communication complexity of a function and the rank of its communication matrix are polyloga-
rithmically related. Similarly, the log approximate rank conjecture asks a similar question about
the connection between randomized communication complexity and the approximate rank of
its communication matrix. Chattopadhyay, Mande, and Sherif give a counterexample showing
that the log approximate rank conjecture is false [CMS20]. The function that they use in their
separation is called Sink◦XOR.

Definition 11. The function Sink : {0, 1}(
m
2 ) → {0, 1} interprets its inputs as assigning direc-

tions to edges of the complete graph on m vertices and outputs 1 if that directed graph has a
sink.

The function Sink◦XOR : {0, 1}(
m
2 )×{0, 1}(

m
2 ) → {0, 1} outputs the value of Sink(z), where

z = x⊕ y is the entry-wise XOR of the inputs of Sink◦XOR.

The main result of Chattopadhyay, Mande, and Sherif is that Sink◦XOR has logarithmic
approximate rank but Ω(

√
n) randomized communication complexity — here, n is the length

of the inputs, so n =
(
m
2

)
. Indeed, they show the stronger result that coMAcc(Sink◦XOR) =

Ω(n1/4).4

4Actually, their result is even stronger than this: coSBPcc(Sink◦XOR) = Ω(
√
n). The class coSBPcc repre-

sents the small bounded-error model, which tightly characterizes the (0-sided) corruption bound. It is known that
coMAcc(F )2 ≥ coSBPcc(F ) for all F [GW16].
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Lemma 15. U · EQcc(Sink◦XOR) = O(log n).

Proof. The witness indicates which vertex is the sink. As the graph defined in the problem
is complete, there is always at most one sink, which means this witness is unambiguous. The
parties then confirm that the vertex is a sink using a single Equality call as follows. For a
vertex v, let x[v] and y[v] be the inputs x and y restricted to the bits whose XOR will determine
the directions of the edges incident to v. Let w be the unique value such that v is a sink if and
only if x[v]⊕ y[v] = w. The player that knows x can compute x[v]⊕w, and then an Equality
call can be used to determine if x[v]⊕ w = y[v], which is the case if and only if v is a sink.

Lemma 15, combined with the main result of [CMS20] that coMAcc(Sink◦XOR) = Ω(n1/4),
implies UPEQcc ̸⊂ coMAcc, thus proving Theorem 3. Of course, this also separates UPEQcc from
subsets of coMAcc; of particular interest is PEQcc. Theorem 3 shows that the result of Yannakakis
that Pcc = UPcc [Yan91] does not hold when these classes are augmented with Equality oracles.
Theorem 3 also shows that UPEQcc is not closed under complement: the negation of Sink◦XOR
is in coUPEQcc but is not in MAcc, which is a superset of UPEQcc.

4.2 Proof of Theorem 4
Our main aim in this section is to prove Theorem 4 (restated below), giving a separation between
NPEQcc and MAcc.

Theorem 4. There is a function F such that coRPcc(F ) = O(log n), but with NPEQcc(F ) =
Ω(n/ log n) and ∃ · EQcc(F ) = Ω(n). Therefore coRPcc ̸⊂ NPEQcc and thus MAcc ̸⊂ NPEQcc.

Chattopadhyay, Lovett, and Vinyals defined a lower bound technique that compares the size
of the largest 1-monochromatic rectangle of a function’s communication matrix with the number
of ones of that function [CLV19]. We call the matrix measure used in their proof max-rect.

Definition 12. Let A be a {0, 1}-valued m × n matrix, where α(A) is the number of ones in
A and β(A) is the size of the largest 1-monochromatic rectangle in A. The maximum-rectangle
bound A, denoted max-rect(A), is defined as:

max-rect(A) =
α(A)√

β(A)
(
m+n

2

) .
Actually, this formulation of max-rect appeared in a preprint version of the aforementioned

paper [CLV18] — in the full version [CLV19], a more complicated expression is given. This
latter measure is used to give a tight (linear) lower bound on the PEQcc complexity of a function
in coRPcc. Using max-rect as defined here and in the preprint, the known techniques only give
Ω (n/ log n) bounds.

Theorem 16 ([CLV18, CLV19]). There is a function F : {0, 1}n × {0, 1}n → {0, 1} with
coRPcc(F ) = O(log n) and whose corresponding 2n × 2n Boolean communication matrix A has
max-rect(A) = Ω(2n).

It turns out that max-rect is stronger than observed by Chattopadhyay, Lovett, and Vinyals,
and can be shown to lower bound NPEQcc with just a few tweaks of the proof technique in the
preprint [CLV18]. This means that the function from Theorem 16 will work for our separation.

Theorem 17. Let A be a {0, 1}-valued m× n matrix. Then CB
1 (A) ≥ Ω(max-rect(A)).

Proof of Theorem 17. Let B be a cover of the ones of A with |B| = CB
1 (A) and let R be the

set of combinatorial rectangles in the blocky matrices of B. For a rectangle Ri ∈ R, we will use
the notation Ex(i) (respectively Ey(i)) for the event that x (respectively y) is contained in Ri.
Because the matrices of B are blocky, each row or column can only be contained in at most |B|
of these rectangles, i.e.

∑
i Ex(i) ≤ |B| and

∑
i Ey(i) ≤ |B|.

Then we have the following relationship between |B| and these Ri ∈ R:
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(m+ n)|B| ≥
∑
x

∑
i

Ex(i) +
∑
y

∑
i

Ey(i) =
∑
i

(∑
x

Ex(i) +
∑
y

Ey(i)

)

≥ 2
∑
i

√√√√(∑
x

Ex(i)

)(∑
y

Ey(i)

)
= 2

∑
i

√∑
x,y

(Ex(i)Ey(i))

= 2
∑
i

√
|Ri|.

The second inequality above follows from the AM-GM inequality. Let α(A) and β(A) be as
in the definition of max-rect. Then, since the rectangles of R are 1-monochromatic rectangles
that cover the ones of A, we have

∑
i |Ri| ≥ α(A) and, for all i, |Ri| ≤ β(A). Together these

constraints lower bound
∑

i

√
|Ri| by the minimum of an optimization problem. This minimum

is achieved if α(A)/β(A) of the Ri have area β(A), which gives
∑

i

√
|Ri| ≥ α(A)/

√
β(A).

Combining everything, we get

CB
1 (A) ≥ Ω

(
α(A)√

β(A)
(
m+n

2

)) = Ω(max-rect(A)).

Proof of Theorem 4. Combining Theorem 17 with our characterizations from Theorem 1:

∃ · EQcc(F ) = logCB
1 (A) and

logCB
1 (A) ≤ O

(
NPEQcc(F ) · log n

)
,

we get our desired bounds.

We remark that for NPEQcc we get the same log n term in the denominator as [CLV18], but
for ∃ · EQcc we get the optimal linear lower bound.

5 Conclusion and open questions
Hambardzumyan, Hatami, and Hatami [HHH22] initiated the study of blocky matrices and
blocky rank. They showed that it is a robust notion that is not only relevant to the study of
communication complexity, but also connected to central questions in operator theory. Avraham
and Yehudayoff [AY22] prove additional connections to circuit complexity, combinatorics, and
learning theory. Taken together, it seems clear that rank-like measures for blocky matrices are
a fundamental and robust notion, and deserving of further study.

In this paper, we continued this investigation by studying restrictions of blocky rank, and
show that they are equivalent to natural nondeterministic communication models equipped with
Equality, and moreover, have a dual characterization in terms of a variant of the well-studied
γ2 norm. Our new characterizations of these communication classes in turn led to further
understanding and new separation results.

This new line of inquiry has opened up several exciting new questions/directions, and could
potentially shed new light on key open problems in the area, such as the log rank conjecture, and
developing more tools and intuition for the poorly understood communication classes MAcc and
AMcc. Below we briefly discuss how these communication classes (and blocky rank measures)
are related to the communication landscape, and mention a few specific open problems.

Figure 2 shows known relationships between the matrix measures and communication classes
that are under study in this paper. A box containing a matrix measure in this diagram should
be interpreted as the set of functions for which the value of that measure is polylogarithmic
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Pcc

PEQcc

PRPcc

log rank

log γ2,B
= logχB

1

= UPEQcc

log γ∞2,B
= logCB

1

= NPEQcc
BPPcc log γ2

coMAcc MAcc log rankα

= log γα2

Figure 2: Relationships between the communication complexity measures. We consider total func-
tions only. A → B with a normal arrow represents A ⊆ B. The arrow is bold if that inclusion
is known to be strict (A ⊊ B). The arrow is dashed if a separation is known (A ̸⊂ B). Some
relationships are omitted if they can be derived from the others shown here.

on their communication matrices. For example, the box with “log rank” includes all problems
whose communication matrix has rank 2(logn)O(1)

.
All of the relationships in Figure 2 are discussed in previous sections or follow straightfor-

wardly from the definitions. In the remainder of this section, we will talk about a few of the
gaps in this diagram, as well as some other intriguing open questions that naturally follow from
our work.

BPPcc vs. PRPcc. Two-sided randomness can simulate a deterministic protocol oracle calls
to one-sided randomized protocols, but is the other way true? This question has received
some interest in recent years, and separations are known between BPPcc and certain subsets of
PRPcc: the paper of Chattopadhyay, Lovett, and Vinyals discussed earlier shows that BPPcc ̸⊂
PEQcc [CLV19] and Pitassi, Shirley, and Watson show that limiting the number of RP calls
allowed in PRPcc to a constant gives a weaker complexity class [PSW21]. The ultimate goal
of such research would be not only to resolve BPPcc vs. PRPcc, but also understand BPPcc vs.
PNPcc. This latter question was explicitly raised by Göös, Pitassi and Watson [GPW18]. Recall
that we focus on total functions here — the relationship is already known when partial functions
are allowed [PSS14].

Our work finds tight matrix-analytic characterizations of some Equality-oracle-based com-
munication models. If our understanding of RPcc oracles was similarly developed it would
represent tremendous progress towards resolving BPPcc vs. PRPcc.

Open Question 1. Find a matrix-analytic technique that characterizes RPcc oracles in com-
munication complexity.
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This problem seems difficult — one-sided randomness is hardly understood at all! For
example, we know that coRPcc ̸⊂ UPEQcc. However, the max-rect technique is itself one-sided,
and so is silent on RPcc vs UPEQcc. Resolving this seems like a concrete first step towards
understanding RPcc.

Open Question 2. Is RPcc ⊂ UPEQcc?

We remark that the reverse is false (Sink◦XOR ̸∈ RPcc) and that the situation is easily
resolved without the unambiguity in the nondeterminism (RPcc ⊂ NPcc ⊂ NPEQcc).

How strong is γ2 in communication? In the paper where it was introduced, Sink◦XOR
was shown to have polynomial approximate rank by analyzing the Fourier decomposition of Sink
and lifting these properties to communication complexity [CMS20]. The results in this paper
give another way to show this upper bound on approximate rank. From Lemma 15, the U ·EQcc

complexity of Sink◦XOR is logarithmic; Theorem 1 then gives us that its communication
matrix has polynomial γ2,B , and for any matrix A, γ2,B(A) ≥ γ2(A) ≥ γα

2 (A). As mentioned in
Section 2, approximate γ2 and approximate rank are essentially equivalent [LS09a].

This chain of inequalities highlights a huge gap in our understanding of the strength of
approximate rank in communication complexity: a very weak variant of approximate rank is
sufficient to upper bound Sink◦XOR! A better understanding of the power of γ2 and its variants
in communication complexity may lead us to a richer landscape of functions that refute the log
approximate rank conjecture. (For another paper about the search for stronger counterexample
that takes a different approach, see [CGS21].) Here are a couple of concrete questions in this
direction:

Open Question 3. Is there a function whose communication matrix would be lower bounded
by log γ2 but not log γα

2 ?

Separations between these measures are known outside the realm of communication com-
plexity. However, we are specifically searching for a function with quasipolynomial (or better)
approximate γ2 but exponential γ2, which appears to still be an unsolved problem.

Another inequality in the chain above is γ2,B(A) ≥ γ2(A). In a communication complexity
sense, these measures are exponentially separated because γ2,B is not closed under complement
but γ2 is. However, we find this argument somewhat unsatisfying, as it does not capture many
of the differences between γ2,B and γ2. We would like to consider a closure of γ2,B — a minimal
set that is lower bounded by γ2,B and is closed under complement and other simple operations.

Open Question 4. Is there a reasonable closure of γ2,B that is equivalent to γ2 in terms of its
ability to bound functions in communication complexity?

Perhaps the blocky rank measure of Hambardzumyan, Hatami, and Hatami is the right place
to look for such a closure. See their paper for a discussion about how blocky rank relates to
communication complexity [HHH22].

PEQcc vs. NPEQcc ∩ coNPEQcc. As mentioned in Section 4, Pcc = UPcc [Yan91] but
PEQcc ̸= UPEQcc. There is another known collapse of limited nondeterminism to determinism
in communication complexity: Pcc = NPcc ∩ coNPcc [AUY83]. Does this hold with Equality
oracles present?

Open Question 5. Is PEQcc = NPEQcc ∩ coNPEQcc?

This is still open even if we restrict to unambiguous nondeterminism.

Open Question 6. Is PEQcc = UPEQcc ∩ coUPEQcc?

Our results provide tools that may be helpful for solving this problem. To illustrate, let us
observe a couple of properties of these intersection classes. Theorem 1 and Lemma 5 imply that
any function in UPEQcc∩coUPEQcc has a communication matrix that can be fully partitioned into
monochromatic rectangles where any row or column is contained in only a few of these rectangles

15



(in the case of NPEQcc ∩ coNPEQcc, replace the partition with a cover). Furthermore, since
max-rect lower bounds NPEQcc, a zero-sided version of max-rect (which compares the number
of zeroes with the largest 0-monochromatic rectangle) lower bounds coNPEQcc. We can use the
contrapositives of these lower bounds to show that any function in NPEQcc∩coNPEQcc has a large
monochromatic rectangle: either it has many ones and therefore has a large 1-monochromatic
rectangle or it has many zeroes and therefore has a large 0-monochromatic rectangle.
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