
Towards Multi-Pass Streaming Lower Bounds

for Optimal Approximation of Max-Cut

Lijie Chen∗ Gillat Kol† Dmitry Paramonov‡

Raghuvansh R. Saxena§ Zhao Song¶ Huacheng Yu‖

Abstract

We consider the Max-Cut problem, asking how much space is needed by a streaming

algorithm in order to estimate the value of the maximum cut in a graph. This problem

has been extensively studied over the last decade, and we now have a near-optimal

lower bound for one-pass streaming algorithms, showing that they require linear space

to guarantee a better-than-2 approximation [KKS15, KK19]. This result relies on

a lower bound for the cycle-finding problem, showing that it is hard for a one-pass

streaming algorithm to find a cycle in a union of matchings.

The end-goal of our research is to prove a similar lower bound for multi-pass

streaming algorithms that guarantee a better-than-2 approximation for Max-Cut, a

highly challenging open problem. In this paper, we take a significant step in this

direction, showing that even o(log n)-pass streaming algorithms need nΩ(1) space to

solve the cycle-finding problem. Our proof is quite involved, dividing the cycles in the

graph into “short” and “long” cycles, and using tailor-made lower bound techniques

to handle each case.

∗UC Berkeley.
†Princeton University.
‡Princeton University.
§Microsoft Research.
¶Adobe Research.
‖Princeton University.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 161 (2022)

Contents

1 Introduction 1

1.1 Our Result . 3

1.2 Our Techniques . 3

1.3 Additional Related Work . 4

1.4 Acknowledgments . 5

2 Overview of Techniques 5

2.1 Setup and high-level overview . 5

2.1.1 Two Cases: Short Simple Cycles and Long Simple Path 5

2.1.2 Patterns . 6

2.1.3 Our Strategy: Hiding a Hard Search Problem in Cycle/Path-Finding 6

2.2 Lower Bounds for Short Cycles via Set-Intersection 7

2.2.1 Toy Case: ~τ = (1, 2) . 7

2.2.2 Generalization to Arbitrary Patterns ~τ 8

2.3 Lower Bounds for Paths via Pointer-Chasing 9

3 Preliminaries 11

3.1 Notation . 11

3.2 Graphs . 11

4 Lower Bounds for Finding Cycles 12

5 Lower Bounds for Finding a Short Cycle 14

5.1 Proof of Lemma 5.2 . 15

5.1.1 A Sparse Variant of the Set-Intersection Problem 16

5.1.2 A Reduction from Sparse-SIn,k,L to Cycle-Searchn,T,~τ 17

5.2 Proof of Lemma 5.8 . 21

5.3 Proof of Lemma 5.9 . 24

6 Lower Bounds for Finding a Long Path 27

6.1 Lower Bounds for a Specific Pointer Chasing Problem 27

6.2 Proof of Lemma 4.2 . 29

6.3 Proof of Item (1) of Lemma 6.6 . 32

6.4 Proof of Item (2) of Lemma 6.6 . 37

6.5 Omitted Proofs . 41

A Proof of Lemma 6.2 48

A.1 Direct product . 49

A.2 Lower bound for PCn,t . 59

i

1 Introduction

How well can the value of the maximum cut (Max-Cut) in a graph be approximated with

a polynomial time algorithm? This question was studied for decades, culminating in the

celebrated Goemans-Williamson algorithm [GW95] that gives a 1.138 approximation, that

was later shown to be optimal under the Unique Games Conjecture [KKMO07]. The Max-Cut

question has also been of special interest to the streaming community [sub], and after

extensive research efforts, the space complexity of one-pass streaming algorithms for Max-Cut

is now well understood.

A recent effort by the streaming community is to devise lower bounds against multi-pass

algorithms. This paper is a part of this effort, with the end goal of showing that streaming

algorithms that compute a better-than-2 approximation of Max-Cut require at least nΩ(1)

space, even if ω(1) passes are allowed. Note that a 2-approximation is trivial, as a random

cut contains at least half of the edges in the graph. However, such a lower bound is likely to

be very challenging as it would subsume technically complex lower bounds in the streaming

literature (surveyed below). In this paper, we take a significant step towards this goal and

give a lower bound for an associated search problem.

(1+ ε)-approximation and the BHM problem. The Boolean Hidden Matching (BHM)

is a popular two-party communication problem [BYJK04, GKK+07]. Here, Alice’s input is a

uniformly random cut over n vertices, and Bob’s input is obtained by sampling a uniformly

random matching and dropping all the edges that do not cross Alice’s cut in the “yes” case1,

and dropping each edge independently with probability half in the “no” case. The goal of

the parties is to determine which is the case. In their influential work, [GKK+07] showed

a lower bound saying that any one-way protocol that solves the BHM problem must have

Alice sending at least Ω(
√
n) bits to Bob.

The seminal work of Verbin and Yu [VY11] uses this lower bound, together with novel

“gadget-based” reductions, to prove lower bounds on the space required by graph streaming

algorithms. More reductions were discovered by subsequent works [BS15, LW16, AKL17,

BCK+18, EHL+18, HP19], including reductions from the Max-Cut problem [KK15, KKS15].

These lower bounds have also been extended to multi-pass streaming algorithms by recent

works [AKSY20, AV21]. However, the gadget based reductions in this line of work only rule

out small constant factor approximations for Max-Cut by streaming algorithms.

2-approximation and the distribution G. Kapralov, Khanna, and Sudan [KKS15] (and

subsequent works [KKSV17, KK19]) devised an improved reduction that can also rule out

any streaming algorithm guaranteeing any approximation factor better-than-2. The best

way to understand this result is to view their graph as a union of many matchings, with each

1As Alice’s cut is uniformly random, this means that Bob drops half of his edges in expectation.

1

matching resembling an instance of the BHM problem2.

In more detail, let G = Gn,T be the distribution over n-vertex graphs whose edge set is

a union of T matchings, selected independently and uniformly at random. Let GY be the

“yes” distribution obtained by sampling a graph from G, then sampling a uniformly random

cut and deleting all the edges that are not in the cut. Let GN be the “no” distribution

obtained by sampling a graph from G and randomly deleting each edge with probability 1
2
.

Observe that by construction, graphs in the support of GY have a cut that consists of all

the edges, and that, as T increases, the maximum cut of graphs in the support of GN has

roughly half of the edges (with high probability). Therefore, a lower bound on algorithms

distinguishing between these two distributions is also a lower bound on getting a better-

than-2 approximation of Max-Cut.

As in other works in the streaming literature that give lower bounds for Max-Cut

[AKSY20, AV21], this is done through the following perspective of a cycle problem (see also

[CKKP21]): Graphs in the support of GY are bipartite, and therefore have no odd cycles,

whereas graphs in the support of GN have many (short) odd cycles with high probability. In

this perspective, [KKS15] show that:

Theorem 1.1 ([KKS15], Informal). Any one-pass streaming algorithm that decides if an

input graph has an odd cycle, under the promise that the graph was either sampled from GY
or GN , must use Ω(

√
n) space.

At a very high level, to prove Theorem 1.1, [KKS15] use the BHM lower bound3 to argue

that even if the streaming algorithm knew the sampled cut, any given matching cannot help

the algorithm distinguish between the two cases, and a hybrid argument over all matchings

then yields the desired lower bound.

The cycle-finding problem. As Theorem 1.1 gives a lower bound for a decision problem,

it also trivially implies a lower bound for the associated search problem of finding an odd

cycle in a graph sampled from GN . Going back to the Max-Cut problem, this corresponds to

finding a cycle-based certificate for proving that the graph has a small maximum cut. The

proof of [KKS15] even shows the following slightly stronger search lower bound:

Theorem 1.2 ([KKS15], Informal). Any one-pass streaming algorithm that outputs a cycle4

in a graph sampled from G with constant probability must use Ω(
√
n) space.

2In their original work, [KKS15] worked with sparse random graphs instead of matchings. This was done
to show a lower bound for randomly-ordered streams but is not crucial for our purposes.

3The BHM lower bound is a one-way communication lower bound, but it is well known that such lower
bounds imply streaming lower bounds.

4Ruling out algorithms outputting any cycle (not necessarily odd), as is done by [KKS15] and by our
work (see Theorem 1.3), is not a huge overkill, at least if one wants to generalize the lower bound to only
marginally more general constraint satisfaction problems, such as Max-2XOR. Recall that Max-2XOR is the
same as Max-Cut except that each edge has a 0/1-label and the goal is to output a cut with as many 1 edges
and as few 0 edges as possible.

2

1.1 Our Result

Theorems 1.1 and 1.2 above are restricted to one-pass streaming algorithms. This is because

they crucially rely on the hardness of the BHM problem, and the BHM problem can be solved

using only O(log n) bits of communication if Bob is allowed to send one of his edges to Alice.

Our main result in this paper is removing this restriction and showing a multi-pass analogue

of Theorem 1.2. Getting a similar analogue of Theorem 1.1 would mean getting a lower

bound against multi-pass streaming algorithms computing a better-than-2 approximation of

Max-Cut, and is an outstanding problem that we hope to see resolved soon.

Theorem 1.3 (Main, see formal statement as Theorem 4.3). Any o(log n)-pass streaming

algorithm that outputs a cycle in a graph sampled from G with constant probability must

use nΩ(1) space.

We mention that [AKSY20, AV21] implicitly show theorems akin to Theorem 1.3, proving

that multi-pass streaming algorithms cannot find a cycle in the input graph, albeit with a

different distribution G. Specifically, [AKSY20, AV21] worked with a distribution over graphs

that (roughly) are a union of vertex disjoint cycles of length k, for some constant length k > 0.

However, requiring that the cycles are vertex disjoint implies that there is always a cut that

contains all but one of the edges in every cycle, and therefore [AKSY20, AV21] only obtain

a lower bound against algorithms that (roughly) guarantee a strong
(
1 + 1

k

)
-approximation

to Max-Cut.

In fact, the argument above applies to any distribution where the cycles are “more-or-

less-disjoint”, and the only way to get the optimal 2-approximation lower bound from a

theorem like Theorem 1.3, is to work with a distribution where the cycles are unstructured

and entangled with one another (like the distribution G used by [KKS15, KKSV17, KK19]

and also used in this work). While proving Theorem 1.3 using such an entangled distribution

is crucial, it is also the main source of hardness, as analyzing such distributions poses several

challenges, as explained next.

1.2 Our Techniques

We now provide a very brief overview of our techniques. For a detailed exposition, see

Section 2.

Recall that unlike previous lower bounds on multi-pass algorithms for cycle problems

[AKSY20, AV21], our Theorem 1.3 imposes very little structure on the graph instances that

it works with. This makes our proof very different from the proofs found in these works.

Specifically, as [AKSY20, AV21] deal with graphs that are a union of vertex disjoint cycles

of the same length, algorithms in their settings, roughly speaking, have only one way to

output a cycle, which is to pick a start vertex and chase one of its edges till it loops back.

This makes such algorithms amenable to “pointer chasing techniques”, roughly saying that

a small space algorithm can only advance by one edge in one pass, and implying that the

number of passes must be comparable to the length of the cycles.

3

In contrast, our Theorem 1.3 shows a multi-pass lower bound for an extremely

unstructured instance, with no guarantee on the length or the structure of the cycles it

contains. In particular, our instances are likely to have extremely short cycles, even cycles

of length 2, and an algorithm may just try to find one such short cycle in the graph and

output it. As we allow the streaming algorithm to have up to o(log n) passes, it has enough

passes to explore this short cycle and standard pointer chasing techniques will not apply.

To deal with such algorithms, we divide the cycles in the graph into short cycles, with

length at most κ log n, for some κ > 0, and long cycles that are longer than κ log n. We then

separately show that there is no low-space, o(log n)-pass streaming algorithm that outputs a

short cycle, and that there is no such algorithm that outputs a long cycle, and apply a union

bound. Both of these proofs actually classify the respective cycles further to various patterns,

where the pattern for a cycle says which of the T matchings each of its edges come from, and

bound the probability of outputting a cycle following a given pattern (see Definition 3.2).

Short cycles. For a short cycle with a fixed pattern, we are able to show that finding such

a cycle is equivalent to solving set-intersection, and use the set-intersection lower bounds

from the literature [BFS86, Raz90, KS92]. As an example, consider algorithms that output

cycles following the pattern (1, 2), i.e., cycles with two edges, where the first edge comes from

the first matching and the second edge comes from the second matching. Observe that an

algorithm can only output such a cycle if it finds an edge that is contained in the intersection

of the first and second matchings, and thus, we can reduce to an instance of set-intersection.

Of course, complications arise when dealing with other, more complicated patterns, but this

underlying idea remains valid.

Long cycles. For a long cycle with a fixed pattern, we use the pointer-chasing techniques

described above, carefully adapting them to our setting. The key difference is that in

standard pointer chasing, the graph is a union of vertex disjoint paths and the goal is to

chase one of these paths given its start vertex. For us, the various cycles that follow a pattern

may not be vertex disjoint, and, moreover, it is okay to output any one of these cycles. For

the former, we prove combinatorial lemmas showing that it is possible to carefully select a

large set of vertex disjoint cycles with high probability, and embed a pointer chasing instance

on these cycles. For the latter, we use a direct product result to show that outputting any

specific such cycle is only possible with negligible probability, and then use a union bound

over all cycles.

1.3 Additional Related Work

Boolean Hidden Matching. The BHM problem [BYJK04, GKK+07], was originally

studied in order to get a separation between quantum and classical communication

complexity. The communication complexity of BHM is Θ(
√
n) in the one-way setting

[GKK+07], and Θ(log n) in the two-way and quantum settings. BHM is truly versatile and

4

has found surprising applications in various settings, such as distribution testing [AMN19],

distributed computing [FGO17], property testing [BLWZ19], and sketching [KKP18].

Streaming algorithms. Streaming algorithms, first studied by [AMS99], is now one

of the main algorithmic models used to study large graphs that arise in modern day

applications [FKM+04, FKM+09]. Several graph problems are being actively pursued in

this context, making it impossible to list all of them (see [McG14] for a survey). These

include streaming algorithms for finding maximum matchings [McG05, GKK12, Kap13,

AKLY16, AG18, ABB+19, GKMS19, AKSY20, AV21], shortest paths and reachability

[FKM+09, GO16, BKKL17, AR20, CKP+21a], subgraph counting [BYKS02, BOV13,

BKKL17, MVV16, CJ17, BC17, KMPV19], and random walks [SGP11, Jin19, CKP+21b].

Beyond Max-Cut. General constraint satisfaction problems (including and beyond

Max-Cut) have also received a lot of attention in the streaming model. These include

extending and generalizing the [KKS15] work to lower bounds for more problems [GT19,

CGV20, CGSV21, CGS+21, BHP+21, SSV21] and also finding novel and interesting upper

bounds [GVV17, BDV18].

1.4 Acknowledgments

The authors would like to thank Sepehr Assadi for useful discussions.

2 Overview of Techniques

2.1 Setup and high-level overview

As already discussed in Section 1.2, finding short cycles and long cycles is hard due to totally

different reasons. Roughly speaking, finding short cycles is hard because we need to find an

intersection between two matchings, and finding long cycles is hard because we have to chase

many edges5. Below we discuss our approach in more detail. We begin with some notation

and observations.

2.1.1 Two Cases: Short Simple Cycles and Long Simple Path

Let n ∈ N≥1 be the number of vertices and T ∈ N≥1 be a large constant. We will always

assume that n is even. Let κ ∈ (0, 1) be a small constant. We say a cycle is short, if it has

at most κ · log n many edges, and is long otherwise. We first make two simple but useful

observations below:

5We mention that a combination of set intersection and pointer chasing lower bounds was also used by
the (otherwise unrelated) works [BGGS19, GS20].

5

1. Any cycle contains a simple cycle (i.e., a cycle that visits any vertex at most once),

meaning that if an algorithm finds a cycle, it also finds a simple cycle. So it suffices to

upper bound the probability of finding a simple cycle.

2. If an algorithm finds a long simple cycle with more than κ · log n many edges, it also

finds a simple path of length κ · log n (i.e., a path that visits any vertex at most once).

This means that, to upper bound the probability of finding a long simple cycle, it

suffices to upper bound the probability of finding a simple path of length κ · log n.

Based on the above observations, given a low-pass streaming algorithm A, it suffices to

upper bound the probability of the following two events:

1. A finds a simple cycle of length at most κ · log n.

2. A finds a simple path of length exactly κ · log n.

2.1.2 Patterns

Next, we introduce the concept of patterns, which helps us to find some structure in the

graph distribution Gn,T . Let G = ([n],M1 ◦M2 ◦ · · · ◦MT) be a graph6 that is a union of T

perfect matchings M1, · · · ,MT . A pattern ~τ ∈ [T]L for some integer L ∈ N tells you how to

chase a path from a fixed starting point u: first traverse the edge incident on u in matching

Mτ1 to reach vertex u1, then traverse the edge incident on u1 in matching Mτ2 to reach vertex

u2, and so on, until the last matching MτL .

We use Path(G, u, ~τ) to denote the resulting path (see Definition 3.2 for a formal

definition). We first note that for the path to be simple, we must have τj 6= τj+1 for every

j ∈ [L− 1], and for the cycle to be simple, we should additionally ensure that τ1 6= τL. We

call such patterns valid path patterns and valid cycle patterns, respectively; see Section 3.2

for formal definitions.

Now, to upper bound the probability that the algorithm A finds a simple cycle of length

at most κ · log n, we will instead upper bound the probability of A finding a simple cycle

with a fixed pattern ~τ ∈ [T]L for some L ≤ κ log n, and apply a union bound over all

O(T κ·logn) = O(nκ log T) many such patterns. Similarly we will upper bound the probability

of A finding a simple path with a fixed pattern ~τ ∈ [T]κ·logn, and apply a union bound.

2.1.3 Our Strategy: Hiding a Hard Search Problem in Cycle/Path-Finding

For both short cycles and long paths, we show that finding a cycle/path is hard by embedding

a hard communication problem P into an instance of the cycle/path finding problem. This

means that any algorithm that outputs a cycle/path can also be used to solve the hard

communication problem P , giving us a lower bound.

6For two elements or vectors u, v, we use u ◦ v to denote the concatenation of u and v.

6

2.2 Lower Bounds for Short Cycles via Set-Intersection

2.2.1 Toy Case: ~τ = (1, 2)

Let us first consider the simple case when ~τ = (1, 2). As explained in Section 1.2, in this

case, we wish to find an edge common to two uniformly random perfect matchings M1 and

M2. By a standard connection between streaming algorithms and communication protocols,

it suffices to prove that any short two-party protocol where Alice’s and Bob’s inputs are

uniformly random perfect matchings M1 and M2, cannot output an edge in the intersection

of M1 and M2 with probability more than n−Ω(1).

Starting point: set-intersection lower bounds with low success probability.

Viewing the set of all potential edges as the universe U =
(

[n]
2

)
,7 the aforementioned

problem is exactly set-intersection, in which two players are given two sets S, T ⊆ U with

size |S| = |T | = n/2, and wish to find an element in S ∩ T . There are however two

complications: (1) standard lower bounds for distributional set-intersection start from the

uniform distribution over all possible (S, T) such that |S∩T | = 1 and |S| = |T | = n/2, while

in our case, Alice and Bob are holding independently chosen subsets such that the edges in

those subsets form a matching, and (2) we will need a lower bound showing that the success

probability is at most n−Ω(1), instead of “merely” a small constant.

The second difficulty is easier to resolve, and we do it by invoking the strong lower bound

on set intersection in [AR20]. Specifically, [AR20] say that, for all k,N ∈ N such thatN ≥ 4k,

if Alice and Bob’s input are uniformly distributed over all possible pairs of sets S, T ∈
(

[N]
k

)
such that |S ∩ T | = 1, any protocol with communication complexity at most k1/3 can only

find the unique element in S∩T with probability at most O(k−1/3) (see Corollary 5.7). Thus,

if we have k = nΩ(1), then we will have the required success probability bound. Henceforth,

we will use DN,k to denote the distribution above and use SIN,k to denote instances sampled

from this distribution.

Embedding set-intersection into cycle finding. We still have to resolve the first

difficulty. We set N =
(
n
2

)
so that the universe corresponds to the set of all possible

edges. Our idea is to embed an instance of SIN,k into the problem of finding intersection

of random matchings as follows: Alice and Bob get the input (S, T) ← DN,k, each of them

first interprets their set S (resp. T) as a set of edges from U , and then extends this set into

a matching uniformly at random8. Alice and Bob can then run the algorithm A that finds a

cycle in the graph G = ([n],M1 ◦M2) with the pattern (1, 2) to find a collision between the

generated matchings.

7For a set S and an integer k ∈ N≥1, we use
(
S
k

)
to denote the collection of all k-size subsets of S.

8That is, if interpreting S gives Alice the edges e1, · · · , ek and V ′ is the set of vertices that are not touched
by any of these edges, then, Alice adds a uniformly random perfect matching on V ′ to her input. Bob does
the same.

7

However, the reduction above has a couple of problems. Recall that we want to show

that an algorithm that finds a cycle with pattern (1, 2) over the distribution Gn,T can be

used to solve set intersection over the distribution DN,k. The first problem is that starting

from the distribution DN,k, the reduction above will not generate the distribution Gn,T . One

obvious issue is that with inputs (S, T) drawn from DN,k, the set S (resp. T) may not

correspond to a set of vertex-disjoint edges, and then there is no way to extend them into

perfect matchings. The solution is to notice that if we set k = n1/3, then the probability of

this bad event happening is low (in fact, n−Ω(1)), and we can condition on it not happening.

However, even with this fix, the distribution generated by the reduction is very far from

the target distribution Gn,T . In particular, in the above reduction, since |S ∩ T | = 1, the

resulting two matchings M1 and M2 always have at least one common edge, while in Gn,T , the

matchingsM1 andM2 are disjoint (with constant probability). Nevertheless, these differences

between Gn,T and the distribution generated are always in the “right” direction, in the sense

that algorithms that find cycles over Gn,T will also find a cycle over the distribution generated

by the reduction. For example, as the generated distribution does not have graphs where the

matchings M1 and M2 are disjoint, a cycle finding algorithm would not fail because there

are no (1, 2)-pattern cycles in the graph. See Claim 5.10 for details.

The second problem in the reduction is that, given A’s solution to the cycle finding

problem, it is unclear if one can obtain a solution to the set intersection instance. This is

because, if there are many (1, 2)-pattern cycles in the generated graph G = (n,M1 ◦M2),

there is no guarantee that the cycle found by the cycle-finding algorithm A corresponds to

the solution of the embedded SIN,k instance. Rather, it could just be a cycle formed by

edges that are added by Alice and Bob during in the reduction. Our key observation here

is that the cycle-finding algorithm A does not know whether a (1, 2)-pattern cycle in the

generated graph G is “genuine” (i.e., coming from the embedded SIN,k instance) or “fake”

(i.e., involving edges that are added later by Alice and Bob during the reduction). So,

intuitively, the worst thing A can do is output a random (1, 2)-pattern cycle in the graph.

We then prove a concentration inequality saying that for any short pattern ~τ of length at

most κ · log n, with probability 1− n−ω(1), a graph G← Gn,T has at most log3 n cycles with

pattern ~τ ; see Lemma 5.9 for more details. This helps us show that the probability of A
finding a (1, 2)-pattern cycle is at most k−1/3 · log3 n ≤ n−Ω(1), by our choice of k.

2.2.2 Generalization to Arbitrary Patterns ~τ

Now we discuss how to embed set-intersection into cycle finding with a fixed pattern ~τ , for a

general ~τ of length L ≤ κ · log n, which is much more challenging. For simplicity, we assume

that ~τ has at least one occurrence of 1 (i.e., the matching M1 is involved in the cycle).9

First, since we wish that the found cycle with length L corresponds directly to the

common element in the starting SIN,k problem, we should set N = nL so that the universe [N]

9See the proof of Lemma 4.1 for the general case.

8

corresponds to all possible length-L cycles10.

Second, we still wish to use the standard connection between streaming algorithms

and communication protocols, and give all matchings M1, · · · ,MT in the graph G =

([n],M1 ◦ · · · ◦MT) to two players Alice and Bob. We will simply give M1 to Alice, and

the rest M≥2 to Bob.

Our key idea is that, given a sequence ~u ∈ [n]L, if for every ` ∈ [L] such that τ` = 1, Alice

adds (u`, u`+1) to her set of edges (we use uL+1 to denote u1, for notational convenience), and

for every ` ∈ [L] such that τ` ∈ {2, · · · , T}, Bob adds (u`, u`+1) to his set of edges. Then, in

the combined graph of Alice and Bob, ~u is a cycle with pattern ~τ , and thus can potentially

be detected by the cycle-finding algorithm A.

Our reduction from SIN,k over distribution DN,k to finding a pattern-~τ cycle then works

as follows:

1. Alice and Bob get S, T ∈
(

[N]
k

)
distributed according to DN,k. Alice (resp. Bob)

interprets S (resp. T) as k vectors ~s(1), ~s(2), · · · , ~s(k) (resp. ~t(1),~t(2), · · · ,~t(k)) from [n]L.

2. Initially, Alice lets M1 be the empty set, and Bob lets M2, · · · ,MT be empty sets too.

3. For every ~s(i), for every ` ∈ [L] such that τ` = 1, Alice adds (s
(i)
` , s

(i)
`+1) to M1.

4. For every ~t(i), for every ` ∈ [L] such that τ` 6= 1, Bob adds (t
(i)
` , t

(i)
`+1) to Mτ` .

5. At the end, Alice extends M1 to a perfect matching uniformly at random, and Bob

extends M2, · · · ,MT to perfect matchings uniformly at random as well.

Crucially, by previous discussions, the common element S ∩T is going to be a cycle with

pattern ~τ in the joint graph G = ([n],M1 ◦M≥2). So this reduction makes sense. Still, the

three issues in the toy example occur here as well. First, it is possible that for some S, T ,

Step (2) and (3) above do not generate valid partial matchings. However, by setting k small

enough (say k = n1/3), we can show that the probability of this event happening is small,

and we can condition on this event not happening.

Second, the resulting graph G may contain more than one cycle with pattern ~τ . Similarly

to the toy case, we make use of the observation that A does not know which ~τ -pattern cycle

is genuine or fake, and derive the lower bound using the concentration inequality we proved

regarding the number of ~τ -pattern cycles in a graph G ← Gn,T . See Section 5.1.2 for more

details of the proof and how the third issue is addressed in a way similar to the toy example.

2.3 Lower Bounds for Paths via Pointer-Chasing

In the long simple path case, for a fixed pattern ~τ ∈ [T]L where L = κ · log n, we will prove

that an o(log n)-pass streaming algorithm A cannot find a simple path of pattern ~τ with

probability at least n−ω(1).

10Here we interpret a length-L cycle as a sequence of L vertices from [n], and we allow non-simple cycles
and even self-loops.

9

As already discussed in Section 1.2, the reason finding a long simple path in G ← Gn,T
is difficult is that this requires the streaming algorithm A to chase from a vertex u ∈ [n]

for L steps, following the pattern ~τ , and pointer chasing is well-known to be hard for low-

pass streaming algorithms. Hence, our strategy here is to reduce a certain pointer chasing

instance into the problem of finding a simple path with pattern ~τ .

To simplify the discussions, we will focus on the case that T = 3 and ~τ is a repetition of

(1, 2, 3). Again, we wish to study a related communication problem, in which there are three

players P1, P2, P3 such that Pi holds the matching Mi, and their goal is to output a simple

path with pattern ~τ in the joint graph G = ([n],M1 ◦M2 ◦M3).

For simplicity, we assume that L is a multiple of 3. Our starting point is the following

search version of the pointer chasing problem that is defined over a graph with L+ 1 layers

V1, · · · , VL+1 each consisting of m vertices, and L matchings W1, · · · ,WL such that for every

i ∈ [L], Wi is a perfect bipartite matching between the layers Vi and Vi+1: Player Pi gets

matchings Wi,Wi+3,Wi+6, · · · as input, and their goal is to output a length-L path from any

vertex in V1 to any vertex in VL+1. Since L = Ω(log n), using direct product theorem for

communication protocols, we are able to prove that communication protocols with o(log n)

round complexity and mε communication complexity for some constant ε ∈ (0, 1) can solve

this problem with probability at most m−ω(1). We will set m = nγ for some small constant

γ ∈ (0, 1), so that a success probability upper bounded by m−ω(1) = n−ω(1) is good enough.

For simplicity, we let Vi = {(i − 1) · m + 1, · · · , i · m}. Then the whole vertex set V is

[(L+ 1) ·m].

We can then embed the pointer-chasing instance above into a path-finding problem as

follows:

1. Using public randomness, P1, P2, P3 jointly sample a random injective function φ : [(L+

1) ·m]→ [n]. For i ∈ [3], player Pi also initializes Mi be the empty set.

2. For each player Pi, for every edge (u, v) from its input Wi,Wi+3,Wi+6, · · · , Pi adds

(φ(u), φ(v)) into Mi.

3. Finally, each player Pi extends Mi into a perfect matching uniformly at random.

First, we observe that the above procedure gives a valid partial matching for each

player Pi after Step (2), so that they can always extend their inputs into perfect matchings

at Step (3). Second, one can see that for every u ∈ V1 = [m], the generated graph contains a

simple ~τ -pattern path starting from φ(u). Hence, our hope is to show that if the streaming

algorithm A finds a simple ~τ -pattern path in the resulting graph G, then, with a reasonable

probability, the path starts from vertices in the set {φ(u) : u ∈ [m]}. This means that any

streaming algorithm A that finds a simple ~τ -pattern path inG← Gn,T with probability n−O(1)

contradicts the hardness of the pointer-chasing problem, as required for our lower bound.

The key observation, again, is that A does not know which ~τ -pattern path in G is genuine

(i.e., coming from the pointer-chasing problem via the mapping φ) or fake (i.e., involving

10

vertices added by Pi’s in the Step (3) of the reduction). The actual analysis, however, is

much trickier than the short cycle case, and we have to prove a sophisticated concentration

inequality regarding the number of possible embeddings of a pointer chasing instance in a

graph G ∈ Gn,T . This involves a lot of additional technical work, that we defer to Section 6.

3 Preliminaries

3.1 Notation

We use N to denote all non-negative integers, and N≥1 to denote all positive integers. We

also use 2N (resp. 2N≥1) to denote all non-negative (resp. positive) even integers. For two

elements or vectors u, v, we use u ◦ v to denote the concatenation of u and v.

We often use bold font letters (e.g., X) to denote random variables, and calligraphic

font letters (e.g., X) to denote distributions. For two random variables X and Y , and for

Y ∈ supp(Y), we use (X|Y = Y) to denote X conditioned on Y = Y . For two lists a and

b, we use a ◦ b to denote their concatenation.

For two distributions D1 and D2 on set X and Y respectively, we use D1 ⊗D2 to denote

their product distribution over X×Y , and ‖D1−D2‖TV to denote the total variation distance

between them.

Let n ∈ N≥1. We use [n] to denote the set {1, · · · , n}. We often use symbols such as ~x to

emphasize that ~x is a vector, and we often use xi to denote its i-th entry and |~x| to denote

the length of ~x. For a set S and m ∈ N, we use
(
S
m

)
to denote all size-m subsets of S.

3.2 Graphs

Formally, a labeled undirected graph G is a tuple (V, ~E, ~µ), where V is the set of vertices,
~E = ((ui, vi))i∈[m] is a list of edges such that ui, vi ∈ V , and ~µ = (µ1, · · · , µm) is a list of

labels. In the streaming model, it is presented as a stream of tuples (ui, vi, µi), from i = 1

to i = m. Similarly, an undirected graph G is a pair (V, ~E).

An ordered matching ~M on a set of vertices V is a list of vertex-disjoint undirected edges.

The size of a matching ~M is simply the number of edges in it. For a vertex set V of even

size, we use MV to denote the uniform distribution over all ordered matchings on V with

size |V |/2.

Definition 3.1. Let n ∈ 2N≥1 and T ∈ N≥1. We define Gn,T as the following distribution

on undirected graphs:

• We set V = [n].

• For each i ∈ [T], we draw ~M i ← MV , independently across all i. Then we set
~E = ~M1 ◦ ~M2 ◦ · · · ◦ ~MT .

11

A (undirected) path ~w is a list of edges e1, · · · , ek such that ei = (ui, vi) and for all

i ∈ [k− 1], vi = ui+1. (Note that since we are working with undirected graphs, we can swap

ui and vi if necessary.) Similarly, a (undirected) cycle is a path ~w that additionally satisfies

vk = u1. We say a path or a cycle is simple, if no vertices except for the starting vertex u1

is visited twice.

Definition 3.2. Let n ∈ 2N≥1 and T ∈ N≥1 and G = ([n], ~E) ∈ supp(Gn,T). Let
~E = ~M1 ◦ ~M2 ◦ · · · ◦ ~MT where ~M i is the i-th matching according to Definition 3.1. Let

vs ∈ [n], L ∈ N, and ~τ ∈ [T]L. We define Path(G, vs, ~τ) as the output of the following

algorithm:

1. Let v0 = vs and ~w be an empty list.

2. For i from 1 to L:

(a) Let e be the unique edge in the matching ~M τi that is adjacent to the vertex vi−1.

If no such e exists, return ⊥.

(b) Add e to the end of ~w. Let vi be the endpoint of e other than vi−1.

3. Return ~w.

In other words, Path(G, vs, ~τ) (if exists) is the unique path in G that starts from vs and

follows the pattern ~τ . We say ~τ is a valid path pattern, if for every j ∈ [|~τ | − 1], it holds

that τj 6= τj+1. We also say ~τ is a valid cycle pattern, if it is a valid path pattern and also

τ|~τ | 6= τ1.

4 Lower Bounds for Finding Cycles

Our lower bound for finding cycle will follow from the following two lemmas.

Notation. Fix a graph G ∈ supp(Gn,T) and ~τ ∈ [T]L. We let C~τ (G) be the set of simple

cycles in G with pattern ~τ , and C(G) be the set of all simple cycles in G. We also let L~τ (G)

be the set of simple paths in G with pattern ~τ .

Lemma 4.1 (Lower bound for finding a short cycle with a fixed pattern ~τ). There exist

ε, δ ∈ (0, 1) such that for all T ∈ N≥1 and for all sufficiently large n ∈ 2N≥1 the following

holds: For all L ∈ [log n], valid cycle pattern ~τ ∈ [T]L, and nε-pass nε-space streaming

algorithms A, we have

Pr
G←Gn,T

[
A(G) ∈ C~τ (G)

]
≤ n−δ. (1)

Lemma 4.2 (Lower bound for finding a long path with a fixed pattern ~τ). There exist

ε, δ, γ0 ∈ (0, 1) such that for all T ∈ N≥1 and for all sufficiently large n ∈ 2N≥1 the following

12

holds: For all L ∈ [γ0 · log n], p ≤ (L − 15)/4T , valid path pattern ~τ ∈ [T]L, and p-pass

nε-space streaming algorithms A, we have

Pr
G←Gn,T

[
A(G) ∈ L~τ (G)

]
≤ n3−δL/p. (2)

Theorem 4.3. There exist ε, δ ∈ (0, 1) such that for all T ∈ N≥1 and for all sufficiently

large n ∈ 2N≥1 the following holds: for all o(log n)-pass nε-space streaming algorithms A, we

have

Pr
G←Gn,T

[
A(G) ∈ C(G)

]
≤ n−δ. (3)

Proof. Let ε be the minimum of the ε constants from Lemma 4.1 and Lemma 4.2, and δ1 be

the minimum of the δ constants from Lemma 4.1 and Lemma 4.2.

Fix an o(log n)-pass nε-space streaming algorithm A. Let L = κ log n for a constant

κ ∈ (0, 1) to be chosen later. For notational convenience, we also use C≤L(G) and C>L(G)

to denote the set of simple cycles in G with length at most L and greater than L, respectively.

Then we have

Pr
G←Gn,T

[
A(G) ∈ C(G)

]
≤ Pr

G←Gn,T

[
A(G) ∈ C≤L(G)

]
+ Pr

G←Gn,T

[
A(G) ∈ C>L(G)

]
.

First, by Lemma 4.1, we have

Pr
G←Gn,T

[
A(G) ∈ C≤L(G)

]
≤

∑
~τ∈[T]L

~τ is a valid cycle pattern

Pr
G←Gn,T

[
A(G) ∈ C~τ (G)

]
≤ TL · n−δ1

≤ 2log T ·κ·logn · n−δ1

≤ nκ·log T−δ1 .

We now set κ = min(δ1
2 log T

, γ0) so that we have

Pr
G←Gn,T

[
A(G) ∈ C≤L(G)

]
≤ n−δ1/2. (4)

Now, we let L=L(G) denote the set of simple paths in G with length exactly L. Given the

algorithm A, we construct another algorithm Ã who outputs the first L edges in the cycle

found by A (if A does not output a valid cycle, Ã just outputs ⊥). Now, we note that Ã
has the same pass and space complexity as A, and whenever A finds a cycle in C>L(G), Ã
outputs a path in L=L(G).

Hence, by Lemma 4.2, we have

Pr
G←Gn,T

[
A(G) ∈ C>L(G)

]
≤ Pr

G←Gn,T

[
Ã(G) ∈ L=L(G)

]

13

≤
∑
~τ∈[T]L

~τ is a valid path pattern

Pr
G←Gn,T

[
Ã(G) ∈ L~τ (G)

]
≤ TL · n3−δ1·L/o(logn)

≤ n−ω(1). (5)

Putting (4) and (5) together and set δ = δ1/3 completes the proof.

5 Lower Bounds for Finding a Short Cycle

Recall that C~τ (G) is the set of simple cycles in G with the pattern ~τ . In this section we

prove Lemma 4.1, which is restated below.

Reminder of Lemma 4.1. There exist ε, δ ∈ (0, 1) such that for all T ∈ N≥1 and for

all sufficiently large n ∈ 2N≥1 the following holds: For all L ∈ [log n], valid cycle pattern

~τ ∈ [T]L, and nε-pass nε-space streaming algorithms A, we have

Pr
G←Gn,T

[
A(G) ∈ C~τ (G)

]
≤ n−δ. (6)

To prove Lemma 4.1, we will indeed prove a stronger communication complexity lower

bound first, and then show Lemma 4.1 as an easy corollary. We first define the following

communication problem.

Definition 5.1 (The Cycle-Searchn,T,~τ problem). Let n ∈ 2N≥1, T, L ∈ N≥1 and ~τ ∈ [T]L

such that ~τ is a valid cycle pattern. In the Cycle-Searchn,T,~τ problem, Alice holds a perfect

matching M1 on [n] and Bob holds T − 1 perfect matchings M2, . . . ,MT on [n], their goal

is to output a simple cycle in G = ([n],M1 ◦M2 ◦ . . . ◦MT) with pattern ~τ .

Slightly abusing notation, we can also view Gn,T (a distribution over graphs that is the

union of T uniform random perfect matchings) as an input distribution to Cycle-Searchn,T,~τ .

Given G = ([n], ~M1, ~M2, . . . , ~MT) ← Gn,T , we first convert these ordered matchings ~M i

into their unordered counterparts M i, and then give M1 to Alice, and M2, . . . ,MT to

Bob. We will write (M1,M≥2) ← Gn,T to denote that Alice’s input M1 and Bob’s input

M≥2 = (M2, . . . ,MT) are generated as above.

We will prove the following lower bound for Cycle-Searchn,T,~τ .

Lemma 5.2. There exists ε, δ ∈ (0, 1), such that for all T ∈ N≥1, for all sufficiently

large n ∈ 2N≥1, L ∈ [log n], valid cycle pattern ~τ ∈ [T]L such that ~τ contains at least

one occurrence of 1, and for all two-party communication protocols Π with communication

14

complexity at most nε,

Pr
(M1,M≥2)←Gn,T
G=([n],M1◦M≥2)

[
Π(M1,M≥2) ∈ C~τ (G)

]
≤ n−δ. (7)

Before proving Lemma 5.2, we show that Lemma 4.1 follows immediately

from Lemma 5.2.

Proof of Lemma 4.1. Let ε, δ be the constants guaranteed by Lemma 5.2. Let µ ∈ [T] be an

index that occurs at least once in ~τ . We consider the following communication problem:

• A list of unordered matchings M1, . . . ,MT are drawn from Gn,T .

• Alice is given the matching Mµ, and Bob is given the rest of the matchings,

M1, . . . ,Mµ−1,Mµ+1, . . . ,MT , denoted by M−µ.

• The goal is output a cycle from C~τ (G), where G = ([n],M1,M2, . . . ,MT).

Since all matchings in Gn,T are independently and identically distributed (i.e., they are

distributed uniformly over all perfect matchings on [n]), Lemma 5.2 implies that11 for all

two-party communication protocols Π with communication complexity at most nε,

Pr
(Mµ,M−µ)←Gn,T
G=([n],Mµ◦M−µ)

[
Π(Mµ,M−µ) ∈ C~τ (G)

]
≤ n−δ. (8)

Since Alice and Bob can simulate a p-pass, s-space complexity streaming algorithm A
over the input stream (M1,M2, . . . ,MT) by a two-party protocol with ps ·T communication

complexity12, it follows that no nε/3-pass, nε/3-space algorithm A violates (6), since otherwise

there is a communication protocol Π with n2ε/3 · T < nε communication complexity that

violates (8), contradicting Lemma 5.2.

5.1 Proof of Lemma 5.2

In the rest of this section we will prove Lemma 5.2 by a reduction from a sparse version of

the well-known set-intersection problem. We first introduce this problem together with some

notation.

11An algorithm for this new communication problem where µ 6= 1 can be used to solve the special case that
µ = 1 (corresponding to Lemma 5.2) simply by swapping matchings M1 with Mµ. We note that here we
crucially used the fact that Lemma 5.2 applies to communication protocols instead of streaming algorithms
over the input stream (M1, . . . ,MT).

12The factor of T comes from the fact that in each pass, we may alternate at most T times between
matchings from Alice and from Bob.

15

5.1.1 A Sparse Variant of the Set-Intersection Problem

Given a matrix M ∈ Σn×m and a row index i ∈ [n], we use row(M, i) to denote its i-th row

vector (i.e., row(M, i) = (Mi,1,Mi,2, . . . ,Mi,m)). We will need the following communication

problem.

Definition 5.3 (The Sparse-SIn,k,L problem). Let n, k, L ∈ N≥1. In the Sparse-SIn,k,L
problem, Alice and Bob get matrices MA,MB ∈ [n]k×L, respectively. The goal for them

is to find a common row of MA and MB (i.e., a vector X ∈ [n]L such that row(MA, i) =

row(MB, j) = X for some i, j ∈ [k]).

We will consider the following hard distribution for Sparse-SIn,k,L.

Definition 5.4. Let n, k, L ∈ N≥1. We define the following distribution DS-SI
n,k,L for the

problem Sparse-SIn,k,L: Alice and Bob’s inputs are uniformly distributed over all (MA,MB) ∈
[n]k×L × [n]k×L satisfying the following two conditions:

1. There exist two indices i, j ∈ [k] such that row(MA, i) = row(MB, j).

2. Let M be the (2k− 1)×L matrix obtained by first removing the j-th row from MB and

then concatenating MA and MB (i.e., putting MA on the top of MB). All entries in

M are distinct.

We will need the following lower bound for Sparse-SIn,k,L over DS-SI
n,k,L.

Lemma 5.5. Let n, k, L ∈ N≥1 such that k = n1/3 and L ∈ [log n]. No two-party

communication protocol with complexity at most n0.1 solves Sparse-SIn,k,L over DS-SI
n,k,L with

probability more than 1/n0.1.

To prove Lemma 5.5, we will use a reduction from the standard set-intersection problem

SIn,k. In SIn,k, Alice and Bob get sets A,B ⊆ [n], respectively, such that |A| = |B| = k and

their goal is to output an element from A ∩B.

Let DSI
n,k be the following distribution over inputs to SIn,k: Alice and Bob’s inputs are

drawn at uniformly random from all pairs A,B ⊆ [n] such that |A| = |B| = k and |A∩B| = 1.

We need the following theorem well known result.

Theorem 5.6 ([Raz90, KS92, BM13, AR20]). For every ε ∈ (0, 1) and k ∈ N≥1, any protocol

solving SI4k,k with probability ε over DSI
4k,k requires communication complexity at least Ω(ε2·k).

The lower bound of Theorem 5.6 only applies to solving SI4k,k, it can be easily generalized

to the case of solving SIn,k for any n ≥ 4k.

Corollary 5.7. For every ε ∈ (0, 1), n, k ∈ N such that n ≥ 4k, any protocol solving SIn,k
with probability ε over DSI

n,k requires communication complexity at least Ω(ε2 · k).

16

Proof. We will show how to reduce solving SI4k,k over DSI
4k,k to solving SIn,k over DSI

n,k, while

preserving the success probability.

Suppose Alice and Bob get sets A,B ⊆ [4k], they use public randomness to sample an

injective mapping π : [4k]→ [n], and construct their new inputs

A′ = {π(u) : u ∈ A} and B′ = {π(u) : u ∈ B}.

One can see that when (A,B) are drawn from DSI
4k,k, (A′, B′) are distributed according

to DSI
n,k, and given the intersection u ∈ A′ ∩B′, we know that π−1(u) is the intersection of A

and B, which completes the proof.

Now we are ready to prove Lemma 5.5.

Proof of Lemma 5.5. Let N = nL and φ be a bijection from [N] to [n]L.

Let D̃ be the uniform distribution over all (MA,MB) ∈ [n]k×L × [n]k×L satisfying the

following two conditions:

1. There exist two indices i, j ∈ [k] such that row(MA, i) = row(MB, j).

2. Let M be the (2k − 1) × L matrix obtained by first removing the j-th row from MB

and then concatenating MA and MB (i.e., putting MA on the top of MB). All rows in

M are distinct (i.e., for all 1 ≤ a < b ≤ 2k − 1, row(M,a) 6= row(M, b)).

Let D = DS-SI
n,k,L. We note that D is indeed D̃ conditioning on the event that all entries

of M are distinct, which happens with probability at least 1− (2kL)2/n by a union bound.

Hence, we have that ‖D − D̃‖TV ≤ (2kL)2/n ≤ n−0.2.

Note that Sparse-SIn,k,L over the distribution D̃ is indeed SIN,k in disguise: Alice and

Bob can both apply φ to each row of their matrices MA and MB to get two sets A′ and

B′, and A′ ∩ B′ corresponds to the common row of MA and MB. By Corollary 5.7, we

know that communication protocol with complexity n0.1 cannot solve Sparse-SIn,k,L with

probability more than n−0.11 over D̃. Hence, since ‖D̃ − D‖TV ≤ n−0.2, it follows that

communication protocol with complexity n0.1 cannot solve Sparse-SIn,k,L with probability

more than n−0.11 − n−0.2 ≤ n−0.1 over D, which completes the proof.

5.1.2 A Reduction from Sparse-SIn,k,L to Cycle-Searchn,T,~τ

We will use the following reduction from Sparse-SIn,k,L to Cycle-Searchn,T,~τ . We will assume

~τ contains at least one occurrence of 1.

Reduction from Sparse-SIn,k,L to Cycle-Searchn,T,~τ : Red-Cyc(MA,MB)

• Alice gets MA ∈ [n]k×L and Bob gets MB ∈ [n]k×L.

• Return ⊥ if (MA,MB) /∈ supp(DS-SI
n,k,L).

17

• Alice generates M1 as follows:

– For every i ∈ [k] and every j ∈ [L] such that τj = 1, Alice adds the edge

(MA
i,j,M

A
i,(j mod L)+1) to M1.a

– Alice extends M1 into a perfect matching uniformly at random.

• Similarly, Bob generates M2, . . . ,MT as follows:

– For every i ∈ [k], every µ ∈ {2, . . . , T}, and every j ∈ [L] such that τj = µ,

Bob adds the edge (MB
i,j,M

B
i,(j mod L)+1) to Mµ.

– For every µ ∈ {2, . . . , T}, Bob extends Mµ into a perfect matching

uniformly at random.

aWe write (j mod L) + 1 in the subscript as we index starting from 1 instead of 0.

Notation. For n, L ∈ N≥1, we let Sn,L be the set of all the vectors from [n]L whose entries

are all distinct.

Let n, k, L ∈ N≥1, i, j ∈ [k], and X ∈ Sn,L. We define DS-SI
n,k,L;i,j,X to be the distribution

DS-SI
n,k,L conditioning on the event that row(MA, i) = row(MB, j) = X.

We then define

Rn,T,~τ ;i,j,X := Red-Cyc(DS-SI
n,k,L;i,j,X),

which is the outputted distribution of the reduction Red-Cyc where Alice and Bob draw their

inputs jointly from DS-SI
n,k,L;i,j,X .

Let Gn,T,~τ ;X to be the distribution Gn,T conditioning on the event that the graph contains

X as a ~τ pattern cycle. Slightly abusing notation, we also identify a graph G ∈ supp(Gn,T)

by a list of T perfect matchings M1,M2, . . . ,MT .13

Given G ∈ supp(Gn,T) and a pattern ~τ ∈ [T]L, we define #~τ (G) as the number of simple

cycles in G with pattern ~τ (i.e., #~τ (G) = |C~τ (G)|).
We will need the following two lemmas.

Lemma 5.8. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: letting

k = n1/3, for every L ∈ [log n], ~τ ∈ [T]L, X ∈ Sn,L and i, j ∈ [k], it holds that

‖Rn,k,T,~τ ;i,j,X − Gn,T,~τ ;X‖TV ≤ 1/n0.1.

Lemma 5.9. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: for

13We note that since now we are aiming to prove the communication complexity lower bound, the orderings
of the edges within individual matchings do not matter, so we (Alice and Bob, indeed) will simply “forget”
their orderings.

18

every L ∈ [log n] and valid cycle pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[#~τ (G) > log3 n] ≤ n−100,

and

1/2 ≤ E
G←Gn,T

[#~τ (G)] ≤ 2.

Now we are ready to prove Lemma 5.2.

Proof of Lemma 5.2. Let ε, δ ∈ (0, 1) to be specified later. For the sake of contradiction, we

will first assume the existence of a communication protocol Πcyc with complexity nε such

that

Pr
G←Gn,T

G=([n],M1◦M≥2)

[
Πcyc(G) ∈ C~τ (G)

]
> n−δ, 14 (9)

and then construct another protocol ΠSI that contradicts Lemma 5.5. Recall that k = n1/3

in Lemma 5.5. Now we specify the protocol ΠSI.

The protocol ΠSI for Sparse-SIn,k,L

1. Alice gets MA ∈ [n]k×L and Bob gets MB ∈ [n]k×L.

2. Alice and Bob simulate Red-Cyc(MA,MB) to get their new inputs M1 and M≥2,

respectively. (Note that this step does not require communication, according to

Red-Cyc.)

3. Alice and Bob run Πcyc with inputs being M1 and M≥2, respectively.

4. If Πcyc returns a cycle C, Alice and Bob then outputs the vertices in C, in the

same order they appear in C.

In the rest of the proof, for simplicity we will use GX to denote Gn,T,~τ ;X , RX to

denote Rn,k,T,~τ ;i,j,X , and DS-SI
X to denote DS-SI

i,j,X . Their other parameters in the subscripts

(n,K,L, T, ~τ , i, j) will always be clear from the context.

The success probability psuc of ΠSI over DS-SI can be calculated as follows:

psuc = Pr
X←Sn,L

Pr
i,j←[n]

Pr
(MA,MB)←DS-SI

i,j,X

[ΠSI(M
A,MB) = X].

From now on, we will slightly abuse the notation by identify an ordered cycle C with

the list of its vertices. (Since we only care about cycles with pattern ~τ , the latter uniquely

determines the former.)

14For notation convenience, given a graph G = ([n],M1 ◦M≥2), we use Πcyc(G) to denote Πcyc(M
1,M≥2).

19

We wish to lower bound

Pr
X←Sn,L

Pr
(MA,MB)←DS-SI

X

[ΠSI(M
A,MB) = X]

= Pr
X←Sn,L

Pr
(M1,M≥2)←RX

[Πcyc(M
1,M≥2) = X]

≥ Pr
X←Sn,L

Pr
G←GX

[Πcyc(G) = X]− n−0.1. (Lemma 5.8)

Next we define G̃ as the following distribution: draw X ← Sn,L, G ← GX , and then

output G. We have

Pr
X←Sn,L

Pr
G←GX

[Πcyc(G) = X] = Pr
G←G̃

Pr
X←C~τ (G)

[Πcyc(G) = X].

We need the following claim that helps us to analyze the above quantity.

Claim 5.10. The following two statements hold:

1. PrG←G̃[Πcyc(G) ∈ C~τ (G)] ≥ n−δ/2.

2. PrG←G̃[#~τ (G) > log3 n] ≤ 1/n50.

Before proving Claim 5.10, we first show it implies our lemma. We have

Pr
G←G̃

Pr
X←C~τ (G)

[Πcyc(G) = X]

≥ E
G←G̃

1

#~τ (G)
· 1{Πcyc(G)∈C~τ (G)}

≥ E
G←G̃

1

log3 n
· 1{Πcyc(G)∈C~τ (G) ∧ #~τ (G)≤log3 n}

≥ 1

log3 n
· (n−δ/2− n−50). (Claim 5.10)

Putting everything together and setting δ = 0.05 and ε = 0.1, we have

psuc ≥
1

log3 n
· (n−δ/2− n−50)− n−0.1 ≥ n−0.1.

Noting that ΠSI has the same communication complexity as Πcyc, we have established that

ΠSI solves DS-SI
n,k,L over DS-SI

n,k,L with probability at least n−0.1 with communication complexity

n0.1, contradiction to Lemma 5.5. This completes the proof for the lemma.

Finally, we prove Claim 5.10.

Proof of Claim 5.10. Let SG = supp(G). Note that G̃’s support is a subset of SG. Fix

G ∈ SG, we note that the probability of G is drawn from G̃ is proportional to #~τ (G), so we

20

have

G̃(G) =
#~τ (G)∑

H∈SG #~τ (H)
.

Therefore
G̃(G)

G(G)
=

#~τ (G)

EH∈SG #~τ (H)
.

Applying Lemma 5.9, we have

#~τ (G)/2 ≤ G̃(G)

G(G)
≤ 2#~τ (G). (10)

Now we are ready to prove Item (1).

Pr
G←G̃

[Πcyc(G) ∈ C~τ (G)] = E
G←G

G̃(G)

G(G)
· 1{Πcyc(G)∈C~τ (G)}

≥ E
G←G

#~τ (G)/2 · 1{Πcyc(G)∈C~τ (G)} (By (10))

≥ 1

2
· E
G←G

1{Π(G)∈C~τ (G)}

≥ n−δ/2.

Next, we prove Item (2).

Pr
G←G̃

[#~τ (G) > log3 n]

= E
G←G

G̃(G)

G(G)
· 1{#~τ (G)>log3 n}

≤ E
G←G

2 ·#~τ (G) · 1{#~τ (G)>log3 n} (By (10))

≤ 2n · E
G←G

1{#~τ (G)>log3 n} (#~τ (G) ≤ n)

≤ n−50. (Lemma 5.9)

5.2 Proof of Lemma 5.8

In this section we prove Lemma 5.8, which is restated below.

Reminder of Lemma 5.8. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the

following holds: letting k = n1/3, for every L ∈ [log n], ~τ ∈ [T]L, X ∈ Sn,L and i, j ∈ [k], it

holds that

‖Rn,k,T,~τ ;i,j,X − Gn,T,~τ ;X‖TV ≤ 1/n0.1.

21

Let Cn be the number of perfect matchings on an n vertex set (assuming that n ∈ 2N≥1).

We need the following fact regarding Cn.

Fact 5.11. Let n ∈ 2N≥1 be sufficiently large. For every k ∈ N such that k < n/2, we have

Cn−2k

Cn
=
∏
i∈[k]

1

(n− 2i+ 1)
.

In particular, for every k ∈ N such that k < n0.34, it holds that

n−k ≤ Cn−2k

Cn
≤ n−k · (1 + n−0.2).

Proof of Lemma 5.8. For notational convenience, throughout the proof we will use RX to

denote Rn,k,T,~τ ;i,j,X and GX to denote Gn,T,~τ ;X .

Let X[i] be the edges in X that belongs to M i if treating X as a ~τ -pattern cycle15, we can

see that GX is the uniform distribution over lists of T perfect matchings (M1,M2, . . . ,MT)

such that X[i] ⊆M i.

We first observe that RX can be alternatively described as below. We will also define an

auxiliary distribution R̃X to help the analysis.

Alternative sampling procedures SampX and S̃ampX for RX and R̃X,

respectively

• Let ` = |{τj = 1 : j ∈ [L]}|.

Sampler SampX for RX Alice gets MA ∈ [n](k−1)×2` and Bob gets MB ∈ [n](k−1)×L

from the uniform distribution over all pairs (MA,MB) such that the union of

MA,MB, X has distinct entries.

Sampler S̃ampX for R̃X Alice gets MA ∈ [n](k−1)×2` and Bob gets MB ∈ [n](k−1)×L

from the uniform distribution over all such pairs (MA,MB).

• If the union of MA,MB, X does not have distinct entries, then return ⊥ and

terminate. (This is only relevant for R̃X .)

• Alice generates M1 as follows:

– Alice first sets M1 = X[1].

– For every i ∈ [k− 1] and j ∈ [`], Alice adds the edge (MA
i,2j−1,M

A
i,2j) to M1.

– Alice extends M1 into a perfect matching uniformly at random.

15That is, X[i] = {(X`, X` mod L+1) : ` ∈ [L] ∧ τ` = i}.

22

• Similarly, Bob generates M2, . . . ,MT as follows:

– For every µ ∈ {2, . . . , T}, Bob first sets Mµ = X[µ].

– For every i ∈ [k], every µ ∈ {2, . . . , T}, and every j ∈ [L] such that τj = µ,

Bob adds the edge (MB
i,j,M

B
i,(j mod L)+1) to Mµ.

– For every µ ∈ {2, . . . , T}, Bob extends Mµ into a perfect matching

uniformly at random.

We first prove the following claim.

Claim 5.12. It holds that

‖R̃X −RX‖TV ≤ n−0.2,

and

R̃X(⊥) ≤ n−0.2.

Proof. Let DX and D̃X be the distribution of the pairs (MA,MB) in SampX and S̃ampX ,

respectively. It suffices to show that ‖DX − D̃X‖TV ≤ n−0.2. Let E be the probability that

the union of MA,MB, X has distinct entries. We note that DX is simply D̃X conditioning

on the event E .

By a simple union bound, we have PrD̃X [E] ≥ 1−(2kL)2/n, which implies R̃X(⊥) ≤ n−0.2

and ‖DX − D̃X‖TV ≤ n−0.2, and therefore completes the proof.

From now on we are going to show GX and R̃X are close. We will use the following claim.

Claim 5.13. For all G ∈ supp(GX),

R̃X(G)

GX(G)
≤ (1 + n−0.15).

Proof. Fix G ∈ GX . We note that if G is generated by the procedure for generating R̃X ,

then (MA,MB) are indeed completely determined by (k − 1) · 2` entries. Hence we have

R̃X(G) ≤ n(k−1)·2`

n(k−1)·(2`+L)
·

∏
i∈[T]

Cn−2k|X[i]|

−1

.

Also, note that

GX(G) =

∏
i∈[T]

Cn−2|X[i]|

−1

,

we have
R̃X(G)

GX(G)
≤ n−(k−1)·L

∏
i∈[T]

[
Cn−2|X[i]|

Cn−2k|X[i]|

]

23

By Fact 5.11 and noting k|X[i]| ≤ n1/3 · log n ≤ n0.34, the above can be bounded by

n−(k−1)·L · n(k−1)·L · (1 + n−0.2)2T ≤ (1 + n−0.15).

Now, note that

‖R̃X − GX‖TV = R̃X(⊥) +
∑

G∈supp(GX)

max(0, R̃X(G)− GX(G)).

By Claim 5.13 and Claim 5.12, the above can be bounded

n−0.2 +
∑

G∈supp(GX)

GX(G) · n−0.15 ≤ n−0.2 + n−0.15 ≤ n−0.1,

which completes the proof.

5.3 Proof of Lemma 5.9

In this section we prove Lemma 5.9, which is restated below.

Reminder of Lemma 5.9. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the

following holds: for every L ∈ [log n] and valid cycle pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[#~τ (G) > log3 n] ≤ n−100,

and

1/2 ≤ E
G←Gn,T

[#~τ (G)] ≤ 2.

Proof. We first bound EG←Gn,T [#~τ (G)]. By linearity of expectation, we have that

E
G←Gn,T

[#~τ (G)] =
∑
vs∈[n]

Pr
G←Gn,T

[Path(G, vs, ~τ) ∈ C~τ (G)].

So it suffices to bound PrG←Gn,T [Path(G, vs, ~τ) ∈ C~τ (G)] for a fixed vs ∈ [n]. We will

analyze the following “lazy procedure” when determining if Path(G, vs, ~τ) ∈ C~τ (G):

1. Let v0 = vs and ~w(0) be an empty list.

2. For i from 1 to L:

(a) Let e be the unique edge in the matching ~M τi that is adjacent to the vertex vi−1.

(b) Let vi be the endpoint of e other than vi−1. If i < L and vi is already visited in

~w(i−1) (i.e., vi is the endpoints of some edges in ~w(i−1)), then return NO.

24

(c) ~w(i) = ~w(i−1) ◦ e.

3. If vL = v0, return YES. Otherwise return NO.

Intuitively, in Step (2) we check whether we get a simple path, and in Step (3) we check

whether we get a cycle. Now we analyze the probability that the above procedure returns

YES. Let Ei be the event that the procedure does not return NO before the end of i-th loop

at Step (2). We first calculate Pr[Ei|Ei−1].

Note that conditioning on Ei−1, the path has visited i vertices v0, . . . , vi−1. Let ti be the

number of edges from M τi that is contained in ~w(i−1). We note that ti ≤ i/2. We can see

that the endpoint of e other than vi−1 has n− 1− 2ti many equally likely choices, and only

i− 2ti many of them causes the procedure to return NO. Hence, we have

Pr[Ei|Ei−1] = 1− i− 2ti
n− 1− 2ti

.

Now we analyze the probability of the procedure outputting YES conditioning on EL.

Again, we note that the other endpoint of the last edge e has n−1−2tL many equally likely

choices, but only 1 of them (vs) causes the procedure to return YES. Hence the probability

is 1
n−1−2tL

.

Hence, we have

psingle = Pr
G←Gn,T

[Path(G, vs, ~τ) ∈ C~τ (G)]

=
1

n− 1− 2tL
·
∏

i∈[L−1]

(
1− i− 2ti

n− 1− 2ti

)
.

Note that 2ti ≤ i for all i ∈ [L], we have

psingle ≤
1

n− 1− L
≤ 2/n,

and

psingle ≥
1

n
·
∏

i∈[L−1]

(
1− i

n− 1

)
≥ 1/2n,

the last inequality follows from L ∈ [log n].

The desired bound on EG←Gn,T [#~τ (G)] then follows from the fact that it equals n · psingle.

Upper bounding PrG←Gn,T [#~τ (G) > log3 n]. We first note that a vertex u ∈ [n] in

G ∈ supp(Gn,T) can only be contained in at most L many cycles with pattern ~τ , since fixing

its position in the pattern ~τ completely determines the cycle. Hence, a cycle C ∈ C~τ (G) can

share vertices with at most L2 many other cycles in C~τ (G).

Assuming now that #~τ (G) = |C~τ (G)| > log3 n. We consider a dependence graph VC
with vertices being C~τ (G), and we add an edge between two cycles in VC if they share a

25

vertex. By previous discussions, we know that VC has maximum degree ∆ ≤ L2 ≤ log2 n.

By a standard coloring argument, it follows that VC has an independent set of size at least

(log3 n)/(∆ + 1) ≥ log n− 1.

Let ` = log n− 1. From the above discussion, we know that #~τ (G) > log3 n implies the

existence of ` many vertex-disjoint pattern-~τ cycles in G. We denote the latter event as Enice
and will upper bound Pr[Enice] instead.

Let S = {s1, s2, . . . , s`} be a subset of [n]. For every possible length-L paths ~W =

(~w1, ~w2, . . . , ~w`), we will show that conditioning on the event

ES, ~Wpath =
∧
i∈[`]

[
Path(G, si, ~τ) = ~wi

]
,

the probability that all of Path(G, si, ~τ) are vertex-disjoint simple cycles with pattern ~τ ,

denoted as event ESnice are at most

(n− ` · L)−`.

Now, conditioning on Epath, if for any i 6= j, ~wi and ~wj share at least one vertex, then

by definition ESnice happens with probability 0. So we can assume all of ~wi are pair-wise

vertex-disjoint. In this case, we note that ESnice happens if and only if the following event

happens: for every i ∈ [`], the unique edge from M τL that is adjacent to wiL, connects to wi1.

Since all ~wi’s are vertex disjoint, the above happens with probability at most (n−` ·L)−`.

Putting the above together, it follows that

Pr[ESnice] ≤ (n− ` · L)−` ≤ (n− log2 n)−`.

By a union bound, we have

Pr[Enice] ≤
∑

S⊂[n],|S|=`

Pr[ESnice]

≤
(
n

`

)
· (n− log2 n)−`

≤ n`

`!
· (n− log2 n)−`

≤
(

n

n− log2 n

)`
· 1

`!

≤
(

1

1− log2 n/n

)`
· 1

`!

≤ n−100. (n is sufficiently large and ` = log n− 1)

Finally, recall that #~τ (G) > log3 n implies Enice, it follows that Pr[#~τ (G) > log3 n] ≤
n−100 as well, which completes the proof.

26

6 Lower Bounds for Finding a Long Path

Recall that L~τ (G) is the set of simple paths in G with pattern ~τ . In this section we

prove Lemma 4.2, which is restated below.

Reminder of Lemma 4.2. There exist ε, δ, γ0 ∈ (0, 1) such that for all T ∈ N≥1 and for

all sufficiently large n ∈ 2N≥1 the following holds: For all L ∈ [γ0 · log n], p ≤ (L− 15)/4T ,

valid path pattern ~τ ∈ [T]L, and p-pass nε-space streaming algorithms A, we have

Pr
G←Gn,T

[
A(G) ∈ L~τ (G)

]
≤ n3−δL/p. (11)

We will also call the problem of finding an element in L~τ (G) as the

Path-Search-Streamingn,T,~τ problem.

6.1 Lower Bounds for a Specific Pointer Chasing Problem

We will prove Lemma 4.2 by a reduction from a specific pointer chasing problem.

Definition 6.1 (The ASPCn,d problem). Let n ∈ N≥1 and d ∈ 2N≥1. In the ASPCn,d
problem, there are two players Alice and Bob, and d permutations ~π = (π1, π2, . . . , πd) on

[n]. Alice gets all the odd-indexed permutations π1, π3, . . . , πd−1, and Bob gets all the even-

indexed permutations π2, π4, . . . , πd. Let π≤i = πi ◦πi−1 ◦ . . . ◦π1 for every i ∈ [d]. Their goal

is to output the path path~π(s) = (s, π≤1(s), π≤2(s), . . . , π≤d(s)) for some s ∈ [n].

For notational convenience, let P(~π) = {path~π(s) : s ∈ [n]}. The goal of Alice and

Bob can then be restated as outputting an element from P(~π). We also let Pn,d denote the

uniform distribution over all possible ~π consisting of d permutations on [n].

We need the following lower bound for ASPCn,d; see Appendix A for a proof.

Lemma 6.2 (Lower Bounds for ASPCn,d). There exist ε, δ ∈ (0, 1) such that for all

sufficiently large n ∈ N the following holds: for all d ∈ [log n], p ≤ (d − 6)/2, and all

p-round communication protocols Π with at most nε communication complexity, it holds that

Pr
~π←Pn,d

[Π(~π) ∈ P(~π)] ≤ n1−δd/p,

where Π(~π) denotes the output of Π when Alice gets the input π1, π3, . . . , πd−1 and Bob gets

the input π2, π4, . . . , πd.

To make use of Lemma 6.2, we first reduce ASPC to another auxiliary problem, which is

closer to the Path-Search-Streaming problem considered in Lemma 4.2.

Definition 6.3 (The Path-Findingn,T,~τ problem). Let n, T, L ∈ N≥1 and ~τ ∈ [T]L be a valid

path pattern. In the Path-Findingn,~τ problem, there is a graph H consisting of L+ 1 layers of

27

vertices ~V = (V1, V2, . . . , VL+1), each with size n, and L set of edges ~W = (W1,W2, . . . ,WL)

such that Wi is a perfect bipartite matching between layers Vi and Vi+1. There are T players

P1, . . . , PT , such that the i-th players gets all W` such that τ` = i as input. Their goal is to

output a directed path from the first layer V1 to the last layer VL+1.

For simplicity, we will always assume Vi = {(i − 1) · n + 1, (i − 1) · n + 2, . . . , i · n} for

each i ∈ [L]. We also let Wn,L be the uniform distribution over all possible ~W consisting of

L perfect bipartite matchings, where the i-th matching is between Vi and Vi+1. We denote

P(~W) as the set of all directed paths from the first layer V1 to the last layer VL+1, going

through the graph defined by ~W . The goal of Path-Findingn,~τ can then be restated as output

an element of P(~W).

Using a reduction from the ASPC problem, we have the following lower bound for

Path-Finding.

Lemma 6.4 (Lower bounds for Path-Findingn,T,~τ). There exist ε, δ ∈ (0, 1) such that for all

T ∈ N and for all sufficiently large n ∈ N the following holds: for all L ∈ [log n], valid path

pattern ~τ ∈ [L]T , p ≤ (L− 15)/4T , and all p-round communication protocol Π with at most

nε communication complexity in the blackboard model,16 it holds that

Pr
~W←Wn,L

[Π(~W) ∈ P(~W)] ≤ n1−δL/p,

where Π(~W) denotes the output of the protocol Π when the T players get their inputs from
~W according to the pattern ~τ .

Proof. We first partition the T players into two disjoint sets T1, T2 ⊆ {P1, . . . , PT} such that

there are at least (L − 1)/2 indices ` such that τ` and τ`+1 are not in the same set. Such

partition always exists by a probabilistic argument, since a random partition gives (L−1)/2

such indices in expectation.

This allows us to view ~τ as d ≥ d(L−1)/2e+1 segments that alternate between players in

T1 and players in T2. We will view blackboard communication protocols for Path-Findingn,T,~τ
as a two-player communication protocol between “player” T1 and “player” T2.

Formally, let ~τ1, . . . , ~τd be the segments of τ such that each odd ~τi has all its coordinates

in T1, and each even ~τi has all its coordinates in T2. Fix a protocol Π for Path-Findingn,T,~τ .

We will use it to solve ASPCn,d, then apply the lower bound in Lemma 6.2.

Consider the following protocol for ASPCn,d.

16That is, in each round, from the first player to the T -th player, each player writes some bits to a
blackboard that can be seen by everyone. And the final output of the protocol is only determined by the
content of the blackboard at the end of the protocol. The communication complexity of the protocol is the
maximum total number of bits written on the blackboard.

28

Protocol for ASPCn,d

Inputs π1, . . . , πd

Communication

1. for each odd i, Alice samples uniformly random matchings in segment ~τi
conditioned on their composition equal to πi

2. for each even i, Bob samples uniformly random matchings in segment ~τi
conditioned on their composition equal to πi

3. denote the graph they generated by H, Alice and Bob run Π on H, where Alice

simulates all players in T1 and Bob simulates all players in T2, and obtain a path

Q in H

4. output the path for ~π obtained by composing all segments ~τ1, . . . , ~τd of Q

When π1, . . . , πd are uniform, H is a uniformly random graph. Alice knows the inputs

for all players in T1, and Bob knows the inputs for all players in T2. Hence, the players can

simulate Π. Moreover, the number of rounds in our protocol for ASPCn,d is at most T times

the number of rounds in Π. When Π outputs a correct path Q in H, the output of the

protocol for ASPCn,d is correct.

Hence, by Lemma 6.2, the probability that Π outputs a correct path is at most

n1−δd/p ≤ n1−δL/(2p). By reparametrizing, we prove the lemma.

6.2 Proof of Lemma 4.2

Now we are ready to prove Lemma 4.2 by a reduction from the Path-Finding problem.

Reduction Red-Path from Path-Findingnγ ,T,~τ to Path-Search-Streamingn,T,~τ

Parameters γ = 10−3. n, T, ~τ are parameters for the desired Path-Search-Streaming

problem instance. Let m = nγ.

Input for Path-Findingm,T,~τ There is a graphH consisting of L+1 layers of vertices ~V =

(V1, V2, . . . , VL+1), each with size m, and L matchings ~W = (W1,W2, . . . ,WL)

such that Wi is a perfect bipartite matching between layers Vi and Vi+1. There

are T players P1, . . . , PT , such that the Pi gets all W` such that τ` = i as input.

We also have Vi = {(i− 1) ·m+ 1, (i− 1) ·m+ 2, . . . , i ·m} for each i ∈ [L], and⋃
i∈[L+1] Vi = [m · (L+ 1)].

• All T players first use public randomness to sample an injective function

29

ϕ : [m · (L+ 1)]→ [n].

• For each i ∈ [T]:

1. Let Ei be the set of all edges from {W` : τ` = i}. Player Pi first constructs

a partial matching Mi = {(ϕ(u), ϕ(v)) : (u, v) ∈ Ei}.a

2. Pi then extends Mi into a perfect matching over [n] uniformly at random.

aMi is indeed a partial matching since ~τ is a valid path pattern, as required by the definition of
Path-Search-Streamingn,T,~τ .

Notation. We call a subset X ⊆ [n] a valid starting subset of a graph G = ([n],M1 ◦ . . . ◦
MT) ∈ supp(Gn,T) with respect to the pattern ~τ , if for every u ∈ X, Path(G, u, ~τ) is simple,

and for every two distinct u, v ∈ X, Path(G, u, ~τ) and Path(G, v, ~τ) are vertex-disjoint. We

also use Xm,~τ (G) to denote the set of all valid starting subset of G of size m with respect to

~τ . For a subset S ⊆ [n], we use XS
m,~τ (G) to denote the subset of Xm,~τ (G) that contains S as

a subset.

For a subset X ⊆ [n] with size nγ, we use Gn,T,~τ ;X to denote the uniform distribution

over all possible graphs G ∈ supp(Gn,T) such that X ∈ X|X|,~τ (G). Also, let Rn,T,~τ ;X be the

distribution outputted by Red-Path given inputs drawn from Wn,L and conditioning on the

event that {ϕ(i) : i ∈ [nγ]} = X. We have the following observation.

Observation 6.5. Let n, T, ~τ and γ be as in the reduction Red-Path. For every X ⊆ [n]

with size nγ, it holds that the distributions Rn,T,~τ ;X and Gn,T,~τ ;X are identical.

We also need the following lemma.

Lemma 6.6. Let γ = 10−3. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following

holds: letting m = nγ, for every L ∈ [log n] and valid path pattern ~τ ∈ [T]L, it holds that

1.

Pr
G←Gn,T

[
|Xm,~τ (G)| ≤ 1

2
·
(
n

m

)]
≤ n− logn,

2.

Pr
G←Gn,T

[
|X{1}m,~τ (G)| ≤ 1

2
·
(
n− 1

m− 1

)
∧ Path(G, 1, ~τ) ∈ L~τ (G)

]
≤ n− logn.

Now we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. Let ε, δ ∈ (0, 1) be two constants to be specified later. Let ε̃, δ̃ be the

constants in Lemma 6.4, and γ0 = γ = 10−3.

Given a p-pass nε-space streaming algorithm A such that

Pr
G←Gn,T

[A(G) ∈ L~τ (G)] > n3−δL/p, (12)

30

we will construct a communication protocol for Path-Findingm,T,~τ that violates Lemma 6.4.

First, we note that (12) implies that there exists a vertex s∗ ∈ [n] such that

Pr
G←Gn,T

[A(G) = Path(G, s∗, ~τ) ∧ A(G) ∈ L~τ (G)] > n2−δL/p. (13)

We set psuc = n2−δL/p for notational convenience. By symmetry, we can assume that

s∗ = 1.

Our protocol Π for Path-Findingm,T,~τ works by first running Red-Path to obtain a

Path-Search-Streamingn,T,~τ instance, and then simulating the streaming algorithm A using p

rounds and nε · (p · T) bits of communication to obtain A’s output, a length-L path ~v =

(v1, v2, . . . , vL+1) ∈ [n]. Finally, it constructs a new length-L path ~u in the Path-Findingm,T,~τ
by setting ui = ϕ−1(vi) for every i ∈ [L+ 1], and outputs ~u (if some vi is not in the range of

ϕ, or A does not output a valid length-L path ~u, Π simply outputs ⊥).

Now we analyze the success probability of Π over the distribution Wn,L. We first note

that conditioning on the event that {ϕ(i) : i ∈ [m]} = X, the output distribution of Red-Path

is Rn,T,~τ ;X , which is identical to Gn,T,~τ ;X by Observation 6.5. From now on, we will denote

Gn,T,~τ ;X by GX for simplicity.

The success probability can then be lower bounded by

Pr
X←([n]

m)
Pr

G←GX
[A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ 1 ∈ X] . (14)

Now, let G̃ be the distribution generated as follows: first draw X ←
(

[n]
m

)
, then draw

G← GX and output G. (14) can then be alternatively written as

Pr
G←G̃

Pr
X∈Xm,~τ (G)

[A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ 1 ∈ X]

= Pr
G←G̃

1{A(G)=Path(G,1,~τ)∧A(G)∈L~τ (G)} · Pr
X∈Xm,~τ (G)

[1 ∈ X] . (15)

To lower bound (15), we need the following claim.

Claim 6.7. For every event E, it holds that

Pr
G←G̃

[E(G)] ≥ 1

2
·
[

Pr
G←G

[E(G)]− n− logn

]
.

Proof. We first note that supp(G̃) ⊆ supp(G), and for G ∈ supp(G), we have

G̃(G) =
Xm,~τ (G)∑

H∈supp(G) Xm,~τ (H)
,

31

which implies that

G̃(G)

G(G)
=

Xm,~τ (G)

EH∈supp(G) Xm,~τ (H)
.

Now, we have

Pr
G←G̃

[E(G)] = Pr
G←G

G̃(G)

G(G)
· [E(G)]

= Pr
G←G

Xm,~τ (G)

EH∈supp(G) Xm,~τ (H)
· [E(G)]

≥
(
n

m

)−1

·
(
n

m

)
· 1/2 · Pr

G←G

[
Xm,~τ (G) >

1

2
·
(
n

m

)
∧ E(G)

]
(EH∈supp(G) Xm,~τ (H) ≤

(
n
m

)
)

≥ 1

2
· (Pr
G←G

[E(G)]− n− logn). (Lemma 6.6)

Now we are ready to lower bound (15). We have

Pr
G←G̃

1{A(G)=Path(G,1,~τ)∧A(G)∈L~τ (G)} · Pr
X∈Xm,~τ (G)

[1 ∈ X]

≥
(
n−1
m−1

)
/2(

n
m

) · Pr
G←G̃

[
A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ X{1}m,~τ (G) ≥

(
n− 1

m− 1

)
· 1

2

]
≥ n−1 ·

(
Pr
G←G

[
A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ X{1}m,~τ (G) ≥

(
n− 1

m− 1

)
· 1

2

]
− n− logn

)
(Claim 6.7)

≥ n−1 · (psuc − 2 · n− logn).

(Lemma 6.6 and A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) implies Path(G, 1, ~τ) ∈ L~τ (G))

Now, we set ε = ε̃/2, which means Π has communication complexity nε · (p · T) ≤ nε̃.

We also set δ = 1
2
· γ · δ̃. Then the success probability of Π over Wn,L is at least

n−1 · (n−δL/p+2 − 2 · n− logn) ≥ n−δL/p+0.5 = n−
1
2
δ̃γL/p+1/2 > m−δ̃L/p+1, (16)

contradicting Lemma 6.4. This completes the proof.

6.3 Proof of Item (1) of Lemma 6.6

Reminder of Item (1) of Lemma 6.6. Let γ = 10−3. For all T ∈ N≥1, for all

sufficiently large n ∈ 2N≥1 the following holds: letting m = nγ, for every L ∈ [log n] and

32

valid path pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[
|Xm,~τ (G)| ≤ 1

2
·
(
n

m

)]
≤ n− logn.

Proof.

Notation and setup. Throughout the proof, we use G to denote a random variable drawn

from Gn,T . For every S ∈
(

[n]
m

)
, we use YS to denote the random variable 1{S∈Xm,~τ (G)} (i.e.,

YS equals 1 if S ∈ Xm,~τ (G) and 0 otherwise). We also let M =
(
n
m

)
and

Y =
∑

S∈([n]
m)

YS = |Xm,~τ (G)|. (17)

Item (1) can then be restated as

Pr[Y /M ≤ 1/2] ≤ n− logn. (18)

For each S ∈
(

[n]
m

)
, we also define ZS = (1− YS) and Z =

∑
S∈([n]

m) ZS. Let ` ≤ n1/3 be

an even integer to be chosen later. We will prove (18) by upper bounding

E[(Z/M)`]. (19)

Expanding (19). Now, for each 1 ≤ u < v ≤ n, we define Wu,v to be the indicator

random variable that the following three conditions all hold: (1) Path(G, u, ~τ) is simple, (2)

Path(G, v, ~τ) is simple, and (3) Path(G, u, ~τ) and Path(G, v, ~τ) share at least one vertex.

Also, for each u ∈ [n], we define Bu to be the indicator random variable that Path(G, u, ~τ)

is not simple. By the definition of ZS, we can see that for every S ∈
(

[n]
m

)
,

ZS ≤
∑

u,v∈S, u<v

Wu,v +
∑
u∈S

Bu. (20)

Plugging (20) in the definition of Z, we have

Z ≤
∑

S∈([n]
m)

[∑
u,v∈S, u<v

Wu,v +
∑
u∈S

Bu

]
(21)

=
∑

1≤u<v≤n

Wu,v ·
(
n− 2

m− 2

)
+
∑
u∈[n]

Bu ·
(
n− 1

m− 1

)
, (22)

which further implies that

Z/M ≤
∑

1≤u<v≤n

Wu,v ·
m(m− 1)

n(n− 1)
+
∑
u∈[n]

Bu ·
m

n
.

33

The inequality above can be further simplified to

Z/M ≤ E
1≤u<v≤n

[Wu,v] ·
m(m− 1)

2
+ E

u∈[n]
[Bu] ·m. (23)

Raising both sides of (23) to the `-th power, we have

(Z/M)` ≤
∑̀
k=0

(
`

k

)
·
(
m(m− 1)

2

)k
·m`−k

 E
1≤u1<v1≤n

...
1≤uk<vk≤n

∏
i∈[k]

Wui,vi · E
w1,...,w`−k∈[n]

∏
i∈[`−k]

Bwi



≤
∑̀
k=0

2` ·
(
m2/2

)k ·m`−k

 E
1≤u1<v1≤n

...
1≤uk<vk≤n

∏
i∈[k]

Wui,vi · E
w1,...,w`−k∈[n]

∏
i∈[`−k]

Bwi



≤ m2` ·
∑̀
k=0

 E
1≤u1<v1≤n

...
1≤uk<vk≤n

∏
i∈[k]

Wui,vi · E
w1,...,w`−k∈[n]

∏
i∈[`−k]

Bwi

 .

Taking the expectation of both sides, we have

E[(Z/M)`] ≤ m2` ·
∑̀
k=0

 E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E

∏
i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi


 . (24)

In the rest of the proof, we will focus on upper bounding the right side of (24). We will

upper bound each summand above separately depending on whether k ≥ `/2 or k < `/2.

The case when k < `/2. We first focus on the case that k < `/2. We set t = ` − k and

note that t ≥ `/2.

Now, first note that we have

E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E

∏
i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi

 ≤ E
w1,...,wt∈[n]

E

∏
i∈[t]

Bwi

 . (25)

34

So in the following we will upper bound

E
w1,...,wt∈[n]

E

∏
i∈[t]

Bwi

 .
We will first condition on the event that the number of distinct elements in w1, . . . , wt is

more than t/2. We first show the probability that this event does not happen is small, in

particular

Pr
w1,...,wt∈[n]

[∣∣{wi}i∈[t]

∣∣ ≤ t/2
]
≤
(
n

t/2

)
·
(
t/2

n

)t
≤ n−t/4. (26)

So now we assume that
∣∣{wi}i∈[t]

∣∣ = r > t/2, and we will upper bound

E

[∏
i∈S

Bi

]

for any S ∈
(

[n]
r

)
.

Claim 6.8. For every r ≤ n1/3 and S ∈
(

[n]
r

)
, it holds that

E

[∏
i∈S

Bi

]
≤ n−r/2.

Combining (26) and Claim 6.8, we have

E
w1,...,wt∈[n]

E

∏
i∈[t]

Bwi

 ≤ n−t/4 + n−t/4 ≤ n−`/8 + n−`/8 ≤ 2n−`/8. (27)

Putting (27) and (25) together, and recall that we assumed k < `/2, we have

`/2−1∑
k=0

 E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E

∏
i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi


 ≤ (`/2) · 2n−`/8 ≤ ` · n−`/8. (28)

The case when k ≥ `/2. Next we consider the case when k ≥ `/2. We have that

E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E

∏
i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi

 ≤ E
1≤u1<v1≤n

...
1≤uk<vk≤n

E

∏
i∈[k]

Wui,vi

 . (29)

35

In the following we will upper bound

E
1≤u1<v1≤n

...
1≤uk<vk≤n

E

∏
i∈[k]

Wui,vi

 .

Let S = {(ui, vi)}i∈[r] be a set of pairs. We say that S is valid, if the following two

conditions hold: (1) all of u1, . . . , ur, v1, . . . , vr are distinct elements of [n] and (2) ui < vi
for every i ∈ [r].

We need the following two claims.

Claim 6.9. For every k ≤ n1/3, it holds that

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
∃ a valid set S s.t. |S| ≥ k/2 and S ⊆ {(ui, vi)}i∈[k]

]
≥ 1− n−k/4.

Claim 6.10. For every r ≤ n1/3. Let S be a valid set of pairs such that |S| = r. It holds

that

E

 ∏
(u,v)∈S

Wu,v

 ≤ n−r/2.

Combining Claim 6.9 and Claim 6.10, we immediately have

E
1≤u1<v1≤n

...
1≤uk<vk≤n

E

∏
i∈[k]

Wui,vi

 ≤ n−k/4 + n−k/4 ≤ 2n−`/8. (30)

Putting (30) and (29) together and recall that we assumed k ≥ `/2, we have

∑̀
k=`/2

 E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E

∏
i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi


 ≤ (`/2 + 1) · 2n−`/8 ≤ 2` · n−`/8.

(31)

Proving Item (1). Now, plugging (27) and (30) into (24), we have

E[(Z/M)`] ≤ m2` · 3` · n−`/8. (32)

36

Recall that Z/M = 1− Y /M , and hence Item (1) is equivalent to

Pr[Z/M > 1/2] ≤ n− logn. (33)

To prove (33), we now set ` = log2 n. By Markov’s inequality, we have

Pr[Z/M > 1/2] = Pr[(Z/M)` > 2−`]

≤ 2` · E[(Z/M)`]

≤ 2` ·m2` · 3` · n−`/8 (By (32))

≤ 2` · 3` · n−`/8+2`·γ (m = nγ)

≤ 2` · 3` · n−`/10 (1/8− 2γ > 1/10)

≤ n− logn. (` = log2 n)

6.4 Proof of Item (2) of Lemma 6.6

Reminder of Item (2) of Lemma 6.6. Let γ = 10−3. For all T ∈ N≥1, for all

sufficiently large n ∈ 2N≥1 the following holds: letting m = nγ, for every L ∈ [log n] and

valid path pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[
|X{1}m,~τ (G)| ≤ 1

2
·
(
n− 1

m− 1

)
∧ Path(G, 1, ~τ) ∈ L~τ (G)

]
≤ n− logn.

Proof.

Notation and setup. We define random variables G, Wu,v, Bu, YS, and ZS in the same

way as in the proof of Item (1) of Lemma 6.6. We will however define Z, Y , and M differently

as below.

Let S{1} = {S : S ∈
(

[n]
m

)
∧ 1 ∈ S}. We define

Y =
∑

S∈S{1}
YS, Z =

∑
S∈S{1}

ZS, and M =

(
n− 1

m− 1

)
.

By definition, we have

Y = |X{1}m,~τ (G)|.

Recall that Bu is the indicator that Path(G, u, ~τ) is not simple. Our goal can then be

restated as proving

Pr[Z/M > 1/2 ∧B1 = 0] ≤ n− logn,

37

which is equivalent to

Pr[Z/M · (1−B1) > 1/2] ≤ n− logn.

We will prove the above by upper bounding

E
[(
Z/M · (1−B1)

)`]
, (34)

for some parameter ` < n1/3 to be specified later.

Expanding (34). Recall that

ZS ≤
∑

u,v∈S, u<v

Wu,v +
∑
u∈S

Bu.

We have

Z ≤
∑

S∈S{1}

[∑
u,v∈S, u<v

Wu,v +
∑
u∈S

Bu

]

=
∑

2≤u<v≤n

Wu,v ·
(
n− 3

m− 3

)
+
∑

2≤u≤n

Bu ·
(
n− 2

m− 2

)
+
∑

2≤v≤n

W1,v ·
(
n− 2

m− 2

)
+ B1 ·

(
n− 1

m− 1

)
.

Consequently,

Z(1−B1) ≤
∑

2≤u<v≤n

Wu,v ·
(
n− 3

m− 3

)
+
∑

2≤u≤n

Bu ·
(
n− 2

m− 2

)
+
∑

2≤v≤n

W1,v ·
(
n− 2

m− 2

)
.

Recall that M =
(
n−1
m−1

)
, dividing both sides by M , we further have

Z(1−B1)/M ≤
∑

2≤u<v≤n

Wu,v ·
(m− 1)(m− 2)

(n− 1)(n− 2)
+
∑

2≤u≤n

Bu ·
m− 1

n− 1
+
∑

2≤v≤n

W1,v ·
m− 1

n− 1
.

≤ E
2≤u<v≤n

Wu,v ·m2 + E
2≤u≤n

Bu ·m+ E
2≤v≤n

W1,v ·m.

Taking the `-th power and then the expectation of both sides, we have

E
[(
Z/M · (1−Bu)

)`]
≤ 3` ·m2`

∑
α,β,θ:α+β+θ=`

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[α]

Wui,vi ·
∏
i∈[β]

Bwi ·
∏
i∈[θ]

W1,zi

 .

We divide the triples (α, β, θ) into three categories: (1) α ≥ `/3, (2) α < `/3 and β ≥ `/3,

and (3) α, β < `/3 and θ ≥ `/3, and bound them separately. Let I1, I2, and I3 be the set of

38

triples (α, β, θ) that satisfies (1), (2), and (3), respectively.

The case when (α, β, θ) ∈ I1. First, we have

∑
(α,β,θ)∈I1

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[α]

Wui,vi ·
∏
i∈[β]

Bwi ·
∏
i∈[θ]

W1,zi



≤
∑

(α,β,θ)∈I1

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E

∏
i∈[α]

Wui,vi

 .

By Claim 6.9 and Claim 6.10, we have

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E

∏
i∈[α]

Wui,vi

 ≤ 2(n− 1)−α/4 ≤ 2(n− 1)−`/12.

Therefore

∑
(α,β,θ)∈I1

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[α]

Wui,vi ·
∏
i∈[β]

Bwi ·
∏
i∈[θ]

W1,zi

 ≤ `2·2(n−1)−`/12.

(35)

The case when (α, β, θ) ∈ I2. Next, we have

∑
(α,β,θ)∈I2

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[α]

Wui,vi ·
∏
i∈[β]

Bwi ·
∏
i∈[θ]

W1,zi



≤
∑

(α,β,θ)∈I2

E
w1,...,wβ∈{2,...,n}

E

∏
i∈[β]

Bwi

 .
By (26) and Claim 6.8, we have

E
w1,...,wβ∈[n]

E

∏
i∈[β]

Bwi

 ≤ 2(n− 1)−β/4 ≤ 2(n− 1)−`/12.

39

Therefore

∑
(α,β,θ)∈I2

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[α]

Wui,vi ·
∏
i∈[β]

Bwi ·
∏
i∈[θ]

W1,zi

 ≤ `2·2(n−1)−`/12.

(36)

The case when (α, β, θ) ∈ I3. Finally, we have

∑
(α,β,θ)∈I3

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[α]

Wui,vi ·
∏
i∈[β]

Bwi ·
∏
i∈[θ]

W1,zi



≤
∑

(α,β,θ)∈I3

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[θ]

W1,zi

 .
By (26), we have

Pr
z1,...,zθ∈{2,...,n}

[|{zi}i∈[θ]| ≥ θ/2] ≥ 1− (n− 1)−θ/4. (37)

We also need the following claim.

Claim 6.11. For every r > (log n+ 1)2 and S ∈
({2,...,n}

r

)
, it holds that

E

[∏
u∈S

W1,u

]
= 0.

Proof. Recall that W1,u means that both Path(G, 1, ~τ) and Path(G, u, ~τ) are simple and

they share at least one vertex. Since one vertex µ can only be on Path(G, u, ~τ) for at

most L + 1 many vertices u (since µ’s position in the pattern ~τ completely determines the

path Path(G, u, ~τ)), we know that Path(G, 1, ~τ) can intersect with Path(G, u, ~τ) for at most

(L + 1)2 ≤ (log n + 1)2 many distinct u. Hence, if |S| > (log n + 1)2, it must hold that∏
u∈S W1,u = 0, which completes the proof.

Now, we set ` = log3 n. Combining (37) and Claim 6.11, we have that

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[θ]

W1,zi

 ≤ (n− 1)−`/12.

40

Therefore

∑
(α,β,θ)∈I3

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E

∏
i∈[α]

Wui,vi ·
∏
i∈[β]

Bwi ·
∏
i∈[θ]

W1,zi

 ≤ `2·(n−1)−`/12.

(38)

Putting (35), (36), and (38) together, we have

E
[(
Z/M · (1−Bu)

)`] ≤ 3` ·m2` · 5 · `2 · (n− 1)−`/12.

Finally, by Markov’s inequality, we have that

Pr[(Z/M · (1−Bu))
` > 2−`] ≤ 2` · 3` ·m2` · 5 · `2 · (n− 1)−`/12

≤ 7` ·m2` · n−`/13

≤ 7` · n−`/13+2`·γ

≤ n− logn. (−1/13 + 2γ < 0 and ` = log3 n)

This completes the proof.

6.5 Omitted Proofs

We first prove Claim 6.9 (restated below).

Reminder of Claim 6.9. For every k ≤ n1/3, it holds that

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
∃ a valid set S s.t. |S| ≥ k/2 and S ⊆ {(ui, vi)}i∈[k]

]
≥ 1− n−k/4.

Proof. We consider the following greedy algorithm that constructs a valid subset S̃ of

{(ui, vi)}i∈[k]:

• S̃ = ∅ initially.

• For every i ∈ [k], if

{ui, vi} ∩
(
{u`}`∈[i−1] ∪ {v`}`∈[i−1]

)
= ∅,

we add (ui, vi) to S̃ (i.e., if (ui, vi) does not share any element with all previous i− 1

pairs).

41

It is straightforward to verify that S̃ is always a valid subset of {(ui, vi)}i∈[k].

To prove the claim, it suffices to prove that

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
|S̃| ≤ k/2

]
≤ n−k/4.

We note that |S̃| ≤ k/2 happens only if there exists a subset W ∈
(

[k]
k/2

)
such that in the

greedy algorithm for constructing S̃, for every i ∈ W , (ui, vi) is not added to S̃. We say such

a subset W is bad.

We then have

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
|S̃| ≤ k/2

]
≤

∑
W∈([k]

k/2)

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
W is bad

]
.

Now, we note that conditioning on the values of ((u`, v`))`∈[i−1], the probability that

(ui, vi) is not added to S̃ is at most

1−
(

(n− 2(i− 1))

2

)/(
n

2

)
≤ 1− n− 2(i− 1)

n
· n− 2(i− 1)− 1

n− 1

≤ 1−
(

1− 2(i− 1)

n

)
·
(

1− 2(i− 1)

n− 1

)
≤ 2(i− 1)

n
+

2(i− 1)

n− 1
≤ 6k/n.

So the probability that W ∈
(

[k]
[k/2]

)
is bad can be bounded by (6k/n)k/2, and we have

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
|S̃| ≤ k/2

]
≤
(
k

k/2

)
· (6k/n)k/2

≤ 2k · (6k/n)k/2

≤ (24k/n)k/2

≤ n−k/4. (k ≤ n1/3)

This completes the proof.

Before proving Claim 6.8, we give a template for constructing a sampling procedure for

the distribution Gn,T .

42

Sampler SampF for Gn,T

1. Initially M1,M2, . . . ,MT are all empty sets, and R1, R2, . . . , RT are all [n].

2. While not all of Ri’s are empty

(a) Pick a vertex u ∈ [n] and an index i ∈ [T] such that u ∈ Ri.

(b) Sample uniformly at random a vertex v from Ri \ {u}.

(c) Add (u, v) to M i, and remove u and v from Ri.

3. Output G = ([n],M1 ◦M2 ◦ . . .MT).

Picking rule Formally, in Step (2.a), the pair (u, i) is determined by a (potentially

probabilistic) function F that maps the current partial matchings (M1, . . . ,MT)

to an element (u, i) ∈ [n] × [T] such that u ∈ Ri.a We call such a function F a

valid picking rule.

aNote that for each i ∈ [T], Ri is determined by M i.

We have the following observation.

Observation 6.12. For any valid picking rule F , the output distribution of SampF is

identical to Gn,T .

Now we are ready to prove Claim 6.8.

Reminder of Claim 6.8. For every r ≤ n1/3 and S ∈
(

[n]
r

)
, it holds that

E

[∏
u∈S

Bu

]
≤ n−r/2.

Proof. Let s1 < s2 < s3 < · · · < sr be the elements of S. In the following we analyze

a particular sampler SampBS that instantiates the sampling template Samp by fixing a

particular picking rule.

Sampler SampBS for Gn,T

1. Initially M1,M2, . . . ,MT are all empty sets, and R1, R2, . . . , RT are all [n]. Let

K = ∅.

2. For each i ∈ [r]:

(a) If si ∈ K, go to label END.

(b) Set si,0 = si and add si to K.

43

(c) For each j ∈ [L]:

i. If si,j−1 /∈ Rτj , go to label END.

ii. Sample uniformly at random a vertex v from Rτj \ {si,j−1}.
iii. Add (si,j−1, v) to M τj , and remove si,j−1 and v from Rτj .

iv. Set si,j = v. If v ∈ K, go to label END.

v. Add v to K.

(d) Go to label STOP.a

(e) END

3. STOP: While not all of Ri’s are empty

(a) Pick a vertex u ∈ [n] and an index i ∈ [T] such that u ∈ Ri.

(b) Sample uniformly at random a vertex v from Ri \ {u}.

(c) Add (u, v) to M i, and remove u and v from Ri.

4. Output G = ([n],M1 ◦M2 ◦ . . .MT).

aAt this point, we know that Path(G, si, ~τ) is simple.

Intuitively speaking, in the above sampler, for each si, we try to first sample the walk

Path(G, si, ~τ), and maintain K as the set of visited vertices. Whenever we encounter a

vertex that is already visited before (by the current si or earlier sj for j < i), we simply

stop sampling the current walk. Also, when we have successfully sampled the whole walk

Path(G, si, ~τ) without encountering any already visited vertices, we know that Path(G, si, ~τ)

is simple, meaning that Bsi = 0, and we can already go to STOP to sample the rest of the

graphs since we already know that
∏

u∈S Bu = 0.

Now we formally analyze SampBS. Let Ei be the event that it reaches END at the

i-th iteration of Step (2) (i.e., it does not reach Step (2.d) and go directly to STOP). By

previous discussions, we note that ¬Er implies that we had sampled a simple path with

pattern ~τ starting from some si, and therefore
∏

u∈S Bu = 0. Hence, we have

E

[∏
u∈S

Bu

]
≤ Pr[Er].

Hence it suffices to upper bound Pr[Er], we will indeed prove

Claim 6.13. For every i ∈ [r], it holds that

Pr[Ei|Ei−1] ≤ 1/
√
n.

44

Claim 6.13 immediately implies that

E

[∏
i∈S

Bi

]
≤ n−r/2,

which completes the proof of Claim 6.8.

Finally, we prove Claim 6.13.

Proof of Claim 6.13. Fix i ∈ [r], conditioning on the event Ei−1, let Ki−1 be the set K at

the end of (i − 1)-th iteration of Step (2). We can see that {s1, s2, . . . , si−1} ⊆ K and

|K| ≤ (i − 1) · (L + 1). Now we further conditioning on the size nK of Ki−1. We can see

that Ki−1 \ {s1, s2, . . . , si−1} is a uniformly random subset of [n] \ {s1, s2 . . . , si−1} with size

nK − (i− 1) ≤ i · L.

Now we lower bound Pr[¬Ei|Ei−1]. We note that this happens if (1) si /∈ Ki−1 and (2)

Path(G, si, ~τ) is simple and does not visited any vertices in Ki−1. By our previous discussion

and a direct calculation, si /∈Ki−1 happens with probability at least 1− i·L
n/2

.

We then conditioning on the event si /∈ Ki−1, and also the value of Ki−1 to be Ki−1.

We can then calculate the probability of Path(G, si, ~τ) is simple and does not visited any

vertices in Ki−1 is at least (
1− i · L

n/2

)L
.

Putting everything together and recall that L ≤ log n and i ≤ r ≤ n1/3, we have

Pr[¬Ei|Ei−1] ≥
(

1− i · L
n/2

)L+1

≥ 1− 1/
√
n,

which completes the proof.

Reminder of Claim 6.10. For every r ≤ n1/3. Let S be a valid set of pairs such that

|S| = r. It holds that

E

 ∏
(u,v)∈S

Wu,v

 ≤ n−r/2.

Proof. Let (u1, v1), (u2, v2), . . . , (ur, vr) be the elements of S. We will analyze the following

sampler SampW.

Sampler SampWS for Gn,T

1. Initially M1,M2, . . . ,MT are all empty sets, and R1, R2, . . . , RT are all [n]. Let

K = ∅.

45

2. For each i ∈ [r]:

(a) For each µ ∈ {ui, vi}

i. If µ ∈ K, go to label END.

ii. Set µcur = µ.

iii. For each j ∈ [L]:

A. If µcur /∈ Rτj , go to label END.

B. Sample uniformly at random a vertex ν from Rτj \ {µcur}.
C. Add (µcur, ν) to M τj , and remove µcur and ν from Rτj .

D. Set µcur = ν. If ν ∈ K, go to label END.

E. Add ν to K.

(b) go to label STOP.a

(c) END

(d) Add ui and vi to K.

3. STOP: While not all of Ri’s are empty

(a) Pick a vertex u ∈ [n] and an index i ∈ [T] such that u ∈ Ri.

(b) Sample uniformly at random a vertex v from Ri \ {u}.

(c) Add (u, v) to M i, and remove u and v from Ri.

4. Output G = ([n],M1 ◦M2 ◦ . . .MT).

aAt this point, we know that both Path(G, ui, ~τ) and Path(G, vi, ~τ) are simple, and they do not
share any vertices.

Intuitively speaking, in the above sampler, we maintain K as the set of visited vertices.

For each i ∈ [r], we try to first sample the walk Path(G, ui, ~τ). Whenever we encounter

a vertex that is already visited before (by the current ui or earlier uj, vj for j < i), we

simply stop the sampling the induced walk. When we successfully sampled the whole walk

Path(G, ui, ~τ) without encountering any already visited vertices, we know that Path(G, ui, ~τ)

is simple. We then similarly try to sample the walk Path(G, vi, ~τ). If we successfully reach

Step (2.b), it means that both Path(G, ui, ~τ) and Path(G, vi, ~τ) are simple, and they do not

share any vertices, meaning that Wui,vi = 0. We can then go to STOP to sample the rest

of the graphs since we already know that
∏

(u,v)∈S Wu,v = 0.

Our proof below follows the same structure of that of Claim 6.8. Now we formally analyze

SampWS. Let Ei be the event that it reaches END at the i-th iteration of Step (2) (i.e., it

does not reach Step (2.b) and then go directly to STOP). By previous discussions, we note

46

that ¬Er implies that
∏

(u,v)∈S Wu,v = 0. Hence, we have

E

 ∏
(u,v)∈S

Wu,v

 ≤ Pr[Er].

Hence it suffices to upper bound Pr[Er], we will indeed prove

Claim 6.14. For every i ∈ [r], it holds that

Pr[Ei|Ei−1] ≤ 1/
√
n.

Claim 6.14 immediately implies that

E

 ∏
(u,v)∈S

Wu,v

 ≤ n−r/2,

which completes the proof of Claim 6.10.

Finally, we prove Claim 6.14.

Proof of Claim 6.14. Fix i ∈ [r], conditioning on the event Ei−1, let Ki−1 be the set K at

the end of (i − 1)-th iteration of Step (2). Let Vi−1 = {u`}`∈[i−1] ∪ {v`}`∈[i−1]. We can see

that Vi−1 ⊆ K and |K| ≤ 2 · (i − 1) · (L + 1). Now we further conditioning on the size nK
of Ki−1. We can see that Ki−1 \ Vi−1 is a uniformly random subset of [n] \ Vi−1 with size

nK − 2 · (i− 1) ≤ 2 · i · L.

Now we lower bound Pr[¬Ei|Ei−1]. We note that this happens if (1) ui /∈ Ki−1

and (2) Path(G, ui, ~τ) is simple and does not visited any vertices in Ki−1, (3) vi /∈
Ki−1 ∪ Path(G, ui, ~τ) and (4) Path(G, vi, ~τ) is simple and does not visited any vertices in

Ki−1 ∪ Path(G, ui, ~τ).

Note that conditioning on both of (1) and (2) hold, Path(G, ui, ~τ) \ {ui} distributes as a

uniform size-L subset of [n] \ (Ki−1 ∪ {ui}).
Hence, by a similar calculation as in Claim 6.13, we have

Pr[¬Ei|Ei−1] ≥
(

1− O(i · L)

n

)2(L+1)

≥ 1− 1/
√
n,

which completes the proof.

47

A Proof of Lemma 6.2

Reminder of Lemma 6.2. There exist ε, δ ∈ (0, 1) such that for all sufficiently large

n ∈ N the following holds: for all d ∈ [log n], p ≤ (d− 6)/2, and all p-round communication

protocols Π with at most nε communication complexity, it holds that

Pr
~π←Pn,d

[Π(~π) ∈ P(~π)] ≤ n1−δd/p,

where Π(~π) denotes the output of Π when Alice gets the input π1, π3, . . . , πd−1 and Bob gets

the input π2, π4, . . . , πd.

To prove the lemma, we will exploit the direct product structure in the problem: We can

view the length-d output as Θ(d/p) segments of length Θ(p), and argue that each segment is

hard to compute with nε communication in p rounds, then apply a direct product theorem.

We first formally prove this reduction.

We define the pointer chasing problem with a fixed starting vertex s as follows.

Definition A.1. Let n, t ∈ N such that t is even. In the PCn,t problem, there are two players

Alice and Bob, a start vertex s ∈ [n] and t permutations ~π = (π1, π2, . . . , πt) on [n]. Both

Alice and Bob know s. Alice also gets all the odd permutations π1, π3, . . . , πt−1, and Bob also

gets all the even permutations π2, π4, . . . , πt. Let π≤i = πi ◦ πi−1 ◦ . . . ◦ π1. Their goal is to

output the path path~π(s) = (s, π≤1(s), π≤2(s), . . . , π≤t(s)).

Lemma A.2. Suppose there is a p-round protocol with at most S bits of communication that

solves ASPCn,d with probability greater than n1−δd/p when ~π is sampled from Pn,d. Then for

k, t ∈ N such that t is even and k(2t+ 2) ≤ d, there is a p-round protocol with at most S bits

of communication such that given ~π1, ~π2, . . . , ~πk ← Pn,t and s1, . . . , sk ∈unif [n] independently,

the protocol outputs (path~π1(s1), . . . , path~πk(sk)) with probability greater than n−δd/p.

Proof. Fix a protocol Π that solves ASPCn,d with the claimed properties, and fix k and t.

Consider the following protocol Π′ that solves k independent instances of PCn,t.

Protocol Π′ for k instances of PCn,t

Inputs: s1, . . . , sk and ~π1, . . . , ~πk, where each ~πi = (πi,1, . . . , πi,t)

Construct d permutations ~π′ = (π′1, . . . , π
′
d)

1. For i ∈ [k] and j ∈ [t], set π′(i−1)(2t+2)+j to πi,j, and set π′i(2t+2)−j to π−1
i,j

2. For i ∈ [k], set π′(i−1)(2t+2)+t+1 to the identify matching, and set π′i(2t+2) to any

fixed matching such that π′i(2t+2)(si) = si+1 (sk+1 is assumed to be 1)

3. For i > k(2t+ 2), set π′i to the identity matching

Construct d random permutations ~π = (π1, . . . , πd)

48

4. Alice knows all π′i for odd i ∈ [d] and Bob knows all π′i for even i ∈ [d]

5. They use public random bits to sample random permutations τ0, . . . , τd

6. They set πi to τ−1
i ◦ π′i ◦ τi−1

Simulate Π and compute outputs

7. Run Π on ~π and obtain a path path~π(s) = (s, π≤1(s), . . . , π≤d(s)) for some s ∈ [n]

8. If τ0(s) 6= s1, then output FAIL

9. Otherwise, for i ∈ [k] and j ∈ [t], compute and output πi,≤j(si) =

τ(i−1)(2t+2)+j(π≤(i−1)(2t+2)+j(s))

Since τ0, . . . , τd are random independent permutations over [n], all πi generated in step

6 must be uniform and independent, following the same distribution as generated by Pn,d.
Thus, by our assumption on Π, it successfully outputs a path path~π(s) with probability

greater than n1−δd/p, and the communication cost is as claimed.

Moreover, since we applied random permutations τi, s1 becomes independent of ~π. In

particular, Π only takes ~π as input, which implies that s1 is independent of s. Hence, we

output FAIL in step 8 with probability 1/n.

Finally, by construction, for i ∈ [d], we always have τi(π≤i(s)) = π′i(τi−1(π≤i−1(s))) =

π′≤i(τ0(s)). Thus, if τ0(s) = s1, then (τ0(s), τ1(π≤1(s)), . . .) is the path on ~π′ starting from s1.

By the construction of π′, we have π′≤(i−1)(2t+2)(s1) = si. Thus, πi,≤j(si) = π′(i−1)(2t+2)+j(s1) =

τ(i−1)(2t+2)+j(π(i−1)(2t+2)+j(s)). The protocol successfully computes path~πi(si) for all i ∈ [k]

with probability greater than n−δd/p.

A.1 Direct product

Next, we apply a generic direct product theorem to derive a protocol for PCn,t. The following

argument is a simplification of [BRWY13].

Definition A.3. A generalized protocol Π is a distribution over triples

(X, Y,M),

where M = (M0, . . . ,Mr) such that each Mi is chosen from a prefix-free set Mi(M<i) which

depends only on M<i. The last message Mr is the output of the protocol. The θlog-cost of Π

with respect to an input distribution µ is

θlog
µ (Π) := 2DKL(ΠX,Y ‖µ) +

1

2
· (IΠ(X;M0 | Y) + IΠ(Y ;M0 | X))

49

+
∑

odd i∈[1,r]

IΠ(Y ;Mi | X,M<i) +
∑

even i∈[1,r]

IΠ(X;Mi | Y,M<i).

The communication cost is

max
M :Π(M)>0

r∑
i=1

|Mi| .

The following lemma relates the θlog-cost to the success probability of a standard protocol.

Lemma A.4. If there is a generalized protocol Π with θlog-cost at most θ with respect to µ

computing a function f , then there is a standard protocol Π′ computing f with probability at

least

2−6(θ+1).

Moreover, Π and Π′ have the same communication cost.

Proof. Consider the following standard protocol Π′:

Protocol Π′ for inputs (X, Y) ∼ µ

1. view the public random bits as a sequence of |M0| independent samples

(M
(i)
0 , t(i))i∈[|M0|] for uniform M

(i)
0 ∈M0 and t(i) ∈ [0, 1]

2. if there is a unique M
(i)
0 such that t(i) ≤ Π(M

(i)
0 | X), Alice sets MA

0 to M
(i)
0

3. if there is a unique M
(i)
0 such that t(i) ≤ Π(M

(i)
0 | Y), Bob sets MB

0 to M
(i)
0

4. otherwise they set MA
0 or MB

0 arbitrarily

5. for i = 1, . . . , r

6. if i is odd, Alice samples Mi ∼ ΠMi|X,M<i
for M0 = MA

0 , and sends Mi

7. if i is even, Bob samples Mi ∼ ΠMi|Y,M<i
for M0 = MB

0 , and sends Mi

Clearly, the communication cost of Π′ is the same as that of Π.

For each fixed i, the probability that t(i) ≤ Π(M
(i)
0 | X) is equal to∑

m0∈M0

1

|M0|
· Π(M

(i)
0 = m0 | X) =

1

|M0|
.

By union bound, the probability that either t(i) ≤ Π(M
(i)
0 | X) or t(i) ≤ Π(M

(i)
0 | Y) is at

most 2/ |M0|. Thus, the probability that both Alice and Bob set MA
0 and MB

0 to M0 is at

least

min {Π(M0 | X),Π(M0 | Y)} · (1− 2/ |M0|)|M0|−1 ≥ 1

8
·min {Π(M0 | X),Π(M0 | Y)} ,

50

where we assumed without loss of generality that |M0| ≥ 4. Thus, when (X, Y) is sampled

from µ, we have

Π′(X, Y,M) ≥ 1

8
· µ(X, Y) ·min {Π(M0 | X),Π(M0 | Y)}

·
∏

odd i∈[1,r]

Π(Mi | X,M<i) ·
∏

even i∈[1,r]

Π(Mi | Y,M<i).

Let Π′A be the distribution such that

Π′A(X, Y,M) = µ(X, Y) · Π(M0 | X) ·
∏

odd i∈[1,r]

Π(Mi | X,M<i) ·
∏

even i∈[1,r]

Π(Mi | Y,M<i),

and Π′B be the distribution such that

Π′B(X, Y,M) = µ(X, Y) · Π(M0 | Y) ·
∏

odd i∈[1,r]

Π(Mi | X,M<i) ·
∏

even i∈[1,r]

Π(Mi | Y,M<i).

Thus, we have

Π′(X, Y,M) ≥ 1

8
·min {Π′A(X, Y,M),Π′B(X, Y,M)} .

Now, observe that

DKL(Π ‖Π′A)

= E
(X,Y,M)∼Π

[
log

(
Π(X, Y,M)

Π′A(X, Y,M)

)]
= E

(X,Y,M)∼Π

[
log

(
Π(X, Y) · Π(M0 | X, Y) ·

∏
odd i∈[1,r] Π(Mi | X, Y,M<i) ·

∏
even i∈[1,r] Π(Mi | X, Y,M<i)

µ(X, Y) · Π(M0 | X) ·
∏

odd i∈[1,r] Π(Mi | X,M<i) ·
∏

even i∈[1,r] Π(Mi | Y,M<i)

)]
= DKL(ΠX,Y ‖µ) + IΠ(Y ;M0 | X) +

∑
odd i∈[1,r]

IΠ(Mi;Y | X,M<i) +
∑

even i∈[1,r]

IΠ(Mi;X | Y,M<i).

Similarly,

DKL(Π ‖Π′B) = DKL(ΠX,Y ‖µ) + IΠ(X;M0 | Y)

+
∑

odd i∈[1,r]

IΠ(Mi;Y | X,M<i) +
∑

even i∈[1,r]

IΠ(Mi;X | Y,M<i).

Therefore,

DKL(Π ‖Π′A) + DKL(Π ‖Π′B) = 2θlog
µ (Π)− 2DKL(ΠX,Y ‖µ) ≤ 2θ.

51

Claim A.5. Let P,Q1, Q2 be three distributions. We must have∑
x

min{P (x), Q1(x), Q2(x)} ≥ 2−3(max{DKL(P ‖Q1),DKL(P ‖Q2)}+1).

We will prove the claim later. The claim implies that∑
X,Y,M

min{Π(X, Y,M),Π′A(X, Y,M),Π′B(X, Y,M)} ≥ 2−6θ−3,

which in turn, implies that∑
X,Y,M

min{Π(X, Y,M),Π′(X, Y,M)} ≥ 1

8
· 2−6θ−3 ≥ 2−6(θ+1).

Since Π computes f , Π′ must compute f with probability at least 2−6(θ+1). This proves

the lemma.

Proof of Claim A.5. Let

E0 := {x : P (x) ≤ Q1(x) ∧ P (x) ≤ Q2(x)},

E1 := {x : Q1(x) ≤ P (x) ∧Q1(x) ≤ Q2(x)},

and

E2 := {x : Q2(x) ≤ P (x) ∧Q2(x) ≤ Q1(x)}.

Then at least one of E0, E1, E2 has probability at least 1/3 under distribution P .

If P (E0) ≥ 1/3, then ∑
x

min{P (x), Q1(x), Q2(x)} ≥ 1/3.

The lemma holds.

Suppose P (E1) ≥ 1/3. We have∑
x

min{P (x), Q1(x), Q2(x)} ≥ Q1(E1).

On the other hand,

DKL(P ‖Q1) = E
x∼P

[log(P (x)/Q1(x))]

= P (E1) · E
x∼P |E1

[log(P (x)/Q1(x))] + P (E1) E
x∼P |E1

[log(P (x)/Q1(x))]

52

which by the convexity of f(t) = log(1/t), is

≥ P (E1) log

(
E

x∼P |E1

[Q1(x)/P (x)]−1

)
+ P (E1) log

(
E

x∼P |E1

[Q1(x)/P (x)]−1

)
= P (E1) log (P (E1)/Q1(E1)) + (1− P (E1)) log ((1− P (E1))/(1−Q1(E1)))

≥ P (E1) log(1/Q1(E1))− 1

≥ 1

3
log(1/Q1(E1))− 1.

That is, Q1(E1) ≥ 2−3(DKL(P ‖Q1)+1). The lemma holds. The case where P (E2) ≥ 1/3 is

similar.

The following lemma is implicitly proved in [BRWY13].

Lemma A.6. Let Π be a standard protocol with input distribution µ and W be an event, let

ΠW be the distribution of Π conditioned on W , then

θlog
µ (ΠW) ≤ 5 log(1/Π(W)).

Proof. Consider θlog
µ (ΠW). For the first term, since Π(X, Y) = µ(X, Y), we have

DKL(ΠW
X,Y ‖µ) = E

(X,Y)∼Π|W

[
log

(
Π(X, Y | W)

µ(X, Y)

)]
≤ E

(X,Y)∼Π|W
[log (1/Π(W))]

= log(1/Π(W)).

For the second term, since (X, Y) and M0 are independent in Π, we have

IΠW (X;M0 | Y) =
∑
x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log

(
Π(X = x |M0 = m0, Y = y,W)

Π(X = x | Y = y,W)

)
=
∑
x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log

(
Π(X = x |M0 = m0, Y = y,W)

Π(X = x | Y = y)

)
−
∑
x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log

(
Π(X = x | Y = y,W)

Π(X = x | Y = y)

)
=
∑
x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log

(
Π(X = x |M0 = m0, Y = y,W)

Π(X = x |M0 = m0, Y = y)

)
−DKL(ΠX|W,Y ‖ΠX|Y)

≤
∑
y,m0

Π(Y = y,M0 = m0 | W) · log(1/Π(W | Y = y,M0 = m0))

53

which by the concavity of log, is

≤ log

(∑
y,m0

Π(Y = y,M0 = m0 | W)

Π(W | Y = y,M0 = m0)

)

= log

(∑
y,m0

Π(Y = y,M0 = m0)

Π(W)

)
= log(1/Π(W)).

Similarly, IΠW (Y ;M0 | X) ≤ log(1/Π(W)).

For the third term, fix an odd i, we have

IΠW (Y ;Mi | X,M<i)

=
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i | W) · log

(
Π(Mi = mi | X = x, Y = y,M<i = m<i,W)

Π(Mi = mi | X = x,M<i = m<i,W)

)

=
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i | W) · log

(
Π(Mi = mi | X = x, Y = y,M<i = m<i,W)

Π(Mi = mi | X = x,M<i = m<i)

)

+
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i | W) · log

(
Π(Mi = mi | X = x,M<i = m<i)

Π(Mi = mi | X = x,M<i = m<i,W)

)
.

Note that the second term is at most 0, since its negation is an expected KL-divergence.

For the first term, we have Π(Mi = mi | X = x,M<i = m<i) = Π(Mi = mi | X = x, Y =

y,M<i = m<i), since Π is a standard protocol and i is odd. Thus, we have

IΠW (Y ;Mi | X,M<i)

=
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i | W) · log

(
Π(Mi = mi | X = x, Y = y,M<i = m<i,W)

Π(Mi = mi | X = x, Y = y,M<i = m<i)

)
= E

x,y,m<i∼ΠX,Y,M<i

DKL(ΠMi|X=x,Y=y,M<i=m<i,W ‖ΠMi|X=x,Y=y,M<i=m<i).

Thus, the third term in θlog
µ (ΠW) is∑

odd i∈[1,r]

IΠW (Y ;Mi | X,M<i)

≤
∑

odd i∈[1,r]

E
x,y,m<i∼ΠX,Y,M<i

DKL(ΠMi|X=x,Y=y,M<i=m<i,W ‖ΠMi|X=x,Y=y,M<i=m<i)

≤
∑
i∈[1,r]

E
x,y,m<i∼ΠX,Y,M<i

DKL(ΠMi|X=x,Y=y,M<i=m<i,W ‖ΠMi|X=x,Y=y,M<i=m<i)

54

which by the chain rule of KL-divergence, is

= E
x,y,m0∼ΠX,Y,M0

DKL(ΠM |X=x,Y=y,M0=m0,W ‖ΠM |X=x,Y=y,M0=m0)

≤ E
x,y,m0∼ΠX,Y,M0

log(1/Π(W | X = x, Y = y,M0 = m0))

≤ log(1/Π(W)).

The same argument proves that the last term is also at most log(1/Π(W)). Thus, the lemma

holds.

The following lemma decomposes a protocol for k instances into one protocol for one

instance and one protocol for k − 1 instances.

Lemma A.7. Let µ be a distribution over input pairs (X, Y). Let Π be a generalized protocol

on k input pairs (X1, . . . , Xk, Y1, . . . , Yk) that uses C bits of communication and computes

fk. There is a generalized protocol Π(<k) and a generalized protocol Π(k) such that

• both Π(<k) and Π(k) use at most C bits of communication;

• θlog
µk−1(Π

(<k)) + θlog
µ (Π(k)) ≤ θlog

µk
(Π);

• Π(<k) computes fk−1 and Π(k) computes f .

By repeatedly applying the above lemma, we prove the following lemma as a corollary.

Lemma A.8. If there is an r-message protocol with θlog-cost θ with respect to µn and C bits

of communication that computes fn. Then there is an r-message protocol with θlog-cost θ/n

with respect to µ and C bits of communication that computes f .

Proof of Lemma A.7. Let (X,Y ,M) be random variables distributed according to Π. Let

S ([k] be a nonempty proper subset of the instances (think of S = [k − 1]), and denote

its complement by S. Consider the following protocol ηXS for f |S| with respect to µ|S|, which

defines a distribution over triples

(Xη,Y η,M η).

Protocol ηXS :

1. sample (X,Y ,M) ∼ Π

2. set Xη := XS and Y η := YS
3. set Mη

0 := XS ◦M0

4. for i = 1, . . . , r − 1, set Mη
i := Mi

5. set Mη
r to Mr restricted to coordinates in S

Compared to Π, ηXS restricts the input pair (X, Y) to coordinates only in S, prepends

XS to the public random bits, and restricts the output to coordinates only in S. Since

Mr = fn(X,Y), Mη
r = f |S|(XS,YS). Hence, ηXS is an r-message protocol that computes

f |S|.

Similarly, we define ηY
S

as follows.

55

Protocol ηY
S

:

1. sample (X,Y ,M) ∼ Π

2. set Xη := XS and Y η := YS
3. set Mη

0 := YS ◦M0

4. for i = 1, . . . , r − 1, set Mη
i := Mi

5. set Mη
r to Mr restricted to coordinates in S

We prepend YS to M0, and restrict the output to coordinates in S. Similarly, ηY
S

is an

r-message protocol that computes f |S|.
To prove the lemma, we will set Π(<k) to ηXS and set Π(k) to ηY

S
for S = [k − 1]. Clearly,

both protocols use at most C bits of communication. It remains to show that their θlog-costs

sum up to that of Π.

Analysis of the θlog-cost. Next, we analyze their θlog-costs. We first focus on ηXS . The

mutual information between the input and the public random bits is

Iη(X
η;Mη

0 | Y η) + Iη(Y
η;Mη

0 |Xη) = IΠ(XS;XS,M0 | YS) + IΠ(YS;XS,M0 |XS).

The mutual information between Y η and the odd messages is∑
odd i∈[1,r]

Iη(Y
η;Mη

i |Xη,Mη
<i) ≤

∑
odd i∈[1,r]

IΠ(YS;Mi |X,M<i).

The mutual information between Xη and the even messages is∑
even i∈[1,r]

Iη(X
η;Mη

i | Y η,Mη
<i)

≤
∑

even i∈[1,r]

IΠ(XS;Mi | YS,XS,M<i)

=
∑

even i∈[1,r]

(IΠ(XS;YS,Mi | YS,XS,M<i)− IΠ(XS;YS | YS,XS,M<i,Mi))

=
∑

even i∈[1,r]

(IΠ(XS;Mi |XS,Y ,M<i)

+ IΠ(XS;YS |XS,YS,M<i)− IΠ(XS;YS |XS,YS,M<i+1)),

Summing up all terms, we have

θlog

µ|S|
(ηXS) (39)

≤ 2DKL(ΠXS ,YS ‖µ|S|) +
1

2
· IΠ(XS;XS,M0 | YS) +

1

2
· IΠ(YS;XS,M0 |XS) (40)

+
∑

odd i∈[1,r]

IΠ(YS;Mi |X,M<i) +
∑

even i∈[1,r]

IΠ(XS;Mi |XS,Y ,M<i) (41)

56

+
∑

even i∈[1,r]

(IΠ(XS;YS |XS,YS,M<i)− IΠ(XS;YS |XS,YS,M<i+1)) . (42)

Similarly, for ηY
S

, the mutual information between the input and the public random bits

is

IΠ(XS;YS,M0 | YS) + IΠ(YS;YS,M0 |XS).

The mutual information between Y η and the odd messages is at most∑
odd i∈[1,r]

IΠ(YS;Mi |XS,YS,M<i)

=
∑

odd i∈[1,r]

(IΠ(YS;XS,Mi |XS,YS,M<i)− IΠ(YS;XS |XS,YS,M<i+1))

=
∑

odd i∈[1,r]

(IΠ(YS;Mi |X,YS,M<i)

+ IΠ(YS;XS |XS,YS,M<i)− IΠ(XS;YS |XS,YS,M<i+1)).

The mutual information between Xη and the even messages is at most∑
even i∈[1,r]

IΠ(XS;Mi | Y ,M<i).

Summing up all terms, we have

θlog

µk−|S|
(ηY
S

) (43)

≤ 2DKL(ΠXS ,YS
‖µk−|S|) +

1

2
· IΠ(XS;YS,M0 | YS) +

1

2
· IΠ(YS;YS,M0 |XS) (44)

+
∑

odd i∈[1,r]

IΠ(YS;Mi |X,YS,M<i) +
∑

even i∈[1,r]

IΠ(XS;Mi | Y ,M<i) (45)

+
∑

odd i∈[1,r]

(IΠ(YS;XS |XS,YS,M<i)− IΠ(XS;YS |XS,YS,M<i+1)). (46)

Next, we sum up Equation (39) and (43). The first lines (40) and (44) sum up to

2DKL(ΠXS ,YS ‖µ|S|) + 2DKL(ΠXS ,YS
‖µk−|S|)

+
1

2
· IΠ(XS;XS,M0 | YS) +

1

2
· IΠ(YS;XS,M0 |XS)

+
1

2
· IΠ(XS;YS,M0 | YS) +

1

2
· IΠ(YS;YS,M0 |XS)

= 2DKL(ΠX,Y ‖µk)− 2IΠ(XS,YS;XS,YS)

+
1

2
· (IΠ(XS;XS | YS) + IΠ(XS;M0 |XS,YS) + IΠ(YS;XS |XS) + IΠ(YS;M0 |X))

57

+
1

2
· (IΠ(XS;YS | YS) + IΠ(XS;M0 | Y) + IΠ(YS;YS |XS) + IΠ(YS;M0 |XS,YS))

≤ 2DKL(ΠX,Y ‖µk)− 2IΠ(XS,YS;XS,YS)

+
1

2
· (IΠ(XS;XS | YS) + IΠ(XS;M0 |XS,YS) + IΠ(XS,YS;XS,YS) + IΠ(YS;M0 |X))

+
1

2
· (IΠ(XS,YS;XS,YS) + IΠ(XS;M0 | Y) + IΠ(XS,YS;YS) + IΠ(YS;M0 |XS,YS))

= 2DKL(ΠX,Y ‖µk)− IΠ(XS,YS;XS,YS) +
1

2
· IΠ(XS;XS | YS) +

1

2
· IΠ(XS,YS;YS)

+
1

2
· (IΠ(XS;M0 |XS,YS) + IΠ(YS;M0 |X) + IΠ(XS;M0 | Y) + IΠ(YS;M0 |XS,YS))

≤ 2DKL(ΠX,Y ‖µk)− IΠ(XS;YS |XS,YS)

+
1

2
· (IΠ(XS;M0 |XS,YS) + IΠ(YS;M0 |X) + IΠ(XS;M0 | Y) + IΠ(YS;M0 |XS,YS))

= 2DKL(ΠX,Y ‖µk)

+
1

2
· (−IΠ(XS;YS |XS,YS) + IΠ(XS;M0 |XS,YS) + IΠ(XS;M0 | Y))

+
1

2
· (−IΠ(XS;YS |XS,YS) + IΠ(YS;M0 |X) + IΠ(YS;M0 |XS,YS))

= 2DKL(ΠX,Y ‖µk)

+
1

2
· (−IΠ(XS;YS |XS,YS,M0) + IΠ(X;M0 | Y))

+
1

2
· (−IΠ(XS;YS |XS,YS,M0) + IΠ(Y ;M0 |X))

= 2DKL(ΠX,Y ‖µk) +
1

2
· (IΠ(X;M0 | Y) + IΠ(Y ;M0 |X))− IΠ(XS;YS |XS,YS,M0).

The second lines (41) and (45) sum up to∑
odd i∈[1,r]

IΠ(YS;Mi |X,M<i) +
∑

odd i∈[1,r]

IΠ(YS;Mi |X,YS,M<i)

+
∑

even i∈[1,r]

IΠ(XS;Mi |XS,Y ,M<i) +
∑

even i∈[1,r]

IΠ(XS;Mi | Y ,M<i)

=
∑

odd i∈[1,r]

IΠ(Y ;Mi |X,M<i) +
∑

even i∈[1,r]

IΠ(X;Mi | Y ,M<i).

Finally, the third lines (42) and (46) sum up to∑
i∈[1,r]

(IΠ(XS;YS |XS,YS,M<i)− IΠ(XS;YS |XS,YS,M<i+1))

= IΠ(XS;YS |XS,YS,M0)− IΠ(XS;YS |XS,YS,M)

≤ IΠ(XS;YS |XS,YS,M0).

58

Summing up all lines gives us

θlog

µ|S|
(ηXS) + θlog

µk−|S|
(ηY
S

)

≤ 2DKL(ΠX,Y ‖µk) +
1

2
· (IΠ(X;M0 | Y) + IΠ(Y ;M0 |X))

+
∑

odd i∈[1,r]

IΠ(Y ;Mi |X,M<i) +
∑

even i∈[1,r]

IΠ(X;Mi | Y ,M<i)

= θlog
µk

(Π).

This completes the proof of the lemma.

Finally, by combining Lemma A.6, Lemma A.8 and Lemma A.4, we prove the following

direct product result.

Lemma A.9. If there is a r-message protocol Π that computes fn with probability q under

input distribution µn using C bits of communication, then there is a r-message protocol Π′

that computes f with probability 2−6 · q30/n under µ using C bits of communication.

Proof. Consider the distribution induced by running Π on input distribution µn. Let W be

the event that Π succeeds. Then Π(W) ≥ q. Lemma A.6 implies that θlog(ΠW) ≤ 5 log(1/q).

Next, Lemma A.8 implies that there is a protocol that computes f with θlog-cost with respect

to µ at most 5 ·n−1 log(1/q). Finally, by Lemma A.4, it implies a protocol Π′ that computes

f under µ with probability at least 2−6(5·n−1 log(1/q)+1) ≥ 2−6 · q30/n.

A.2 Lower bound for PCn,t

The following lemma is a direct corollary of Lemma A.9.

Lemma A.10. Suppose for k, t ∈ N such that t is even and k(2t + 2) ≤ d, there is a p-

round protocol with at most S bits of communication such that given ~π1, ~π2, . . . , ~πk ← Pn,t
and s1, . . . , sk ∈unif [n] independently, the protocol outputs (path~π1(s1), . . . , path~πk(sk)) with

probability greater than n−δd/p. Then there is a p-round protocol with at most S bits of

communication computing PCn,t with probability at least 2−6 · n−30δd/(pk) for ~π ← Pn,t and

s ∈unif [n].

Finally, we use the following lower bound for PCn,t, whose proof is similar to that of

Lemma 4.11 in [AV21] and the standard pointer chasing lower bound [NW91].

Lemma A.11. Any (t − 2)-message protocol Π with at most n1/4 bits of communication

cannot solve PCn,t with probability greater than 2t · n−1/8.

Thus, Lemma 6.2 is a direct corollary of Lemma A.2, Lemma A.10 and Lemma A.11 for

ε = 1/4 and δ = 0.001 by setting t = p+ 2 and k = bd/(2t+ 2)c, as we have

2−6 · n−30δd/(pk) ≥ 2−6 · n−0.03d/p(bd/(2p+6)c) > 2t · n−1/8,

59

since t ≤ log n.

Proof. Let X be Alice’s matchings (π1, . . . , πt−1), and let Y be Bob’s matchings (π2, . . . , πt).

We will inductively prove the following: For i ∈ [0, t− 2], the distribution of

π≤i+2(s) | π1, . . . , πi+1, s,M≤i

is i·n−1/8-close to uniform in total variation distance in expectation. In particular for i = t−2,

the `∞-norm is at most (t−2)·n−1/8+1/n in expectation. That is, in expectation, one cannot

predict π≤t(s) with probability better than (t− 2) · n−1/8 + 1/n given π1, . . . , πt−1, s,M≤t−2.

Since the output of the protocol is determined by M≤t−2, it implies that the overall success

probability is at most (t− 2) · n−1/8 + 1/n ≤ 2t · n−1/8.

Base case: i = 0. We first prove the base case when i = 0. The distribution of

π≤2(s) | π1, s,M0

is the uniform distribution over [n], since π2 is still uniform conditioned on (π1, s,M0) (which

determines π1(s)). Hence, the total variation distance is 0 in expectation.

Induction: i− 1 to i. By symmetry, assume that i is odd.

Consider the matching πi+2. Since all permutations are independent in the input

distribution, we have

H(πi+2 | π1, . . . , πi, s) = log(n!),

which implies that

H(πi+2 | π1, . . . , πi, s,M≤i) ≥ log(n!)− |M≤i| ≥ log(n!)− n1/4.

The following lemma from [AKSY20] relates the entropy of a permutation to the entropy of

its random coordinate.

Lemma A.12 (Lemma A.13 in [AKSY20]). Let π be a random permutation over [n]. If

H(π) ≥ log n!− n/8, then

n log n−
∑
x∈[n]

H(π(x)) ≤ 4
√

(log n!−H(π))n+ 3.

It implies that for a uniform x ∈ [n] (independent of πi+2 conditioned on

(π1, . . . , πi, s,M≤i)), we have

E
x∈[n]

[H(πi+2(x) | π1, . . . , πi, s,M≤i, x)] ≥ log n− 4
√
n1/4 · n+ 3

n
≥ log n− n−1/4.

60

In particular, by Pinsker’s inequality and the concavity of square-root, we obtain that for a

uniform x ∈ [n], the distribution of

πi+2(x) | π1, . . . , πi, s,M≤i, x

is n−1/8-close to the uniform distribution over [n] in expectation.

Now suppose the claim holds for i− 1, i.e.,

π≤i+1(s) | π1, . . . , πi, s,M≤i−1

is (i − 1)n−1/8-close to uniform. We observe that conditioned on (π1, . . . , πi, s,M≤i−1),

πi+1(s) is determined by πi+1, which is part of Bob’s input. By the Markov

property of communication protocols, πi+1 is independent of Alice’s inputs conditioned

on (π1, . . . , πi, s,M≤i−1). Thus, πi+1 is also independent of Mi conditioned on

(π1, . . . , πi, s,M≤i−1). Hence, the distribution of

π≤i+1(s) | π1, . . . , πi, s,M≤i

is (i− 1)n−1/8-close to uniform.

By the Markov property again, π≤i+1(s) and πi+2 are independent conditioned on

(π1, . . . , πi, s,M≤i). Therefore, by the triangle inequality, the distribution of

πi+2(π≤i+1(s)) | π1, . . . , πi, s,M≤i, π≤i+1(s)

is i · n−1/8-close to uniform in expectation.

Finally, since πi+1 and πi+2 are independent conditioned on (π1, . . . , πi, s,M≤i, π≤i+1(s)).

The distribution of

πi+2(π≤i+1(s)) | π1, . . . , πi+1, s,M≤i, π≤i+1(s)

is i · n−1/8-close to uniform in expectation. Observing that π≤i+1(s) is determined by other

variables in the conditioned, we complete the induction.

References

[ABB+19] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni,

and Cliff Stein. Coresets meet edcs: algorithms for matching and vertex cover on

massive graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 1616–1635. SIAM, 2019.

[AG18] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual

primal algorithms for maximum matching under resource constraints. ACM

Transactions on Parallel Computing (TOPC), 4(4):1–40, 2018.

61

[AKL17] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum

matching size in graph streams. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1723–1742.

SIAM, 2017.

[AKLY16] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum

matchings in dynamic graph streams and the simultaneous communication

model. In Proceedings of the twenty-seventh annual ACM-SIAM symposium

on Discrete algorithms, pages 1345–1364. SIAM, 2016.

[AKSY20] Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. Multi-pass

graph streaming lower bounds for cycle counting, max-cut, matching size, and

other problems. In FOCS. https://arxiv.org/pdf/2009.03038.pdf, 2020.

[AMN19] Alexandr Andoni, Tal Malkin, and Negev Shekel Nosatzki. Two party

distribution testing: Communication and security. In 46th International

Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of

approximating the frequency moments. Journal of Computer and system

sciences, 58(1):137–147, 1999.

[AR20] Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph

streaming algorithms. In FOCS. https://arxiv.org/pdf/2009.01161.pdf,

2020.

[AV21] Sepehr Assadi and N Vishvajeet. Graph streaming lower bounds for parameter

estimation and property testing via a streaming xor lemma. In 53rd Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages 612–

625. Association for Computing Machinery, 2021.

[BC17] Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for

counting triangles and other substructures in graph streams. In 34th Symposium

on Theoretical Aspects of Computer Science, 2017.

[BCK+18] Vladimir Braverman, Stephen Chestnut, Robert Krauthgamer, Yi Li, David

Woodruff, and Lin Yang. Matrix norms in data streams: Faster, multi-pass and

row-order. In International Conference on Machine Learning, pages 649–658.

PMLR, 2018.

[BDV18] Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear

algorithms for maxcut and correlation clustering. In 45th International

Colloquium on Automata, Languages, and Programming, 2018.

62

https://arxiv.org/pdf/2009.03038.pdf
https://arxiv.org/pdf/2009.01161.pdf

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in

communication complexity theory. In 27th Annual Symposium on Foundations

of Computer Science (sfcs 1986), pages 337–347. IEEE, 1986.

[BGGS19] Mitali Bafna, Badih Ghazi, Noah Golowich, and Madhu Sudan. Communication-

rounds tradeoffs for common randomness and secret key generation. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1861–1871, 2019.

[BHP+21] Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini

Velusamy. Closed-form expressions for the sketching approximability of (some)

symmetric boolean csps. arXiv preprint arXiv:2112.06319, 2021.

[BKKL17] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph

Lenzen. Near-optimal approximate shortest paths and transshipment in

distributed and streaming models. In 31 International Symposium on Distributed

Computing, 2017.

[BLWZ19] Maria-Florina Balcan, Yi Li, David P Woodruff, and Hongyang Zhang. Testing

matrix rank, optimally. In Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 727–746. SIAM, 2019.

[BM13] Mark Braverman and Ankur Moitra. An information complexity approach to

extended formulations. In Proceedings of the forty-fifth annual ACM symposium

on Theory of computing, pages 161–170, 2013.

[BOV13] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is

counting triangles in the streaming model? In International Colloquium on

Automata, Languages, and Programming, pages 244–254. Springer, 2013.

[BRWY13] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct

products in communication complexity. In 54th Annual IEEE Symposium on

Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,

CA, USA, pages 746–755. IEEE Computer Society, 2013.

[BS15] Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted

matchings in dynamic data streams. In ESA, pages 263–274. 2015.

[BYJK04] Ziv Bar-Yossef, Thathachar S Jayram, and Iordanis Kerenidis. Exponential

separation of quantum and classical one-way communication complexity. In

Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,

pages 128–137, 2004.

63

[BYKS02] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In SODA,

volume 2, pages 623–632, 2002.

[CGS+21] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and

Santhoshini Velusamy. Linear space streaming lower bounds for approximating

csps. arXiv preprint arXiv:2106.13078, 2021.

[CGSV21] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy.

Approximability of all finite csps with linear sketches. In 2021 IEEE 62nd

Annual Symposium on Foundations of Computer Science (FOCS), pages 1197–

1208. IEEE, 2021.

[CGV20] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal

streaming approximations for all boolean max-2csps and max-ksat. In 2020

IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),

pages 330–341. IEEE, 2020.

[CJ17] Graham Cormode and Hossein Jowhari. A second look at counting triangles in

graph streams (corrected). Theoretical Computer Science, 683:22–30, 2017.

[CKKP21] Ashish Chiplunkar, John Kallaugher, Michael Kapralov, and Eric Price.

Factorial lower bounds for (almost) random order streams. arXiv preprint

arXiv:2110.10091, 2021.

[CKP+21a] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R Saxena, Zhao Song,

and Huacheng Yu. Almost optimal super-constant-pass streaming lower bounds

for reachability. In Proceedings of the 53rd Annual ACM SIGACT Symposium

on Theory of Computing, pages 570–583, 2021.

[CKP+21b] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R Saxena, Zhao Song,

and Huacheng Yu. Near-optimal two-pass streaming algorithm for sampling

random walks over directed graphs. In 48th International Colloquium on

Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl-

Leibniz-Zentrum für Informatik, 2021.

[EHL+18] Hossein Esfandiari, Mohammadtaghi Hajiaghayi, Vahid Liaghat, Morteza

Monemizadeh, and Krzysztof Onak. Streaming algorithms for estimating the

matching size in planar graphs and beyond. ACM Transactions on Algorithms

(TALG), 14(4):1–23, 2018.

[FGO17] Orr Fischer, Shay Gershtein, and Rotem Oshman. On the multiparty

communication complexity of testing triangle-freeness. In Proceedings of the

ACM Symposium on Principles of Distributed Computing, pages 111–120, 2017.

64

[FKM+04] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. On graph problems in a semi-streaming model. In International

Colloquium on Automata, Languages, and Programming (ICALP), pages 531–

543. Springer, 2004.

[FKM+09] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. Graph distances in the data-stream model. SIAM Journal on

Computing, 38(5):1709–1727, 2009.

[GKK+07] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald

De Wolf. Exponential separations for one-way quantum communication

complexity, with applications to cryptography. In Proceedings of the thirty-ninth

annual ACM symposium on Theory of computing, pages 516–525, 2007.

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication

and streaming complexity of maximum bipartite matching. In Proceedings of the

twenty-third annual ACM-SIAM symposium on Discrete Algorithms (SODA),

pages 468–485. SIAM, 2012.

[GKMS19] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson.

Weighted matchings via unweighted augmentations. In Proceedings of the 2019

ACM Symposium on Principles of Distributed Computing (PODC), pages 491–

500, 2019.

[GO16] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for

multipass graph processing. Algorithmica, 76(3):654–683, 2016.

[GS20] Noah Golowich and Madhu Sudan. Round complexity of common randomness

generation: The amortized setting. In Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 1076–1095. SIAM, 2020.

[GT19] Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games.

Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, 2019.

[GVV17] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy.

Streaming complexity of approximating max 2csp and max acyclic subgraph. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques (APPROX/RANDOM 2017). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2017.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite

programming. J. ACM, 42(6):1115–1145, nov 1995.

65

[HP19] Zengfeng Huang and Pan Peng. Dynamic graph stream algorithms in o (n)

space. Algorithmica, 81(5):1965–1987, 2019.

[Jin19] Ce Jin. Simulating random walks on graphs in the streaming model. In 10th

Innovations in Theoretical Computer Science Conference, ITCS 2019, January

10-12, 2019, San Diego, California, USA, volume 124, pages 46:1–46:15, 2019.

[Kap13] Michael Kapralov. Better bounds for matchings in the streaming model. In

Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete

algorithms (SODA), pages 1679–1697. SIAM, 2013.

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and

hypergraphs. In Proceedings of the 2015 Conference on Innovations in

Theoretical Computer Science, pages 367–376, 2015.

[KK19] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for

approximating max-cut. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, pages 277–288, 2019.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal

inapproximability results for MAX-CUT and other 2-variable csps? SIAM J.

Comput., 37(1):319–357, 2007.

[KKP18] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity

of graph and hypergraph counting. In 2018 IEEE 59th Annual Symposium on

Foundations of Computer Science (FOCS), pages 556–567. IEEE, 2018.

[KKS15] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds

for approximating MAX-CUT. In Proceedings of the Twenty-Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,

January 4-6, 2015, pages 1263–1282, 2015.

[KKSV17] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1+

ω (1))-approximation to max-cut requires linear space. In Proceedings of the

Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1703–1722, 2017.

[KMPV19] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova.

The complexity of counting cycles in the adjacency list streaming model.

In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, pages 119–133, 2019.

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication

complexity of set intersection. SIAM Journal on Discrete Mathematics,

5(4):545–557, 1992.

66

[LW16] Yi Li and David P Woodruff. On approximating functions of the singular values

in a stream. In Proceedings of the forty-eighth annual ACM symposium on

Theory of Computing (STOC), pages 726–739, 2016.

[McG05] Andrew McGregor. Finding graph matchings in data streams. In Approximation,

Randomization and Combinatorial Optimization. Algorithms and Techniques,

pages 170–181. Springer, 2005.

[McG14] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record,

43(1):9–20, 2014.

[MVV16] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better algorithms for

counting triangles in data streams. In Proceedings of the 35th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, pages 401–411,

2016.

[NW91] Noam Nisan and Avi Wigderson. Rounds in communication complexity

revisited. In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings

of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,

New Orleans, Louisiana, USA, pages 419–429. ACM, 1991.

[Raz90] Alexander A Razborov. On the distributional complexity of disjointness. In

International Colloquium on Automata, Languages, and Programming, pages

249–253. Springer, 1990.

[SGP11] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating

pagerank on graph streams. Journal of the ACM (JACM), 58(3):1–19, 2011.

[SSV21] Noah Singer, Madhu Sudan, and

Santhoshini Velusamy. Streaming approximation resistance of every ordering

csp. arXiv preprint arXiv:2105.01782, 2021.

[sub] List of open problems in sublinear algorithms: Problem 45. https://

sublinear.info/45.

[VY11] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting

by reversals, and other problems. In Proceedings of the twenty-second annual

ACM-SIAM symposium on Discrete Algorithms, pages 11–25. SIAM, 2011.

67
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://sublinear.info/45
https://sublinear.info/45

