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Abstract

Dinitz, Schapira, and Valadarsky [DSV17] introduced the intriguing notion of

expanding expanders – a family of expander graphs with the property that every

two consecutive graphs in the family differ only on a small number of edges. Such

a family allows one to add and remove vertices with only few edge updates, making

them useful in dynamic settings such as for datacenter network topologies and for

the design of distributed algorithms for self-healing expanders. [DSV17] constructed

explicit expanding-expanders based on the Bilu-Linial construction of spectral ex-

panders [BL06]. The construction of expanding expanders, however, ends up being

of edge expanders, thus, an open problem raised by [DSV17] is to construct spectral

expanding expanders (SEE).

In this work, we resolve this question by constructing SEE with spectral expan-

sion which, like [BL06], is optimal up to a poly-logarithmic factor, and the number

of edge updates is optimal up to a constant. We further give a simple proof for

the existence of SEE that are close to Ramanujan up to a small additive term.

As in [DSV17], our construction is based on interpolating between a graph and its

lift. However, to establish spectral expansion, we carefully weigh the interpolated

graphs, dubbed partial lifts, in a way that enables us to conduct a delicate analysis

of their spectrum. In particular, at a crucial point in the analysis, we consider the

eigenvectors structure of the partial lifts.
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1 Introduction

Expander graphs are among the most useful combinatorial objects in theoretical computer

science, and in computer science in general. In theory, expanders proved to be pivotal in

many groundbreaking results (e.g., [Val76, AKS87, INW94, Din07, Rei08, TS17, DEL+22,

BE21]). Informally, expanders are sparse undirected graphs that have many desirable

pseudorandom properties.

There are several ways of defining the expansion of a graph. Taking the combinatorial

perspective, one thinks of the edge- or vertex-expansion, whereas from the spectral point

of view, the spectral expansion is considered. The latter coincides with the Markovian

point of view as it captures the rate at which random walks converge. If one is willing

to absorb some deterioration in parameters, it is possible to move from one definition to

the next, and so in the non-extreme regime of parameters, and only there, the different

definitions are, in a sense, equivalent. This work concerns with spectral expansion and so

we recall the definition right away. For the formal definition of other notions of expansion,

and for the relations between them, we refer the reader to the wonderful texts [HLW06,

Vad12, Tre17, Spi19].

Let G be an undirected graph with adjacency matrix A. Since A is symmetric it

has n real eigenvalues which we denote by λ1 ≥ · · · ≥ λn. The spectral expansion1 of

G is defined by λ(G) , max(λ2, |λn|). As mentioned, the reason λ(G) is of interest is

mostly due to the fact that it captures the rate of converges of random walks on regular

graphs. Indeed, for d-regular graphs the adjacency matrix is a simple normalization of the

random walk matrix, W = 1
d
A. For many applications in theoretical computer science,

and in particular in a typical work on expander graphs, restricting to regular graphs is a

nonissue, and so the spectrum of the adjacency matrix is studied instead of that of the

random walk matrix. For arbitrary undirected graphs, as those we will work with, the

random walk matrix can be written as W = AD−1, where D is the diagonal matrix that

encodes the degrees of the vertices of G. Since W is similar to the symmetric matrix

D−
1
2 AD−

1
2 , its eigenvalues are real, denoted λ̄1 ≥ · · · ≥ λ̄n. The parameter of interest,

which determines the rate of converges, is then the normalized spectral expansion, defined

by λ̄(G) = max(λ̄2, |λ̄n|).
Typically, when working with expanders one cares not about one graph but rather

about an infinite family of graphs G = (Gn)n∈I where, for each n ∈ I, Gn is an undirected

graph on n vertices. It is typically assumed that all graphs in the family have bounded

1There is some harmless inconsistency in the literature regarding the definition of spectral expansion.

Some sources refer to d− λ(G) as the spectral expansion. Others consider 1− 1
dλ(G). In some cases, it

is only λ2 that is considered.
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degree d and, naturally, the denser I is in N, the better. We denote λ(G) = supn λ(Gn)

and similarly for the normalized quantity λ̄(G) = supn λ̄(Gn). For most applications, one

requires the expander family G to be explicit which, in this work, means that given n ∈ I,

the graph Gn can be generated in poly(n)-time.

1.1 Expanding expanders

Dinitz, Schapira and Valadarsky [DSV17] introduced a natural and intriguing aspect of

families of expander graphs, which, informally captures the extent to which the family

is “continuous”. Formally, let G = (Gn = (Vn, En))n∈I be a family of expander graphs.

Dinitz et al. considered the expansion cost c(G) which is the number of edges one must

add or remove, from any graph in the family so as to obtain the next. If we denote the

least element in I that is larger than n by nextI(n), then the expansion cost can be

written as

c(G) , max
n∈I

∣∣En4 EnextI(n)

∣∣
if this maximum exists and ∞ otherwise.

Clearly, high δ(G) , maxn∈I (nextI(n)− n) implies high expansion cost. Typically, we

will think of I as a very dense set in N, in particular, δ(G) will be bounded by some small

universal constant (independent of the degree). Dinitz, Schapira and Valadarsky initiated

the study of families of expander graphs with bounded expansion cost c(G) < ∞. As

noted by [DSV17], for d-regular expanders, c(G) ≥ 3d
2

and so the authors asked whether

there is an infinite family of expanders whose expansion cost is bounded by some constant

c = c(d).

With such a family at hand, one can add and remove vertices with low cost in terms

of edge updates while maintaining expansion. This stands in contrast to, say, a randomly

sampled family in which the difference between expanders of consecutive size is linear in

the number of vertices and, in particular, is unbounded. The motivation of [DSV17] for

studying such families, dubbed expanding expanders, originated from datacenter network

topologies. The different datacenters correspond to the vertices of a graph and the edges

represent the wires connecting the datacenters. The degrees being bounded implies low

cost in wiring, and the expansion of the graph is essential for avoiding traffic routed inef-

fectively. As datacenters grow regularly, low expansion cost translates to a low overhead

in rewiring when adding a new datacenter.

As another application, [DSV17] showed how to obtain better distributed algorithms

for self-healing expanders, improving upon a prior work by Pandurangan, Robinson, and

Trehan [PRT16]. Informally, self-healing expanders are expanders that can, distributively,

fix themselves when vertices are added or removed. In this setting, the fact that the
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expander family is deterministically constructed makes the distributive task significantly

simpler as there is no randomness that is needed to be communicated.

The main result of [DSV17] is an explicit construction of a family of d-regular ex-

panders where the expansion is with respect to edge-expansion. More concretely, it was

shown how to maintain edge expansion of roughly d
3

while guaranteeing expansion cost of

at most 5d
2

.

1.2 Our results

The construction of Dinitz, Schapira, and Valadarsky [DSV17] for edge-expanding ex-

panders is based on the work of Bilu and Linial [BL06] who analyzed the operation of

“lifting” a spectral expander as a way of obtaining a graph on, say, twice the number of

vertices, while maintaining spectral expansion. The [DSV17] construction goes by way of

interpolating between every two consecutive Bilu-Linial spectral expanders, assuring good

edge-expansion.

Dinitz et al. observed that in their interpolation, some of the graphs in the family

are only weak spectral expanders. That is, despite the fact that they are interpolating

between spectral expanders, the construction ends up only having good edge expansion.

Therefore, Dinitz et al. left open the question of whether spectral expanding expanders

can be constructed (or exist for that matter). In this work we answer this question to the

affirmative by constructing spectral expanding expanders via lifting which, spectrally, are

essentially as good as the ones we are interpolating between.

Theorem 1.1 (Main result). For every integer d ≥ 3 there exists an explicit family of

undirected graphs G such that all vertices of every graph in the family has degree bounded

in [d, 4d]. The expansion cost c(G) = O(d), and the spectral- and normalized-spectral

expansions are given by

λ(G) = O

(√
d log3 d

)
, λ̄(G) = O

√ log3 d

d

 .

We wish to stress that, as our construction is of irregular graphs, hence, a bound on

λ(G) does not imply the bound on the normalized λ̄(G). As it turns out, our proof for the

bound on λ̄(G) is significantly more involved than the proof for the unnormalized λ(G),

though the latter too requires careful analysis. In particular, the bound on λ(G) is used

for obtaining the bound on λ̄(G). The proofs of the two bounds are given in Section 4 and

Section 5, and the straightforward derivation of Theorem 1.1 is then given in Section 6.

Theorem 1.1 makes the important tool of random walks on expanders available to

applications that require the dynamical setting offered by expanding expanders.
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Before moving on, we remark that the graphs in the family G that is constructed in

Theorem 1.1 have multiple edges. As for the density of the family, δ(G) = O(1) and

min I = O(d).

1.2.1 Expanding Ramanujan graphs

The bound obtained by Theorem 1.1 for λ(G), and similarly for the normalized version,

is off by a poly-logarithmic factor from the spectral expansion of a Ramanujan graph,

namely, 2
√
d− 1 which is optimal up to a negligible additive term [Nil91]. We leave it

as an intriguing open problem to determine whether expanding Ramanujan graphs exist.

It seems to us that the known algebraic constructions (e.g., [LPS88]) are not adequate

for the setting of expanding expanders. In their seminal work [MSS13, MSS18, MSS22]

Marcus, Spielman and Srivastava proved the existence of bipartite Ramanujan graphs.

The question of whether expanding bipartite Ramanujan graphs exists is too an interesting

one. It is unclear to us whether the proof technique of Marcus et al. is suitable in the

expanding setting.

In Section 7 we give a simple proof for the existence of nearly-Ramanujan spectral

expanding expanders. While our proof does not yield an explicit construction, the question

of whether expanding Ramanujan graphs exist is of interest already on the combinatorial

level.

Theorem 1.2. For every ε > 0 and every even integer d ≥ 6, there exists an infinite

family G of d-regular spectral expanding expanders with expansion cost c(G) ≤ 3d and

spectral expansion λ(G) ≤ 2
√
d− 1 + ε.

We find the question on the existence of expanding Ramanujan graphs, as well as its

bipartite analog, to be interesting also in the context of non-expanding expanders. Indeed,

the existence of a family of expanding Ramanujan graphs would arguably be an indication

for an affirmative answer to the fundamental open problem that asks if whether a random

d-regular graph, under a natural distribution, is Ramanujan with positive probability.

The reasoning being that if Ramanujan graphs are sparse among graphs then they should

have a certain underlying structure. That this structure happens to coincide with the

structure required by expanding expanders seems far-fetched.

2 Proof Overview

In this section, we give a brief account on some of the ideas that go into the proof of

Theorem 1.1. As mentioned, bounding λ(G) is simpler than (and used by) the proof
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for the bound on λ̄(G). Therefore, we start by discussing the unnormalized spectral

expansion. At any rate, both proofs are based on the well-known notion of a lift of a

graph, as well as on our extension of this notion we dub partial lifts. These are covered

in Section 2.1 and Section 2.2, respectively. A more extensive treatment of lifts can be

found in [AL02] and references therein.

2.1 Lifts

For an integer k ≥ 2, a k-lift of an undirected graph G = (V,E) is an undirected graph

Ĝ on the vertex set [k]× V where each edge {u, v} ∈ E induces k edges in Ĝ that form a

perfect matching between the vertices [k]× {u} and [k]× {v}. The set [k]× {v} is called

the fiber of v. Thus, a k-lift is determined by a choice of one perfect matching per edge

{u, v} ∈ E that is placed between the fibers of the two endpoints u, v. A slightly more

formal treatment of the notion of a k-lift is given in Section 3.2.

A well-known fact is that the spectrum of G is inherited by that of Ĝ. Bilu and

Linial [BL06] constructed explicit d-regular expanders by a repeated application of a 2-

lift of some base graph (e.g., the clique on d+ 1 vertices). To this end, they proved that

every d-regular graph has a 2-lift whose spectrum contains, on top of the eigenvalues of

G, only eigenvalues that are bounded, in absolute value, by O(
√
d log3 d), thus forming a

family of d-regular graphs, one for each size of the form (d+ 1)2k, k ∈ N, having spectral

expansion O(
√
d log3 d). Bilu and Linial further gave an explicit construction based on a

suitable derandomization of their existential proof.

We digress a bit and mention that Bilu and Linial conjectured that every d-regular

graph has a 2-lift all of whose “new” eigenvalues are bounded, in absolute value, by

2
√
d− 1. This conjecture has been proved by Marcus, Spielman, and Srivastava [MSS13]

for the bipartite case.

2.2 Partial lifts

As mentioned, [DSV17] obtained their result by interpolating between every two consec-

utive 2-lifts, guaranteeing that every graph between a pair of consecutive 2-lifts is a good

edge-expander. Following [DSV17], to prove Theorem 1.1, we also interpolate between

consecutive lifts. However, proving spectral expansion require us to use a completely dif-

ferent proof technique. The underlying idea is to carefully weigh the interpolated graphs

in a way that will allow us to argue about their eigenvectors. We dub these interpolated

graphs partial lifts, and turn to define them.
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Definition 2.1 (Partial lifts). Let G = (V,E) be an undirected simple graph with a k-

lift Ĝ = (V̂ = [k] × V, Ê). Let (B,L) be a partition of V . The L-partial lift of G (with

respect to Ĝ) is defined to be the undirected weighted graph ĜL = (V̂L, ÊL) whose vertex set

consists of the vertices of B and the fibers of the vertices of L, namely, V̂L = B∪([k]×L).

The edge set ÊL is the union of the edges of three sets:

1. The edges of G connecting vertices in B.

2. The edges of Ĝ connecting vertices in L.

3. For every edge {u, v} ∈ E with u ∈ B and v ∈ L, we add an edge of weight 1√
k

between u and each of the vertices in the fiber of v. The edges from Items (1) and

(2) have weight 1.

The slightly more formal definition of a partial lift is given in Definition 4.1. Informally,

we think of the vertices in B as vertices of the base graph G that are not yet lifted, and

of those in L as the already lifted vertices. The edges from Items (1) and (2) form the

corresponding induced graphs. The set of “hybrid” edges, appearing in Item (3), connect

already-lifted and not-yet-lifted vertices, where the weight assigned to these edges is chosen

in hindsight.

Note that ĜL is a simple weighted undirected graph. Moreover, ĜL interpolates be-

tween G and Ĝ in the sense that Ĝ∅ = G and ĜV = Ĝ. Already here we mention that

for the proof of Theorem 1.1 we will be working with 4-lifts, or with any whole square

number k for that matter, as then the 1√
k

weight can be “simulated” without weights

using parallel edges.

Before we proceed, we set some notation. We denote b = |B|, ` = |L|, and further

denote the number of vertices of ĜL by m, noting that m = b+k`. The number of vertices

in G is denoted n = b+ `. We denote the smallest eigenvalue of the adjacency matrix of

an undirected graph H by λmin(H). This will be convenient as the different graphs that

we will be considering (G and ĜL) will be on a different number of vertices.

2.3 Bounding the spectral expansion

Our main result with regards to the bound on the unnormalized spectral expansion is

that for every L-partial lift of G (with respect to Ĝ) it holds that

λmin(Ĝ) ≤ λmin(ĜL) ≤ λ2(ĜL) ≤ λ2(Ĝ). (2.1)

This in particular implies that the spectral expansion of every L-partial lift is as good as

the spectral expansion of the (fully) lifted graph, namely, λ(ĜL) ≤ λ(Ĝ). See Proposi-

tion 4.2 for the more complete statement.
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To prove Equation (2.1), we consider the subspace F ‖ of Rm that consists of all

vectors that are constants on the fibers of the lifted vertices. We denote the orthogonal

complement of F ‖ by F⊥, noting that it contains all vectors that sum up to zero on the

fibers of the lifted vertices, and that vanish on the unlifted vertices. In the first step of

the proof we characterize the eigenvectors of ĜL that lay inside F ‖. To do so, we order

the vertices of ĜL such that the unlifted vertices, those in B, appear first. With this

ordering, consider the m× n matrix

U =


Ib 0

0 1√
k
I`

...
...

0 1√
k
I`

 .

We prove (see Lemma 4.4) that Ux is an eigenvector of ĜL if and only if x is an

eigenvector of G. In fact, we weigh the hybrid edges as we did precisely for the purpose

of making this statement true. At any rate, this accounts for n eigenvectors of ĜL, all of

which are contained in F ‖, whose eigenvalues are the same as those of G. In particular,

every eigenvalue of G is an eigenvalue of ĜL with the same, or with higher multiplicity.

Since ĜL is symmetric, its eigenvectors are orthogonal to each other, and so the remain-

ing eigenvectors of ĜL are contained in F⊥. While we cannot argue that these correspond

to eigenvectors of Ĝ, as one might have hoped, in the second step of the proof we show

that these correspond to eigenvectors of some principal submatrix M of the adjacency

matrix of Ĝ. This suffices for the purpose of bounding the eigenvalues as one can invoke

the eigenvalue interlacing theorem (Theorem 3.1).

We stress that not every eigenvector of M induces an eigenvector of ĜL, a fact that is

crucial to the proof. Indeed, the crux of the proof is in showing that some “problematic”

eigenvectors of M do not affect the spectrum of ĜL. Although this is a key part of the

proof, we cannot cover it without delving into more details, and so at this point we refer

the reader to the formal treatment that is given in Section 4.

2.4 Bounding the normalized spectral expansion

Our main result regarding the normalized spectral expansion, which recall determines the

rate of convergence of a random walk, is given by Proposition 5.1 and essentially states

that assuming k is sufficiently small compared to λ(G), for all L ⊆ V it holds that

λ̄(ĜL) = O(k · λ̄(Ĝ)). (2.2)
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We remark that in the normalized case, a stronger statement as in Equation (2.1) does not

hold. Namely, λ2(ĜL) depends on both λ2(Ĝ) and λmin(Ĝ), and similarly for λmin(ĜL).

Moreover, note that, unlike the unnormalized case, here k affects the bound, though the

reader should keep in mind that for our construction of spectral expanding expanders,

as given in Theorem 1.1, we will anyhow set k to 4. Another technical caveat worth

mentioning is that we can only prove Equation (2.2) for a regular base graph G (which,

again, suffices for the proof of Theorem 1.1). This is essentially because we need a good

handle on an eigenvector of G that corresponds to its largest eigenvalue.

To discuss our proof strategy we introduce some notation. Let MĜL
be the adjacency

matrix of ĜL and WĜL
be its random walk matrix. More precisely, if we denote by DĜL

the diagonal matrix that encodes the degrees of vertices in ĜL then WĜL
= MĜL

D−1

ĜL
.

We first note that z = DĜL
1 is an eigenvector of WĜL

with eigenvalue 1, and so to prove

Equation (2.2) it suffices to bound the Rayleigh quotient, with respect to WĜL
, of vectors

orthogonal to z. As F ‖ and F⊥ are invariant subspaces of WĜL
, it suffices to do so for

each of these subspaces separately. In the first step of the proof, we use the result we

already proved for the unnormalized case to deduce that

∀x ∈ F⊥
xTWĜL

x

xTx
≤
√
k · λ̄(Ĝ),

which allows us to turn our focus to F ‖.

To bound the Rayleigh quotient of vectors in F ‖, we characterize the eigenvectors

of WĜL
laying in F ‖ by the eigenvectors of another operator. Formally, if MG is the

adjacency matrix of the base graph G then, in Lemma 5.4, we prove that there exists a

diagonal n × n matrix D such that a vector x ∈ Rn is an eigenvector of MGD−1 if and

only if Ux is an eigenvector of WĜL
, and both correspond to the same eigenvalue. We

stress that the matrix D is not the matrix encoding the degrees of G (as indeed it should

somehow encode information about L) but rather it encodes the degree of vertices in the

lifted graph, where from every fiber we take only one representative.

The above leaves us with the task of studying the eigenvalues of the matrix MGD−1

which, as eluded to above, “skews” the degrees of vertices in G according to the partial

lift structure. The crux of the proof, which we will not be able to cover in this high level

proof overview, boils down to bounding the sum of reciprocal of these skewed degrees∑
v∈V

1

Dv,v

(see Lemmas 5.9 and 5.10). We refer the reader to Section 5 for the formal treatment.
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3 Preliminaries

We start by setting some fairly standard notation from spectral graph theory.

3.1 Spectral graph theory

The adjacency matrix of an undirected graph G = (V,E) is denote by MG. Being real

and symmetric, MG has n = |V | real eigenvalues which we denote by λ1(MG) ≥ · · · ≥
λn(MG). For i ∈ [n] we define λi(G) = λi(MG), and write λmin(G) for λn(G). We refer

to the eigenvectors of MG as the eigenvectors of G. The spectral expansion of G is given

by λ(G) , max(λ2(G), |λn(G)|).
Let DG be the degrees matrix of G, that is, the matrix that encodes the degrees

of vertices in G (under the same order that they appear in MG). Assuming G has

no isolated vertices, the random walk matrix of G, denoted WG, is defined by WG =

MGD−1
G . Note that WG has n real eigenvalues as it is similar to the symmetric matrix

D
− 1

2
G MGD

− 1
2

G . We denote these by λ̄1(G) ≥ · · · ≥ λ̄n(G) , λ̄min(G) and refer to them

as the normalized eigenvalues of G. The normalized spectral expansion of G is given by

λ̄(G) , max(λ̄2(G), |λ̄n(G)|).
For a family G = (Gn)n∈I of expander graphs, we let λ(G) = supn∈I λ(Gn) if the

maximum exists, and ∞ otherwise, and similarly define λ̄(G) = supn∈I λ̄(Gn).

We make use of the well-known fact that the eigenvalues of a real symmetric matrix

interlace with the eigenvalues of any of its principal submatrices. For a proof see, e.g.,

[GR01], Theorem 9.1.1.

Theorem 3.1 (Eigenvalue Interlacing Theorem). Let N be a real symmetric n×n matrix

and let M be an m×m principal submatrix of N. Then, for all i ∈ [m],

λi(N) ≥ λi(M) ≥ λn−m+i(N).

3.2 Lifts

In contrast to the introductory part, from here on we define the notion of a lift in a

somewhat more formal way, which is also easier to work with. To this end, we first

recall the notion of graph orientation. Let G = (V,E) be a simple undirected graph.

An orientation of G is an assignment of a direction to each of its edges, resulting with a

directed graph which we denote by ~G = (V, ~E). That is, for every undirected edge {u, v}
of G exactly one of (u, v), (v, u) is included in ~E.
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In what comes next, we consider maps π : ~E → Sk where ~E is the edge (multi-)set of

some oriented graph ~G and, as customary, Sk is the group of permutations on [k]. For

ease of notation, we write πu,v instead of the more cumbersome expression π((u, v)).

Let G = (V,E) be an undirected simple graph on n vertices, ~G = (V, ~E) an orientation

of G, and let π : ~E → Sk for some integer k ≥ 1. The π-lift of ~G is the graph ~Gπ =

([k]× V,Eπ) where for every (u, v) ∈ ~E we include the edges

{(i, u), (πu,v(i), v)} for i = 1, 2, . . . , k

in Eπ. Note that regardless of the choice of orientation (and regardless of the choice of

π), since G is simple so is ~Gπ. For v ∈ V , the set of vertices [k]× {v} of ~Gπ is called the

fiber of v. For ease of notation, from hereon we write Gπ for ~Gπ despite the fact that this

graph depends on the chosen orientation.

We extend the map π : ~E → Sk to the set {(v, u) | (u, v) ∈ ~E} as follows: For

(u, v) ∈ ~E we set πv,u = π−1
u,v. With this, it is convenient to write down the adjacency

matrix of Gπ as follows. For i, j ∈ [k] define the zero-one n× n matrix Mi,j
G by

(Mi,j
G )u,v = 1 ⇐⇒ {u, v} ∈ E and πu,v(i) = j.

Then, the adjacency matrix MGπ of Gπ is the k × k block matrix, where block (i, j) is

given by the n× n matrix (MGπ)i,j = Mi,j
G . That is,

MGπ =


M1,1

G M1,2
G · · · M1,k

G

M2,1
G M2,2

G · · · M2,k
G

...
...

. . .
...

Mk,1
G Mk,2

G · · · Mk,k
G

 .

Note that Mi,j
G = (Mj,i

G )T. A well-known fact about lifting is that the spectrum of the

base graph G is contained in the spectrum of the lifted graph Gπ. More precisely, if λ is

an eigenvalue of G with multiplicity r then λ is an eigenvalue of Gπ with multiplicity at

least r. This is easily seen by noting that for every i ∈ [k],

k∑
j=1

Mi,j
G = MG, (3.1)

and so every eigenvector x of MG induces the eigenvector (x, . . . ,x) of MGπ with the

same eigenvalue.

4 Bounding the Spectral Expansion

We start this section by introducing the notion of a partial lift and study its properties.

Throughout, we make use of the notation from Section 3.2.

10



Definition 4.1. Let G = (V,E) be an undirected simple graph, and let ~G = (V, ~E) be

an orientation of G. Let π : ~E → Sk for some k ≥ 1, and let (B,L) be a partition of the

vertices of G. The L-partial π-lift of ~G is defined to be the undirected weighted graph

Gπ,L = (Vπ,L, Eπ,L) whose vertex set is Vπ,L = B ∪ ([k] × L). The edge set Eπ,L is the

union of

EB = {{u, v} ∈ E | u, v ∈ B},
EL = {{(i, u), (j, v)} ∈ Eπ | u, v ∈ L} ,

and

EH = {{u, (i, v)} | i ∈ [k] and u ∈ B, v ∈ L s.t. {u, v} ∈ E} ,

with weight of 1√
k

assigned to each edge in EH . The edges in EB, EL have a unit weight

assigned to them.

Note that EB is the set of edges of the B-induced sub-graph of the base graph G,

and EL is the set of edges of the induced graph of Gπ with respect to the fibers of the

lifted vertices. The set Eπ,L contains the “hybrid” edges, connecting already-lifted and

not-yet-lifted vertices where the weight assigned to these edges is chosen with a hindsight.

Note that Gπ,L is a weighted undirected simple graph. Moreover, Gπ,L interpolates

between G and Gπ in the sense that Gπ,∅ = G and Gπ,V = Gπ. Observe that, assuming

G is d-regular, the weighted degree of every vertex in Gπ,L is in the range [d/
√
k,
√
k · d].

The main result of this section is the following proposition, which is the more complete

and formal version of Equation (2.1) from the Proof Overview section.

Proposition 4.2. Let G = (V,E) be an undirected simple graph with orientation ~G =

(V, ~E). Let π : ~E → Sk, and (B,L) a partition of V . Then,

λmin(Gπ) ≤ λmin(Gπ,L) ≤ λ2(Gπ,L) ≤ λ2(Gπ) ≤ λ1(Gπ) = λ1(Gπ,L).

Proof. Note that the non-trivial inequalities and equality, which we set to prove, are

λmin(Gπ) ≤ λmin(Gπ,L), (4.1)

λ2(Gπ,L) ≤ λ2(Gπ), (4.2)

λ1(Gπ) = λ1(Gπ,L). (4.3)

Let MG be the adjacency matrix of G where we order the rows and columns so that

those corresponding to vertices in B appear first, namely,

MG =

(
MB MH

MT
H ML

)
.

11



Note that MB,ML are the adjacency matrices of the B-induced and L-induced subgraphs

of G, respectively. Observe that the adjacency matrix of Gπ,L is given by

MGπ,L =


MB

1√
k
MH · · · 1√

k
MH

1√
k
MT

H M1,1
L · · · M1,k

L
...

...
. . .

...
1√
k
MT

H Mk,1
L · · · Mk,k

L

 ,

where Mi,j
L is a slight abuse of notation (recall we defined Mi,j

H for a graph H) and is used

as a shorthand for Mi,j
H , H being the L-induced subgraph of G. Similar to Equation (3.1),

we have

∀i ∈ [k]
k∑
j=1

Mi,j
L = ML. (4.4)

Let n,m be the number of vertices in G and in Gπ,L, respectively. Denote b = |B| , ` = |L|,
and note that n = b+ ` and m = b+ k`. Define

F ‖ =
{
x ∈ Rm | xb+j = xb+`+j = · · · = xb+(k−1)`+j for j = 1, 2, . . . , `

}
.

Informally, F ‖ is the space of vectors that are constant on the fibers of the lifted vertices,

and are otherwise arbitrary. Let F⊥ be the dual subspace of F ‖, namely,

F⊥ =

{
x ∈ Rm | x1 = · · · = xb = 0 and

k−1∑
i=0

xb+i`+j = 0 for j = 1, 2, . . . , `

}
.

It is easy to verify, using Equation (4.4), that both F ‖ and F⊥ are invariant subspaces of

MGπ,L . Define the matrix U ∈ Rm×n

U =


Ib 0

0 1√
k
I`

...
...

0 1√
k
I`

 . (4.5)

The following claim lists some useful, easy to prove, properties of U.

Claim 4.3. U satisfies the following properties:

1. Im(U) = F ‖.

2. The right kernel of U is 0.

3. UTU = In.

12



4. UUT is the orthogonal projection to F ‖.

5. UTMGπ,LU = MG.

We can now easily characterize all the eigenvectors of Gπ,L laying in F ‖.

Lemma 4.4. For every x ∈ Rn, x is an eigenvector of G corresponding to an eigenvalue

λ if and only if Ux is an eigenvector of Gπ,L laying in F ‖ and corresponding to λ.

Proof.

MGx = λx ⇐⇒ UTMGπ,LUx = λx

⇐⇒ UUTMGπ,LUx = λUx

⇐⇒ MGπ,LUx = λUx,

where the first implication follows from Item (5) of Claim 4.3, the second from Item

(2), and the last follows by Items (1) and (4) together with the invariance of F ‖ under

MGπ,L .

To summarize, we have found n eigenvectors of MGπ,L , all of which are contained in

F ‖, whose eigenvalues correspond to those of MG. In particular, every eigenvalue of MG is

an eigenvalue of MGπ,L with the same, or higher, multiplicity. Observe that F ‖ is defined

by (k − 1)` linear constraints. Hence, its dimension is exactly n = b+ k`− (k − 1)`. We

conclude that the characterized eigenvectors are exactly all the eigenvectors of Gπ,L in

F ‖.

We proceed to explore the remaining eigenvectors of MGπ,L . Since MGπ,L is symmetric,

its eigenvectors are orthogonal to each other, and so the remaining eigenvectors of MGπ,L

are contained in F⊥. We turn to prove that while we cannot argue that these correspond

to eigenvectors of MGπ , as one might hope, they will correspond to eigenvectors of some

principal submatrix of MGπ , at which point we can invoke the Eigenvalue Interlacing

Theorem (see Theorem 3.1) so to bound the corresponding eigenvalues.

Take x ∈ F⊥ an eigenvector of MGπ,L with eigenvalue λ. Then, x = (0, z) for some

nonzero z = (z1, . . . , zk) ∈ Rk` where
∑k

i=1 zi = 0 ∈ R`. Therefore,

λx = MGπ,Lx =

(
0

Mπ,Lz

)
,

where

Mπ,L =

M1,1
L · · · M1,k

L
...

. . .
...

Mk,1
L · · · Mk,k

L

 .
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Hence, z is an eigenvector of Mπ,L. That is, all eigenvectors of MGπ,L that are contained

in F⊥ correspond to eigenvectors of Mπ,L.

We stress that not every eigenvector of Mπ,L induces an eigenvector of MGπ,L , a fact

that will be crucial in what follows. Indeed, the eigenvectors of MGπ,L coming from F⊥

have the special structure described above of being orthogonal to 1 on each fiber. This can

also be seen by a dimension argument, noting that Mπ,L has k` eigenvectors, and together

with the n eigenvectors that are induced from MG these amount to k` + n eigenvectors.

However, MGπ,L is a matrix of order (k`+ b)× (k`+ b), and so n− b = ` eigenvectors of

Mπ,L do not induce eigenvectors of MGπ,L . At any rate, for convenience, we summarize

the analysis so far.

Claim 4.5. The spectrum of MGπ,L consists of the spectrum of MG with corresponding

eigenvectors in F ‖ as well as of a subset of the spectrum of Mπ,L with corresponding

eigenvectors in F⊥, where we remind the reader that we consider the spectrum as a

multi-set so to track multiplicities correctly.

Note that Mπ,L is a principal submatrix of MGπ and so, by the Eigenvalue Interlacing

Theorem (Theorem 3.1),

λmin(Gπ) ≤ λmin(Mπ,L) ≤ λ2(Mπ,L) ≤ λ2(Gπ). (4.6)

Further, recall that the spectrum of Gπ contains that of G, in particular,

λmin(Gπ) ≤ λmin(G) ≤ λ2(G) ≤ λ2(Gπ). (4.7)

By putting together Claim 4.5, Equation (4.6) and Equation (4.7), we establish Equa-

tion (4.1). For proving Equation (4.2) we are left to prove that an eigenvector x ∈ F⊥ of

Gπ,L cannot correspond to an eigenvalue λ > λ2(Mπ,L). To this end, let x = (0, z) ∈ F⊥

be an eigenvector of Gπ,L. Recall that for every j ∈ [`],

k−1∑
i=0

zb+i`+j = 0. (4.8)

Assume for contradiction that x is an eigenvector of Gπ,L corresponding to an eigenvalue

λ > λ2(Mπ,L). Then, by the above discussion, z is an eigenvector of Mπ,L with eigenvalue

λ > λ2(Mπ,L), meaning λ = λ1(Mπ,L). As the vector corresponding the largest eigenvalue,

z maximizes the Rayleigh quotient, we have that

λ1(Mπ,L) =
zTMπ,Lz

zTz
= max

w 6=0

wTMπ,Lw

wTw
.
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Note, however, that the vector |z|, which is obtained by taking the absolute value of every

entry of z, satisfies
|z|TMπ,L|z|
|z|T|z|

≥ zTMπ,Lz

zTz
, (4.9)

and so, as a maximizer of the Rayleigh quotient, |z| is also an eigenvector with eigenvalue

λ1(Mπ,L). However, by Equation (4.8), z and |z| are linearly independent. Indeed, there is

a fiber on which z attains both a positive and negative entries. Hence, we have found two

independent vectors corresponding to λ1(Mπ,L), implying λ1(Mπ,L) = λ2(Mπ,L). This

stands in contradiction to λ1(Mπ,L) = λ > λ2(Mπ,L). Putting this result together with

Claim 4.5, Equation (4.6) and Equation (4.7) completes the proof of Equation (4.2). To

prove Equation (4.3), we will use a general result on graph lifts.

Lemma 4.6. Let G = (V,E) be an undirected simple graph with orientation ~G = (V, ~E).

Let π : ~E → Sk. Then, λ1(G) = λ1(Gπ).

Proof. By invoking Lemma 4.4 to Gπ = Gπ,V , we get that λ1(G) is an eigenvalue of Gπ,

which implies λ1(G) ≤ λ1(Gπ). Proving λ1(Gπ) ≤ λ1(G) will thus finish the proof. For

any vector x on the vertices of Gπ, take the vector y(x) = y on the vertices of G defined

by yv =
√∑k

i=1 x2
i,v. Now, recall the definition of |x| and note that

yTy =
∑
v∈V

y2
v =

∑
v∈V

k∑
i=1

x2
i,v = xTx = |x|T|x|.

Therefore,

yTMGy

yTy
=

1

yTy

∑
(u,v)∈ ~E

yuyv

=
1

xTx

∑
(u,v)∈ ~E

√√√√ k∑
i=1

x2
i,u ·

k∑
i=1

x2
i,v

=
1

|x|T|x|
∑

(u,v)∈ ~E

√√√√ k∑
i=1

|xi,u|2 ·
k∑
i=1

|xπu,v(i),v|2

≥ 1

|x|T|x|
∑

(u,v)∈ ~E

k∑
i=1

|xi,u||xπu,v(i),v|

=
|x|TMGπ |x|
|x|T|x|

≥ xTMGπx

xTx
,

15



where the third equality is just a reordering of the elements in the summation, as πu,v is

a permutation on [k]. The first inequality follows by the Cauchy-Schwarz inequality, and

the second inequality is as in Equation (4.9). Thus,

λ1(Gπ) = max
x 6=0

xMGπx

xTx
≤ max

x6=0

y(x)MGy(x)

y(x)Ty(x)
≤ max

z 6=0

zMGz

zTz
= λ1(G).

Combining the results we proved so far, we conclude that

λ1(G) ≤ λ1(Gπ,L) ≤ λ1(Gπ) = λ1(G).

Indeed, the first inequality follows by Lemma 4.4, the second follows by Claim 4.5 and by

the fact that Mπ,L is a principal submatrix of MGπ,L , together with the Eigenvalue In-

terlacing Theorem (Theorem 3.1). Lastly, the equality follows by Lemma 4.6, completing

the proof of Proposition 4.2.

5 Bounding the Normalized Spectral Expansion

In this section we bound the normalized eigenvalues of a partial lift. That is, we show

that a random walk on a partial lift converges quickly given that the random walk on the

(full) lift does so. Unlike the unnormalized case, we restrict ourselves to d regular base

graphs.

Proposition 5.1. Let G = (V,E) be an undirected simple d-regular graph having orienta-

tion ~G = (V, ~E). Let π : ~E → Sk, and (B,L) a partition of V . Assume that
√
k ≤ λ(G)

3
+1.

Then,

λ̄(Gπ,L) = O(k · λ̄(Gπ)).

Proof. Note that the degrees matrix of Gπ,L, DGπ,L , is constant on every fiber, and so F ‖

and F⊥ are invariant subspaces of D−1
Gπ,L

. As noted in the proof of Proposition 4.2, these

are also invariant subspaces of MGπ,L , hence, also of WGπ,L = MGπ,LD−1
Gπ,L

.

Equation (4.2) and Equation (4.1) implies that λ(Gπ,L) ≤ λ(Gπ). This, together with

the fact that the eigenvector corresponding to the largest eigenvalue of Gπ,L lays in F ‖,

implies that

x,y ∈ F⊥
∣∣xTMGπ,Ly

∣∣ ≤ λ(Gπ)‖x‖2‖y‖2.

This, together with Item (4) of Claim 5.3, which we state below, yields the desired bound

on the Rayleigh quotient for all vectors in F⊥. Indeed, for every x ∈ F⊥, we have that

|xTWGπ,Lx|
xTx

=
|xTMGπ,LD−1

Gπ,L
x|

xTx
≤
λ(Gπ) · ‖x‖2 · ‖D−1

Gπ,L
x‖2

xTx
≤
√
k

d
·λ(Gπ) =

√
k·λ̄(Gπ).
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We summarize this in the following corollary.

Corollary 5.2. The Rayleigh quotient of all eigenvectors laying in F⊥, with respect to

WGπ,L, are bounded by
√
k · λ̄(Gπ).

Since F ‖ and F⊥ are invariant subspaces of WGπ,L , we are left to analyze the vectors

laying in F ‖. To this end, define the diagonal matrix D ∈ Rn×n by D = UTDGπ,LU, where

we recall the reader that the definition of U is in Equation (4.5). By this definition, since

the degrees of vertices on the same fiber are equal, we get

Du,u =

degGπ,L(u) u ∈ B;

degGπ,L((1, u)) u ∈ L.
(5.1)

For a vertex v of G we define θv, the cut degree of v, to be

θv =

|EG(v, L)| v ∈ B;

|EG(v,B)| v ∈ L,
(5.2)

where, for S, T ⊆ V , |EG(S, T )| is the sum of weights of edges between (S, T ) in G.

Denote kB =
√
k− 1 and kL = 1√

k
− 1. The following claim is easy to verify and is stated

without a proof.

Claim 5.3. The matrices DGπ,L and D have the following properties:

1. DGπ,LU = UD and D−1
Gπ,L

U = UD−1.

2. For a vertex u ∈ B the value of Du,u is given by

1 · |EG(u,B)|+
√
k · |EG(u, L)| = d+ kBθu.

3. For a vertex u ∈ L the value of Du,u is given by

1 · |EG(u, L)|+ 1√
k
· |EG(u,B)| = d+ kLθu.

4. (DGπ,L)u,u ∈ [ 1√
k
d,
√
kd].

5. Du,u ∈ [ 1√
k
d,
√
kd].

Lemma 5.4. A vector x ∈ Rn is an eigenvector of MGD−1 corresponding to eigenvalue

λ if and only if Ux is an eigenvector of WGπ,L corresponding to the same eigenvalue.
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Proof. By Items (5) and (2) of Claim 4.3,

MGD−1x = λx ⇐⇒ UTMGπ,LUD−1x = λx

⇐⇒ UUTMGπ,LUD−1x = λUx.

Thus, by Item (1) of Claim 5.3,

MGD−1x = λx ⇐⇒ UUTWGπ,LUx = λUx.

By Item (1) of Claim 4.3, Ux ∈ F ‖ and since F ‖ is an invariant subspace of WGπ,L , we

get that WGπ,LUx ∈ F ‖. Item (4) of Claim 4.3 then implies that

UUTWGπ,LUx = WGπ,LUx,

and so

MGD−1x = λx ⇐⇒ WGπ,LUx = λUx,

as desired.

Given Corollary 5.2 and Lemma 5.4, and since every vector in F ‖ is of the form Ux

for some x ∈ Rn (recall Item (1) of Claim 4.3), we can turn our focus to characterizing the

eigenvalues of MGD−1. We do so by analyzing the eigenvalues of the symmetric matrix

M̃G = D−
1
2 MGD−

1
2 as, note, it is similar to MGD−1. To start with, observe that DGπ,L1m

is an eigenvector of WGπ,L corresponding to its largest eigenvalue, 1. Thus, Lemma 5.4

together with Item (4) of Claim 4.3 imply that UTDGπ,L1 is an eigenvector of MGD−1

corresponding to the eigenvalue 1. By Item (1) of Claim 5.3, UTDGπ,L = DUT, and so

the latter eigenvector can be written as DUT1. As MGD−1 is similar to M̃G, by the

above, the latter has an eigenvector x̃1 = D
1
2 UT1 corresponding to its largest eigenvalue,

1. Since M̃G is symmetric, an eigenvector corresponding to its second largest eigenvalue

has to be orthogonal to x̃1.

As we assume G is regular, 1n is an eigenvector corresponding to MG-s largest eigen-

value. For a vector y, let y‖ = 〈1n,y〉 · 1n be the orthogonal projection of y onto 1n. We

write y⊥ = y − y‖ and turn to analyze the Rayleigh quotient of a vector y ⊥ x̃1. Let

z = D−
1
2 y and note that y ⊥ x̃1 if and only if z ⊥ D

1
2 x̃1. With this, we have that

yTM̃Gy

yTy
=

zTMGz

zTDz
=

(z‖)TMGz‖

zTDz
+

(z⊥)TMGz⊥

zTDz
. (5.3)

Using Item (5) of Claim 5.3, it is clear that d√
k
‖z‖2 ≤ zTDz. We can thus get a good

bound on the size of the second summand in the right hand side of Equation (5.3), namely,∣∣∣∣(z⊥)TMGz⊥

zTDz

∣∣∣∣ ≤ λ(G)‖z‖2

d√
k
‖z‖2

=
√
k · λ̄(G). (5.4)
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The first summand in the right hand side of Equation (5.3) equals to

(z‖)TMGz‖

zTDz
= d · ‖z

‖‖2

‖z‖2
D

(5.5)

and is always non-negative. This already gives a bound on λ̄min(M̃G), because for every

y ⊥ x̃1, we have

yTM̃Gy

yTy
=

(z‖)TMGz‖

zTDz
+

(z⊥)TMGz⊥

zTDz
≥ 0−

√
k · λ̄(G).

We summarize this in the following corollary.

Corollary 5.5.
∣∣∣λmin(M̃G)

∣∣∣ ≤ √k · λ̄(G).

Going back to the first summand in the right hand side of Equation (5.3), per Equa-

tion (5.5), we are left to bound the quotient ‖z‖‖
‖z‖D

. We start with the numerator. As

z ⊥ D
1
2 x̃1, for every α ∈ R we have that

‖z‖‖ = 〈z,1〉 =
〈
z,1− αD

1
2 x̃1

〉
=
〈
D

1
2 z,D−

1
2 1− αx̃1

〉
≤ ‖D

1
2 z‖‖D−

1
2 1− αx̃1‖. (5.6)

Choosing the optimal α for the bound, α =

〈
D−

1
2 1,x̃1

〉
‖x̃1‖2 , we get that

‖D−
1
2 1− αx̃1‖2 = ‖D−

1
2 1‖2 −

〈
D−

1
2 1, x̃1

〉2

‖x̃1‖2
. (5.7)

We now turn to analyze each of the summands in the above expression. To this end,

we introduce the following notations. Let s = |(B,L)| be the size of the cut (B,L) in

G, and let e = s − b`
n
d. Note that, had G been a d-regular random graph, s would have

equal to b`
n
d in expectation, and so we think of e as the “cut size error”. It will also be

convenient to consider e, b and `-s normalized counterpart ē = e
nd

, b̄ = b
n

and ¯̀= `
n
.

From this point, denote λ = λ(G) and λ̄ = λ̄(G) = λ
d
. We further define µ = b+

√
k`

and its normalized counterpart µ̄ = µ√
mn

(where this normalization is in hindsight). The

analysis of Equation (5.7) is divided to the following three claims.

Claim 5.6.

‖x̃1‖2 =
2 |E(Gπ,L)|

m
= dµ̄2 − (

√
k − 1)2 e

m
,

where recall |E(Gπ,L)| counts the number of edges, accounting for the weights.

Claim 5.7.
〈
D−

1
2 1, x̃1

〉
= µ̄.

Claim 5.8. ‖D− 1
2 1‖2 ≤ 1+kλ̄

d
.
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Claim 5.6 and Claim 5.7 follow by a fairly straightforward calculation which, for ease

of reading, is deferred to Section 5.3. Claim 5.8, whose proof also appears in Section 5.3,

follows by the following two more substantial lemma.

Lemma 5.9. ∑
v∈B

1

Dv,v

≤ b

d

(
1

1 + kB ¯̀ +
√
kλ̄

)
.

Lemma 5.10. ∑
v∈L

1

Dv,v

≤ `

d

(
1

1 + kLb̄
+ kλ̄

)
.

The proof of Lemma 5.9 and Lemma 5.10 can be found in Section 5.1 and Section 5.2,

respectively, and we proceed with the proof of Proposition 5.1. Using Claim 5.6 and

Claim 5.7, we write 〈
D−

1
2 1, x̃1

〉2

‖x̃1‖2
=

1

d
· µ̄2

µ̄2 − (
√
k − 1)2 e

dm

=
1

d
· 1

1− (
√
k − 1)2 e

dmµ̄2

≥ 1

d

(
1 + (

√
k − 1)2 e

dmµ̄2

)
≥ 1

d

(
1− (

√
k − 1)2 |e|

dmµ̄2

)
. (5.8)

Focusing on the error term,

(
√
k − 1)2 |e|

dmµ̄2
= (
√
k − 1)2 |ē|

(µ/n)2
,

observe that according to the expander mixing lemma, |ē| ≤ λ̄
√
b̄¯̀≤ λ̄. Additionally, µ

n

is bounded below by 1. The error term is thus bounded above by λ̄(
√
k − 1)2. Plugging

the above back to Equation (5.8), we get〈
D−

1
2 1, x̃1

〉2

‖x̃1‖2
≥ 1

d
·
(

1− (
√
k − 1)2λ̄

)
. (5.9)

By Equation (5.6), Equation (5.7), Claim 5.8, and Equation (5.9),

‖z‖‖ ≤ ‖D
1
2 z‖ ·

√√√√
‖D− 1

2 1‖2 −

〈
D−

1
2 1, x̃1

〉2

‖x̃1‖2

≤ ‖D
1
2 z‖ ·

√
λ̄√

d
·
√
k + (

√
k − 1)2. (5.10)
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By Equation (5.5) and Equation (5.10), using that ‖z‖D = ‖D 1
2 z‖,

(z‖)TMGz‖

zTDz
= d · ‖z

‖‖2

‖z‖2
D

≤ (k + (
√
k − 1)2)λ̄.

Thus, by Equation (5.3) and Equation (5.4),

λ2(M̃G) ≤ d · ‖z
‖‖2

‖z‖2
D

+
√
k · λ̄(G) ≤ (k +

√
k + (

√
k − 1)2)λ̄ = O(k · λ̄).

Combining this with Corollary 5.5, we obtain λ(M̃G) = O(k · λ̄). Restating this result, for

every x ∈ F ‖ with x ⊥ DGπ,L1m we have xTWGπ,Lx = O(k ·λ̄). Recall λ̄ = λ̄(G) ≤ λ̄(Gπ).

Combining this and Corollary 5.2 we conclude λ̄(Gπ,L) = O(k · λ̄(Gπ)), which completes

the proof.

5.1 Proof of Lemma 5.9

Proof of Lemma 5.9. We remind the reader that for v ∈ B, Dv,v = degGπ,L(v) (Equa-

tion (5.1)) and θv = |EG(v, L)| (Equation (5.2)). For θ = 0, 1, . . . , d we define Bθ = {v ∈
B : θv = θ}, B≤θ = {v ∈ B : θv ≤ θ}, and denote bθ = |Bθ| and b≤θ = |B≤θ|. With this,

we can partition the vertices B in the summation we wish to bound according to their

θ-value, ∑
v∈B

1

Dv,v

=
d∑
θ=0

bθ
d+ kBθ

,

where we remind the reader that kB =
√
k − 1. For every integer 0 ≤ θ ≤ d we can write

Bθ as Bθ = B≤θ \B≤θ−1 with the understanding that B−1 = ∅, and so

d∑
θ=0

bθ
d+ kBθ

=
d∑
θ=0

b≤θ − b≤θ−1

d+ kBθ
=

d∑
θ=0

b≤θ
d+ kBθ

−
d∑
θ=0

b≤θ−1

d+ kBθ
.

Taking the last summand of the first sum separately and changing the indices of the

second sum we have

d∑
θ=0

b≤θ
d+ kBθ

−
d∑
θ=0

b≤θ−1

d+ kBθ
=

b≤d
d+ kBd

+
d−1∑
θ=0

b≤θ
d+ kBθ

−
d−1∑
θ=−1

b≤θ
d+ kB(θ + 1)

.
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As b≤d = b, the first term on the right hand side equals b
d+kBd

. As for the other two terms,

b≤−1 = 0, and so

d−1∑
θ=0

b≤θ
d+ kBθ

−
d−1∑
θ=−1

b≤θ
d+ kB(θ + 1)

=
d−1∑
θ=0

b≤θ

(
1

d+ kBθ
− 1

d+ kB(θ + 1)

)

=
d−1∑
θ=0

kBb≤θ
(d+ kBθ)(d+ kB(θ + 1))

≤
d−1∑
θ=0

kBb≤θ
(d+ kBθ)2

.

We summarize the above in the following inequality.

∑
v∈B

1

Dv,v

≤ b

d+ kBd
+

d−1∑
θ=0

kBb≤θ
(d+ kBθ)2

. (5.11)

For a parameter ∆ to be determined later, we partition the summands in the second term

into three parts, and bound each of them separately.

d−1∑
θ=0

kBb≤θ
(d+ kBθ)2

≤
bd¯̀−∆c−1∑

θ=0

kBb≤θ
(d+ kBθ)2

+

bd¯̀c+1∑
θ=bd¯̀−∆c

kBb≤θ
(d+ kBθ)2

+
d∑

bd¯̀c+2

kBb≤θ
(d+ kBθ)2

. (5.12)

Let us start with the second sum. It consists of at most ∆ + 3 summands, each of which

is bounded above by kBb
d2

, and so

bd¯̀c+1∑
θ=bd¯̀−∆c

kBb≤θ
(d+ kBθ)2

≤ kB(∆ + 3)b

d2
. (5.13)

For the third sum we use a slightly more delicate bound.

d∑
bd¯̀c+2

kBb≤θ
(d+ kBθ)2

≤
d∑

bd¯̀c+2

kBb

(d+ kBθ)2
.

The summands in the right hand side are a monotone decreasing function of θ, which

allows us to replace the sum by an integral with the following inequality

d∑
bd¯̀c+2

kBb

(d+ kBθ)2
≤

d∫
d¯̀

kBb

(d+ kBθ)2
dθ =

[
− b

d+ kBθ

] ∣∣∣∣d
d¯̀

=
b

d+ kBd¯̀−
b

d+ kBd
. (5.14)

The bulk of the proof is in bounding the first sum of Equation (5.12).

bd¯̀−∆c−1∑
θ=0

kBb≤θ
(d+ kBθ)2

≤
bd¯̀−∆c−1∑

θ=0

kBb≤θ
d2

=
kB
d2

bd¯̀−∆c−1∑
θ=0

b≤θ. (5.15)
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For θ < d¯̀ let us count the number of edges in G between B≤θ and B in two ways. On

the one hand,

|EG(B,B≤θ)| = b≤θ(d− θ) +
θ−1∑
α=0

b≤α (5.16)

because

|EG(B,B≤θ)| =
θ∑

α=0

|EG(B,Bα)| =
θ∑

α=0

bα(d− α) =
θ∑

α=0

bα(d− θ) +
θ∑

α=0

bα(θ − α)

Observe that in b≤θ, we count bα exactly once for every α ≤ θ and that in
∑θ−1

α=0 b≤α we

count bα exactly θ − α times, for every α < θ. So,

θ∑
α=0

bα(d− θ) +
θ∑

α=0

bα(θ − α) = b≤θ(d− θ) +
θ−1∑
α=0

b≤α,

which justifies Equation (5.16). On the other hand, using the expander mixing lemma,

|EG(B,B≤θ)| ≤
b · b≤θ
n

d+ λ
√
b · b≤θ.

The above two equations yields a quadratic equation in x ,
√
b≤θ.

(d− θ)x2 +
θ−1∑
α=0

b≤α ≤ b̄dx2 + λ
√
bx.

Rearranging, we get

(d¯̀− θ)x2 − λ
√
bx+

θ−1∑
α=0

b≤α ≤ 0.

As we assume θ < d¯̀, this inequality can hold only if the discriminant is non-negative,

and so

λ2b− 4(d¯̀− θ)
θ−1∑
α=0

b≤α ≥ 0.

This gives us the desired bound

θ−1∑
α=0

b≤α ≤
λ2b

4(d¯̀− θ)
.

Plugging this back in Equation (5.15), we get

kB
d2

bd¯̀−∆c−1∑
θ=0

b≤θ ≤
kBλ

2b

4d2∆
. (5.17)
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By Equation (5.11), Equation (5.12) and the bounds obtained for the three summands in

the latter equation (Equations (5.13), (5.14) and (5.17)), we get∑
v∈B

1

Dv,v

≤ b

d+ kBd¯̀ +
kB(∆ + 3)b

d2
+
kBλ

2b

4d2∆
.

Choosing ∆ = λ
2
, and using that kB =

√
k − 1, we get∑

v∈B

1

Dv,v

≤ b

d

(
1

1 + kB ¯̀ +
kBλ̄

2
+
kBλ̄

2
+ 3

kB
d

)
=
b

d

(
1

1 + kB ¯̀ + (
√
k − 1)

(
λ̄+

3

d

))
.

The proof then follows per our assumption
√
k ≤ λ

3
+ 1.

5.2 Proof of Lemma 5.10

The proof of Lemma 5.10 is similar to that of Lemma 5.9. Before we begin, we remind

the reader that for v ∈ L, Dv,v = degGπ,L((1, v)) (Equation (5.1)) and θv = |EG(v,B)|
(Equation (5.2)). Furthermore, recall that kL = 1√

k
− 1 and note that, unlike kB that

appears in the proof of Lemma 5.9, kL is negative.

Proof of Lemma 5.10. For θ = 0, 1, . . . , d define Lθ = {v ∈ L : θv = θ} and L≥θ = {v ∈
L : θv ≥ θ}, and let `θ = |Lθ|, `≥θ = |L≥θ|. For every v ∈ Lθ,

Dv,v = degGπ,L((1, v)) =
1√
k
θ + (d− θ) = d+ kLθ,

and so the expression we wish to bound can be written as

∑
v∈L

1

Dv,v

=
d∑
θ=0

`θ
d+ kLθ

.

For every integer 0 ≤ θ ≤ d we have that Lθ = L≥θ \ L≥θ+1 with the understanding that

Ld+1 = ∅, and so

d∑
θ=0

`θ
d+ kLθ

=
d∑
θ=0

`≥θ − `≥θ+1

d+ kLθ

=
d∑
θ=0

`≥θ
d+ kLθ

−
d∑
θ=0

`≥θ+1

d+ kLθ

=
`≥0

d
+

d∑
θ=1

`≥θ
d+ kLθ

−
d+1∑
θ=1

`≥θ
d+ kL(θ − 1)

.
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As `≥0 = `, the first term equals `
d
. Since `≥d+1 = 0,

d∑
θ=1

`≥θ
d+ kLθ

−
d+1∑
θ=1

`≥θ
d+ kL(θ − 1)

=
d∑
θ=1

`≥θ

( 1

d+ kLθ
− 1

d+ kL(θ − 1)

)
=

d∑
θ=1

−kL`≥θ
(d+ kLθ)(d+ kL(θ − 1))

≤
d∑
θ=1

−kL`≥θ
(d+ kLθ)2

,

where the inequality holds because kL is negative. We conclude the above calculation

with the following inequality

∑
v∈L

1

Dv,v

≤ `

d
+

d∑
θ=1

−kL`≥θ
(d+ kLθ)2

. (5.18)

With respect to a parameter ∆ that will be determined later, we partition the sum on

the right hand side to three parts, and bound each of them separately.

d∑
θ=1

−kL`≥θ
(d+ kLθ)2

=

bdb̄c−1∑
θ=0

−kL`≥θ
(d+ kLθ)2

+

bdb̄+∆c+1∑
θ=bdb̄c

−kL`≥θ
(d+ kLθ)2

+
d∑

bdb̄+∆c+2

−kL`≥θ
(d+ kLθ)2

. (5.19)

Let us start with the second sum. It consists of at most ∆ + 3 summands, each of them

is bounded above by −kL`
(1+kL)2d2

bounding the second sum by

bdb̄+∆c+1∑
θ=bdb̄c

−kL`≥θ
(d+ kLθ)2

≤ −kL(∆ + 3)`

(kL + 1)2d2
.

For the first sum we use a slightly more delicate bound.

bdb̄c−1∑
θ=0

−kL`≥θ
(d+ kLθ)2

≤
bdb̄c−1∑
θ=0

−kL`
(d+ kLθ)2

.

The summands are a monotonic increasing function of θ, allowing us to replace the sum

with an integral according to the following inequality

bdb̄c−1∑
θ=0

−kL`
(d+ kLθ)2

≤
db̄∫

θ=0

−kL`
(d+ kLθ)2

dθ =

[
`

d+ kLθ

] ∣∣∣∣db̄
θ=0

=
`

d+ kLdb̄
− `

d
.

Finally, we bound the third sum of Equation (5.19).

d∑
bdb̄+∆c+2

−kL`≥θ
(d+ kLθ)2

≤
d∑

bdb̄+∆c+2

−kL`≥θ
(kL + 1)2d2

=
−kL

(kL + 1)2d2
·

d∑
bdb̄+∆c+2

`≥θ. (5.20)
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For θ > db̄, Let us count the number of edges between L≥θ and L in two ways. On the

one hand,

|EG(L,L≥θ)| =
d∑

α=θ

|EG(L,Lα)| =
d∑

α=θ

`α(d− α) = `≥θ(d− θ)−
d∑

α=θ+1

`≥α,

where the last inequality follows a similar reasoning to the one in Equation (5.16). On

the other hand, using the expander mixing lemma,

|EG(L,L≥θ)| ≥
` · `≥θ
n

d− λ
√
` · `≥θ.

Putting these two characterizations of |EG(L,L≥θ)| together, we get a quadratic equation

in
√
`≥θ.

`≥θ(d− θ)−
d∑

α=θ+1

`≥α ≥ ¯̀· `≥θd− λ
√
`
√
`≥θ.

Rearranging the terms, we have

(θ − db̄)`≥θ − λ
√
b
√
`≥θ +

d∑
α=θ+1

`≥α ≤ 0.

As we assumed θ > db̄, this inequality can hold only if the discriminant is non-negative.

λ2b− 4(θ − db̄)
d∑

α=θ+1

`≥α ≥ 0

This gives us the desired bound

d∑
α=θ+1

`≥α ≤
λ2`

4(θ − db̄)
.

Plugging this back in Equation (5.20), we get

−kL
(kL + 1)2d2

·
d∑

bdb̄+∆c+2

`≥θ ≤
−kLλ2`

4(kL + 1)2d2(bdb̄+ ∆c+ 1− db̄)
≤ −kLλ2`

4(kL + 1)2d2∆
.

Putting everything together, we get∑
v∈L

1

Dv,v

≤ `

d+ kLdb̄
+
−kL(∆ + 3)`

(kL + 1)2d2
+

−kLλ2`

4(kL + 1)2d2∆
.

Choosing ∆ = λ
2

and observing that −kL
(kL+1)2

= k −
√
k gives us∑

v∈L

1

Dv,v

≤ `

d

[
1

1 + kLb̄
+

(k −
√
k)λ̄

2
+

(k −
√
k)λ̄

2
+ (k −

√
k)

3

d

]
≤ `

d

[
1

1 + kLb̄
+ kλ̄+ k

3

d
−
√
kλ̄

]
.

26



Once again, per our assumption, k · 3
d
−
√
kλ̄ is negative and can be omitted, finishing the

proof.

5.3 Missing proofs

In this section we prove Claim 5.6, Claim 5.7, and Claim 5.8 whose proofs were deferred,

thus completing the proof of Proposition 5.1.

Proof of Claim 5.6. Recall that x̃1 = D
1
2 UT1, and so

‖x̃1‖2 = 1TUDUT1 = 1TUUTDGπ,L1,

where for the last equality we used Item (1) of Claim 5.3. Note that DGπ,L1 ∈ F ‖ and so,

by Item (4) of Claim 4.3, we have that

‖x̃1‖2 = 1TDGπ,L1 =
1

m

∑
v∈V (Gπ,L)

degGπ,L(v) =
2 |E(Gπ,L)|

m
. (5.21)

Counting the edges, accounting for the weights, we get that

|E(Gπ,L)| = |EG(B,B)|+
√
k |EG(B,L)|+ k |EG(L,L)|

=
bd− s

2
+
√
ks+ k

`d− s
2

=
m

2
d− (

√
k − 1)2

2
s.

Recall that e = s− b`
n
d and write

2 |E(Gπ,L)| = d

(
m− (

√
k − 1)2 b`

n

)
− (
√
k − 1)2e

=
d

n

(
nm− (

√
k − 1)2b`

)
− (
√
k − 1)2e

=
d

n

(
(b+ `)(b+ k`)− (

√
k − 1)2b`

)
− (
√
k − 1)2e

=
d

n
µ2 − (

√
k − 1)2e.

Plugging this back to Equation (5.21), we get the desired result

‖x̃1‖2 =
2 |E(Gπ,L)|

m
= dµ̄2 − (

√
k − 1)2 e

m
.
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Proof of Claim 5.7. This follows by a straightforward calculation. Indeed,〈
D−

1
2 1, x̃1

〉
= 1T

mU1n =
b+
√
k`√

nm
= µ̄.

Proof of Claim 5.8.

‖D−
1
2 1‖2 =

1

n

∑
v∈V (G)

1

Dv,v

,

Using Lemma 5.9, Lemma 5.10 we conclude

‖D−
1
2 1‖2 =

1

n

∑
v∈V (G)

1

Dv,v

≤ 1

nd
(

b

1 + kB ¯̀ +
`

1 + kLb̄
+ b
√
kλ̄+ `kλ̄)

≤ 1

nd
(

b

b̄+
√
k ¯̀

+
`

1√
k
b̄+ ¯̀ + nkλ̄)

=
1

nd
(

b

b̄+
√
k ¯̀

+

√
k`

b̄+
√
k ¯̀

+ nkλ̄)

which equals 1+kλ̄
d

, concluding the proof.

6 Proof of Theorem 1.1

In this section we wrap it all up and prove Theorem 1.1.

Proof of Theorem 1.1. By repeatedly applying Corollary 3.1 of [BL06] to the base graph,

denoted BL0, which is the clique on d+1 vertices, we obtain an explicit family of d-regular

expanders BL = (BLn)n∈I , where I = {(d + 1) · 2i | i ∈ N} and λ(BL) = O(
√
d log3 d).

Moreover, as BL0 is simple, all graphs in BL are simple. By regularity,

λ̄(BL) =
1

d
λ(BL) = O

√ log3 d

d

 .

Let n : N→ I be the function defined by n(i) = (d+ 1) · 2i. That is, n(i) is the number

of vertices of the i-th graph in BL. Observe that for every i ∈ I, BLn(i+2) is a πi-lift of

BLn(i) with k = 4. Indeed, the 2-lift of a 2-lift is a 4-lift.

Fix i ∈ N. Choose an arbitrary ordering on the vertices of BLn(i) and denote the first

j vertices, under this ordering, by Ln(i),j. Define Pn(i),j to be the Ln(i),j-partial πi-lift of
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BLn(i). Note that the edge weights of Pn(i),j are 1 and 1
2
. In order to avoid fractional edges,

multiply every edge by 2 to obtain the unweighted graph with multiple edges Gn(i),j. Note

that the latter is a graph on n(i) + 3j vertices, and that Gn(i),n(i) = Gn(i+2),0. The family

that we construct is given by G = (Gn,j)(n,j)∈I′ , where the index set

I ′ = {(n(i), j) | i ∈ 2N and 0 ≤ j ≤ n(i)}

is lexicographically ordered.

Per Definition 4.1, and as we duplicated all edges, the degrees of all vertices in this

family are in the range [2 d√
4
, 2
√

4d] = [d, 4d], as claimed. Proposition 4.2 and Proposi-

tion 5.1 readily imply the bounds on λ(G) and λ̄(G), respectively. To conclude the proof,

note that the expansion cost is O(d).

7 Expanding Nearly-Ramanujan Graphs Exist

In this section we prove Theorem 1.2 based on a seminal result by Friedman [Fri08]. We

first introduce the following notation. For an integer d ∈ N and an even integer n, let

Mn,d be the distribution of graphs given by the union of d independent uniformly sampled

perfect matchings on n vertices.

Theorem 7.1 (Theorem 1.3 from [Fri08]; rephrased). For every ε > 0 and even d ∈ N
there exists a constant, c, such that for a random graph G that is sampled from Mn,d,

with probability at least 1− c
nτ

, we have for all i > 1,

|λi(G)| ≤ 2
√
d− 1 + ε

where τ = d
√
d− 1e − 1.

We start by proving the following claim.

Claim 7.2. If X is a uniformly random matching on 2n vertices, then the extension of

X (the output distribution of Algorithm 1 applied on X) is a uniform random matching

on 2n+ 2 vertices

Proof. First, note that Algorithm 1 is invertible (in the sense that there is a unique

preimage for every matching on [2n+2]) The reader may verify that Algorithm 2 composed

with Algorithm 1 results in the identity. Denote the internal randomness of Algorithm 1
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Algorithm 1 Extend

Input: A matching M on [2n].

Output: A matching on [2n+ 2].

Sample i uniformly at random from [2n+ 1].

if i = 2n+ 1 then

return M ∪ {(2n+ 1, 2n+ 2)}
else

return
(
M \ {(i,M(i))}

)
∪ {(i, 2n+ 2), (M(i), 2n+ 1)}

end if

Algorithm 2 Shrink

Input: A matching M on [2n+ 2].

Output: A matching on [2n].

if M(2n+ 2) = 2n+ 1 then

return M \ {(2n+ 1, 2n+ 2)}
else

i = M(2n+ 2)

j = M(2n+ 1)

return
(
M \ {(i, 2n+ 2), (j, 2n+ 1)}

)
∪ {(i, j)}

end if
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by rExtend. Then, for every matching M on [2n+ 2],

Pr
rExtend,X

[Extend(X) = M ] = Pr
i←[2n+1],X

[X = Shrink(M) ∧ i = M(2n+ 2)]

= Pr
X

[X = Shrink(M)] · Pr
i←[2n+1]

[i = M(2n+ 2)].

As both X and i are uniform, the RHS, and thus also the LHS, of the above equation not

depend on M , concluding the proof.

Proof of Theorem 1.2. Let n0 ∈ N be a parameter to be set later on. Set I = {2(n0 + i) |
i ∈ N}. We consider a distribution over families of d-regular graphs G = (Gi)i∈I in which

G2n0 is drawn from M2n0,d, and for every i ≥ 0,

G2(n0+i+1) = Extend(G2(n0+i)).

Note that for every n, we can write M2n,d =
∑d

i=1Xi, where the Xi-s are independent

uniform random matching on [2n]. By Claim 7.2,

M2n+2,d =
d∑
i=1

Extend(Xi). (7.1)

Thus, for every i ≥ 0, G2(n0+i) has the same distribution asM2(n0+i),d. Note further that

c(G) ≤ 3d with probability 1. We are only left with analyzing the spectral expansion of

G. By Theorem 7.1, for every G2(n0+i) we have that

Pr
[
λ(G2(n0+i)) > 2

√
d− 1 + ε

]
≤ c

(2(n0 + i))τ
.

For d ≥ 6, the RHS is bounded above by c
(2(n0+i))2

. Applying the union bound, we get

that

Pr
[
∃i ∈ N λ(G2(n0+i)) > 2

√
d− 1 + ε

]
≤
∑
i∈N

Pr
[
λ(G2(n0+i)) > 2

√
d− 1 + ε

]
≤
∑
i∈N

c

(2n0 + 2i)2
.

This series always converges, and for large enough n0, is strictly smaller than 1. We

conclude that there is a positive probability of satisfying ∀i : λ(G2(n0+i)) ≤ 2
√
d− 1 + ε,

proving the existence of the desired spectral expanding expander family.
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