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Abstract

De-bordering is the task of proving that a border complexity measure is bounded from
below, by a non-border complexity measure. This task is at the heart of understanding the
difference betweenValiant’s determinant vs permanent conjecture, andMulmuley and Sohoni’s
Geometric Complexity Theory (GCT) approach to settle theP ̸= NP conjecture. Currently, very
few de-bordering results are known.

In this work, we study the question of de-bordering the border Waring rank of polynomials.
Waring and border Waring rank are very well studied measures, in the context of invariant
theory, algebraic geometry and matrix multiplication algorithms. For the first time, we obtain
aWaring rank upper bound that is exponential in the border Waring rank and only linear in the
degree. All previous results were known to be exponential in the degree.

According to Kumar’s recent surprising result (ToCT’20), a small border Waring rank
implies that the polynomial can be approximated as a sum of a constant and a small product
of linear polynomials. We prove the converse of Kumar’s result, and in this way we de-border
Kumar’s complexity, and obtain a new formulation of border Waring rank, up to a factor of the
degree. We phrase this new formulation as the orbit closure problem of the product-plus-power
polynomial, and we successfully de-border this orbit closure. We fully implement the GCT
approach against the power sum, and we generalize the ideas of Ikenmeyer-Kandasamy
(STOC’20) to this new orbit closure. In this way, we obtain new multiplicity obstructions that
are constructed from just the symmetries of the points and representation theoretic branching
rules, rather than explicit multilinear computations.

Furthermore, we realize that the generalization of our converse of Kumar’s theorem to
square matrices gives a homogeneous formulation of Ben-Or and Cleve (SICOMP’92). This
results for the first time in a VF-complete family under homogeneous projections. We study
this approach further and obtain that a homogeneous variant of the continuant polynomial,
which was studied by Bringmann, Ikenmeyer, Zuiddam (JACM’18), is VQP-complete under
homogeneous border qp-projections. Such results are required to set up the GCT approach in
a way that avoids the no-go theorems of Bürgisser, Ikenmeyer, Panova (JAMS’19).
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1 Introduction

Waring rank and borderWaring rank. Given a homogeneous degree d polynomial f , theWaring
rank of f , denoted WR( f ), is the smallest r such that there exist homogeneous linear polynomials
(also called ‘homogeneous linear forms’) ℓ1, . . . , ℓr, with f = ∑i∈[r] ℓ

d
i . In the case of polynomials of

degree two, this notion is equivalent to the rank of the symmetric matrix associated to a quadratic
form; hence Waring rank can be regarded as a generalization of the rank of a symmetric matrix.
Unlike the case of matrices, when d ≥ 3, Waring rank is not in general lower semicontinous 1. The
border Waring rank of f , denoted WR( f ), is the smallest r such that f can be written as limit of a
sequence of polynomials fϵ withWR( fϵ) = r.

Waring rank was studied already in the eighteenth century [Cay45, Syl52, Cle61] in the context
of invariant theory, with the aim to determine normal forms for homogeneous polynomials.
We mention the famous Sylvester Pentahedral Theorem, stating that a generic cubic form in
four variables can be written uniquely as sum of five cubes. At the beginning of the twentieth
century, the early work on secant varieties in classical algebraic geometry [Pal06, Ter11] implicitly
commenced the study of borderWaring rank. The notion of border rank for tensorswas introduced
in [BCRL79] to construct faster-than-Strassen matrix multiplication algorithms. In [Bin80], Bini
proved that tensor border rank and tensor rank define the same matrix multiplication exponent.
Today this theory is deeply related to the study of Gorenstein algebras [IK99, BB14], the Hilbert
scheme of points [Jel20], and deformation theory [BB21, JM22].

In algebraic complexity theory, Waring rank defines a model of computation also known as the
homogeneous diagonal depth 3 circuits, see e.g. [Sax08]. Moreover, Bini’s Theorem is not limited
to tensors. In fact, the results of [CHI+18] guarantee that the matrix multiplication exponent is
controlled by the border Waring rank of a symmetrized version of the matrix multiplication tensor.
This applies more generally to asymptotic notions where the order of the tensor (or equivalently
the degree of the polynomial) is constant [CGJ19].

Algebraic complexity theory. A sequence (cn)n∈N of natural numbers is polynomially bounded if
there exists a polynomial q with ∀n : cn ≤ q(n). A p-family is a sequence of polynomials whose
degree and number of variables is polynomially bounded. An algebraic formula, over a field F, is
a directed tree with a unique sink vertex called the root. The source vertices are labelled by either
formal variables or field constants, and each internal node of the graph is labelled by either + or
×. Nodes compute formal polynomials in the input variables in the natural way. The polynomial
computed by the formula is defined to be the polynomial computed by the root. The size of a
formula is the number of vertices of the tree. The algebraic formula complexity of a polynomial f
is defined as the smallest size of an algebraic formula computing f . VF is the class of p-families
( fn)n∈N for which the sequence of algebraic formula complexities of fn is polynomially bounded.
If we allow arbitrary directed acyclic graphs instead of just trees (i.e., the out degree of a node can
be≥ 2), then this gives the notion of algebraic circuit, with the corresponding notion of the algebraic
circuit complexity. The class VP consists of the p-families ( fn)n∈N for which the algebraic circuit
complexity is polynomially bounded.

A third important model of computation is the algebraic branching program (ABP) model. It is a
1A function f is lower semicontinuous at a if lim inf

x→a
f (x) ≥ f (a). The function is lower semicontinuous if it is

semicontinuous at every point of its domain.
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classical result that every degree d polynomial f can be written as a product

f = ( ℓ1,1,1 ℓ1,2,1 ··· ℓ1,n,1 )

(
ℓ1,1,2 ··· ℓ1,n,2

... . . . ...
ℓn,1,2 ··· ℓn,n,2

)(
ℓ1,1,3 ··· ℓ1,n,3

... . . . ...
ℓn,1,3 ··· ℓn,n,3

)
· · ·
(

ℓ1,1,d−1 ··· ℓ1,n,d−1

... . . . ...
ℓn,1,d−1 ··· ℓn,n,d−1

)(
ℓ1,1,d

...
ℓn,1,d

)
of matrices whose entries are affine linear forms. Note that if f is homogeneous, then it is clear that
all entries can be chosen to be homogeneous linear. If f can be computed in the above form, we
say that f has an ABP of width n. Let abpw( f ) be the smallest n such that f has an ABP of width n.
The class VBP consists of the p-families ( fn)n∈N for which abpw( fn) is polynomially bounded.
Alternatively, one can define the determinantal complexity of a polynomial f to be the smallest n such
that f can be written as the determinant of an n× n matrix of affine linear forms. The class VBP
consists of all p-families ( fn)n∈N forwhich the determinantal complexity is polynomially bounded,
see e.g. [Mah14].

Let pern := Σσ∈Sn Πn
i=1xi,σ(i) be the permanent polynomial (on n2 variables), where Sn is the

symmetric group of n elements. The permanental complexity of a polynomial f is the smallest n such
that f can be written as the permanent of an n × n matrix of affine linear forms. The class VNP
consists of all p-families ( fn)n∈N for which the permanental complexity is polynomially bounded.

It is known that VF ⊆ VBP ⊆ VP ⊆ VNP [Val79, Tod92]. The conjectures VF ̸= VNP, VBP ̸=
VNP, VP ̸= VNP, are known as Valiant’s conjectures. Especially VBP ̸= VNP is known as the
determinant vs permanent problem.

A sequence (cn)n∈N of natural numbers is quasipolynomially bounded if there exists a polynomial
qwith ∀n ≥ 2 : cn ≤ nq(log2 n). In the definitions ofVF,VBP,VP,VNP, if we change the upper bound
on the complexity to "quasipolynomially bounded" instead of just "polynomially bounded", then
we obtain the classes VQF, VQBP, VQP, VQNP, respectively. It turns out that VQF = VQBP = VQP,
see [Bür00]. The conjecture VNP ̸⊆ VQP is called Valiant’s extended conjecture.

Border complexity. Border complexity for algebraic circuits was first discussed in 2001 in [MS01]
and [Bür04]. To any algebraic complexity measure one can define the corresponding border
complexity (i.e., border formula complexity, border abpw, etc), in the same way as border Waring
rank arises from Waring rank: The border complexity of f is the smallest n such that f can be
approximated arbitrarily closely by polynomials of complexity at most n. In analogy to border
Waring rank, border complexity measures are usually underlined, for example abpw. Replacing a
complexity measure by its border measure in a complexity class, we obtain the closure of this class,
VF, VBP, and so on. The operation of going to the closure is indeed a closure operator in the sense
of topology, see [IS22].

The closure can be defined concisely using the notion of degenerations as follows. Let f ∈
C[U]d, g ∈ C[W]d for finite dimensional complex vector spaces U, W. We say that f is a projection
of g, and write f ≤ g if f ∈ {g ◦ A | A : U → W linear}. We say that f is a degeneration
of g, and write f ⊴ g, if f ∈ {g ◦ A | A : U →W linear}. Write f ≤aff g, if f ∈ {g ◦ A |
A : U → W affine linear} = {v 7→ g(Av + b) | A : U → W linear, b ∈ W}. Write f ⊴aff g
if f ∈ {g ◦ A | A : U →W affine linear}. All these closures can be taken, equivalently, in the
Euclidean or the Zariski topology, see e.g. [Kra85, AI.7.2 Folgerung]. For C ∈ {VF,VBP,VP,VNP}
define C via ( fn)n ∈ C ⇐⇒ ∃(gn)n ∈ C ∀n : fn ⊴aff gn.

The paper [MS01] proposes to study theVNP ̸⊆ VBP conjecture (see [BLMW11]), and [Bür04]
does so for VNP ̸⊆ VP. These border variants of Valiant’s conjecture are often referred to as
the Mulmuley-Sohoni conjectures. In analogy to [Bür00], one observes VQF = VQBP = VQP,
which also coincides with the closure of VQP in the sense of [IS22]. We define the extended
Mulmuley-Sohoni conjecture as VNP ̸⊆ VQP.
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It is even open whether or not VF ⊆ VNP. In order to make progress on these and related
questions, one tries to prove results of the form C ⊆ D for algebraic complexity classes C and D,
a process called de-bordering. This can also be done directly on the complexity measures, without
the need to define complexity classes. For example, abpw( f ) ≤ WR( f ), see [BDI21, Thm 4.2] and
[For14, Sec. 4.5.2]. In terms of complexity classes, this means VWaring ⊆ VBP, where VWaring is
the class of p-families that have polynomially bounded Waring rank,.

In fact, unlike in the matrix multiplication case, most questions about the relation between
complexity classes and their closures is wide open, for example, it is wide open if Valiant’s
conjecture is equivalent to theMulmuley-Sohoni conjecture, even in the extended case. Forwidth 2
algebraic branching programs, the complexity class differs from is closure [BIZ18]. The same is
true for the sum of two products of affine linear forms [Kum20]:

For a polynomial f , let Kumar’s complexity, denoted, Kc( f ) be the smallest m such that there
exists a constant α and homogeneous linear polynomials ℓi such that

f = α
((

∏m
i=1(1 + ℓi)

)
− 1
)
. (1.※)

If no such m exists, we set Kc( f ) := ∞. Let Kc be the corresponding border complexity. Formally,
for fϵ, gϵ ∈ C(ϵ)[x] we write fϵ ≃ gϵ if both limits limϵ→0 fϵ and limϵ→0 gϵ exist, and both limits
coincide. Algebraically this means that fϵ, gϵ ∈ C[[ϵ]][x] and fϵ ≡ gϵ mod ⟨ϵ⟩. Let Kc( f ) denote
the smallest m such that there exists fϵ ∈ C(ϵ)[x] and homogeneous linear forms ℓi ∈ C(ϵ)[x]1,
α ∈ C(ϵ)with fϵ ≃ f and ∀β ̸= 0 : Kc( fϵ|ϵ=β) ≤ m. Now,Kc is the smallest m such that f ≃ fϵ with
fϵ = α

((
∏m

i=1(1+ ℓi)
)
− 1
)
, where α ∈ C(ϵ) and ℓi ∈ C(ϵ)[x]1. It is often more convenient to work

with approximations in C[ϵ−1, ϵ] instead of C(ϵ). This can always be achieved by first representing
rational functions by their Laurent series at 0, thus going from C(ϵ) to C((ϵ)) = C[[ϵ]][ϵ−1], and
then truncating the Laurent series at degree high enough so that it does not affect approximations.
Kumar [Kum20] proved that for all homogeneous polynomials f , we haveKc( f ) ≤ deg( f ) ·WR( f ),
and it is easy to see that this implies Kc( f ) ≤ deg( f ) ·WR( f ).

Orbit closures. We write GLn := GL(Cn). Given a homogeneous degree d polynomial f in n
variables and an invertiblematrix g ∈ GLn, we define g f via ∀x ∈ Cn : (g f )(x) := f (gtx) 2. The set
GLn f is called the orbit of f under the group action of GLn. The closure of an orbit is defined as the
set of all limit points of sequences of orbit points. It turns out that this Euclidean closure coincides
with the Zariski closure. For example, GLn(x1x2 · · · xn) is the set of all n-variable homogeneous
degree n polynomials that can be written as a product of homogeneous linear polynomials (or as a
limit of such, but in this specific case, this makes no difference). As another example, consider the
power sum polynomial xd

1 + · · ·+ xd
n. It is easy to see that for a homogeneous degree d polynomial

f we haveWR( f ) ≤ n if and only if f ∈ GLn(xd
1 + · · ·+ xd

n), provided f is a polynomial in at most
n variables. Let Cn×n denote the set of all n× n matrices, and note that in general Cn×n(xd

1 + · · ·+
xd

n) ⊊ GLn(xd
1 + · · ·+ xd

n). In fact, for a homogeneous degree d polynomial f we have WR( f ) ≤ n
if and only if f ∈ Cn×n(xd

1 + · · ·+ xd
n), provided f is a polynomial in at most n variables.

In analogy to the power sum, consider the homogeneous degree d iterated n × n matrix
multiplication polynomial in N := n2(d− 1) + 2n many variables:

IMMd
n := ( x1,1,1 x1,2,1 ··· x1,n,1 )

( x1,1,2 ··· x1,n,2

... . . . ...
xn,1,2 ··· xn,n,2

)( x1,1,3 ··· x1,n,3

... . . . ...
xn,1,3 ··· xn,n,3

)
· · ·
( x1,1,d−1 ··· x1,n,d−1

... . . . ...
xn,1,d−1 ··· xn,n,d−1

)( x1,1,d

...
xn,1,d

)
.

2The transpose is needed to ensure that g(h( f )) = (gh)( f ) for all g, h ∈ GLn.
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It is easy to see that for a homogeneous degree d polynomial f we have abpw( f ) ≤ n if
and only if f ∈ GLN IMMd

n, provided f is a polynomial in at most N variables. One can
see that the Mulmuley-Sohoni conjecture is equivalent to the statement that abpw(pern) grows
superpolynomially. As we have seen, this is a question about orbit closures. In fact, f ∈ GLN IMMd

n

if and only if GLN f ⊆ GLN IMMd
n, so it is a question about orbit closure containment.

In principle, the theory also works for inhomogeneous polynomials, but either the general
linear group has to be replaced by the general affine group, which is not reductive, or the
polynomial has to be padded, as in [MS01]. The padded permanent is the polynomial xn−m

0 perm,
homogeneous of degree n in m2 + 1 variables. The Mulmuley-Sohoni conjecture is equivalent to
proving that there is no polynomially bounded (in m) n such that GLn2 xn−m

0 perm ⊆ GLn2 detn.

Representation Theory. One main idea of geometric complexity theory is to use the symmetries
of the two polynomials to prove the non-containment of one orbit closure in the other.

Fix a homogeneous degree d polynomial p in n variables, i.e., p ∈ C[x1, . . . , xn]d =: Sd(Cn) for
short. Let I(GLn p) denote the vanishing ideal of its orbit closure, i.e., the set of all polynomials
that vanish identically on GLn p. These polynomials are polynomials in the coefficients of p, in
other words, for the homogeneous degree D part of the vanishing ideal we have I(GLn p)D ⊆
SD(Sd(Cn)). The coordinate ring is defined as the quotient C[GLn p]D := SD(Sd(Cn))/I(GLn p)D.

For fixed homogeneous degree d polynomials p and q in n variables, assume that GLn p ⊆
GLn q. Hence, I(GLn q) ⊆ I(GLn p), and therefore for every D we get an equivariant surjection
C[GLn q]D ↠ C[GLn p]D. Note that we can define a group action on a coordinate ring via
g f (x) := f (g−1x), similar to the usual group action on polynomials, but this time on polynomials
in coefficients of other polynomials. This makes both C[GLn p]D and C[GLn q]D finite dimensional
representations of GLn, which is reductive, and hence both decompose into a direct sum of
irreducible representations. The representation theoretic multiplicity multλ counts the number
of irreducibles of type λ in such a decomposition (the actual number is independent of the
decomposition). By Schur’s lemma (see [FH91]), an equivariant surjection implies an inequality
of representation theoretic multiplicities: multλ(C[GLn q]D) ≥ multλ(C[GLn p]D). Hence, any
λ violating this inequality (i.e., any λ with multλ(C[GLn q]D) < multλ(C[GLn p]D)) proves that
GLn p ̸⊆ GLn q. This is called a representation theoretic multiplicity obstruction. If additionally
multλ(C[GLn q]D) = 0, then we call this an occurrence obstruction. Occurrence obstructions can be
used to prove lower bounds on the border rank of thematrixmultiplication tensor, see [BI11, BI13].
In order to prove the required lower bound on multλ(C[GLn p]D), these papers use elaborate
constructions of highest weight vectors, instead of making use of the symmetry of the point.

The original Geometric Complexity Theory (GCT) papers [MS01, MS08] propose to use
occurrence obstructions to separate the orbit closures of the determinant and the padded
permanent polynomial. Thiswas commonly known as the GCT approach, until [IP17, BIP19] proved
that this is impossible (the no-go theorem), by making use of the fact that [MS01, MS08] use the
padded formulation of the Mulmuley-Sohoni conjecture. There exists no such counterexamplewhen
the determinant if replaced by IMMd

n (which implies that perd is not padded). The first paperwhere
multiplicity obstructions could be foundwithout an explicit construction of a highest weight vector
is [IK20], where the symmetries of both points are used to construct a multiplicity obstruction λ
that shows that the power sum polynomial is not a product of homogeneous linear forms (there
are much easier ways to prove this though).
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1.a Main Results

Let V := C[x1, . . . , xn]1 := Span({x1, . . . , xn}) be the space of linear forms in x1, . . . , xn, and write
Sd(V) := C[x1, . . . , xn]d =: C[V∗]d as the space of homogeneous polynomials of degree d. Fix
integers d, r, s. Throughout the paper, we will be using the following polynomial

P[d]
r,s :=

r

∑
i=1

∏d
j=1xji +

s

∑
i=1

yd
i ,

in the rd + s variables x11, . . . , xdr, y1, . . . , ys. Of special interest will be the case r = s = 1, i.e., the
product-plus-power polynomial. When s = 0, it is ∑r

i=1 ∏d
j=1 xji, and when r = 0, it is the power sum

polynomial ∑s
i=1 yd

i .
We first prove a fixed-parameter de-bordering theorem for border Waring rank:

1.1 Theorem. Let f ∈ C[x1, . . . , xn]d with WR( f ) = r. Then, WR( f ) ≤ 4r · d.

For details, see Theorem 2.12 in Section 2.b. To the best of our knowledge, previous methods
only allow upper bounds of the order dr or rd. To getWR( f ) ≤ O(dr), note that a polynomial with
borderWaring rank r can be transformed into a polynomial in only r variables using a linear change
of variables (see Lemma 2.2), and then take the maximal possible Waring rank of an r-variate
polynomial of degree d as an upper bound. Alternatively, one can use the fact that a polynomial
with border Waring rank r can be computed by an noncommutative ABP of width r [BDI21]. An
upper boundWR( f ) ≤ 2d−1rd can be obtained by writing an ABP as a sum of at most rd products,
one for each path. Other known de-bordering techniques, such as the interpolation technique
using the approximation degree bound of ϵ (which could be exponentially large in the degree of
the polynomial) of Lehmkuhl and Lickteig [LL89], or the DiDIL technique from [DDS22] can be
applied in the border Waring rank setting, but do not improve over the simpler results discussed
above.

There are several papers that prove thatWR( f ) = O(deg f ) if the value ofWR( f ) is small using
case-by-case analysis ([LT10] forWR( f ) ≤ 3, [Bal19] forWR( f ) ≤ 4). Ballico and Bernardi [BB17]
conjecture that WR( f ) ≤ (WR( f )− 1) · deg f and prove an analogue of this statement for a weak
version of border rank called curvilinear rank.

We continue in our study of borderWaring rank by focusing onKumar’s recent result [Kum20],
where he uses a connection to elementary symmetric polynomials (originally observed by Shpilka
[Shp02]) to prove that small Waring rank implies small border Σ[2]ΠΣ-complexity, more precisely
Kc( f ) ≤ deg( f ) ·WR( f ), which also impliesKc( f ) ≤ deg( f ) ·WR( f ). We develop a border version
of the Newton identities and use it to prove the converse of Kumar’s statement:

1.2 Theorem (Converse of Kumar’s theorem). For all homogeneous f ,WR( f ) ≤ Kc( f ) or f is a product
of linear forms.

For details, see Corollary 3.8. This also immediately gives a de-bordering result for Kc, because
abpw( f ) ≤ WR( f ). Since WR( f ) ≤ Kc( f ) ≤ deg( f )WR( f ), it is reasonable to study Kc on its own
right. We therefore set up the corresponding GLn+1 orbit closure problem of the polynomials P[d]

1,1

and P[d]
1,2. Both of them turn out to be an orbit closure that is contained in the orbit closure of the

binomial bnd := P[d]
2,0, which was studied by Jesko Hüttenhain in [Hüt17].

Interestingly, the orbit closure of P[d]
1,1 and Kc are intimately connected and can be described is

as follows. For a polynomial f ∈ SdV that does not involve some variable xi we write f ⊴
xj
xi g if
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f ∈ {g ◦ A | A : U →W linear and A(Cxj) = Cxi}. This definition is inspired by the definition of
a parabolic subgroup of the general linear group. If f does not involve x0, we observe that

Kc( f ) ≤ m ⇐⇒ xm−d
0 f ⊴y1

x0 ∏
i∈[m]

xi + ym
1

=⇒
⇍= xm−d

0 f ⊴ P[m]
1,1 ⇐⇒ f ⊴aff P[m]

1,1 .

The above formulation shows that proving de-bordering results for the orbit closure of P[d]
1,1 is

relevant for the study of Kc and in turn for border Waring rank. In fact, we go further and even
prove de-bordering for the product plus two powers, which is still contained in the orbit closure
of the binomial.

1.3 Theorem (De-bordering product-plus-powers). Let f ∈ C[x1, . . . , xn]d. The following holds.
(i) If f ⊴ P[d]

1,1, then either f ≤ P[d]
1,1, or abpw( f ) ≤ WR( f ) ≤ O(d5).

(ii) If f ⊴ P[d]
1,2, then either f ≤ P[d]

1,2, or f ≤ ∏i∈[d] yi + yd−1
0 · yd+1, or abpw( f ) ≤ WR( f ) ≤ O(d8).

See Theorem 4.11 and Theorem 4.12 for the details. Note that, both product-plus-power and
product-plus-two-powers are special binomials 3, and hence, from [DDS22], it follows that their
orbit closures are contained inVBP. Our results aremore fine-grained de-bordering thanVBP, since
WR( f ) ≤ poly(d) =⇒ f ∈ VBP [For16, GKS17, BDI21], and the converse does not necessarily
hold, because WR(detd) = exp(d) [Sax08, CKW11a]. In Section 4.b, we also show some lower
bound results in these computational models.

Having set up the orbit closure formulation, in §5 we use it as a new test-bed for GCT. We
generalize [IK20] from the product polynomial to product-plus-power by exhibiting multiplicity
obstructions that are based entirely on the symmetries of the two polynomials.

1.4 Theorem (New obstructions). Let d ≥ 3, and let λ = (5d − 1, 1) + ((d + 1) × (10d)).
Then we have representation theoretic multiplicity obstructions: multλ(C[GLd+1 P[d]

1,1 ]) ≤ 4 < 5 =

multλ(C[GLd+1 P[d]
0,d+1]), and hence GLd+1 P[d]

0,d+1 ̸⊆ GLd+1 P[d]
1,1.

These obstructions are only based on the symmetries of the two polynomials as in [IK20], see
Theorem 5.11 for the details. This is still a toy case for GCT, but as seen above, it was proved by
Kumar [Kum20] that P[d]

1,1 is much more expressive than P[d]
1,0 (which is just a monomial), which

was studied in [IK20].
We get another result from studying the proof of Theorem 1.2 and generalizing it to matrices.

This result startswith the observation that one can lift Kumar’s result and its reverse tomatrices and
obtain a clean and homogeneous version of Ben-Or and Cleve’s characterization of VF. We use this
to find a new and very simple homogeneous polynomial that is VF-complete under homogeneous
degenerations (see Definition 6.1 for the details of this definition). The parity-alternating
elementary symmetric polynomial Cn,d is defined via

Cn,d := ∑
(i1,i2,...,id)∈P

xi1 xi2 · · · xid

where P is the set of length d increasing sequences of numbers i1 < i2 < . . . < id from 1, . . . , n in
which for all j the parity of ij differs from the parity of ij+1, and i1 is odd.

3Note P[d]
1,2 = ∏i∈[d] xi + yd

1 + yd
2 = ∏i∈[d] xi + ∏i∈[d](y1 − ζ2i+1y2), where ζ is the (2d)-th root of unity.
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1.5 Theorem (Homogeneous VF). For a homogeneous polynomial f let c := min{r | f ∈
GLr Cr,deg( f )}. The extended Mulmuley-Sohoni conjecture is true if and only if c(perm) grows
super-quasipolynomially.

See Theorem 6.12 for the details. This is a homogeneous, padding-free formulation. The
only other polynomial so far that allows for such a formulation is the homogeneous iterated
matrix multiplication polynomial, which so far resisted all attempts for finding lower bounds via
representation theoretic obstructions. However, it must be noted that Cn,d is not characterized by
its stabilizer, and maybe there exist even better polynomials that have the same simple structure
as Cn,d, and are at the same time characterized by their stabilizer. In any case, its homogeneity and
simplicity makes Cn,d a good candidate for studying VF using methods from algebraic geometry
in future work.

As a first toy proof of concept, we used the software from [BHIM22] on a laptop to check
that the GL5 isomorphism type (5, 5, 5, 3, 3) occurs in the vanishing ideal I(GL5 C5,3), and the
corresponding highest weight vector does not vanish on a random point in the GL5 orbit of
p := x3

1 + x3
2 + x3

3 + x1x2x3 + x3x4x5, hence we have that p /∈ GL5 C5,3. This is in fact an
occurrence obstruction, because the plethysm coefficient a(5,5,5,3,3)(7, 3) = 1, i.e., the irreducible
GL5-representation of type (5, 5, 5, 3, 3) is unique in S7(S3(C5)), which we directly computed using
the schur software http://sourceforge.net/projects/schur. The software is randomized, in
the sense that the vanishing is determined by vanishing on sampled pseudorandom points, so it
remains to be symbolically verified that (5, 5, 5, 3, 3) is indeed in I(GL5 C5,3).

1.b Proof Ideas

Proof idea of Theorem 1.1: De-bordering border Waring rank. For the Waring rank, we
show a de-bordering result of the form WR( f ) ≤ exp(WR( f )) · deg f . The main ideas for this
proof come from ‘apolarity theory’ and the study of 0-dimensional schemes in projective space
(see Section 2.c), but we also provide an elementary proof which does not use the language of
algebraic geometry and is based on partial derivative techniques (see Section 2.b).

To prove the de-bordering, we transform a border Waring rank decomposition for f into a
generalized additive decomposition [Iar95, BBM14] of the form f = ∑m

k=1 ℓ
d−rk+1
k gk, where ℓk are linear

forms, and gk are homogeneous polynomials of degrees rk − 1. We then obtain an upper bound on
theWaring rank, by first decomposing each gk with respect to a basis consisting of powers of linear
forms, and then using the classical fact (see also [BBT13]) thatWR(ℓa

1ℓ
b
2) ≤ max(a + 1, b + 1).

To construct a generalized additive decomposition, we divide the summands of a border rank
decomposition into several parts such that cancellations only happen between summands belonging
to the same part; see Lemma 2.8. The key insight is that if the degree of polynomials involved is
high enough, namely when deg f ≥ WR( f )− 1, then all parts of the decomposition are “local” in
the sense that the lowest order term in each summand is a multiple of the same linear form. Each
local part gives one term of the form ℓd−r+1g, where r is the number rank one summands in the
part and ℓ is the common lowest order linear form; see Lemma 2.5.

For example, consider the family of polynomials fd = xd−1
0 y0 + xd−1

1 y1 + 2(x0 + x1)
d−1y2,

adapted from [BB15]. If d > 3, then the border Waring rank of f is 6, as evidenced by the
decomposition

fd = lim
ε→0

1
dε

[
(x0 + εy0)

d − xd
0 + (x1 + εy1)

d − xd
1 + 2(x0 + x1 + εy2)

d − 2(x0 + x1)
d
]

(1.6)

and a lower bound is obtained by considering the dimension of the space of second order partial
derivatives. The summands of the decomposition (1.6) are divided into three pairs. The lowest
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order term of the first pair is x0, the one of the second pair is x1 and the one of the third pair is
(x0 + x1). For each pair, the sum of the two powers individually converges to a limit as ε → 0;
these three limits are, respectively, xd−1

0 y0, xd−1
1 y1, and 2(x0 + x1)

d−1y2, which are the summands
of a generalized additive decomposition for fd.

When d = 3, the polynomial f is an example of a “wild form” [BB15]. It has border Waring
rank 5 given for example by the decomposition

f3 = lim
ε→0

1
9ε

[
3(x0 + εy0)

3 + 3(x1 + εy1)
3 + 6(x0 + x1 + εy2)

3 − (x0 + 2x1)
3 − (2x0 + x3)

3] . (1.7)

Unlike the previous decomposition, this one cannot be divided into parts that have limits
individually, and is not local — all summands have different lowest order terms. This is only
possible if the degree is low.

The condition on the degree is related to algebro-geometric questions about regularity
of 0-dimensional schemes [IK99, Thm. 1.69], but for the schemes arising from border rank
decompositions, this is ultimately a consequence of the fact that r distinct linear forms have linearly
independent d-th powers when d ≥ r− 1.

Proof idea of Theorem 1.2: Converse of Kumar’s theorem. We observe that Kc expressions
fall into three different cases, depending on whether the scalar α converges to 0, converges to
nonzero, or diverges. We study these three case independently. For the case where α converges
to zero, it is easy to see that the resulting polynomial is a product of affine linear polynomials, see
Lemma 3.9. For the case where α converges to a nonzero value, we use the Newton Identities to
show a lower bound given by the Waring rank, see Proposition 3.10. The case of α diverging (and
hence, cancellations occurring in the limit) is the most interesting. The use of Newton Identities
is not sufficient to resolve this case, so we develop a new tool: Border Newton Relations. With this
new tool, the proof is short and elegant, see Theorem 3.11.

Proof idea of Theorem 1.3: De-bordering product-plus-power and product-plus-two-powers.
The de-borderings of the product-plus-power and product-plus-two-powers models are based on
their representation as restricted binomials. A power is product of equal linear forms, and a sum
of two powers can be represented as a product using the identity ad − bd = ∏d−1

i=0 (a− ωib) where
ω is a primitive d-th root of unity, so we consider the limits of sums of two products

lim
ϵ→0

(
d

∏
i=1

ℓi(ϵ) +
d

∏
i=1

ℓ′i(ϵ)

)
where ℓi, ℓ′i are families of linear forms depending on ϵ. One of the products in this sum is restricted,
in the sense that it has a constant number of essential variables (1 in the case of product-plus-power,
and 2 in the case of product-plus-two-powers); for more on essential variables, see Section 2.a.
Because of this, our results do not extend to more than 2 powers.

To analyze the limits of sums of two powers, we again use the idea of “locality”. If the two
products in the sum do not have limits individually, then they must cancel in the lowest degree
terms, and this only happens if the lowest degree terms are the same up to permutation and scaling
of linear forms in a product. Using this, we show that now the lowest degree terms only have a
constant number of essential variables, and by fixing the values of these variables, we obtain an
‘almost’ Kumar-like expression of the form

lim
ϵ→0

(
α(ϵ)

d

∏
i=1

(1 + ai(ϵ))− β(ϵ)
d

∏
i=1

(1 + bi(ϵ))

)
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where α, β are scalars and ai, bi are linear forms depending on ϵ. This model can be analyzed using
the border Newton relations, similar to Theorem 1.2; for details see Theorem 4.8. Finally, we use
polynomial interpolation to get a bound on the borderWaring rank of the original polynomial from
the bound in this Kumar-like model.

Proof idea of Theorem 1.4: New obstructions. At a first glance, the polynomial P[d]
1,1 = ∏i∈[d] xi +

xd
0 looks very similar to the well-studied product polynomial ∏i∈[d] xi, which was the object

of several GCT papers [Kum15, BI17, DIP20, IK20]. A system of set-theoretic equations for
its orbit-closure is known due to Brill and Gordon [Gor94], and their representation theoretic
structure has been recently described by Guan [Gua18]. We try to transfer as much of the theory
as possible from the product to P[d]

1,1, in order to mimic the proof technique of [IK20].
First, we determine the stabilizer of P[d]

1,1 inGLd+1 that isZd× (TSLd ⋊Sd), see Theorem 5.2. This
is promisingly close to the stabilizer of the product polynomial. We then study the multiplicities in
the coordinate ring of the orbit via classical representation theoretic branching rules. Recall that the
irreducible representations of GLd+1 are indexed by partitions λ = (λ1, λ2, . . .), λ1 ≥ λ2 ≥ ..., with
ℓ(λ) ≤ d + 1, see Section 5.b. Denote by Sλ(C

d+1) the irreducible representation of type λ. For a
GLd+1-representation V we write multλ(V) to denote the multiplicity of λ in V , i.e., the dimension
of the space of equivariant maps from Sλ(C

d+1) to V , or equivalently, the number of summands
of isomorphism type λ in any decomposition of V into a direct sum of irreducible representations.
For λ ⊢ dD we obtain the following identity:

multλ(C[GLd+1 P[d]
1,1 ]) = dim(SλV)H =

D

∑
δ=0

∑
µ⊢δd,µ⪯λ,ℓ(µ)≤d

aµ(d, δ) ,

where aµ(d, δ) is the plethysm coefficients, i.e., the multiplicity of µ in Symd(Symδ(V)), see
Proposition 5.4. We implement this formula on a computer and indeed find an abundance of
multiplicity obstructions against generic polynomials, see appendix A.We use this data, and apply
the [IK20] approach to lower bounds on multλ(C[GLd+1 P[d]

0,d]), to find a sequence of partitions
where multλ(C[GLd+1 P[d]

1,1 ]) < multλ(C[GLd+1 P[d]
0,d]), see Theorem 5.11. This implies GLd+1 P[d]

1,1 ̸⊆

GLd+1 P[d]
0,d for d ≥ 3; note that for d = 2, the fact that GL3 P[2] ⊆ GL3 P[2]

0,2 follows from
a2 − b2 = (a + b)(a− b).

Proof idea of Theorem 1.5: Homogeneous VF. Generalizing Kumar’s complexity (1.※) to the
setting of 3× 3 matrices, one obtains a structure that is very similar to the proof of Ben-Or and
Cleve that describes VF via affine projections of the 3× 3 iteratedmatrix multiplication polynomial
[BC92], but the version we get uses homogeneous projections.

Let Dn,d be the homogeneous degree d part of the (1, 2) entry of 1 x1,1,2 x1,1,3
x1,2,1 1 x1,2,3
x1,3,1 x1,3,2 1

 · · ·
 1 xn,1,2 xn,1,3

xn,2,1 1 xn,2,3
xn,3,1 xn,3,2 1

−
1 0 0

0 1 0
0 0 1

 ,

which makes the connection to Equation (1.※) clear. We homogenize Ben-Or & Cleve and get
Corollary 6.6, i.e., the VF-completeness of Dn,d. Here we have to pay close attention on how to
deal with field constants, and we define the notion of input-homogeneous-linear computation,
see §6.b. In particular, we prove an input-homogeneous-linear version of Brent’s depth reduction,
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see Lemma 6.2. In order to simplify our new complete polynomial further, we then turn to 2× 2
matrices. Note that (for odd d) Cn,d is the homogeneous degree d part of the (1, 2) entry of(

1 x1
0 1

)(
1 0
x2 1

)
· · ·
(

1 xn
0 1

)
−
(

1 0
0 1

)
.

Theorem 6.12 is based on the construction of [BIZ18], which is, however inherently affine. In the
new homogeneous model, we convert the product gate into an arity 3 homogeneous product gate.
The resulting analysis of arithmetic circuits and formulas allowing only arity 3 homogeneous
product gates is surprisingly subtle. The collection Cn,d can be seen as a homogeneous variant
of the continuant in [BIZ18]. This gives the V3F-p-hardness of Cn,d (i.e., V3F-hardness under
homogeneous border p-projections), where V3F is the class of p-families with polynomially
bounded formulas over the arity 3 basis (which is a subclass of VF).

The next task in the proof of Theorem 6.12 is to translate this result to the standard basis. To
see the VQP-qp-hardness (for definition, see Definition 6.1), we have to show that V3F and VF
coincide when replacing polynomial complexity by quasipolynomial complexity. This is done
in two steps: We first show that VF restricted to homogeneous families lies in V3P (the circuit
analog of V3F), see Theorem 6.15, where we first “parity-homogenize” the formula (every gate
has only even or only odd nonzero homogeneous components), and then compute z · f at each
even-degree gate instead of f , where z is a new variable. This additional factor z is then later
replaced, which is themain reasonwhy the output of this construction is a circuit and not a formula.
Since we know that V3F has polynomially sized formulas, we conclude our proof by showing that
VQ3F = VQ3P, for details see (6.7) and Theorem 6.16. We use an arity-3 basis variant of the
Valiant-Skyum-Berkowitz-Rackoff circuit depth reduction [VSBR83], which is a bit more subtle
than the original proof.

2 De-bordering border Waring rank

The goal of this section is to prove de-bordering results for border rank. In other words, given a
homogeneous polynomial f , we provide upper bounds forWR( f ) in terms ofWR( f ) and d.

2.a Orbit closure and essential variables

The number of essential variables of a homogeneous polynomial f is the minimum integer m such
that there is a linear change of coordinates after which f can be written as a polynomial in m
variables. Denote the number of essential variables of f by Ness( f ). It is a classical fact, which
already appears in [Syl52], that the number of essential variables of f equals the dimension of the
linear span of its first order partial derivatives, or equivalently the rank of the first partial derivative
map. In particular Ness(−) is a lower semicontinuous function. We refer to [Car06] and [KS07,
Lemma B.1] for modern proofs of this result.

We prove a structural result for orbit-closures of polynomials with non-maximal number of
essential variables.

2.1 Proposition. Let V = ⟨x1, . . . , xn⟩ and W = ⟨x1, . . . , xr⟩ ⊆ V. Let f ∈ SdW ⊆ SdV be a
homogeneous polynomial. Then

GL(V) · p = GL(V)(GL(W) · p).
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Proof. Clearly
GL(V)(GL(W) · f ) ⊆ GL(V) · p.

To show the other inclusion, let q ∈ GL(V) · p, and suppose q = limϵ→0 gϵq where gϵ is a curve
in GL(V). Without loss of generality, suppose g1 = idV . By definition, the number of essential
variables is invariant under the action of GL(V). In particular, since Ness(p) ≤ r, the same holds
for every element of GL(V) · p. Since Ness(−) is lower semicontinuous, we deduce Ness(q) ≤ r as
well. This implies that there exists h ∈ GL(V) such that h · q ∈ SdW.

We are going to show h · q ∈ GL(W) · p. Let πW ∈ End(V) be a projection onto W, that is a map
πW : V → V such that im(πW) = W and πW |W = idW . Since the action of GL(V) is continuous,
we have

hq = (πWh)q = (πWh) lim
ϵ→0

gϵ p = lim
ϵ→0

(πWhgϵ)p.

Let g′ϵ = πWhgϵ|W . Notice g′1 = πWhg1 = idW . In particular g′ϵ ∈ GL(W) for generic ϵ. This shows
hq ∈ GL(W) · p. Hence q = h−1hq ∈ GL(V) ·GL(W) · p. This concludes the proof.

An immediate consequence of the semicontinuity of the number of essential variables is the
following result.
2.2 Lemma. Let f ∈ SdV be a homogeneous polynomial withWR( f ) ≤ r. Then Ness( f ) ≤ r.

Proof. After possibly re-embedding V is a space of larger dimension, assume dim V ≥ r. Then
WR( f ) ≤ r implies f ∈ GL(V) · (xd

1 + · · ·+ xd
r ). Since Ness(xd

1 + · · · + xd
r ) = r, we deduce

Ness( f ) ≤ r.

2.b Fixed-parameter de-bordering

The proof of Theorem 1.1 is based on generalized additive decompositions of polynomial, in the
sense of [Iar95]. These decompositions were studied in algebraic geometry, usually in connection
to 0-dimensional schemes and the notion of cactus rank. We defer the discussion of connections
to algebraic geometry in the next section. Here we provide elementary proofs of some statements
on generalized additive decompositions based on partial derivatives techniques, without using
the language of 0-dimensional schemes. We bring from geometry a key insight: a border rank
decomposition can be separated into local parts if the degree of the polynomial is large enough.

To define formallywhat itmeans for a border rank decomposition to be local, note that a rational
family of linear forms ℓ ∈ C(ε)[x]1 always has a limit when viewed projectively. Specifically, if we
see ℓ(ε) = ∑∞

i=q εiℓi as a Laurent series, then limε→0[ℓ(ε)] = limε→0[∑∞
i=0 εiℓq+i] = [ℓq]. A border

Waring rank decomposition is called local if for all summands in the decomposition this limit is
the same. More precisely, we give the following definition.
2.3 Definition. Let f ∈ C[x]d be a homogeneous polynomial. A border Waring rank decomposition

f = lim
ε→0

r

∑
k=1

ℓd
k

with ℓk ∈ C(ε)[x]1 is called a local border decomposition if there exists a linear form ℓ ∈ C[x]1 such that
limε→0[ℓk(ε)] = [ℓ] for all k ∈ {1, . . . , r}. We call the point [ℓ] ∈ PC[x]1 the base of the decomposition.
A local decomposition is called standard if ℓ1 = εqγℓ for some q ∈ Z and γ ∈ C.

2.4 Lemma. If f has a local border decomposition, then it has a standard local border decomposition with
the same base and the same number of summands.
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Proof. After applying a linear change of variables, we may assume that the base of the local
decomposition for f is [x1]. This means

f = lim
ε→0

r

∑
k=1

ℓd
k

with ℓk = εqk · γkx1 + ∑∞
j=qk+1 εjℓk,j.

Write ℓ1 = εq1 (∑n
i=1 αixi) where αi ∈ C(ε). Let x̂1 = γ1

α1
x1 − ∑n

i=2
αn
α1

xi. Note that α1 ≃ γ1 and
αi ≃ 0 for i > 1, hence x̂1 ≃ x1 and

f ≃ f (x̂1, . . . , xn) ≃ ℓ1(x̂1, x2, . . . , xn)
d +

r

∑
k=2

ℓk(x̂1, x2, . . . , xn)
d = (εq1 γ1x1)

d +
r

∑
k=2

ℓ̂d
k .

where ℓ̂k(x1, . . . , xn) = ℓk(x̂1, x2, . . . , xn). This defines a new border rank decomposition of f .
Moreover, notice limε→0[ℓ̂k] = [x1] for every k, so the new decomposition is again local
with base [x1]. Since the first summand is ϵq1 γ1x1, this is the desired standard local border
decomposition.

2.5 Lemma. Suppose f ∈ SdV has a local border decomposition with r summands based at [ℓ]. If d ≥ r− 1,
then f = ℓd−r+1g for some homogeneous polynomial g of degree r− 1.

Proof. After applying a linear change of variables we may assume ℓ = x1. We prove the statement
by induction on r and the difference d− (r− 1).

The cases r = 1 and d = r− 1 are trivial.
If d > r− 1, then by the previous Lemma there exists a standard local border decomposition

f = lim
ε→0

r

∑
k=1

ℓk(ε)
d.

where ℓk = ∑n
i=1 αkixi for some αki ∈ C(ε). Since the decomposition is standard, α1i = 0 for i > 1.

For the derivatives of f we have the following border decompositions

∂ f
∂x1

= lim
ε→0

r

∑
k=1

d · αk1(ε)ℓk(ε)
d−1,

and
∂ f
∂xi

= lim
ε→0

r

∑
k=2

d · αki(ε)ℓk(ε)
d−1.

for i > 1. These decompositions involve the same linear forms ℓk with multiplicative coefficients
and they are local with the same base [x1]. By inductive hypothesis ∂ f

∂x1
= xd−r

1 g1 and ∂ f
∂xi

= xd−r+1
1 gi

for some homogeneous polynomials g1, . . . , gn of appropriate degrees. To get an analogous
expression for f , combine these expressions using Euler’s formula for homogeneous polynomials
as follows

f =
1
d

n

∑
i=0

xi
∂ f
∂xi

=
1
d

(
x1 · xd−r

1 g1 +
n

∑
i=2

xixd−r+1
1 gi

)
=

1
d

xd−r+1
1

(
g1 +

n

∑
i=2

xigi

)
Wewill now extend this result to non-local borderWaring rank decompositions. As long as the

degree of the approximated polynomial is high enough, every border rank decomposition can be
divided into local parts and transformed into a sum of terms of the form ℓd−r+1g.
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2.6 Definition. A generalized additive decomposition of f is a decomposition of the form

f =
m

∑
k=1

ℓd−rk+1
k gk

where ℓk are linear forms such that ℓi is not proportional to ℓj when i ̸= j, and gk are homogeneous
polynomials of degrees deg gk = rk − 1.

To show that there is no cancellations between different local parts, we need the following
lemma, which in the case of 2 variables goes back to Jordan [IK99, Lem. 1.35].
2.7 Lemma. Let ℓ1, . . . , ℓm ∈ C[x]1 be linear forms such that ℓi is not proportional to ℓj when i ̸= j. Let
g1, . . . , gm be homogeneous polynomials of degrees r1 − 1, . . . , rm − 1 respectively. If

m

∑
k=1

ℓd−rk+1
k gk = 0

and d ≥ ∑m
k=1 ri − 1, then all gk are zero.

Proof. Wefirst prove the statement for polynomials in 2 variables y1, y2 by induction on the number
of summands m; this proof follows [GY10, Appx.III].

The case m = 1with one summand is clear. Consider the case m > 2. We can assume ℓ1 = y1 by
applying a linear change of variables if required. Note two simple facts about partial derivatives.
First, for a homogeneous polynomial f ∈ C[y1, y2]d we have ∂r

2 f = 0 if and only if f = yd−r+1
1 g

(here ∂2 := ∂
∂y2

). Second, differentiating r times a homogeneous polynomial of the form ℓd−s+1g,
we obtain a polynomial of the form ℓd−r−s+1h.

Suppose
yd−r1+1

1 g1 +
m

∑
k=2

ℓd−rk+1
k gk = 0.

Differentiating r1 times with respect to y2, we obtain
m

∑
k=2

ℓd−r1−rk+1
k hk = 0,

where ℓd−r1−rk+1
k hk = ∂r1

2 (ℓ
d−rk+1
k gk). The degree condition d − r1 ≥ ∑m

k=2 rk − 1 holds for this
new expression. Therefore, by induction hypothesis we have hk = 0 and thus ∂r1

2 (ℓ
d−rk+1
k gk) = 0. It

follows that ℓd−rk+1
k gk = yd−r1+1

1 ĝk for some homogeneous polynomial ĝk. This implies that yd−r1+1
1

divides gk, which is impossible since d− r1 + 1 ≥ ∑m
k=2 rk ≥ rk > deg gk.

Consider now the general case where the number of variables n ≥ 2 (the case n = 1 is trivial).
Suppose ∑m

k=1 ℓ
d−rk+1
k gk = 0. The set of linear maps A : (y1, y2) 7→ (x1, . . . , xn) such that ℓi ◦ A

and ℓj ◦ A are not proportional to each other is a nonempty Zariski open set given by the condition
rank(ℓi ◦ A, ℓj ◦ A) > 1. Hence for a nonempty Zariski open (and therefore dense) set of linear
maps A the linear forms ℓk ◦ A are pairwise non-proportional. From the binary case abovewe have
gk ◦ A = 0 if A lies in this open set. By continuity this implies gk ◦ A = 0 for all A. Since every
point lies in the image of some linear map A we have gk = 0.
2.8 Lemma. Let f ∈ SdV be such that WR( f ) = r. If d ≥ r − 1, then there exists a partition r =
r1 + · · ·+ rm such that f has a generalized additive decomposition

f =
m

∑
k=1

ℓd−rk+1
k gk,

14



and moreoverWR(ℓd−rk+1
k gk) ≤ rk.

Proof. Consider a border Waring rank decomposition

f = lim
ε→0

r

∑
k=1

ℓd
k

Divide the summands between several local decompositions as follows. Define an equivalence
relation ∼ on the set of indices {1, 2, . . . , r} as i ∼ j ⇔ limε→0[ℓi] = limε→0[ℓj] and let I1, . . . , Im be
the equivalence classes with respect to this relation. Further, let rk = ♯Ik and let [Lk] = limε→0[ℓi]
for i ∈ Ik.

Consider the sum of all summands with indices in Ik. Let qk be the power of ε in the lowest
order term, that is,

∑
i∈Ik

ℓd
i = εqk fk +

∞

∑
j=qk+1

εj fk,j

with fk ∈ C[x]d nonzero. This expression can be transformed into a local border decomposition

fk = lim
ε→0

∑
i∈Ik

(
ℓi(ε

d)

εqk

)d

.

based at [Lk]. By Lemma 2.5 we have fk = Ld−rk+1
k gk for some homogeneous polynomial gk of

degree rk − 1. The decomposition also givesWR( fk) ≤ rk.
Note that qk ≤ 0 since otherwise the summands ℓi with i ∈ Ik can be removed from the original

border rank decomposition of f without changing the limit. Let q = min{q1, . . . , qm}. Note that if
q < 0, then, comparing the terms before εq in the left and right hand sides of the equality

f + O(ε) =
m

∑
k=1

∑
i∈Ik

ℓd
i

we get
0 = ∑

k : qk=q
fk = ∑

k : qk=q
Ld−rk+1

k gk.

From Lemma 2.7 we obtain gk = 0 and fk = 0, in contradiction with the definition of fk.
We conclude that q = 0 and

f =
m

∑
k=1

fk =
m

∑
k=1

Ld−rk+1
k gk,

obtaining the required generalized additive decomposition.

We will now take a brief detour to define a function M(r) which we use to upper bound the
Waring rank of generalized additive decomposition.

2.9 Definition. LetmaxR(n, d) denote themaximumWaring rank of a degree d homogeneous polynomial
in n variables, that is maxR(n, d) = max f∈C[x1,...,xn]d WR( f ). Define the partition-maxrank function as

M(r) = max
r1+···+rm=r

m

∑
k=1

maxR(rk, rk − 1).
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2.10 Proposition. maxR(n, d1) ≤ maxR(n, d2) when d1 ≤ d2.

Proof. Every form f of degree d1 can be represented as a partial derivative of some form g of degree
d2. By differentiating a Waring rank decomposition of g we obtain a Waring rank decomposition
of f , thusWR( f ) ≤ WR(g) ≤ maxR(n, d2). Since f is arbitrary, maxR(n, d1) ≤ maxR(n, d2).

We are now ready to prove a de-bordering theorem for Waring rank.
2.11 Theorem. Let f ∈ SdV be such that WR( f ) = r. Then

WR( f ) ≤ M(r) · d.

Proof. We consider two cases depending on relation of degree d and border Waring rank r.
Case d < r− 1. SinceWR( f ) = r, the number of essential variables of f is at most r. Taking the

maximumWaring rank as an upper bound, we obtain

WR( f ) ≤ maxR(d, r) ≤ maxR(r− 1, r) ≤ M(r) ≤ M(r) · d.

Case r ≤ d + 1. By Lemma 2.8 f has a generalized additive decomposition

f =
m

∑
k=1

ℓd−rk+1
k gk

with r1 + · · ·+ rm = r, deg gk = rk − 1 and WR(ℓd−rk+1
k gk) ≤ rk. Since WR(ℓd−rk+1

k gk) ≤ rk, the
number of essential variables Ness(gk) ≤ rk. If rk = 1, then

WR(ℓd−rk+1
k gk) = WR(ℓd

k) = 1 ≤ d.

If rk ≥ 2, then we upper bound WR(gk) by maxR(Ness(gk), deg gk) = maxR(rk, rk − 1). Taking
a Waring rank decomposition gk = ∑

WR(gk)
i=1 Lrk−1

i and multiplying it by ℓd−rk+1
k , we obtain a

decomposition

ℓd−rk+1
k gk =

WR(gk)

∑
i=1

ℓd−rk+1
k · Lrk−1

i .

From the classical work of Sylvester (see also [BBT13]) it follows that4

WR(ℓd−rk+1
k Lrk−1

i ) ≤ WR(yd−rk+1
1 yrk−1

2 ) = max{d− rk + 2, rk} ≤ d.

Hence we haveWR(ℓd−rk+1
k gk) ≤ d ·WR(gk) ≤ d ·maxR(rk − 1, rk).

Combining all parts of the decomposition together, we get

WR( f ) ≤ d
m

∑
k=1

maxR(r− k− 1, rk) ≤ M(r) · d.

A more explicit upper bound is provided by the following immediate corollary.
2.12 Theorem. Let f ∈ SdCn and letWR( f ) = r. Then

WR( f ) ≤ d
(

2r− 2
r− 1

)
.

4it is easy to see that for a ≥ b the monomial ya
1yb

2 is proportional to ∑a
k=0 ζk(ζky1 + y2)

a+b where ζ is a primitive root
of unity of degree a + 1.
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Proof. The space of homogeneous polynomials of degree r− 1 in r variables has dimension (2r−2
r−1 )

and is spanned by powers of linear forms. Therefore,maxR(r− 1, r) ≤ (2r−2
r−1 ). Note that if r = p+ q

with p, q ̸= 0, then the space C[x1, . . . , xr]r−1 contains a direct sum of xq
1 · C[x1, . . . , xp]p−1 and

xp+1
1 ·C[xp+1, . . . , xr]q−1. Taking the dimensions of these spaces, we obtain (2r−2

r−1 ) ≥ (2p−2
p−1 )+ (2q−2

q−1 ).
It follows that M(r) ≤ (2r−2

r−1 ).

Using Blekherman-Teitler bound on the maximum rank [BT15], we can get a slightly better
bound. The proof is essentially the same as for the previous theorem.

2.13 Corollary. Let f ∈ SdCn and letWR( f ) = r. Then

WR( f ) ≤ 2d⌈1
r

(
2r− 2
r− 1

)
⌉.

2.c Behind the scenes: generalized additive decompositions and schemes

Wewill now discuss how the results of the previous section can be obtained from apolarity theory
and the study of 0-dimensional schemes in projective space. The connection between variations
of Waring rank, apolar schemes and generalized additive decompositions is explored in detail by
Bernardi, Brachat and Mourrain in [BBM14] (they use a subtly different notion of generalized
affine decomposition). In particular, there exists a much stronger version of Lemma 2.8, which
tightly relates generalized additive decompositions of a homogeneous polynomial f to its cactus
rank CR( f ), a variation ofWaring rank arising in apolarity theory defined in terms of 0-dimensional
schemes in place of sets of linear forms. We will formally define the notions of cactus rank and
size of a generalized additive decomposition later, for not let us state the theorem, which is based
on [BBM14, Thm. 3.5].

2.14 Theorem. If deg f ≥ 2 · CR( f )− 1, then the cactus rank of a homogeneous polynomial f is equal to
the minimal possible size of a generalized additive decomposition for f .

To connect cactus rank to border rank we need and intermediate notion of smoothable rank
SR( f ). Smoothable rank is an upper bound on cactus rank, and it coincides with border rank
for polynomials of high enough degree.

2.15 Theorem ([BB15]). If deg f ≥ WR( f )− 1, thenWR( f ) = SR( f ).

The goal of this section is to explain how to measure the size of a generalized additive
decomposition, review the basic notions of apolarity theory, define cactus rank and smoothable
rank and explain the ideas behind the proof of Theorem 2.14 stated above.

Some notation. Let us fix the notation. Let S = C[x1, . . . , xn] be the algebra of polynomials and
T = C[∂1, . . . , ∂n] be the algebra of polynomial differential operators with constant coefficients
(referred to as diffoperators in what follows), which acts on S in the standard way.

Denote byV the space of linear forms S1. We identify T1 with the dual spaceV∗. More generally,
the action of T on S gives rise to a nondegenerate pairing between the homogeneous parts Sd and
Td for every d. We use orthogonality with respect to this pairing, that is, for a subset F ⊂ Sd
we denote F⊥ = {α ∈ Td | α · f = 0 for all f ∈ F}, and vice versa, for a subset D ⊂ Td we let
D⊥ = { f ∈ Sd | α · f = 0 for all α ∈ D}
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Size of generalized additive decompositions. We now describe how we measure the size of a
generalized additive decomposition.
2.16 Definition. The partial derivative space of a polynomial f ∈ S (not necessarily homogeneous) is
the vector space ∂∗ f = T · f spanned by f and all its partial derivatives of all orders.

2.17 Definition. Let ℓ be a linear form and let ∂ ∈ T1 be a partial derivative such that ∂ℓ = 1. We define
the compression f(∂,ℓ) of a homogeneous polynomial f ∈ Sd with respect to ℓ and ∂ as follows. Write

f =
d

∑
i=0

ℓi

i!
fi.

with fi ∈ C[∂⊥]d−i. Then f(∂,ℓ) = ∑d
i=0 fi.

One can check that dim(∂∗ f(∂,ℓ)) does not depend on the choice of ∂ as long as ∂ℓ = 1; this can
be proved by hand, and it is obtained in [BJMR18] in a more intrinsic way.
2.18 Definition. The size of a generalized additive decomposition

f =
m

∑
k=1

ℓd−rk+1
k gk

is defined as ∑m
k=1 dim(∂∗gk) where gk =

(
ℓd−rk+1

k gk

)
(∂k ,ℓk)

for some ∂k such that ∂kℓk = 1.

This way of measuring the size of generalized additive decompositions is compatible with the
notion of cactus rank of a homogeneous polynomial, in the sense of Theorem 2.14.

Projective geometry. The algebra T is isomorphic to C[V], the algebra of polynomials in the
coefficients of linear forms. The isomorphism maps a homogeneous element α ∈ Td to α ∈ C[V]d
defined as α(ℓ) = α · ℓd

d! .
Recall that a homogeneous ideals in T ∼= C[V] are in correspondence with subsets of the

projective space PV. More specifically, projective varieties are subsets of PV defined by vanishing
of some set of polynomials. The set of all polynomials vanishing on a projective variety Z is a
homogeneous ideal I, which is saturated (αT1 ⊂ I ⇒ α ∈ I) and radical (αn ∈ I ⇒ α ∈ I). If
we consider ideals I which are saturated but not radical, we can define a projective scheme, which
coincides with the variety defined by I as a topological space, but has additional structure which
distinguishes it from this variety.

If I ⊂ T is a homogeneous ideal, then the function hI(p) = dim(Tp/Ip) is called the
Hilbert function of I. The Hilbert function of a homogeneous ideal I always coincides with some
polynomial HI(p) for p large enough. This polynomial is called the Hilbert polynomial of I.

Many topological and geometric properties of a projective variety or a scheme can be deduced
from its Hilbert polynomial, in particular, its dimension and degree [Har77, §I.7]. We are
specifically interested in ideals with constant Hilbert polynomials. These ideals corresponds to
schemes of dimension 0. This means that a variety with Hilbert polynomial r is a set of r distinct
points in PV. In algebra, ideals with constant Hilbert polynomial are referred to as ideals of Krull
dimension 1 (the mismatch with the dimension of a scheme is because in algebra dimension is
counted in affine space).

We will need the following property of ideals of Krull dimension 1.
2.19 Theorem ([IK99, Thm. 1.69]). If I is a saturated ideal with HI = r, then hI(p) = r for p ≥ r− 1.
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Apolarity theory. The connection between Waring rank and algebraic geometry is provided by
the apolarity theory, which has its source in the works of Sylvester and Macaulay.
2.20 Definition. The apolar ideal of a polynomial f ∈ S is an ideal in T defined as Ann( f ) = {α ∈ T |
α · f = 0}. The apolar algebra of f is A( f ) = T/ Ann( f ). An ideal I ⊂ T is said to be apolar to f if it
lies in Ann( f ). A scheme Z ⊂ PV is apolar to f if its defining ideal is.

Note that as a vector space, A( f ) is isomorphic to the space of partial derivatives ∂∗ f = T · f
via (α + Ann( f )) 7→ α · f .

To relate apolarity to Waring rank, we also define an ideal associated with a set of linear forms.
Given r linear forms ℓ1, . . . , ℓr, consider the sequences of subspaces Ep = Span({ℓp

1 , . . . , ℓp
r }) ⊂ Sp

and Ip = E⊥p ⊂ Tp. An important fact is that I =
⊕∞

p=0 Ip is a homogeneous ideal in T. From the
geometric point of view it can be described as the vanishing ideal of the set Z = {[ℓ1], . . . , [ℓr]}
in the projective space PV. Algebraically, the fact that I is a homogeneous ideal follows from the
following useful proposition.
2.21 Proposition. A sequence of subspaces Ep ⊂ Sp satisfies the property T1 · Ep+1 ⊂ Ep if and only if
I =

⊕∞
p=0 E⊥p is a homogeneous ideal. If this is the case, then hI(p) = dim Ep.

Proof. Let Ip = E⊥p . The fact that I is a homogeneous ideal can be written as Ip+1 ⊃ T1 · Ip, which
is equivalent to T1 · Ep+1 ⊂ Ep, as both of these statements reduce to

(α∂) · f = α · (∂ f ) = 0 for all α ∈ Ip, ∂ ∈ T1, f ∈ Ep+1.

For the Hilbert function expression, note dim(Tp/Ip) = dim Tp − dim Ip = dim I⊥p = dim Ep.

2.22 Theorem (Apolarity lemma). f ∈ Sd is a linear combination of powers of linear forms ℓ1, . . . , ℓr if
an only if f is apolar to Z = {[ℓ1], . . . , [ℓr]} ⊂ PV.

Proof. Let I be the defining ideal of Z let Ep = I⊥p = Span({ℓp
1 , . . . , ℓp

r }) as above.
If I is apolar to f , then Id ⊂ Ann( f )d and therefore Ed ⊃ (Ann( f )d)

⊥ = f⊥⊥ ∋ f .
For the other direction, let f ∈ Ed. Note that Ann( f )p = Tp for p > d, so we only need to check

Ip ⊂ Ann( f ) for p ≤ d.
Note that if for α ∈ Tp with p < d we have α · f ∈ Sd−p nonzero, then there exists ∂ ∈ T1 such

that ∂α · f = ∂ · (α · f ) ̸= 0. This can be restated as T1α ∈ Ann( f ) ⇒ α ∈ Ann( f ) for all α ∈ Tp
with p < d

For p ≤ d we have α ∈ Ip ⇒ Td−p
1 α ⊂ Id = E⊥d ⇒ Td−p

1 α · f = 0⇒ α ∈ Ann( f ), which proves
Ip ⊂ Ann( f ).

2.23 Corollary. WR( f ) ≤ r if and only if f is apolar to the vanishing ideal of r points in PV.

Families of subspaces, ideals and their limits. Before considering border Waring rank, we need
to define limits of families of subspaces and families of ideals.

Let W be a vector space. We consider two types of families of subspaces in W. First is a family
of subspaces of the form E(ε) = Span({w1(ε), . . . , wr(ε)}) where wk(ε) are families of vectors in
W with coordinates given by rational functions of ε. We write wk ∈ W(ε) in this case. The second
type is a family E(ε) = {w | y1(ε; w) = · · · = yq(ε; w) = 0} of vector spaces defined by linear forms
y1, . . . , yq ∈W∗(ε) which again depend rationally on the parameter ε.

In both cases we define the limit Ê = limε→0 E(ε) as the subspace containing the limits of all
families w ∈W(ε) such that w(ε) ∈ E(ε) for ε ̸= 0 (whenever E(ε) and w(ε) are defined).
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For E(ε) = Span({w1(ε), . . . , wr(ε)}) from semicontinuity of rank we have that the maximal
possible value of dim E(ε) is attained on an open set of values of ε. The situation is opposite for
the family of the second type E(ε) = Span({y1(ε), . . . , yq(ε)})⊥. In both cases the dimension of Ê
cannot be higher then the generic dimension. Indeed, if Ê contains linearly indeoendent vectors
v1, . . . , vm, then there are families v1(ε), . . . , vm(ε) which have them as limits, and these families
will be linearly independent for an open subset of values of ε. Considering two families E(ε) ⊂W
and E(ε)⊥ ⊂ W∗ together, we see that dim Ê is actually equal to the generic dimension of E(ε)
(maximal dimension for the families of the first type, andminimal— for the families of the second
type).

Alternatively, we may associate with a family of subspaces a family of points in the
Grassmannian – the space of all k-dimensional subspaces in W. The Grassmannian can be defined
as the projective variety in PΛkW consisting of all points of the form [w1 ∧ · · · ∧ wk], which
represent k-dimensional subspaces spanned by w1, . . . , wk respectively. If E(ε) is a family with
generic dimension k and v1(ε), . . . , vk(ε) ∈ E(ε) are linearly independent for generic values of ε,
then we can define a rational map ε 7→ [v1(ε) ∧ · · · ∧ vk(ε)] and take the limit of this map in the
Grassmannian.

Suppose I(ε) is a family of homogeneous ideals in T, that is, I(ε) =
⊕∞

p=0 Ip(ε) for the families
of subspaces Ip(ε) ⊂ Tp such that Ip+1(ε) ⊃ Ip(ε) · T1. By continuity of multiplication for the limit
subspaces Îp = limε→0 Ip(ε)we still have Îp+1 ⊃ Îp · T1. Hence Î is again a homogeneous ideal in T.
This notion of limit of ideals corresponds to taking limits in themultigraded Hilbert scheme, which is
a space of ideals with given Hilbert function, see [HS04]. We refer to this limit as the multigraded
limit of a family of ideals. The problem is that the limit in the multigraded Hilbert scheme can be
non-saturated and thus not correspond to a geometric object in projective space.

For example, consider three families of points (1 : 0 : 1), (−1 : 0 : 1), (0 : ε : 1) in P2. The
family of vanishing ideals is 〈x1x2, x2(x2 − εx3), ε(x2

1 − x2
3) + x2x3, x3

1 − x1x2
3
〉. Taking ε → 0 we

obtain the ideal 〈x1x2, x2
2, x2x3, x3

1 − x1x2
3
〉, which is not saturated, since it contains x1x2, x2

2, x2x3
but not x2. Taking the saturation, we obtain 〈x2, x3

1 − x1x2
3
〉 which corresponds to three points

(1 : 0 : 1), (−1 : 0 : 1), (0 : 0 : 1) as expected.
We can take saturation after obtaining the limit ideal. This notion of limit corresponds to limits

in theHilbert scheme, which is the space of ideals with the fixed Hilbert polynomial. It was defined
by Grothendieck [Gro61], see also [IK99, Appx.C].

Border apolarity We will now describe the basic idea of the apolarity theory for border Waring
rank, which was developed by Buczyńska and Buczyński in [BB21].

Let f = limε→0 ∑r
k=1 ℓ

d
k be a border Waring rank decomposition. Consider the families of

subspaces Ep(ε) = Span({ℓ1(ε)
p, . . . , ℓr(ε)p}) ⊂ Sp and the family of homogeneous ideals I(ε) =⊕∞

p=0 Ep(ε)⊥ in T.
As ε→ 0, we obtain a sequence of subspaces Êp = limε→0 Ep(ε) ⊂ Sp and a homogeneous ideal

Î = limε→0 I(ε) (taking the limit in the multigraded Hilbert scheme). Let f = ∑r
k=1 ℓ

d
k ∈ Sd(ε),

so that f = limε→0 f (ε). By the Apolarity Lemma the ideal I(ε) is apolar to f (ε) for ε ̸= 0, which
means that α(ε) · f (ε) = 0 for every α(ε) ∈ I(ε). Since the action of T on S is continuous, we obtain
from this (limε→0 α(ε)) · f = 0, if the limit exists. Thus Î is apolar to f .

On the other hand, suppose that f ∈ Sd is apolar to an ideal Î which is a limit of ideals of r points,
that is, there exists a family I(ε) such that I(ε) is the vanishing ideal of a set of r points in PV.
Define Ed(ε) = I(ε)⊥d ⊂ Sd. For ε ̸= 0 the subspace Ed(ε) is a span of powers of r linear forms, so it
consists of polynomials with Waring rank at most r. Since f is orthogonal to Îd, it lies in the limit
limε→0 Ed(ε) and thus has border Waring rank at most r.
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2.24 Theorem (Border apolarity, [BB21]). f ∈ Sd has WR( f ) ≤ r if and only if f is apolar to an ideal
Î which is a limit of ideals of r points.

Various ranks via apolarity. The apolarity lemma provides a template for defining different
notions of rank for homogeneous polynomials by varying the class of ideals apolar to f .

2.25 Definition. Let C be a class of ideals of Krull dimension 1. If f ∈ Sd is a homogeneous polynomial,
we define the C-rank of f as the minimal r such that there exists an ideal I ⊂ C apolar to f with Hilbert
polynomial HI = r.

As we have seen, Waring rank and border Waring rank are special cases of this definition
corresponding to ideals of points and their limits.

We are now ready to define cactus rank and smoothable rank. The cactus rank CR( f ) is
obtained from the template definition above if we consider the class of all saturated ideals with
constant Hilbert polynomial, that is, ideals of 0-dimensional schemes. The smoothable rank SR( f )
corresponds to saturated limits of ideals of points. In addition, the border cactus rank CR( f ) is
defined by considering limits of saturated ideals.

Class of ideals Rank Notation
Ideals of points (radical saturated ideals) Waring rank WR( f )
Limits of ideals of points Border Waring rank WR( f )
Smoothable ideals (saturated limits of ideals of points) Smoothable rank SR( f )
Saturated ideals Cactus rank CR( f )
Saturable ideals (limits of saturated ideals) Border cactus rank CR( f )

The unified definition allows us to determine relations between these different ranks.

2.26 Theorem ([BBM14]). The following inequalities hold: CR( f ) ≤ CR( f ) ≤ SR( f ) ≤ WR( f ) and
CR( f ) ≤ WR( f ) ≤ SR( f ) ≤ WR( f ).

Proof. The inequality WR( f ) ≤ SR( f ) follows from the fact that if the saturation Isat ⊃ I is
apolar to f , then I is also apolar to f . Other inequalities follow from the containments between
corresponding classes of ideals.

We will now prove several lemmas which connect generalized additive decompositions to
apolar ideals, finishing the proof of Theorem 2.14.

2.27 Lemma ([BJMR18]). Let ℓ be a linear form and let f ∈ Sd be a homogeneous polynomial. Set
r = dim ∂∗ f[ℓ]. There exists a homogeneous ideal I apolar to f with Hilbert polynomial HI = r.

Proof. Let ∂ ∈ T1 be such that ∂ℓ = 1. Denote S′ = C[∂⊥] and T′ = C[ℓ⊥]. The rings S′ and T′ are
in the same dual relationship as S and T, and T is generated by T′ and ∂.

We start from the ideal J = Ann( f(∂,ℓ)) ⊂ T′ and homogenize it using ∂. That is, define
the homogenization map from T′≤p =

⊕p
j=0 T′j to Tp sending α = ∑

p
j=0 αj to ∑

p
j=0 ∂p−jαj. The

homogeneous part Ip of the ideal I is then the image of J≤p under this homogenization map.
To show that the ideal I is apolar to f , write f = ∑d

i=0
ℓi

i! fd−i with fi ∈ S′i . Then f(∂,ℓ) = ∑d
i=0 fi.

If α′ = ∑
p
j=0 αj ∈ T′ and α = ∑

p
j=0 ∂p−jαj is the α′ homogenized, then the statement α′ · f(∂,ℓ) = 0

is equivalent to α · f = 0, since they are both equivalent to ∑
p
j=0 αj f j+e = 0 for all e ≥ 0. Since J is

apolar to f(∂,ℓ), I is apolar to f .
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Since f(∂,ℓ) has degree at most d, J contains T′p for p > d. Hence

∂∗ f(∂,ℓ)
∼= A( f(∂,ℓ)) = T′/J ∼= T′≤d/J≤d

as vector spaces, and for p > d we have Tp/Ip ∼= T′≤p/J≤p ∼= T′≤d/J≤d. Therefore, for p large
enough dim Tp/Ip = dim ∂∗ f(∂,ℓ) = r and HI = r.
2.28 Lemma. Suppose f ∈ Sd is apolar to a saturated primary homogeneous ideal I with Hilbert polynomial
HI = r. If d ≥ 2r− 1, then f has a one-summand generalized additive decomposition of size at most r.

Proof. If I is an ideal of Krull dimension 1, then it defines a 0-dimensional scheme, and if it is
primary, then this scheme is supported at one point [ℓ] ∈ PV. The ideal corresponding to this
point is J = Ann(ℓ) =

〈
ℓ⊥
〉 and we have Jm ⊂ I ⊂ J for some m ≤ r. For the corresponding

dual space Ep with p ≥ m we have Ep ⊂ (Jm)⊥p = {ℓp−mg | g ∈ S≤m}. Since f ∈ Ed, it has a
one-summand generalized additive decomposition f = ℓd−mg.

Choose ∂ ∈ T1 such that ∂ℓ = 1. Write f = ∑m
i=0

ℓd−i

(d−i)! fi with fi ∈ C[∂⊥]i. Then f(∂,ℓ) = ∑m
i=0 fi

has degree at most m. For every α′ = ∑m
j=0 ∈ C[ℓ⊥]≤m and the corresponding homogeneous

α = ∑m
j=0 ∂m−jαj we have

α′ · f(∂,ℓ) = ∑
j≥i

αj · fi

and
α · f = ∑

j≤i

ℓd−m+j−i

(d−m + j− i)!
αj · fi.

Therefore, there is an isomorphism between ∂∗ f(∂,ℓ) and Tm · f ⊂ Ed−m. Note that d−m ≥ r. By
Theorem 2.19 we have r = HI = dim Ed−m ≥ dim ∂∗ f(∂,ℓ).
Proof of Theorem 2.14. If CR( f ) ≤ r, then there exists a saturated homogeneous ideal I apolar to f
with Hilbert polynomial r. This ideal corresponds to a 0-dimensional scheme Z, which consists
of several points. Each point corresponds to a primary ideal in the primary decomposition I =
I(1) ∩ · · · ∩ I(m), and for the Hilbert polynomials it is true that HI = HI(1) + · · ·+ HI(m) . Defining
Ed = I⊥d and E(k)

d = (I(k)d )⊥ we have Ed = E(1)
d + · · · + E(m)

d . Therefore, f = f (1) + · · · + f (m)

where f (k) ∈ E(k)
d . By Lemma 2.28 each f (k) contributes one summand to the generalized additive

decomposition. The sizes of these summands are bounded by HI(k) , and the total size is bounded
by r.

Conversely, if f has a generalized additive decomposition of size r, then from each summand
we can construct an ideal using Lemma 2.27 and take the intersection of these ideals to get an ideal
apolar to f with Hilbert function at most r.

2.d Classes of the form ΣFΣ

Let F = {Fm} be a p-family and let ΣFΣ the class of sequences of polynomials { fn} such that
fn = ∑r(n)

i=1 Fmi(n)(ℓi1, . . . , ℓiNm(n)
)where ℓij are linear forms in the variables of fn and r(n), mi(n) are

all polynomial functions of m; here Nm denotes the number of variables of Fm.
For instance, if F = {xm

0 : m ∈ N}, the class ΣFΣ coincides with VWaring. If F = {x1 · · · xm :
m ∈N}, then ΣFΣ is exactly ΣΠΣ. In general, it is clear that { fn} is a p-family.

We say that the p-family F has constant number of variables if the number of variables of Fm is
bounded above by a constant (and in particular independently from m). In this case, we have the
following immediate result.
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2.29 Proposition. Let F be a p-family in constant number of variables. Then ΣFΣ = VWaring.

Proof. Clearly VWaring ⊆ ΣFΣ because every polynomial restricts to powers of linear forms.
Therefore it suffices to show that if { fn} is a sequence of polynomials in ΣFΣ then WR( fn) is

bounded by a polynomial in n. Let N be an upper bound to the number of variables of Fm, for
every m. By definition of ΣFΣ, we have

fn = Fm1(ℓ11, . . . , ℓ1N) + · · ·+ Fmr(ℓr1, . . . , ℓrN)

where r = r(n) is a function bounded by a polynomial in n.
Since Fm is a polynomial in atmost N variables,WR(Fm) ≤ O(deg(Fm)N), which is a polynomial

function of m. Since r(n) is polynomially bounded, we concludeWR( fn) ≤ O(deg(Fm1)
N) + · · ·+

O(deg(Fmr)
N) ≤ r(n)R(m) for some polynomial function R(m); since m1, . . . , mr are polynomial

functions in n, as well as r(n), we conclude.

3 Kumar’s complexity and border Waring rank

In this section, we prove the results connecting Waring and border Waring rank to Kc-complexity
and its variants. Let ek(x1, . . . , xn) denotes the k-th elementary symmetric polynomial, defined by

ek(x1, . . . , xn) := ∑
1≤j1<j2<···<jk≤n

xj1 · · · xjk ;

Recall that by definition e0 = 1. First, we record an immediate observation that will be useful
throughout:
3.1 Remark. It is easy to observe that

m

∏
i=1

(1 + xi) =
m

∑
j=0

ej(x)

where x = (x1, . . . , xm). In particular, given a homogeneous polynomial f ∈ C[x]d of degree d, if
f = α(∏m

i=1(1 + ℓi)− 1) for homogeneous linear forms ℓ1, . . . , ℓm, then

ej(ℓ1, . . . , ℓm) = 0 for all j ̸= d,

ed(ℓ1, . . . , ℓm) =
1
α f .

To demystify Kc-complexity, we will often use Newton identities, see Proposition 3.2. Let
pk(x1, . . . , xn) denote the k-th power sum polynomial, defined as pk(x) := xk

1 + · · ·+ xk
n.

3.2 Proposition (Newton Identities, see e.g. [Mac95], Section I.2). Let n, k be integers with n ≥ k ≥ 1.
Then

k · ek(x1, . . . , xn) = ∑
i∈[k]

(−1)i−1ek−i(x1, . . . , xn) · pi(x1, . . . , xn) .

In the light of Remark 3.1, the Kc model of computation is a sum of elementary symmetric
polynomials. Shpilka [Shp02] studied a similar notion of circuit complexity called ssym. For a
polynomial f , ssym( f ) is defined as the smallest m such that f = ed(ℓ1, ℓ2, . . . , ℓm)where d = deg( f )
and ℓi are affine linear forms. It was proved in [Shp02] that ssym( f ) is always finite, moreover
several upper and lower bounds for ssym( f ) were proven. The complexity Kc differs from ssym( f ),
as Kc can even be infinite. In fact, the only homogeneous polynomials with finite Kc-complexity
are powers of linear forms, as the following lemma shows.
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3.3 Lemma. Let f ∈ C[x]d be a homogeneous polynomial such that Kc( f ) < ∞. Then Kc( f ) = d and f
is a power of a linear form.

Proof. If f is a homogeneous polynomial of degree d, then it is immediate that Kc( f ) ≥ deg( f ).
Notice that for any linear form ℓ, we have ℓd = ∏d

i=1(1 + ζ iℓ)− 1 where ζ is a primitive d-th
root of 1. This shows Kc(ℓd) ≤ d, hence equality holds.

Assume f ∈ C[x]d is a homogeneous polynomial with Kc( f ) = m < ∞. By definition f =
α (∏m

i=1(1 + ℓi)− 1) for some homogeneous linear forms ℓi ∈ C[x]. Write ℓ = (ℓ1, . . . , ℓm). By
Remark 3.1, we have, ed(ℓ) =

1
α f and ej(ℓ) = 0 for j ̸= d.

First, observe m = d. Indeed, if m > d, we have 0 = em(ℓ) = ℓ1 · · · ℓm, which implies ℓi = 0 for
some i, in contradiction with the minimality of m. Since Kc( f ) ≥ deg( f ), we deduce m = d.

Nowwe show that if ℓ = (ℓ1, . . . , ℓd) satisfies e1(ℓ) = · · · = ed−1(ℓ) = 0 then ed(ℓ) = (−1)d−1 ·
ℓd

d; in particular, by unique factorization, all ℓi’s are equal up to scaling. Write ℓ̂ = (ℓ1, . . . , ℓd−1).
We use induction on j to prove that ej(ℓ̂) = (−1)j · ℓj

d for j = 1, . . . , d− 1. For j = 1, we have

0 = e1(ℓ) = (ℓ1 + · · ·+ ℓd−1) + ℓd = e1(ℓ̂) + ℓd

which proves the statement. For j = 2, . . . , d− 1, consider the recursive relation

ej(ℓ) = ej(ℓ̂) + ℓdej−1(ℓ̂).

By assumptionwe have ej(ℓ) = 0 and the induction hypothesis guarantees ej−1(ℓ̂) = (−1)j−1 · ℓj−1
d ;

we deduce ej(ℓ̂) = −ℓd · (−1)j−1 · ℓj−1
d = (−1)jℓ

j
d which proves the statement.

Finally, notice f = αed(ℓ) = αℓd · (−1)d−1 · ed−1(ℓ̂) = −αℓd
d, which concludes the proof.

However, themodel is complete if one allows approximations, as shown by the following result,
which appears in [Kum20].

3.4 Proposition (Kumar). For all homogeneous f we have Kc( f ) ≤ deg( f ) ·WR( f ).

Proof. The proof is based on a construction by Shpilka [Shp02]. Let f = ∑r
i=1 ℓ

d
i . Let ζ be a primitive

d-th root of unity. Then one verifies that

f = −ed(−ζ0ℓ1,−ζ1ℓ1, . . . ,−ζd−1ℓ1, . . . . . . ,−ζ0ℓr,−ζ1ℓ1, . . . ,−ζd−1ℓr)

and for all 0 < i < d we have

ei(−ζ0ℓ1,−ζ1ℓ1, . . . ,−ζd−1ℓ1, . . . . . . ,−ζ0ℓr,−ζ1ℓ1, . . . ,−ζd−1ℓr) = 0.

Hence f ≃ −ϵ−d(((1− ϵζ0ℓ1) · · · (1− ϵζd−1ℓr)
)
− 1
). Therefore Kc( f ) ≤ rd.

In fact, a slightly stronger statement is true:

3.5 Proposition. For all homogeneous f we have Kc( f ) ≤ deg( f ) ·WR( f ).

Proof. Analogously to the proof in Proposition 3.4, f ≃ ∑r
i=1 ℓ

d
i = −ed(−ζ0ℓ1, . . . ,−ζd−1ℓr).

Moreover, for all 0 < i < d we have ei(−ζ0ℓ1, . . . ,−ζd−1ℓr) = 0. Choose M large enough
so that for all d < i ≤ dr we have that ϵ−Mdei(−ϵMζ0ℓ1, . . . ,−ϵMζd−1ℓr) ≃ 0. It follows that
f ≃ −ϵ−Md(((1− ϵMζ0ℓ1) · · · (1− ϵMζd−1ℓr)

)
− 1
). Therefore Kc( f ) ≤ rd.
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Proposition 3.4 and Proposition 3.5 show that if WR( f ) is small then Kc( f ) is small. However,
there are polynomials with large Waring (border) rank but small Kumar complexity, such as
products of linear forms. Notice WR(x1 · · · xn) ≥ exp(n), which can be easily shown by partial
derivative methods, see e.g. [LT10, Sec. 11], [CKW11b, Thm. 10.4].
3.6 Lemma. If f = ℓ1 · · · ℓd is a product of homogeneous linear forms ℓi, then Kc( f ) = d.

Proof. The lower bound is immediate because Kc( f ) ≥ deg( f ). For the upper bound, notice f ≃
ϵd((∏d

i=1(1 + ϵ−1ℓi)
)
− 1
).

The main result of this section is a converse of the above statements. Informally, homogeneous
polynomials with small borderWaring rank and product of linear forms are the only homogeneous
polynomials with small border Kumar complexity. In order to state this precisely, we introduce the
following notation. For f ∈ C[x]d, let δ f = 1 if f is a product of homogeneous linear forms, and
define δ f = ∞ otherwise. The following result explains the relation between border Waring rank
and Kumar’s complexity.
3.7 Theorem. For all homogeneous f we have

min{deg( f ) · δ f , WR( f )} ≤ Kc( f ) ≤ deg( f ) ·min{δ f , WR( f )}.

Proof. The right inequality follows from Proposition 3.5 and Lemma 3.6. The left inequality is a
combination of Lemma 3.9, Proposition 3.10, and Theorem 3.11 below.
3.8 Corollary (De-bordering Kc). Let f ∈ C[x]d be a homogeneous polynomial. If Kc( f ) = m then
eitherWR( f ) ≤ m, or f is a product of linear forms.

Proof. By Theorem 3.7, if Kc( f ) = m then min{deg( f ) · δ f , WR( f )} ≤ m. Now, if deg( f ) · δ f ≤
WR( f ), then the minimum is deg( f ) · δ f , which implies δ f ̸= ∞; in this case δ f = 1, so f is a
product of linear forms. Otherwise,WR( f ) is the minimum, which implies thatWR( f ) ≤ m.

Note that in the definition of Kc, the factor α can be assumed to be a scalar times a power of ϵ,
because only the lowest power of ϵ in α would contribute to the limit. We distinguish three cases,
depending on the sign of the exponent of ϵ in α.

• Kc+( f ) is the smallest m such that f ≃ γϵN(∏m
i=1(1 + ℓi)− 1

) for some N ≥ 1, γ ∈ C and
ℓi ∈ C[ϵ±1][x]1; set Kc+( f ) = ∞ is such an m does not exist;

• Kc−( f ) is the smallest m such that f ≃ γϵ−M(∏m
i=1(1 + ℓi)− 1

) for some M ≥ 1, γ ∈ C and
ℓi ∈ C[ϵ±1][x]1; set Kc−( f ) = ∞ is such an m does not exist;

• Kc=( f ) is the smallest m such that f ≃ γ
(

∏m
i=1(1 + ℓi) − 1

) for some γ ∈ C and ℓi ∈
C[ϵ±1][x]1; set Kc=( f ) = ∞ is such an m does not exist.

We observe that Kc( f ) = min
{
Kc+( f ), Kc=( f ), Kc−( f )

}.
3.9 Lemma. For all homogeneous f we have deg( f ) · δ f ≤ Kc+( f ).

Proof. Let d := deg( f ). The lower bound deg( f ) ≤ Kc+( f ) is clear. Therefore, it suffices to show
that if Kc+( f ) is finite, then f is a product of linear forms. Let f ≃= γϵN(∏m

i=1(1 + ℓi)− 1
) with

N ≥ 1. Since ϵN ≃ 0, we have f ≃ γϵN ∏m
i=1(1 + ℓi), namely f is limit of a product of affine linear

polynomials. The property of being completely reducible is closed, therefore we deduce that f is a
product of affine linear polynomials. Since f is homogeneous, its factors are homogeneous as well.
This shows δ f = 1 and the statement follows.
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3.10 Proposition (Newton Identities). For all homogeneous f we haveWR( f ) ≤ Kc=( f ).

Proof. Let d := deg( f ). Suppose Kc=( f ) = m and write f ≃ fϵ := γ
(

∏m
i=1(1 + ℓi) − 1

). One
can verify that if even one of the ℓi diverges, then the j-th homogeneous part of fϵ diverges, where
j is the number of diverging ℓi. Hence all ℓi converge and we set ϵ to zero. Hence, Kc=( f ) =
Kc( f ). Now, since f is homogeneous, each homogeneous degree i part of fϵ vanishes, i < d.
In other words, ei(ℓ) = 0 for all 1 ≤ i < d, where ℓ = (ℓ1, . . . , ℓm). Hence s(ℓ) = 0 for all
symmetric polynomials of degree < d. Therefore the Newton identity pd = (−1)d−1 · d · ed +

∑d−1
i=1 (−1)d+i−1ed−i · pi gives that ed(ℓ) and pd(ℓ) are same up to multiplication by a scalar. Hence

WR( f ) ≤ m.

3.11 Theorem (Border Newton Identities). For all homogeneous f : WR( f ) ≤ Kc−( f ).

Proof. Let d := deg( f ). Let f ≃ fϵ := γϵ−M(∏m
i=1(1+ ℓ′i)− 1

)with M ≥ 1. From the convergence
of fϵ we deduce that for each i we have ℓ′i = ϵℓi with ℓi ∈ C[ϵ][x]1, because otherwise the
homogeneous degree j part diverges, where j is the number of ℓ′i that do not satisfy this property.

Now, let fϵ,j denote the homogeneous degree j part of fϵ. Since f is homogeneous of degree d,
for 0 ≤ j < d we have fϵ,j ≃ 0. By expanding the product, observe that for all 0 < j < d we have
0 ≃ fϵ,j = γϵ−Mej(ϵℓ1, . . . , ϵℓm) = γϵ−M+jej(ℓ1, . . . , ℓm). We now show by induction that for all
1 ≤ j < d we have ϵ−M+j pj(ℓ1, . . . , ℓm) ≃ 0. This is clear for j = 1, because p1 = e1. For the step
from j to j + 1 we use Newton’s identities:

pj+1 = (−1)j (j + 1) ej+1 + ∑
j
i=1(−1)j+iej+1−i · pi.

Hence ϵ−M+(j+1)pj+1(ℓ)

= (−1)j (j + 1) ϵ−M+(j+1)ej+1(ℓ)︸ ︷︷ ︸
≃0

+
j

∑
i=1

(−1)j+i ϵ−M+(j+1)−iej+1−i(ℓ)︸ ︷︷ ︸
≃0

· ϵM︸︷︷︸
≃0

· ϵ−M+i pi(ℓ)︸ ︷︷ ︸
≃0

≃ 0.

This finishes the induction proof, but we use Newton’s identities again in the same way to see that
ϵ−M+d pd(ℓ) ≃ (−1)d−1 · d · ϵ−M+ded(ℓ):

ϵ−M+d pd(ℓ) = (−1)d−1 · d · ϵ−M+ded(ℓ) +
d−1

∑
i=1

(−1)d−1+i ϵ−M+d−ied−i(ℓ)︸ ︷︷ ︸
≃0

· ϵM︸︷︷︸
≃0

· ϵ−M+i pi(ℓ)︸ ︷︷ ︸
≃0

.

We are done now, because f ≃ fϵ,d = γϵ−M+ded(ℓ1, . . . , ℓm) ≃ γϵ−M+d · 1
d · (−1)d−1 pd(ℓ1, . . . , ℓm)

and henceWR( f ) ≤ m.

3.a Linear approximations and Waring rank

We demonstrated the inequality Kc( f ) ≤ deg( f ) · WR( f ) in Proposition 3.4. In the proof
of Proposition 3.4, only “linear approximations” have been used; we prove here a converse of
Proposition 3.4 in the restricted setting of linear approximation. Given a homogeneous polynomial
f ∈ C[x]d, let Kc−1 ( f ) be the smallest m such that there exist linear forms ℓ1, . . . , ℓm ∈ C[x]1 and
M ≥ 1 such that f ≃ γϵ−M(∏m

i=1(1 + ϵℓi)− 1
).

3.12 Proposition. For any homogeneous polynomial f of degree d, we have WR( f ) ≤ Kc−1 ( f ) ≤ d ·
WR( f ).
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Proof. The inequality Kc−1 ( f ) ≤ d ·WR( f ) is clear from the proof of Proposition 3.4, as there we
obtained an expression of the form described in the definition of Kc−1 . Suppose Kc−1 ( f ) = m and
write f ≃ fϵ := γϵ−M(∏m

i=1(1+ ϵℓi)− 1
)with M ≥ 1 and ℓi ∈ C[x]1. It is immediate that m ≥ M,

f = γeM(ℓ) and ej(ℓ) = 0 for j < M, where ℓ = (ℓ1, . . . , ℓm). Via the Newton identity for the
power sum polynomial, we have

pM(ℓ) = (−1)M−1MeM(ℓ) +
M−1

∑
i=1

(−1)M+i−1eM−i(ℓ) · pi(ℓ).

Since ej(ℓ) = 0 for all 1 ≤ j < M, we obtain:

pM(ℓ) = (−1)M−1MeM(ℓ) =
1
γ
(−1)M−1M f .

We concludeWR( f ) = WR(pM(ℓ)) ≤ WR(pM) = m = Kc−1 ( f ), as desired.

4 Restricted binomials: De-bordering and lower bounds

In this section, we study restricted binomials. A binomial bnd is the polynomial bnd(x, y) :=
P[d]

2,0 = x1 . . . xd + y1 · · · yd. In Section 4.a, we de-border product-plus-power (P[d]
1,1) and

product-plus-two-powers models (P[d]
1,2). In Section 4.b, we show exponential gaps between

product-plus-power, product-plus-two-powers, and binomials (in the affine sense). Identifying
explicit polynomials which are hard to approximate, and proving it remains a major template in
algebraic and geometric complexity theory. Often, proving lower bounds on the homogeneous
model turns out to be easier than in its affine model, because of the non-trivial cancellations in
the latter model. However, in the restricted setting, we are able to show optimal lower bounds,
see Theorem 4.16 & Theorem 4.17.

4.a De-bordering: Characterizing special binomials

In this section we prove de-bordering results for product-plus-power and
product-plus-two-powers models. Our method applies also for more general computational
model based on restricted binomials. More specifically, we prove that polynomials obtained in
the limit in our model have low border Waring rank. One can then apply a debordering result for
WR such as abpw( f ) ≤ WR( f ) [BDI21, For14] or the results from Section 2.b to get a complete
debordering.
4.1 Definition (Restricted binomial model). We say that a homogeneous polynomial f ∈ SdV is in the
class RBk if it can be presented as

f =
d

∏
i=1

ℓi +
d

∏
i=1

ℓ′i

for some linear forms ℓi, ℓ′i ∈ V such that rank(ℓ′1, . . . , ℓ′d) ≤ k. We also define the corresponding
approximate class RBk in the standard way: a homogeneous polynomial f ∈ SdV is in RBk if

f = lim
ε→0

(
d

∏
i=1

ℓi(ϵ) +
d

∏
i=1

ℓ′i(ϵ)

)
(4.2)

for some ℓi(ϵ), ℓ′i(ϵ) ∈ C[ϵ±1][x]1 such that rank(ℓ′1(ϵ), . . . , ℓ′d(ϵ)) ≤ k for every ϵ ̸= 0.
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4.3 Theorem (De-bordering RBk). Let f ∈ SdV be a polynomial in RBk. Then either f ∈ RBk, or
WR( f ) ≤ O(d3k+2).

To prove this theorem, we first need some basic lemmas which will be used in the proof. We
will use non-homogeneous polynomials, so instead of Waring rank we will be working with the
complexity of ΣΛΣ-circuits. Denote by Σ[s]Λ[e]Σ the class of (non-homogeneous) polynomials
representable as a sum of s powers of affine linear forms with exponents not exceeding e, and by
Σ[s]Λ[e]Σ the corresponding class closed under approximation. As the following lemma shows, for
homogeneous polynomials this model is equal in power to border Waring rank.

4.4 Lemma. Let f (x) ∈ C[x]d, such that f (x) ∈ Σ[s]ΛΣ. Then,WR( f ) ≤ s.

Proof. By assumption f ≃ ∑i∈[s](αi + ℓi)
ei , where αi ∈ C(ϵ), and ℓi ∈ C(ϵ)[x]1. Taking the degree

d part of each side, we obtain a border Waring rank decomposition f ≃ ∑i : ei≥d (
ei
d)ℓ

d
i αei−d

i with at
most s summands.

We recall a classical result on the border Waring rank of a binary monomial.

4.5 Proposition (see e. g. [LT10]). If a ≤ b, then WR(xayb) = a + 1.

The next lemma bounds the ΣΛΣ complexity of a polynomial in terms of the complexity of
polynomials obtained from it by substitution of variables.

4.6 Lemma (Interpolation). Let f (x) ∈ C[x] be a polynomial of degree d such that f (γi, x2, . . . , xn) ∈
Σ[s] ∧[e] Σ for some distinct γ0, . . . , γd ∈ C. Then f (x) ∈ Σ[s(d+1)3] ∧[e+d] Σ.

Proof. Write f (x) = ∑d
j=0 xj

1 f j(x2, . . . , xn). By polynomial interpolation there exist αij ∈ C such that
f j = ∑d

i=0 αij f (γi, x2, . . . , xn). By assumption, f (γi, x2, . . . , xn) ≃ ∑s
j=1 ℓ

ej
ij , where ℓij are affine linear

forms with coefficients in C[ϵ±1], and ej ≤ e. Hence

f j(x) ≃
d

∑
i=0

s

∑
j=1

αijℓ
ej
ij =⇒ f j(x) ∈ Σ[s(d+1)] ∧[e] Σ .

Note that for any affine linear polynomial ℓ the polynomial xj
1ℓ

e can be approximated by a
Σ[d+1] ∧[e+j] Σ-circuit using the decomposition of the monomial xjye with border Waring rank
equal to min{j + 1, e + 1} ≤ j + 1 ≤ d + 1; this follows from Proposition 4.5. Therefore
xj

1 f j ∈ Σ[s(d+1)2] ∧[e+j] Σ, and f (x) = ∑d
i=0 xj

1 f j ∈ Σ[s(d+1)3] ∧[e+d] Σ.

By applying the previous Lemma several times we get the following.

4.7 Corollary. Let f (x) ∈ C[x] be a polynomial of degree d such that

f (γ1i1 , γ2i2 , . . . , γkik , xk+1, . . . , xn) ∈ Σ[s] ∧[e] Σ

for some γij ∈ C, 1 ≤ i ≤ k, 0 ≤ j ≤ d, with γi0, . . . , γid distinct for each i. Then f ∈ Σ[s(d+1)3k ] ∧[e+kd] Σ.

Additionally, we need the following statement similar to Theorem 3.11 which considers an
auxiliary Kumar-like model.
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4.8 Theorem. For any degree d polynomial f (x) ∈ C[x], not necessarily homogeneous, suppose we have
f ≃ ϵ−M(∏m

i=1(1 + ϵai)−∏m
i=1(1 + ϵbi)

)
for some linear forms ai, bi ∈ C[[ϵ]][x]1 with M ≥ 1. Then

f ∈ Σ[2md] ∧[d] Σ.

Proof. Let fϵ = ϵ−M(∏m
i=1(1 + ϵai) − ∏m

i=1(1 + ϵbi)
). Denote by f j and fϵ,j the homogeneous

degree j parts of f and fϵ respectively. Since f ≃ fϵ, we have
f j ≃ fϵ,j = ϵ−M (ej(ϵa1, . . . , ϵam)− ej(ϵb1, . . . , ϵbm)

)
= ϵ−M+j (ej(a)− ej(b)

)
,

where a = (a1, . . . , am) and similarly b = (b1, . . . , bm). Note that since fϵ,j converges, ej(a)− ej(b)
is divisible by ϵM−j for all j ≥ 1, that is,

ej(a) ≡ ej(b) mod ⟨ϵM−j⟩

where we consider ej(a) and ej(b) as elements of the ring C((ϵ))[x].
We now show by induction that for all j ≥ 1 the following additional congruences hold.

pj(a) ≡pj(b) mod ⟨ϵM−j⟩
pj(a)− pj(b) ≡(−1)j−1 j

(
ej(a)− ej(b)

)
mod ⟨ϵM−j+1⟩

The case j = 1 is trivially true because p1 = e1. For the induction step from j to j + 1, we use
Newton’s identities

pj+1 = (−1)j(j + 1)ej+1 + ∑
j
i=1(−1)j+iej+1−i · pi.

We obtain
pj+1(a)− pj+1(b) =(−1)j(j + 1)

(
ej+1(a)− ej+1(b)

)
+

j

∑
i=1

(−1)j+i (ej+1−i(a) · pi(a)− ej+1−i(b) · pi(b)
)

. (4.9)

By induction hypothesis we know that for 1 ≤ i ≤ j

pi(a) ≡pi(b) mod ⟨ϵM−i⟩
ej+1−i(a) ≡ej+1−i(b) mod ⟨ϵM−(j+1)+i⟩.

Since M− j ≤ M− i and M− j ≤ M− (j + 1) + i, this can be relaxed to
pi(a) ≡pi(b) mod ⟨ϵM−j⟩

ej+1−i(a) ≡ej+1−i(b) mod ⟨ϵM−j⟩.

From (4.9) we get
pj+1(a)− pj+1(b) ≡ (−1)j(j + 1)

(
ej+1(a)− ej+1(b)

)
mod ⟨ϵM−j⟩.

Weakening this to an equivalence mod⟨ϵM−(j+1)⟩, we obtain
pj+1(a)− pj+1(b) ≡ (−1)j(j + 1)

(
ej+1(a)− ej+1(b)

)
≡ 0 mod ⟨ϵM−(j+1)⟩,

or pj+1(a) ≡ pj+1(b) mod ⟨ϵM−(j+1)⟩, finishing the induction.
Finally, we use the proved congruences to write an approximate decomposition of f . We have

f j ≃ ϵ−M+j (ej(a)− ej(b)
)
≃ ϵ−M+j · 1

j
· (−1)j−1 (pj(a)− pj(b)

)
,

which shows that WR( f j) ≤ 2m. Note that f0 = 0, so f = ∑d
j=1 f j ∈ Σ[2md]Λ[d]Σ.
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4.10 Corollary. For any degree d polynomial f (x) ∈ C[x], not necessarily homogeneous, suppose we have
f ≃ ϵ−M(α ∏m

i=1(1 + ϵai)− β ∏m
i=1(1 + ϵbi)

)
with M ≥ 1 for some ai, bi ∈ C[[ϵ]][x]1 and α, β ∈ C[ϵ]

such that α ≃ β ̸≃ 0. Then f ∈ Σ[2md+1] ∧[d] Σ.

Proof. Let f j and fϵ,j be the homogeneus parts as in the proof of the preceding Theorem.
Additionally, Let α0 = limϵ→0 α and γ = β

α . From assumptions of the theorem, α0 ̸= 0 and γ ≃ 1.
We have

1
α0

f ≃ 1
α

f ≃ ϵ−M( m

∏
i=1

(1 + ϵai)− γ
m

∏
i=1

(1 + ϵbi)
)

By taking degree 0 part we get 1
α0

f0 ≃ 1
α0

fϵ,0 = ϵ−M(1− γ), so

1
α0

f j ≃ ϵ−M+j(ej(a)− γej(b)) = ϵ−M+j(ej(a)− ej(b)) + ϵj fϵ,0

α0
ej(b) ≃ ϵ−M+j(ej(a)− ej(b)),

hence
f ≃ f0 + α0ϵ−M( m

∏
i=1

(1 + ϵai)−
m

∏
i=1

(1 + ϵbi)
)
,

and we reduce to the case considered in Theorem 4.8.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Since f ∈ BRk, it has an approximate decomposition (4.2), which we rewrite
as

f ≃ ϵp
d

∏
i=1

ℓi − ϵp′
d

∏
i=1

ℓ′i

where ℓi, ℓ′i ∈ C[ϵ][x]1 are not divisible by ϵ and rank(ℓ′1, . . . ℓ′d) ≤ k at any ϵ ̸= 0. Define ℓi0 ∈ V
as ℓi0 = ℓi|ϵ=0 and similarly ℓ′i0 = ℓ′i|ϵ=0. ℓi0 and ℓ′i0 are nonzero and by semicontinuity of rank we
have rank(ℓ′10, . . . ℓ′d0) ≤ k.

If p = p′ = 0, then f = ∏d
i=0 ℓi0−∏d

i=0 ℓ
′
i0. Similarly, if one of the exponents p and p′ is positive,

then the corresponding summand tends to 0 as ϵ → 0, and f is a product of linear forms, and if
both p and p′ are positive, then f = 0. In all these cases we have f ∈ RBk.

Consider now the case when there are negative exponents. The convergence of the right hand
side of the decomposition implies that p = p′ and the lowest degree term ∏d

i=0 ℓi0 −∏d
i=0 ℓ

′
i0 is

zero. By unique factorization the sets of linear forms ℓi0 and ℓ′i0 are the same up to scalar multiples,
and we can permute and rescale the factors in one of the products so that ℓi0 = ℓ′i0. Additionally
we can assume that ℓ10, . . . , ℓr0 are linearly independent, where r = rank(ℓ10, . . . ℓd0) ≤ k.

Since ℓi0 for i ≤ r are linearly independent, there exists an invertible linear map A such that
ℓi0(Ax) = xi for i ≤ r. The linear forms ℓi0 lie in the linear span of the first r of them, which means
that ℓi0(Ax) ∈ C[x1, . . . , xr]1 for all i.

Let M = −p, Li(x) = ℓi(Ax) and L′i(x) = ℓ′i(Ax). For the polynomial g(x) = f (Ax) we obtain
an approximate decomposition

g ≃ ϵ−M( d

∏
i=1

Li −
d

∏
i=1

L′i
)

where Li, L′i ∈ C[ϵ][x]1 are such that Li0 := Li|ϵ=0 = L′i|ϵ=0 are nonzero elements of C[x1, . . . , xr].
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Choose γij ∈ C for 1 ≤ i ≤ r, 0 ≤ j ≤ d so that γi0, . . . , γid are distinct for each i and
Li0(γ1j1 , . . . , γrjr) ̸= 0 for all i, j1, . . . , jr. The choice is possible because Lk0 are nonzero and hence
the set of tuples γ not satisfying the required conditions is a nontrivial Zariski closed set. Write

Li(γ1j1 , . . . , γrjr , xr+1, . . . , xr) = αi + ϵAi(xr+1, . . . , xn)

L′i(γ1j1 , . . . , γrjr , xr+1, . . . , xr) = βi + ϵBi(xr+1, . . . , xn)

with αi, βi ∈ C[ϵ] and Ai, Bi ∈ C[ϵ][xr+1, . . . , xn], and set α = ∏d
i=1 αi, β = ∏d

i=1 βi, ai =
Ai
αi
, bi =

Bi
βi
.

Because αi|ϵ=0 = Li0(γ1j1 , . . . , γrjr) ̸= 0, ai are well defined in the ring C[[ϵ]][x]; ditto for bi. We
obtain

g(γ1j1 , . . . , γrjr , xr+1, . . . , xn) = ϵ−M(α d

∏
i=1

(1 + ϵai)− β
d

∏
i=1

(1 + ϵbi)
)
.

By Corollary 4.10 g(γ1j1 , . . . , γrjr , x) ∈ Σ[2d2+1]Λ[d]Σ. By Lemma 4.6 g ∈ Σ[(2d2+1)(d+1)3r ]Λ[(r+1)d]Σ,
and by Lemma 4.4WR(g) ≤ (2d2 + 1)(d + 1)3r = O(d3k+2). Since border Waring rank is invariant
under invertible linear transformations, the same is true for f .

As special cases we obtain the following results for product-plus-power and product-plus-two
powers. Note that RB1 consists of polynomials of the form ∏d

i=1 ℓi + ℓ′d1, which are exactly the
restrictions of P[d]

1,1. Similarly, f ∈ RB1 if and only if f ⊴ P[d]
1,1. As a corollary of Theorem 4.3 we

obtain the following statement.

4.11 Theorem (De-bordering product-plus-power). Let f ∈ SdV such that f ⊴ P[d]
1,1. Then either

f ≤ P[d]
1,1, orWR( f ) = O(d5).

The result for the product-plus-two-powers follows for the analysis of RB2, since a sum of
two powers ad − bd can be represented as a product ∏d−1

i=0 (a − ωib) of linear forms spanning a
2-dimensional subspace (here ω is a primitive d-th root of unity). More careful analysis gives the
following theorem.

4.12 Theorem (De-bordering product-plus-two-powers). Let f ∈ SdV such that f ⊴ P[d]
1,2. One of the

three alternatives is true:

1. f ≤ P[d]
1,2, or

2. f ≤ ∏d
i=1 yi + yd−1

0 · yd+1, or

3. WR( f ) = O(d8).

Proof. The proof follows the proof of Theorem 4.3. Additional step is required in the case when
both summands have individual limits. In this case, the limit of the restricted summand is a
polynomial of border Waring rank 2. It is known [LT10] (see also Theorem B.1) that it either
has border rank two, in which case the alternative (1) holds for f , or has the form ad−1b, which
implies alternative (2).

4.b Lower Bounds

In this section, we prove several exponential separations between related polynomials contained
in the affine closure of binomials.
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4.13 Lemma. The polynomial P[d]
1,2 = ∏i∈[d] xi + xd

d+1 + xd
d+2 cannot be written as a product of linear

forms.

Proof. Any homogeneous polynomial f of degree d which is a product of linear forms, clearly has
at most d essential variables. But ∏i∈[d] xi + xd

d+1 + xd
d+2 clearly has d + 2 essential variables.

4.14 Lemma. The polynomial P[d]
2,0 = ∏d

i=1 xi + ∏2d
i=d+1 xi cannot be written as a product of linear forms.

Proof. It easily follows from a proof similar to that of Lemma 4.13.

4.15 Lemma. For the polynomial P[d]
1,2 = ∏i∈[d] xi + xd

d+1 + xd
d+2, we haveWR( f ) ≥ 2Ω(d).

Proof. Evaluating xd+1 = xd+2 = 0, we obtain

WR( f ) ≥ WR(x1 · · · xd) ≥
(

d
⌈d/2⌉

)
where the second inequality follows computing the dimension of the space of partial derivatives
of order ⌊d/2⌋, see, e.g., [LT10, CKW11b].

4.16 Theorem (First exp. gap theorem). If P[d]
1,2 ⊴aff P[e]

1,1, then e ≥ exp(d).

We remark that by Kumar’s result [Kum20], we know that there exists e ≤ exp(d), such that
P[d]

1,2 ⊴aff P[e]
1,1. Therefore, Theorem 4.16 is optimal.

Proof of Theorem 4.16. Let P[d]
1,2 ⊴aff P[e]

1,1. That means that there are affine linear forms Li ∈ C(ϵ)[x]
such that ∏i∈[d] +xd

d+1 + xd
d+2 + ϵ · S(x, ϵ) = ∏i∈[e] Li + Ld

e+1. By substituting, xi 7→ xi/x0, and
multiplying both sides by xe

0, we get that xe−d
0 · P[d]

1,2 + ϵ · Ŝ = ∏i∈[e] L̂i + L̂e
e+1, for homogeneous

linear forms L̂i, or, equivalently, xe−d
0 · P[d]

1,2 ⊴ P[e]
1,1.

By Theorem 4.11, we know that xe−d
0 · P[d]

1,2 ⊴ P[e]
1,1 implies either (i) xe−d

0 · P[d]
1,2 = ∏i∈[e] ℓi + ℓe

0, for
some linear forms ℓi ∈ C[x], or (ii) WR(xe−d

0 · P[d]
1,2) = O(e5). We show that (i) is an impossibility

while (ii) can happen only when e ≥ exp(d).
Proof of Part (ii): Fix a random x0 = α ∈ C. Note that, this implies that P[d]

1,2 + ϵg = ∑i∈[k] ℓ
e
i for

some affine forms ℓ̂i ∈ C(ϵ)[x] and g ∈ C[ϵ][x] with k ∈ O(e5). Since P[d]
1,2 is homogeneous, this

also implies thatWR(P[d]
1,2) ≤ k. But then Lemma 4.15 implies that k ≥ 2Ω(d), which in turn implies

that e ≥ 2Ω(d).
Proof of Part (i): Let xe−d

0 · P[d]
1,2 = ∏i∈[e] ℓi + ℓe

0. Note that, by a simple derivative space argument,
one can show that the number of essential variables in the LHS is at least d + 2, while the number
of essential variables of the expression in RHS is at most e + 1; since trivially ∏i∈T ℓi, for T ⊂ [e],
such that |T| = e − 1, and ℓe−1

0 certainly span the space of single partial derivatives. Therefore,
e ≥ d + 1. This will be important since we will use the fact that e− d ≥ 1, in the below.

Further, we can assume that x0 ∤ ℓ0. Otherwise, say ℓ0 = c · x0, for some c ∈ C, which implies
that xe−d

0 | ∏i∈[e] ℓi. Hence, wlog we can assume that ℓi = x0, for i ∈ [e − d] (we are assuming
constants to be 1, because we can always rescale and push the constants to the other linear forms).
Therefore, RHS is divisible by xe−d

0 . By dividing it out and renaming the linear forms appropriately,
we get

P[d]
1,2 = ∏

i∈[d]
ℓ̂i + cxd

0 ,

32



where ℓ̂i ∈ C[x]. Further, we can put x0 = 0. Note that, x0 ∤ ℓ̂i, for any i, since otherwise x0 divides
RHS, but it doesn’t divide the LHS. After substituting x0 = 0, we get that

P[d]
1,2 = ∏

i∈[d]
ℓ̃i ,

where C[x1, . . . , xd+2] ∋ ℓ̃i = ℓ̂i|x0=0 ̸= 0. From Lemma 4.13, it follows that this is not possible.
A similar argument shows that x0 ∤ ℓi, for any i ∈ [d]; because otherwise that implies x0 | ℓ0, and
hence the above argument shows a contradiction.

Therefore, we assume that x0 ∤ ℓi, for i ∈ [0, d]. Now, there are two cases – (i) x0 appears in ℓ0,
(ii) x0 does not appear in ℓ0.

If x0 appears in ℓ0, then say ℓ0 = c0x0 + ℓ̂0, for some c0 ̸= 0. Note that ℓ̂0 ∈ C[x1, . . . , xd+2]1 is
non-zero, since we assume that x0 ∤ ℓ0. Substitute x0 = −ℓ̂0/c0 (so that ℓ0 vanishes). This implies:

(−ℓ̂0/c0)
e−d · P[d]

1,2 = ∏
i∈[e]

ℓ̂i ,

where ℓ̂i = ℓi|x0=−ℓ̂0/c0
. Since LHS is non-zero, so is each ℓ̂i. Since, everything is homogeneous,

and we have unique factorization, the above implies that upto renaming, P[d]
1,2 = c ·∏i∈[d] ℓ̂i, which

is a contradiction by Lemma 4.13.
If x0 does not appear in ℓ0, then there must exist an i ∈ [e] such that x0 appears in ℓi, otherwise

RHS is x0-free which is trivially a contradiction. We also know that x0 cannot divide ℓi, by our
assumption. So, say ℓi = cix0 + ℓ̂i, where ℓ̂i is x0-free, and ci ∈ C is a nonzero element. Substitute
x0 = −ℓ̂i/ci, so that ℓi vanishes. Since ℓ0 is x0-free, we immediately get that

(−ℓ̂0/c0)
e−d · P[d]

1,2 = ℓe
0 .

Again, by unique factorization, we get that P[d]
1,2 = c · ℓd

0, for some c ∈ C, which is a contradiction
by Lemma 4.13. This finishes the proof.

4.17 Theorem (Second exp. gap theorem). If P[d]
2,0 ⊴aff P[e]

1,2, then e ≥ exp(d).

Proof. Let P[d]
2,0 ⊴aff P[e]

1,2. A similar formulation as above (in the previous theorem) gives us that
xe−d

0 · P[d]
2,0 ⊴ P[e]

1,1. By Theorem 4.12 (& its remark), we know that xe−d
0 · P[d]

2,0 ⊴ P[e]
1,2 implies – either

(i) xe−d
0 · P[d]

2,0 = g + h, where g = ∏i∈[e] ℓi, for some linear forms ℓi ∈ C[x]1, and WR(h) ≤ 2,
or (ii) WR(xe−d

0 · P[d]
2,0) = O(e8). Similarly, as before, we show that (i) is an impossibility while

(ii) can happen only when e ≥ exp(d). Part (ii) proof is exactly to the argument in the proof of
Theorem 4.16.

To prove the Part (i), there are two cases – (a) h = ℓe
0 + ℓe

e+1, for ℓi ∈ C[x]1, or, (b) h = ℓe−1
0 · ℓe+1.

Case (a): Let xe−d
0 · P[d]

2,0 = ∏i∈[e] ℓi + ℓe
0 + ℓe

e+1. We assume that x0 does not divide ℓi, for some
i ∈ {0, e + 1}, and each ℓi, for i ∈ [e], otherwise, we can divide by the maximum power of x0 on
both the sides.

Note that, by a simple derivative space argument, one can show that the number of essential
variables in the LHS is at least 2d (it is 2d + 1, if e > d), while the number of essential variables of
the expression in RHS is at most e + 2; since trivially ∏i∈T ℓi, for T ⊂ [e], such that |T| = e− 1, and
ℓe−1

0 , ℓe
e−1 certainly span the space of single partial derivatives. Therefore, e ≥ 2d− 2.
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Now, we divide this into subcases –
(a1) x0 does not appear in ℓi, for any i ∈ [e],
(a2) x0 appears in ℓi, for some i ∈ [e].

Case (a1): x0 does not appear in ℓi, for i ∈ [e]. In that case, say ℓ0 = c0x0 + ℓ̂0, and ℓe+1 =

ce+1x0 + ℓ̂e+1, where ℓ̂0 and ℓ̂e+1 are x0-free, and c0, ce+1 are constants (might be 0 as well, but both
cannot be 0 since then RHS becomes x0-free). Therefore, the coefficient of xe−d

0 (as a polynomial)
in RHS is γ0ℓ̂d

0 + γe+1ℓ̂
d
e+1, where γ0 = (e

d)c
e−d
0 , and similarly γe+1 = (e

d)c
e−d
e+1. Comparingwith LHS,

we get that P[d]
2,0 = γ0ℓ̂d

0 + γe+1ℓ̂
d
e+1. Trivially, over C, γ0ℓ̂d

0 + γe+1ℓ̂
d
e+1 is a product of linear forms,

which is a contradiction, using Lemma 4.14.
Case (a2): If x0 appears in one of the ℓi, it can appear in two ways, either ℓi is a constant multiple
of x0, or ℓi = cix0 + ℓ̂i, where ℓ̂i is a nonzero linear form which is x0-free. Let S1 ⊆ [e] be such that
ℓi = ci · x0, for i ∈ S1, for some nonzero constant ci ∈ C, and S2 ⊆ [e] be such that ℓi = cix0 + ℓ̂i,
where ℓ̂i is nonzero.

Note that if |S1|+ |S2| < e− d, then xe−d
0 cannot be contributed from the product and hence it

only gets produced from ℓe
0 + ℓe

e+1, and we get a contradiction in the same way as above. Hence,
wlog assume that |S1|+ |S2| ≥ e− d.

If S2 is non-empty, say j ∈ S2, then substitute x0 = −ℓ̂j/cj, so that ℓj becomes 0. This
substitution gives us the following:

(−ℓ̂j/cj)
e−d · P[d]

2,0 = ℓ̃e
0 + ℓ̃e

e+1 .

Since, ℓ̃e
0 + ℓ̃e

e+1 can be written as a product of linear forms, from the unique factorization, it follows
that f must be a product of linear forms, which is a contradiction from Lemma 4.14. Hence, we are
done when |S2| is non-empty.

If S2 is empty, since |S1| + |S2| ≥ e − d by assumption, we have |S1| ≥ e − d. In particular,
xe−d

0 | LHS −∏ ℓi =⇒ xe−d
0 | ℓe

0 + ℓe
e+1 = ∏i(ℓ0 − ζ2i+1ℓe+1), where ζ is 2e-th root of unity. Since,

e− d ≥ 2 for d ≥ 4, this simply implies that there are two indices i1 and i2 such that ℓ0 − ζ i1ℓe+1 =
ci1 x0, and ℓ0− ζ i2ℓe+1 = ci2 x0. Together, this implies that both ℓ0 and ℓe+1 aremultiples of x0, which
is a contradiction, since we assumed that x0 cannot divide each ℓi, for i ∈ [0, e + 1]. Hence, we are
done with case (a).
Case (b): Let xe−d

0 · P[d]
2,0 = ∏i∈[e] ℓi + ℓe−1

0 · ℓe+1. We assume that x0 does not divide both ℓi, for
some i ∈ [e], and one of the ℓ0 or ℓe+1, otherwise, we can divide by the maximum power x0 both
side. Again, a similar essential variable counting argument shows that e ≥ 2d− 2.

Similarly, as before, we divide into subcases –
(b1) x0 does not appear in ℓi, for any i ∈ [e],
(b2) x0 appears in ℓi, for some i ∈ [e].

Case (b1): If x0 does not appear in the first product, i.e,. any of ℓi, for i ∈ [e], then it must appear
in ℓ0 (because if it only appears in ℓe+1, the degree of x0 is 1 in RHS, a contradiction). Note that,
x0 ∤ ℓ0 (and similarly ℓe+1), because otherwise, substituting x0 = 0 makes LHS 0, while RHS
remains ∏i∈[e] ℓi. Hence, let ℓ0 := c0x0 + ℓ̂0, where ℓ̂0 is x0-free. Substitute x0 = −ℓ̂0/c0, so that

(−ℓ̂0/c0)
e−d · P[d]

2,0 = ∏
i∈[e]

ℓi .

This in particular implies that P[d]
2,0 is a product of linear forms, which is a contradiction by

Lemma 4.14.
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Case (b2): In this case, wlog x0 appears in ℓ1. Note that, x0 cannot divide ℓ1, because otherwise,
it must divide LHS-∏i∈[e] = ℓe−1

0 ℓe+1, which implies that x0 must divide one of the ℓ0 or ℓe+1,
contradicting the minimality of x0-division. Therefore, ℓ1 = c1x0 + ℓ̂1, where c1 is a nonzero
constant, and ℓ̂1 is a nonzero linear form which is x0-free. Substitute x0 = −ℓ̂1/c1, both side to
get that

(−ℓ̂1/c1)
e−d · P[d]

2,0 = ℓ̂e−1
0 ℓ̂e+1 .

Therefore, again by unique factorization, we get that f must a product of linear forms, which is a
contradiction by Lemma 4.14.

5 Geometric complexity theory of product-plus-power

In this section, we study computational and invariant theoretic properties of P[d]
r,s . Theorem 5.2

determines the stabilizer of P[d]
r,s under the action of the group GLrd+s acting on the variables. The

knowledge of the stabilizer, allows us to determine the representation theoretic structure of the
coordinate ring of the orbit of P[d]

1,1, which is achieved in Proposition 5.4. In Proposition 5.5, we prove
that P[d]

r,s is polystable, in the sense of invariant theory. This guarantees the existence of a fundamental
invariant, in the sense of [BI17]: in Proposition 5.8, we show a connection between the degree of
this fundamental invariant and the Alon-Tarsi conjecture on Latin squares in combinatorics.

5.a Stabilizer

The general linear group GLn acts on C[x1, . . . , xn] by linear change of variables as described in §1.
For a homogeneous polynomial f ∈ C[x]d, write StabGLn( f ) for its stabilizer under this action. It is
an immediate fact that StabGLn( f ) is a closed algebraic subgroup of GLn. It may consists of several
connected (irreducible) components: the identity component, denoted Stab0

GLn
( f ) is the connected

component containing the identity; Stab0
GLn

( f ) is a closed, normal subgroup of StabGLn( f ) [Ges16,
Lemma 2.1]; the quotient StabGLn( f )/ Stab0

GLn
( f ) is a finite group.

The Lie algebra g of an algebraic group G can be geometrically identifiedwith the tangent space
to G at the identity element. Moreover, if G is a subgroup of GLn, then g is naturally a subalgebra
of gln = End(Cn); moreover g uniquely determined the identity component of G.

It is a classical fact that the Lie algebra of StabGLn( f ) is the annihilator of f under the Lie
algebra action of gln on C[x]d; denote this annhilator by anngln( f ). Typically, in order to determine
StabGLn( f ), one first computes anngln( f ), which uniquely determines Stab0

GLn
( f ). Then, one

determines StabGLn( f ) as a subgroup of the normalizer NGLn Stab0
GLn

( f ).
First, we record a general result regarding the stabilizer of sums of polynomials in disjoint sets

of variables. This is the symmetric version of [CGL+21, Thm. 4.1(i)].
5.1 Lemma. Let V = V1⊕V2 and let f ∈ C[V∗]d = SdV be a homogeneous polynomial with f = f1 + f2,
where fi ∈ SdVi are both concise, with d ≥ 3. Then

(i) anngl(V)( f1) = anngl(V1)( f1)⊕Hom(V2, V);

(ii) anngl(V)( f1 + f2) = anngl(V1)( f1)⊕ anngl(V2)( f2).

Proof. For both statements, the inclusion of the right-hand term into the left-hand term is clear. We
prove the reverse inclusion.

35



For X ∈ gl(V), write X = ∑2
i,j=1 Xij, with Xij ∈ Hom(Vi, Vj).

The proof of (i) amounts to showing that if X ∈ anngl(V)( f1), then X12 = 0 and X11 ∈
anngl(V1)( f1). Suppose X. f1 = 0. Notice X. f1 = X11. f1 + X12. f1; here X11. f1 ∈ SdV1 and
X12. f1 ∈ V2 ⊗ Sd−1V1. In particular, both terms must vanish. The term X12. f1 is a sum of at most
dim V2 linearly independent elements, each of which is a linear combination of first order partials
of f1. Since f1 is concise, X12. f1 = 0 if and only if X12 = 0. The condition X11. f1 = 0 is, by definition,
equivalent to X11 ∈ anngl(V1)( f1). This conclude the proof of (i).

To prove (ii), we show that if X ∈ anngl(V)( f ), then X12 = 0,X21 = 0 and Xii ∈ anngl(Vi)( fi).
Suppose X. f = 0. We have X. f = (X11 + X12). f1 + (X21 + X22). f2. Now, (X11 + X12). f1 ∈ SdV1 ⊕
V2 ⊗ Sd−1V1, and similarly (X21 + X22). f2. Since d ≥ 3, the two terms are linearly independent,
hence they both must vanish. This shows (X11 + X12) ∈ anngl(V)( f1), therefore X12 = 0 and X11 ∈
anngl(V1)( f1) from the previous part of the proof. The analogous condition holds for X21 and X22
and this completes the proof.

We can nowdetermine the stabilizer of P[d]
r,s . Let TSLn denote the subgroup of diagonal elements

in SLn.
5.2 Theorem. For d ≥ 3 and for every r, s, we have

StabGL(V)(P[d]
r,s ) = ([TSLd ⋊Sd] ≀Sr)× (Zd ≀Ss);

each copy of TSLd ⋊Sd acts by rescaling and permuting the variables in one of the r sets {xji : i = 1, . . . , d}
for j = 1, . . . , r; the groupSr permutes (set-wise) these sets; the group Zd ≀Ss acts by rescaling (by a d-th
root of 1) and permuting the variables in the set {yi : i = 1, . . . , s}.

Proof. It is clear that the group on the right-hand side is contained in the stabilizer StabGL(V)(P[d]
r,s ).

We show the reverse inclusion.
First, we determine the identity component of StabGL(V)(P[d]

r,s ). By Lemma 5.1, the annihilator of
P[d]

r,s in gl(V) is the direct sum of the annihilators of its summands. This guarantees that the identity
component of the stabilizer of P[d]

r,s is Stab0
GL(V)(P[d]

r,s ) = (TSLd)×r, where the j-th copy of TSLd acts
by rescaling the variables x1j, . . . , xdj; see, e.g., [Lan17, Sec. 7.1.2].

Since Stab0
GL(V)(P[d]

r,s ) is a normal subgroup of StabGL(V)(P[d]
r,s ), we have

StabGL(V)(P[d]
r,s ) ⊆ NGL(V)(T

SLd
×r
) = ([TSLd ⋊Sd] ≀Sr)⋊ Q

where Q is the parabolic subgroup stabilizing the subspace spanned by the xij variables.
In order to determine the discrete component, we follow the same argument as the one used for

the power sum polynomial P[d]
0,s in [Lan17, Section 8.12.1]. In particular, StabGL(V)(P[d]

r,s ) stabilizes
the Hessian determinant of P[d]

r,s , up to scaling. A direct calculation shows that this Hessian
determinant, up to scaling, is

H = (∏
i,j

xij ∏
k

yk)
d−2.

Unique factorization implies that StabGL(V)(P[d]
r,s ) ∩ Q ⊆ T ⋊Ss, where T is the torus of diagonal

matrices acting on the yj variables. Hence this subgroup commutes with [TSLd ⋊Sd] ≀Sr and we
deduce

StabGL(V)(P[d]
r,s ) ∩Q = StabGLs(y

d
1 + · · ·+ yd

s ) = Zd ≀Ss.

This concludes the proof.
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In the context of geometric complexity theory it is important to know if the polynomial is
characterized by its stabilizer [MS08]. While this property fails for the polynomials P[d]

r,s , a slightly
weaker statement is true — every polynomial stabilized by Stab(P[d]

r,s ) is a restriction of P[d]
r,s . This is

similar to the properties of minrank tensors and slice rank tensors considered in [BIL+19].

5.3 Theorem. If a polynomial f ∈ C[x11, . . . , xdr, y1, . . . , ys]d is stabilized by Stab(P[d]
r,s ), then

f = α
r

∑
i=1

∏d
j=1xji + β

s

∑
i=1

yd
i ,

for some α, β ∈ C.

Proof. Partition the set of variables into the subsets Xi = {x1i, . . . , xdi} and Yi = {yi}. Note that
Stab(P[d]

r,s ) contains the transformation which scales all variables in one of the subsets by a d-th
root of unity, acting as identity on all other variables. It follows that each monomial of f contains
variables from only one of the subsets, for otherwise the transformation described abovemultiplies
the monomial by a coefficient different from 1. Thus we have

f =
r

∑
i=1

fi(x1i, . . . , xdi) +
s

∑
i=1

βiyd
i .

Since f is fixed under the symmetric group Ss permuting y1, . . . , ys, the coefficients βi are all
equal. Since f is fixed under the symmetric group Sr permuting the subsets X1, . . . , Xr, all the
polynomials fi also coincide.

Finally, the stabilizer group contains the transformations scaling xj1 by λ and xk1 by λ−1. This
transformation scales a monomial x

pj
j1 xpk

k1 . . . by λpj−pk . It follows that each monomial of f1 must
have the same degree with respect to each variable, that is, f1 = α ∏d

j=1 xj1.

5.b Multiplicities in the coordinate ring of the orbit

A partition λ = (λ1, λ2, . . .) is a finite nonincreasing sequence of nonnegative integers. We write
ℓ(λ) := max{i | λi ̸= 0}, and λ ⊢ D means ∑i λi = D. To each partition λ we associate its
Young diagram, which is a top-left justified array of boxes with λi boxes in row i. For example,

the Young diagram to λ = (4, 4, 3) is . The transpose of the Young diagram is obtained

by switching rows and columns. Denote the partition corresponding to this Young diagram by
λt, for example (4, 4, 3)t = (3, 3, 3, 2). A group homomorphism ϱ : GLD → GL(V), where V
is a finite dimensional complex vector space, is called a representation of GLD. A representation is
polynomial if each entry of thematrix corresponding to the linearmap ϱ(g) is given by a polynomial
in the entries of GLD. A linear subspace that is closed under the group operation is called a
subrepresentation. A representation with only the two trivial subrepresentations is called irreducible.
The irreducible polynomial representations ofGLd+1 are indexed by partitions λ with ℓ(λ) ≤ d+ 1,
see for example [Ful97, Ch. 8]. Denote by Sλ(C

d+1) the irreducible representation of type λ. For a
GLd+1-representation V we write multλ(V) to denote the multiplicity of λ in V , i.e., the dimension
of the space of equivariant maps from Sλ(C

d+1) to V , or equivalently, the number of summands of
isomorphism type λ in any decomposition of V into a direct sum of irreducible representations.

In this sectionwe care about the special case r = s = 1 (which is the homogenization ofKumar’s
case, see §1, andwe set G := GLd+1. We nowuse the stabilizer to determine themultiplicities in the
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coordinate ring of the group orbit multλ(C[GLd+1 P[d]
1,1 ]). Let H := StabG(P[d]

1,1) ≃ Zd× (TSLd ⋊Sd).
A standard consideration in GCT is that since H is reductive, the orbit GP[d]

1,1 is an affine variety
([BLMW11, §4.2], [Mat60]) and a homogeneous space that is isomorphic to the quotient G/H.
Its coordinate ring is determined by the Algebraic Peter-Weyl Theorem [GW09, Thm. 4.2.7]: we
have C[GP[d]

1,1 ] ≃ C[G/H] ≃ C[G]H, and therefore multλ(C[GP[d]
1,1 ]) = dim(SλV)H. We show how

this invariant space dimension can be determined by classical representation branching rules in
Proposition 5.4.

For partitions µ and λ we define µ ⪯ λ iff µ ⊆ λ (i.e. ∀i : µi ≤ λi) and the skew diagram λ/µ
has at most 1 box in each column (i.e., λt

i − µt
i ≤ 1). Let aµ(d, D) := multµ(Sd(SD(W))) for any W

of dimension at least d, sometimes called the plethysm coefficient.

5.4 Proposition. For λ ⊢ dD we have

multλ(C[GLd+1 P[d]
1,1 ]) = dim(SλCd+1)H =

D

∑
δ=0

∑
µ⊢δd
µ⪯λ

ℓ(µ)≤d

aµ(d, δ).

Proof.

(SλCd+1)H = (Sλ(C⊕Cd) ↓GLd+1
GL1×GLd

)Zd×(TSLd⋊Sd) Pieri’s rule
=

⊕
µ⪯λ

ℓ(µ)≤d

(S|λ|−|µ|C
1)Zd ⊗ (SµCd)TSLd⋊Sd ,

where Pieri’s rule is a well-known decomposition rule, see for example [FH91, p. 80, Exe. 6.12].
Now, dim((S|λ|−|µ|C1)Zd) = 1 iff |λ| − |µ| is a multiple of d iff |µ| is a multiple of d. Otherwise it
is 0. Hence

dim(SλV)H =
d

∑
δ=0

∑
µ⊢δd
µ⪯λ

ℓ(µ)≤d

dim(SµCd)TSLd⋊Sd︸ ︷︷ ︸
=aµ(d,δ)

The last underbrace equality is Gay’s theorem [Gay76].

Note that the ℓ(µ) ≤ d requirement is not actually necessary, because if ℓ(µ) > d, then
aµ(d, δ) = 0.

A computer calculation (see appendix) shows that this indeed gives multiplicity obstructions.
We used the HWV software [BHIM22] to directly calculate that (10, 6, 4, 4) and (8, 8, 4, 4) are
the only types in the vanishing ideal for D = 8, d = 3. For d = 3 there are no equations in
degree 1, . . . , 7. In particular, none of Brill’s equations (which all are of degree d + 1) vanishes on
GLd+1 P[d]

1,1 ∩ SdCd.

5.c Polystability

A polynomial f ∈ SdV is called polystable if its SL(V)-orbit is closed. Polystability is an important
property in GCT, as it implies the existence of a fundamental invariant that connects the GL-orbit
with the GL-orbit closure, see [BI17, Def. 3.9 and Prop. 3.10]. This connection can be used to
exhibit multiplicity obstructions, as was done in [IK20].

5.5 Proposition. Let d ≥ 2. The polynomial P[d]
r,s is polystable, i.e., the orbit SL(V)P[d]

r,s is closed.
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Proof. If d = 2, then P[2]
r,s is a polynomial of degree 2 defining a quadratic form of maximal rank.

This is polystable.
Suppose d ≥ 3. Proposition 2.8 in [BI17] gives a criterion for polystability, based on works of

Hilbert, Mumford, Luna, and Kempf.
In order to apply this criterion, consider the group R = StabGL(V)(P[d]

r,s )∩TGL(V), where TGL(V)

denotes the torus of diagonal matrices, in the basis defined by the variables. By Theorem 5.2, we
deduce R = (TSLd)×r ×Z×s

d . This is a group consisting entirely of diagonal matrices and it is easy
to verify that its centralizer in SL(V) coincides with TSL(V). This proves the first property of the
criterion.

For the second property, consider the exponent vectors of the monomials appearing in P[d]
r,s . For

a monomial m, write wt(m) for its exponent vector. It is immediate to verify that
r

∑
i=1

wt(xi1 · · · xid) +
1
d

s

∑
j=1

wt(yd
j ) = (1, . . . , 1);

this shows that the vector (1, . . . , 1) lies in the convex cone generated by the exponent vectors of
the monomials of P[d]

r,s . This proves the second part of the criterion and concludes the proof.

Proposition 5.5 reduces to the following in the special case r = s = 1:

5.6 Corollary. Let d ≥ 2. The polynomial P[d]
r,s is polystable, i.e., the orbit SLd+1 P[d]

r,s is closed.

5.d Fundamental invariants and the Alon-Tarsi conjecture

A Latin square is an n × n matrix with entries 1, . . . , n such that each row and each column is
a permutation. The column sign of a Latin square is the product of the signs of its column
permutations. If n is odd, then there are exactly as many sign 1 Latin squares are sign −1 Latin
squares, and a sign-reversing involution is obtained by switching the first two rows. TheAlon-Tarsi
conjecture states that for n even, the number of sign +1 and sign −1 Latin squares are different.
The main references on the Alon-Tarsi conjecture are [AT92, Dri97, Gly10], where it is shown that
the conjecture is correct for p ± 1 for all odd primes p. [FM19] give a survey about these main
results.
5.7 Remark. The GCT result in [Kum15] is based on the Alon-Tarsi conjecture. The conjecture
has been generalized in numerous directions. [SW12] prove that Drisko’s proof method cannot
be used without modifications to prove the Alon-Tarsi conjecture. The same is true for results
in [BI13, BI17], some of which are based on generalizations or variants of the conjecture. The
Polymath Project number 12 (https://polymathprojects.org) was devoted to the study of Rota’s
basis conjecture, which for even n is implied by the Alon-Tarsi conjecture, see [HR94]. [Alp17]
proves an upper bound on the different between the even and odd Latin squares.

The fundamental invariant Φ of a polystable polynomial f ∈ SDV is the smallest degree
SL(V)-invariant function in C[GL(V) f ], see Def. 3.8 in [BI17]. It describes the connection between
the orbit and the orbit-closure of f : more formally C[GL(V) f ]Φ ≃ C[GL(V) f ] is the localization
at Φ, see [BI17, Pro. 3.9]. This connection can be used to exhibit multiplicity obstructions, as was
done in [IK20].

It is known that for even d the orbit closureGLd(x1 · · · xd) has fundamental invariant of degree d
if and only if the Alon-Tarsi conjecture on Latin squares holds for d, see [BI17, Pro. 3.26]; otherwise
the fundamental invariant has higher degree. In this section we show an analogous result for the
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orbit closure GLd+1(x1 · · · xd + xd
d+1): if d is even this orbit closure has fundamental invariant of

degree d + 1 if and only if the Alon-Tarsi conjecture on Latin squares holds for d; otherwise the
fundamental invariant has higher degree.

5.8 Proposition. Let d be even. The degree of the fundamental invariant of P[d]
1,1 is d + 1 if and only if the

Alon-Tarsi conjecture for d is true, otherwise it is in a higher degree.

Proof. We follow the presentation in [CIM17, BI17, BDI21]. For a partition λ we place positive
integers into the boxes of the Young diagram and call it a tableau T of shape λ. The vector of
numbers of occurrences of 1s, 2s, etc, is called the content of T. The content is n× d if T has exactly
d many 1s, d many 2s, . . ., d many ns. The set of boxes of the Young diagram of λ is denoted by
boxes(λ). The boxes that have the same number are said to form a block.

Let m = n + 1. Fix a tableau T of shape λ with content n× d and fix a tensor p = ∑r
i=1 ℓi,1 ⊗

· · · ⊗ ℓi,d ∈ ⊗dCm. A placement
ϑ : boxes(λ)→ [r]× [d]

is called proper if the first coordinate of ϑ is constant in each block and the second coordinate of
ϑ in each block is a permutation. We define the determinant of a matrix that has more rows than
columns as the determinant of its largest top square submatrix.

For a tableau T with content ∆× d we define the polynomial fT via its evaluation on p:

fT(p) := ∑
proper ϑ

λ1

∏
c=1

det ϑ,c with det ϑ,c := det
(
ℓϑ(1,c) . . . ℓϑ(µc,c)

)
(5.9)

The degree of fT is ∆. The polynomial fT is SLm-invariant if and only if the shape of T is
rectangular with exactly m many rows. It is easy to see that fT = 0 if T has any column in which a
number appears more than once. Moreover, it is easy to see that fT is fixed (up to sign) when two
entries in T are exchanged within a column. So, up to sign, there is only one T that could give an
SLm-invariant of degree d + 1: It is the tableau with m = d + 1 many rows and d columns that has
only entries i in row i. For n = 4 it looks as follows.

T =

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

For this T it remains to verify that fT does not vanish identically on to orbit closure
GLd+1(x1 · · · xd + xd

d+1). Since fT is SLd+1-invariant, this is equivalent to fT not vanishing at
the point x1 · · · xd + xd

d+1. So we now evaluate fT(x1 · · · xd + xd
d+1). The nonzero summands

in Equation (5.9) must place (d + 1, ∗) into one of the blocks. We can partition the summands
according to the row in which (d + 1, ∗) is placed. Since the number of columns is even, each
part of the partition contributes the same number to the overall sum. That number is the column
sign of the unique Latin square that is obtained when removing the row in which (d + 1, ∗) is
placed. Hence the whole sum if d + 1 times the difference of the column-even and column-odd
Latin squares, so its nonvanishing is equivalent to the Alon-Tarsi conjecture for d.

5.10 Remark. Other fundamental invariants connected to the Alon-Tarsi conjecture have recently
been studied in [LZX21, AY22].
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5.e New obstructions

For two partitions λ and µ, their sum is defined coordinatewise, i.e., (λ + µ)i = λi + µi. We write
a × b for the partition (b, b, . . . , b) of ab. For example, if d = 3, then the Young diagram to λ :=
(5d− 1, 1) + ((d + 1)× (10d)) is the following:

This subsection is devoted to proving the following theorem.

5.11 Theorem. Let d ≥ 3 be even, and let λ := (5d − 1, 1) +
(
(d + 1)× (10d)

)
. If d is odd, then we

assume (2(d−1)
d−1 ) ≥ 2d. Then we have representation theoretic multiplicity obstructions:

multλ(C[GLd+1 P[d]
1,1 ]) ≤ 4 < 5 = multλ(C[GLd+1(xd

1 + · · ·+ xd
d+1)]),

and hence GLd+1(xd
1 + · · ·+ xd

d+1) ̸⊆ GLd+1 P[d]
1,1. These obstructions are only based on the symmetries of

the two polynomials as in [IK20].

The upper and the lower bound are proved independently, see Proposition 5.12 and
Proposition 5.13, which proves the theorem. Let κ := (5d − 1, 1), ■ := (d + 1) × (10d), □ :=
d× (10d), ∆ := |□|/d = 10d, and λ := κ +■.

5.12 Proposition. multλ(C[GLd+1 P[d]
1,1 ]) ≤ multλ(C[GLd+1 P[d]

1,1 ]) = multκ(C[GLd+1 P[d]
1,1 ]) = 4.

Proof. The ring C[GLd+1 P[d]
1,1 ] is a localization of the ring C[GLd+1 P[d]

1,1 ], see [BI17], which implies
multλ(C[GLd+1 P[d]

1,1 ]) ≤ multλ(C[GLd+1 P[d]
1,1 ]). We observe that aν+□(d, i + ∆) = aν(d, i), because

□ has an even number of columns and exactly d rows. Then we calculate:

multλ(C[GLd+1 P[d]
1,1 ]) =

5

∑
δ=0

∑
µ⊢δd
µ⪯λ

ℓ(µ)≤d

aµ(d, δ)

= a(d)+□(d, 1 + ∆) + a(d−1,1)+□(d, 1 + ∆) + a(2d)+□(d, 2 + ∆)
+a(2d−1,1)+□(d, 2 + ∆) + a(3d)+□(d, 3 + ∆) + a(3d−1,1)+□(d, 3 + ∆)
+a(4d)+□(d, 4 + ∆) + a(4d−1,1)+□(d, 4 + ∆) + a(5d−1,1)+□(d, 5 + ∆)

= a(d)(d, 1) + a(d−1,1)(d, 1) + a(2d)(d, 2) + a(2d−1,1)(d, 2) + a(3d)(d, 3)
+a(3d−1,1)(d, 3) + a(4d)(d, 4) + a(4d−1,1)(d, 4) + a(5d−1,1)(d, 5)

= 4,

because a(nm)(n, m) = 1, and a(nm−1,1)(n, m) = 0, because (nm − 1, 1) is of hook shape. Note
that there is no summand a(5d)(d, 5) and no summand a(0)(d, 0), because (5d) ̸⪯ (5d− 1, 1), and
(0) ̸⪯ (5d− 1, 1).

5.13 Proposition. multλ(C[GLd+1(xd
1 + · · ·+ xd

d+1)]) ≥ 5.

Proof. We use the Main Technical Theorem 4.2 from [IK20]. Consider all partitions ϱ of 5, and
observe that ∑d+1

i=1 2⌈ ϱi
2(d−2)⌉ ≤ 10. In the notation of [IK20], we set eΞ := 10, which is exactly how

many (d + 1)× d blocks form ■.
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For a partition ϱ ⊢m D the frequency notation ϱ̂ ∈ Nm is defined via ϱ̂i := |{j | ϱj = i}|. For
example, the frequency notation of ϱ = (3, 3, 2, 0) is ϱ̂ = (0, 1, 2, 0). We observe that |ϱ| = ∑i iϱ̂i.
We first use Theorem 4.1 from [IK20] (with adjusted notation):

Let m := d + 1, D := 5, κ = (5d− 1, 1) ⊢m Dd. Define

b(κ, ϱ, d, D) := ∑
µ1,µ2,...,µD

µi⊢diϱ̂i

cκ
µ1,µ2,...,µD

D

∏
i=1

aµi(ϱ̂i, i · d).

Then
multκC[GLm(xd

1 + xd
2 + · · ·+ xd

m)] = ∑
ϱ⊢mD

b(κ, ϱ, d, D).

For the multi-Littlewood-Richardson coefficient to be nonzero, it is necessary that all µi ⊆
(5d− 1, 1), so each µi is either a single row or a hook (ϱ̂i · i · d− 1, 1). But anm−1,1(n, m) = 0 and
anm(n, m) = 1, so we can assume that the sum has only the summand with µi = (ϱ̂i · i · d) and the
product of plethysm coefficients is 1. Hence, the multi-Littlewood-Richardson coefficient counts
the number of semistandard tableaux of shape (5d− 1, 1) and content (µ1, . . . , µ5). It is instructive
to look at all possible ϱ̂: ̂(1, 1, 1, 1, 1) = (5), ̂(2, 1, 1, 1) = (3, 1), ̂(2, 2, 1) = (1, 2), ̂(3, 1, 1) = (2, 0, 1),
(̂3, 2) = (0, 1, 1), (̂4, 1) = (1, 0, 0, 1), (̂5) = (0, 0, 0, 0, 1). We observe that ϱ̂ has exactly two nonzero
entries in 5 cases, and only one nonzero entry in 2 cases. There are no semistandard tableaux of
shape (5d − 1, 1) with only one entry, and there is exactly one semistandard tableaux of shape
(5d− 1, 1) with two symbols and fixed content. Hence

multκC[GLd+1(xd
1 + xd

2 + · · ·+ xd
d+1)] = 5.

Note that this argument works indeed for all d ≥ 3, even though for d = 3 we do not have ϱ =
(1, 1, 1, 1, 1) in the sum (because it has more than d + 1 = 4 rows, but its contribution is zero
anyway).

We now apply Theorem 4.2 from [IK20], which implies

mult■+κC[GLd+1(xd
1 + xd

2 + · · ·+ xd
d+1)] ≥ 5.

6 Homogeneous complexity and the parity-alternating elementary
symmetric polynomial

6.a Homogeneous complexity theory

A p-family is a sequence of polynomials such that the number of variables and the degree is
polynomially bounded. We write gn,d for the homogeneous degree d part of the n-th element of
a p-family (g). In the following definition we make use of the property of IMM(d)

n to have both
a complexity parameter and a degree parameter (unlike the determinant, which only has one
combined parameter).
6.1 Definition. A collection (( f )) is a map f : N ×N → C[x1, x2, . . .] such that every f (n, d) is
homogeneous of degree d. Let C be a class of p-families (for example, C = VF). We say that a collection
(( f )) is C-p-hard if for every (g) ∈ C there exists a polynomially bounded function q such that ∀d > 0, n :
gn,d ≤ fq(n),d. If q is only quasipolynomially bounded, we say (( f )) is C-qp-hard. We define C-p-hardness
and C-qp-hardness analogously with ⊴ instead of ≤.
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Note that in this definition it is important that themaps are homogeneous, see §1. It is clear that
homogeneous linear projections fix the constant coefficient of polynomials, hence we have d > 0
in the definition. Clearly, if (( f )) is C-p-hard, then (( f )) is also C-p-hard.

For example, the power sumcollection xd
1 + · · ·+ xd

n is p-hard forVWaring, the class of p-families
with polynomially bounded Waring rank. And the homogeneous iterated matrix multiplication
collection IMM(d)

n is p-hard for VBP.

6.b Input-homogeneous-linear computation

We start with a technicality in the definition of arithmetic circuits. In this section every edge of
an arithmetic circuit is labelled with a field constant. Instead of just forwarding the computation
result of a gate to another gate, these edges rescale the polynomial along the way. For arithmetic
formulaswe do not allow this, as we will see that it is unnecessary.

An arithmetic formula/circuit is called input-homogeneous-linear (IHL) if all its leaves
are labelled with homogeneous linear forms, in particular (contrary to ordinary arithmetic
formulas/circuits) we do not allow any leaf to be labelled with a field constant. It now becomes
clear why we needed the technicality: For any α ∈ C, if an IHL circuit with s gates computes a
polynomial f , then using the scalars on the edges there exists an IHL circuit computing α f with
also only s many gates. For formulas this rescaling can be simulated by rescaling a subset of the
leaves. Indeed, we rescale the root of the formula by induction: we rescale a summation gate by
rescaling both children, we rescale a product gate by rescaling an arbitrary child. Alternatively, if f
is homogeneous, one can rescale the input gates by the d

√
α. The latter techniqueworks for formulas

and circuits alike, but we will not use this method. It is easy to see that IHL formulas/circuits
can only compute polynomials f with f (0) = 0. But other than that, being IHL is not a strong
restriction, as the following simple lemma shows. We write f̂ := f − f (0).

6.2 Lemma. Given an arithmetic circuit of size s computing a polynomial f , then there exists an IHL
arithmetic circuit of size 6s and depth 3s computing f̂ .

There exists a polynomial q such that: Given any arithmetic formula of size s computing a polynomial f ,
then there exists an IHL arithmetic formula of size q(s) and depth O(log(s)) computing f̂ .

Proof. We treat the case of formulas first. We first use Brent’s depth reduction [Bre74] to ensure
that the size is poly(s) and the depth is O(log(s)). We now proceed in a way that is similar to
the homogenization of arithmetic circuits. Let F be the formula computing f . We replace every
computation gate (that computes somepolynomial g) by a pair of gates (and some auxiliary gates),
one computing g(0) and one computing ĝ. Clearly, ((g + h)(0), ĝ + h

)
=
(

g(0) + h(0), ĝ + ĥ
),

hence an addition gate is just replaced by 2 addition gates. Moreover, ((g · h)(0), ĝ · h
)
=
(

g(0) ·
h(0), g(0) · ĥ + ĝ · h(0) + ĝ · ĥ

), hence a multiplication gate is replaced by 4 multiplication gates
and 2 addition gates (and this gadget has depth 3). We copy the subformulas of g(0), h(0), ĝ,
and ĥ, which maintains the depth, and it keeps the size poly(s). In this construction additions
happen only between constants or between non-constants, but never between a constant and a
non-constant. Therefore eachmaximal subformula of constant gates can be evaluated and replaced
with a single constant gate, and these gates are multiplied with non-constant gates (with the one
exception of the gate for f (0)). But in a formula, scaling a non-constant gate by a field element
does not require a multiplication gate, and instead we can recursively pass this scaling operation
down to the children, as explained before this lemma. At the end we remove the one remaining
constant gate for f (0) and are done.
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For circuits we proceed similarly. We skip the depth reduction step. Let C be the formula
computing f . We replace every computation gate (that computes some polynomial g) by a pair
of gates (and some auxiliary gates), one computing g(0) and one computing ĝ. Clearly, ((αg +

βh)(0), ̂αg + βh
)
=
(
αg(0) + βh(0), αĝ + βĥ

), hence an addition gate is just replaced by 2 addition
gates. Moreover, ((αg · βh)(0), α̂g · βh

)
=
(
αg(0) · βh(0), αg(0) · βĥ + αĝ · βh(0) + αĝ · βĥ

), hence
a multiplication gate is replaced by 4 multiplication gates and 2 addition gates (and this gadget
has depth 3). Here we have no need to copy subformulas, and we re-use the computation instead.
In this construction additions happen only between constants or between non-constants, but never
between a constant and a non-constant. Therefore eachmaximal subcircuit of constant gates can be
evaluated and replaced with a single constant gate v, and each of these gates is multiplied with a
non-constant gate w (with the one exception of the gate for f (0)). This rescaling of the polynomial
computed at w can be simulated by just rescaling all the edge labels of the outgoing edges of w,
so v can be removed. At the end we also remove the one remaining constant gate for f (0) and are
done.

The following corollary is obvious.

6.3 Corollary. VP is the set of p-families ( fn)n∈N for which the IHL circuit size complexity of the sequence
( f̂n)n∈N is polynomially bounded. VF is the set of p-families ( fn)n∈N for which the IHL formula size
complexity of the sequence ( f̂n)n∈N is polynomially bounded.

Proof. Themissing constant can be added to the IHL circuit/formula as the very last operation.

6.c IHL Ben-Or and Cleve is exactly Kumar’s complexity for 3× 3 matrices

Quite surprisingly, the 3 × 3 matrix analogue of Kumar’s complexity model turns out to be the
homogeneous version of Ben-Or and Cleve’s construction [BC92], as the proof of the following
Proposition 6.4 shows. Let Ei,j denote the 3 × 3 matrix with a 1 at the entry (i, j) and zeros
elsewhere. Let id3 denote the 3× 3 identity matrix.

6.4 Proposition. Fix i, j ∈ {1, 2, 3}, i ̸= j. Let f be a polynomial admitting an IHL formula of depth δ.
Then there exist 3× 3 matrices A1, . . . , Ar with r ≤ 4δ having homogeneous linear entries and such that

f · Ei,j = (id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3.

Proof. Consider the six positions {(i, j) | 1 ≤ i, j ≤ 3, i ̸= j} of the zeros in the 3× 3 unit matrix.
Given an IHL formula, to each input gate and to each computation gate we assign one of the 6
positions in the following way. We start at the root and assign it position (i, j). We proceed by
assigning position labels recursively: For a summation gate with position (i′, j′), both summands
get position (i′, j′). For a product gate with position (i′, j′), one factor gets position (i′, k) and the
other gets position (k, j′), k ̸= i′, k ̸= j′. We now prove by induction on the depth D of the gate g
(the depth of a gate it the depth of its subformula: the input have depth 0; the root has the highest
depth) with position (i′, j′) that for each gate there is a list of at most 4D matrices (A1, . . . , Ar) such
that

(id3 + A1)(id3 + A2) · · · (id3 + Ar) = id3 + gE(i′,j′)

and the same number of matrices B1, . . . , Br such that

(id3 + B1)(id3 + B2) · · · (id3 + Br) = id3 − gE(i′,j′).
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For an input gate (i.e., depth 0)with position (i′, j′) and input label ℓ, we set A1 := ℓ · Ei′,j′ and B1 :=
−ℓ · Ei′,j′ . For an addition gate with position (i′, j′) let (A1, . . . , Ar), (B1, . . . , Br) and (A′1, . . . , A′r′),
(B′1, . . . , B′r′) be the lists coming from the induction hypothesis. We define the list for the addition
gate as the concatenations (A1, . . . , Ar, A′1, . . . , A′r′) and (B1, . . . , Br, B′1, . . . , B′r′). Observe that
(id3 + f E(i′,j′)) · (id3 + gE(i′,j′)) = id3 + ( f + g)E(i′,j′) and that (id3 − f E(i′,j′)) · (id3 − gE(i′,j′)) =
id3 − ( f + g)E(i′,j′), so this case is correct. For a product gate with position (i′, j′) let (A1, . . . , Ar),
(B1, . . . , Br) and (A′1, . . . , A′r′), (B′1, . . . , B′r′) be the lists coming from the induction hypothesis, i.e.,
(id3 + A1)(id3 + A2) · · · (id3 + Ar) = id3 + f E(i′,k), (id3 + B1)(id3 + B2) · · · (id3 + Br) = id3 −
f E(i′,k), (id3 + A′1)(id3 + A′2) · · · (id3 + A′r) = id3 + gE(k,j′), (id3 + B′1)(id3 + B′2) · · · (id3 + B′r) =
id3 − gE(k′,j′). Observe that(

id3 + f E(i′,k)
)(

id3 + gE(k,j′)
)(

id3 − f E(i′,k)
)(

id3 − gE(k,j′)
)
= id3 + f gE(i′,j′)

and analogously(
id3 − f E(i′,k)

)(
id3 + gE(k,j′)

)(
id3 + f E(i′,k)

)(
id3 − gE(k,j′)

)
= id3 − f gE(i′,j′).

For illustration, in the notation of [BIZ18] the product with position (1,3) can be depicted as
follows.

=
f

g

− f

−g f g

Since 4 · 4D−1 = 4D, the size bound is satisfied.
Since the trace of a matrix can sometimes be preferrable to the (i, j)-entry, we present the result

with the trace, provided approximations are allowed.
6.5 Proposition. For every IHL formula of depth δ there exist ≤ 4δ many 3 × 3 matrices Ai with
homogeneous linear entries over C[ϵ, ϵ−1] and α ∈ C[ϵ, ϵ−1] such that

E1,1 · f = lim
ϵ→0

(
α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
and hence

f = lim
ϵ→0

tr
(

α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
.

Proof. The IHL formula is a sum of products of subformulas g1 · h1, g2 · h2, . . ., gr · hr, and r ≤ 2δ by
induction. We compute subformulas for ϵg1, −ϵg1, ϵh1, −ϵh1, ϵg2, −ϵg2, . . . , −ϵhr as in the proof
of Proposition 6.4 with position (1, 2) for each ±ϵgi and position (2, 1) for each ±ϵhi. It turns out
that

Ma := (id3 + ϵgaE1,2)(id3 + ϵhaE2,1)(id3 − ϵgaE1,2)(id3 − ϵhaE2,1) = id3 + ϵ2 fagaE1,1 + O(ϵ3).

Pictorially:

= +O(ϵ3)

1 + ϵ2haga

ϵga ϵha −ϵga −ϵha
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Hence M1M2 · · ·Mr = id3 + ϵ2(h1g1 + h2g2 + · · ·+ hrgr)E1,1 + O(ϵ3). We choose α = ϵ−2.

Let ([n]d ) denote the set of cardinality d subsets of [n]. For a subset S ⊆ [n] let sort(S) denote
the tuple whose elements are the elements of S, sorted in ascending order. Let sort(([n]d )) :={sort(S) | S ∈ ([n]d )

}. Let ed(X1, . . . , Xn) := ∑I∈sort(([n]d ))
XI1 · · ·XId denote the elementary

symmetric polynomial over noncommuting variables X1, . . . , Xn.

6.6 Corollary. Fix any nonzero linear form L on the space of 3× 3 matrices, for example the trace. If L is

supported outside the main diagonal, then the collection L(ed(A1, . . . , An)), where Ai =

( 0 x1,2,i x1,3,i
x2,1,i 0 x2,3,i
x3,1,i x3,2,i 0

)
,

is p-hard for VFH, otherwise it is p-hard for VFH.

Proof. Given a p-family ( f ) of homogeneous polynomials. If fn has polynomially bounded
arithmetic formula size, then it also has IHL formulas of logarithmic depth and polynomial size
(apply Brent’s depth reduction and then Lemma 6.2). The first case is treated with Proposition 6.4,
the second is treated completely analogously with Proposition 6.5. We only handle the slightly
more difficult second case. We obtain 4O(log n) = poly(n) many matrices Ai with

fn = lim
ϵ→0

L
(

α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
As in §3 we can assume that α = βϵk is a scalar times a power of ϵ. Since fn is homogeneous of
some degree d, we have

fn = lim
ϵ→0

L
(

αed(A1, . . . , Ar)
)
= lim

ϵ→0
L
(

ed(
d
√

βϵk A′1, . . . , α d
√

βϵk A′r)
)

where A′i arises from Ai by replacing every ϵ by ϵd.

While Corollary 6.6 gives the first collection that is hard for VFH, the polynomials are similarly
unwieldy as IMM(d)

n . In the next sections we will prove that the parity-alternating elementary
symmetric polynomial is p-hard for a class V3F, which gives a polynomial that is just barely more
complicated than the elementary symmetric polynomial.

6.d IHL computation with arity 3 products

In the light of [BIZ18] we now study the 2 × 2 analogues of Proposition 6.4, Proposition 6.5,
Corollary 6.6. In order to do so, in this section we study IHL formulas and circuits where the
additions have arity 2, but the products have arity exactly 3. We call this basis the arity 3 basis.
This turns out to be rather subtle, because one would want to simulate an arity 2 product by an
arity 3 product in which one of the factors is a constant 1, but that violates the IHL property.
If a polynomial is computed by an IHL formula or circuit over the arity 3 basis, then all its
homogeneous even-degree parts are zero. We will mostly study homogeneous polynomials that
are computed over this basis. We want to also compute homogeneous even-degree polynomials
f in this basis, so we define that a multi-output IHL circuit/formula over the arity 3 basis
computes f if it computes each partial derivative ∂ f /∂xi at some output gate. Analogously to
Corollary 6.3, but only for homogeneous polynomials, we define V3P and V3F to be the set of
homogeneous p-families ( fn)n∈N for which the IHL circuit/formula complexity over the arity 3
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basis is polynomially bounded. For a complexity class C we write CH := C ∩ H for brevity. We
have

V3F ⊆ VFH ⊆ VBPH ⊆ VPH,

⊆ (6.7)
V3P

where we prove the vertical inclusion in Theorem 6.15, and V3F ⊆ VFH follows from Euler’s
homogeneous function theorem that f = 1

deg( f ) ∑m
i=1 xi · ∂ f /∂xi, which lets us treat the even

degrees (arity 3 formulas for odddegree polynomials can be directly converted gate by gate into the
standard basis). Is is known that if we go to quasipolynomial complexity instead of polynomial
complexity, the three classical classes coincide: VQF = VQBP = VQP, which is an immediate
corollary of the circuit depth reduction result of Valiant-Berkowitz-Skyum-Rackoff [VSBR83]. We
prove in Theorem 6.16 that our two new classes also belong to this set: All classes in (6.7) coincide
if we go to quasipolynomial complexity instead of polynomial complexity, see (6.17).

The following proposition is an adaption of Brent’s depth reduction [Bre74] and it shows that
instead of polynomially sized formulas we can work with formulas of logarithmic depth. Both
properties, IHL and the arity 3 basis, require some changes to Brent’s original argument.
6.8 Proposition (Brent’s depth reduction for IHS formulas over the arity 3 basis). Let f be a
polynomial computed by an IHL formula of size s over the arity 3 basis. Then there exists an IHL formula
over the arity 3 basis of size poly(s) and depth O(log(s)) computing f .

Proof. We discuss the odd-degree case, because in the even-degree case we just have one
odd-degree case for each partial derivative. The construction is recursive, just as in Brent’s original
argument. We follow the description in [Sap21]. We start at the root and keep picking the child
with the larger subformula until we reach a vertex v with 1

3 s ≤ |⟨v⟩| ≤ 2
3 s, where ⟨v⟩ is the

subformula at the gate v. We make a case distinction. In the first case we assume that on the path
from from v to the root (excluding v) there is no product gate. We reorder the gates as follows:

+
+

+

hk
hk−1

h1⟨v⟩

−→

+
+

+

⟨v⟩
hk

h2h1

The construction applied to a size s formula gives Depth(s) ≤ Depth( 2
3 s) + 1. The resulting size is

Size(s) ≤ 2 · Size( 2
3 s) + 1.

In the second case we assume that v is the child of a product gate.

∗

⟨v⟩ ⟨x⟩ ⟨y⟩

We now replace ⟨v⟩ by a new variable α and ⟨x⟩ by a new variable β. We observe that the
resulting polynomial F (interpreted as a bivariate polynomial in α and β) is linear in the product
αβ. Therefore F(α, β) = αβ(F(1, 1)− F(0, 0)) + F(0, 0). Both F(0, 0) and F(1, 1) can be realized as
an IHL formula over the arity 3 basis (because an arity 3 product gate with two 1s as inputs can be
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replaced by just the third input, and an arity 3 product gate with two 0s as input can be replaced
by a constant 0, which can be simulated by removing gates), so we obtain:

+
∗

+

F(1, 1) −F(0, 0)

F(0, 0)

⟨v⟩ ⟨x⟩ (6.9)

The construction on a size s formula gives Depth(s) ≤ Depth( 2
3 s) + 2. The resulting size is

Size(s) ≤ 5 · Size( 2
3 s) + 3.

In the third case we assume that on the path from from v to the root (excluding v) there are
addition gates and then a product gate, so

∗

+
+

+

hk
hk−1

h1⟨v⟩

⟨x⟩ ⟨y⟩

As a first step we make copies of ⟨x⟩ and ⟨y⟩ and call them ⟨x′⟩ and ⟨y′⟩, respectively, and re-wire
similarly as in the first case:

∗ ∗

+
+

+

+

hk
hk−1

h2h1

⟨x′⟩ ⟨y′⟩ ⟨v⟩ ⟨x⟩ ⟨y⟩

On the right-hand side of the tree we now proceed analogously as in the second case. We replace
⟨v⟩ by a new variable α and ⟨x⟩ by a new variable β. We observe that the resulting polynomial F
(interpreted as a bivariate polynomial in α and β) is linear in the product αβ. Therefore F(α, β) =
αβ(F(1, 1)− F(0, 0)) + F(0, 0). Both F(0, 0) and F(1, 1) can be realized as an input-homogeneous
formula over the arity 3 basis, so we obtain the same formula as in (6.9). The construction on a size
s formula gives Depth(s) ≤ Depth( 2

3 s) + 2. The resulting size is Size(s) ≤ 5 · Size( 2
3 s) + 3. Putting

all cases together, the construction has Depth(s) ≤ Depth( 2
3 s) + 2 and Size(s) ≤ 5 · Size( 2

3 s) + 3.
Hence applying the construction recursively gives logarithmic depth and polynomial size.

6.e The parity-alternating elementary symmetric polynomial

Let n be odd. For odd i let Xi =

(
0 xi
0 0

)
, and for even i let Xi =

(
0 0
xi 0

)
. Let A :=

ed(X1, X2, . . . , Xn). Note that in row 1 the matrix A has only one nonzero entry, and its position
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depends on the parity of n. Let Cn,d := A1,1 + A1,2. A sequence a of integers numbers is called
parity-alternating if ai ̸= ai+1 mod 2 for all i, and a1 is odd. Let P be the set of length d increasing
parity-alternating sequences of numbers from {1, . . . , n}. It is easy to see that

Cn,d = ∑
(i1,i2,...,id)∈P

xi1 xi2 · · · xid . (6.10)

We usually only consider the case when the parities of d and n coincide, which is justified by the
following lemma.
6.11 Lemma. If n and d have different parity, then Cn,d = Cn−1,d.

Proof. If d is odd, each parity-alternating sequence always ends with an odd parity, so if n is even
we have Cn,d = Cn−1,d. If d is even, each parity-alternating sequence always ends with an even
parity, so if n is odd we have Cn,d = Cn−1,d.

Analogously to Corollary 6.6 we have the following theorem.
6.12 Theorem. Cn,d is V3F-p-hard and VQPH-qp-hard.
Proof. We start with proving V3F-p-hardness (which is the same as V3F-p-hardness). Given ( f ) ∈
V3F, then according to Proposition 6.8 we can assume that either (if fn is of odd degree) fn has
polynomially sized formulas of logarithmic depth δ = O(log n), or (if fn is of even degree) its
partial derivatives have polynomially sized formulas of logarithmic depth δ = O(log n). We can
assume that the gates are additions and negative cubes (x 7→ −x3), because xyz = 1

24

(
(x + y +

z)3 − (x + y− z)3 − (x− y + z)3 + (x− y− z)3), and the rescalings by (±24)−
1
3 can be pushed to

the input gates. Let d be the degree of fn. Let Eodd =
(

0 1
0 0

) and let Eeven =
(

0 0
1 0

) and let id2 denote
the 2× 2 identitymatrix. We first treat the case of d being odd. We prove by induction on the depth
D of a gate that there exist ≤ 3D homogeneous linear forms ℓ1, . . . , ℓr over C[ϵ, ϵ−1, α] such that

α fn · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2

The induction starting at an input gate with label ℓ is done by ℓ1 = αℓ. The addition gate is handled
as follows. By induction hypothesis there exist ℓ1, . . . , ℓr and ℓ′1, . . . , ℓ′r′ with

α f · Eodd + id2 ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)

and
αg · Eodd + id2 ≃ (id2 + ℓ′1Eodd)(id2 + ℓ′2Eeven) · · · (id2 + ℓ′r′Eodd)

Therefore α( f + g) · Eodd + id2 = (α f · Eodd + id2)(αg · Eodd + id2) ≃

(id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)(id2 + ℓ′1Eodd)(id2 + ℓ′2Eeven) · · · (id2 + ℓ′r′Eodd)

Handling the negative cube gates is more subtle (the negative squaring gates are also the subtle
cases in [BIZ18]). By induction hypothesis we have ℓ1, . . . , ℓr such that

α f · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2 (6.13)

We replace each ϵ by ϵk in each ℓi, with k so large that even when we replace α by ϵ−1 or −ϵ−1,
we still have the equivalence of the LHS and RHS mod ϵ2. We call the resulting linear forms ℓ′i. It
follows that

α f · Eodd ≡
(
(id2 + ℓ′1Eodd)(id2 + ℓ′2Eeven) · · · (id2 + ℓ′rEodd)− id2

)
(mod ϵk)
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Setting α to ϵ−1 we obtain
ϵ−1 f · Eodd ≡

(
(id2 + ℓ′′1 Eodd)(id2 + ℓ′′2 Eeven) · · · (id2 + ℓ′′r Eodd)− id2

)
(mod ϵ2)

Anaogously with α = −ϵ−1:
−ϵ−1 f · Eodd ≡

(
(id2 + ℓ̃′′1 Eodd)(id2 + ℓ̃′′2 Eeven) · · · (id2 + ℓ̃′′r Eodd)− id2

)
(mod ϵ2)

The induction hypothesis (6.13) also implies (set ϵ to ϵ3 and α to ϵ2α) that
ϵ2α f · Eodd ≡

(
(id2 + ℓ′′′1 Eodd)(id2 + ℓ′′′2 Eeven) · · · (id2 + ℓ′′′r Eodd)− id2

)
(mod ϵ3)

Transposing gives
ϵ2α f · Eeven ≡

(
(id2 + ℓ′′′r Eeven)(id2 + ℓ′′′r−1Eodd) · · · (id2 + ℓ′′′1 Eeven)− id2

)
(mod ϵ3)

We now observe:
(ϵ−1 f Eodd + id2 + ϵ2g1)(ϵ

2α f Eeven + id2 + ϵ3g2)(−ϵ−1 f Eodd + id2 + ϵ2g3) ≃ −α f 3Eodd + id2.

Pictorially:

+O(ϵ2) +O(ϵ3) +O(ϵ2)

=ε−1 f ε2α f −ε−1 f −α f 3

+O(ϵ)

At the end, setting α = 1 we obtain
α fn · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2,

where r is only polynomially large, because we started with a formula of logarithmic depth. Since
fn is homogeneous of degree d, this implies

fn ≃ e(ℓ1Eodd, ℓ2Eeven, · · · , ℓrEodd)1,2 = Cr,d(ℓ1, . . . , ℓr).

We now treat the case where fn has even degree, using an argument similar to the one form
Proposition 6.5. By the above construction, for each i we find

α( 1
deg fn

∂ fn/∂xi) · Eodd ≃ (id2 + ℓi,1Eodd)(id2 + ℓi,2Eeven) · · · (id2 + ℓi,ri Eodd)− id2.

We replace all ϵ by ϵ3, replace all α by ϵ, and lastly add id2:
ϵ( 1

deg fn
∂ fn/∂xi) · Eodd + id2 ≡

(
(id2 + ℓ′i,1Eodd)(id2 + ℓ′i,2Eeven) · · · (id2 + ℓ′i,ri

Eodd)
)

(mod ϵ3).

Analogously, when replacing α by −ϵ instead:
−ϵ( 1

deg fn
∂ fn/∂xi) · Eodd + id2 ≡

(
(id2 + ℓ′′i,1Eodd)(id2 + ℓ′′i,2Eeven) · · · (id2 + ℓ′′i,ri

Eodd)
)

(mod ϵ3).

We also find corresponding linear forms for the transposes. Now observe that for any polynomials
a, b we have
(−ϵa ·Eodd+ id2 +O(ϵ3))(−ϵb ·Eeven+ id2 +O(ϵ3))(ϵa ·Eodd+ id2 +O(ϵ3))(ϵb ·Eeven+ id2 +O(ϵ3))

≡
(

1 + ϵ2a · b 0
0 1− ϵ2a · b

)
(mod ϵ3).

Pictorially:
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=

1 + ϵ2ab

1− ϵ2ab
−ϵa −ϵb ϵa ϵb

+O(ϵ3) +O(ϵ3) +O(ϵ3) +O(ϵ3) +O(ϵ3)

Let M(c) :=
(

1 + ϵ2c 0
0 1− ϵ2c

)
. Now note that

(M(a1b1)+O(ϵ3)) · (M(a2b2)+O(ϵ3)) · · · (M(anbn)+O(ϵ3)) ≡ M(a1b1 + a2b2 + · · · anbn) (mod ϵ3).

Setting ai = xi and bi =
1

deg fn
∂ fn/∂xi, and using Euler’s homogeneous function theorem, we obtain

polynomially many linear forms ℓ1, . . . , ℓr so that

M( fn) ≡
(
(id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEeven)

)
(mod ϵ3)

Subtracting id2 on both sides and taking the degree d homogeneous part of the (1, 1) entry (note
that fn is homogeneous of degree d):

ϵ2 fn ≡ ed(ℓ1Eodd, ℓ2Eeven, · · · , ℓrEeven)1,1︸ ︷︷ ︸
=Cr,d(ℓ1,...,ℓr)

(mod ϵ3)

We replace all ϵ by ϵd/2:
ϵd fn ≡ Cr,d(ℓ

′
1, . . . , ℓ′r) (mod ϵ3d/2).

Therefore
fn ≃ Cr,d(ϵ

−1 · ℓ′1, . . . , ϵ−1 · ℓ′r).

Both cases together prove that Cn,d is V3F-p-hard. The VQPH-qp-hardness now follows from
Theorem 6.16.

6.14 Remark. Algebraicmodels of computation that are similar to using Cr,d have also been studied
in [MS21, BIZ18]. In [BIZ18], it is shown that VF can be via the orbit closure of polynomially
sized continuants. [MS21] constructs polynomial sized hitting sets for affine orbits of the cyclic
continuant polynomial. Cr,d is a homogeneous variant of the continuant polynomial defined in
[BIZ18].

6.f Converting formulas to circuits over the arity 3 basis

In this section we prove the following theorem.
6.15 Theorem. VFH ⊆ V3P.

Proof. Let ( f ) ∈ VFH. ( f ) has formulas of polynomial size and logarithmic depth. If fn is of
even degree, observe that if fn has a formula of depth δ, then ∂ fn/∂xi has a formula of depth 2δ
(by induction, using the sum and product rules of derivatives, using the fact that the depth is
logarithmic), which by Lemma 6.2 implies the existence of an IHL formula of depth O(δ) (note
that ∂ fn/∂xi is homogeneous of odd degree). Now we apply the odd-degree argument below for
each partial derivative independently.

Let fn be of odd degree. As a first step we convert the IHL formula into an IHL formula
for which at each gate either all even homogeneous components vanish or all odd homogeneous
components vanish. The construction is similar to the Lemma 6.2). It works as follows. We replace
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each gate v by two gates vodd and veven, where at veven the sum of the odd degree components is
computed, and at vodd the sum of the odd degree components is computed. Let f = feven+odd
be the decomposition of f into the even homogeneous parts and the odd homogeneous parts.(
( f + g)even, ( f + g)odd

)
= ( feven + geven, fodd + godd) so a sum gate is replaced by two sum gates.

Moreover, (( f · g)even, ( f · g)odd
)
= ( feven · geven+ fodd · godd, feven · godd+ fodd · geven), so a product

gate is replaced by 4 product gates and 2 summation gates. Here we use that the depth was
logarithmic.

We now convert such a formula to an IHL circuit with the same number of gates, but over the
arity 3 basis. We replace each even degree gate v that computes g with a gate that computes z · g,
where z is a dummy variable. Addition gates are not changed. For product gates there are three
cases.

• A product gate v of two odd-degree polynomials f and g. By induction we have an IHL
circuit over the arity 3 basis for f and for g. We construct the arity 3 product z× f × g.

• A product gate v that has an odd-degree polynomial f at its child w, and that has an
even-degree polynomial g at its child u. By induction we have IHL circuits C and D over
the arity 3 basis for f and for zg, respectively. We take C and D, delete all instances of z in D,
and feed the output of C instead. The resulting circuit computes f g.

• A product of an even-degree polynomial f and an even-degree polynomial g. By induction
we have IHL circuits C and D over the arity 3 basis for z f and for zg, respectively. We take C
and D, delete all instances of z in D, and feed the output of C instead. The resulting circuit
computes z f g.

The size of the resulting circuit is less or equal to the size of the formula (even though the depth
can increase in this construction).

A short remark: Note that the replacements of z in the second and third bullet point can only be
done, because in a formula the outdegree of each gate is atmost 1, i.e., we do not reuse computation
results. After we replace z by f in a subcircuit that computes zg, the original subcircuit computing
zg will be gone and cannot be reused.

6.g Valiant-Skyum-Berkowitz-Rackoff over the arity 3 basis

6.16 Theorem. VQ3F = VQ3P.

Proof. The entire argument is over the arity 3 basis. Given a size s circuit that computes an
odd-degree polynomial, we use Theorem 6.18 to obtain a circuit of size poly(s) and depth
O(log2(s)) that computes the same polynomial. We unfold the circuit to a formula of the same
depth. The size is hence 3O(log2(s)) = sO(log s). If s = npolylog(n), then sO(log s) = npolylog(n) 5. The
even-degree case is done by treating each partial derivative independently.

Since we know that VQFH = VQBPH = VQPH and VQ3F = VQFH = VQ3P, the situation of
(6.7) simplifies:

VQ3F = VQFH = VQBPH = VQPH = VQ3P. (6.17)
The following Theorem 6.18 is needed in the proof of Theorem 6.16. It lifts the classical

Valiant-Skyum-Berkowitz-Rackoff [VSBR83] circuit depth reduction to the arity 3 basis. The
argument is an adaption of the original argument.

5(nlogi(n))logj(nlogi (n)) = nlogi+ij+j(n)
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6.18 Theorem (VSBR depth reduction for IHL circuits over the arity 3 basis). Let f be a polynomial
computed by an IHL circuit of size s over the arity 3 basis, deg( f ) = d. Then there exists an IHL circuit
over the arity 3 basis of size O(poly(s)) and depth O(log(s) · log d) computing f .

Proof. We adapt the proof from [Sap21]. We treat the odd case, because in the even degree case we
can treat each partial derivative independently. We work entirely over the arity 3 basis (and hence
compute a polynomial whose even degree homogeneous parts all vanish), so every circuit and
subcircuit is over the arity 3 basis, and every product is of arity 3. A circuit whose root is an arity 3
product gate is denoted by x× y× z. A circuit whose root is an arity 2 addition gate is denoted by
x + y, just as usual. Notationally, we use the same notation for gates, for their subcircuits, and for
the polynomials they compute. If we want to specifically highlight that we talk about the circuit
with root w, then we write ⟨w⟩. We write v ≤ u is v is contained in the subcircuit with root u. We
write C ≡ C′ to denote that the circuits C and C′ compute the same polynomial.

Let z be a new dummy variable. Let the circuit [u : v] be defined via [u : v] := z if u = v, and if
u ̸= v we have

[u : v] :=


0 if u is a leaf
[u1 : v] + [u2 : v] if u = u1 + u2

[u1 : v]× u2 × u3 if u = u1 × u2 × u3 and u1 has the highest
degree among {[u1], [u2], [u3]}

It can be seen by induction that [u : v] is zero or a homogeneous polynomial of degree deg u −
deg v + 1, and [u : v] is zero or is homogeneous linear in z. If w ̸≤ u, then [u : w] = 0. For a circuit
C we write [u : v]C := [u : v](z← C), where←means that all leaves labelled z are replaced by the
output of the circuit C.

We define a set of gates that is called the m-frontier Fm via

Fm := {u | u = u1 × u2 × u3 with deg u1, deg u2, deg u3 ≤ m and deg(u) > m}.

6.19 Lemma. Fix a pair (u, m) with deg u > m. Let F := Fm. Then

u ≡ ∑
w∈F

[u : w]⟨w⟩.

Proof. For the proof we fix m and do induction on the depth of u, i.e., the position of u in any fixed
topological ordering of the gates. Since for every gate u with deg(u) > m there exists some gate
u′ ∈ F ∩ ⟨u⟩, the induction start is the case u ∈ F . In this case, since F is an antichain, it follows
that ∑w∈F [u : w] = 0 + [u : u] = z, and hence ∑w∈F [u : w]⟨w⟩ = [u : u]⟨u⟩ = z⟨u⟩ = u. This proves
that case u ∈ F . Now, let u /∈ F . If u is an addition gate:

u = u1 + u2
I.H.≡ ∑

w∈F
[u1 : w]⟨w⟩ + ∑

w∈F
[u2 : w]⟨w⟩

≡ ∑
w∈F

(
[u1 : w]⟨w⟩ + [u2 : w]⟨w⟩

)
= ∑

w∈F

(
[u1 : w] + [u2 : w]

)
⟨w⟩

Def.
= ∑

w∈F
[u : w]⟨w⟩
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If u is a multiplication gate, note that u /∈ F , so one of the children has degree > m (w.l.o.g. that
child is called u1):

u = u1 × u2 × u3

I.H.≡
(

∑
w∈F

[u1 : w]⟨w⟩

)
× u2 × u3

≡ ∑
w∈F

(
[u1 : w]⟨w⟩ × u2 × u3

)
= ∑

w∈F

(
[u1 : w]× u2 × u3

)
⟨w⟩

Def.
= ∑

w∈F
[u : w]⟨w⟩

6.20 Lemma. Fix a pair (u, m, v) with deg u > m ≥ deg v. Let F := Fm.

[u : v] ≡ ∑
w∈F

[u : w][w:v].

Proof. For the proof we fix m and v and do induction on the depth of u, i.e., the position of u in any
fixed topological ordering of the gates. Since for every gate u with deg(u) > m there exists some
gate u′ ∈ F ∩ ⟨u⟩, the induction start is the case u ∈ F . In this case, since F is an antichain, it
follows that ∑w∈F [u : w][w:v] ≡ z[u:v] = [u : v]. This proves that case u ∈ F . Now, let u /∈ F . Since
deg u > m and m ≥ deg v we have u ̸= v. If u is an addition gate:

[u : v]
Def. (u ̸= v)

= [u1 : v] + [u2 : v]
I.H.≡ ∑

w∈F
[u1 : w][w:v] + ∑

w∈F
[u2 : w][w:v]

≡ ∑
w∈F

(
[u1 : w][w:v] + [u2 : w][w:v]

)
= ∑

w∈F

(
[u1 : w] + [u2 : w]

)
[w:v]

Def.
= ∑

w∈F
[u : w][w:v]

If u is a multiplication gate, note that u /∈ F , so one of the children has degree > m (w.l.o.g. that
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child is called u1):

[u : v]
Def. (u ̸= v)

= [u1 : v]× u2 × u3

I.H.≡
(

∑
w∈F

[u1 : w][w:v]

)
× u2 × u3

≡ ∑
w∈F

(
[u1 : w][w:v] × u2 × u3

)
= ∑

w∈F

(
[u1 : w]× u2 × u3

)
[w:v]

Def.
= ∑

w∈F
[u : w][w:v]

We now construct the shallow circuit so that the degree of each child in a multiplication gate
decreases from δ to ⌈ 2

3 δ⌉, so the multiplication depth (i.e., the number of multiplications on a path
from leaf to root) is at most O(log d). Here we allow arity 5 multiplication gates. These can be
simulated by two arity 3 multiplication gates. We construct the circuit by induction on the degree,
and we construct it in a way that each u and each [u : w]⟨v⟩ are computed at some gate, so the
size of the resulting circuit is at most O(s3). The addition gates between the multiplications can be
balanced, so that we have at most O(log s) depth in each addition tree. This gives a total depth of
log d · log s.

The construction for u.

u
Lem. 6.19≡ ∑

w∈F
[u : w]⟨w⟩ = ∑

w∈F
[u : w]⟨w1⟩ × w2 × w3 = ∑

w∈F
deg(u)≥deg(w)

[u : w]⟨w1⟩ × w2 × w3

≡ ∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × w2 × w1

This explicit rearrangement of w1 and w3 is necessary and goes beyond [VSBR83]. Choose m =
⌈ 2

3 deg u⌉. Recall deg wi ≤ m, so we already have two of the three cases: deg w1 ≤ ⌈ 2
3 deg u⌉ and

w2 ≤ ⌈ 2
3 deg u⌉. But we also know deg(u) ≥ deg(w) = deg(w1) + deg(w2) + deg(w3), hence

w.l.o.g. deg(w3) ≤ ⌊ 1
3 deg(u)⌋. Therefore deg u− deg w + deg w3 ≤ ⌊ 4

3⌋deg u− deg w︸ ︷︷ ︸
>m

< 2
3 deg u.

The construction for [u:v]. We use fractions and “·” multiplication signs when we do not have a
circuit implementation in the intermediate equalities on polynomials. We write w = w1×w2×w3
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for w ∈ F .

[u : v]
Lem. 6.20≡ ∑

w∈F
[u : w][w:v] = ∑

w∈F
deg(u)≥deg(w)

[u : w]

z
· [w : v] =

1
z ∑

w∈F
deg(u)≥deg(w)

[u : w] · [w1 : v] · w2 · w3

≡ ∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × [w1 : v]× w2

Lem. 6.19≡ ∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × [w1 : v]×

 ∑
y∈F′

deg(w2)≥deg(y)

[w2 : y]⟨y3⟩ × y2 × y1


≡ ∑

w∈F
deg(u)≥deg(w)

∑
y∈F′

deg(w2)≥deg(y)

[u : w]⟨w3⟩ × [w1 : v]×
(
[w2 : y]⟨y3⟩ × y2 × y1

)

We set m = ⌈ 2
3 (deg u + deg v)⌉ and m′ = ⌈ 2

3 deg w2⌉. We calculate the degrees of the five factors:

• deg u−deg w+deg w3 ≤ (deg u−deg w) + ⌊ 1
3 deg u⌋ ≤ ⌊ 4

3 deg u⌋−m ≤ ⌈ 2
3 (deg u−deg v)⌉

• deg w1 − deg v + 1 ≤ deg w1 ≤ m ≤ ⌈ 2
3 (deg u− deg v)⌉

• deg w2 − deg y + deg y3 ≤ ⌊ 4
3 deg w2⌋ − ⌈ 2

3 deg w2⌉ ≤ ⌈ 2
3 deg w2⌉ ≤ ⌈ 2

3 (deg u− deg v)⌉

• deg y2 ≤ ⌈ 2
3 deg w2⌉ ≤ ⌈ 2

3 (deg u− deg v)⌉, and analogously for deg y1.
The rescaling constants on the edges can be set in the straightforward way.

A Calculation tables

We list the partitions λ for which the plethysm coefficient a := aλ(δ, d) exceeds the multiplicity
b := multλ(C[GLd+1(x1 · · · xd + xd

d+1)]). We write λa>b. We list λ always with all d + 1 parts, i.e.,
with all trailing zeros. λ always has dδ many boxes. If we list a case (d, δ) and not list (d, δ′) with
δ′ < δ, then this means that (d, δ′) is empty.

d = 3, δ = 8:

(8, 8, 4, 4)2>1, (10, 6, 4, 4)4>3

d = 4, δ = 6:

(6, 6, 4, 4, 4)1>0, (7, 7, 5, 5, 0)1>0, (7, 7, 7, 3, 0)1>0, (8, 5, 5, 3, 3)1>0

d = 4, δ = 7:

(7, 7, 5, 5, 4)1>0, (7, 7, 6, 5, 3)1>0, (7, 7, 7, 4, 3)1>0, (7, 7, 7, 5, 2)1>0, (7, 7, 7, 7, 0)1>0, (8, 6, 6, 4, 4)4>1,
(8, 7, 5, 4, 4)1>0, (8, 7, 5, 5, 3)2>0, (8, 7, 6, 4, 3)4>2, (8, 7, 6, 5, 2)4>1, (8, 7, 7, 3, 3)3>0, (8, 7, 7, 4, 2)1>0,
(8, 7, 7, 5, 1)3>0, (8, 8, 4, 4, 4)4>2, (8, 8, 5, 4, 3)4>1, (8, 8, 6, 4, 2)9>4, (8, 8, 7, 3, 2)3>1, (8, 8, 7, 4, 1)4>3,
(8, 8, 8, 2, 2)3>2, (9, 6, 5, 4, 4)3>0, (9, 6, 5, 5, 3)1>0, (9, 6, 6, 4, 3)5>3, (9, 6, 6, 5, 2)4>3, (9, 7, 4, 4, 4)2>1,
(9, 7, 5, 4, 3)7>2, (9, 7, 5, 5, 2)5>1, (9, 7, 6, 3, 3)5>3, (9, 7, 6, 4, 2)10>5, (9, 7, 6, 5, 1)6>4, (9, 7, 7, 3, 2)5>1,
(9, 7, 7, 4, 1)5>2, (9, 7, 7, 5, 0)2>1, (9, 8, 4, 4, 3)5>2, (9, 8, 5, 3, 3)4>1, (9, 8, 5, 4, 2)11>5, (9, 8, 5, 5, 1)4>3,
(9, 8, 6, 3, 2)11>6, (9, 8, 6, 4, 1)12>11, (9, 8, 7, 2, 2)5>3, (9, 8, 7, 3, 1)8>6, (9, 9, 4, 3, 3)3>1, (9, 9, 4, 4, 2)2>1,
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(9, 9, 5, 3, 2)7>5, (9, 9, 5, 4, 1)6>4, (10, 5, 5, 5, 3)1>0, (10, 6, 4, 4, 4)7>2, (10, 6, 5, 4, 3)6>2, (10, 6, 5, 5, 2)2>0,
(10, 6, 6, 4, 2)13>8, (10, 7, 4, 4, 3)8>4, (10, 7, 5, 3, 3)7>3, (10, 7, 5, 4, 2)14>6, (10, 7, 5, 5, 1)6>2,
(10, 7, 6, 3, 2)14>8, (10, 7, 6, 4, 1)15>13, (10, 7, 7, 2, 2)1>0, (10, 7, 7, 3, 1)10>5, (10, 8, 4, 3, 3)2>1,
(10, 8, 4, 4, 2)17>9, (10, 8, 5, 3, 2)15>8, (10, 8, 5, 4, 1)17>14, (10, 8, 6, 2, 2)17>10, (10, 9, 4, 3, 2)10>7,
(10, 9, 4, 4, 1)10>9, (10, 9, 5, 2, 2)10>6, (10, 10, 4, 2, 2)9>5, (11, 5, 4, 4, 4)2>1, (11, 5, 5, 4, 3)3>0,
(11, 6, 4, 4, 3)8>4, (11, 6, 5, 3, 3)3>2, (11, 6, 5, 4, 2)13>6, (11, 6, 5, 5, 1)3>2, (11, 6, 6, 3, 2)10>9,
(11, 7, 4, 3, 3)6>3, (11, 7, 4, 4, 2)14>9, (11, 7, 5, 3, 2)18>9, (11, 7, 5, 4, 1)18>15, (11, 7, 6, 2, 2)12>7,
(11, 7, 7, 2, 1)8>7, (11, 8, 4, 3, 2)17>10, (11, 8, 5, 2, 2)17>12, (11, 9, 3, 3, 2)5>3, (11, 9, 4, 2, 2)12>9,
(11, 10, 3, 2, 2)6>4, (12, 4, 4, 4, 4)4>3, (12, 5, 4, 4, 3)4>2, (12, 5, 5, 3, 3)3>0, (12, 5, 5, 4, 2)3>1,
(12, 5, 5, 5, 1)1>0, (12, 6, 4, 4, 2)17>11, (12, 6, 5, 3, 2)12>8, (12, 6, 5, 4, 1)13>12, (12, 6, 6, 2, 2)13>10,
(12, 7, 3, 3, 3)1>0, (12, 7, 4, 3, 2)17>11, (12, 7, 5, 2, 2)14>10, (12, 8, 3, 3, 2)4>3, (12, 8, 4, 2, 2)23>18,
(12, 9, 3, 2, 2)9>8, (13, 5, 4, 3, 3)2>0, (13, 5, 4, 4, 2)8>6, (13, 5, 5, 3, 2)4>2, (13, 5, 5, 4, 1)4>3,
(13, 6, 4, 3, 2)13>11, (13, 6, 5, 2, 2)13>11, (13, 7, 3, 3, 2)5>3, (13, 7, 4, 2, 2)16>14, (13, 8, 3, 2, 2)12>11,
(14, 5, 4, 3, 2)7>5, (15, 5, 3, 3, 2)1>0

d = 4, δ = 8:

(7, 7, 7, 7, 4)1>0, (8, 6, 6, 6, 6)2>1, (8, 7, 6, 6, 5)1>0, (8, 7, 7, 5, 5)3>0, (8, 7, 7, 6, 4)1>0, (8, 7, 7, 7, 3)2>0,
(8, 8, 6, 6, 4)7>1, (8, 8, 7, 5, 4)3>0, (8, 8, 7, 6, 3)5>0, (8, 8, 8, 4, 4)8>2, (8, 8, 8, 5, 3)2>1, (8, 8, 8, 6, 2)7>2,
(9, 6, 6, 6, 5)2>1, (9, 7, 6, 5, 5)3>0, (9, 7, 6, 6, 4)5>1, (9, 7, 7, 5, 4)7>0, (9, 7, 7, 6, 3)6>0, (9, 7, 7, 7, 2)3>0,
(9, 8, 5, 5, 5)1>0, (9, 8, 6, 5, 4)14>2, (9, 8, 6, 6, 3)12>3, (9, 8, 7, 4, 4)10>1, (9, 8, 7, 5, 3)18>2, (9, 8, 7, 6, 2)13>2,
(9, 8, 7, 7, 1)3>0, (9, 8, 8, 4, 3)11>2, (9, 8, 8, 5, 2)12>4, (9, 8, 8, 6, 1)7>4, (9, 9, 5, 5, 4)6>0, (9, 9, 6, 4, 4)5>0,
(9, 9, 6, 5, 3)15>3, (9, 9, 6, 6, 2)5>2, (9, 9, 7, 4, 3)14>1, (9, 9, 7, 5, 2)17>3, (9, 9, 7, 6, 1)7>2, (9, 9, 7, 7, 0)2>0,
(9, 9, 8, 3, 3)8>1, (9, 9, 8, 4, 2)8>1, (9, 9, 8, 5, 1)9>3, (9, 9, 9, 3, 2)3>1, (9, 9, 9, 4, 1)3>0, (10, 6, 6, 6, 4)9>3,
(10, 7, 5, 5, 5)3>0, (10, 7, 6, 5, 4)15>1, (10, 7, 6, 6, 3)13>3, (10, 7, 7, 4, 4)5>0, (10, 7, 7, 5, 3)19>1,
(10, 7, 7, 6, 2)8>0, (10, 7, 7, 7, 1)4>0, (10, 8, 5, 5, 4)7>0, (10, 8, 6, 4, 4)31>4, (10, 8, 6, 5, 3)32>5,
(10, 8, 6, 6, 2)29>8, (10, 8, 7, 4, 3)35>5, (10, 8, 7, 5, 2)34>6, (10, 8, 7, 6, 1)18>6, (10, 8, 8, 3, 3)4>1,
(10, 8, 8, 4, 2)33>9, (10, 8, 8, 5, 1)15>9, (10, 9, 5, 4, 4)15>1, (10, 9, 5, 5, 3)16>1, (10, 9, 6, 4, 3)39>6,
(10, 9, 6, 5, 2)38>8, (10, 9, 6, 6, 1)16>9, (10, 9, 7, 3, 3)21>5, (10, 9, 7, 4, 2)43>8, (10, 9, 7, 5, 1)28>9,
(10, 9, 8, 3, 2)24>7, (10, 9, 8, 4, 1)24>10, (10, 9, 9, 2, 2)2>0, (10, 9, 9, 3, 1)8>3, (10, 10, 4, 4, 4)12>2,
(10, 10, 5, 4, 3)18>3, (10, 10, 5, 5, 2)7>0, (10, 10, 6, 3, 3)8>2, (10, 10, 6, 4, 2)42>10, (10, 10, 6, 5, 1)18>7,
(10, 10, 6, 6, 0)11>10, (10, 10, 7, 3, 2)23>6, (10, 10, 7, 4, 1)26>12, (10, 10, 8, 2, 2)17>5, (10, 10, 8, 3, 1)13>9,
(10, 10, 9, 2, 1)6>4, (11, 6, 6, 5, 4)9>1, (11, 6, 6, 6, 3)10>4, (11, 7, 5, 5, 4)11>0, (11, 7, 6, 4, 4)22>3,
(11, 7, 6, 5, 3)31>4, (11, 7, 6, 6, 2)19>6, (11, 7, 7, 4, 3)25>3, (11, 7, 7, 5, 2)25>2, (11, 7, 7, 6, 1)11>2,
(11, 7, 7, 7, 0)2>0, (11, 8, 5, 4, 4)26>3, (11, 8, 5, 5, 3)23>2, (11, 8, 6, 4, 3)60>11, (11, 8, 6, 5, 2)58>13,
(11, 8, 6, 6, 1)24>13, (11, 8, 7, 3, 3)26>4, (11, 8, 7, 4, 2)64>14, (11, 8, 7, 5, 1)40>15, (11, 8, 8, 3, 2)28>9,
(11, 8, 8, 4, 1)30>17, (11, 9, 4, 4, 4)11>1, (11, 9, 5, 4, 3)45>6, (11, 9, 5, 5, 2)33>5, (11, 9, 6, 3, 3)36>8,
(11, 9, 6, 4, 2)78>19, (11, 9, 6, 5, 1)46>20, (11, 9, 7, 3, 2)57>14, (11, 9, 7, 4, 1)58>24, (11, 9, 8, 2, 2)20>7,
(11, 9, 8, 3, 1)37>21, (11, 9, 9, 2, 1)9>5, (11, 10, 4, 4, 3)21>5, (11, 10, 5, 3, 3)20>4, (11, 10, 5, 4, 2)52>12,
(11, 10, 5, 5, 1)20>7, (11, 10, 6, 3, 2)56>16, (11, 10, 6, 4, 1)56>29, (11, 10, 7, 2, 2)30>9, (11, 10, 7, 3, 1)46>26,
(11, 10, 8, 2, 1)25>20, (11, 11, 4, 3, 3)10>2, (11, 11, 4, 4, 2)10>3, (11, 11, 5, 3, 2)26>7, (11, 11, 5, 4, 1)23>12,
(11, 11, 6, 2, 2)13>5, (11, 11, 6, 3, 1)30>18, (11, 11, 7, 2, 1)19>15, (12, 6, 5, 5, 4)4>0, (12, 6, 6, 4, 4)21>3,
(12, 6, 6, 5, 3)14>3, (12, 6, 6, 6, 2)17>8, (12, 7, 5, 4, 4)19>1, (12, 7, 5, 5, 3)22>1, (12, 7, 6, 4, 3)49>10,
(12, 7, 6, 5, 2)46>9, (12, 7, 6, 6, 1)17>10, (12, 7, 7, 3, 3)23>3, (12, 7, 7, 4, 2)32>5, (12, 7, 7, 5, 1)26>6,
(12, 8, 4, 4, 4)25>5, (12, 8, 5, 4, 3)56>8, (12, 8, 5, 5, 2)32>5, (12, 8, 6, 3, 3)32>7, (12, 8, 6, 4, 2)109>29,
(12, 8, 6, 5, 1)54>27, (12, 8, 7, 3, 2)62>17, (12, 8, 7, 4, 1)65>31, (12, 8, 8, 2, 2)30>13, (12, 8, 8, 3, 1)27>20,
(12, 9, 4, 4, 3)33>6, (12, 9, 5, 3, 3)35>7, (12, 9, 5, 4, 2)80>18, (12, 9, 5, 5, 1)32>11, (12, 9, 6, 3, 2)88>28,
(12, 9, 6, 4, 1)88>45, (12, 9, 7, 2, 2)41>14, (12, 9, 7, 3, 1)71>40, (12, 9, 8, 2, 1)34>28, (12, 10, 4, 3, 3)14>4,
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(12, 10, 4, 4, 2)52>16, (12, 10, 5, 3, 2)63>18, (12, 10, 5, 4, 1)62>32, (12, 10, 6, 2, 2)60>23, (12, 10, 6, 3, 1)71>48,
(12, 10, 7, 2, 1)50>41, (12, 11, 3, 3, 3)2>0, (12, 11, 4, 3, 2)32>11, (12, 11, 4, 4, 1)25>16, (12, 11, 5, 2, 2)32>14,
(12, 11, 5, 3, 1)46>31, (12, 11, 6, 2, 1)41>38, (12, 12, 3, 3, 2)3>2, (12, 12, 4, 2, 2)19>10, (12, 12, 4, 3, 1)13>11,
(13, 5, 5, 5, 4)1>0, (13, 6, 5, 4, 4)15>1, (13, 6, 5, 5, 3)9>0, (13, 6, 6, 4, 3)26>7, (13, 6, 6, 5, 2)24>8,
(13, 7, 4, 4, 4)17>4, (13, 7, 5, 4, 3)45>7, (13, 7, 5, 5, 2)28>3, (13, 7, 6, 3, 3)30>8, (13, 7, 6, 4, 2)73>21,
(13, 7, 6, 5, 1)39>18, (13, 7, 7, 3, 2)34>7, (13, 7, 7, 4, 1)36>15, (13, 7, 7, 5, 0)12>11, (13, 8, 4, 4, 3)38>9,
(13, 8, 5, 3, 3)33>6, (13, 8, 5, 4, 2)88>23, (13, 8, 5, 5, 1)32>13, (13, 8, 6, 3, 2)91>31, (13, 8, 6, 4, 1)91>55,
(13, 8, 7, 2, 2)43>17, (13, 8, 7, 3, 1)65>41, (13, 9, 4, 3, 3)25>6, (13, 9, 4, 4, 2)55>18, (13, 9, 5, 3, 2)85>28,
(13, 9, 5, 4, 1)78>41, (13, 9, 6, 2, 2)62>26, (13, 9, 6, 3, 1)94>67, (13, 9, 7, 2, 1)59>50, (13, 10, 3, 3, 3)4>1,
(13, 10, 4, 3, 2)55>21, (13, 10, 4, 4, 1)46>33, (13, 10, 5, 2, 2)57>24, (13, 10, 5, 3, 1)75>54, (13, 10, 6, 2, 1)69>68,
(13, 11, 3, 3, 2)15>6, (13, 11, 4, 2, 2)32>17, (13, 11, 4, 3, 1)44>37, (13, 12, 3, 2, 2)13>8, (13, 13, 2, 2, 2)1>0,
(14, 5, 5, 4, 4)2>0, (14, 5, 5, 5, 3)3>0, (14, 6, 4, 4, 4)18>4, (14, 6, 5, 4, 3)26>4, (14, 6, 5, 5, 2)11>1,
(14, 6, 6, 3, 3)8>4, (14, 6, 6, 4, 2)45>17, (14, 6, 6, 5, 1)17>13, (14, 7, 4, 4, 3)31>9, (14, 7, 5, 3, 3)29>6,
(14, 7, 5, 4, 2)63>17, (14, 7, 5, 5, 1)24>8, (14, 7, 6, 3, 2)63>23, (14, 7, 6, 4, 1)62>40, (14, 7, 7, 2, 2)14>4,
(14, 7, 7, 3, 1)38>21, (14, 8, 4, 3, 3)18>4, (14, 8, 4, 4, 2)66>24, (14, 8, 5, 3, 2)78>27, (14, 8, 5, 4, 1)76>47,
(14, 8, 6, 2, 2)70>33, (14, 8, 6, 3, 1)83>68, (14, 9, 3, 3, 3)5>2, (14, 9, 4, 3, 2)63>26, (14, 9, 4, 4, 1)52>38,
(14, 9, 5, 2, 2)61>29, (14, 9, 5, 3, 1)85>65, (14, 10, 3, 3, 2)15>6, (14, 10, 4, 2, 2)57>30, (14, 10, 4, 3, 1)56>53,
(14, 11, 3, 2, 2)22>14, (14, 12, 2, 2, 2)11>9, (15, 5, 4, 4, 4)6>2, (15, 5, 5, 4, 3)8>0, (15, 5, 5, 5, 2)2>0,
(15, 6, 4, 4, 3)22>7, (15, 6, 5, 3, 3)12>3, (15, 6, 5, 4, 2)38>12, (15, 6, 5, 5, 1)10>4, (15, 6, 6, 3, 2)31>17,
(15, 6, 6, 4, 1)30>26, (15, 7, 4, 3, 3)18>5, (15, 7, 4, 4, 2)45>20, (15, 7, 5, 3, 2)57>21, (15, 7, 5, 4, 1)54>35,
(15, 7, 6, 2, 2)40>20, (15, 7, 6, 3, 1)57>49, (15, 7, 7, 2, 1)25>23, (15, 8, 3, 3, 3)2>0, (15, 8, 4, 3, 2)58>26,
(15, 8, 4, 4, 1)49>42, (15, 8, 5, 2, 2)59>33, (15, 8, 5, 3, 1)74>64, (15, 9, 3, 3, 2)19>9, (15, 9, 4, 2, 2)51>32,
(15, 10, 3, 2, 2)28>19, (16, 4, 4, 4, 4)7>4, (16, 5, 4, 4, 3)10>3, (16, 5, 5, 3, 3)6>0, (16, 5, 5, 4, 2)8>2,
(16, 5, 5, 5, 1)2>0, (16, 6, 4, 3, 3)7>3, (16, 6, 4, 4, 2)36>18, (16, 6, 5, 3, 2)30>14, (16, 6, 5, 4, 1)29>22,
(16, 6, 6, 2, 2)27>18, (16, 7, 3, 3, 3)3>0, (16, 7, 4, 3, 2)42>21, (16, 7, 5, 2, 2)36>22, (16, 7, 5, 3, 1)54>50,
(16, 8, 3, 3, 2)13>7, (16, 8, 4, 2, 2)53>37, (16, 9, 3, 2, 2)26>20, (17, 4, 4, 4, 3)5>4, (17, 5, 4, 3, 3)4>0,
(17, 5, 4, 4, 2)15>9, (17, 5, 5, 3, 2)8>3, (17, 5, 5, 4, 1)8>5, (17, 6, 4, 3, 2)26>17, (17, 6, 5, 2, 2)24>19,
(17, 7, 3, 3, 2)10>5, (17, 7, 4, 2, 2)33>27, (17, 8, 3, 2, 2)24>22, (18, 4, 4, 4, 2)9>8, (18, 5, 4, 3, 2)11>7,
(18, 6, 3, 3, 2)4>3, (19, 5, 3, 3, 2)1>0

d = 5, δ = 7, λ1 ≤ 8:

(8, 7, 7, 5, 5, 3)1>0, (8, 7, 7, 6, 4, 3)1>0, (8, 7, 7, 6, 5, 2)1>0, (8, 7, 7, 7, 3, 3)1>0, (8, 8, 7, 5, 4, 3)2>1,
(8, 8, 7, 6, 3, 3)1>0, (8, 8, 7, 6, 4, 2)3>2, (8, 8, 7, 6, 5, 1)2>1, (8, 8, 7, 7, 4, 1)1>0

B Characterizing small border Waring rank

The results on generalized additive decompositions from §2.b can be used to describe the
polynomials of border rank 2 and 3, reproving the results of Landsberg and Teitler [LT10, Sec. 10].

B.1 Theorem. A polynomial f withWR( f ) = 2 must have the form ℓd
1 + ℓd

2 or ℓ
d−1
1 ℓ2 where ℓ1 and ℓ2 are

linear forms.
In the first case, every border rank decomposition for f has the form

f = (ℓ1 + εℓ̂1)
d + (ℓ2 + εℓ̂2)

d

for some ℓ̂1, ℓ̂2 ∈ C[[ε]][x]1.
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In the second case, every border rank decomposition for f has the form

f =
1

εM

(
aℓ1 + εℓ̂1 + εM(

1
ad−1d

ℓ2 + ℓ3)

)d

− 1
εM

(
aℓ1 + εℓ̂1 + εM(ℓ3 + εℓ̂2)

)d

for some a ∈ C, ℓ3 ∈ C[x]1 and ℓ̂1, ℓ̂2 ∈ C[[ε]][x]1.

Proof. By Lemma 2.8 f has a generalized additive decomposition

f =
m

∑
i=1

ℓd−ri+1
i gi

with ∑m
i=1 ri = WR( f ) = 2, deg gi = ri − 1 There are only two possible partitions ∑ ri = 2. In

the case m = 2, r1 = r2 = 1 the generalized additive decomposition is actually a Waring rank
decomposition f = ℓd

1 + ℓd
2. In the case m = 1, r1 = 2 the polynomial g1 is a linear form, renaming

it we have f = ℓd−1
1 ℓ2.

From the proof of Lemma 2.8 it is clear that in the first case the decomposition must be a sum
of two local decompositions of rank 1, and a local decomposition of rank 1 is just a power of ℓ+ εℓ̂

for some ℓ̂ ∈ C[ε][x]1.
In the second case the decomposition must be local, which means that both summands in the

decomposition have the form ε−M(aℓ1 + εℓ̂). To obtain ℓd−1
1 ℓ2 in the limit, the first M terms in each

summand must cancel, and the terms in εM must differ by 1
ad−1d ℓ2.

B.2 Theorem. A polynomial with WR( f ) = 3 must have one of the three normal forms: ℓd
1 + ℓd

2 + ℓd
3 or

ℓd
1 + ℓd−1

2 ℓd
3 or ℓd−1

1 ℓ2 + ℓd−2
1 ℓ2

3.

Proof. By Lemma 2.8 f has a generalized additive decomposition

f =
m

∑
i=1

ℓd−ri+1
i gi

with ∑m
i=1 ri = WR( f ) = 3, deg gi = ri − 1, and WR(ℓd−ri+1

i gi) ≤ ri.
In the case m = 3, r1 = r2 = r3 = 1 this is a Waring rank decomposition f = ℓd

1 + ℓd
2 + ℓd

3.
In the case m = 2, we can assume r1 = 1, r2 = 2. The generalized additive decomposition

becomes ℓd
1 + ℓd−1

2 ℓ3, where ℓ3 = g2 is a linear form.
In the case m = 1, r1 = 3 we have f = ℓd−2

1 g1 where g1 is a quadratic form, and ℓd−2
1 g1 has

at most three-dimensional space of essential variables. In this case g1 can always be presented as
ℓ1ℓ2 + ℓ2

3 or aℓ2
1 + ℓ2ℓ3 for some linear forms ℓ2, ℓ3. In the second case the border rank of ℓd−2

1 g1 is
at least 4 if d > 2, so it cannot appear. If d = 2 then both forms have rank 3 and are covered by the
case ℓd

1 + ℓd
2 + ℓd

3.

References

[Alp17] Levent Alpoge, Square-root cancellation for the signs of Latin squares, Combinatorica 37
(2017), no. 2, 137–142. 39

[AT92] Noga Alon and Michael Tarsi, Colorings and orientations of graphs, Combinatorica 12
(1992), no. 2, 125–134. 39

59



[AY22] Alimzhan Amanov and Damir Yeliussizov, Fundamental Invariants of Tensors, Latin
Hypercubes, and Rectangular Kronecker Coefficients, International Mathematics Research
Notices (2022), 1–35, rnac311. 40

[Bal19] Edoardo Ballico, On the ranks of homogeneous polynomials of degree at least 9 and border
rank 5, Note di Matematica 38 (2019), no. 2, 55–92. 6

[BB14] W. Buczyńska and J. Buczyński, Secant varieties to high degree Veronese reembeddings,
catalecticant matrices and smoothable Gorenstein schemes, J. Alg. Geom. 23 (2014), no. 1,
63–90. 2

[BB15] W. Buczyńska and J. Buczyński,On differences between the border rank and the smoothable
rank of a polynomial, Glasgow Math. J. 57 (2015), no. 2, 401–413. 8, 9, 17

[BB17] Edoardo Ballico and Alessandra Bernardi, Curvilinear schemes and maximum rank of
forms, Le Matematiche 72 (2017), no. 1, 137–144. 6

[BB21] Weronika Buczyńska and Jarosław Buczyński, Apolarity, border rank, and multigraded
Hilbert scheme, Duke Math. J. 170 (2021), no. 16, 3659 – 3702. 2, 20, 21

[BBM14] A. Bernardi, J. Brachat, and B. Mourrain, A comparison of different notions of ranks of
symmetric tensors, Linear Algebra Appl. 460 (2014), 205–230. 8, 17, 21

[BBT13] Weronika Buczyńska, Jarosław Buczyński, and Zach Teitler, Waring decompositions of
monomials, Journal of Algebra 378 (2013), 45–57. 8, 16

[BC92] Michael Ben-Or and Richard Cleve, Computing algebraic formulas using a constant
number of registers, SIAM J. Comput. 21 (1992), no. 1, 54–58. 10, 44

[BCRL79] Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti, O(n2.7799)
complexity for n*n approximate matrix multiplication, Inf. Process. Lett. 8 (1979), no. 5,
234–235. 2

[BDI21] Markus Bläser, JulianDörfler, andChristian Ikenmeyer,On the Complexity of Evaluating
Highest Weight Vectors, 36th Computational Complexity Conference (CCC 2021) 200
(2021), 29:1–29:36. 4, 6, 7, 27, 40

[BHIM22] Paul Breiding, ReuvenHodges, Christian Ikenmeyer, andMateuszMichałek, Equations
for GL invariant families of polynomials, Vietnam Journal ofMathematics 50 (2022), no. 2,
545–556. 8, 38

[BI11] Peter Bürgisser and Christian Ikenmeyer, Geometric complexity theory and tensor rank,
Proceedings of the forty-third annualACMsymposiumonTheory of computing, 2011,
pp. 509–518. 5

[BI13] , Explicit lower bounds via geometric complexity theory, Proceedings of the 45th

Annual ACM symposium on Theory of Computing, 2013, pp. 141–150. 5, 39
[BI17] , Fundamental invariants of orbit closures, Journal of Algebra 477 (2017), 390–434.

10, 35, 38, 39, 40, 41
[BIL+19] Markus Bläser, Christian Ikenmeyer, Vladimir Lysikov, Anurag Pandey, and

Frank-Olaf Schreyer, Variety membership testing, algebraic natural proofs, and geometric
complexity theory, 2019. 37

60



[Bin80] Dario Bini, Relations between exact and approximate bilinear algorithms. Applications,
Calcolo 17 (1980), no. 1, 87–97. 2

[BIP19] Peter Bürgisser, Christian Ikenmeyer, and Greta Panova, No occurrence obstructions in
geometric complexity theory, Journal of the American Mathematical Society 32 (2019),
no. 1, 163–193. 5

[BIZ18] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam, On algebraic branching
programs of small width, J. ACM 65 (2018), no. 5, 32:1–32:29. 4, 11, 45, 46, 49, 51

[BJMR18] Alessandra Bernardi, Joachim Jelisiejew, Pedro Macias Marques, and Kristian
Ranestad, On polynomials with given Hilbert function and applications, Collectanea
Mathematica 69 (2018), no. 1, 39–64. 18, 21

[BLMW11] Peter Bürgisser, J. M. Landsberg, Laurent Manivel, and Jerzy Weyman, An overview of
mathematical issues arising in the geometric complexity theory approach to VP ̸=VNP, SIAM
J. Comput. 40 (2011), no. 4, 1179–1209. 3, 38

[Bre74] Richard P. Brent, The parallel evaluation of general arithmetic expressions, J. ACM 21
(1974), no. 2, 201–206. 43, 47

[BT15] G. Blekherman and Z. Teitler, On maximum, typical and generic ranks, Mathematische
Annalen 362 (2015), no. 3-4, 1021–1031. 17

[Bür00] Peter Bürgisser, Completeness and reduction in algebraic complexity theory, Algorithms
and Computation in Mathematics, Springer, 2000, Online version: http://math-www.
uni-paderborn.de/agpb/work/habil.ps. 3

[Bür04] , The complexity of factors of multivariate polynomials, Found. Comput. Math. 4
(2004), no. 4, 369–396. 3

[Car06] Enrico Carlini, Reducing the number of variables of a polynomial, Algebraic geometry and
geometric modeling, Springer, 2006, pp. 237–247. 11

[Cay45] A. Cayley,On the theory of linear transformations, CambridgeMath. J. iv (1845), 193–209.
2

[CGJ19] M. Christandl, F. Gesmundo, and A. K. Jensen, Border rank is not multiplicative under
the tensor product, SIAM J. Appl. Alg. Geom. 3 (2019), 231–255. 2

[CGL+21] A. Conner, F. Gesmundo, J.M. Landsberg, E. Ventura, and Y.Wang, Towards a geometric
approach to Strassen’s asymptotic rank conjecture, Collect. Math. 72 (2021), no. 1, 63–86.
35

[CHI+18] Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg,
and Giorgio Ottaviani, Polynomials and the exponent of matrix multiplication, Bulletin of
the London Mathematical Society 50 (2018), no. 3, 369–389. 2

[CIM17] Man-Wai Cheung, Christian Ikenmeyer, and Sevak Mkrtchyan, Symmetrizing tableaux
and the 5th case of the Foulkes conjecture, Journal of Symbolic Computation 80 (2017),
833–843. 40

[CKW11a] Xi Chen, Neeraj Kayal, and Avi Wigderson, Partial derivatives in arithmetic complexity
and beyond, Now Publishers Inc, 2011. 7

61

https://link.springer.com/article/10.1007/BF02575865
http://math-www.uni-paderborn.de/agpb/work/habil.ps
http://math-www.uni-paderborn.de/agpb/work/habil.ps
https://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf
https://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf


[CKW11b] Xi Chen, Neeraj Kayal, and Avi Wigderson, Partial Derivatives in Arithmetic Complexity
(and beyond), Foundation and Trends in Theoretical Computer Science 6 (2011),
no. 1–2, 1–138. 25, 32

[Cle61] A. Clebsch, Zur Theorie der algebraischen Flächen, J. Reine Angew. Math. 58 (1861),
93–108. 2

[DDS22] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena, Demystifying the border of depth-3
algebraic circuits, 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS) (2022), 92–103. 6, 7

[DIP20] Julian Dörfler, Christian Ikenmeyer, and Greta Panova, On geometric complexity theory:
Multiplicity obstructions are stronger than occurrence obstructions, SIAM Journal on
Applied Algebra and Geometry 4 (2020), no. 2, 354–376. 10

[Dri97] Arthur A Drisko, On the number of even and odd Latin squares of order p+1, Advances in
Mathematics 128 (1997), no. 1, 20–35. 39

[FH91] William Fulton and Joe Harris, Representation theory: a first course, vol. 129, Springer
Science & Business Media, 1991. 5, 38

[FM19] Benjamin Friedman and Sean McGuinness, The Alon–Tarsi conjecture: A perspective on
the main results, Discrete Math. 342 (2019), no. 8, 2234–2253. 39

[For14] Michael A. Forbes, Polynomial Identity Testing of Read-Once Oblivious Algebraic
Branch-ing Programs, PhD thesis, Massachusetts Institute of Technology (2014), 1–220.
4, 27

[For16] Michael Forbes, Some concrete questions on the border complexity of polynomials.
presentation given at the workshop on algebraic complexity theory WACT 2016 in Tel Aviv,
2016. 7

[Ful97] William Fulton, Young tableaux: with applications to representation theory and geometry,
no. 35, Cambridge University Press, 1997. 37

[Gay76] David A Gay, Characters of the Weyl group of SU(n) on zero weight spaces and centralizers
of permutation representations, The Rocky Mountain Journal of Mathematics 6 (1976),
no. 3, 449–455. 38

[Ges16] F. Gesmundo, Geometric Aspects of Iterated Matrix Multiplication, J. Algebra 461 (2016),
42–64. 35

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena, Identity testing for constant-width, and
any-order, read-once oblivious arithmetic branching programs, Theory Comput. 13 (2017),
no. 1, 1–21. 7

[Gly10] David G Glynn, The conjectures of Alon–Tarsi and Rota in dimension prime minus one,
SIAM Journal on Discrete Mathematics 24 (2010), no. 2, 394–399. 39

[Gor94] Paul Gordan, Das Zerfallen der Curven in gerade Linien, Mathematische Annalen 45
(1894), no. 3, 410–427. 10

62



[Gro61] Alexander Grothendieck, Techniques de construction et théorèmes d’existence en géométrie
algébrique IV : les schémas de Hilbert, Séminaire Bourbaki : années 1960/61, exposés
205-222, Séminaire Bourbaki, no. 6, Société mathématique de France, 1961 (fr). MR
1611822 20

[Gua18] Yonghui Guan, Brill’s equations as a GL(V)-module, Linear Algebra and its Applications
548 (2018), 273–292. 10

[GW09] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants, Graduate
Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. 38

[GY10] John Hilton Grace and Alfred Young, The algebra of invariants, Cambridge Library
Collection - Mathematics, Cambridge University Press, 2010. 14

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate
Texts in Mathematics, No. 52. MR 0463157 (57 #3116) 18

[HR94] Rosa Huang and Gian-Carlo Rota, On the relations of various conjectures on Latin squares
and straightening coefficients, Discrete Mathematics 128 (1994), no. 1-3, 225–236. 39

[HS04] Mark Haiman and B Sturmfels, Multigraded Hilbert schemes, Journal of Algebraic
Geometry 13 (2004), no. 4, 725–769. 20

[Hüt17] Jesko Hüttenhain, Geometric complexity theory and orbit closures of homogeneous forms,
Ph.D. thesis, TU Berlin, 2017. 6

[Iar95] A. Iarrobino, Inverse system of a symbolic power II. the Waring problem for forms, Journal
of Algebra 174 (1995), no. 3, 1091–1110. 8, 12

[IK99] Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal
loci, Lecture Notes inMathematics, vol. 1721, Springer-Verlag, Berlin, 1999. 2, 9, 14, 18,
20

[IK20] Christian Ikenmeyer and Umangathan Kandasamy, Implementing geometric complexity
theory: On the separation of orbit closures via symmetries, Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, 2020, pp. 713–726. 5, 7, 10, 38,
39, 41, 42

[IP17] Christian Ikenmeyer and Greta Panova, Rectangular Kronecker coefficients and plethysms
in geometric complexity theory, Advances in Mathematics 319 (2017), 40–66. 5

[IS22] Christian Ikenmeyer and Abhiroop Sanyal, A note on VNP-completeness and border
complexity, Information Processing Letters 176 (2022), 106243. 3

[Jel20] J. Jelisiejew, Pathologies on the Hilbert scheme of points, Inventiones mathematicae 220
(2020), no. 2, 581–610. 2

[JM22] J. Jelisiejew and T. Mańdziuk, Limits of saturated ideals, arXiv:2210.13579 (2022), 1–31.
2

[Kra85] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Springer, 1985. 3
[KS07] Neeraj Kayal and Nitin Saxena, Polynomial identity testing for depth 3 circuits,

computational complexity 16 (2007), no. 2, 115–138. 11

63



[Kum15] Shrawan Kumar, A study of the representations supported by the orbit closure of the
determinant, Compositio Mathematica 151 (2015), no. 2, 292–312. 10, 39

[Kum20] Mrinal Kumar,On the power of border of depth-3 arithmetic circuits, ACM Trans. Comput.
Theory 12 (2020), no. 1, 5:1–5:8. 4, 6, 7, 24, 32

[Lan17] J. M. Landsberg, Geometry and complexity theory, Cambridge Studies in Advanced
Mathematics, vol. 169, Cambridge University Press, Cambridge, 2017. 36

[LL89] Thomas Lehmkuhl and Thomas Lickteig,On the order of approximation in approximative
triadic decompositions of tensors, Theoretical Computer Science 66 (1989), no. 1, 1–14. 6

[LT10] J. M. Landsberg and Zach Teitler, On the ranks and border ranks of symmetric tensors,
Found. Comput. Math. 10 (2010), no. 3, 339–366. 6, 25, 28, 31, 32, 58

[LZX21] Xin Li, Liping Zhang, and Hanchen Xia, Two classes of minimal generic fundamental
invariants for tensors, arXiv:2111.07343, 2021. 40

[Mac95] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford
Mathematical Monographs, The Clarendon Press Oxford University Press, New York,
1995. 23

[Mah14] M.Mahajan,Algebraic complexity classes, Perspectives in Comp. Compl.: The Somenath
Biswas Ann. Vol. (2014), 51–75. 3

[Mat60] Yozô Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya
Mathematical Journal 16 (1960), 205–218. 38

[MS01] Ketan Mulmuley andMilind A. Sohoni, Geometric complexity theory I: an approach to the
P vs. NP and related problems, SIAM J. Comput. 31 (2001), no. 2, 496–526. 3, 5

[MS08] Ketan D Mulmuley and Milind Sohoni, Geometric complexity theory II: towards explicit
obstructions for embeddings among class varieties, SIAM Journal on Computing 38 (2008),
no. 3, 1175–1206. 5, 37

[MS21] Dori Medini and Amir Shpilka,Hitting sets and reconstruction for dense orbits in VPe and
ΣΠΣ circuits, 36th Computational Complexity Conference (CCC 2021) 200 (2021),
19:1–19:27. 51

[Pal06] F. Palatini, Sulle superficie algebriche i cui Sh (h + 1)-seganti non riempiono lo spazio
ambiente, Atti della R. Acc. delle Scienze di Torino 41 (1906), 634–640. 2

[Sap21] Ramprasad Saptharishi, A survey of lower bounds in arithmetic circuit complexity, Github
Survey, 2021. 47, 53

[Sax08] Nitin Saxena, Diagonal Circuit Identity Testing and Lower Bounds, ICALP 2008, 2008,
pp. 60–71. 2, 7

[Shp02] Amir Shpilka, Affine projections of symmetric polynomials, Journal of Computer and
System Sciences 65 (2002), no. 4, 639–659, Special Issue on Complexity 2001. 6, 23,
24

[SW12] Douglas S Stones and IanMWanless,How not to prove the Alon-Tarsi conjecture, Nagoya
Mathematical Journal 205 (2012), 1–24. 39

64



[Syl52] J. J. Sylvester, On the principles of the calculus of forms, J. Cambridge and Dublin Math. 7
(1852), 52–97. 2, 11

[Ter11] A. Terracini, Sulle vk per cui la varietà degli sh(h + 1)-seganti ha dimensione minore
dell’ordinario, Rend. Circ. Mat. 31 (1911), 392–396. 2

[Tod92] Seinosuke Toda, Classes of arithmetic circuits capturing the complexity of computing the
determinant, IEICE Transactions on Information and Systems 75 (1992), no. 1, 116–124.
3

[Val79] Leslie G. Valiant, Completeness classes in algebra, Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, 1979, pp. 249–261. 3

[VSBR83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, Fast parallel computation of
polynomials using few processors, SIAM Journal on Computing 12 (1983), no. 4, 641–644.
11, 47, 52, 55

65
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


