
Deep Neural Networks: The Missing Complexity Parameter

Songhua He
Rutgers University

Periklis A. Papakonstantinou
Rutgers University

November 18, 2022

Abstract

Deep neural networks are the dominant machine learning model. We show that this model
is missing a crucial complexity parameter. Today, the standard neural network (NN) model is
a circuit whose gates (neurons) are ReLU units. The complexity of a NN is quantified by the
depth (number of layers) and the size (number of neurons = depth times width). This work
shows that this alone is insufficient, resulting in NNs with unreasonable computing power. We
show that the correct way to talk about the size complexity of a NN is besides the number of
neurons to consider the precision (or magnitude) of the weights of the ReLU units. The main
message of this work is that if the precision of the weights is not considered in the complexity
of the NN then one can engineer weights to “buy” exponentially many neurons for free. In
summary, we make three theoretical contributions, potentially affecting many theoretical works
on NNs.

• Every function f : {0, 1}n → {0, 1} can be computed with O(
√
2n) many neurons and

constant fan-in per neuron; i.e. exponential times less than Shannon’s classic lower bound
for usual combinatorial circuits.

• We give a new definition of circuit size that takes into account the precision/magnitude of
the weights. Under this new definition of size we asymptotically match Shannon’s bound
for NNs.

• We complement the above results showing that P-uniform NNs decide exactly P.

1 Introduction

Neural networks (NNs) have been intensively studied and in the last decade have taken the world by
storm. In this work, we revisit the deep neural networks model. We show that the standard model,
that is, the networks whose nodes are associated with ReLU function as the activation function,
has unreasonably high power. We call these networks as “ReLU networks” or “ReLU circuits”.

A ReLU network is an edge-weighted circuit whose gates (neurons) are ReLU functions (σ(x) =
x, x > 0 and σ(x) = 0, x ≤ 0) evaluated over the weighted sum of their inputs. As a circuit, a
ReLU network encodes a real-valued function. To compare with boolean models, we study ReLU
networks on boolean inputs, which is not an actual restriction in a world of finite precision.

Allowing high precision or equivalently large-number arithmetic often makes a computational
model stronger than expected. This is true even for problems that have small inputs. Here,
“small” means that every element listed in the input has bit representation at most a polynomial
in the input length parameter n. For example, even if the input is small, such as a CNF formula
for the SAT problem (satisfiability), an arbitrary-precision computing model is able to internally

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 159 (2022)

trade computing power for numerical precision. For instance, the polynomial-time unit-cost RAM
(Random Access Machine) model is as powerful as polynomial-space Turing machines [Sch79]; see
also [HS74, BMS85, vE90]. Similarly, for the long-standing open question of solving a semidefinite
program (SDP) exactly. Although, SDPs are known to be solvable in polynomial time for a tolerance
parameter ε > 0, the exact version of the same problem is conjectured to be NP-hard [TV08,
ABKPM09]. The same thing holds for the “sum of square roots” problem. In this problem the
input consists of two lists of positive integers a1, . . . , an and b1, . . . , bn and one wants to decide
whether

∑n
i=1

√
ai >

∑n
i=1

√
bi. The “sum of square roots” problems has an obvious linear time

algorithm in the real-RAM model. However, its complexity is a long-standing open question in a
practical model of computation such as a polynomial time Turing Machine [O1]. As of now, this
problem is not even known to be in NP.

The standard Neural Networks model allows for weights in the ReLU units which are arbitrary
real numbers. We ask what happens when these numbers are real numbers with high (but finite)
precision or equivalently when they can be arbitrarily large integers. Theorem 1 (see below) says
that this way we give unreasonable power to the computing model. This theorem is true for inputs,
which are small, such as a binary input of length n. The technical reasons (proof of Theorem 1) why
typical ReLU networks are unreasonably powerful are rather different than the similar situation in
e.g. the unit-cost RAM. However, conceptually, we get a similar conclusion.

Theorem 1 (informal). Every function can be computed in the standard model of ReLU circuits
(i.e. with unbounded weights) with exponentially smaller number of neurons (or number of wires)
compared to the regular combinatorial circuits (and with the same fan-in in both models).

To put this theorem in proper context we recall that Shannon proved [Sha49] that almost every
boolean function requires boolean circuit of size Ω(2n/n) (see also [RS42]). This bound holds for
circuits of constant fan-in – to give a fair comparison we will also consider NNs of constant fan-in.
Shannon’s lower bound is asymptotically tight, since Lupanov [Lup58] showed that every boolean
function can be computed in size O(2n/n). Later on, when we state Theorem 1 formally we will
see that we can compute every boolean function using a number of edges which is smaller than
Shannon’s bound. In particular, we show that every boolean function can be computed in size
O(

√
2n) = o(2n/n) with bounded fan-in. Going asymptotically below the lower bound is what

appears to give the model unreasonable power. Our proof uses a similar idea to the construction in
[Dan96] (however, unlike [Dan96], we do not blow up exponentially the fan-in1). Philosophically,
our argument beats a version of the extended Church-Turing thesis. This is because the proof of
Theorem 1 contains an algorithm and the same theorem can be restated for various degrees of
uniformity of the underlying ReLU network.

This discussion does not mean that NNs are super-powerful in practice. We believe that noth-
ing in the classical world is more powerful than a Turing Machine within polynomial factors. It
means that the complexity resource cannot only be the number of its ReLU units or the number
of edges/wires. To that end, we introduce a new definition of “size”, which takes into account
the precision and the magnitude of NN weights. Under this new “precision-sensitive ReLU size”
definition we show the following.

1In other words, [Dan96] shows that if we define as “size” the number of gates then there are savings, however if
the size is the number of wires then nothing changes. Our NNs will be of constant fan-in and thus we can focus on
the number of NNs and address the issue about the magnitude of the weights.

2

Theorem 2 (informal). The model of ReLU networks using the “precision-sensitive ReLU size”
has the same computing power as usual combinatorial circuits.

Our third and last result states that when the NN is not precomputed, but rather printed out
efficiently by a polynomial time Turing Machine, then the conclusion of Theorem 1 is no longer
true.

Theorem 3 (informal). The set of all problems computable in polynomial time is the set of problems
computable by poly-time uniform ReLU circuits.

We note that a similar conclusion as Theorem 3 is not true for other models of computation.
Let us conclude with two remarks regarding our results in the context of Machine Learning.

We do not know how (or if there are any) learning algorithms that give more-than-usual power to
a learned ReLU model. For example, we do not know if there is a learning algorithm for neural
networks, which for a fixed number of ReLU units the more it trains the more it can make use
of the better precision of the weights. This seems to be an interesting open question that can be
studied both theoretically and empirically. Our results seem to be of relevance for learning theory
works that prove lower bounds for neural networks.

In the rest of the paper we first introduce necessary notation as well as the new NN size definition
in Section 2. We also construct gadgets useful for constructing ReLU networks in Section 3. In
Section 4, we prove that ReLU networks are strictly more powerful than standard circuit models
with the same number of gates. In Section 5, we show that ReLU networks under our new definition
of size match Shannon’s circuit lower-bound. Finally, in Section 6, we show that P-uniform ReLU
networks exactly computes problems in P.

2 Preliminaries

In this section, we provide definitions and notations.
For any predicate P , define the Iverson bracket [P] to be 1 iff P is true, and [P] = 0 otherwise.

LCM(x1, ..., xk) is the least common multiple of the integer xis, and GCD(x1, ..., xk) is their greatest
common divisor. All logarithms are of base 2.

2.1 ReLU Networks and Other Models

The formal definition of ReLU networks is as follows:

Definition 4 (see [ADH+19]). A ReLU network C is an edge-weighted acyclic directed graph
G = (V,E). The sources (i.e. vertices with in-degree 0) of the graph are either inputs or constants
of real values. To differentiate with sources, non-source vertices are called neurons (gates). The
value vx of a neuron x is given by ReLU functions:

vx =def σ(
∑

(y,x)∈E

w(y,x) · vy)

where w(y,x) ∈ R is the weight of edge (y, x), and σ is the ReLU function defined as σ(x) =def

max(x, 0). Besides, the sinks (i.e. vertices with out-degree 0) are the outputs of the ReLU network.

3

In this work, the inputs are either 0 or 1. We shall omit the activation function σ(x) if it is
clear that x is non-negative.

Other usual computational models such as Turing machines, RAM model, boolean circuits, and
so on, have the same power in the sense that each one of them can simulate other models with an
at most polynomial loss. In this work, we will mainly compare ReLU networks to boolean circuits.

To show that ReLU networks can simulate boolean circuits efficiently, we shall first provide the
definition of boolean circuits. A boolean circuit is a directed acyclic graph, whose inputs are bits,
and gates are boolean operators. For boolean circuits with bounded fan-in (i.e., in-degree), they
only use the binary and unary operators ∧,∨,¬ as gates. Boolean circuits with unbounded fan-in
use ∧n,∨n,¬ for any n.

2.2 Circuit Size

Prior to our work, in neural networks, the size is defined as the product of depth and width, which
is the number of neurons. As for boolean circuits, the size of circuits are either defined as the
number of gates or the number of edges, where for notational convenience we choose the latter one
as a definition of circuit size. For boolean circuits with unbounded fan-in and ReLU networks, we
use the latter definition in order to apply Shannon’s circuit lower-bound on these models.

To address the issue of limited precision in the weigths we introduce the following definition.

Definition 5. For a ReLU network C whose weights {wx,y} are all rational numbers, we define
the precision size of C to be the sum of bits to describe each weight:

p-SIZE(C) =
∑

(x,y)∈E

(⌈
log(|px,y|+ 1)

⌉
+
⌈
log(|qx,y|+ 1)

⌉)
where E is the edge set of C, and px,y/qx,y = wx,y in which px,y, qx,y are integers.

Henceforth, for clarity, we shall assume that px,y and qx,y form an irreducible fraction wx,y.
The above definition quantifies the number of bits we need to describe the weights of a circuit.

It is equal to the number of binary bits we need to write all the integers (|px,y|), (|qx,y|).

3 Gadgets for ReLU Networks

In this section, we give gadgets for building ReLU networks. These gadgets are used throughout
our paper.

Lemma 6. For input x ∈ S where S ⊂ R is a finite set, there is a ReLU network of constant size
computing [x ≥ c].

Proof. Since S is a finite set, there exists a c′ < c ∈ R such that if x < c then x < c′. We first
compute: y := σ(1

c−c′x− c′

c−c′). It’s non-zero iff x > c′, and equals to 1 iff x = c. We have

[x ≥ c] = σ(y − σ(y − 1))

4

To put things in context, here is an example of constructing [x ≤ c] and [x = c] by [x ≥ c]:

[x ≤ c] = [(−x) ≥ (−c)]

[x = c] = [[x ≥ c] + [x ≤ c] ≥ 2]

Other relations between x and c can be obtained similarly from the gadget above.

Fact 7. For input x, y ∈ R≥0 bounded by a sufficiently big constant C, and a switch z ∈ {0, 1},
there exists a ReLU network computing the formula below in constant size

(z ? x : y) =def

{
x, if z = 0
y, if z = 1

Proof. We construct it directly:

(z ? x : y) = σ(x− z · C) + σ(y − (1− z) · C)

We can construct “if swithes” the same way as above.

Lemma 8. The boolean functions ¬ and ∧n,∨n for any n can be implemented by ReLU networks
of constant neurons.

Proof. Negation function ¬x is 1− x.
For the remaining functions, we first use a single ReLU neuron to get the sum of the n input

bits s = σ(
∑n

i=1 xi). Then we can compute them by comparing s to particular numbers:

∧n = [s = n]

∨n = [s ≥ 1]

4 ReLU Networks Are Strictly Stronger than Boolean Circuits
with the Same Number of Gates (and the Same Fan-in)

Lemma 8 says that ReLU networks are at least as powerful as boolean circuits, while boolean circuits
are composed of AND, OR and NOT gates. In this section, we show that ReLU networks are strictly
stronger than boolean circuits, by showing that ReLU networks can compute particular functions
with asymptotically less number of neurons and wires. We restate Theorem 1 here formally.

Theorem 1. For any boolean function f : {0, 1}n → {0, 1}, there exists a ReLU network of size
O(2n/2) that computes f .

This upper-bound is exponentially smaller than the Θ(2n/n) lower-bound given by Shannon.

5

Algorithm 1 2n-sized circuit for looking up the truth table

Input: x1, ..., xn, Tf

Output: The (x1...xn)2-th bit of Tf

1: Sum := 0
2: for k := 2n − 1 to 0 do
3: Sum := Sum+ ([Tf ≥ 2k] ∧ [(x1...xn)2 = k])
4: Tf := ([Tf ≥ 2k] ? Tf − 2k : Tf)
5: end for
6: Output := Sum

Overview of the algorithm that beats Shannon’s bound. Denote by the inputs of the
network x1, x2, ..., xn ∈ {0, 1}. The algorithm consists of two parts. First, we print the truth table
of the function f(x1, x2, ..., x⌊n/2⌋) by fixing the first ⌊n/2⌋ inputs. Then we “lookup” and output
the (x⌊n/2⌋+1...xn)2-th item of the truth table.

Here are the details of our argument.
We construct the circuit by encoding the whole truth table Tf of a boolean function f into the

weights. Formally, Tf is a big constant whose binary representation encodes the function f :

Tf = (t0t1...t2n−1)2

where for all x1, ..., xn ∈ {0, 1},
t(x1...xn)2 = f(x1, ..., xn)

The way the proof goes should have the ability to “lookup” whether a specific entry in the
truth-table is 0 or 1. However, we note that it is hard to do so by a small number of neurons.

Lemma 9. Given x1, ..., xn ∈ {0, 1} and Tf ∈ {0, 1, ..., 22n − 1} as inputs, there exists a ReLU
network of size O(2n) whose output is the (x1...xn)2-th bit of Tf .

Proof. We give the construction as pseudocode in Algorithm 1.
The procedure slices Tf bit-by-bit, and determines whether or not the highest bit of Tf is 1.
The for-loop can be simply implemented sequentially in the circuit. The operators involved

can all be implemented in constant size by Lemmas 6, 7 and 8. By precomputing (x1x2...xn)2 =∑n
i=1 xi · 2n−i, the formula [(x1x2...xn)2 = k] also costs constant size as stated in Lemma 6. The

total size of construction above is O(2n).

It is worth noting that Tf is not necessarily an input in the lemma above, as the truth table
Tf is a constant not depending on the input. But we will come to the case Tf is a variable in the
proof of Theorem 1 later.

We will not use the above lemma directly on the given function. Note that this size is worse
than the 2n/n size in Lupanov’s construction for boolean circuits. However, we will use Lemma 9
after we partition the truth table using a different algorithmic idea.

Proof of Theorem 1. Let Tf(x1,...,xi) ∈ {0, 1, ..., 22n−i − 1} be the truth table of f fixing the first i
bits.

Still, we give the construction as pseudocode in Algorithm 2.

6

Algorithm 2 2n/2-sized circuit for computing f

Input: x1, ..., xn
Output: f(x1, ..., xn)

1: T := 0
2: for k := 0 to 2⌊n/2⌋ − 1 do
3: T := T + ([(x1...x⌊n/2⌋)2 = k] ? Tf(k1,...,k⌊n/2⌋)

: 0)
4: end for
5: Output := the (x⌊n/2⌋+1...xn)-th bit of T

In the construction we first iteratively search the truth table of Tf(x1,...,x⌊n/2⌋) in O(2n/2) size,

then lookup the truth table using Lemma 9. The total size of the circuit is still O(2n/2).

Remark. A relevant work [Dan96] showed that computing any boolean function in unbounded
fan-in boolean circuits can be done inO(2n/2) gates as well, which is proved by a similar construction
as ours. Importantly, the construction in [Dan96] uses O(2n) many wires, whereas ours usesO(2n/2).
And our construction above consists of neurons of only constant fan-in. This still implies a huge
gap between ReLU networks and unbounded fan-in boolean circuits.

Theorem 1 shows that ReLU networks, the standard model of neural networks, are strictly
stronger than boolean circuits. In contrast, Shannon’s Theorem [Sha49] told us that most n-ary
boolean functions require boolean circuits of size 2n/n, when n is big enough.

5 A ReLU Lower Bound that Matches Shannon: The New ReLU
Size Definition

We show that under Definition 5, ReLU networks have the same computational power as regular
models, i.e., boolean circuits.

Let Sf denote the minimal p-SIZE of a ReLU network computing a boolean function f . We
obtain that

Theorem 2. For any sufficiently large n,

max
f :{0,1}n→{0,1}

Sf > 2n−1/n

The theorem implies that, any n-ary boolean function can be computed by a ReLU network of
p-SIZE at most 2n−1/n.

Proof. We proceed with a counting argument.

• Count the number of different ReLU networks over n variables and of p-SIZE at most 2n−1/n.

• Compare it with the total number 22
n
of boolean functions on n variables.

As we saw in Definition 5, the p-SIZE of a circuit is the total number of bits to store numerators and
denominators of the rational-valued weights. Let t = 2n−1/n. What else we need to characterize a

7

ReLU network are: the number of neurons m, the edge set E, how many bits we allocate to each
numerator and denominator, whether or not each weight is positive, and the 2t possible values of
the t bits. All the conditions above together determines a unique ReLU circuit.

Denote by Ct the number of different ReLU networks within p-SIZE t, Ct is at most

2t ·
t∑

m=1

t∑
i=m

2i ·
((m+n

2

)
i

)
·
(
t+ 2i

2i

)
where i is the size of the edge set. Here i is bounded by t because each edge at least costs 1 bit
(i.e., the case 0/1). And the number of neurons m is no more than t as well because otherwise the
circuit is not connected.

Also, we can assume that no two neurons in the ReLU circuit computes the same function, or
there will be another circuit of small size computing the same function, by eliminating repeated
neurons. Thus, permuting the labels of the t neurons gives us a different description of a ReLU
circuit computing the same boolean function. Therefore, we can update and bound the number of
different ReLU circuits now:

Ct ≤2t ·
t∑

m=1

t∑
i=m

2i

m!
·
((m+n

2

)
i

)
·
(
t+ 2i

2i

)

≤2t ·
t∑

m=1

t∑
i=m

2i · em

mm
·

(
e(m+ n)2

i

)i

·
(
e(t+ 2i)

2i

)2i

=2t ·
t∑

m=1

t∑
i=m

2i · em+3i · (m+ n)2i

ii ·mm
·
(
1 +

t

2i

)2i

≤(2e)t ·
t∑

m=1

t∑
i=m

2i · em+3i · (m+ n)2i

ii ·mm

≤t · (4e5)t ·
t∑

m=1

(m+ n)2t

m2m

≤t2 · (8e5)t · e2n · t2t

As t = 2n/n, we have

Ct ≤ 22
n(1− logn

n
)+6· 2

n

n
+O(n) = o(22

n
)

which implies that there exists n-ary boolean functions that can not be computed by ReLU
networks of p-SIZE at most 2n−1/n, when n is large enough.

Therefore, the lower bound under the new size definition asymptotically matches the Shannon’s
Ω(2n/n) circuit lower-bound.

6 P-uniform ReLU Circuits Decide Exactly Problems in P

A family of circuits {Cn : n ∈ N} is P-uniform if there is a polynomial-time Turing machine that
outputs the description of Cn giving 1n as input.

8

We consider only rational-valued ReLU networks (which have finite descriptions). In this case,
we encode all the information of a ReLU network in binary strings. We obtain the description of
the ReLU network by concatenating the binary strings together.

Theorem 3. For any boolean language L ⊆ {0, 1}n, L is decided by a family of P-uniform ReLU
networks {Cn} if and only if L ∈ P.

The easy direction is that P-uniform ReLU networks contains P. This follows by the Cook-Levin
Theorem [Coo71], where every function in P that can be decided in time t(n) has a boolean circuit
of size O(t(n)2), and the fact that ReLU units can simulate the AND/OR/NOT boolean gates with
a constant-size construction.

Lemma 10. For any L ∈ P, L is decided by a family of P-uniform ReLU networks.

Proof. By the proof of Cook-Levin Theorem, for any language L ∈ P there exists a P-uniform
family of boolean circuits {Cn} deciding L and a Turing machine M printing {Cn}. Then, by
Lemma 8 there exists another polynomial-time Turing machine M ′ translating any boolean circuit
Cn to a ReLU circuit C ′

n whose size is linear in Cn. By putting together M and M ′ we can get a
polynomial-time Turing machine outputs the description of ReLU circuits {C ′

n} deciding L.

To prove the remaining direction, it is sufficient to bound the weights and values, and show
that all the arithmetic can be done in polynomial-time.

For any circuit Cn running on graph G = (V,E), define pe/qe to be the parameter of an edge
e, p′x/q

′
x to be the value of vertex x, where all the fractions are irreducible.

We first bound the length of the intermediate invariables p′xs and q′xs.

Lemma 11. For every ReLU network Cn, the value of every vertex x has q′x
∣∣∏

e∈E qe.

Proof. Define
conn(x) =def {e|∃ path whose first edge is e to vertex x}
prev(x) =def {y|(y, x) ∈ E}

We prove a stronger proposition:

q′x
∣∣ ∏
e∈conn(x)

qe

by induction on the depth of x.
For the base case, x is a source and q′x = 1

∣∣1.
Suppose for all the vertices y of depth less than i it holds: q′y

∣∣∏
e∈conn(y) qe. For any vertex x

at depth i, we know that

val(x) =
p′x
q′x

=
∑

y∈prev(x)

w(y,x) · val(y) =
∑

y∈prev(x)

p(y,x) · p′y
q(y,x) · q′y

9

Now, we bound q′x.

q′x

∣∣∣∣∣LCMy∈prev(x)

(
q(y,x) · q′y

)
∣∣∣∣∣LCMy∈prev(x)

q(y,x) ·
∏

e∈conn(y)

qe

∣∣∣∣∣LCMy∈prev(x)

q(y,x) ·
∏

e∈conn(x)∧e/∈{(z,x)}

qe

∣∣∣∣∣
 ∏

e∈conn(x)∧e/∈{(z,x)}

qe

 · LCMy∈prev(x)

(
q(y,x)

)
∣∣∣∣∣ ∏
e∈conn(x)

qe

Lemma 11 implies that the length of q′x will not be longer than the description of the ReLU
network, as qes are all included in the description.

To bound p′x, it is equivalent to bound val(x), while p′x = q′x · val(x).
Lemma 12. For a ReLU circuit Cn whose length of description is T , the value of any neuron x
has

|val(x)| ≤ T T · (2T)T

Proof. Still prove it by induction on depth, that is, for any vertex x at depth i we have |val(x)| ≤
T i · (2T)i.

For the base case where x is a source, obviously we have∣∣val(x)∣∣ ≤ 1 = T 0 · (2T)0

By the inductive hypothesis, all the depth-(i−1) vertices y have |val(y)| ≤ T i−1 · (2T)i−1. Since
all the weights have |we| ≤ 2T , and the size of edge set |E| ≤ T , we have

∣∣val(x)∣∣ =
∣∣∣∣∣∣
∑

y∈prev(x)

w(y,x) · val(y)

∣∣∣∣∣∣
≤

∑
y∈prev(x)

2T · T i−1 · (2T)i−1

≤ T i · (2T)i

As a result, we get ∣∣p′x∣∣ = ∣∣q′x · val(x)∣∣ ≤
(∏

e

qe

)
· T T ·

(
2T
)T

(1)

Now, we continue with the rest of the proof of Theorem 3.

10

Proof of Theorem 3. For any boolean language L decided by a P-uniform family of ReLU circuits
{Cn}, there exists a polynomial-time Turing machine M printing {Cn}. Suppose the running time
of M is T (n) polynomial in n, then we know that the length of the description is bounded by T (n).
We have the length of all the parameters∑

e∈E

(
log(|pe|+ 1) + log(|qe|+ 1)

)
≤ T (n)

which means that ∏
e∈E

qe = 2Σe∈E log2 qe

≤ 2Σe∈E(log2(|pe|+1)+log2(|qe|+1))

≤ 2T (n)

(2)

To show how to simulate Cn, we first we give the procedure computing val(x) = p′x
q′x

=
∑

y∈prev(x) val(y)·
w(y,x):

• For each y ∈ prev(x), respectively multiply p′y and p(y,x), q
′
y and q(y,x), then val(y) · w(y,x) =

p′y ·p(y,x)
q′y ·q(y,x)

.

• Amplify each fraction
p′y ·p(y,x)
q′y ·q(y,x)

to
p′′
(y,x)∏
e∈E qe

, where p′′(y,x) =
p′y ·p(y,x)
q′y ·q(y,x)

·
∏

e∈E qe is an integer.

• Add all the p′′(y,x)s together, we get val(x) =

∑
y p′′

(y,x)∏
e∈E qe

.

• Run Euclid’s algorithm on val(x) to its irreducible form val(x) = p′x
q′x
.

It remains to show that the running time of the above procedure is polynomial in T (n). Equiv-
alently, we bound the length of the numbers involved instead, since integer multiplication, division,
and addition, and Euclid’s algorithm are all running in time polynomial to the length of the num-
bers:

• For
∏

e∈E qe, by (2),

log(
∏
e∈E

qe) ≤ T (n)

• For q′x, by Lemma 11,

log2(|q′x|) ≤ log(
∏
e∈E

qe) ≤ T (n)

• For p′x, by (1),
log(|p′x|+ 1) ≤ T (n) log(T (n)) + T (n)2 + T (n) + 1

• For p(y,x) and q(y,x), they are included in the description and of course have length no more
than T (n).

Thus we can perform each ReLU neuron in poly(T (n)) time. Whilst the circuit has size at most
T (n), there exists a Turing machine M ′ simulating circuit Cn in time poly(T (n)). By concatenating
M and M ′ we get a Turing machine deciding L in polynomial time.

11

Remark. In the real world, we usually use one or several neural networks rather than “an infinite
family of” neural networks to solve a problem. In this case, Theorem 3 states that, the running
time executing a trained ReLU network is polynomial in the length of its description. In this sense,
Theorem 1 does not affect practical, polynomial time computation. However, every theoretical work
that proves lower bounds on the size of NNs should carefully consider the complexity parameter
studied in this work.

Acknowledgements

We would like to thank Eric Allender and Ryan Williams for their remarks and for bringing to our
attention related previous work.

References

[ABKPM09] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen.
On the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–
2006, 2009.

[ADH+19] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. Advances in Neural
Information Processing Systems, 32, 2019.

[BMS85] Alberto Bertoni, Giancarlo Mauri, and Nicoletta Sabadini. Simulations among classes
of random access machines and equivalence among numbers succinctly represented.
Ann. Discrete Math., 25:65–90, 1985.

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158, 1971.

[Dan96] Vlado Danč́ık. Complexity of boolean functions over bases with unbounded fan-in
gates. Information processing letters, 57(1):31–34, 1996.

[HS74] Juris Hartmanis and Janos Simon. On the power of multiplciation in random-access
machines. In Proc. 15th Annu. IEEE Sympos. Switching Automata Theory, pages
13–23, 1974.

[Lup58] Oleg Borisovich Lupanov. The synthesis of contact circuits. In Doklady Akademii
Nauk, volume 119, pages 23–26. Russian Academy of Sciences, 1958.

[O1] Joseph O’Rourke. Advanced problem 6369. Amer. Math. Monthly, 88(10):769, 1981.

[RS42] John Riordan and Claude E Shannon. The number of two-terminal series-parallel
networks. Journal of Mathematics and Physics, 21(1-4):83–93, 1942.

[Sch79] Arnold Schönhage. On the power of random access machines. In Proc. 6th Internat.
Colloq. Automata Lang. Program., volume 71 of Lecture Notes Comput. Sci., pages
520–529. Springer-Verlag, 1979.

12

[Sha49] Claude E Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59–98, 1949.

[TV08] Sergey P Tarasov and Mikhail N Vyalyi. Semidefinite programming and arithmetic
circuit evaluation. Discrete Applied Mathematics, 156(11):2070–2078, 2008.

[vE90] Peter van Emde Boas. Machine models and simulation. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, pages 1–66. Elsevier, Amster-
dam, 1990.

13

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

