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Abstract

The study of distribution testing has become ubiquitous in the area of property testing, both
for its theoretical appeal, as well as for its applications in other fields of Computer Science, and
in various real-life statistical tasks.

The original distribution testing model relies on samples drawn independently from the
distribution to be tested. However, when testing distributions over the n-dimensional Hamming
cube {0, 1}n for a large n, even reading a few samples is infeasible. To address this, Goldreich
and Ron [ITCS 2022] have defined a model called the huge object model, in which the samples
may only be queried in a few places.

In this work, we initiate a study of a general class of properties in the huge object model,
those that are invariant under a permutation of the indices of the vectors in {0, 1}n, while still
not being necessarily fully symmetric as per the definition used in traditional distribution testing.

We prove that every index-invariant property satisfying a bounded VC-dimension restriction
admits a property tester with a number of queries independent of n. To complement this result,
we argue that satisfying only index-invariance or only a VC-dimension bound is insufficient to
guarantee a tester whose query complexity is independent of n. Moreover, we prove that the
dependency of sample and query complexities of our tester on the VC-dimension is essentially
tight. As a second part of this work, we address the question of the number of queries required
for non-adaptive testing. We show that it can be at most quadratic in the number of queries
required for an adaptive tester in the case of index-invariant properties. This is in contrast with
the tight (easily provable) exponential gap between adaptive and non-adaptive testers for general
non-index-invariant properties. Finally, we provide an index-invariant property for which the
quadratic gap between adaptive and non-adaptive query complexities for testing is almost tight.
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1 Introduction

The field of distribution testing is currently ubiquitous in property testing, see the books
and surveys of [Gol17, BY22, Fis01, Ron08, Ron09, CS10, RS11, Can20, Can22] for reference.
Distribution testing has also found numerous applications in other areas of research, including topics
that have real life applications [CM19, MPC20, CKS20, PM21].

In the original model of distribution testing, a distribution D defined over some set Ω can be
accessed by obtaining independent samples from D, and the goal is to approximate various interesting
properties of D. This model has been studied extensively over the last two decades, and many
interesting results and techniques have emerged.

The majority of distribution testing research centers on the goal of minimizing the number
of samples required to test for various properties of the underlying distribution. If the domain
of the distribution is structured (for example, if the domain is the n-dimensional Hamming cube
{0, 1}n), then designing efficient testers brings its own challenges. A number of papers have studied
the problem of testing properties of distributions defined over the n-dimensional Hamming cube
(see [ABR16, CDKS17, BC18, BGMV20, CCK+21, CJLW21, BCY22]). With the rise of big data
(translating to n being very large), even reading all the bits in the representation of the samples might
be very expensive. To address this issue, recently Goldreich and Ron [GR22] studied distribution
testing in a different setting.

In their model, called the huge object model, the distribution D is supported over the n-dimensional
Hamming cube {0, 1}n, and the tester will obtain n-length Boolean strings as samples. However,
as reading the sampled strings in their entirety might be infeasible when n is large, the authors
in [GR22] considered query access to the samples along with standard sampling access. Note that
without loss of generality, the number of samples will be upper-bounded by the number of queries.
Thus, a desirable goal in this model is to optimize the number of queries for testing a given property,
with respect to the Earth Mover Distance notion that befits this model. [GR22] studied various
natural properties like support size estimation, uniformity, identity, equality, and “grainedness” 1

in this model, providing upper and lower bounds on the sample and query complexities for these
properties.

In this paper, we study the sample and query complexities of a very natural class of properties,
which we call the index-invariant properties, in the huge object model of distribution testing.

Index-Invariant Distribution Properties: In general, a distribution property is a collection of
distributions over a fixed domain Ω 2. Often the property in question has some other “symmetry”.
For example, a property is called label-invariant if any changes in the labels of the domain do
not affect whether the distribution is in the property or not. Many of the well studied properties,
such as uniformity, entropy estimation, support size estimation, and grainedness, are label-invariant
properties. Label-invariant properties have been studied extensively in literature [BDKR05, Pan08,
GR11, Val11, DKN14, CDVV14, ADK15, VV17, BC17, DKS18].

In some cases, the distribution property is not fully label-invariant, but still has a certain amount
of symmetry. For illustration, consider the following examples:

1. Property Monotone: Any distribution D over {0, 1}n satisfies the Monotone property if

X ⪯ Y implies D(X) ≤ D(Y), for any X,Y ∈ {0, 1}n,
1A distribution D over {0, 1}n is said to be m-grained if the probability mass of any element in its support is a

multiple of 1/m, where m ∈ N.
2We use the phrases “a distribution is in the property” and “a distribution has the property” interchangeably to

mean the same thing.
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where for two vectors X,Y ∈ {0, 1}n, X ⪯ Y if xi ≤ yi holds for every i ∈ [n].

2. Property Log-Super-Modularity: Any distribution D over {0, 1}n satisfies the property
Log-Super- Modularity if

D(U)D(V) ≤ D(U ∧V)D(U ∨V), for any U,V ∈ {0, 1}n,

where the Boolean ∧ and ∨ operations over the vectors are performed coordinate-wise.

3. Property Low-affine-dimension: A distribution D over {0, 1}n is said to satisfy the
Low-affine-dimension property, with parameter d ∈ N, if the affine dimension3 of the
support of D is at most d.

Note that for the properties described above, a distribution satisfies the above properties even
after the indices {1, . . . , n} of the vectors in {0, 1}n are permuted by a permutation σ defined over [n].
To capture this structure in the properties, we introduce the notion of index-invariant properties.

Definition 1.1 (Index-invariant property). Let us assume that D : {0, 1}n → [0, 1] is a
distribution over the n-dimensional Hamming cube {0, 1}n. For any permutation σ : [n] → [n], let
Dσ be the distribution such that D(w1, . . . , wn) = Dσ(wσ(1), . . . , wσ(n)) for all (w1, . . . , wn) ∈ {0, 1}n.
A distribution property P is said to be index-invariant when D is in P if and only if Dσ is in P , for
any distribution D and any permutation σ.

Informally speaking, index-invariant properties refer to those properties that are invariant under
the permutations of the indices {1, . . . , n}. Note that this set of properties differs from the more
common notion of label-invariant properties, since the total number of possible labels, for distributions
over all n-length Boolean vectors, is 2n. However, we are considering only permutations over [n],
thus in total only n! permutations instead of 2n! permutations.

1.1 Our Results

In this paper, as already mentioned, we study the sample and query complexities (in the
huge object model) of index-invariant properties. We primarily focus on two problems. First, we
study the connection between the query complexity for testing an index-invariant property and
the VC-dimension of the non-trivial support of the distributions in the property. Secondly, we
study the relationship between the query complexities of the adaptive and non-adaptive testers for
index-invariant properties, along with their non-index-invariant counterparts.

One important and technical difference between the huge object model and the standard
distribution property testing model is the use of Earth Mover Distance (EMD) for the notion of
“closeness” and “farness”, instead of the more prevalent ℓ1 or variation distance. Thus, in the rest of
the paper, by an ε-tester for any property P of distributions over {0, 1}n, we mean an algorithm that
given sample and query access (to the bits of the sampled vectors) to a distribution distinguishes
(with probability at least 2/3) the case where the distribution D is in the property P from the case
where the EMD of D from any distribution in P is at least ε, where ε > 0 is a proximity parameter.

Testing by learning of bounded VC-dimension properties (constant query testable
properties):

We prove that a large class of distribution properties are all testable with a number of queries
independent of n, using the testing by learning paradigm [DLM+07, GOS+09, Ser10], where the

3A set S ⊆ Rn has affine dimension k if the dimension of the smallest affine set in Rn that contains S is k.
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distributions are supported over the n-dimensional Hamming cube {0, 1}n. More specifically, we
prove that every distribution whose support has a bounded VC-dimension can be efficiently learnt
up to a permutation, leading to efficient testers for index-invariant distribution properties that admit
a global VC-dimension bound. Our main result regarding the learning of distributions in the huge
object model is the following theorem.

Theorem 1.2 (Main learning result (informal)). For any fixed constant d ∈ N, given sample
and query access to an unknown distribution D over {0, 1}n and a proximity parameter ε > 0,
there exists an algorithm that makes poly(1ε ) queries 4, and either outputs the full description of a
distribution or fail satisfying the following conditions:

(i) If the support of D is of VC-dimension at most d, then with probability at least 2/3, the
algorithm outputs a full description of a distribution D′ such that D is ε-close to D′

σ for some
permutation σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that D′
σ is ε-far from D for

all permutations σ : [n] → [n], with probability more than 1/3. However, if the VC-dimension
of the support of D is more than d, the algorithm may output Fail with any probability.

In fact, our result holds for a general class of clusterable properties (stated in Theorem 4.2 and
Corollary 5.3) that also covers the VC-dimension case as stated in the above theorem. Note that
the above theorem corresponds to the learnability of any distribution when the VC-dimension of
its support is bounded. As a corollary, it implies that any index-invariant distribution property
admitting a global VC-dimension bound is testable with a constant number of queries, depending
only on the proximity parameter ε and the VC-dimension d. The corollary is stated as follows:

Corollary 1.3 (Testing (informal)). Let P be an index-invariant property such that any distribution
D ∈ P has VC-dimension at most d, where d is some constant. There exists an algorithm, that has
sample and query access to an unknown distribution D over {0, 1}n, takes a proximity parameter
ε > 0, and distinguishes whether D ∈ P or D is ε-far from P with probability at least 2/3, by making
only poly(1ε ) queries.

It turns out that our tester for testing VC-dimension property takes exp(d) samples, and performs
exp(exp(d)) queries for VC-dimension d. We show that this bound is tight, in the sense that there
exists an index-invariant property with VC-dimension d such that any tester for the property requires
an exponential number of samples and a doubly-exponential number of queries on d.

Theorem 1.4. Let d, n ∈ N. There exists an index-invariant property Pvc with VC-dimension at
most d such that any (non-adaptive) tester for Pvc requires 2Ω(d) samples and 22

d−O(1) queries.

Note that from a result in [GR22], it follows that there exists an index-invariant property P such
that any distribution D ∈ P has VC-dimension d and any algorithm that has sample access to a
distribution D over {0, 1}n requires Ω(2d/d) samples 5, but Theorem 1.4 proves the lower bound on
both sample and query complexities for the same property.

Theorem 1.2 assumes that the properties are index-invariant and have bounded VC-dimension.
A natural question in this regard is whether the bounded VC-dimension and index-invariance
assumptions are necessary for a property to be constantly testable. We answer this question in

4The degree of the polynomial in 1
ε

depends on the parameter d.
5Let P be the distribution property of having support size at most 2d. Note that the VC-dimension of any member

of P is at most d. By [GR22], for any small enough ε, an ε-test for this property requires at least Ω
(
2d/d

)
samples.
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the negative. Theorem 1.4 implies that bounded VC-dimension is necessary for a property to be
constantly testable even if the property is index-invariant. The following proposition rules out the
possibility that only the bounded VC-dimension assumption is good enough for a property to be
testable by making a constant number of queries.

Proposition 1.5 (Necessity of index-invariance (informal)). There exists a non-index-invariant
property P such that any distribution D ∈ P has VC-dimension O(1) and the following holds. There
exists a fixed ε > 0, such that distinguishing whether D ∈ P or D is ε-far from P requires Ω(n)
queries, where the distributions in the property P are defined over the n-dimensional Hamming cube
{0, 1}n.

The above proposition is formally stated and proved at the end of Subsection 7.2.

Separation between adaptive and non-adaptive testers:

Until now, all the upper bounds that we have discussed are designed for non-adaptive algorithms.
The question how adaptivity helps in designing efficient testers is interesting in its own right. In the
standard model of distribution testing, since the model is inherently non-adaptive, there is essentially
no gap between adaptive and non-adaptive testers. However, in the related model of conditional
sampling of distributions [CFGM16, CRS15], there is a super-exponential separation (constant vs.
poly(log n)) between the complexities of these two types of testers [ACK18].

In the context of graph testing in the dense graph model, it is known that the gap between the
query complexities of adaptive and non-adaptive algorithms is at most quadratic [GT03], which has
recently been proved to be tight [GW21]. However, for bounded-degree graphs, the gap between
the query complexities for some properties is constant vs. Ω(

√
n), where n denotes the number of

vertices of the graph [GR97]. For testing of functions, there is an exponential separation between
the complexity of these two types of testers [RS15].

Thus, a natural question to study in this huge object model is about the gap between the query
complexities of non-adaptive and adaptive algorithms. When considering general properties, there
can be an exponential gap in the query complexities between non-adaptive and adaptive testers (see
Theorem 7.6). However, for index-invariant properties, this gap can be at most quadratic, as stated
in the following theorem.

Theorem 1.6 (Connection between adaptive and non-adaptive testers for index-invariant
properties). For any index-invariant property P, there is at most a quadratic gap between the query
complexities of adaptive and non-adaptive testers.

We also prove that the above gap is almost tight, in the sense that there exists an index-invariant
property which can be ε-tested using Õ(n) adaptive queries, while Ω̃(n2) non-adaptive queries are
required to ε-test it.

Theorem 1.7 (Near-tightness of the connection between adaptive and non-adaptive
testers for index-invariant properties). There exists an index-invariant property PGap that can
be ε-tested adaptively using Õ(n) queries for any ε ∈ (0, 1), while there exists an ε ∈ (0, 1) for which
Ω̃(n2) queries are necessary for any non-adaptive ε-tester.

Using EMD as the distance metric in conjunction with the notion of index-
invariance:

Recall that here we will use the Earth Mover Distance (EMD) as the distance metric defining
ε-testing, in contrast to the stronger variation distance, the commonly studied distance measure in
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distribution testing literature. As discussed in [GR22], this is essential when we restrict ourselves
to querying the samples obtained from the distribution. To illustrate this, consider two (say very
sparse) distributions D1 and D2 whose supports are disjoint, yet admit a bijection such that every
string from Supp(D1) is mapped to a string from Supp(D2) that is very close to it in terms of the
Hamming distance. The variation distance between D1 and D2 would be large, and yet we would
not be able to distinguish the two distributions without querying some samples in their entirety, that
is, without using Θ(n) queries per sample. The EMD metric is the one incorporating the Hamming
distance between strings (which comes to play when we are not performing many queries to the
samples) into the notion of variation distance.

Another question involves what general statements can be said about testers in this model. If we
do not restrict ourselves to properties satisfying any sort of invariance, then very little can be proved
on testers in general, just as is the case with general string property testing under the Hamming
distance (in fact, string testing can be reduced to testing in the huge object model 6). On the other
hand, if we were to restrict ourselves to label-invariant properties only, it would appear that we lose
much of the rich structure offered by the ability to define distributions over strings. We believe that
index-invariance is a natural middle-of-the-road restriction for the formulation of general statements
about testing in the huge object model.

1.2 Organization of the paper

In Section 2, we present a brief overview of our results. We present the related definitions in
the preliminaries section (Section 3). We present the results about learning and testing clusterable
distributions in Section 4. After that, in Section 5, we move on to present algorithms for testing
properties with bounded VC-dimension. We present lower bound results for bounded VC-dimension
testing in Section 6. Later, we show the tight exponential separation between the query complexities
of adaptive and non-adaptive algorithms for non-index-invariant properties in Section 7. In Subsec-
tion 8.1, we prove that for index-invariant properties, there is at most a quadratic gap between the
query complexities of adaptive and non-adaptive testers. Finally, in Subsection 8.2, Subsection 8.3,
Subsection 8.4, and in Subsection 8.5, we prove that the quadratic gap between adaptive and
non-adaptive testers for index-invariant properties is almost tight, ignoring poly-logarithmic factors.
In Appendix A, we state some useful concentration inequalities that are used in our proofs.

2 Technical overview of our results

In this section, we provide a brief overview of our results. We start by explaining our upper
bounds.

2.1 Overview of our upper bound results for index-invariant bounded VC-
dimension property

In our main upper bound result, we prove a learning result for a general class of distributions that
covers the case of learning distributions with bounded VC-dimension. We say that a distribution
D is (ζ, δ, r)-clusterable if we can partition the n-dimensional Hamming cube {0, 1}n into r + 1
parts C0, . . . , Cr, such that D(C0) ≤ ζ and the diameter of Ci is at most δ for every i ∈ [r] (see
Definition 4.1). The main upper bound result (Theorem 4.2), that leads to Theorem 1.2, is the design
of an algorithm for learning a (ζ, δ, r)-clusterable distribution up to permutations. That is, given

6We will use this reduction for proving exponential separation between adaptive and non-adaptive testers for
non-index-invariant properties (see Subsection 7.2).
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sample and query access to a (ζ, δ, r)-clusterable distribution, we want to output a distribution D′

such that the Earth Mover Distance between D and D′
σ is small for some permutation σ : [n] → [n],

by performing number of queries independent of n.

The idea of learning (ζ, δ, r)-clusterable distributions: The formal algorithm is presented
in Algorithm 1 in Section 4 as Test-and-Learn. The algorithm starts by taking t1 = O( rζ log

r
ζ )

samples from the input distribution D. Let us denote them as S = {X1, . . . ,Xt1}. If D is (ζ, δ, r)-
clusterable, consider its clusters C0, . . . , Cr as described above. We say that a cluster Ci is large if
the probability mass of Ci is more than ζ

10r , that is, D(Ci) ≥ ζ
10r . As the size of S is sufficiently

large, we know that S intersects every large cluster with probability at least 99/100 (see Lemma 4.5).
In order to estimate the masses of Ci, for each i ∈ [t1], we take another set of random samples
T = {Y1, . . . ,Yt2} from D where t2 = O(

t21
ζ2

log t1), and assign each of the vectors in T to some
vector in S depending on their Hamming distance. However, since computing the exact distances
between the vectors in S and T requires Ω(n) queries, we use random sampling.

We take a random set of indices R ⊂ [n] of suitable size, and project the vectors in S and T
on R to estimate their pairwise distances up to an additive factor of δ. R not only preserves the
distances between all pairs of vectors between S and T , but also the distances of a large fraction of
the vectors in {0, 1}n from all the vectors in S (see Lemma 4.6). Based on the estimated distances,
we assign each vector of T ∈ T to a vector in S ∈ S such that the projected distance between them
is at most 2δ. If there exists no such vector in S corresponding to a vector T ∈ T , then the vector
T remains unassigned. Let us denote the fraction of vectors in T that are assigned to Xi as wi, for
every i ∈ [t1]. Let w0 be the fraction of vectors in T that are not assigned to any vector in S. If D
is (ζ, δ, r)-clusterable, then w0 ≤ 3ζ holds with high probability. These wi’s preserve the weights of
some approximate clustering (which may not be the original one from which we started, but is close
to it in some sense), see Lemma 4.7 for the details.

Consider a distribution D∗ supported over S such that D(Xi) ≥ wi for every i ∈ [t1]. Using
a number of technical lemmas, we prove that the EMD between D and D∗ is small. Note that
we still can not report D∗ as the output distribution, since to do so, we need to know the exact
vectors in S, which requires Ω(n) queries. To bypass this barrier, we use the provision that we
are allowed to output any permutation of the distribution. More specifically, we construct vectors
S1, . . . ,St1 ∈ {0, 1}n such that dH(Xi, σ(Si)) is small for every i ∈ [t1] and some permutation
σ : [n] → [n]. This is possible using the projections of the vectors in S to the random set of indices
R for estimating the number of indices of each “type” with respect to S (see Lemma 4.11). Finally,
we output the distribution D′ supported over the newly constructed vectors S1, . . . ,St1 such that
D′(Si) = D∗(Xi) for every i ∈ [t1]. The guarantee on the Hamming distance between Xi and σ(Si)
provides a bound on the EMD between D′

σ and D∗, and with the above mentioned EMD bound
between D∗ and D, we are done. To keep the discussion simple, we will not explain here the idea of
the proof of Theorem 1.2(ii), which relies on a sort of converse to the above method of approximating
cluster weights.

How learning (ζ, δ, r)-clusterable distribution implies Theorem 1.2: Let us define a dis-
tribution to be (α, r)-clusterable if it is (0, α, r)-clusterable. The learning of (ζ, δ, r)-clusterable
distribution implies a learning result for any distribution that is close to being (α, r)-clusterable (see
Corollary 5.3) due to a technical lemma (see Lemma 5.4). If the support of a distribution has bounded
VC-dimension, using standard results in VC theory, we can show that it is also (α, r)-clusterable,
where r is a function of α and d. Thus the learning result of (α, r)-clusterable distributions implies
a result allowing the learning of distributions with bounded VC-dimension.
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2.2 Overview of the lower bound result for index-invariant bounded VC-dimension
properties

To prove Theorem 1.4, let us define the property Pvc. Let k = 2d, ℓ = 22
d−10 and ℓ′ = 22

d−20 .
Consider a matrix A of dimension k × ℓ whose column vectors are 1/3-far from each other. Let
V1, . . . ,Vk ∈ {0, 1}n be k vectors that are formed by blowing up the row vectors of A in {0, 1}ℓ to
{0, 1}n by repeating each bit of the vectors n/ℓ times, and DA be the uniform distribution over the
support {V1, . . . ,Vk}. Our property Pvc is the collection of all distribution that can be obtained
from DA by permuting the indices. Let Dyes be the distribution obtained from DA by randomly
permuting the indices. Note that Dyes ∈ Pvc. As the support size of any distribution in Pvc is at
most 2d, the VC-dimension of Pvc is at most d.

To prove the lower bound on the query complexity, let us define the distribution Dno. Let us take ℓ′

columns of A uniformly at random to form a matrix B of dimension k×ℓ′, and W1, . . . ,Wk ∈ {0, 1}n
be k vectors that are formed by blowing up the row vectors of B in {0, 1}ℓ′ to {0, 1}n by repeating each
bit of the vectors n/ℓ′ times. Let DB be the uniform distribution over the support {W′

1, . . . ,W
′
k}.

Dno is the distribution obtained from DB by randomly permuting the indices. We show that the
Earth Mover Distance between Dno and any distribution in Pvc is at least 1/8 (see Lemma 6.3).
Observe that Dyes divides the index set [n] into ℓ equivalence classes and Dno divides the index set
into ℓ′ equivalence classes. The query complexity lower bound follows from the fact that, unless we
query 22

d−O(1) indices, we do not hit two indices from the same equivalence class, irrespective of
whether the distribution is Dyes or Dno (see Lemma 6.8).

To prove the lower bound on the sample complexity, let us define another distribution D′
no. Let

us take k′ = 2d−20 rows of A uniformly at random to form a matrix B′ of dimension k′ × ℓ. Let
W′

1, . . . ,W
′
k′ ∈ {0, 1}n be k′ vectors that are formed by blowing up the row vectors of B′ in {0, 1}ℓ

to {0, 1}n by repeating each bit of the vectors n/ℓ times. Let DB′ be the uniform distribution with
support {W′

1, . . . ,W
′
k′}. D′

no is the distribution obtained from DB′ by randomly permuting the
indices. We show that the Earth Mover Distance between D′

no and any distribution in Pvc is at least
1/8 (see Lemma 6.9). The sample complexity lower bound follows from the fact that, unless we
take 2Ω(d) samples, all the samples are distinct with probability 1− o(1), irrespective of whether the
distribution is Dyes or Dno (see Lemma 6.11).

2.3 Overview of adaptive vs non-adaptive query complexity results

Finally, we explore the relationship between adaptive and non-adaptive testers in the huge object
model. It turns out that there is a tight (easy to prove) exponential separation between the query
complexities of adaptive and non-adaptive testers for non-index-invariant properties. Roughly, the
simulation of an adaptive algorithm by a non-adaptive one follows from unrolling the decision tree
of the adaptive algorithm. This is formally proved in Lemma 7.2. Moreover, we show that this
separation is tight. For this purpose, we consider a property of strings PPal, which exhibits an
exponential gap between adaptive and non-adaptive testing in the string testing model. We show
how to transform a string property P to a distribution property 1P such that the query bounds on
adaptive and non-adaptive testing carry over. Thus, the separation result between adaptive and
non-adaptive algorithms for PPal carries over to 1PPal

(see Theorem 7.6). This technique, employed
for a maximally hard to test string property, is also used for proving Proposition 1.5.

In contrast to the non-index-invariant properties, we prove that there can be at most a quadratic
gap between the query complexities of adaptive and non-adaptive algorithms for testing index-
invariant properties. The proof is very close in spirit to the proof of the quadratic relation between
adaptive and non-adaptive testing of graphs in the dense model [GT03]. Given an adaptive algorithm
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A with sample complexity s and query complexity q, the main idea is to first simulate a semi-adaptive
algorithm A′ that queries q indices from each of the s samples and decides accordingly. Note that
the sample complexity of A′ remains s, whereas the query complexity becomes qs. Once we have
the semi-adaptive algorithm A′, we now simulate a non-adaptive algorithm A′′. As the property we
are testing is index-invariant, we can first apply a uniformly random permutation σ over [n], and
then run the semi-adaptive algorithm A′ over Dσ instead of D, where D is the input distribution
to be tested. This makes the tester completely non-adaptive. Its correctness follows from the
index-invariance of the property we are testing.

Quadratic separation between adaptive and non-adaptive testers: Before proceeding to
present an overview of our quadratic separation result, let us first recall the support estimation
result of Valiant and Valiant [VV10], which will be crucially used in our proof. Roughly speaking,
the result states that in the standard sampling model, given a distribution D over [2n], in order to
distinguish whether D has support size at most n, or D is far from all distributions with support
size at least n, Θ(n/ log n) samples are required.

Theorem 2.1 (Support Estimation bound, restatement of Corollary 9 of Valiant-Valiant [VV10]).
Given a distribution D over [2n], that can be accessed via independent samples and a proximity
parameter ε ∈ (0, 1/8), in order to distinguish, with probability at least 3

4 , whether D has support
size at most n or D has at least (1 + ε)n elements with non-negligible weights in its support, Θ( n

logn)
samples from D are necessary and sufficient.

To construct the index-invariant property that provides a quadratic separation between the query
complexities of adaptive and non-adaptive testers, we will use the above result. Let DSupp

yes and
DSupp

no be the pair of hard distributions corresponding to the support estimation lower bound, from
which we define our pair Dyes and Dno of hard distributions for our property. We will construct a
huge object distribution property over a slightly larger domain [N ] with N = O(n log n), where we
will encode the elements of the support of the distributions DSupp

yes and DSupp
no . Additionally, we will

include a set of “ordering” vectors to both Dyes and Dno that encode a permutation σ : [n] → [n].
Our property will be defined as a permutation of a non-index-invariant property along with an
encoding of the permutation itself.

For the non-index-invariant property, we use an encoding of the elements of {0, 1}n that can be
decoded only if a sample from a family of special small sets is read in its entirety. For constructing
hard distributions, we consider (encodings of) 2n special elements of {0, 1}n, and use over them the
hard distributions corresponding to Theorem 2.1.

The encoding vectors of Dyes and Dno are designed in such a fashion, that if we can know the
index ordering (and thus the identity of the above mentioned small sets), the support size estimation
problem becomes relatively easy. However, without knowing the ordering vectors, estimating the
size of the support becomes harder. More specifically, if we already know the index ordering, then
support size estimation can be done using poly(log n) queries from each sample, over the Õ(n)
samples that are sufficient for solving the support estimation problem.

On the other hand, an important feature of our property ensures that unless some of the special
sets are successfully hit while querying a sampled vector, which is a low probability event without
prior knowledge of the encoded index ordering unless we perform Ω̃(n) queries to that vector, then
the queries do not provide any useful information about the sampled vector to the tester. This is
achieved by the encoding procedure of the vectors, which is motivated from [BFLR20]. However, it
is not deployed here the same way as [BFLR20], since the surrounding proofs here are quite different
(as well as the end-goal).

10



Since an adaptive algorithm can first learn the ordering vectors by performing Õ(n) queries
(as it takes poly(log n) samples to hit all the order encoding vectors), the adaptive tester requires
Õ(n) queries in total. However, for non-adaptive testers, since we have to perform all queries
simultaneously, the tester would have to make Ω̃(n) queries to each sampled vector to be able to
utilize the support estimation procedure (since as explained above, fewer queries would give no useful
information about the sample to the tester). As a result, Ω̃(n2) non-adaptive queries are required
following the lower bound result in Theorem 2.1.

Another technical challenge is to construct the property in such a fashion that allows the crafting
of “wrong distributions” which remain far from the property, even if we permute the support vectors.
This is due to the fact that just replacing the vectors defining the index ordering does not require
a change of large Earth Mover Distance. Thus we need the distributions to remain far from the
property even if we reorder them. We ensure this by designing the hard distributions such that the
support vectors of the distributions are far from each other. This in turn allows us to prove that
the distribution Dno will remain far from the property, as the size of its support is too large. The
arguments involving only the mutual Hamming distance between the vectors in the support and the
size of the support are invariant with respect to the index ordering, and are thus not affected by the
possibility of “cheaply” changing the index ordering vectors.

3 Preliminaries

For an integer n, we will denote the set {1, . . . , n} as [n]. Given two vectors X and Y in {0, 1}n,
we will denote by dH(X,Y) the normalized Hamming distance between X and Y, that is,

dH(X,Y) :=
|{i ∈ [n] : Xi ̸= Yi}|

n
.

Unless stated otherwise, all the distance measures that we will be considering in this paper will
be the normalized distances. For two vectors X,Y ∈ {0, 1}n, δH(X,Y) = n · dH(X,Y) will be used
to denote the absolute Hamming distance between X and Y in the few places where we will need to
refer to it. When we write Õ(·), it suppresses a poly-logarithmic term in n and the inverse of the
proximity parameter.

We will also need the following observation from [ABEF17] which roughly states that given a
sequence of non-negative real numbers that sum up to an integer n, there is a procedure that by
choosing the floor or ceiling of these real numbers, one can obtain another sequence of integers that
sum up to n. This observation will be used in our proof.

Observation 3.1 (Restatement of [ABEF17, Lemma 4.8]). Let T, n ∈ N. Given T non-

negative real numbers α1, . . . , αT such that
T∑
i=1

αi = n, there exists a procedure of choosing T

integers β1, . . . , βT such that βi ∈ {⌊αi⌋, ⌈αi⌉} for every i ∈ [T ] and
T∑
i=1

βi = n.

3.1 Definitions and relations of various distance measures of distributions

We will first define ℓ1 distance between two distributions.

Definition 3.2 (ℓ1 distance and variation distance between two distributions). Let D1 and
D2 be two probability distributions over a set S. The ℓ1 distance between D1 and D2 is defined as

||D1 −D2||1 =
∑
a∈S

|D1(a)−D2(a)|.
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The variation distance between D1 and D2 is defined as:

dTV (D1, D2) =
1

2
· ||D1 −D2||1.

Throughout this paper, the Earth Mover Distance (EMD) is the central metric for testing
“closeness” and “farness” of a distribution from a given property. It is formally defined below.

Definition 3.3 (Earth Mover Distance (EMD)). Let D1 and D2 be two probability distributions
over {0, 1}n. The EMD between D1 and D2 is denoted by dEM (D1, D2), and defined as the solution
to the following linear program:

Minimize
∑

X,Y∈{0,1}n
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}n
fXY = D1(X), ∀ X ∈ {0, 1}n

∑
X∈{0,1}n

fXY = D2(Y), ∀ Y ∈ {0, 1}n

0 ≤ fXY ≤ 1, ∀X,Y ∈ {0, 1}n

Intuitively, the variable fXY stands for the amount of probability mass transferred from X to Y.
Directly from the definitions of dEM (D1, D2) and dH(X,Y), we get the following simple yet

useful observation connecting ℓ1 distance and EMD between two distributions.

Observation 3.4 (Relation between EMD and ℓ1 distance). Let D1 and D2 be two distributions
over the n-dimensional Hamming cube {0, 1}n. Then we have the following relation between the
Earth Mover Distance and ℓ1 distance between D1 and D2:

dEM (D1, D2) ≤
||D1 −D2||1

2
.

Now we formally define the notions of “closeness” and “farness” of two distributions with respect
to the Earth Mover Distance.

Definition 3.5 (Closeness and farness with respect to EMD). Given two proximity parameters
ε1 and ε2 with 0 ≤ ε1 < ε2 ≤ 1, two distributions D1 and D2 over the n-dimensional Hamming cube
{0, 1}n are said to be ε1-close if dEM (D1, D2) ≤ ε1, and ε2-far if dEM (D1, D2) ≥ ε2.

Now we proceed to define the notion of distribution properties over the Hamming cube below.

Definition 3.6 (Distribution property over the Hamming cube). Let D denote the set of
all distributions over the n-dimensional Hamming cube {0, 1}n. A distribution property P is a
topologically closed subset of D. 7 A distribution D ∈ P is said to be in the property or to satisfy
the property. Any other distribution is said to be not in the property or to not satisfy the property.

Now we are now ready to define the notion of distance of a distribution from a property.

Definition 3.7 (Distance of a distribution from a property). The distance of a distribution
D from a property P is the minimum Earth Mover Distance between D and any distribution in P . 8

For ε ∈ [0, 1], a distribution D is said to be ε-close to P if the distance of D from P is at most ε.
Analogously, for ε ∈ [0, 1], a distribution D is said to be ε-far from P if the distance of D from P is
more than ε.

7We put this restriction to avoid formalism issues. In particular, the investigated distribution properties that we
know of (such as monotonicity and being a k-histogram) are topologically closed.

8The assumption that P is closed indeed makes it a minimum rather than an infimum.
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3.2 Formal definitions of various kinds of property testers

First we define our query model below.

Definition 3.8 (Query to sampled vectors). Let A be a tester with a set of sampled vectors
V1, . . . ,Vs, drawn independently from an input distribution D over {0, 1}n, where Vi = (vi,1, . . . , vi,n)
for every i ∈ [s]. In order to perform a query, the tester will provide i and j, and will receive vi,j as
the answer to the query.

In the following, we formally describe the notion of a tester.

Definition 3.9 (ε-test). Let ε ∈ (0, 1) be a proximity parameter, and δ ∈ (0, 1). A probabilistic
algorithm A is said to ε-test a property P with probability at least 1 − δ, if any input in P is
accepted by A with probability at least 1− δ, and any input that is ε-far from P is rejected by A
with probability at least 1− δ. Unless explicitly stated, we assume that δ = 1/3.

Now we define two different types of testers, adaptive testers and non-adaptive testers, which will
be used throughout the paper. We begin by describing the adaptive testers. Informally, adaptive
testers correspond to algorithms that perform queries depending on the answers to previous queries.
Formally:

Definition 3.10 (Adaptive tester). Let P be a property over {0, 1}++. An adaptive tester for P
with query complexity q and sample complexity s is a randomized algorithm A that ε-tests P by
performing the following:

• A first draws some random coins and samples s vectors from the unknown distribution D,
denoted by S = {V1, . . . ,Vs}.

• A then queries the j1-th index of Vi1 , for some j1 ∈ [n] and i1 ∈ [s] depending on the random
coins.

• Suppose that A has executed k steps and has queried the jℓ-th index of Vjℓ , where 1 ≤ ℓ ≤ k.
At the (k+1)-th step, depending upon the random coins and the answers to the queries till the
k-th step, A will perform a query for the jk+1-th bit of Vik+1

, where jk+1 ∈ [n] and ik+1 ∈ S.

• After q steps, A reports Accept or Reject depending on the random coins and the answers
to all q queries.

Now we define the more restricted non-adaptive testers. Informally, non-adaptive testers decide
the set of queries to be performed on the input even before performing the first query. Formally:

Definition 3.11 (Non-adaptive tester). Let P be a property over {0, 1}n. A non-adaptive tester
for P with query complexity q and sample complexity s is a randomized algorithm A that ε-tests P
by performing the following:

• A tosses some random coins, and depending on the answers constructs a sequence of subsets

of indices J1, . . . , Js ⊂ [n] such that
s∑

i=1
Ji ≤ q.

• A takes s samples V1, . . . ,Vs from the unknown distribution D.

• A queries for the coordinates of Vi that are in Ji, for each i ∈ [s].

• A reports either Accept or Reject based on the answers from the queries to the vectors,
that is, V1 |J1 ,V2 |J2 , . . . ,Vs |Js , and the random coins.
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3.3 Distributions and properties with bounded VC-dimension

Now we move on to define a class of properties using the notion of the VC-dimension of the
support of a distribution. Before proceeding to define the class of properties, let us recall the notions
of shattering and VC-dimension.

Let V be a collection of vectors from {0, 1}n. For a sequence of indices I = (i1, . . . , ik), with
1 ≤ ij ≤ n, let V |I denote the set of projections of V onto I, that is,

V |I= {(vi1 , . . . , vik) : (v1, . . . , vn) ∈ V }.

If V |I= {0, 1}k, then it is said that V shatters the index sequence I. The VC-dimension of V is the
size of the largest index sequence I that is shattered by V . VC-dimension was introduced by Vapnik
and Chervonenkis [VC15] in the context of learning theory, and has found numerous applications in
other areas like approximation algorithms, discrete and computational geometry, discrepancy theory,
see [Mat99, PA95, Mat02, Cha00].

We now give a natural extension of VC-dimension to distributions.

Definition 3.12 (Distribution with VC-dimension d). Let d, n ∈ N and D be a distribution
over {0, 1}n. We say that D has VC-dimension at most d if the support of D has VC-dimension at
most d. A distribution D is said to be β-close to VC-dimension d if there exists a distribution D0

with VC-dimension d such that dEM (D,D0) ≤ β, where β ∈ (0, 1).

Analogously, we can also define the notion of a (β, d)-VC-dimension property.

Definition 3.13 ((β, d)-VC-dimension property). Let d, n ∈ N and β ∈ (0, 1). A property P
over {0, 1}n is said to be a (β, d)-VC-dimension property if for any distribution D ∈ P , D is β-close
to VC-dimension d. When β = 0, we say that the VC-dimension of P is d. We also say that a
(0, d)-VC-dimension property is a bounded VC-dimension property.

We now give examples of bounded VC-dimension properties.

Property Chain: For any distribution D ∈ Chain, the support of D can be written as a sequence
X1, . . . ,Xt ∈ {0, 1}n such that any two vectors with non-zero probability are comparable, that
is,

D(Xi) > 0 and D(Xj) > 0 implies either Xi ⪯ Xj or Xj ⪯ Xi, for every i, j ∈ [t].

Property Low-affine-dimension: A distribution D over {0, 1}n is said to satisfy the Low-
affine-dimension property, with parameter d ∈ N, if the affine dimension9 of the support of
D is at most d.

Observe that the VC-dimension of Chain is 1, and the VC-dimension of Low-affine-dimension is
d. 10 Moreover, note that both Chain and Low-affine-dimension are examples of index-invariant
properties.

9A set S ⊆ Rn has affine dimension k if the dimension of the smallest affine set in Rn that contains S is k.
10In fact, the property Low-affine-dimension is a sub-property of “support size is at most 2d”, which has

VC-dimension d.
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3.4 Yao’s lemma for the huge object model

Our lower bound proofs crucially use Yao’s lemma [Yao77]. Informally, it states that for any
two distributions D1 and D2 such that D1 satisfies some property, and D2 is far from the property,
if the variation distance between D1 and D2 with respect to q queries is small, then D1 and D2

remain indistinguishable with respect to q queries. In order to formally state the lemma, we need
the following definitions.

Definition 3.14 (Restriction). Let D be a distribution over a collection of functions f : D → {0, 1},
and Q be a subset of the domain D of D. The restriction D |Q of D to Q is the distribution
over functions of the form g : Q → {0, 1}, which is obtained from choosing a random function
f : D → {0, 1} according to the distribution D, and then setting g = f |Q, where f |Q denotes the
restriction of f to Q.

The following is the version of Yao’s Lemma which is used for non-adaptive testers in the classical
setting. The crucial observation that makes this lemma work is the observation that the deterministic
version of a non-adaptive tester in the classical setting is characterized by a set of possible responses
to a fixed query set Q ⊂ D.

Lemma 3.15 (Yao’s lemma for non-adaptive testers, see [Fis04]). Let ε ∈ (0, 1) be a
parameter and q ∈ N be an integer. Suppose there exists a distribution Dyes on inputs over D that
satisfy a given property P, and a distribution Dno on inputs that are ε-far from satisfying the property.
Moreover, assume that for any set of queries Q ⊂ D of size q, the variation distance between Dyes |Q
and Dno |Q is less than 1

3 . Then it is not possible for a non-adaptive tester performing q (or less)
queries to ε-test P.

In this paper, we will prove lower bounds against non-adaptive distribution testers in the huge
object model. Hence, Dyes and Dno, rather than being distributions over functions from D to {0, 1},
are distributions over distributions over {0, 1}n (since the basic input object is a distribution over
{0, 1}n).

The deterministic version of a non-adaptive tester in this setting is characterized by a set of
possible responses to a sequence of queries J = (J1, . . . , Js) to the samples. We call s the length of
J , and call q =

∑s
i=1 Ji, the size of J .

Given a distribution D over distributions over {0, 1}n, we denote by D |J the distribution
over {0, 1}q that results from first picking a distribution D̂ over {0, 1}n according to D, then
taking s independent samples X1, . . . ,Xs according to D̂, and finally constructing the sequence
X1 |J1 , . . . ,Xs |Js . The huge object model version of Yao’s lemma for non-adaptive testers is the
following one.

Lemma 3.16 (Yao’s lemma for non-adaptive testers in the huge object model). Let
ε ∈ (0, 1) be a parameter and q, s ∈ N be two integers. Suppose there exists a distribution Dyes over
distributions over {0, 1}n that satisfy a given property P, and a distribution Dno over distributions
over {0, 1}n that are ε-far from satisfying the property P. Moreover, assume that for any query
sequence J of length s and size q, the variation distance between Dyes |J and Dno |J is less than
1/3. Then it is not possible for a non-adaptive tester that takes at most s samples and performs at
most q queries to ε-test P.

4 Learning clusterable distributions

In this section, we define the notion of a (ζ, δ, r)-clusterable distribution formally (see Def-
inition 4.1), and prove that such distributions can be learnt (up to permutation) efficiently in
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Theorem 4.2. Intuitively, a distribution D defined over {0, 1}n is called (ζ, δ, r)-clusterable if we
can remove a subset of the support vectors of D whose probability mass is at most ζ, and we can
partition the remaining vectors in the support of D into at most r parts, each with diameter at most
δ. Theorem 4.2 states that, given a distribution D over {0, 1}n, we can learn it (up to permutation)
if it is (ζ, δ, r)-clusterable, and otherwise, we either report Fail or learn the input distribution (up to
permutation). Note that learning the distribution up to permutation is sufficient to provide testing
algorithms for index-invariant properties with bounded VC-dimension, which will be discussed in
Section 5.

Definition 4.1 ((ζ, δ, r)-clusterable and (α, r)-clusterable distribution). (i) Let ζ, δ ∈ (0, 1)
and r, n ∈ N. A distribution D over {0, 1}n is called (ζ, δ, r)-clusterable if there exists a parti-
tion C0, . . . , Cs of {0, 1}n such that D(C0) ≤ ζ, s ≤ r, and for every 1 ≤ i ≤ s, dH(U,V) ≤ δ
for any U,V ∈ Ci.

(ii) For α ∈ (0, 1) and r ∈ N, a distribution D over {0, 1}n is called (α, r)-clusterable if it is
(0, α, r)-clusterable. For β ∈ (0, 1), a distribution D is called β-close to being (α, r)-clusterable
if there exists an (α, r)-clusterable distribution D0 such that dEM (D,D0) ≤ β.

Theorem 4.2 (Learning (ζ, δ, r)-clusterable distributions). There exists a (non-adaptive)
algorithm Test-and-Learn, as described in Algorithm 1, that has sample and query access to
an unknown distribution D over {0, 1}n for n ∈ N, takes parameters ζ, δ, r as inputs such that,
ζ, δ ∈ (0, 1) and ε = 17(δ+ ζ) < 1 11 and r ∈ N, makes a number of queries that only depends on ζ, δ
and r, and either reports a full description of a distribution over {0, 1}n or reports Fail, satisfying
both of the following conditions:

(i) If D (ζ, δ, r)-clusterable, then with probability at least 2
3 , the algorithm outputs a full description

of a distribution D′ over {0, 1}n such that dEM (D,D′
σ) ≤ ε for some permutation σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that dEM (D,D′
σ) > ε for every

permutation σ : [n] → [n], with probability more than 1
3 . However, if the distribution D is not

(ζ, δ, r)-clusterable, the algorithm may output Fail with any probability.

The algorithm corresponding to learning (ζ, δ, r)-clusterable distributions is described in Algo-
rithm 1 as Test-and-Learn. It calls a subroutine Approx-Centers, as described in Algorithm 2.

Remark 1. The sample complexity of Test-and-Learn is polynomial in r, and the query complexity
of Test-and-Learn is exponential in r. Moreover, for the case of query complexity, the exponential
dependency in r is required. In particular, in Section 6, we construct a distribution with support
size r that requires 2Ω(r) queries to test for the property of being a permutation thereof.

To prove the correctness of Test-and-Learn (which we will do in Section 4.1 and Section 4.2),
we will need the notion of an (η, ξ)-clustered distribution around a sequence of vectors S (see
Definition 4.3), and an associated observation (see Observation 4.4).

Definition 4.3 ((η, ξ)-clustered distribution around a sequence). Let η, ξ ∈ (0, 1) and n ∈ N.
Also, for X ∈ {0, 1}n, let NGBη(X) denote the set of vectors in {0, 1}n that are at a distance
of at most η from X. Let S = {S1, . . . ,St} be a sequence of t vectors in {0, 1}n and define
NGBη(S) =

⋃
S∈S

NGBη(S). Then:

11The constant 17 is arbitrary, and can be improved to a smaller constant. We did not try to optimize.
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Algorithm 1: Test-and-Learn
Input: Sample and Query access to a distribution D over {0, 1}n, and parameters ζ, δ, r

with ζ, δ ∈ (0, 1) and r ∈ N.
Output: Either reports a full description of a distribution over {0, 1}n or Fail, satisfying (i)

and (ii) as stated in Theorem 4.2.

(i) Take t1 = O( rζ log
r
ζ ) samples S = X1, . . . ,Xt1 from D.

(ii) Take t2 = O(
t21
ζ2

log t1) samples T = Y1, . . . ,Yt2 from D.

(iii) Pick a random subset R ⊂ [n] with |R| = O( 4
t1

δ2ζ
log r

δζ ). Query the indices corresponding to R

in each sample of S, to obtain the sequence of vectors Sx = x1, . . . ,xt1 , where xi = Xi |R for
each i ∈ [t1]. Also, query the indices corresponding to R in each sample in T , to obtain the
sequence of vectors Ty = y1, . . . ,yt2 , where yj = Yj |R for every j ∈ [t2].

(iv) For each j ∈ {1, . . . , t2}, if there exists an i ∈ [t1] such that dH(yj ,xi) ≤ 2δ, assign yj to xi,
breaking ties by assigning yj to the vector in Sx with the minimum index.

If for some yj no suitable xi is found, then yj remains unassigned.

(v) If the total number of unassigned vectors in Ty is more than 3ζt2, then output Fail.

(vi) For every i ∈ {1, . . . , t1}, the weight of xi is defined as

wi = w(xi) =
Number of vectors in Ty assigned to xi

t2
.

(vii) Use Approx-Centers (as described in Algorithm 2) with R and x1, . . . ,xt1 to obtain
S1, . . . ,St1 ∈ {0, 1}n (as stated in Lemma 4.16).

(viii) Construct and return any distribution D′ over {0, 1}n such that

• For each i = 1, . . . , t1, D′(Si) ≥ w(xi).

•
t1∑
i=1

D′(Si) = 1.

• D′(S) = 0 for every S ∈ {0, 1}n \ {S1, . . . ,St1}.
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Algorithm 2: Approx-Centers

Input: A random subset R ⊆ [n] with |R| = O( 4
t1

δ2ζ
log r

δζ ), and a sequence of vectors
x1, . . . ,xt1 ∈ {0, 1}|R| drawn from the distribution D |R.

Output: Sequence of vectors S1, . . . ,St1 such that with probability at least 99/100 over the
random choice of R, for every i ∈ [t1], dH(σ(Xi),Si) ≤ δ/10, where σ : [n] → [n] is
a permutation.

(i) For each i ∈ R, construct the vector Ci ∈ {0, 1}t1 such that Ci(j) = xj(i).

(ii) For any J ∈ {0, 1}t1 , determine γJ = |{i∈R|Ci=J}|
|R| .

(iii) Apply Observation 3.1, to obtain for any J ∈ {0, 1}t1 an approximation ΓJ , such that
ΓJ ∈ {⌊γJ · n⌋, ⌈γJ · n⌉} and

∑
J∈{0,1}t1

ΓJ = n.

(v) Construct a matrix A of dimension t1 × n by putting ΓJ many J column vectors, for each
J ∈ {0, 1}t1 .

(vi) Return the row vectors of A as S1, . . . ,St1 .

(i) A distribution D over {0, 1}n is called (η, ξ)-clustered around S with weights w0, . . . , wt ∈ [0, 1]

satisfying
t∑

i=0
wi = 1 and w0 ≤ ξ, if there exist t pairwise disjoint sets Ci, such that Ci ⊆

NGBη(Si) and D(Ci) ≥ wi for every i ∈ [t].

(ii) A distribution D over {0, 1}n is called (η, ξ)-clustered around S if D is (η, ξ)-clustered around

S with weights w0, . . . , wt ∈ [0, 1], for some w0, . . . , wt such that
t∑

i=0
wi = 1 and w0 ≤ ξ.

Observation 4.4. Let D be any distribution over {0, 1}n and S be a sequence of vectors in {0, 1}n
such that NGBη(S) ≥ 1− ξ. Then D is (η, ξ)-clustered around S.

Proof. Let us partition NGBη(S) into t parts such that Ci = NGBη(Xi) \
i−1⋃
j=1

NGBη(Xj) for every

i ∈ [t]. For every i ∈ [t], note that Ci ⊆ NGBη(Xi), and let us define wi = D(Ci). Also, set

w0 = 1 −
t∑

i=1
wi, and observe that w0 = 1 − NGBη(S) ≤ ξ. This shows that D is (η, ξ)-clustered

around S with weights w0, . . . , wt, and we are done.

The correctness proof of Test-and-Learn is in Subsection 4.2. Leading to it, in Subsection 4.1,
we consider some important lemmas and define a set of events. These lemmas, and the events whose
probability they bound from below, provide the infrastructure for the proof of Test-and-Learn in
Subsection 4.2.

4.1 Useful lemmas and events to prove the correctness of Test-and-Learn

The central goal of this section is to define an event GOOD and show that Pr (GOOD) ≥ 2/3.
The event GOOD is defined in such a fashion that, if it holds, then the algorithm Test-and-Learn
produces the desired output as stated in Theorem 4.2. Note that this bounds the error probability
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of Test-and-Learn. The event GOOD is formally defined in Definition 4.12. To define the event
GOOD, we first consider four lemmas: Lemma 4.5, Lemma 4.6, Lemma 4.7 and Lemma 4.11.

We will first state a lemma (Lemma 4.5) which says that, with high probability, the first set of
samples S (obtained in Step (i) of Test-and-Learn) intersects all the large clusters when D is
(ζ, δ, r)-clusterable.

Lemma 4.5 (Hitting large clusters). Assume that the input distribution D over {0, 1}n is
(ζ, δ, r)-clusterable with the clusters C1, . . . , Cr. The cluster Ci is said to be large if D(Ci) ≥ ζ

10r .
With probability at least 99/100, the sequence of vectors S = {X1, . . .Xt1} (found in Step (i) of
Test-and-Learn) contains at least one vector from every large cluster.

Proof. Consider any large cluster Ci. As D(Ci) ≥ ζ
10r , the probability that no vector in S belongs to

Ci is at most (1 − ζ
10r )

|S| ≤ 99
100r . This follows for a suitable choice of the hidden coefficient since

|S| = t1 = O
(
r
ζ log

r
ζ

)
. Since there are at most r large clusters, using the union bound, the lemma

follows.

Recall that Test-and-Learn obtains a second set of sample vectors T in Step (ii), takes a
random set of indices R ⊂ [n] without replacement in Step (iii), and tries to assign each vector in T
to some vector in S, based on the distance between the vectors when projected to the indices of R.
Intuitively, the step of assigning vectors performs as desired if R preserves the distances between the
vectors in S and T . For technical reasons, we also need R to preserve most (but not all) distances
between S and the entirety of {0, 1}n. The following lemma says that indeed R achieves this with
high probability.

Lemma 4.6 (Distance preservation). Let us consider the input distribution D over {0, 1}n, and
S = {X1, . . . ,Xt1} and R ⊂ [n] drawn in Step (i) and (iii) of Test-and-Learn. R is said to be
distance preserving if the following conditions hold:

(i) |dH(S,T)− dH(S |R,T |R)| ≤ δ for every S ∈ S and T ∈ T .

(ii) Let W ⊆ {0, 1}n be such that, for every W ∈ W, |dH(W,S)− dH(W |R,S |R)| ≤ δ. Then
D(W) ≥ 1− ζ

t1
.

The set R chosen in Step (iii) of Test-and-Learn is distance preserving with probability at least
99/100.

Proof. For (i), consider a particular S ∈ S and T ∈ T . Applying Observation A.5 with K = R,
U = S and V = T, the probability that |dH(S,T)− dH(S |R,T |R)| ≤ δ is at least 1 − ζ

200t21t2
.

Applying the union bound over all possible choices over (S,T) pairs, we have Part (i) with probability
at least 199/200.

To prove (ii), let us consider an arbitrary vector V ∈ {0, 1}n. Similarly to (i), we know that
|dH(V,S)− dH(V |R,S |R)| ≤ δ holds with probability at least 1 − ζ

200t21t2
. Applying the union

bound, we can say that the same holds over all S ∈ S with probability at least 1− ζ
200t1

. So, the
expected value of D({0, 1}n \W) is at most ζ

200t1
. By Markov’s inequality, the probability that Part

(ii) holds, that is, D({0, 1}n \W) ≤ ζ
t1

is at least 199/200. Putting everything together, we have the
result.

By Lemma 4.5, we know that S intersects with all large clusters with high probability, and we
are trying to assign the vectors in T to some vectors in S based on their projected distances on the
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indices of R. To learn the input distribution, we want the second set of sample vectors T to preserve
the mass of all the large clusters, and it is enough for us to approximate it, as well as be able to
detect the case where approximation is impossible and we should output Fail. The following lemma
takes care of this.

Lemma 4.7 (Weight representation). Let us consider the input distribution D over {0, 1}n to
Test-and-Learn, S = {X1, . . . ,Xt1} in Step (i), T = {Y1, . . . ,Yt2} in Step (ii), and consider
fixed t1 pairwise disjoint subsets C = {C1, . . . , Ct1} of {0, 1}n. T is said to be weight preserving for
S and C if

(i) |T ∩ NGBδ(S)|
|T | ≥ D(NGBδ(S))− ζ.

(ii) |T ∩ NGB3δ(S)|
|T | ≤ D(NGB3δ(S)) + ζ.

(iii) for every i ∈ [t1],
|T ∩ Ci|

|T | ≤ D(Ci) + ζ
t1

.

Then with probability at least 99/100, T is weight reserving for S and C.

Proof. To prove (i), let Zj be the indicator random variable such that Zj = 1 if and only if Yj is in

NGBδ(S), where j ∈ [t2]. Observe that |T ∩NGBδ(S)| =
t2∑
j=1

Zj . As Pr(Zj = 1) = D(NGBδ(S)),

the expected value of |T ∩NGBδ(S)|
|T | is also D(NGBδ(S)). Applying Hoeffding’s inequality (see

Lemma A.3), we conclude that (i) holds with probability at least 299/300.
Proving (ii) is similar to (i). Again applying Hoeffding’s inequality (Lemma A.3), we can show

that (ii) holds with probability at least 299/300.
In order to prove (iii), we proceed in similar fashion as (i), and after applying Hoeffding’s

inequality (Lemma A.3), we apply the union bound over all j ∈ [t1] to get the desired result.

Consider the weights w1, . . . , wt1 obtained in Step (vi) of Test-and-Learn. To argue that
these weights are good enough to report the desired distribution D′ (if we know the vectors in S
exactly), we consider the following observation which says that there exist t1 pairwise disjoint subsets
C∗
1 , . . . , C∗

t1 such that wi is the fraction of vectors in T that are in C∗
i for every i ∈ [t1]. Also, let us

define C∗ = {C∗
1 , . . . , C∗

t1}.

Observation 4.8. Let us consider assigning each vector in {0, 1}n either to some S ∈ S or not
assigning to any vector in S, using the same procedure that has been used to assign the set of vectors
in T in Steps (iii) and (iv) of Test-and-Learn. Let C∗

i ⊆ {0, 1}n be the set of all vectors that are

assigned to Xi, for every i ∈ [t1]. Then, for every i ∈ [t1], we have wi =
|T ∩ C∗

i |
|T | .

Proof. This follows from the definition of C∗
i .

Note that C∗ is formed following the procedure that Test-and-Learn performs to assign the
vectors of T to the vectors in S. So, a vector far away from Xi ∈ S might be assigned Xi, and wi is
considered in this case. This is not a problem as the mass on C∗

i is close to being bounded by the total
mass of the vectors in NGB3δ(Xi). This follows from the fact that the set R is distance preserving (see
Part (ii) of Lemma 4.6) with high probability. Now let us define C∗∗ = {C∗

i ∩ NBG3δ(Xi) : i ∈ [t1]}.
Finally, we will upper bound wi by D(C∗∗

i ) in the following observation. This will be useful for
proving the correctness of Test-and-Learn in Section 4.2.
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Observation 4.9. Let us assume that R is distance preserving and T is weight representative of S and
C∗. Then for every i ∈ [t1], wi ≤ D(C∗

i ) +
ζ
t1

≤ D(C∗∗
i ) + 2ζ

t1
, where we define C∗∗

i = C∗
i ∩NBG3δ(Xi).

Proof. As R is distance preserving, consider C∗ = {C∗
1 , . . . , C∗

t1} as guaranteed by Observation 4.8.

Now, as T is weight representative of S and C∗ and wi =
|T ∩ C∗

i |
|T | for every i ∈ [t1], by Lemma 4.7

(iii), wi ≤ D(C∗
i ) +

ζ
t1

. By the definition of C∗
i and by Lemma 4.6 (ii), D(C∗

i \NGB3δ(Xi)) ≤ ζ
t1

, that
is, D(C∗

i ) ≤ D(C∗∗
i ) + ζ

t1
.

Note that the above observation only gives upper bounds on the set of weights w1, . . . , wt1 . As
Lemma 4.7 provides upper as well as lower bounds on the mass around S, this will not be a problem.

Consider the distribution D∗ supported over S such that D(Xi) ≥ wi for every i ∈ [t1], which we
can view as an approximation of D. Note that we still can not report D∗ as the output distribution,
since in order to do so, we need to perform Ω(n) queries to know the exact vectors of S. Instead we
will report a distribution D′ such that D′

σ is close to D∗ for some permutation σ : [n] → [n]. The idea
is to construct a new set of vectors S1, . . . ,St1 in Step (vii) such that the Hamming distance between
Xi and σ(Si) is small for every i ∈ [t1] for some permutation σ : [n] → [n]. Lemma 4.11 implies
that this is possible from the projection of the vectors in S onto the indices of R (the implication
itself will be proved later in Lemma 4.16). Before proceeding to Lemma 4.11, we need the following
definition and observation.

Definition 4.10. Given any sequence of vectors S = {X1, . . . ,Xt1} ⊆ {0, 1}n and j ∈ [n], we define
the vector CS

j ∈ {0, 1}t1 as
for every i ∈ [t1], CS

j (i) = Xi(j).

For any J ∈ {0, 1}t1 , we define

αJ =
|{j ∈ [n] | CS

j = J}|
n

.

Intuitively, let us consider a matrix M of order t1 × n such that the i-th row vector corresponds
to the vector Xi. Then observe that CS

j represents the j-th column vector of the matrix M and αJ

denotes the fraction of column vectors of M that are identical to J .

Lemma 4.11 (Structure preservation). Let us consider the input distribution D over {0, 1}n,
S = {X1, . . . ,Xt1} and R ⊂ [n] drawn in Step (i) and (iii) of Test-and-Learn. Also, let us
consider the values of ΓJ found in Step (iii) of Approx-Centers (called from Step (vii) of Test-

and-Learn). The set R is said to be structure preserving for S if
∣∣∣αJ − ΓJ

n

∣∣∣ ≤ δ
10·2t1 holds for

every J ∈ {0, 1}t1 . Then the set R chosen in Step (iii) of Test-and-Learn is structure preserving
for S with probability at least 99/100.

Proof. Consider any particular J ∈ {0, 1}t1 and γJ determined by Step (ii) of Approx-Centers.
By applying Hoeffding’s bound for sampling without replacement (Lemma A.4), we obtain, for any
η > 0,

Pr
[
|γJ − αJ | ≥

η

20

]
≤ e−2η2|R|/400.

By substituting the value of |R| (for a suitable choice of the hidden coefficient) and η = δ
2t1

, and
using the union bound over all possible J ∈ {0, 1}t1 , we conclude that with probability at least
99/100, for all J ∈ {0, 1}t1 , |γJ − αJ | ≤ δ

20·2t1 .
Note that Approx-Centers constructs ΓJ ’s from γj ’s by applying Observation 3.1. From the

way Observation 3.1 generates ΓJ ’s from γj ’s, we conclude that for all J ∈ {0, 1}t1 , |γJ − ΓJ
n | ≤ 1

n ,
completing the proof, assuming that n is larger than 20·2t1

δ .
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Now we are ready to define the event GOOD.

Definition 4.12 (Definition of the event GOOD). Let us define an event GOOD as E1 ∧ E2 ∧
E3 ∧ E4, where

(i) E1 : If D is (ζ, δ, r)-clusterable with the clusters C1, . . . , Cr, then S = {X1, . . .Xt1} (found in
Step (i) of Test-and-Learn) contains at least one vector from every large cluster.

(ii) E2 : R (picked in Step (ii) of Test-and-Learn) is distance preserving.

(iii) E3 : R is structure preserving for S.

(iv) E4: T is weight preserving for S and C∗, where C∗ = {C∗
1 , . . . , C

∗
t1} is as defined in Observa-

tion 4.8.

Note that the event E1 follows from Lemma 4.5, E2 follows from Lemma 4.6, E3 follows from
Lemma 4.11, and E4 follows from Lemma 4.7. Thus, from the respective guarantees of the aforemen-
tioned lemmas, we can say that Pr(E1),Pr(E2),Pr(E3),Pr(E4) ≥ 99

100 . To address a subtle point, note
that Lemma 4.6 gives a probability lower bound on R being distance preserving for any choice of
T , and hence the lower bound also holds for T sampled according to the distribution. Similarly,
Lemma 4.7 provides a probability lower bound on T being weight representative for any choice of R
(which affects C∗) regardless of whether R is distance preserving, and hence the lower bound also
holds for the R chosen at random by the algorithm. So, we have the following lemma.

Lemma 4.13. Pr (GOOD) ≥ 2
3 .

4.2 Proof of Theorem 4.2 (Correctness of Test-and-Learn)

In the first three lemmas below (Lemma 4.14, Lemma 4.15 and Lemma 4.16), we prove the
correctness of the internal steps of the algorithm. These lemmas are stated under the conditional
space that the event GOOD defined in Definition 4.12 occurs. Using these lemmas along with
Lemma 4.17, which helps us combine them, allows us to prove Theorem 4.2.

Lemma 4.14 (Guarantee till Step (v) of Test-and-Learn). Assume that the event GOOD
holds.

(i) If D is (ζ, δ, r)-clusterable, then D is (δ, 2ζ)-clustered around S, and the fraction of samples in
Ty that are not assigned to any vector in Sx will be at most 3ζ. That is, Test-and-Learn
does not output Fail in Step (v) and proceeds to Step (vi).

(ii) If D is not (3δ, 5ζ)-clustered around S, then the fraction of samples in Ty that are not assigned
to any vector in Sx will be at least 3ζ. That is, Test-and-Learn outputs Fail and does not
proceed to Step (vi).

Proof. (i) For the first part, as E1 holds (see Lemma 4.5), the set S contains at least one vector
from every large cluster. Now, if we consider the δ-neighborhood of S, that is, NGBδ(S), we
infer that all vectors in large clusters are in NGBδ(S). By the definition of a large cluster,
the mass on the vectors that are not in any large cluster is at most 2ζ. Hence, we conclude
that D(NGBδ(S)) ≥ (1− 2ζ). Thus, by Observation 4.4, D is (δ, 2ζ)-clustered around S. For
the second part, as the event E4 holds (see Lemma 4.7(i)), T is weight representative for S.
This follows since D is (δ, 2ζ)-clustered, and in particular is (3δ, 5ζ)-clustered around S. Thus,
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|T ∩NGBδ(S)|
|T | ≥ D(NGBδ(S))− ζ. Also, as the event E2 holds (see Lemma 4.6), R is distance

preserving between S and T , meaning that if Yi in Cj , then yi is assigned to xj . Hence,

t1∑
i=1

wi ≥
|T ∩ NGBδ(S)|

|T |
≥ D(NGBδ(S))− ζ ≥ 1− 3ζ.

That is, w0 ≤ 3ζ, and the algorithm Test-and-Learn does not report Fail and proceeds to
Step (vi).

(ii) Since the distribution D is not (3δ, 5ζ)-clustered around S, by Observation 4.4, D(NGB3δ(S)) <
1−5ζ. As the event E4 holds (see Lemma 4.7 (ii)), |T ∩NGB3δ(S)|

|T | ≤ D(NGB3δ(S))+ζ ≤ 1−4ζ.
Also, as the event E2 holds (see Lemma 4.6), R is distance preserving between S and T . This
implies that

t1∑
i=1

wi ≤
|T ∩ NGB3δ(S)|

|T |
≤ D(NGB3δ(S)) + ζ < 1− 3ζ.

That is, w0 > 3ζ, and the algorithm Test-and-Learn reports Fail. So, Test-and-Learn
does not proceed to Step (vi).

Lemma 4.15 (Guarantee from Step (vi) of Test-and-Learn). Assume that the event GOOD
holds. Also, assume that D is (3δ, 5ζ)-clustered around S and w0 ≤ 3ζ holds in Step (vi) of Test-
and-Learn. Consider the following distribution D′′ over {0, 1}n, constructed from the weights
obtained from Step (vi) of Test-and-Learn, such that

(i) For each i ∈ [t1], D′′(Xi) = w(xi) = wi.

(ii) D′′(X0) = 1−
t1∑
i=1

w(xi) for some arbitrary X0.

(iii) D′′(X) = 0 for every X ∈ {0, 1}n \ {X0, . . . ,Xt1}.

Then D′′ is (5δ, 5ζ)-clustered around S with weights w0, . . . , wt1 , where w0 = 1−
t1∑
i=1

wi, and the

EMD between D and D′′ satisfies dEM (D,D′′) ≤ 10δ + 12ζ.

We will prove Lemma 4.15 in Subsection 4.2. Now we proceed to prove the guarantee regarding
Step (vii) of Test-and-Learn.

Lemma 4.16 (Guarantee from Step (vii) of Test-and-Learn). Assume that the event GOOD
holds. Then, in Step (vii), the algorithm Approx-Centers (if called as described in Algorithm 2)
outputs a sequence of vectors {S1, . . . ,St1} in {0, 1}n, such that there exists a permutation σ : [n] → [n]
for which dH(σ(Xi),Si) ≤ δ

10 holds for every i ∈ [t1].

Proof. Here we assume that the event GOOD holds. In particular, we assume that the event E3
holds.

Let us consider a matrix M of order t1 × n such that the i-th row vector corresponds to the
vector Xi. Then observe that CS

j represents the j-th column vector of matrix M and αJ denotes
the fraction of column vectors of M that are identical to the vector J .

Let us consider the matrix A of order t1 × n constructed by our algorithm, by putting ΓJ many
column vectors identical to J , for every J ∈ {0, 1}t1 . Note that {S1, . . . ,St1} are the row vectors
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corresponding to A. As we are assuming that the event E3 holds (see Lemma 4.11), |αJ − ΓJ
n | ≤ δn

10·2t1
holds for every J ∈ {0, 1}t1 . Observe that we can permute the columns of the matrix M using a
permutation σ : [n] → [n] and create a matrix Mσ, such that there exists a bad set I ⊂ [n] of size at
most δ·n

10 , where after the removal of the columns corresponding to indices of I from both matrices
Mσ and A become identical. Hence, we infer that dH(σ(Xi),Si) ≤ δ

10 for every i ∈ [t1], where σ is
the permutation corresponding to Mσ. This completes the proof of Lemma 4.16.

Finally, to prove Theorem 4.2, we need to show that the Earth Mover Distance between two
distributions defined over close vectors is bounded when one distribution is clustered around a
sequence of vectors and the other distribution has similar weights compared to the first distribution.

Lemma 4.17 (EMD between distributions having close cluster centers). Let η, κ, ξ ∈ (0, 1)
be three parameters such that η+κ+ ξ < 1. Suppose that S = {X1, . . . ,Xt1} and S ′ = {X′

1, . . . ,X
′
t1}

are two sequences of vectors over {0, 1}n such that dH(Xi,X
′
i) ≤ κ for every i ∈ [t1]. Moreover, let D

be an (η, ξ)-clustered distribution around S with weights w0, . . . , wt1 and D′ be another distribution
such that D′(X′

i) ≥ wi for every i ∈ [t1]. Then dEM (D,D′) ≤ η + ξ + κ.

Proof. Recall that the EMD between D and D′ is the solution to the following LP:

Minimize
∑

X,Y∈{0,1}n
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}n
fXY = D(X) ∀X ∈ {0, 1}n ,

∑
X∈{0,1}n

fXY = D′(Y) ∀Y ∈ {0, 1}n

and 0 ≤ fXY ≤ 1, ∀X,Y ∈ {0, 1}n.

Here D is (η, ξ)-clustered around S. Let C1, . . . , Ct1 be the pairwise disjoint subsets of {0, 1}n
such that Ci ⊆ NGBη(Xi) and D(Ci) ≥ wi for every i ∈ [t1].

Consider a particular solution {f∗
XY : X,Y ∈ {0, 1}n} that also satisfies the constraint∑

X∈Ci
fXX′

i
≥ wi for every i ∈ [t1].

The above constraint is feasible as D(Ci) ≥ wi and D′(X′
i) ≥ wi, where i ∈ [t1].

Now,

EMD(D,D′) ≤
∑

X,Y∈{0,1}n
f∗
XYdH(X,Y)

≤
t1∑
i=1

∑
X∈Ci

f∗
XX′

i
dH(X,X′

i) +
∑

X/∈
t1⋃
i=1

Ci,Y∈{0,1}n

f∗
XYdH(X,Y)

≤
t1∑
i=1

wi · (η + κ) + w0 · 1

≤ η + κ+ ξ.
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Proof of Theorem 4.2

To prove Theorem 4.2, we need the following lemma.

Lemma 4.18. If D is (3δ, 5ζ)-clustered around S, and Test-and-Learn executes Step (vi), then
dEM (D,D′

σ) ≤ 17(δ + ζ) for some permutation σ : [n] → [n].

Proof. As D is (3δ, 5ζ)-clustered around S, by Lemma 4.15, we have that D′′ is (5δ, 5ζ)-clustered
around S with weights w0, . . . , wt1 and dEM (D,D′′) ≤ 10δ + 12ζ.

Now consider Step (vii) of Test-and-Learn, where we call Approx-Centers with R and
x1, . . . ,xt1 to obtain S1, . . . ,St1 . By Lemma 4.16, dH(σ(Xi),Si) ≤ δ

10 for every i ∈ [t1] for some
permutation σ : [n] → [n]. Consider the sequence of vectors Xσ

1 . . . ,X
σ
t1 where Xσ

i = σ(Xi) for every
i ∈ [t1].

Let us now consider the distribution D′′
σ over {0, 1}n such that D′′

σ(X) = D′′(σ(X)) for every
X ∈ {0, 1}n. As D′′ is (5δ, 5ζ)-clustered around S = {X1, . . . ,Xt1} with weights w0, . . . , wt1 , D′′

σ

is (5δ, 5ζ)-clustered around {Xσ
1 , . . . ,X

σ
t1} with weights w0, . . . , wt1 . In the output distribution D′,

D′(Si) ≥ wi for every i ∈ [t1]. So, by Lemma 4.17, we have dEM (D′, D′′
σ) ≤ 5δ+ δ

10 +5ζ. Combining
this with the fact that dEM (D,D′′) ≤ 10δ + 12ζ, we conclude that dEM (D,D′

σ) ≤ 17(δ + ζ).

To prove Theorem 4.2, we first prove that the guarantees of the two parts follow assuming that
the event GOOD holds. We will be done since Pr (GOOD) ≥ 2/3 (see Lemma 4.13). The query
complexity of the algorithm follows from the parameters in its description.

Proof of Part (i): Here D is (ζ, δ, r)-clusterable. By Lemma 4.14, D is (δ, 2ζ)-clustered around S
and the fraction of samples in Ty that are not assigned to any vector in Sx is at most 3ζ. That
is, Test-and-Learn does not output Fail for D in Step (v). By Lemma 4.18, we conclude that
dEM (D,D′

σ) ≤ 17(δ + ζ) for some permutation σ : [n] → [n]. This completes the proof of Part
(i).

Proof of Part (ii): Recall that we are working under the conditional space that the event GOOD
holds. Now consider the following:

• If D is not (3δ, 5ζ)-clustered around S, then by Lemma 4.14, the algorithm Test-and-Learn
reports Fail.

• If D is (3δ, 5ζ)-clustered around S, then the algorithm Test-and-Learn either reports Fail
in Step (v) or continues to Step (vi). In case we go to Step (vi), following Lemma 4.18, we
again conclude that dEM (D,D′

σ) ≤ ε.

Observe that the above two statements imply Part (ii). This completes the proof of Theorem 4.2.

Proof of Lemma 4.15

Here we assume that the event GOOD holds. In particular, the events E2 and E4 hold. To
prove Lemma 4.15, we will prove some associated claims and lemmas about the weights w0, . . . , wt1

obtained in Step (vi) of Test-and-Learn, and the distribution D′′ defined in Lemma 4.15. Let us
start with the following claim.

Claim 4.19. The distribution D
′′ (defined in the statement of Lemma 4.15) is (5δ, 5ζ)-clustered

around S with weights w0, w1 . . . , wt1, where w0 = 1−
t1∑
i=1

wi.
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Proof. This follows from the definition of D′′, along with the fact that w0 ≤ 3ζ < 5ζ.

Now we have the following claim.

Claim 4.20. There exists a sequence of weights w′
0, . . . , w

′
t1 such that D is (5δ, 5ζ)-clustered around

S with weights w′
0, . . . , w

′
t1, and

t1∑
i=1

|wi − w′
i| ≤ 2ζ.

Proof. As events E2 and E4 hold, consider C∗ = {C∗
1 , . . . , C∗

t1} (as guaranteed by Observation 4.8)
and C∗∗ = {C∗∗

1 , . . . , C∗∗
t1 } such that, for every i ∈ [t1], C∗∗

i = C∗
i ∩NGB3δ(Xi) and wi ≤ D(C∗∗

i ) + 2ζ
t1

(see Observation 4.9).

Let us define w′
i = max{wi − 2ζ

t1
, 0} and w′

0 = 1−
t1∑
i=1

w′
i. So, w′

i ≤ D (C∗∗
i ).

Now

w′
0 = 1−

t1∑
i=1

w′
i ≤ 1−

t1∑
i=1

(
wi −

2ζ

t1

)
≤ (w0 + 2ζ) ≤ 3ζ + 2ζ = 5ζ.

Putting everything together, the above C∗∗ satisfies C∗∗
i ⊆ NGB3δ(Xi) ⊆ NGB5δ(Xi) and has

weights w′
0, . . . , w

′
t1 such that w′

0 ≤ 5ζ and w′
i ≤ D(C∗∗

i ) for every i ∈ [t1]. Hence, D is (5δ, 5ζ)-

clustered around S with weights w′
0, . . . , w

′
t1 . Moreover,

t1∑
i=1

|wi − w′
i| ≤ 2ζ holds following the

definition of w′
is.

Lemma 4.21 (Comparison-by-weights). Let D1 and D2 be two distributions defined over
{0, 1}n that are (η, ξ)-clustered around a sequence of vectors S = {X1, . . . ,Xt1} with weights
v0, . . . , vt1 and w0, . . . , wt1, respectively. Then the Earth Mover Distance between D1 and D2 is

dEM (D1, D2) ≤ 2η +
t1∑
i=1

|vi − wi|+ 2ξ.

Proof. Let U be an arbitrary vector from {0, 1}n. Let us define a distribution D′
1 (supported over

S ∪ {U}) from the distribution D1 as follows:

D′
1(Y) =


vi Y = Xi for every i ∈ [t1]

1−
t1∑
i=1

vi Y = U

0 otherwise

Similarly, we define a distribution D′
2 from D2. First we have the following claim, which follows

from the definitions. From the definitions of D′
1 and D′

2, we can say that

(i) dEM (D1, D
′
1) ≤ η + ξ and dEM (D2, D

′
2) ≤ η + ξ (by Lemma 4.17).

(iii) dEM (D′
1, D

′
2) ≤

t1∑
i=1

|vi − wi|.

Using the triangle inequality, we have

dEM (D1, D2) ≤ dEM (D1, D
′
1) + dEM (D′

1, D
′
2) + dEM (D2, D

′
2)

≤ 2η +

t1∑
i=1

|vi − wi|+ 2ξ.

This completes the proof of Lemma 4.21.
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Now we proceed to prove Lemma 4.15.

Proof of Lemma 4.15. By the description of D′′ in Lemma 4.15, using Claim 4.19, we know that D′′ is
(5δ, 5ζ)-clustered around S with weights w1, . . . , wt1 . By applying Claim 4.20, D is (5δ, 5ζ)-clustered

around S with weights w′
0, . . . , w

′
t1 such that

t1∑
i=1

|wi − w′
i| ≤ 2ζ. Now, by applying Lemma 4.21 with

η = 5δ, ξ = 5ζ, we obtain that the Earth Mover Distance between D and D′′ is bounded as follows:

dEM (D,D′′) ≤ 10δ + 2ζ + 10ζ ≤ 10δ + 12ζ.

This completes the proof of Lemma 4.15.

5 Testing properties with bounded VC-dimension

In this section, we will prove that distributions over {0, 1}n whose support have bounded VC-
dimension can be learnt (up to permutations) by performing a number of queries that is independent
of the dimension n, and depends only on the proximity parameter ε and the VC-dimension d
(Theorem 1.2). In fact, we will prove a generalization, that any distribution D that is β-close to
bounded VC-dimension can be learnt efficiently up to permutations (with a proximity parameter
depending on β) by performing a set of queries whose size is independent of n (Theorem 5.1). As a
consequence of the learning result of Theorem 5.1, we also obtain a tester for properties having a
bounded VC-dimension (Corollary 5.2) which is a restatement of Corollary 1.3.

In Subsection 5.1, we connect the notions of (ζ, δ, r)-clusterablity and being β-close to (α, r)-
clusterablity (Definition 4.1) in Lemma 5.4 and prove Corollary 5.3 regarding learning distributions
that are β-close to (α, r)-clusterable. Then, in Subsection 5.2, we recall some standard results
from VC theory to connect the notions of bounded VC-dimension and clusterability, to obtain
Corollary 5.12, which is crucially used in Subsection 5.3 to prove Theorem 5.1.

Theorem 5.1 (Learning a distribution β-close to bounded VC-dimension). Let d ∈ N be a
constant. There exists a (non-adaptive) algorithm, that given sample and query access to an unknown
distribution D over {0, 1}n, takes α, β ∈ (0, 1) with β < α as input such that ε = 17(3α+ β/α) < 1,
makes number of queries that depends only on α, β and d, and either reports a full description of a
distribution, or Fail, satisfying both of the following conditions:

(i) If D is β-close to VC-dimension d, then with probability at least 2/3, the algorithm outputs a
distribution D′ such that dEM (D,D′

σ) ≤ ε for some permutation σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that dEM (D,D′
σ) > ε for every

permutation σ : [n] → [n] with probability more than 1
3 . However, if the distribution D is not

β-close to VC-dimension d, the algorithm may output Fail with any probability.

Remark 2. Note that α above does not appear anywhere outside the expression for ε, and hence it
is tempting to minimize ε by taking α =

√
β/3. However, this is a bad strategy since the number

of queries of the algorithm depends on 1/α. In the common scenario, we would be given β and
ε ≥ 34

√
3β, and solve for α.

Corollary 5.2 (Testing properties with bounded VC-dimension). Let d ∈ N be a constant,
and P be an index-invariant property with VC-dimension d. There exists an algorithm that has
sample and query access to an unknown distribution D, takes a parameter ε ∈ (0, 1), and distinguishes
whether D ∈ P or D is ε-far from P with probability at least 2/3, where the total number of queries
made by the algorithm is a function of only d and ε.
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Remark 3. Note that the algorithm for testing the index-invariant property with constant VC-
dimension d takes exp(d) samples, and performs exp(exp(d)) queries. It turns out that similarly
to the case of Test-and-Learn, the dependencies of the sample and query complexities on d are
tight, in the sense that there exists a property of VC-dimension d such that testing it requires 2Ω(d)

samples, and Ω(22
d−O(1)

) queries. We will construct such a property and prove its lower bound in
Section 6.

We will give the proof of Theorem 5.1 in Subsection 5.3.

5.1 A corollary of Theorem 4.2 to prove Theorem 5.1

In this subsection, we first connect the notions of (ζ, δ, r)-clusterablity and being β-close to
(α, r)-clusterablity (Definition 4.1) in Lemma 5.4. Then using Lemma 5.4 with our algorithm for
learning (ζ, δ, r)-clusterable distributions (Theorem 4.2), we prove Corollary 5.3 regarding learning
distributions that are β-close to (α, r)-clusterable. This corollary will be used later to prove
Theorem 5.1.

Corollary 5.3 (Learning distributions β-close to (α, r)-clusterable). Let n ∈ N. There exists
a (non-adaptive) algorithm, that has sample and query access to an unknown distribution D over
{0, 1}n, takes parameters α, β, r as inputs such that α > β and ε = 17(3α+ β/α) < 1 and r ∈ N,
makes a number of queries that only depends on α, β and r, and either reports a full description of a
distribution over {0, 1}n or reports Fail, satisfying both of the following conditions:

(i) If D is β-close to (α, r)-clusterable, then with probability at least 2/3, the algorithm outputs a full
description of a distribution D′ over {0, 1}n such that dEM (D,D′

σ) ≤ ε for some permutation
σ : [n] → [n].

(ii) For any D, the algorithm will not output a distribution D′ such that dEM (D,D′
σ) > ε for every

permutation σ : [n] → [n], with probability more than 1/3. However, if the distribution D is
not β-close to (α, r)-clusterable, the algorithm may output Fail with any probability.

To prove the above corollary, we need the following lemma, that connects the two notions of clus-
terability, that is, (ζ, δ, r)-clusterablity and being β-close to (α, r)-clusterability (see Definition 4.1).

Lemma 5.4. Let α, β ∈ (0, 1) be such that α > β, and D be a distribution over {0, 1}n that is
β-close to being (α, r)-clusterable. Then D is (3α, r, β/α)-clusterable.

Proof. Let D0 be the distribution such that D0 is (α, r)-clusterable and dEM (D,D0) ≤ β. Let
C1, . . . , Cs be the partition of the support of D0 that realizes the (α, r)-clusterability of D0, and let
{fXY : X,Y ∈ {0, 1}n} be the flow that realizes dEM (D,D0) ≤ β.

Let C =
s⋃

i=1
Ci, and C>α be the set of vectors in {0, 1}n that have distance of at least α from all

the vectors in C. Now we have the following claim.

Claim 5.5. D(C>α) ≤ β
α .

Proof. By contradiction, let us assume that D(C>α) >
β
α . Then we have the following:

dEM (D,D0) ≥
∑

X∈C>α,Y∈C
fXYdH(X,Y) ≥ α ·D(C>α) > β.

This is a contradiction as we have assumed dEM (D,D0) ≤ β.
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Now for every i, let C≤α
i be the vectors that have distance at most α from at least one vector Ci,

where i ∈ [s]. Let C′
i = C≤α

i \
i−1⋃
j=1

C′
j for 1 ≤ i ≤ s. Now we have the following observation.

Observation 5.6. For any 1 ≤ i ≤ s, dH(U,V) ≤ 3α for any U,V ∈ C′
i.

Proof. Since U,V ∈ C′
i, let U′ and V′ be the vectors in Ci such that dH(U,U′) ≤ α, and dH(V,V′) ≤

α. As U′,V′ ∈ Ci, and D0 is (α, r)-clusterable, using the triangle inequality, we can say that
dH(U,V) ≤ dH(U,U′) + dH(U′,V′) + dH(V′,V) ≤ 3α.

Consider C′
0 = C>α, and by Claim 5.5, note that D(C′

0) ≤ β/α. The existence of C′
0, C′

1, . . . , C′
s as

above implies that D is (3α, r, β/α)-clusterable (see Definition 4.1).

Proof of Corollary 5.3 using Theorem 4.2 and Lemma 5.4. The algorithm here (say ALG) calls al-
gorithm Test-and-Learn (as described in Algorithm 1) with parameters ζ = β/α and δ = 3α,
and reports the output returned by Test-and-Learn as the output of ALG. Now we prove the
correctness of ALG.

Part (i): Here we consider the case where D is β-close to (α, r)-clusterable. By Lemma 5.4, D is
(ζ, δ, r)-clusterable. By Theorem 4.2 (i), we get a distribution D′ such that dEM (D,D′

σ) ≤
17(ζ + δ) = 17(3α+ β/α) = ε for some permutation σ : [n] → [n], with probability at least
2/3. This completes the proof of Part (i).

Part (ii): This follows from Theorem 4.2 (ii) along with our choices of δ = 3α and ζ = β/α.

5.2 A corollary from VC theory required to prove Theorem 5.1

In this subsection, we recall some definitions from VC-dimension theory, and use a well known
result of Haussler [Hau95] to obtain Corollary 5.12, which states that if the VC-dimension of a set of
vectors V is bounded, then the vectors of V can be covered by bounded number of Hamming balls.
This corollary will be crucially used to prove Theorem 5.1 in Subsection 5.3.

Let us start by defining the notion of an α-separated set.

Definition 5.7 (α-separated set). Let α ∈ (0, 1) and W ⊂ {0, 1}n be a set of vectors. W is said
to be α-separated if for any two vectors X,Y ∈ W , dH(X,Y) ≥ α.

Now let us define the notion of the α-packing number of a set of vectors.

Definition 5.8 (α-packing number). Let α ∈ (0, 1), and V ⊂ {0, 1}n be a set of vectors. The
α-packing number of V , denoted by M(α, V ), is defined as the cardinality of the largest α-separated
subset W of V .

Now we define the notion of an α-cover of a set of vectors.

Definition 5.9 (α-cover). Let α ∈ (0, 1) and V ⊂ {0, 1}n be a set of vectors. A set M ⊆ V is
an α-cover of V if V ⊆

⋃
p∈M

NGBα(p), where NGBα(p) := {q : dH(p,q) ≤ α} denotes the set of

vectors that are within Hamming distance α from the vector p.
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Now let us consider the following theorem from [Hau95], which says that if the VC-dimension of
a set of vectors V is d, then the size of the α-packing number of V , that is, M(α, V ), is bounded by
a function of d and α.

Theorem 5.10 (Haussler’s packing theorem [Hau95, Theorem 1]). Let α ∈ (0, 1) be a
parameter. If the VC-dimension of a set of vectors V is d, then the α-packing number of V is
bounded as follows:

M(α, V ) ≤ e(d+ 1)

(
2e

α

)d

The following observation is immediate.

Observation 5.11. Let α ∈ (0, 1) be a parameter and M be a maximal α-packing of a set of vectors
V ⊂ {0, 1}n. Then M is also an α-cover of V .

With this observation, along with Theorem 5.10, we get the following bound on the size of a
cover of a set of vectors in terms of its VC-dimension.

Corollary 5.12 (Existence of a small α-cover). Let d ∈ N. If the VC-dimension of a set of
vectors V is d, then for all α ∈ (0, 1), there exists a set M ⊆ V such that M is an α-cover of V and
|M | ≤ e(d+ 1)

(
2e
α

)d.
5.3 Proof of Theorem 5.1 and testing bounded VC-dimension properties

In this subsection, using Corollary 5.3, we prove that any distribution that is β-close to bounded
VC-dimension can be learnt (up to permutation) by performing a number of queries that depends
only on the VC-dimension d and the proximity parameter ε, and is independent of the dimension
of the Hamming cube {0, 1}n (Theorem 5.1). The crucial ingredient of the proof is Theorem 5.10,
through its Corollary 5.12. From Theorem 5.1, we obtain a tester for testing distribution properties
with bounded VC-dimension (Corollary 5.2).

Proof of Theorem 5.1. We call the algorithm ALG corresponding to Corollary 5.3 with D as the
input distribution, the same α and β as here, and r = ⌊e(d + 1)

(
2e
α

)d⌋. Note that the output of
ALG is either the full description of a distribution D′ or Fail. We output the same output returned
by ALG. Now we prove the correctness of this procedure.

(i) Here D is β-close to having VC-dimension d. Let D0 be the distribution such that D0 has
VC-dimension at most d and dEM (D,D0) ≤ β. By Corollary 5.12, we can partition the support
of D0 into r parts C1, . . . , Cr such that r ≤ e(d+ 1)

(
2e
α

)d and the Hamming distance between
any pair of vectors in the same cluster Ci is at most α. This means that D0 is (α, r)-clusterable.
So, with probability at least 2/3, Test-and-Learn outputs a distribution D′ such that
dEM (D,D′

σ) ≤ 17(3α+ β/α) for some permutation σ : [n] → [n], and we are done with the
proof.

(ii) This follows from the guarantee provided by Test-and-Learn, see Corollary 4.2 (ii).

We conclude this section with the proof of Corollary 5.2 regarding the testing of properties with
bounded VC-dimension.
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Proof of Corollary 5.2. We call the algorithm (say ALG) corresponding to Theorem 5.1 with the
input distribution D, α = ε/102, and β = 0. Let D′ be the output of ALG. We check if there exists
a distribution D′′ ∈ P such that dEM (D′, D′′) ≤ ε/2. If yes, we accept D. Otherwise, we reject D.

Now we argue the correctness. For completeness, let us assume that D ∈ P, hence D has
VC-dimension d. By the guarantee for ALG following Theorem 5.1, with probability at least 2/3,
ALG does not report Fail, and the output distribution D′ by ALG satisfies dEM (D,D′

σ) ≤ ε/2 for
some permutation σ : [n] → [n]. Since P is an index-invariant property, D′ and D′

σ have the same
distance from the property P. Also, as D ∈ P, Dσ ∈ P as well. Hence, there exists a distribution
D′′ ∈ P (here Dσ in particular) such that dEM (D′, D′′) ≤ ε/2, and we accept D with probability at
least 2/3.

For soundness, consider the case where D is ε-far from P. If ALG reports Fail, we are done.
Otherwise, by Theorem 5.1, the output distribution D′ is such that dEM (D,D′

σ) ≤ ε/2 for some
permutation σ : [n] → [n]. Now we consider any distribution D′′ with dEM (D′, D′′) ≤ ε/2 and
argue that D′′ is not in P. By contradiction, let us assume that D′′ ∈ P. As P is index-invariant,
D′′

σ ∈ P. Note that dEM (D′
σ, D

′′
σ) ≤ ε/2 as dEM (D′, D′′) ≤ ε/2. So, D′

σ is ε/2-close to property P.
As dEM (D,D′

σ) ≤ ε/2, by the triangle inequality, D is ε-close to P , a contradiction. This completes
the proof of Corollary 5.2.

6 Tightness of the bounds for bounded VC-dimension properties

As mentioned in the introduction, our tester for testing a VC-dimension property takes exp(d)
samples, and performs exp(exp(d)) queries for VC-dimension d. Now we show that there exists
an index-invariant property of VC-dimension at most d which requires such sample and query
complexities, proving Theorem 1.4.

Theorem 6.1 (Restatement of Theorem 1.4). Let d, n ∈ N. There exists an index-invariant
property Pvc with VC-dimension at most d such that any (non-adaptive) tester for Pvc requires 2Ω(d)

samples and 22
d−O(1) queries.

Since the query complexity of non-adaptive testers can be at most quadratic as compared to
adaptive ones (Theorem 1.6), arguing only for non-adaptive testers is sufficient for our purpose.
We would like to point out that the property of having support size at most 2d is a property
with VC-dimension bounded by d, for which the authors of [GR22] proved a lower bound of
Ω(2(1−o(1))d) samples [GR22, Observation 2.7]. Although the sample lower bound of the property
Pvc of Theorem 6.1 is weaker in comparison to that of the support size property, here we prove both
sample and query lower bounds for the same property Pvc. Moreover, Pvc is defined by being a
permutation of a single distribution.

Without loss of generality, in what follows, we assume that d is large enough.

Property Pvc: Let k = 2d and ℓ = 22
d−10 be two integers and assume that ℓ divides n. Consider a

matrix A of dimension k × ℓ such that the Hamming distance between any pair of column vectors of
A is at least 1/3 12. Let DA be a distribution supported over the vectors V1, . . . ,Vk such that, for
every i ∈ [k], the following holds:

12One way to construct such a matrix is to select 2d−10 vectors from {0, 1}2
d

uniformly at random, and let the
columns of A be the set of all their linear combinations over the field Z2.
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• Vi is the n/ℓ times “blow-up” of the i-th row of A, that is, for j ∈ [ℓ] and j′ with (j − 1) · n
ℓ <

j′ ≤ j · n
ℓ , (Vi)j′ = aij , where aij denotes the element of the matrix A present in the i-th row

and the j-th column.

• DA(Vi) =
1
k = 1

2d
.

Now we are ready to define the property Pvc.

Pvc = {D : D = Dσ
A for some permutation σ : [n] → [n]}.

Now we have the following observation.

Observation 6.2. The VC-dimension of Pvc is at most d.

This follows from the fact that the support size of the distribution DA is 2d. We will prove first
the query complexity lower bound, and then prove the (easier) sample complexity lower bound.

Query complexity lower bound: Let us define the first pair of hard distributions over distribu-
tions over {0, 1}n, that is, Dyes and Dno.

Distribution Dyes: We choose a permutation σ : [n] → [n] uniformly at random, and pick the
distribution Dσ

A over {0, 1}n.

The distribution Dno is constructed from the matrix A that is used to define Dyes as follows:

Distribution Dno: We first choose ℓ′ = 22
d−20 many column vectors uniformly at random from A

and let B be the resulting matrix of dimension k × ℓ′. Let DB be the distribution supported over
the vectors W1, . . . ,Wk such that, for every i ∈ [k], the following holds:

• Wi is the n/ℓ′ times blow-up of the i-th row of B, that is, for j ∈ [ℓ′] and j′ with (j − 1) · n
ℓ′ <

j′ ≤ j · n
ℓ′ , (Wi)j′ = bij , where bij denotes the element of matrix B present in the i-th row and

the j-th column.

• Dno(Wi) =
1
k = 1

2d
.

We choose a permutation σ : [n] → [n] uniformly at random, and pick the distribution Dσ
B over

{0, 1}n.

Lemma 6.3. Dyes is supported over Pvc and Dno is supported over distributions that are 1/8-far
from Pvc.

Proof. Following the definition of Pvc and Dyes, it is clear that Dyes is supported over Pvc. To prove
the claim about Dno, consider the following definition and observation.

Definition 6.4. Let us consider a distribution D over {0, 1}n. A matrix M of dimension s× n is
said to be a corresponding matrix of D if D is the distribution resulting from picking uniformly
at random a row of M . 13 For a permutation π : [s] → [s], Mπ denotes the matrix obtained by
permuting the rows of M according to the permutation π, that is, the π(i)-th row of Mπ is same as
the i-th row of M for every i ∈ [s].

13Note that, if M has no duplicate rows, then D is a uniform distribution over its support.
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Note that if M is a corresponding matrix of D with s rows and s′ is a multiple of s, then the
matrix M ′ constructed by repeating every row of M s′/s many times is also a corresponding matrix
of D.

Now the following observation connects the Earth Mover Distance between two distributions
with the Hamming distance between their corresponding matrices.

Claim 6.5. Let D1 and D2 be two distributions over {0, 1}n. Also, let L and M be corresponding
matrices of D1 and D2, respectively, both of dimension s × n. Then the Earth Mover Distance
between D1 and D2 is the same as the minimum Hamming distance between L and M over all row
permutations.

Formally, let the Hamming distance between L and M be defined as

dH(L,M) =
|{(i, j) ∈ [s]× [n] : lij ̸= mij}|

s · n

Then
dEM (D1, D2) = min

π:[s]→[s]
dH(Lπ,M).

Proof. We first note that any solution fXY for the EMD between D1 and D2 can be translated to a
doubly stochastic matrix S of dimension s× s as follows:

For every i, let Li be the i-th row of L and li be the number of rows of L that are identical to
Li. Similarly, let Mi be the i-th row of M and mi be the number of rows of M that are identical
Mi. To construct the matrix S, we set the value of its entry at i-th row and j-th column as follows:

sij =
fLiMj · s
li ·mj

Now we claim that the matrix S defined above is a doubly stochastic matrix.

Observation 6.6. The matrix S defined above is doubly stochastic.

Proof. We will prove that the every row of S sum to 1, and omit the identical proof for the columns
of S. Note that if we sum the i-th row of S, we obtain the following:

s∑
j=1

sij =
s∑

j=1

fLiMj · s
li ·mj

=
∑

Y∈Supp(D2)

fLiY · s
li

=
D1(Li) · s

li
= 1

This completes the proof of the observation.

Now we will apply the Birkhoff-Newmann theorem [Bir46, VN53], which states that the doubly
stochastic matrix S defined above can be expressed as a weighted average of permutation matrices.
By translating the EMD expression from fXY to S and using an averaging argument, we can infer
that there exists a permutation π (among those in the representation of S) such that dH(Lπ,M) is
equal to dEM (D1, D2). This completes the proof of the claim.

Note that Dno is supported over the set of distributions Dσ
B for any permutation σ and any

matrix B which consists of 22d−20 columns of A. We will be done by showing that the Earth Mover
Distance between D and Dσ

B is at least 1/8, where D ∈ Pvc, σ : [n] → [n] is any permutation, and
B is any matrix with 22

d−20 columns.

33



Note that both D and Dσ
B admit respective corresponding matrices L and M , respectively, both

of dimension 2d × n, where the rows of L are the vectors Vi, and the rows of M are the respective
permutations of the vectors Wi. By Claim 6.5, we note that:

dEM (Dσ
B, D) = min

π:[2d]→[2d]
dH(Lπ,M).

The following claim will imply that dEM (Dσ
B, D) ≥ 1/8.

Claim 6.7. For any permutation π : [2d] → [2d], dH(Lπ,M) is at least 1/8.

Proof. Let us partition the index set [n] into ℓ′ many equivalence classes C1, . . . , Cℓ′ such that two
indices of [n] belong to the same equivalence class if the corresponding column vectors in Lπ are
identical. Observe that

dH(Lπ,M) =

∑
i∈[ℓ′]

∑
j∈Ci

dH(Lπ
j ,Mj) · k

k · n
=

∑
i∈[ℓ′]

∑
j∈Ci

dH(Lπ
j ,Mj)

n
,

where Lπ
j and Mj denote the j-th column vectors of Lπ and M , respectively.

Hence we will be done by showing
∑
j∈Ci

dH

(
Lπ
j ,Mj

)
≥ n

8ℓ′ , for every i ∈ [ℓ′].

Note that |Ci| = n
ℓ′ . Also, all the columns in {Lπ

j : j ∈ Ci} are identical. Consider a column
vector v ∈ {0, 1}k. Observe that there can be at most n

ℓ many columns in {Mj : j ∈ Ci} that are
1/7-close to v. This follows from the construction of Pvc, which implies that for every column Mj of
M , there are no more than n/ℓ− 1 many other columns of Lπ whose distance from Mj is at most
2/7 < 1/3.

So, in the expression
∑
j∈Ci

dH

(
Lπ
j ,Mj

)
, there are at least ( nℓ′ −

n
ℓ ) many terms that are at least

1/7. Hence,
∑
j∈Ci

dH

(
Lπ
j ,Mj

)
≥ ℓ′ · 1

7

(
n
ℓ′ −

n
ℓ

)
≥ n

8ℓ′ .

The above two claims conclude the proof of Lemma 6.3.

Lemma 6.8 (Query complexity lower bound part of Theorem 6.1). Any (non-adaptive)
tester, that has sample and query access to either Dyes or Dno and performs 22

d−ω(1) queries, can
not distinguish between Dyes and Dno.

Proof. Let A′ and B′ be the matrices of dimension k× n such that the i-th row of A′ corresponds to
the vector Vσ

i (for the permutation σ drawn according to Dyes) and the i-th row of B′ corresponds
to the vector Wσ

i (for the permutation σ drawn according to Dno), where i ∈ [k].
Let us divide the index set [n] into ℓ equivalence classes C1, . . . , Cℓ such that two indices belong

to the same equivalence class if the corresponding column vectors in A′ are identical. Similarly, let
us divide the index set [n] into ℓ′ equivalence classes C ′

1, . . . , C
′
ℓ′ such that two indices belong to the

same equivalence class if the corresponding column vectors in B′ are identical.
Let Q ⊆ [n] be the set of all distinct indices queried by the tester to any sample (that is, the

union of the sets J1, . . . , Js as they appear in Definition 3.11). If |Q| = 22
d−ω(1) , then the probability

that there exist two indices in Q that belong to the same Ci or the same C ′
i is o(1). Observe that,

conditioned on the event that Q does not contain two indices from the same equivalence class Ci or
C ′
i, the distributions over the responses to the queries of the tester are identical for both Dyes and

Dno. The reason is that in both the cases of Dyes and Dno, the distribution over the responses is
identical to the one derived from picking a uniformly random subset of size |Q| of the columns of
the matrix A, and taking uniformly independent samples of the rows of the resulting matrix.
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Now we will prove the sample complexity lower bound for testing Pvc.

Sample complexity lower bound: Let us define the second pair of hard distributions over
distributions over {0, 1}n, D′

yes and D′
no.

Distribution D′
yes: Identically to Dyes above, we choose a permutation σ : [n] → [n] uniformly at

random, and pick the distribution Dσ
A over {0, 1}n.

The distribution D′
no is constructed from the matrix A used to define D′

yes as follows:

Distribution D′
no: We first choose k′ = 2d−20 many row vectors uniformly at random from A and

construct a matrix B′ of dimension k′ × ℓ. Let DB′ be the distribution supported over the vectors
W′

1, . . . ,W
′
k′ such that, for every i ∈ [k′], the following hold:

• W′
i is the n/ℓ times blow-up of the i-th row of B′, that is, for j ∈ [ℓ] and j′ with (j − 1) · n

ℓ <
j′ ≤ j · n

ℓ , (W
′
i)j′ = bij , where bij denotes the element of matrix B′ present in the i-th row

and the j-th column.

• Dno(W
′
i) =

1
k′ =

1
2d−20 .

We choose a permutation σ : [n] → [n] uniformly at random, and pick the distribution Dσ
B′ over

{0, 1}n.

Lemma 6.9. D′
yes is supported over Pvc and D′

no is supported over distributions that are 1/8-far
from Pvc.

Proof. Following the definition of Pvc and D′
yes, it is clear that D′

yes is supported over Pvc. To prove
the claim about D′

no, we will apply Claim 6.5.
Note that D′

no is supported over the set of distributions Dσ
B′ for any permutation σ and any

matrix B′ which consists of 2d−20 rows of A. We will be done by showing the Earth Mover Distance
between D and Dσ

B′ is at least 1/8, where D ∈ Pvc and σ : [n] → [n] be any permutation, and B′ is
any matrix with 2d−20 distinct rows.

Let L and M be corresponding matrices of D and Dσ
B′ , respectively, of dimension k × n, where

k = 2d (where the rows of L are the vectors Vi, and the rows of M are 220-fold repetitions of the
respective permutations of the vectors W′

i). By Claim 6.5, we know that

dEM (Dσ
B′ , D) = min

π:[k]→[k]
dH(Lπ,M).

Thus, the following claim will imply that dEM (Dσ
B′ , D) ≥ 1/8.

Claim 6.10. For any permutation π : [2d] → [2d], dH(Lπ,M) is at least 1/8.

Proof. Our proof will follow a similar vain to that of Claim 6.7. Let us first partition the index
set [n] into ℓ′ many equivalence classes C1, . . . , Cℓ′ such that two indices of [n] belong to the same
equivalence class if the corresponding column vectors in Lπ are identical. Observe that

dH(Lπ,M) =

∑
i∈[ℓ′]

∑
j∈Ci

dH(Lπ
j ,Mj) · k

k · n
=

∑
i∈[ℓ′]

∑
j∈Ci

dH(Lπ
j ,Mj)

n
,

where Lπ
j and Mj denote the j-th column vectors of Lπ and M , respectively.
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Since B′ has only 2d−20 distinct rows, the number of its equivalence classes is bounded by
ℓ′ = 22

d−20 . Note that unlike the proof of the query lower bound, the sizes of the equivalence classes
here may be different from each other. Also, note that the sizes of the equivalence classes of L are
n/ℓ, as D ∈ Pvc. Thus we have the following:

dH(Lπ,M) ≥ 1

7
·
∑ℓ′

i=1max{0, |Ci| − n/ℓ}
n

≥ 1

7
·
(
1− 1

210

)
· n >

1

8
n.

The inequality follows from the facts that ℓ = 22
d−10 and ℓ′ = 22

d−20 , and the columns of M
corresponding to each Ci can be 1/7-close to at most n/ℓ columns of L.

This concludes the proof of Lemma 6.9.

The sample lower bound for testing Pvc now follows from the following lemma.

Lemma 6.11 (Sample complexity lower bound part of Theorem 6.1). Any tester that takes
at most 2o(d) samples from the input distribution can not distinguish between the distributions D′

yes

and D′
no.

Proof. Let S be the set of samples taken by the algorithm. Note that if |S| = 2o(d), then the
probability that S contains two samples of the same Vi or the same W′

i is o(1). Conditioned on
the event that S does not contain two samples from the same vector (Vi or W′

i), even if the tester
queries the samples of S in their entirety, the distributions over the responses to the queries of the
tester are identical for both D′

yes and D′
no. This follows from the fact that the distribution over

the responses is identical to a distribution obtained by drawing uniformly without repetitions a
sequence of row vectors from V1, . . . ,V2d , and querying the row vectors completely. This completes
the proof.

7 Exponential gap between adaptive and non-adaptive testers for
general properties

In this section, we prove that unlike the index-invariant properties, there can be an exponential
gap between the query complexities of adaptive and non-adaptive algorithms for non-index-invariant
properties. In Subsection 7.1 we prove an exponential upper bound on the relation between the
non-adaptive and adaptive query complexities of general properties. In Subsection 7.2, we provide
an exponential separation between them, and also use the same method to prove Proposition 1.5.

7.1 Relation between adaptive and non-adaptive testers for general properties

Let us assume that A is the adaptive algorithm that ε-tests P using s samples {V1, . . . ,Vs}
and q queries, along with tossing some random coins. Before directly proceeding to the description
of the non-adaptive algorithm, let us first consider the following observation.

Observation 7.1. For any given outcome sequence of the random coin tosses of A, there are at
most 2q − 1 possible internal states of A.

Proof. Consider the k-th step of A, where A queries the jk-th index of Vik for some ik ∈ [s],
jk ∈ [n], and k ∈ [q]. Note that i1 and j1 are functions of only the random coins, and ik and jk are
functions of the random coins, as well as Vi1 |j1 , . . . ,Vik−1

|jk−1
, where 2 ≤ k ≤ q. Due to the 2k−1

36



possible values of Vi1 |j1 , . . . ,Vik−1
|jk−1

, there are 2k possible states of the algorithm A at Step
k, for each 1 ≤ k ≤ q. Finally, the state of A depending on the random coins and the values of
Vi1 |j1 , . . . ,Viq |jq will decide the final output. This implies that for any fixed set of outcomes of

the random coin tosses used by A, there can be a total of at most
q−1∑
i=0

2i = 2q − 1 internal states,

each making one query, as well as 2q final (non-query-making) states.

Now we proceed to present the non-adaptive algorithm A′ that simulates A by using s samples
and at most 2q queries.

Lemma 7.2. Let P be any property that is ε-testable by an adaptive algorithm using s samples and
q queries. Then P can be ε-tested by a non-adaptive algorithm using s samples and at most 2q − 1
queries, where s and q are integers.

Proof. Let A be the adaptive algorithm that ε-tests P using s samples {V1, . . . ,Vs} and q queries.
Now we show that a non-adaptive algorithm A′ exists that uses s samples and makes at most 2q − 1
queries, such that the output distributions of A and A′ are identical for any unknown distribution
D.

The idea of A′ in a high level is to enumerate all possible internal steps of A, and list all possible
queries Q that might be performed by A. Note that Q depends on the random coins used by A. We
then query all the indices of Q non-adaptively, and finally simulate A using the full information at
hand, with the same random coins that were used to generate Q. As A has query complexity q, the
number of possible internal states of A is at most 2q − 1, and the query complexity of A′ follows.
Now we formalize the above intuition below.

The algorithm A′ has two phases:

Phase 1:

(i) A′ first takes s samples V1, . . . ,Vs.

(ii) A′ now tosses some random coins (same as A) and determines the set of all possible indices Ji
of Vi that might be queried by A, for every i ∈ [s]. The sets of indices Ji’s are well defined
after we fix the random coins, and follows from Observation 7.1.

Thus at the end of Phase 1, A′ has determined s sets of indices J1, . . . , Js of the vectors V1, . . . ,Vs

such that
s∑

i=1
|Ji| ≤ 2q − 1. Now A′ proceeds to the second phase of the algorithm.

Phase 2:

(i) For every i ∈ [s] and j ∈ Ji, query the j-th index of Vi, where Ji denotes the set of indices of
Vi that might be queried at the internal states of A, determined in Phase 1.

(ii) Simulate the algorithm A using the same random coins used in Phase 1, and report Accept
or Reject according to the output of A.

Note that the set of random coins that are used to determine J1, . . . , Js in Step (ii) of Phase
1 of the algorithm are the same random coins that are used to simulate A in Step (ii) of Phase 2.
Thus the correctness of A′ follows from to the correctness of A along with Observation 7.1.
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7.2 Exponential separation between adaptive and non-adaptive query complexi-
ties

Now we prove that the gap of Lemma 7.2 is almost tight, in the sense that there exists a property
such that the adaptive and non-adaptive query complexities for testing it are exponentially separated.

Before proceeding to the proof, let us consider any property P of strings of length n over the
alphabet {0, 1}. Now we describe a related property 1P over distributions as follows:

Property 1P : For any distribution D ∈ 1P , the size of the support of D is 1, and the single string
in the support of D satisfies P.

Let us first recall the following result from [GR22], which states that Õ(1ε ) queries are enough to
ε-test whether any distribution has support size 1.

Lemma 7.3 (Restatement of Corollary 2.3.1 of [GR22]). There exists a non-adaptive algorithm
that ε-tests whether an unknown distribution D has support size 1 and uses Õ(1ε ) queries, for any
ε ∈ (0, 1).

We now prove that the query complexity of ε-testing 1P is at least the query complexity of
ε-testing P, and can be at most the query complexity of ε

2 -testing of P, along with an additional
additive factor of Õ(1ε ) for testing whether the distribution has support size 1. The result is formally
stated as follows:

Lemma 7.4. Let qN and qA denote the non-adaptive and adaptive query complexities for ε-testing
P, respectively. Similarly, let QN and QA denote the non-adaptive and adaptive query complexities
of ε-testing 1P , respectively. Then the following hold:

1. qA(ε) ≤ QA(ε) ≤ Õ(1ε ) +O
(
qA(

ε
2)
) 14.

2. qN (ε) ≤ QN (ε) ≤ Õ(1ε ) +O
(
qN ( ε2)

)
.

Proof. We prove here (1), and omit the nearly identical proof of (2).

Proof of qA(ε) ≤ QA(ε): Consider an adaptive algorithm A that ε-tests 1P by using QA(ε) queries.
We construct an algorithm A′ that ε-tests P using the same number of queries. Let V be the
unknown string of length n, where we want to test whether V ∈ P or V is ε-far from P.

Let us define an unknown distribution D′ (over the Hamming cube {0, 1}n) such that we want
to distinguish whether D′ ∈ 1P or D′ is ε-far from 1P . The distribution D′ is defined as follows:

D′(X) =

{
1 X = V
0 otherwise

Observe that V ∈ P if and only if D′ ∈ 1P . Similarly, it is not hard to see that V is ε-far from
P if and only if D′ is ε-far from 1P . We simulate the algorithm A by A′ as follows: when A takes a
sample, A′ does nothing, and when A queries an index i ∈ [n] of any sample, A′ queries the index i
of V. Finally, A′ provides the output received from the simulation of A.

From the description, it is clear that A′ performs exactly QA(ε) queries and is indeed simulated
by running A over D′.

14We are using O(·) as we are amplifying the success probability of the tester for the property P to 9/10 as compared
to the usual success probability of 2/3.
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Proof of QA(ε) ≤ Õ
(
1
ε

)
+O

(
qA(

ε
2)
)
: Let us consider an adaptive algorithm A1 that ε

2 -tests P
using O

(
qA(

ε
2)
)

queries to the unknown string X ∈ {0, 1}n, with success probability at least 9
10 .

Now we design an adaptive algorithm A′
1 that ε-tests 1P using Õ

(
1
ε

)
+O

(
qA(

ε
2)
)

many queries.

Algorithm A′
1: Assume that D is the distribution that we want to ε-test for 1P . The algorithm

A′
1 performs the following steps:

(i) Run the tester corresponding to Lemma 7.3 to ε
20 -test whether D has support size 1, with

success probability at least 9
10 . If the tester decides that D has support size 1, then go to the

next step. Otherwise, Reject.

(ii) Take one more sample from D and let it be U ∈ {0, 1}n. Run algorithm A1 to ε
2 -test P

considering X = U as the unknown string. If A1 accepts, Accept. Otherwise Reject.

Note that the query complexity for performing Step (i) is Õ(1ε ), which follows from Lemma 7.3.
Additionally, the number of queries performed in Step (ii) is O

(
qA(

ε
2)
)
, which follows from the

assertion of the lemma. Thus, the algorithm A′
1 performs Õ(1ε ) +O

(
qA(

ε
2)
)

many queries in total.
Now we will argue the correctness of A′

1. For completeness, assume that D ∈ 1P . Let V ∈ {0, 1}n
be the string such that D(V) = 1 and V ∈ P. Note that, by Lemma 7.3, A′

1 proceeds to Step
(ii) with probability at least 9

10 . In Step (ii), A′ sets U = V, and runs algorithm A1 to ε
2 -test P

considering X = V as the unknown string. Since V ∈ P, by the assumption on the algorithm A1,
A′

1 accepts with probability at least 9
10 , given that A′

1 does not report Reject in Step (i). Thus, by
the union bound, A′

1 accepts D with probability at least 4
5 .

Now consider the case where D is ε-far from 1P . If D is ε
20 -far from having support size 1, A′

1

reports Reject in Step (i) with probability at least 9
10 , and we are done. So, assume that D is

ε
20 -close to having support size 1. Then there exists a distribution D′ with support size 1, and the
distance between D and D′ is at most ε

20 . Let us assume that D′ is supported on the string V. By
the Markov inequality, this implies that with probability at least 4

5 , a string U sampled according D
will be 9ε

20 -close to V.

(i) If V is 19ε
20 -close to P , using the triangle inequality, this implies that D is ε-close to 1P , which

is a contradiction.

(ii) Now consider the case where V is 19ε
20 -far from P . Recall that with probability at least 4

5 , the
sample U taken at Step (ii) above is 9ε

20 -close to V. As we are considering the case where V is
19ε
20 -far from P, using the triangle inequality, U is ε

2 -far from P with the same probability. In
this case, the algorithm will Reject in Step (ii), with probability at least 9

10 . Together, this
implies that the algorithm will Reject the distribution D, with probability at least 7

10 .

In the following, we will construct the property PPal of strings over the alphabet {0, 1, 2, 3}. It
will then be encoded as a property of strings over {0, 1} by using two bits per letter.

Property PPal: A string S of length n is in PPal if S = XY, where X is a palindrome over the
alphabet {0, 1}, and Y is a palindrome over the alphabet {2, 3}.

There is an exponential gap between the query complexities of adaptive and non-adaptive
algorithms to ε-test PPal. The result is stated as follows:
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Lemma 7.5. There exists an adaptive algorithm that ε-tests PPal by performing O(log n) queries
for any ε ∈ (0, 1). However, there exists an ε ∈ (0, 1) such that Ω(

√
n) non-adaptive queries are

necessary to ε-test PPal.

Proof. The lower bound proof (using Yao’s lemma), which we omit here, is nearly identical to the
one from [AKNS99] (see Theorem 2 therein).

Let us assume that V is the string that we want to ε-test for PPal. The adaptive algorithm to
ε-test PPal uses binary search, and is described below:

(i) Use binary search for an index of V that has “value 1.5” (which is not present in the input).
This returns an index 0 ≤ i ≤ n, such that (a) Vi ∈ {0, 1} unless i = 0, and (b) Vi+1 ∈ {2, 3}
unless i = n.

(ii) Repeat O(1ε ) times:

(a) Sample an index j ∈ [n] uniformly at random.
(b) If j ≤ i, then query Vj and Vi+1−j . Reject if they are not both equal to the same value

in {0, 1}.
(c) Otherwise query Vj and Vn+i+1−j . Reject if they are not both equal to the same value

in {2, 3}.

(iii) If the input has not been rejected till now, Accept.

We first argue the completeness of the algorithm. Assume that V is a string such that V ∈ PPal,
and i is the index returned by Step (i) of the algorithm. As V = XY for some palindrome X over
{0, 1} and palindrome Y over {2, 3}, the index i will be equal to |X|. This implies that the algorithm
will Accept V with probability 1.

Now consider the case where V is ε-far from PPal. We call an index j violating if it does not
satisfy the condition appearing either in Step (ii)(b) or Step (ii)(c) above, where i is the index
returned in Step (i). The number of violating indices is at least εn, because otherwise we can change
the violating indices such that the modified input is a string of the form XY following the definition
of PPal, where |X| = i. Since the loop in Step (ii) runs for O(1ε ) times, we conclude that with
probability at least 2

3 at least one such violating index will be found. So, the algorithm will Reject
V with probability at least 2

3 .

Now we are ready to formally state and prove the main result of this section.

Proposition 7.6. There exists a property of distributions over strings that can be ε-tested adaptively
using O(log n) queries for any ε ∈ (0, 1), but Ω(

√
n) queries are necessary for any non-adaptive

algorithm to ε-test it for some ε ∈ (0, 1).

Proof. Consider the property 1PPal
. From Lemma 7.5, we know that qA( ε2) = O(log n), for any fixed

ε ∈ (0, 1). Using the upper bound of Lemma 7.4, we conclude that QA(ε) = O(log n), for any fixed
ε ∈ (0, 1), ignoring the additive Õ(1ε ) term.

On the other hand, according to Lemma 7.5, qN (ε) = Ω(
√
n) for some ε ∈ (0, 1). Thus, following

Lemma 7.4, we conclude that QN (ε) = Ω(
√
n) holds for some ε ∈ (0, 1). Together, Proposition 7.6

follows.

Now we present a sketch of a proof of Proposition 1.5, which shows that for a property to be
constantly testable, it is not sufficient that the property has constant VC-dimension, unless it is
index-invariant as well.
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Proposition 7.7 (Restatement of Proposition 1.5). There exists a non-index-invariant property
P such that any distribution D ∈ P has VC-dimension O(1) and the following holds. There exists a
fixed ε > 0, such that distinguishing whether D ∈ P or D is ε-far from P, requires Ω(n) queries,
where the distributions in the property P are defined over the n-dimensional Hamming cube {0, 1}n.

Proof. Note that the VC-dimension of 1P is 0, where 1P is the property corresponding to P as
defined before. String properties which are hard to test, for which there is a fixed ε > 0 such that
ε-testing them requires Ω(n) queries, are known to exist. Examples are properties studied in the
work of Ben-Eliezer, Fischer, Levi and Rothblum [BFLR20], and in the work of Ben-Sasson, Harsha
and Raskhodnikova [BHR05]. Defining 1P for such a property P provides us the example proving
Proposition 7.7.

8 Quadratic gap between adaptive and non-adaptive testers for
index-invariant properties

In this section, we first prove Theorem 1.6 in Subsection 8.1, that is, there can be at most a
quadratic gap between the query complexities of adaptive and non-adaptive algorithms for testing
index-invariant properties. Then in Subsection 8.2, we prove Theorem 1.7, that is, we demonstrate
a quadratic separation between them, which is one of the main results of the paper and the main
content of this section.

8.1 Quadratic relation between adaptive and non-adaptive testers for index-
invariant properties

Theorem 8.1 (Restatement of Theorem 1.6). Let P be any index-invariant property that is
ε-testable by an adaptive algorithm using s samples and q queries. Then P can be ε-tested by a
non-adaptive algorithm using s samples and sq ≤ q2 queries, where s and q are integers.

Proof. The main idea of the proof is to start with an adaptive algorithm A as stated above, and then
argue for another semi-adaptive algorithm A′ with sample complexity s but query complexity qs,
such that the output distributions of A and A′ are the same for any unknown distribution D. Finally,
we construct a non-adaptive algorithm A′′ such that (i) the sample and query complexities of A′′

are the same as that of A′, and (ii) the probability bounds of accepting and rejecting distributions
depending on their distances to P are preserved from A′ to A′′. Now we proceed to formalize this
argument.

Let A be the adaptive algorithm that ε-tests P using s samples {V1, . . . ,Vs} and q queries.
Now we show that a two phase algorithm A′ exists that takes s samples {V1, . . . ,Vs} and proceeds
as follows:

Phase 1: In this phase, A′ queries in an adaptive fashion. If A queries the jk-th index of Vik at
its k-th step, for some ik ∈ [s] and jk ∈ [n], then we perform the following steps:

(i) If A′ has queried the jk-th index of all the samples before this step, then we reuse the queried
value.

(ii) Otherwise, we query the jk-th index from all the samples {V1, . . . ,Vs}.
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Phase 2: Let Q ⊂ [n] be the set of indices queried by A′ while running the q querying steps of A.
If |Q| < q, we arbitrarily pick t = q− |Q| distinct indices {j′1, . . . , j′t}, disjoint from the set of indices
Q. We query the set of indices j′1, . . . , j

′
t from the entire set of sampled vectors V1, . . . ,Vs.

The output (Accept or Reject) of A′ is finally set to that of A, and in particular depends
only on the answers to the queries made in the first phase.

Now we have the following observation regarding the query complexity of A′, which will be used
to argue the query complexity of the non-adaptive algorithm later.

Observation 8.2. A′ uses s samples and performs exactly qs queries. Moreover, for any distribution
D, the output distribution of A′ is the same as that of A.

Let us assume that A′ proceeds in q steps by querying indices ℓ1, . . . , ℓq ∈ [n] in each of the s
samples V1, . . . ,Vs (when the unknown distribution is D). Equivalently, we can think that the
algorithm proceeds in q steps, where in Step k (k ∈ [q]), we query the ℓk-th index of {V1, . . . ,Vs},
such that ℓk depends on ℓ1, . . . , ℓk−1, where 2 ≤ k ≤ q.

Let us now consider an uniformly random permutation σ : [n] → [n] (unknown to A′). Assume
that the unknown distribution is Dσ instead of D. As P is index-invariant, we can assume that the
algorithm A′ runs on Dσ for q steps as follows. In Step k, A′ queries the σ(ℓk)-th index of each of
the s samples, for k ∈ [q]. Now we have the following observation regarding the distribution of the
indices queried, which follows from σ being uniformly random.

Observation 8.3. σ(ℓ1) is uniformly distributed over [n], and σ(ℓk) is uniformly distributed over
[n] \ {σ(ℓ1), . . . , σ(ℓk−1)}, where 2 ≤ k ≤ q. Moreover, this holds even if we condition on the values
ℓ1, . . . , ℓk as well as σ(ℓ1), . . . , σ(ℓk−1).

Now the algorithm A′′ works as follows:

• First take a uniformly random permutation σ : [n] → [n].

• Run A′ over Dσ instead of D.

From the above description, it does not immediately follow that A′′ is a non-adaptive algorithm.
But from the description along with Observation 8.3, it follows that A′′ is the same as the following
algorithm:

• First take s samples V1, . . . ,Vs, and also pick a uniformly random non-repeating sequence of
q indices r1, . . . , rq ∈ [n].

• Run A′ such that, for every i ∈ [q], when A′ is about to query ℓi, query ri from all samples
instead. That is, we assume ri to be the value of σ(ℓi).

The sample complexity and query complexity of algorithm A′′ are s and qs, respectively, which
follows from Observation 8.2 and Observation 8.3. The correctness of the algorithm follows from
Observation 8.2 and Observation 8.3 along with the fact that P is index-invariant. This completes
the proof of Theorem 8.1.
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8.2 Preliminaries towards proving a quadratic separation result

In this subsection, we present some preliminary results required to prove that Theorem 1.6 is
almost tight, that is, there exists an index-invariant property for which there is a nearly quadratic
gap between the query complexities of adaptive and non-adaptive testers. The result is formally
stated as follows.

Theorem 8.4 (Restatement of Theorem 1.7). There exists an index-invariant property PGap

that can be ε-tested adaptively using Õ(n) queries for any ε ∈ (0, 1), while there exists an ε ∈ (0, 1)
for which Ω̃(n2) queries are necessary for any non-adaptive ε-tester.

In what follows throughout this section, we assume that the integer n is of the form n = 2l

for some integer l, and that k = O(l) is another integer. We denote vectors in {0, 1}N by capital
bold letters (for example X ∈ {0, 1}N ) and vectors in {0, 1}n by small bold letters (for example
x ∈ {0, 1}n). For two vectors X,Y ∈ {0, 1}N , we will use δH(X,Y) = N · dH(X,Y) to denote the
absolute Hamming distance between X and Y.

To construct the property PGap (as stated in Theorem 8.4), we define two encodings SE :
{0, 1}ℓ → {0, 1}k and GE : [n]m → [n]n 15. The encodings GE and SE follow from the construction
of a Probabilistically Checkable Unveiling of a Shared Secret (PCUSS) in [BFLR20]. We can also
construct such a function GE using the Reed-Solomon code, where we will assume that n is a prime
power and use polynomials of degree m− 1 over the field GL(n) for m = Θ(n) 16.

Function SE: We will use a function SE of the form SE : {0, 1}l ×{0, 1} → {0, 1}k, where l and k
are the integers defined above. In fact, SE takes an integer i ∈ [n] in its Boolean encoding as an l
bit Boolean string and a “secret” bit a ∈ {0, 1}, and will output a Boolean string of length k. SE
will have the following properties for some constant ζ ∈ (0, 1/2).

(i) Let i, i′ ∈ [n] be two integers encoded as binary strings of length l 17, and a, a′ ∈ {0, 1}. If
(i, a) ̸= (i′, a′), then δH(SE(i, a), SE(i′, a′)) ≥ ζ · k.

(ii) Let a ∈ {0, 1} be a fixed bit, and suppose that i is an integer chosen uniformly at random
from [n]. Then for any set of indices I ⊂ [k] such that |I| ≤ ζ · k, the restriction SE(i, a) |I is
uniformly distributed over {0, 1}|I|.

Function GE: For our construction, we will use another function GE of the form GE : [n]m → [n]n,
where n,m ∈ N with the following properties for the same constant ζ ∈ (0, 1/2) as above.

(i) Let z, z′ ∈ [n]m be two strings such that z ̸= z′. For any two such strings z and z′,
δH(GE(z),GE(z′)) = |{i : GE(z)i ̸= GE(z′)i}| ≥ ζ · n.

(ii) Consider a string z ∈ [n]m chosen uniformly at random. For any set of indices I ⊂ [n] such
that |I| ≤ ζ · n, GE(z) |I is uniformly distributed over [n]|I|.

From now on, we will use the following notation in this subsection: Let n ∈ N be such that n = 2l

for some integer l, k = O(l) and ζ ∈ (0, 1/2) as above, b = ⌊log(⌈log kn⌉)⌋+ 1, N = 1 + b+ kn and
α = 1/ log n. Note that in particular N = O(n log n). For a vector X ∈ {0, 1}N and a permutation

15SE stands for Secret Encoding, and GE stands for General Encoding.
16GL(n) stands for the finite field with n elements.
17Binary strings of length logn can actually encode only integers from {0, . . . , n− 1}, so we use the encoding of 0

for the value n.
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π : [N ] → [N ], Xπ denotes the vector obtained from X by permuting the indices of X with π, that
is, Xπ = (Xπ(1), . . . ,Xπ(N)).

Let B be the sequence of integers B = {2, . . . , b+ 1}, and for every j ∈ [n], let Cj denote the
sequence of integers Cj = {b+2+k(j− 1), . . . , b+1+kj}. For a sequence of integers A and a vector
X, we denote by X |A the vector obtained by projecting X onto the set of indices of A preserving
the sequence order. For a sequence A ⊆ [N ] and a permutation π : [N ] → [N ], we denote by π(A)
the sequence obtained after permuting every element of A with respect to the permutation π, that
is, if A = (a1, . . . , al), then π(A) = (π(a1), . . . , π(al)). In particular, we have Xπ |A= X |π(A). By
abuse of notation and for simplicity, for a set of integers A and a vector X, we denote by X |A the
vector obtained by projecting X onto the set of indices of A, whenever the ordering in which we
consider the indices in A will be clear from the context 18.

In the following, we use string notation. For example, 1k0k denotes the vector in {0, 1}2k whose
first k coordinates are 1 and whose last k coordinates are 0. Now we formally define the notion of
encoding of a vector which will be crucially used to define PGap.

Definition 8.5 (Encoding of a vector). Let n, k, b ∈ N, N = 1 + b+ kn, and x = (x1, . . . ,xn) ∈
{0, 1}n and Y ∈ {0, 1}N be two vectors. Y is said to be an encoding of x with respect to the
functions SE : {0, 1}l × {0, 1} → {0, 1}k and GE : [n]m → [n]n if the following hold:

(i) The first index of Y is 0.

(ii) Y |B is the all-1 vector.

(iii) Y |[N ]\{1}∪B is of the form SE(GE(z)1,x1) . . . SE(GE(z)n,xn) for some string z ∈ [n]m. In
other words, Y |Cj= SE(GE(z)j ,xj) for every j ∈ [n].

For ease of presentation, we will denote this encoding by FE, that is, FE : [n]m×{0, 1}n → {0, 1}N
is the function 19 such that FE(z,x) = 0(1b)SE(GE(z)1,x1) . . . SE(GE(z)n,xn), for z ∈ [n]m and
x = (x1, . . . ,xn) ∈ {0, 1}n. We also say that X ∈ {0, 1}N is a valid encoding of some x ∈ {0, 1}n, if
there exists some z ∈ [n]m for which X = FE(z,x). The image of FE will be called the set of all
valid encodings.

Now let us infer two properties of the function FE, which will be crucial to our proofs, as stated
in the following two claims. These properties of FE are analogous to the properties of SE and GE.
As FE is formed by combining SE and GE, the proofs of these observations use their respective
properties.

The following observation, particularly Items (i) and (ii), will allow us to prove that certain
distributions are indeed far from the property PGap (to be defined later) in the EMD metric. Item (iii)
will be useful to prove the soundness of our adaptive algorithm in Subsection 8.4, and in particular
in Lemma 8.28.

Observation 8.6 (Distance properties of FE). Let FE : [n]m×{0, 1}n → {0, 1}N be the function
from Definition 8.5. Then FE has the following properties:

(i) Let x,x′ ∈ {0, 1}n be any two strings and z, z′ ∈ [n]m be two vectors such that z ̸= z′. Then
δH(FE(z,x),FE(z′,x′)) ≥ ζ2 ·N/2 holds.

(ii) Let z, z′ ∈ [n]m be any two strings, and x,x′ ∈ {0, 1}n be two other strings such that x ̸= x′.
Then δH(FE(z,x),FE(z′,x′)) ≥ ζk · δH(x,x′).

18A common scenario is when the indexes of A are considered as a monotone increasing sequence.
19FE stands for Final Encoding.
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(iii) Let x,x′ ∈ {0, 1}n be two strings and z ∈ [n]m be a vector. Then δH(FE(z,x),FE(z,x′)) ≤
k · δH(x,x′), and in particular dH(FE(z,x),FE(z,x′)) ≤ dH(x,x′) holds.

Proof. We prove each item separately below.

(i) Following the properties of GE (Property (i)), for z ̸= z′, we know that δH(GE(z),GE(z′)) ≥
ζ · n ≥ ζN/2k. That is, the number of indices j ∈ [n] such that GE(z)j ̸= GE(z′)j , is
at least ζN/2k. For every index j ∈ [n] such that GE(z)j ≠ GE(z′)j , we can say that
δH(SE(GE(z)j ,xj), SE(GE(z′)j ,x

′
j)) ≥ ζ · k. This is due to Property (i) of SE. Hence,

δH(FE(z,x),FE
(
z′,x′)) ≥

∑
j∈[n]:zj ̸=z′j

δH(SE(GE(z)j ,xj),SE(GE(z)j ,x
′
j))

≥ ζN/2k · ζk = ζ2 ·N/2.

(ii) Consider two strings x,x′ ∈ {0, 1}n such that x ̸= x′. Using Property (i) of SE, we know that
δH(SE(GE(z)j ,xj), SE(GE(z)j ,x

′
j)) ≥ ζ · k for every j for which xj ̸= x′

j . Note that the
number of such indices j is δH(x,x′). Summing over them, we have the result.

(iii) Consider any two strings x,x′ ∈ {0, 1}n. Observe that

δH(FE(z,x),FE
(
z,x′)) = ∑

j∈[n]

δH(SE(GE(z)j ,xj),SE(GE(z)j ,x
′
j)).

Note that δH(SE(GE(z)j ,xj),SE(GE(z)j ,x
′
j)) is at most k for every j ∈ [n]. Moreover,

δH(SE(GE(z)j ,xj),SE(GE(z)j ,x
′
j)) = 0 for every j ∈ [n] with xj = x′

j . Since the number of
indices j such that xj ̸= x′

j is δH(x,x′), we conclude the following:

δH(FE(z,x),FE
(
z,x′)) ≤ k · δH(x,x′).

Note that this immediately implies dH(FE(z,x),FE(z,x′)) ≤ dH(x,x′).

The following lemma will provide us a way to construct distributions that cannot be easily
distinguished using non-adaptive queries (following a uniformly random index-permutation which we
will deploy).

Lemma 8.7 (Projection property of FE). Consider a fixed vector x ∈ {0, 1}n, and let z ∈ [n]m

be a string chosen uniformly at random. For any set of indices Q ⊆ [N ] such that |Q| ≤ ζ ·N/2k
and |Q∩Cj | ≤ ζ · k for every j ∈ [n], the restriction of FE(z,x) |Q\[b+1] is uniformly distributed over
{0, 1}|Q\[b+1]| 20.

Proof. For the set of indices Q, consider the set J = {j : Q ∩ Cj ̸= ∅}. From the statement of
the lemma, we know that |Q ∩ Cj | ≤ ζ · k for every j ∈ J . Noting that |J | ≤ |Q| ≤ ζ · n, if we
consider the restriction GE(z) |J , following Property (ii) of the function GE, we know that GE(z) |J
is uniformly distributed over [n]|J |.

Now when we call SE(ij ,xj) with ij ∈ [n] obtained from GE(z) |J , following the above argu-
ment, we can say that ij has been chosen uniformly at random from [n] (and independently from
the other ij′). Since |Q ∩ Cj | ≤ ζ · k, applying Property (ii) of the function SE, we know that
the corresponding restriction of SE(ij ,xj) will be uniformly distributed over {0, 1}|Q∩Cj |. Since
FE(z,x) = 0(1b)SE(GE(z)1,x1) . . . SE(GE(z)n,xn), combining the above arguments, we conclude
that FE(z,x) |Q\[b+1] is uniformly distributed over {0, 1}|Q\[b+1]|.

20Recall that the restriction FE(z,x) |[b+1] is always the vector 01b.
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Now we are ready to formally define the property, first constructing a non-index-invariant version
to be used in the next index-invariant definition.

Property P0
Gap: A distribution D over {0, 1}N is in P0

Gap if and only if D satisfies the following
conditions:

(i) D(U) = α, where U = 10N−1 is the indicator vector for the index 1.

(ii) Consider the set of vectors S = {V1, . . . ,Vb} in {0, 1}N such that for every i ∈ [b], the i-th
vector Vi is of the form 1i+10N−1−i. Note that Vi |B= 1i0b−i for B = {2, . . . , b + 1}. We
require that D(Vi) = α/b for every i ∈ [b].

(iii) Consider the set of vectors T = {W0, . . . ,W⌈log kn⌉−1} (disjoint from S) in {0, 1}N such that
for every Wi ∈ T , Wi is of the form 0(b(i))(02i12i)kn/2

i+1 , where b(i) denotes the length
b binary representation of i 21. Note that for i = b + 2 + j, with 0 ≤ j ≤ kn − 1, the
sequence (W0)i, . . . , (W(⌈log kn⌉−1))i holds the binary representation of j. Also, note that
there is an one-to-one correspondence between Wi |B and Wi |[N ]\{B}∪{1}. We require that
D(Wi) = α/|T | for every Wi ∈ T .

(iv) Supp(D) \ ({U} ∪ S ∪ T ) consists of valid encodings of at most n vectors from {0, 1}n with
respect to the functions SE : {0, 1}l × {0, 1} → {0, 1}k and GE : [n]m → [n]n, for the integers
l,m, k ∈ N as defined in Definition 8.5. That is, there exist vectors x1, . . . ,xn ∈ {0, 1}n for
which Supp(D) \ ({U} ∪ S ∪ T ) ⊆ {FE(z,xi) : z ∈ [n]m, i ∈ [n]}. Note that for D to be a
distribution, we must have D(Supp(D) \ ({U} ∪ S ∪ T )) = 1− 3α.

Property PGap: A distribution D over {0, 1}N is said to be in the property PGap if Dπ is in P0
Gap

for some permutation π : [N ] → [N ].

Remark 4 (Intuition behind the definition of PGap). If a distribution D is in P0
Gap, then we

can easily check (by querying the indexes in B) whether a sample from D would be equal to FE(z,x)
for some z ∈ [n]m and x ∈ {0, 1}n. In that case, individual bits of x can be decoded by querying the
appropriate Cj and then passed to a tester of distributions over {0, 1}n.

On the other hand, if we take a uniformly random permutation of such a distribution D, which
keeps it in PGap (though no longer in P0

Gap), a non-adaptive algorithm will need many queries to
capture sufficiently many bits from any Cj , and this will enable us to fully hide the identity of x if
fewer queries are performed.

By contrast, an adaptive tester will use relatively few samples that are queried in their entirety
to obtain the (permutations of the) special vectors in Items (i) to (iii) of the definition of P0

Gap, from
which it will be able to fully learn the index-permutation applied to the distribution, and continue
to successfully decode individual bits. A few further samples queried in their entirety will ensure
that there is very little total weight on vectors that are neither special vectors nor equal to FE(z,x)
for some z ∈ [n]m and x ∈ {0, 1}n.

21If kn/2i+1 is not an integer, we trim the rightmost copy of 02i12i so that the total length of “(02i12i)kn/2i+1

” is
exactly kn.
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Known useful results about support estimation: Now we state a lemma which will be
required later to describe the adaptive tester for PGap. Informally, it says that whether a distribution
D over {0, 1}n has support size s or is ε-far from any such distribution, can be tested by taking Õ(s)
samples from D, and performing Õ(s) queries on them.

Lemma 8.8 (Support size estimation, Theorem 1.9 and Corollary 2.3 of [GR22] restated).
There exists an algorithm Supp-Est(s, ε) that uses Õ(s/ε2) queries to an unknown distribution D
defined over {0, 1}n, and with probability at least 9

10 distinguishes whether D has at most s elements
in its support or D is ε-far from all such distributions with support size at most s.

We will also use a lower bound on the support size estimation problem to prove the lower
bound on non-adaptive testers for testing PGap. Informally speaking, given a distribution D over
{1, . . . , 2n}, in order to distinguish in the traditional (non-huge-object) model whether the size of
the support of D is n, or D is far from all such distributions, Ω( n

logn) samples are necessary. More
formally, we have the following theorem.

Theorem 8.9 (Support Estimation Lower bound, Corollary 9 of [VV10] restated). There
exist two distributions DSupp

yes and DSupp
no over distributions over {1, . . . , 2n}, and an η ∈ (0, 1/8) such

that the following holds:

(i) The probability mass of every element in the support of DSupp
yes as well as DSupp

no is a multiple
of 1/2n.

(ii) DSupp
yes is supported over distributions whose support size is n.

(iii) DSupp
no is supported over distributions whose support size is at least (1 + 2η)n, and in particular

are η-far in variation distance from any distribution defined over {1, . . . , 2n} whose support
size is (1 + 2η)n.

(iv) If a sequence of o( n
logn) samples from a distribution are drawn according to either DSupp

yes or
DSupp

no , the resulting distributions over the sample sequences are 1/4-close to each other.

We present an adaptive algorithm to test PGap in Subsection 8.4 and we prove the lower bound
for non-adaptive testers in Subsection 8.5. In Subsection 8.3, we describe a subroutine to determine
the unknown permutation that will be used in our adaptive algorithm in Subsection 8.4.

8.3 Determining the permutation π

Here we design an algorithm that, given a distribution D ∈ PGap, can learn with high probability
the permutation π for which Dπ ∈ P 0

Gap.
The crux of the algorithm is that if D ∈ PGap, then there exist U′ = Uπ ∈ {0, 1}n, S ′ = Sπ =

{V′
i = (Vi)π : i ∈ [b]} and T ′ = Tπ = {W′

j = (Wj)π : j ∈ {0} ∪ [⌈log kn⌉]− 1} in the support of D
such that D(U′) = α, D(V′

i) = α/b for every i ∈ [b] and D(W′
j) = α/⌈log kn⌉. Note that U, S and

T are as defined in the property P0
Gap.

The main observation is that, if we are given the set of special vectors {U′} ∪ S ′ ∪ T ′, then we
can determine the permutation π. Our algorithm can find U′,S ′ and T ′ with high probability, if
they exist, by taking O(log2N/α) = O(log2 n/α) samples and reading them in their entirety. This
is due to the fact that the probability mass of every vector in the set of special vectors is at least
Ω(α/ log n).
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The algorithm is described in the following subroutine Find-Permutation (see Algorithm 3) 22.
Algorithm 3: Find-Permutation

Input: Sample and Query access to a distribution D over {0, 1}N .
Output: Either a permutation π : [N ] → [N ], or Fail.

(i) First take a multi-set X of O(log2N/α) samples from D, and query all the entries of the
sampled vectors of X to know the vectors of X completely.

(ii) Find the set of distinct vectors in X that have exactly one 1. If no such vector exists or there
is more than one such vector, Fail. Otherwise, denote by U′ the vector that has exactly one
1, and denote the corresponding index by i∗. Set π(i∗) = 1, and proceed to the next step.

(iii) Find the set of distinct vectors S ′ ⊆ X \ {U′} such that every vector in S ′ has 1 at the index
i∗ and has at least another 1 among other indices. If no such vector exists, or |S ′| ≠ b, Fail.
Otherwise, if the vectors of S ′ form a chain V′

1, . . . ,V
′
b, where V′

j has exactly j + 1 many 1,
then set π(ij) = j + 1, where ij is the index where V′

j has 1, but V′
j−1 has 0 there, for every

j ∈ [b] (denoting V′
0 = U′ for the purpose here). Also, set B′ = (i1, . . . , ib). If S ′ does not

form a chain V′
1, . . . ,V

′
b as mentioned above, Fail.

(iv) Let T ′ ⊆ X be the set of distinct vectors such that every vector in T ′ has 0 at the index i∗,
and does not have 1 in all indices of B′. If no such vector exists, Fail. For every j, denote by
W′

j the vector in T ′ for which W′
j |B′= b(j), where b(j) denotes the binary representation of

j. For every j ∈ {0} ∪ [⌈log kn⌉ − 1], if either there are no vectors W′
j ∈ T ′ or there is more

than one distinct vector with W′
j |B′= b(j), Fail. Also, if there is any vector in W′

j ∈ T ′

such that W′
j |B′= b(j) for log kn ≤ j < 2b − 1, Fail.

(v) For any i ∈ [N ] \ ({i∗} ∪B′), let li be the integer with binary representation
(W′

0)i, . . . , (W
′
⌈log kn⌉−1)i. Set π(i) = b+ 2 + li for each i ∈ [N ] \ ({i∗} ∪B′). If π is not a

permutation of [N ], Fail.

(vi) Take another multi-set X ′ of O(log2N/α) samples from D, and query all the entries of the
sampled vectors of X ′ to know the vectors of X ′ completely. Let Y be the set of vectors in
X ′ such that Y = {Z ∈ X ′ : Z |{i∗}∪B′ ̸= 01b}. If |Y| / |X ′| > 4α, Fail. Otherwise, output
the permutation π.

Let us start by analyzing the query complexity of Find-Permutation.

Lemma 8.10 (Query complexity of Find-Permutation). The query complexity of the above
defined Find-Permutation is Õ(N).

Proof. Note that Find-Permutation takes a multi-set X of O(log2N/α) samples from D in Step
(i), and queries them completely. So, Find-Permutation performs O(N log2N/α) queries in Step
(i). Find-Permutation does not perform any new queries in Step (ii), Step (iii), Step (iv) and
Step (v). Finally, Find-Permutation takes another multi-set X ′ of O(log2N/α) samples from D
and queries them completely, similar to Step (i). Recalling that α = 1/ log n, the query complexity
of Find-Permutation is Õ(N) = Õ(n) in total.

Now we proceed to prove the correctness of Find-Permutation.
22This algorithm is not adaptive in itself, but its output is used adaptively in the testing algorithm described later.
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Lemma 8.11 (Guarantee when D ∈ PGap). If D is a distribution defined over {0, 1}N such that
D ∈ PGap, then with probability at least 9/10, Find-Permutation reports the permutation π such
that Dπ ∈ P0

Gap.

We prove the above lemma by a series of intermediate lemmas. In the following lemmas, we
consider U, S and T as per the definition of P0

Gap. Also, consider the permutation π such that
Dπ ∈ PGap.

Lemma 8.12 (Correctly finding π−1(1)). With probability at least 1 − 1/N3, X will contain
the vector U′ for which U′

π = U, and i∗ = π−1(1) will be identified correctly. Moreover, Find-
Permutation proceeds to Step (iii).

Proof. By the definition of P0
Gap, the vector U′ is the only vector in the support of D containing

a single 1. Since D(U′) = D(Uπ−1(1)) = α, and we are taking |X | many samples from D, the
probability that U′ will not appear in X is at most (1− α)|X| ≤ 1

N3 . Thus, with probability at least
1− 1

N3 , U′ ∈ X and Find-Permutation in Step (ii) proceeds to the next step.

Lemma 8.13 (Correctly finding B′ = π−1(B)). With probability at least 1 − 1/N3, the
algorithm Find-Permutation will correctly identify V′

1, . . . ,V
′
b for which V′

i,π = Vi, and
B′ = π−1(2), . . . , π−1(b+ 1) will be identified correctly as well. Moreover, Find-Permutation
proceeds to Step (iv).

Proof. Let V′
1, . . . ,V

′
b denote the vectors for which V′

i,π = Vi for every i. Note that these are
the only vectors outside U′ in the support of D that have 1 at the index i∗. As D(V′

i) =
α
b , the

probability that V′
i does not appear in X is at most (1 − α

b )
|X|. Since |X | = O(log2N/α) and

b = O(log log kn), the probability that V′
i ∈ X is at least 1− 1

N4 . Using the union bound over all
the vectors of S ′, with probability at least 1− 1/N3, we know that all of these vectors are in X , in
which case they are identified correctly, so B′ is identified correctly as well, and Find-Permutation
in Step (iii) proceeds to the next step.

Lemma 8.14 (Correctly identifying π−1(b+ 2), . . . , π−1(N)). Let W′
1, . . . ,W

′
⌈log kn⌉−1 denote

the vectors for which W′
j,π = Wj for every j. With probability at least 1− 1/N3, all these vectors

appear in X , in which case they are identified correctly, and so are π−1(b+2), . . . , π−1(N). Moreover,
Find-Permutation proceeds to Step (vi).

The proof of the above lemma is similar to the proof of Lemma 8.13 and is omitted. Note that
from Lemma 8.12, Lemma 8.13 and Lemma 8.14, we know that with probability at least 1− o(1),
the algorithm Find-Permutation has correctly determined the permutation π and proceeded to
Step (vi). We will finish up the proof of Lemma 8.11 using the following lemma.

Lemma 8.15. The probability that Find-Permutation outputs Fail in Step (vi) (instead of
outputting π) is at most 1/N3.

Proof. As D ∈ PGap, from the description of the property, we know that D({U′} ∪ S ′ ∪ T ′) = 3α.
As |X ′| = O(log2N/α), using the Chernoff bound (Lemma A.1), we have the result.

Combining the above lemmas, we conclude that with probability at least 9/10, the algorithm
Find-Permutation outputs a correct permutation π, completing the proof of Lemma 8.11.

To conclude this section, we show that with high probability, we will not output π for which too
much weight is placed outside the “encoded part” of the distribution.
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Lemma 8.16. For any distribution D (regardless of whether D is in PGap or not), the probability
that Find-Permutation outputs a permutation π for which D({X : X |{i∗}∪B′= 01b}) ≤ 1− 5α is
at most 1/10.

Proof. Recall the set of vectors Y as defined in Step (vi) of Find-Permutation: Y = {Z ∈
X ′ : Z |i∗∪B′≠ 01b}, where X ′ is the multi-set of (new) samples obtained in Step (vi) of Find-
Permutation. Consider a distribution D such that D({X : X{i∗}∪B′ = 01b}) ≤ 1 − 5α. This
implies that E [|Y| / |X ′|] ≥ 5α. As |X ′| = O(log2N/α), using the Chernoff bound (Lemma A.1), we
obtain that with probability at least 9/10, the algorithm Find-Permutation outputs Fail in Step
(vi), and does not output any permutation π. This completes the proof.

8.4 The upper bound on adaptive testing for property PGap

In this subsection, we design the adaptive tester for the property PGap. Given a distribution D
over {0, 1}N , with high probability, Alg-Adaptive outputs Accept when D ∈ PGap, and outputs
Reject when D is far from PGap. The formal adaptive algorithm is presented in Alg-Adaptive
(see Algorithm 4). Note that it has only two adaptive steps.

In the first adaptive step, our tester Alg-Adaptive starts by calling the algorithm Find-
Permutation (as described in Subsection 8.3) whose query complexity is Õ(n). If D ∈ PGap, with
high probability, Find-Permutation returns the permutation π such that Dπ ∈ P0

Gap. Once π is
known, when we obtain a sample X from D, we can consider it as Xπ from Dπ. Also, from the
structure of the vectors in the support of the distributions in P 0

Gap, we can decide whether Xπ is a
special vector, that is, Xπ ∈ {U} ∪ S ∪ T or Xπ is an encoding vector, that is, Xπ = FE(z,x) for
some z ∈ [n]m and x ∈ {0, 1}n. Observe that, in the later case, we can decode any bit of x (say xj)
by finding Xπ projected into Cj , which can be done by performing O(log n) queries.

As the second adaptive step, our algorithm asks for a sequence Y of O(n/ε) samples from D, that
is, from Dπ. Let Y ′ ⊆ Y be the sequence of encoding vectors in Y. We now call Supp-Est(Y ′, ε/3)
(from Lemma 8.8), and depending on its output, Alg-Adaptive either reports Accept or Reject.
Note that we can execute every query by Supp-Est(Y ′, ε/3), by performing O(log n) queries to the
corresponding sample in Y ′ as discussed above.

When D ∈ PGap (that is, Dπ ∈ P0
Gap for the permutation π), the set of encoding vectors in Dπ

is the encoding of at most n vectors in {0, 1}n. So, in that case, Alg-Adaptive reports Accept
with high probability. Now consider the case where D is ε-far from PGap. If Alg-Adaptive has not
rejected D before calling Supp-Est(Y ′, ε/3), we will show that the distribution over {0, 1}n induced
by the vectors decoded from the encoding vectors in Dπ is ε/3-far from having support size n. Then,
Alg-Adaptive will still reject D with high probability.
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Algorithm 4: Alg-Adaptive

Input: Sample and Query access to a distribution D over {0, 1}N , and a parameter
ε ∈ (0, 1).

Output: Either Accept or Reject.

(i) Call Find-Permutation. If Find-Permutation returns Fail, Reject. Otherwise, let π be
the permutation returned by Find-Permutation. Denote for convenience
i∗ = π−1(1), B′ = π−1(B), and C ′

j = π−1(Cj) for every j ∈ [n].

(ii) Take a multi-set X of O(1/ε) samples from D, and query all the entries of the sampled vectors
of X to know the vectors of X completely. If there is any vector X for which X |{i∗}∪B′= 01b

(according to the permutation π obtained from Step (i)) for which Xπ is not in the image of
FE (i.e. it is not a valid encoding of any vector in {0, 1}n), Reject. Otherwise, proceed to
the next step.

(iii) Take a sequence of samples Y such that |Y| = O(n/ε) from D. Now construct the sequence of
vectors Y ′ such that Y ′ = {Y ∈ Y : Y |{i∗}∪B′= 01b} by querying the indices corresponding to
{i∗} ∪B′.

(iv) Call Supp-Est(Y ′, ε/3) (from Lemma 8.8), where a query to an index j is simulated by
querying the indices of C ′

j and decoding the obtained vector with respect to to SE (that is,
checking whether the restriction of the queried vector to C ′

j is equal to SE(i, 0) for some i, or
equal to SE(i, 1) for some i). Reject if any of the following conditions hold:

(a) |Y ′| / |Y| ≤ 1/2 (due to the absence of sufficiently many samples in Y ′ to apply
Supp-Est).

(b) Supp-Est(Y ′, ε/3) queries an index j from some Yi corresponding to an invalid
encoding of Yi |C′

j
(that is, when Yi |C′

j
is not in the image of SE).

(c) Supp-Est(Y ′, ε/3) outputs Reject.

Otherwise, Accept.

Let us first discuss the query complexity of Alg-Adaptive.

Lemma 8.17 (Query complexity of Alg-Adaptive). The query complexity of the adaptive
tester Alg-Adaptive for testing the property PGap is Õ(N) = Õ(n).

Proof. Note that Alg-Adaptive calls the algorithm Find-Permutation in Step (i). Following the
query complexity lemma of Find-Permutation (Lemma 8.10), we know that Find-Permutation
performs Õ(N) queries.

For every sample taken in Step (ii), the sampled vectors of the multi-set X are queried completely.
Since we take O(1/ε) samples, this step requires O(N/ε) = Õ(n/ε) queries in total.

Then in Step (iii), Alg-Adaptive takes a multi-set Y of O(n/ε) samples, and queries for the
indices in {i∗} ∪ B′ to obtain the vectors in Y ′, which takes O(n log log kn/ε) queries. Finally, in
Step (iv), Alg-Adaptive calls the algorithm Supp-Est, which performs Õ(n) queries (following
Lemma 8.8), each of them simulated by O(log n) queries to some Yi |C′

j
. Thus, in total, Alg-

Adaptive performs Õ(N) = Õ(n) queries.

Now we prove the correctness of Alg-Adaptive. We will start with the completeness proof.
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Lemma 8.18 (Completeness of Alg-Adaptive). Let D be a distribution defined over {0, 1}N .
If D ∈ PGap, then the algorithm Alg-Adaptive will output Accept with probability at least 2/3.

Proof. Consider a distribution D ∈ PGap. From the completeness lemma of Find-Permutation
(Lemma 8.11), we infer that with probability at least 9/10, Find-Permutation returns the correct
permutation π in Step (i). Then, by the definition of PGap, the algorithm Alg-Adaptive can never
encounter any samples with invalid encodings in Step (ii) which could cause it to Reject. Thus,
with probability at least 9/10, the algorithm proceeds, with the correct permutation π, to Step (iii)
and Step (iv).

As D ∈ PGap, D({U′}∪S ′∪T ′) = 3α. Since |Y| = O(n/ε), using the Chernoff bound (Lemma A.2
(ii)), we can say that, with probability at least 9/10, |Y ′| / |Y| ≥ 1/2. Moreover, as the vectors in Y ′

are valid encodings with respect to the function FE of at most n vectors from [2n], following the
support estimation upper bound lemma (Lemma 8.8), we obtain that Supp-Est outputs Accept
with probability at least 9/10. Combining these, we conclude that Alg-Adaptive outputs Accept
with probability at least 2/3.

Now we prove that when D is ε-far from PGap, Alg-Adaptive will output Reject with
probability at least 2/3.

Lemma 8.19 (Soundness of Alg-Adaptive). Let ε ∈ (0, 1) be a proximity parameter. Assume
that D is a distribution defined over {0, 1}N such that D is ε-far from PGap. Then Alg-Adaptive
outputs Reject with probability at least 2/3.

From the description of Alg-Adaptive (Algorithm 4), if the tester reports Reject before
executing all the steps of Supp-Est(Y ′, ε/3) in Step (iv), then we are done. So, let us assume that
Alg-Adaptive executes all the steps of Supp-Est(Y ′, ε/3). Let Y ′ be the set of samples from a
distribution D# over {0, 1}n as it is presented to Supp-Est(Y ′, ε/3). Note that D# is unknown
and we are accessing D# indirectly via decoding samples from D over {0, 1}N . From the correctness
Supp-Est(Y ′, ε/3), we will be done with the proof of Lemma 8.19 by proving the following lemma.

Lemma 8.20 (Property of the decoded distribution). D# is ε/3-far from having support size
at most n.

We prove the above lemma using a series of claims. Let D be a distribution which is ε-far from
PGap, and V denote the set {X ∈ Supp(D) : X |{i∗}∪B′= 01b}, and let us define U = Supp(D) \ V.
Let us start with the following observation.

Observation 8.21. D(U) ≤ 5α, unless the algorithm Alg-Adaptive has rejected with probability
at least 1− 1/N3 in Step (i).

Proof. Since Alg-Adaptive in Step (i) invokes the algorithm Find-Permutation, this follows
immediately from Lemma 8.16.

Let π be the permutation returned by Find-Permutation. Now assume Vinv ⊆ V denotes the
following set of vectors:

Vinv = {X ∈ V : Xπ ̸= FE(z,x) for all z ∈ [n]m,x ∈ {0, 1}n}

For every vector V ∈ Vinv, let Γ′
V = {j ∈ [n] : V |C′

j
is not in the image of SE} denotes the set

of indices in [n] of chunks of all the “ locally invalid ” encodings in the vector V 23. Now we have the
following observation.

23Note that it may be the case that Γ′
V = ∅, for example when for every j ∈ [n], we have V |C′

j
= SE(ij ,xj), for

some i1, . . . , in and x1, . . . ,xn for which i1, . . . , in are not in the image of GE.
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Observation 8.22. D(Vinv) ≤ ε/10.

The above observation holds as otherwise, Alg-Adaptive would have rejected in Step (ii) with
probability at least 2/3.

Let us define a distribution D1 over {0, 1}N using the following procedure:

(i) Set D1(X) = D(X) for every X ∈ U .

(ii) Recall that Γ′
V = {j ∈ [n] : V |C′

j
is not in the image of SE} for every vector V ∈ Vinv. For

every vector V ∈ Vinv, we perform the following steps:

(a) For every j /∈ Γ′
V, decode the vector V |C′

j
using SE to obtain xj ∈ {0, 1}.

(b) For every j ∈ Γ′
V, choose an arbitrary value xj from {0, 1}.

(c) Using x = (x1, . . . ,xn) obtained from (a) and (b), construct a new vector V′ for which
V′

π = FE(z,x) for an arbitrary z ∈ [n]m, where π is the permutation obtained from
Find-Permutation in Step (i) of Alg-Adaptive.

(iii) For every vector V ∈ V \ Vinv, set V′ = V.

(iv) Finally define D1(W) =
∑

V:V′=W D(V) for every W ∈ V.

Let V ′ be the set of vectors in {0, 1}N that are in the support of D1 but not in U , that is,
V ′ = {X : X ∈ Supp(D1) \ U}. From the construction of D1, the following observation follows.

Observation 8.23. D1(U) = D(U) ≤ 5α and D1(V ′) = D(V) = 1−D(U) ≥ 1− 5α.

Now we prove that the distributions D and D1 are not far in Earth Mover Distance.

Lemma 8.24. The Earth Mover Distance between D and D1 is at most ε/10.

Proof. Recall that the EMD between D and D1 is the solution to the following LP:

Minimize
∑

X,Y∈{0,1}N
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}N
fXY = D(X) ∀ X ∈ {0, 1}N and

∑
X∈{0,1}N

fXY = D1(Y) ∀ Y ∈ {0, 1}N .

Consider the flow f∗ such that f∗
XX = D(X) for every X ∈ U ∪ (V \ Vinv), f∗

VV′ = D1(V) for
every V ∈ Vinv, and f∗

XY = 0 for all other vectors. Then we have the following:

dEM (D,D1) ≤
∑

X,Y∈{0,1}N
f∗
XYdH(X,Y)

≤
∑

X∈{0,1}N\Vinv
f∗
XXdH(X,X) +

∑
V∈Vinv

f∗
VV′dH(V,V′)

≤ 0 +
∑

V∈Vinv
D(V)dH(V,V′).

To bound the second term of the last expression, note that∑
V∈Vinv

D(V)dH(V,V′) ≤ D(Vinv) ≤ ε/10.
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This follows from Observation 8.22. Thus, we conclude that dEM (D,D1) ≤ ε/10, completing the
proof of the lemma.

Now we have the following observation regarding the rejection probabilities of Alg-Adaptive for
the distributions D and D1. This will imply that, as we are executing all steps of Supp-Est(Y ′, ε/3),
the steps of our algorithm are oblivious to both D and D1. That is, we can assume that the input
to the algorithm Alg-Adaptive is the distribution D1 instead of D.

Observation 8.25. The probability that the tester Alg-Adaptive outputs Reject in Step (iv)
where the input distribution is D is at least as large as the probability that Alg-Adaptive outputs
Reject in Step (iv) when the input distribution is D1.

Proof. Note that in the distribution D, there can be some vectors in Supp(D) that are not valid
encodings with respect to the function FE. Thus during its execution, the tester Alg-Adaptive can
Reject D by Condition (ii) and Condition (iv) (b). However, by the construction of D1 from D, we
have replaced the invalid encoding vectors with valid encoding vectors. Thus, the only difference it
makes here is that Alg-Adaptive may eventually accept a sample from D1 when encountering such
a place where a sample from D would have been immediately rejected by Condition (ii) or Condition
(iv) (b). Other than this difference, the distributions D and D1 are identical. So, the probability
that Alg-Adaptive will Reject D is at least as large as the probability that it Rejects D1.

Now, let us come back to the proof of Lemma 8.20. Recall that V ′ = {X : X ∈ Supp(D1) \ U}.
Let us define the distribution D# over {0, 1}n referred to in Lemma 8.20. For x ∈ {0, 1}n, we have
the following:

D#(x) = Ddec
1 (x) =

1

D1(V ′)

∑
Yπ=FE(z,x)

for some z∈[n]m

D1(Y) =
1

D1(V ′)

∑
z∈[n]m

D1(FE(z,x)π−1). (1)

For the sake of contradiction, assume that D# = Ddec
1 is ε/3-close to having support size at most

n. Let D2 be a distribution over {0, 1}n having support size at most n such that the Earth Mover
Distance between D2 and Ddec

1 is at most ε/3.
Given the distribution D2 over {0, 1}n, and the flow f ′

xy from D2 to Ddec
1 realizing the EMD of

at most ε/3 between them, let us consider the distribution Denc
2 over {0, 1}N as follows:

(i) For any X ∈ V ′, for which Xπ = FE(z,x) for some z ∈ [n]m, set:

Denc
2 (X) =

∑
y∈{0,1}n

f ′
xy

D1(FE(z,y)π−1 )

Ddec
1 (y)

.

(ii) For every X ∈ U , set Denc
2 (X) = D1(X).

The following observation follows from Observation 8.23 and the construction of Denc
2 .

Observation 8.26. Denc
2 (U) = D1(U) ≤ 5α and Denc

2 (V ′) = D1(V ′) = 1−D1(U) ≥ 1− 5α.

The following two lemmas bound the distance of Denc
2 from PGap and from D1, where Ddec

1 is
ε/3-close to having support size at most n. We will prove these two lemmas later.

Lemma 8.27. Denc
2 is 6α-close to PGap.

Lemma 8.28. The Earth Mover Distance between Denc
2 and D1 is at most ε/3.
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Assuming Lemma 8.27 and Lemma 8.28 hold, now we proceed to prove Lemma 8.20.

Proof of Lemma 8.20. From Lemma 8.24, we know that dEM (D,D1) ≤ ε/10. So, the above two
lemmas imply that D is (ε/3 + ε/10 + 6α) = 2ε/3-close to PGap, which contradicts the fact that D
is ε-far from PGap. This completes the proof of the lemma.

Now we will prove Lemma 8.27 and Lemma 8.28.

Proof of Lemma8.27. We define another distribution D3 over {0, 1}N from Denc
2 such that D3 is in

PGap and dEM (Denc
2 , D3) ≤ 6α as follows:

(i) D3(U
′) = α.

(ii) D3(X) = α
b for every X ∈ S ′, D3(X) = α

⌈log kn⌉ for every X ∈ T ′.

(iii) D3(X) = (1− 3α) · Denc
2 (X)

Denc
2 (V ′) for every X ∈ V ′.

Recall that D2 is a distribution over {0, 1}n that has support size at most n. This implies that
the set of vectors in Supp(Denc

2 ) \ U is the encoding of at most n vectors in {0, 1}n. So, from the
definition of PGap and D3, it is clear that D3 ∈ PGap.

Now we show that the Earth Mover Distance between the distributions D3 and Denc
2 is not large.

Claim 8.29. The Earth Mover Distance between Denc
2 and D3 is at most 6α.

Proof. We will bound the Earth Mover Distance between Denc
2 and D3 in terms of the variation

distance between them as follows:

dEM (Denc
2 , D3) ≤ 1

2
·
∑

X∈{0,1}N
|Denc

2 (X)−D3(X)|

=
1

2
·
∑
X∈V ′

|Denc
2 (X)−D3(X)|+ 1

2
·

∑
X∈{0,1}N\V ′

|Denc
2 (X)−D3(X)|. (2)

Let us bound the first term as follows:∑
X∈V ′

|Denc
2 (X)−D3(X)| =

∑
X∈V ′

|(1− 3α)
Denc

2 (X)

Denc
2 (V ′)

−Denc
2 (X)|

=
∑
X∈V ′

Denc
2 (X)

Denc
2 (V ′)

|(1− 3α)−Denc
2 (V ′)|

=
∑
X∈V ′

Denc
2 (X)

Denc
2 (V ′)

|3α− (1−Denc
2 (V ′))|

≤
∑
X∈V ′

3α
Denc

2 (X)

Denc
2 (V ′)

≤ 3α.
(
∵ Denc

2 (V ′) ≥ 1− 5α, Observation 8.26
)

From Observation 8.23, Denc
2 (U) ≤ 5α. From the definition of D3, D3(U) = 3α, we have∑
X∈{0,1}N\V ′

|Denc
2 (X)−D3(X)| ≤ 8α.

Following Equation 2, we conclude that dEM (Denc
2 , D3) ≤ 6α, which completes the proof.
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Since D3 ∈ PGap, and dEM (Denc
2 , D3) ≤ 6α, we conclude that Denc

2 is 6α-close to PGap.

Proof of Lemma 8.28. Recall that the EMD between Denc
2 and D1 is the solution to the following

LP:

Minimize
∑

X,Y∈{0,1}N
fXYdH(X,Y)

Subject to
∑

Y∈{0,1}N
fXY = Denc

2 (X) ∀X ∈ {0, 1}N and
∑

X∈{0,1}N
fXY = D1(Y) ∀Y ∈ {0, 1}N .

Let f ′
xy be the flow realizing the EMD between D2 and Ddec

1 . Using f ′, we now construct a new
flow f⋆ between Denc

2 and D1 as follows:

(i) For vectors X,Y ∈ U ,

(a) If X ̸= Y, then set f⋆
XY = 0.

(b) If X = Y, then set f⋆
XY = Denc

2 (X) = D1(Y).

(ii) For two vectors X,Y ∈ V , we take the vectors x,y ∈ {0, 1}n such that X,Y ∈ {0, 1}N are their
valid encodings (by construction, if X and Y are in the support of D2 and Denc

1 respectively,
such vectors x,y exist), and vectors z1, z2 such that Xπ = FE(z1,x) and Yπ = FE(z2,y).
Now we set the flow as follows:

(a) If z1 ̸= z2, then set f⋆
XY = 0.

(b) If z1 = z2, then set f⋆
XY = f ′

xy · D1(Y)

Ddec
1 (y)

.

(iii) If one of X and Y is in U and the other one is in V, then f⋆
XY = 0.

We first argue that the flow f∗
XY constructed as above is indeed a valid flow, that is, we have:∑

Y∈{0,1}N
f⋆
XY = Denc

2 (X) and
∑

X∈{0,1}N
f⋆
XY = D1(Y).

To prove
∑

Y∈{0,1}N
fXY = Denc

2 (X), first observe that it holds when X ∈ U from (i) and (iii)

in the description of f⋆
XY. Now consider the case where X ∈ V. Assume Xπ = FE (z,x), where

z ∈ [n]m and x ∈ {0, 1}n. So, from (ii) in the description of f⋆
XY, we have

∑
Y∈{0,1}N

f⋆
XY =

∑
y∈{0,1}n

f⋆
XFE(z,y)π−1

=
∑

y∈{0,1}n
f ′
xy

D1(FE(z,y)π−1)

Ddec
1 (y)

= Denc
2 (X).

For
∑

X∈{0,1}N
f⋆
XY = D1(Y), consider Y ∈ V for which Yπ = FE(z,y) for some z ∈ [n]m. Then

we have the following:∑
X∈{0,1}N

f⋆
XY =

∑
x∈{0,1}n

f ′
xy

D1(FE(z,y)π−1)

Ddec
1 (y)

= Ddec
1 (y)

D1(FE(z,y)π−1)

Ddec
1 (y)

= D1(Y).

In the above, we have used the fact that f ′
xy is a valid flow from D2 to Ddec

1 .
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Now, to bound EMD between Denc
2 and D1, let us bound the sum

∑
X,Y∈{0,1}N

f⋆
XYdH(X,Y).

∑
X,Y∈{0,1}N

f⋆
XYdH(X,Y)

=
∑

X,Y∈V
f⋆
XYdH(X,Y) (From (i) and (iii) in the description of f⋆)

=
∑

x,y∈{0,1}n

∑
z∈[n]m

f⋆
FE(z,x)π−1FE(z,y)π−1

· dH(FE(z,x)π−1 ,FE(z,y)π−1)

(From (ii) in the description of f⋆)

≤
∑

x,y∈{0,1}n

∑
z∈[n]m

f⋆
FE(z,x)π−1FE(z,y)π−1

· dH(x,y) (Observation 8.6 (iii))

=
∑

x,y∈{0,1}n

∑
z∈[n]m

f ′
xy

D1(FE(z,y)π−1)

Ddec
1 (y)

· dH(x,y) (From (ii) in the description of f⋆)

=
∑

x,y∈{0,1}n

f ′
xydH(x,y) ·

∑
z∈[n]m

D1(FE(z,y)π−1)

Ddec
1 (y)


= D1(V ′)

∑
x,y∈{0,1}n

f ′
xydH(x,y) (By Equation (1))

≤
∑

x,y∈{0,1}n
f ′
xydH(x,y) ≤ ε

3
.

The last inequality follows from the fact that f ′ realizes the assumed EMD between D1 and
Ddec

2 .

8.5 Near-quadratic lower bound for non-adaptive testers for testing PGap

Lemma 8.30 (Lower bound on non-adaptive testers). Given sample and query access to an
unknown distribution D, in order to distinguish whether D satisfies PGap or is ε-far from satisfying
it, any non-adaptive tester must perform Ω̃(n2) queries to the samples obtained from D, for some
ε ∈ (0, 1).

To prove the above lemma, we will construct two hard distributions over distributions, Dyes

which is supported over PGap, and Dno which is supported over distributions far from PGap, where
to distinguish them, any non-adaptive tester must perform Ω̃(n2) queries. Recall from Theorem 8.9
that DSupp

yes and DSupp
no are two distributions defined over distributions over {1, . . . , 2n}, where DSupp

yes

provides distributions whose support sizes are n, and DSupp
no provides distributions that are η-far

from distributions whose support size is (1 + 2η)n, for some constant η ∈ (0, 1/8). We will use these
two distributions to construct the hard distributions Dyes and Dno for the property PGap.

The hard distributions Dyes and Dno: We describe the distributions Dyes and Dno over distri-
butions over {0, 1}N such that Dyes is supported over PGap and Dno is supported over distributions
that are ζ2 ·η/5-far from PGap. In what follows, we describe a distribution D (D = Dyes or D = Dno)
with DSupp as parameter, where DSupp is a distribution defined over distributions over [2n]. In
particular, DSupp is either DSupp

yes or DSupp
no , where D = Dyes when DSupp = DSupp

yes , or D = Dno
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when DSupp = DSupp
no . To generate D, we first construct a distribution over distributions D0 as

follows. We denote by D̂ the distribution over {0, 1}N that we draw according to D0.

(i) Set D̂(U) = α, where U = 10N−1 is the indicator vector for the index 1.

(ii) Take a set of vectors S = {V1, . . . ,Vb} in {0, 1}N such that for every i ∈ [b], the i-th vector Vi

is of the form 1i+10N−1−i. Set D̂(Vi) = α/b for every i ∈ [b].

(iii) Take another set of vectors T = {W0, . . . ,W⌈log kn⌉−1} (disjoint from S) in {0, 1}N such that
for every Wi ∈ T , Wi is of the form 0(b(i))(02i12i)kn/2

i+1 , where b(i) denotes the length b
binary representation of i 24. Set D̂(Wi) = α/|T | for every Wi ∈ T .

(iv) Take a set of vectors Y ⊆ {0, 1}n such that |Y| = 2n, and for any two vectors yi,yj ∈ Y , i ̸= j,
δH(yi,yj) ≥ n/3. Also, draw a distribution D̃ over [2n] according to DSupp.

(v) Define D̂(FE(z,yi)) = (1 − 3α)D̃(i)/nm for every i ∈ [2n] and z ∈ [n]m, where FE : [n]m ×
{0, 1}n → {0, 1}N is the encoding function from Definition 8.5.

(vi) For all other remaining vectors that are not assigned probability mass in the above description,
set their probabilities to 0.

We define D as the process of drawing a distribution D̂ according to D0, and permuting it using
a uniformly random permutation π : [N ] → [N ].

Remark 5 (Intuition behind the above hard distributions). Unlike our adaptive algorithm
to test PGap (Algorithm 4 in Subsection 8.4), we can not determine the permutation π first, and
then perform queries depending on the permutation π. When the permutation π is not known, even
if we obtain a sample X and know that it is equal to FE(z,x)π−1 for some x ∈ {0, 1}n and z ∈ [n]m,
we can not even decode a single bit of x, unless we query too many of the indices of X. This follows
from the properties of our encodings functions SE and GE, used to construct FE (see Lemma 8.7),
which “hides” x inside X. Intuitively, this says that we have to query a quasilinear number of
the coordinates of the sample. Since the support estimation problem admits a sample complexity
lower bound of Ω(n/ log n), the non-adaptive query complexity of Ω̃(n2) follows for non-adaptive
algorithms. We will formalize this intuition below.

We will start with the following simple observation.

Observation 8.31. The distribution Dyes is supported over PGap.

Proof. From the construction of Dyes, which is constructed by encoding the elements of the support
of the distribution Dyes drawn from DSupp

yes , it is clear that Dyes ∈ PGap.

Now we show that the distribution Dno is supported over distributions that are far from the
property PGap.

Lemma 8.32 (Farness lemma). Dno is supported over distributions that are ζ2 · η/5-far from
PGap.

Before directly proceeding to the proof, let us first prove an additional lemma which will be used
in the proof of Lemma 8.32.

24If kn/2i+1 is not an integer, we trim the rightmost copy of 02i12i so that the total length of “(02i12i)kn/2i+1

” is
exactly kn.

58



Lemma 8.33. For any two distinct vectors X1 and X2 where X1,π, X2,π ∈ Supp(D̂)\ ({U}∪S ∪T )

for D̂ ∈ Supp(Dno), and π is the permutation for which D̂π ∈ D0
no, we have δH(X1,X2) ≥ ζ2 ·N/2.

Proof. We will use the properties of the function FE as mentioned in Observation 8.6. Re-
call that for a string z ∈ [n]m, and a vector x = (x1, . . . ,xn) ∈ {0, 1}n, we have FE(z,x) =
0(1b)SE(GE(z)1,x1) . . . SE(GE(z)n,xn). Now we have the following two cases:

(a) Suppose that for some vectors x ∈ {0, 1}n, and z1, z2 ∈ [n]m such that z1 ̸= z2, we have
X1,π = FE(z1,x) and X2,π = FE(z2,x). Then following Property (i) of FE in Observation 8.6,
we know that δH(X1,X2) ≥ ζ2 ·N/2 (noting that permuting the two vectors by the permutation
π preserves their pairwise distance).

(b) Suppose that for some vectors z ∈ [n]m, and x1,x2 ∈ {0, 1}n such that x1 ̸= x2, we have
X1,π = FE(z,x1) and X2,π = FE(z,x2). Then following Property (ii) of FE in Observation 8.6,
we know that δH(X1,X2) ≥ ζ · δH(x1,x2). From the choice of the vectors y1, . . . ,y2n, we know
that δH(x1,x2) ≥ n/3. Thus, we can say that in this case δH(X1,X2) ≥ ζ · nk/3 > ζ2 ·N/2
(recalling that ζ < 1/2).

Combining the above, we conclude that δH(X1,X2) ≥ ζ2 · N/2, for any two distinct vectors
X1,X2 as above.

Proof of Lemma 8.32. Suppose that D̂ ∈ Supp(Dno), and π is the permutation for which D̂π ∈
Supp(D0

no). We will bound dEM (D̂,PGap). Let us denote the distribution DY ∈ PGap that is closest
to D̂, where πY is the permutation for which DY,πY

∈ P0
Gap. Let us first define a new distribution

D̃Y over {0, 1}N as follows:

D̃Y (X) =

{ 1
(1−3α)DY (X) XπY /∈ ({U} ∪ S ∪ T )

0 otherwise

Similarly, we also define another distribution D̃ from D̂, using π instead of πY .
Now we have the following claim that bounds the distance between D̃Y and D̃.

Claim 8.34. dEM (D̃, D̃Y ) ≥ ζ2 · η/4.

Proof. Following the definition of the property PGap, we know that Supp(D̃Y ) consists of possible
encodings of n distinct vectors from {0, 1}n, and there are at most nm valid encodings of every such
vector (as per the number of possible vectors z ∈ [n]m that are given as input to GE). This implies
that the size of the support of the distribution D̃Y is at most nm+1.

Since any distribution in the support of DSupp
no has support size at least (1 + 2η)n, following

a similar argument as above, we infer that the size of the support of D̃ is at least (1 + 2η)nm+1.
Moreover, by Lemma 8.33, we know that any pair of vectors there has distance at least ζ2/2 (in
relative distance). Also, as any vector in the support of any distribution in the support of DSupp

no

has probability mass that is multiple of 1/2n, we infer that every vector in the support of D̃ has
probability mass at least n−m−1/2 (as per Item (v) in the definition of D0).

Summing up, we obtain that there are at least 2η · nm+1 many vectors in Supp(D̃) that are
ζ2/4-far (in relative distance) from any vector in Supp(D̃Y ), all of whose weights are at least
n−m−1/2 25. Thus, the Earth Mover Distance of D̃ from D̃Y is at least ζ2 · η/4.

25By the triangle inequality, if we consider a Hamming ball of radius ζ2/4 around every vector in Supp(D̃Y ), there
can be at most one vector from Supp(D̃) inside the ball.
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Recall that we need to bound the distance between D̂ and DY . From Claim 8.34, we know
that dEM (D̃, D̃Y ) ≥ ζ2 · η/4, where the distributions D̃ and D̃Y are defined over the encoding
vectors. From the definition of D̃ and D̃Y from D̂ and DY , we conclude that dEM (DY , D̂) =
(1− 3α)dEM (D̃, D̃Y ) ≥ ζ2 · η/5.

Now we prove that the distributions Dyes and Dno remain indistinguishable to any non-adaptive
tester, unless it performs Ω̃(n2) queries. We start with some definitions that will be required for the
proof. Recall that N = O(n log n).

Definition 8.35 (Large and small query set). A set of indices I ⊆ [N ] is said to be a large if
|I| > n/ log10 n. Otherwise, I is said to be a small.

Now we show that for a uniformly random permutation σ, and any Cj as defined in the property
PGap, with high probability the size of the set of indices |I ∩ σ(Cj)| will be small, unless I is a large
query set.

Observation 8.36. Let σ : [N ] → [N ] be a uniformly random permutation, and Cj correspond to a
“bit encoding set” of size k (as per the definition of PGap) for an arbitrary j ∈ [n]. For a fixed small
query set I ⊆ [N ], the probability that |I ∩ σ(Cj)| is at least ζ · k is at most 1/n10.

Proof. Let us define a collection of binary random variables ⟨Xi : i ∈ I⟩ such that the following
holds:

Xi =

{
1 i ∈ σ(Cj)
0 otherwise

Then as σ is a uniformly random permutation, Pr(Xi = 1) =
|σ(Cj)|

N = O( 1n) for any i ∈ [n].
Now let us define another random variable X =

∑n
i=1Xi. Noting that X = |I ∩ σ(Cj)|, we

obtain E[X] = O(1/ log10 n). By applying Hoeffding’s bound for sampling without replacement
(Lemma A.4), we can say that Pr(X ≥ ζ · k) ≤ 1/n10. This completes the proof.

Now let us define an event EI,j as follows:

EI,j := The query set I satisfies |I ∩ σ(Cj)| ≤ ζ · k.

Now we are ready to prove that unless Ω̃(n2) queries are performed, no non-adaptive tester can
distinguish Dyes from Dno.

Lemma 8.37 (Indistinguishibility lemma). With probability at least 2/3, in order to distinguish
Dyes from Dno, Ω̃(n2) queries are necessary for any non-adaptive tester.

Proof. From our result on the adaptive ε-tester for PGap, we know that Õ(n) queries are sufficient
for adaptively testing PGap. Without loss of generality, let us assume that the non-adaptive tester
takes at most n2 samples from the unknown distribution D (since we can assume that at least one
query is performed in every sample). As per the definition of a non-adaptive tester, assume that the
samples taken are X1, . . . ,Xs, and their respective query sets are I1, . . . , Is for some integer s.

Consider an event E as follows:

E := For every ℓ ∈ [s] for which Iℓ is small and every j ∈ [n], the event EIℓ,j occurs.

Since the non-adaptive tester takes at most n2 samples, there can be at most n2 samples for
which a small set was queried, that is, s ≤ n2. Moreover, there are n possible sets Cj present in a
sample. Using the union bound, along with Observation 8.36, we can say that the event E holds
with probability at least 1− 1/n7. Given that the event E holds, we will now show that the induced
distributions of Dyes and Dno on small query sets are identical and independent of the samples with
large query sets.
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Claim 8.38. Assume that the event E holds. Then a non-adaptive tester that uses at most o(n/ log n)
large query sets, can not distinguish Dyes from Dno with probability more than 1/4.

Proof. Since the distributions produced by Dyes and Dno are identical over the respective permuta-
tions of ({U} ∪ S ∪ T ), it is sufficient to prove indistinguishability over the restrictions to the valid
encodings of y1, . . . ,y2n (as they appear in the definition of D0). Furthermore, we argue that this
claim holds even if for every large query set, the tester is provided with the entire vector that was
sampled.

Given that the event E holds, regardless of whether the distribution was produced by Dyes or
Dno, the restriction of the samples to the small queried sets are completely uniformly distributed,
even when conditioned on the samples with large query sets (which are taken independently of them).
Thus we may assume that all samples with small query sets are ignored by the tester, since the
answers to these queries can be simulated without taking any samples at all.

Finally, we appeal to the construction of the hard distributions Dyes and Dno from DSupp
yes and

DSupp
no . By Theorem 8.9, the distance between these two distributions over the sample sequence is at

most 1/4, unless there were more than o(n/ log n) samples with large sets. This completes the proof
of the claim.

Combining Claim 8.38 with the above bound on the probability of the event E , we conclude
that Ω̃(n2) queries are necessary for any non-adaptive tester to distinguish Dyes from Dno with
probability at least 2/3, that is, with a probability difference of at least 1/3. This concludes the
proof of the lemma.
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A Some probability results

Lemma A.1 (Multiplicative Chernoff bound [DP09]). Let X1, . . . , Xn be independent random

variables such that Xi ∈ [0, 1]. For X =
n∑

i=1
Xi and µ = E[X], the following holds for any 0 ≤ δ ≤ 1.

Pr(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2/3

)
.

Lemma A.2 (Additive Chernoff bound [DP09]). Let X1, . . . , Xn be independent random variables

such that Xi ∈ [0, 1]. For X =
n∑

i=1
Xi and µl ≤ E[X] ≤ µh, the following hold for any δ > 0.

(i) Pr (X ≥ µh + δ) ≤ exp
(
−2δ2/n

)
.

(ii) Pr (X ≤ µl − δ) ≤ exp
(
−2δ2/n

)
.

Lemma A.3 (Hoeffding’s Inequality [DP09]). Let X1, . . . , Xn be independent random variables

such that ai ≤ Xi ≤ bi and X =
n∑

i=1
Xi. Then, for all δ > 0,

Pr (|X − E[X]| ≥ δ) ≤ 2 exp

(
−2δ2/

n∑
i=1

(bi − ai)
2

)
.

Lemma A.4 (Hoeffding’s Inequality for sampling without replacement [Hoe94]). Let n
and m be two integers such that 1 ≤ n ≤ m, and x1, . . . , xm be real numbers, with a ≤ xi ≤ b for
every i ∈ [m]. Suppose that I is a set that is drawn uniformly from all subsets of [m] of size n, and
let X =

∑
i∈I

xi. Then, for all δ > 0,

Pr (|X − E[X]| ≥ δ) ≤ 2 exp
(
−2δ2/n · (b− a)2

)
.

Now let us consider the following observation which states that if the normalized Hamming distance
between two vectors X and Y are small, the same also holds with high probability when X and Y
are projected on a set of random indices K. A similar result also holds when the distance is large
between the two vectors X and Y.

Observation A.5 (Approximating-string-distances). For U,V ∈ {0, 1}n and assume that
K ⊆ [n] is a set of indices chosen uniformly at random without replacement. Then the following
holds with probability at least 1− e− O(δ2|K|):

|dH(U,V)− dH(U |K ,V |K)| ≤ δ.

Proof. Follows from the fact that sampling without replacement is as good as sampling with
replacement (Lemma A.4).

Lemma A.6 (Chernoff bound for bounded dependency [Jan04]). Let X1, . . . , Xn be random

variables such that ai ≤ Xi ≤ bi and X =
n∑

i=1
Xi. Let D be the (directed) dependency graph, where

V (D) = {X1, . . . , Xn} and Xi is completely independent of all variables Xj for which (Xi, Xj) is
not a directed edge. Then for any δ > 0,

Pr(|X − E[X]| ≥ δ) ≤ 2e
−2δ2/χ∗(D)

n∑
i=1

(bi−ai)
2

.

where χ∗(D) denotes the fractional chromatic number of D.
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Corollary A.7 (Corollary of Lemma A.6). Let X1, . . . , Xn be indicator random variables such

that the dependency graph is a disjoint union of n/k many k size cliques. For X =
n∑

i=1
Xi and

µl ≤ E[X] ≤ µh, the followings hold for any δ > 0:

(i) Pr (X ≥ µh + δ) ≤ exp
(
−2δ2

kn

)
,

(ii) Pr (X ≤ µℓ − δ) ≤ exp
(
−2δ2

kn

)
.

Proof. Follows from the fact that the dependency graph has chromatic number k, and the fractional
chromatic number of a graph is at most the chromatic number of any graph.
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