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Abstract

Random walks on expanders are a powerful tool which found applications in

many areas of theoretical computer science, and beyond. However, they come

with an inherent cost – the spectral expansion of the corresponding power

graph deteriorates at a rate that is exponential in the length of the walk. As

an example, when G is a d-regular Ramanujan graph, the power graph Gt has

spectral expansion 2Ω(t)
√
D, where D = dt is the regularity of Gt, thus, Gt is

2Ω(t) away from being Ramanujan. This exponential blowup manifests itself

in many applications.

In this work we bypass this barrier by permuting the vertices of the given

graph after each random step. We prove that there exists a sequence of per-

mutations for which the spectral expansion deteriorates by only a linear factor

in t. In the Ramanujan case this yields an expansion of O(t
√
D). We stress

that the permutations are tailor-made to the graph at hand and require no

randomness to generate.

Our proof, which holds for all sufficiently high girth graphs, makes heavy

use of the powerful framework of finite free probability and interlacing families

that was developed in a seminal sequence of works by Marcus, Spielman and

Srivastava.
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1 Introduction

Random walks on expanders are a powerful tool which found applications in many areas

of theoretical computer science, and beyond. This is due to the expander’s highly desired

pseudorandom properties such as the hitting property [AKS87, Kah95] and the expander

Chernoff bound [AKS87, Gil98, Hea08]. The extent to which random walks are pseu-

dorandom is studied to this day (e.g., [TS17, GK21, CPTS21, JM21, CMP+22, GV22]).

Random walks are key primitives in many works in theoretical computer science, includ-

ing several seminal results such as Ta-Shama’s state-of-the-art construction of small-bias

sets [TS17], Reingold’s undirected connectivity in log-space [Rei08] and Dinur’s proof of

the PCP Theorem by gap amplification [Din07]. More intrinsically, expander random

walks are used in several constructions of expander graphs [RVW00, BATS11]. We refer

the reader to the wonderful texts [HLW06, Vad12, Tre17, Spi19] for an extensive treatment

of expander graphs.

While a random walk is a key primitive, it has an inherent cost we wish to address. To

this end, we first recall some basic definitions and set some notation. Let G = (V,E) be a

d-regular undirected graph with adjacency matrix A. As A is symmetric, its eigenvalues

are all real, and are denoted by d = λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral expansion1 of G,

denoted λ(G), is defined by λ(G) = max(λ2(G), |λn(G)|). A graph G is called a λ-spectral

expander if λ(G) ≤ λ.

To illustrate the inherent cost eluded to above, consider for example the case where

G is a d-regular Ramanujan graph, that is, λ(G) ≤ 2
√
d− 1. A length-t random walk on

G is studied by analyzing the operator At which is the adjacency matrix of the D , dt

regular graph Gt that encodes length-t walks on G. As

λ(Gt) = λ(G)t =
(

2
√
d− 1

)t
= 2Ω(t)

√
D,

taking a length-t random walk has the effect of deteriorating the spectral expansion of the

graph in a rate that is exponential in t. Indeed, the bound 2Ω(t)
√
D should be compared

with 2
√
D which is, roughly, the spectral expansion of a D-regular Ramanujan graph.

This deterioration is a real phenomena - it is not an artifact of some loose analysis. 2

The question that we consider in this work is whether there is an alternative to random

walks which has a slower deterioration of the spectral expansion and yet this alternative

1There is some harmless inconsistency in the literature regarding the definition of spectral expansion.

Some sources refer to d− λ(G) as the spectral expansion. Others consider 1− 1
dλ(G). In some cases, it

is only λ2 that is considered.
2It is worth noting that a small improvement can be obtained by removing the self loops in the power

graph Gt. This, however, has little effect on the deterioration which, in particular, remains exponential

in t.
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is similar enough to taking a random walk so that many of the analyses that use a random

walk “go through” under this variant.

Before we proceed to investigate this idea, we remark that random walks on directed

graphs, and also non-backtracking random walks on undirected graphs, do not suffer this

exponential blowup. We, however, focus on (unconstrained) random walks on undirected

graphs as these have myriad applications to theoretical computer science. Indeed, in many

scenarios, even if one considers the adjacency matrix A of a directed graph, the analysis

typically boils down to bounding ‖A‖ 3 or a variant thereof. As ‖A‖ =
√
‖ATA‖, one

ends up studying the corresponding symmetrization. Put differently, more often than not

the singular values of A rather than its eigenvalues that are of interest.

1.1 Step-permute-step random walks

Influenced by the seminal sequence of works by Marcus, Spielman and Srivastava [MSS13,

MSS18, MSS22] on the existence of bipartite Ramanujan graphs, the proposal that we

put forth in this work is to permute the vertices of the given graph G after each random

step, where the permutations to be used are tailor-made to G and require no randomness

to generate. This is a key point as in many applications the randomness used for the

walk is the expensive resource. We turn to explore this idea for Ramanujan graphs, and

start by considering the case t = 2. We will use this toy example also for refining our

suggestion.

1.1.1 What does one permutation buy us?

Given a d-regular Ramanujan graph G = (V,E) and a permutation matrix P on V ,

instead of considering a length-2 random walk, we consider permuting the vertices after

the first step according to the permutation, namely, we look at the operator PAPT ·A.

This suggestion has the significant drawback that the graph which corresponds to the

resulted matrix is directed. Thus, we refine our suggestion and instead consider the

operator A ·PAPT ·A which corresponds to a length-3 random walk, where the first step

is done according to G, the second according to the permuted G, and the third is again

according to G. For technical reasons, we will in fact consider the operator

AP , A ·PA2PT ·A.

AP is the adjacency matrix of a D = d4-regular graph, which we denote by GP, and

so for every permutation matrix P, the value λ(GP) is somewhere between 2
√
D–the

3Throughout the paper, ‖ · ‖ means the induced 2-norm ‖A‖2 = max‖x‖2=1 ‖Ax‖2.
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bound for a D-regular Ramanujan graph–and λ(G4) ≈ 16
√
D. Although we care about

the asymptotic behavior in t, we cannot help ourselves from digressing slightly and ask:

What does one permutation buy us?

From our more general result stated below (see Theorem 1.1) it follows that for every

d-regular Ramanujan graph G there exists a permutation P = P(G) such that

λ(GP) ≤ 27

4

√
D + ε.

The ε term should be thought of as negligible since it vanishes at an exponential rate

with the girth of G. In particular, if G has a sufficiently large (constant) girth then the

bound obtained is below 7
√
D. It remains open whether the constant 27

4
is tight (up to a

vanishing error term), that is, whether there exists a permutation P such that λ(GP) is

significantly smaller than 27
4

√
D. Simulations suggest that the 27

4
bound from our analysis

represents the typical behavior.

1.1.2 The general case

More generally, we ask, given a d-regular Ramanujan graph G = (V,E) and an integer

t ≥ 2, does there exist a sequence of permutation matrices P = (P1, . . . ,Pt−1) on V such

that the graph GP, whose adjacency matrix is given by

AP , APt−1 · · ·AP1A
2PT

1 A · · ·PT
t−1A,

has a spectral expansion that avoids the exponential deterioration in t? Note that GP

is D = d2t-regular, and so we should compare λ(GP) with the optimal possible value of

≈ 2
√
D on the one hand, and with ≈ 4t

√
D on the other hand. Indeed, the latter is an

upper bound for every choice of P and is attained by a standard random walk, namely,

by picking P1 = · · · = Pt−1 = I.

1.2 Our results

Our first result deals with the particular case of Ramanujan graphs. Roughly speaking, we

prove that a sequence of permutation matrices, tailor-made to the graph at hand, exists

such that the deterioration of the spectral expansion in t, when permuted accordingly,

is linear rather than exponential. More precisely though still somewhat informally, we

prove

Theorem 1.1 (Main result for Ramanujan graphs; informal). For every d-regular Ra-

manujan graph G and for every integer t ≥ 2 there exists a sequence of permutation
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matrices P = (P1, . . . ,Pt−1) such that

λ(GP) ≤
(

1 +
1

t

)t
(t+ 1)

√
D + ε

< e(t+ 1)
√
D + ε,

where the reader should think of ε as a vanishing term and, as before, D = d2t.

Theorem 1.1 is stated in a somewhat informal manner. The complete and formal

statement is the content of Theorem 7.1, though already here we wish to say that ε =

2−Ω(g) ·(dt)O(t) where g is the girth of G. Thus, indeed, for sufficiently high girth, constant-

degree graphs 4, ε is not only bounded but in fact vanishes, and so it can be ignored.

For general d-regular λ-spectral expanders we obtain the following result.

Theorem 1.2 (Main result for general graphs; informal). For every d-regular λ-spectral

expander G and for every integer t ≥ 2 there exists a sequence of permutation matrices

P = (P1, . . . ,Pt−1) such that

λ(GP) ≤

O(λ2dt−1) = O(λ
√
D), t < 8λ2

d
;(

1 + 1
t

)t
(t+ 1)dt + ε < e(t+ 1)

√
D + ε, otherwise.

Here ε is similarly bounded as in Theorem 1.1.

Again, Theorem 1.2 is stated somewhat informally. The complete and formal state-

ment is the content of Theorem 7.2. The proof of Theorem 1.2 is similar to that of

Theorem 1.1 and, up to constants, imply the latter.

Theorem 1.2, and in particular the split of the bound to the two cases, can be inter-

preted as follows: Taking the first O(λ
2

d
) steps, the improvement made to the initially poor

spectral expansion, λ, by the tailor-made permutations outweigh the product structure

of the operator AP. Indeed, the improvement is quite dramatic – a 1 ·
√
d factor to the

spectral expansion per step – a value that cannot be attained without the permutations

even if the initial graph would have been Ramanujan. Reaching the threshold value, the

product structure takes it toll, though, on the positive side, with no reference whatsoever

to the fact that we started with an initial poor spectral expansion of λ.

It is interesting to compare the guarantee of Theorem 1.2, in the early interval t =

O(λ
2

d
), with the recent work of Jeronimo, Mittal, Roy, and Wigderson [JMRW22] who

showed how the spectral expansion of a graph can be improved by local operations.

4For example, the seminal Lubotzky-Phillips-Sarnak construction [LPS88] is of d-regular Ramanujan

graphs having girth Ω(logd n).
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Theorem 1.2 accomplishes that as well since short random walks can be computed lo-

cally. Theorem 1.2, however, only guarantees the existence of a sequence of permutations

whereas [JMRW22] gives an efficient algorithm for performing the local operations. This

leads us to highlight what we consider to be an interesting open problem.

Open Problem 1.3. Devise an efficient algorithm that, given a graph G, computes a

sequence of permutations P = P(G) as guaranteed to exists by Theorem 1.2 (or even for

the special case of Ramanujan graphs, Theorem 1.1).

In the context of expander graphs, by the word “efficient” that appears in Open

Problem 1.3, one can either mean in time poly(n), n being the size of the graph or, more

ambitiously, that the permutations can be computed in way that will allow one to compute

the neighbors of a vertex in time which is polynomial in the corresponding input’s length,

namely, in poly(log n) time. While the second interpretation seems to be out of reach

of current techniques, the first may be possible to obtain using ideas from the paper by

Cohen [Coh16] who constructed Ramanujan graphs in polynomial time based on the same

techniques we are using [MSS18].

2 Proof Overview

In this section we give an informal, yet comprehensive, overview of our proofs. The reader

may freely skip this section, moving on to the formal sections.

Let us take a closer look at the problem with expander random walks. If G is an undi-

rected graph on n vertices with adjacency matrix A then, by the spectral decomposition

theorem, we can write A =
∑n

i=1 λiψiψ
T
i , where the ψi-s are corresponding orthonormal

eigenvectors of A. As the ψi-s are orthonormal,

At =

(
n∑
i=1

λiψiψ
T
i

)t

=
n∑
i=1

λtiψiψ
T
i .

This simple calculation sheds light on the reason for the equality λ(Gt) = λ(G)t. Indeed,

each eigenvector, in particular the “heavy” ones (e.g., ψ2 or ψn, but potentially also ψ3

etc.) is in a perfect alignment with itself and so, say, a stretch of magnitude λ2 occurs

t times in the same direction. This suggests that one may benefit by “rotating” the

expander, or rather its eigenvectors, so as to break these alignments. Note that it does

not suffice to merely break the alignment of ψ2 with itself as, say, λ3 may be as large, or

almost as large, as λ2.

The problem with just rotating the eigenvectors of A is that we will lose the graph

structure. More precisely, the graph that corresponds to some rotated version of A is

5



likely to be a complete graph with both positive as well as negative edge weights. Still,

we will proceed with this thought experiment and, for the time being, play loose with the

graph structure.

As always, a good first step is to try to understand what can be said in expectation.

To be precise, we will take Q = (Q1, . . . ,Qt−1) to be independent Haar distributed

orthogonal matrices 5 and would like to explore EQ ‖AQ‖ as this quantity captures the

expected bound on the support of the spectrum of AQ. However, it turns out that it will be

extremely beneficial to work with more information by tracking down the entire spectrum.

Inspired by the seminal sequence of works by Marcus, Spielman and Srivastava [MSS13,

MSS18, MSS22], we do this by studying the expected characteristic polynomial

A�(x) , E
Q
χx(AQ).

The first thing worth emphasizing is that while each of the polynomials that participate in

the expectation, χx(AQ), is real-rooted, the fact that A�(x) is real-rooted is a nontrivial,

though true, statement. Even with this in mind, whatever we conclude by studying the

roots of A�(x) is insufficient by itself for two reasons:

1. It is unclear how to deduce anything from the Haar-expected behavior on a par-

ticular choice of Q, let alone on a sequence of permutation matrices. That is, the

expectation is taken with respect to the coefficient space whereas we are interested

in the eigenvalues which are highly non-linear in the coefficients.

2. As mentioned, typically, rotating (or, more precisely, applying an orthogonal oper-

ator to) the eigenvectors of a d-regular graph does not yield a d-regular graph.

Still, in the following section (Section 2.1) we will proceed with analyzing A�(x).

Both our analysis of A�(x) as well as the solution to the above two problems make

heavy use of the powerful framework of finite free probability and interlacing families,

as well as a certain quadrature result that was introduced by Marcus, Spielman and Sri-

vastava [MSS13, MSS15, MSS18, MSS22] in which the authors prove the existence of

bipartite Ramanujan graphs of every degree and size, and further prove Weaver’s conjec-

ture [Wea04] which, by extension, resolves the Kadison-Signer problem [KS59].

5The reader unfamiliar with the Haar measure on the group of orthogonal matrices is referred to

Section 4. The reader that is familiar with this Haar measure will observe that “rotation” does not

precisely capture what is suggested as also reflections, and compositions of rotations and reflections,

are involved. Nonetheless, we choose simplicity over accuracy in our name-giving. A remark regarding

our notation is in place: Throughout the paper, we will denote permutation matrices by P-s and Haar

distributed orthogonal matrices by Q-s.
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With these caveats in mind, we turn to analyze A�(x). The other aspects mentioned

above are treated afterwards in Section 2.2 and Section 2.3.

2.1 Analyzing A�(x): the Haar-expected characteristic polyno-

mial

The problem with analyzing A�(x) is that it is difficult to work out with a given graph

G. On the positive side, note that due to the Haar random matrices that we apply,

A�(x) depends only on the spectrum of A, namely, it does not depend on the latter’s

eigenvectors. This leads us to our strategy, which is to cheat.

Instead of analyzing A�(x), we are going to replace the distribution of eigenvalues

of A with the Kesten-McKay distribution. The latter is a limit object that does not

correspond to any particular finite graph. It does, however, correspond to the spectrum

of the d-regular infinite tree 6, and so one might hope that this analysis will shed light on

high girth finite graphs. At any rate, our starting point is in observing that A�(x) can

be expressed neatly using the multiplicative convolution.

2.1.1 The multiplicative convolution

We make use of the following key definition and result which can be found in [MSS22].

Definition 2.1 (Multiplicative convolution). Let A,B be real symmetric matrices of

equal order with characteristic polynomials a(x), b(x). The multiplicative convolution

a� b is the polynomial defined by

(a� b)(x) = E
Q
χx(AQBQT),

where Q is Haar random orthogonal matrix.

It should be noted that although the right hand side seems to depend on the eigen-

vectors of A,B it in fact depends solely on the spectrum of these matrices, due to the

Haar random Q, and so the � operator, which note receives only information about the

spectrum of the matrices, is well-defined.

Using the multiplicative convolution, and the cyclic-invariant property of the charac-

teristic polynomial, we can write

A�(x) = χx(A
2)�t, (2.1)

6To formally define the spectrum of an infinite operator, even one with countable dimension, requires

some background and we anyhow won’t be needing this point of view.
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where the notation on the RHS means we take the multiplicative convolution on t copies

of χx(A
2), noting that the multiplicative convolution is both associative as well as com-

mutative. E.g., for t = 2,

A�(x) = E
Q1

χx(AQ1A
2QT

1 A) = E
Q1

χx(A
2Q1A

2QT
1 ) = χx(A

2)� χx(A
2) = χx(A

2)�2.

The multiplicative convolution was studied by Marcus, Spielman and Srivastava around

ten years ago, and has its origins in the “infinite” or limit case in free probability theory,

and before that, in the study of random matrices. Analyzing the multiplicative convolu-

tion is done by studying several analytic transform which we turn to discuss.

2.1.2 Transforms

Let µ be a distribution on [0, a] for some real a > 0. The Cauchy transform of µ is defined

by

Gµ(x) =

∫ a

0

1

x− t
µ(t)dt.

Following Marcus, Spielman and Srivastava, we will study Gµ as a function on (a,∞)

though we remark that if one wish to extract more information about µ than bounding

it support, it is beneficial to study Gµ as a function on C+. We further note that Gµ
is essentially the moment generating function of µ around the point at infinity. More

precisely,

Gµ(x) =
∞∑
r=0

mr(µ)

xr+1
,

where mr(µ) is the r-th moment of µ.

We extend the definition of Gµ to real-rooted polynomials p(x) by defining µ as the

uniform distribution over roots of p(x), where repeated roots are sampled accordingly. We

further extend Gµ to real symmetric matrices by considering the corresponding character-

istic polynomial. E.g., if A is positive semidefinite with eigenvalues λ1 ≥ · · · ≥ λn ≥ 0

then

GA(x) =
1

n

n∑
i=1

1

x− λi
.

The Mµ transform is defined by

Mµ(x) = xGµ(x)− 1 =
∞∑
r=1

mr(µ)

xr
. (2.2)

We define Nµ(y) to be the largest x such that Mµ(x) = y, assuring the reader that

this is well-defined in our case, namely, when µ is supported on [0, a]. A simple yet key
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observation is that for every y > 0, NA(y) is an upper bound on λ1. Thus, to bound

‖A‖ = λ1 for some PSD matrix A of interest, we will find a good choice y0 for y, ideally

a minimizer of NA(y), and conclude that ‖A‖ ≤ NA(y0). Lastly, it will be convenient

to define the Sµ-transform by Sµ(y) = y
y+1
Nµ(y). We make use of the following powerful

result.

Theorem 2.2 (Theorem 1.12 of [MSS22]). For all polynomials p(x), q(x) with non-

negative real roots and for every y > 0, Sp�q(y) ≤ Sp(y) · Sq(y).

2.1.3 Analyzing A�(x) by cheating

Recall that NA(y) is the “max-inverse” of MA(x) = 1
n

∑n
i=1

λi
x−λi which is hard to get

a handle on. Instead, we work with the Kesten-McKay distribution [McK81] which is a

continuous measure that is given by

µkm(t) =


d
√

4(d− 1)− t2
2π(d2 − t2)

, for |t| ≤ 2
√
d− 1;

0, otherwise.

(2.3)

Observing Equation (2.1), we will in fact be interested in the square of the Kesten-

McKay distribution, denoted here km2. One can calculate the corresponding S-transform,

Skm2(y) = d2 · y + 1

y + d
.

Had Skm2(y) been the S-transform of a polynomial (rather than of a continuous measure),

we could have deduce, using Theorem 2.2, that

S(km2)�t(y) ≤ d2t ·
(
y + 1

y + d

)t
.

Hence,

N(km2)�t(y) ≤
(

d2

y + d

)t
· (y + 1)t+1

y
. (2.4)

We will perform this illegal step as part of the “cheat” we are anyhow to blame for.

Had it not been for the y in the denominator of Equation (2.4), we could have plugged

in y = 0 to get a bound of dt =
√
D which is too much to hope for as it is off, even for a

Ramanujan graph, by a factor of two. However, one can show that by taking ymin = d
dt−t−1

which minimizes the bound in Equation (2.4), one gets

N(km2)�t(ymin) ≤
(

1 +
1

t

)t
(t+ 1)dt < e(t+ 1)dt = O(t

√
D).

Thus, modulo the cheating, one can deduce the desired linear deterioration in t, namely,

maxrootA�(x) = O(t
√
D).
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2.1.4 Uncheat

To obtaining the result about the graph at hand, we use the observation [McK81] that the

first g
2

moments of A and km are equal, g being the girth of G. Hence, by Equation (2.2),

MA2(x) and Mkm2(x) differ only on their respective tails. In particular, MA2(x) ≈
Mkm2(x) for a sufficiently large x. From this, with some technical work, we are able to

show that NA2(y) ≈ Nkm2(y) when y is taken from some interval (see Corollary 4.10).

Thus, the bound computed for Nkm2(ymin) can be used to bound NA2(ymin) losing only

the error term ε = |NA2(ymin) − Nkm2(ymin)|. We refer to this part of the proof as the

“adapter” as it allows us to plug the spectrum of a graph to the analysis that works given

the Kesten-McKay distribution.

We remark that the above is an oversimplified overview. In particular, our analysis

requires a somewhat delicate technical work if we wish the analysis to hold for all t ≥ 2.

Moreover, to prove the result for general λ-spectral expanders, not necessarily Ramanujan

graphs, some technical complications occur, in particular, we cannot simply take the

minimizer ymin and instead we need to choose the best y0 possible under the various

constraints that present themselves throughout the analysis. These, however, are technical

details that we choose to omit from this informal proof sketch.

2.2 Quadrature: from Haar to random permutations

The next step in the proof, following the MSS framework, is to move from the Haar-

expected analysis that was discussed in Section 2.1 to a statement about expectation

with respect to random permutations. The key ingredient in accomplishing this is the

following lemma.

Lemma 2.3. Let A,B be real n×n symmetric matrices such that A1 = a1 and B1 = b1.

Denote by pA, pB the polynomials satisfying χx(A) = (x−a)pA(x), χx(B) = (x−b)pB(x).

Let P be a uniformly random n× n permutation matrix. Then,

E
P
χx(APBPT) = (x− ab) (pA � pB) (x).

Note that

(pA � pB) (x) = E
Q
χx(ÂQB̂QT),

where Â is the operator induced by A when restricted to 1⊥, and similarly for B̂. There-

fore, Lemma 2.3 should be understood as relating the Haar-expected behavior of the
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“error operator” 7 to the expected behavior with respect to random permutations. Thus,

λ

(
E
P
χx(AP)

)
= maxroot Â�(x)

(see Lemma 5.9). Therefore, the bound obtained for the Haar-expected behavior serves as

a bound on the largest eigenvalue of the expected characteristic polynomial with respect

to random permutations.

The last step in the proof, discussed in Section 2.3 below, allows one to deduce a

bound on λ(AP) for some specific permutation sequence P from the bound obtained for

the expected characetristic polynomial. Before moving on, we make some remarks.

Lemma 2.3 is the multiplicative analog of Theorem 4.1 of [MSS18] who considered

the additive case, namely, EQ χx(A + QBQT). Our proof mimics the latter though it

requires a bit more technical work (see Lemma 5.7). This part of the proof is dubbed,

by MSS, the quadrature step as it expresses an integral (the Haar expectation) as a finite

sum (expectation with respect to permutations).

The proof, which will occupy us in Section 5, proceeds roughly as follows. First, one

observes that when a permutation P is sampled uniformly at random, its orthogonal

projection to 1⊥, P̂, is a random element in the symmetry group of the n-vertex regular

simplex, embedded in Rn−1. It is a well-known geometric fact that the group of Haar

random orthogonal matrices is generated by the two-dimensional Haar random matrices

in the sense that every such matrix can be decomposed to matrices acting on the faces

of the simplex. Thus, the problem essentially boils down to the plane. A Haar random

orthogonal matrix in the plane is nothing more than rotations and reflections, and so,

with some work, the desired statement can be shown to hold for dimension two and, by

the above, to any dimension.

2.3 Interlacing: from random permutations to a tailor-made se-

quence

So far we discussed how to obtain a bound on the largest root of the expected characteristic

polynomial E[χx(AP)], excluding the trivial root. It is generally false that a bound on the

(second) largest root of the expectation of polynomials can be used to deduce a bound on

the (second) largest root of one of the polynomials that participate in the expectation. It

is not even true that the expectation is necessarily real-rooted given that all polynomials

in the expectation are.

7To clarify the term “error operator”, recall that when working with an expander, we can decompose

the corresponding adjacency matrix A = J + E, with J being the normalized all-ones matrix, and think

of E as the error operator. Here E plays the role of Â.
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The key observation of MSS with regards to this issue is that the polynomials that

participate in the expectation form an interlacing family. Informally, this means that

there exists a binary tree whose nodes are labeled by polynomials in such a way that:

1. The leaves are labeled with the polynomials that participate in the expectation.

2. The root is labeled by the expected characteristic polynomial EP χx(AP).

3. The polynomial corresponding to an internal node is a convex combination of those

corresponding to its sons.

4. The polynomials pu(x), pv(x) that correspond to siblings u, v have a common inter-

lacing. That is, there exists a third real-rooted polynomial q(x) such that between

every two consecutive roots of q(x) there is precisely one root of each of the poly-

nomials pu(x), pv(x).

MSS proved that Properties (3) and (4) guarantee that the (second) largest root of a

node bounds from above the (second) largest root of one of its two sons. By proceeding

from the root downwards to the leaves one can deduce, using Properties (1) and (2), a

bound for a specific sequence of permutations P from the bound on the second largest

root of the expected characteristic polynomial.

Our proof for the existence of one good sequence P builds on this part of the proof

of MSS. We prove that the interlacing property holds in our multiplicative case in a way

that is very similar to the proof of the existing interlacing based proofs.

3 Preliminaries

Throughout the paper we denote matrices by capital bold letters, e.g., A,B,W. The

normalized (with respect to ‖ · ‖2) all-ones vector is denoted by 1, where the dimension

of the vector is always implicit. The characteristic polynomial of a matrix A, in variable

x, is denoted by χx(A). For a real-rooted polynomial p(x) we let maxroot(p(x)) denote

its largest root.

3.1 Haar distribution on the orthogonal group

Denote the group of n × n orthogonal matrices by O(n). The Haar distribution is the

unique distribution over O(n) which is invariant under multiplication (from the right or

from the left) with any arbitrary orthogonal matrix from O(n). We call a matrix drawn

from this distribution a Haar random matrix. Although not required for our proof, it is

12



illuminating to picture at least one way of how such a matrix can be drawn: one can

pick the first column uniformly at random (normalized), next picking the second column

uniformly as well, conditioned one being orthogonal to the first, and so on.

An important characteristic of the Haar distribution, which we rely on in this work,

can be formalized as follows. Let A,B be two arbitrary n × n symmetric matrices, and

Q be a Haar random matrix. Then the random rotation of either A or B according

to Q removes any dependence between the respective eigenvectors of A and B. More

formally, if χx(A) = p(x) and χx(B) = q(x), then both expected characteristic polyno-

mials EQ χx(A + QBQT) and EQ χx(AQBQT) depend only on p and q, and not on the

eigenvectors of either A or B.

3.2 Distributions and transforms

We identify a distribution µ on a set S with a function µ : S → [0, 1] in the natural way.

Let α ∈ [0, 1], and note that if µ, ν : S → [0, 1] are two distributions then the function

αµ+ (1−α)ν corresponds to the distribution which is obtained by sampling from µ with

probability α and sampling from ν with probability 1−α. If µ : S → [0, 1] is a distribution

and S is a multiplicative group then for t ∈ S we define the distribution tµ : S → [0, 1]

that is given by (tµ)(s) = µ(t−1s). As suggested by the notation, to sample from the

distribution tµ one first sample s ∼ µ and then return ts. We similarly define µt.

Let µ be a probability distribution over R. The distribution µ2 is defined in the natural

way, namely, to sample from µ2, one samples x from µ and returns x2.

3.2.1 Transforms

Let µ be a probability distribution over R. The Cauchy transform of µ is defined as the

function

Gµ(x) =

∫
R

1

x− t
µ(t)dt.

We remark that in many settings it is instructive to study the Cauchy transform as a func-

tion whose domain is C+. However, we will consider the Cauchy transform as a function

on R. More accurately, the distributions that we consider will be of bounded positive sup-

port, namely supp(µ) ⊆ [0, a], and we will always evaluate the Cauchy transform outside

of that support. The Cauchy transform is also related to the moments of a distribution.

If mr(µ) is the r-th moment of µ then for every x > a we have

Gµ(x) =
∞∑
r=0

mr(µ)

xr+1
. (3.1)
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(see Remark 2.19 in [NS06].) Accompanied to the Cauchy transform is theM-transform 8

which is defined by

Mµ(x) = xGµ(x)− 1 =

∫
R

t

x− t
µ(t)dt.

We define the inverse of this transform, Nµ(y), to be the largest x so that Mµ(x) = y.

For the aforementioned distributions, this is well-defined, as Mµ can be shown to be

monotone decreasing in (a,∞).

The S-transform of µ, denoted Sµ is defined by Sµ(y) = y
y+1
Nµ(y). We make use of the

following powerful result which bounds the S-transform of the multiplicative convolution

(recall Definition 2.1) of two polynomials by the product of their S-transforms.

Theorem 3.1 ([MSS22], Theorem 4.7). Let p(x), q(x) be polynomials with non-negative

real roots. Then, for every y > 0, Sp�q(y) ≤ Sp(y) · Sq(y).

As a direct corollary one gets the following result.

Corollary 3.2. Let p(x) be a polynomial with non-negative real roots. Then, for every

y > 0,

Np�t(y) ≤
(

y

y + 1

)t−1

Np(y)t.

3.2.2 Distributions and transforms of polynomials, matrices, and graphs

Let p(x) be a degree n real rooted polynomial with roots α1 ≥ α2 ≥ · · · ≥ αn. To p(x)

we associate the distribution µp that is uniform over its roots, namely, to sample from µp

one first samples i ∈ [n] uniformly at random and then returns αi. Note that

Gµp(x) =
1

n

n∑
i=1

1

x− αi
.

For ease of readability we write Gp instead of the more cumbersome Gµp . We similarly

define Mp and Np as a shorthand for Mµp and Nµp , respectively. The r-th moment of

µp is denoted by mr(p). Furthermore, for the characteristic polynomial χx(A) of a real

symmetric matrix A, we denote µχx(A) by µA for short. Similarly, we write GA,MA and

NA for Gχx(A), Mχx(A), and Nχx(A), respectively.

For an undirected graph G we write µG for µAG
where AG is the adjacency matrix

of G. We write GG for GAG
and similarly define MG and NG. Throughout the paper

8The reader should note that [MSS22] denotes what we refer to as the M-transform by M̃. The

N -transform and S-transform that we define next are denoted in [MSS22] by M̃(−1) and S̃, respectively.

We do so for ease of readability.
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we will consider d-regular graphs, and in these cases it will be convenient to denote by

GĜ, MĜ and NĜ, the corresponding transforms of the polynomial 1
x−dχx(A), where A is

the adjacency matrix of G. We remark that NA is well-defined also for a real symmetric

matrix A that is not positive semidefinite.

3.3 The Kesten-McKay distribution

The probability measure of the Kesten-McKay distribution with parameter d is given by

µkm(t) =


d
√

4(d− 1)− t2
2π(d2 − t2)

, for |t| ≤ 2
√
d− 1;

0, otherwise.

(3.2)

Note that we suppress the parameter d from the notation as it will always be clear

from context. The following is a well-known fact from free probability theory (see, e.g.,

Example 12.8 in [NS06]). It can also be verified by a straightforward calculation.

Claim 3.3. The Cauchy transform of the Kesten-McKay distribution with parameter d

is given by

Gµkm(x) =
d
√
x2 − 4(d− 1)− x(d− 2)

2(x2 − d2)
.

For ease of readability we denote the Cauchy transform of the Kesten-McKay dis-

tribution by Gkm, and similarly denote the transforms Mkm and Nkm. We will mostly

be working with the distribution of µ2
km, which we write as µkm2 and denote its Cauchy

transform by Gkm2 rather than by the cumbersome Gµ2km . We similarly write Mkm2 , Nkm2

for the respective transforms of this distribution.

Claim 3.4. For µ2
km with parameter d we have

Gkm2(x) =
d
√
x− 4(d− 1)−

√
x(d− 2)

2
√
x(x− d2)

, (3.3)

Mkm2(x) =
2d√

x(x− 4(d− 1)) + x− 2d
, (3.4)

and

Nkm2(y) =
d2(y + 1)2

y(y + d)
.

The proof of the first two equalities readily follows by Claim 3.5, stated below, and

Claim 3.3, and the assertion regarding the N -transform can be verified.

Claim 3.5. For every symmetric probability distribution µ supported on (−a, a) it holds

that Gµ2(x) = 1√
x
Gµ(
√
x) for all x > a2.
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For completeness, the easy proof of Claim 3.5 appears in Appendix A. Lastly, the

following claim, relating the moments of a d-regular graph with the moments of the

Kesten-McKay distribution with parameter d is implicit in [McK81].

Claim 3.6. Let G be a d-regular graph with girth g. Then, for every 0 ≤ r < g
2
, mr(G) =

mr(µkm).

4 Haar Analysis

The purpose of this section is proving a bound on the largest non-trivial root of the Haar-

expected characteristic polynomial, formalizing the overview given in Section 2.1. The

main two results, corresponding to Ramanujan graphs and to general expander graphs,

are the following:

Proposition 4.1. Let G be a d-regular Ramanujan graph on n vertices with girth g.

Denote ḡ = min(g, 1
6
· logd n). Then, for every t ≥ 2,

maxroot
(

(Ĝ2)�t(x)
)
≤
(

1 +
1

t

)t
(t+ 1)dt + (8td)t+3 · 2−Ω(ḡ).

Proposition 4.2. Let G be a d-regular λ-spectral expander on n vertices having girth g.

Denote ḡ = min(g, 1
6
· logd n). Then,

maxroot
(

(Ĝ2)�t(x)
)
≤

5e2 · λ2dt−1 + (5dλ2)t+3 · 2−Ω(ḡ), t < 8λ2

d
;(

1 + 1
t

)t
(t+ 1)dt + (tλ2)t+4 · 2−Ω(ḡ), otherwise.

The proofs of the above are given in Section 4.2 and Section 4.3, respectively. In the

sections preceding these, we build the tools needed. For ease of readability, we repeat the

definition of the multiplicative convolution as given in Definition 2.1.

Definition 4.3. Let A,B be real symmetric matrices of equal order with characteristic

polynomials a(x) and b(x), respectively. The multiplicative convolution of a(x) and b(x),

denoted (a� b)(x) is defined to be

(a� b)(x) = E
Q

[
χx
(
AQBQT

)]
,

where Q is Haar random orthogonal matrix.

We remark that there is a more general definition of the multiplicative convolution to

polynomials which are not necessarily characteristic polynomials of matrices (see Defini-

tion 1.4 in [MSS22]) though we will not need it here. One can show that � is associative,

namely, (a � b) � c = a � (b � c) and so the (t − 1)-fold multiplicative convolution of

a with itself is well-defined, and is denoted by a�t (so that a�1 = a). Moreover, � is

commutative.
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4.1 The adapter: formalizing the cheat and uncheat idea

The purpose of this section is to formalize the cheat and uncheat idea that was informally

discussed in Section 2.1. Recall that we wish to bound the N -transform of the graph

at hand but doing so directly seems difficult as it is unclear how to get a handle on the

max-inverse of theM-transform of a graph. To bypass this difficulty, we show that the N -

transform of the Kesten-McKay distribution is a good approximation to the N -transform

of any d-regular Ramanujan graph with sufficiently large girth. We refer to this part of

the proof, which is formalized in Corollary 4.10, as the adapter. Invoking our adapter

with the well-known properties of the Kesten-McKay distribution yields the main result

of this section.

Proposition 4.4. Let G be a d-regular graph on n vertices having girth g whose eigen-

values are λ1 ≥ λ2 ≥ · · · ≥ λn. Denote 9 λ = max
(
|λ2|, |λn|, 2

√
d− 1

)
, and assume

that 3 ≤ d ≤ n
10

. Then, for every t ≥ 2 the following holds. For every y > 0 for which

Nkm2(y),N
Ĝ2(y) ∈ [βλ2, γλ2] , we have that

N
(Ĝ2)�t

(y) ≤ (y + 1)t+1

y(y + d)t
· d2t + εnt · (γλ2)t,

where

εn ,
4γ2λ4

d
· min
h∈[g/2]

(
d3h

n
+

1

1− 1
β

(
1

β

)h+1
)
. (4.1)

Throughout this section we consider the following setting. Let a ≥ 0 be a real number,

µ a probability measure supported on [−a, a], and set d = m2(µ). Let A be an n×n real

symmetric matrix whose eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ λn. Denote λ = max(|λ2|, |λn|)
and set b = max(a, λ). We make the following assumptions: b ≥ 1, λ1 = d, 3 ≤ d ≤ n

10

and λ ≤ d. Let p(x) be the polynomial that satisfies χx(A
2) = (x−d2)p(x). Assume that

the first 2h moments of µ and µA match, namely,

mr(µ) = mr(A) for r = 0, 1, . . . , 2h. (4.2)

Claim 4.5. With the notation and under the assumptions above, for every x > b2,

|Gµ2(x)− Gp(x)| ≤ 2

nx
· d3h +

2

x− b2

(
b2

x

)h+1

.

Proof. By Equation (3.1) and since x > b2, recalling that the r-th moment of a polynomial

p(x), denoted mr(p), is the corresponding moment of the uniform distribution over its

9Note that, technically, λ defined here is not precisely λ(G) which recall is defined by max (|λ2|, |λn|).
Indeed, it can be the case that λ(G) < 2

√
d− 1.
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roots, we have that

|Gµ2(x)− Gp(x)| =

∣∣∣∣∣
∞∑
r=0

mr(µ
2)−mr(p)

xr+1

∣∣∣∣∣
≤

∣∣∣∣∣
h∑
r=0

mr(µ
2)−mr(p)

xr+1

∣∣∣∣∣+

∣∣∣∣∣
∞∑

r=h+1

mr(µ
2)−mr(p)

xr+1

∣∣∣∣∣
=

∣∣∣∣∣
h∑
r=0

mr(A
2)−mr(p)

xr+1

∣∣∣∣∣+

∣∣∣∣∣
∞∑

r=h+1

mr(µ
2)−mr(p)

xr+1

∣∣∣∣∣ , (4.3)

where the last equality follows per our assumption as given by Equation (4.2). Using that

λ1 = d,

mr(A
2)−mr(p) =

1

n

n∑
i=1

λ2r
i −

1

n− 1

n∑
i=2

λ2r
i =

1

n
d2r − 1

n(n− 1)

n∑
i=2

λ2r
i ,

and so, since λ ≤ d,∣∣mr(A
2)−mr(p)

∣∣ ≤ 1

n
d2r +

1

n(n− 1)

n∑
i=2

λ2r
i ≤

1

n
d2r +

λ2r

n
≤ 2

n
d2r.

Thus, we can bound the first summand on the right hand side of Equation (4.3) by∣∣∣∣∣
h∑
r=0

mr(A
2)−mr(p)

xr+1

∣∣∣∣∣ ≤ 1

x

h∑
r=0

|mr(A
2)−mr(p)|
xr

≤ 2

nx

h∑
r=0

(
d2

x

)r
≤ 2

nx
· d3h, (4.4)

where for the last inequality we used our assumption x > b2 ≥ 1. Moving forward to

the higher moments which appear on the second summand on the right hand side of

Equation (4.3), we have that

|mr(µ
2)−mr(p)| ≤ mr(µ

2) +mr(p) ≤ a2r + λ2r ≤ 2b2r,

where we used the fact that µ is supported on [−a, a] (hence mr(µ
2) = m2r(µ) ≤ a2r) and

similarly for µp. Thus,∣∣∣∣∣
∞∑

r=h+1

mr(µ
2)−mr(p)

xr+1

∣∣∣∣∣ ≤
∞∑

r=h+1

|mr(µ
2)−mr(p)|
xr+1

≤ 2

x
·
∞∑

r=h+1

(
b2

x

)r
=

2

x− b2

(
b2

x

)h+1

.

The proof follows by substituting Equation (4.4) and the above bound to Equation (4.3).

Claim 4.5 tells us that when the two distributions µ2 and p agree on the low moments,

the corresponding G-transforms are close for sufficiently large input x. We wish to prove

closeness of the N -transforms which, recall, are the inverses of theM-transforms. To this

end, we need the following technical claim.
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Claim 4.6. Let f, g : (c,∞) → R be differentiable, strictly decreasing convex functions.

Note that f−1 : Im(f)→ (c,∞) and g−1 : Im(g)→ (c,∞) are well-defined functions. Let

ε : (c,∞) → R be a function such that for every x > c, |f(x)− g(x)| ≤ ε(x). Then, for

every y ∈ Im(f) ∩ Im(g),∣∣f−1(y)− g−1(y)
∣∣ ≤ max

(
ε(f−1(y))

|g′(f−1(y))|
,
ε(g−1(y))

|f ′(g−1(y))|

)
.

Proof. Let x = g−1(y) and x′ = f−1(y). Consider the case that x′ ≥ x and denote

∆ = x′ − x = |f−1(y) − g−1(y)|. To conclude the proof, it suffices to prove that in this

case, namely, x′ ≥ x,

∆ ≤ ε(f−1(y))

|g′(f−1(y))|
.

Indeed, by exchanging the roles of f, g this will imply that in the second case the bound

∆ ≤ ε(g−1(y))
|f ′(g−1(y))| holds and the proof will follow. Since f(x+ ∆) = f(x′) = y = g(x),

ε(x+ ∆) ≥ |f(x+ ∆)− g(x+ ∆)| = |g(x)− g(x+ ∆)|.

Since g is convex, differentiable and strictly decreasing, we have that

g(x)− g(x+ ∆)

∆
≥ |g′(x+ ∆)|,

and so

∆ ≤ ε(x+ ∆)

|g′(x+ ∆)|
=

ε(f−1(y))

|g′(f−1(y))|
.

In light of the hypothesis of Claim 4.6, the next two claims prepare the grounds by

proving that Mµ2 and Mp are strictly decreasing convex functions, and give bounds on

their derivatives.

Claim 4.7. In the interval (a2,∞), the functionMµ2(x) is strictly decreasing and convex.

Moreover, |M′
µ2(x)| ≥ d

x2
.

Proof. As t
x−t is differential (in x) wherever x > t, we can write

M′
µ2(x) =

d

dx

∫ a2

0

t

x− t
µ2(t)dt = −

∫ a2

0

t

(x− t)2
µ2(t)dt < 0,

establishing that Mµ2(x) is strictly decreasing in (a2,∞). Moreover, by the above equa-

tion,

∣∣M′
µ2(x)

∣∣ =

∫ a2

0

t

(x− t)2
µ2(t)dt ≥ 1

x2

∫ a2

0

tµ2(t)dt =
m1(µ2)

x2
=
m2(µ)

x2
=

d

x2
.
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As for the convexity of Mµ2(x) in (a2,∞),

M′′
µ2(x) =

d2

dx2

∫ a2

0

t

x− t
µ2(t)dt = 2

∫ a2

0

t

(x− t)3
µ2(t)dt > 0.

Claim 4.8. In the interval (λ2,∞), the functionMp(x) is strictly decreasing and convex.

Moreover, |M′
p(x)| ≥ d

2x2
.

Proof. We have that

Mp(x) =
1

n− 1

n∑
i=2

λ2
i

x− λ2
i

.

Thus, for x > λ2,

M′
p(x) = − 1

n− 1

n∑
i=2

λ2
i

(x− λ2
i )

2
< 0,

which shows that M′
p(x) is strictly decreasing in (λ2,∞). As

n∑
i=2

λ2
i = Tr(A2)− d2 = d(n− d),

we have that

∣∣M′
p(x)

∣∣ =
1

n− 1

n∑
i=2

λ2
i

(x− λ2
i )

2
≥ 1

n− 1

n∑
i=2

λ2
i

x2
=
n− d
n− 1

· d
x2

>
d

2x2
,

as per our assumption, d ≤ n
2
. To conclude the proof, note that

M′′
p(x) =

2

n− 1

n∑
i=2

λ2
i

(x− λ2
i )

3

which is strictly positive for x > λ2.

We invoke the results from this section to obtain the following.

Claim 4.9. Let 1 < β < γ be parameters. With the notation and under the assumptions

listed at the beginning of the section, for every y that satisfies Nµ2(y),Np(y) ∈ [βb2, γb2]

it holds that

|Nµ2(y)−Np(y)| ≤ 4γ2b4

d
·

(
d3h

n
+

1

1− 1
β

(
1

β

)h+1
)
.
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Proof. By Claim 4.5, for every x ≥ βb2,

|Mµ2(x)−Mp(x)| = x |Gµ2(x)− Gp(x)|

≤ 2

n
· d3h +

2x

x− b2

(
b2

x

)h+1

≤ 2

n
· d3h +

2

1− 1
β

(
1

β

)h+1

, ε.

By Claim 4.7 and Claim 4.8, the functionsMµ2 ,Mp are differentiable, strictly decreasing

and convex when restricted to the domain (a2,∞) ∩ (λ2,∞) = (b2,∞). We can thus

invoke Claim 4.6 with f, g taken to be Mµ2 and Mp, respectively, on the domain (c,∞)

where c = βb2, and conclude that

|Nµ2(y)−Np(y)| ≤ ε ·max

(
1

M′
p (Nµ2(y))

,
1

M′
µ2 (Np(y))

)
.

Per our assumption, Np(y) ≥ βb2 > a2, and so we can invoke Claim 4.7 to get

M′
µ2 (Np(y)) ≥ d

Np(y)2
≥ d

γ2b4
,

where for the last inequality, we used our assumptionNp(y) ≤ γb2. Similarly, by Claim 4.8,

M′
p (Nµ2(y)) ≥ d

2Nµ2(y)2
≥ d

2γ2b4
.

Combining the above we get that

|Nµ2(y)−Np(y)| ≤ ε · 2γ2b4

d
,

which concludes the proof.

We conclude

Corollary 4.10. Let G be a d-regular graph on n vertices having girth g whose eigenvalues

are λ1 ≥ λ2 ≥ · · · ≥ λn. Denote λ = max
(
|λ2|, |λn|, 2

√
d− 1

)
, and assume that 3 ≤ d ≤

n
2
. Then, for every y > 0 for which Nkm2(y),N

Ĝ2(y) ∈ [βλ2, γλ2] , 10 we have that∣∣Nkm2(y)−N
Ĝ2(y)

∣∣ ≤ εn,

where εn is given by Equation (4.1).

10We remind the reader that the notation used, N
Ĝ2(y), is defined in Section 3.2.2.
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Proof. The proof readily follows by Claim 4.9 once one verifies the hypothesis of the

latter. To this end, as km is supported on [−2
√
d− 1, 2

√
d− 1] (recall Equation (3.2)),

the parameter a in the notation used by Claim 4.9 can be taken to be a = 2
√
d− 1.

It is a matter of a calculation to show that m2(km) = d. Recall that b was defined

by b = max(a, λ), and indeed b ≥ 1 as required. As G is d-regular we have that λ1 = d.

Moreover, max(|λ2|, |λn|) ≤ d is a standard fact about symmetric matrices.

We are finally in a position to prove Proposition 4.4.

Proof of Proposition 4.4. Note that for every pair of real numbers a, b such that |a−b| ≤ ε

and every t ∈ N, |at − bt| ≤ εt ·max(a, b)t. Thus, Corollary 4.10 implies that∣∣Nkm2(y)t −N
Ĝ2(y)t

∣∣ ≤ εnt · (γλ2)t.

Therefore, by Claim 3.4,

N
Ĝ2(y)t ≤

(
d2(y + 1)2

y(y + d)

)t
+ εnt · (γλ2)t.

Corollary 3.2 then implies that

N
(Ĝ2)�t

(y) ≤
(

y

y + 1

)t−1 (
N
Ĝ2(y)

)t ≤ (y + 1)t+1

y(y + d)t
· d2t + εnt · (γλ2)t.

4.2 Haar rotated Ramanujan graphs

In this section we prove Proposition 4.1 below though only for t ≥ 4. Interestingly, to

handle the smaller values t = 2, 3 some more technical work is required. As this additional

effort is quite technical and not too illuminating, the proof for these cases is deferred to

Section 4.2.1.

Proof of Proposition 4.1 for t ≥ 4. We start by briefly describing the proof strategy.

Proof strategy: using the N -transform and the adapter. First note that given

a polynomial p(x) with non-negative roots, for any y > 0, Np(y) is an upper bound on

maxroot(p(x)). That is,

maxroot(p(x)) ≤ inf
y>0
Np(y).

Indeed, if we denote x = Np(y) then, by the definition of Np, x is the largest real number

for which Mp(x) = y. Now, denote α = maxroot(p(x)) and note that the function Mp
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restricted to the domain (α,∞) has precisely (0,∞) as its image. By the intermediate

value theorem, there is some x′ > α for which Mp(x
′) = y. Therefore x ≥ x′, and so

Np(y) = x ≥ x′ > α = maxroot(p(x)).

From this we see that to prove the corollary it suffices to bound N
(Ĝ2)�t

(y) where we

have the freedom to choose y > 0 as desired. The straightforward way of doing that is

to find a y that minimizes N
(Ĝ2)�t

(y). As we do not have a good handle on the later

polynomial (namely, we do not have concrete, easy to work with, information on the

spectrum of G), we use Proposition 4.4 which essentially studies the latter by considering

the Kesten-McKay distribution instead. However, the technical delicate point in using

Proposition 4.4 is that we are restricted to work with y-s such that

Nkm2(y),N
Ĝ2(y) ∈

[
βλ2, γλ2

]
, (4.5)

where γ > β > 1 affect the quantitative bound we get. Hence, we will proceed by finding

the value ymin that minimizes N�t
km2 in the relevant domain.

Applying the adapter. Denote

f(y) =
(y + 1)t+1

y(y + d)t
.

It is easy to verify that

f ′(y) =
(y + 1)t

y2(y + d)t+1
((td− t− 1)y − d) ,

and so

ymin =
d

dt− t− 1
(4.6)

is an extreme, in fact a global minimum, of f(y) in (0,∞). Substituting, we get

f(ymin) = (t+ 1)

(
1 +

1

t

)t
· d− 1

dt+1
<
e(t+ 1)

dt
. (4.7)

Thus, assuming the hypothesis of Proposition 4.4 holds, as we will verify shortly with

suitably chosen β, γ, the latter implies that

N
(Ĝ2)�t

(ymin) ≤
(

1 +
1

t

)t
(t+ 1)dt + εnt · (γ · 4(d− 1))t, (4.8)

where recall that εn (see Equation (4.1)), set with λ = 2
√
d− 1, equals

εn ,
64γ2(d− 1)2

d
· min
h∈[g/2]

(
d3h

n
+

1

1− 1
β

(
1

β

)h+1
)
. (4.9)
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Verifying the adapter’s hypothesis for our choice of β, γ. Before proceeding, we

verify that the hypothesis of Proposition 4.4 holds. More accurately, we show that for

γ = t+ 1 and β = 9
8

it holds that

Nkm2(ymin),NĜ2(ymin) ∈
[
βλ2, γλ2

]
= [4β(d− 1), 4γ(d− 1)] .

Starting with km2, by Claim 3.4,

Nkm2(ymin) =
d2(ymin + 1)2

ymin(ymin + d)
=

(t+ 1)2

t
(d− 1), (4.10)

and so by our choice of β, γ, we have that Nkm2(ymin) is in the required interval. This in

fact holds for all t ≥ 2.

As for N
Ĝ2(y), we have that M

Ĝ2(x) = 1
n−1

∑n
i=2

λ2i
x−λ2i

, and so for every x > λ2,

M
Ĝ2(x) ≤ λ2

x−λ2 . This then implies that for every y > 0,

N
Ĝ2(y) ≤ λ2

(
1 +

1

y

)
. (4.11)

Thus,

N
Ĝ2(ymin) ≤ λ2

(
1 +

1

ymin

)
=

4(d− 1)2

d
(t+ 1), (4.12)

and so, per our choice γ = t+ 1, we have that N
Ĝ2(ymin) ≤ 4γ(d− 1) holds for all t ≥ 2.

As for the lower bound, for any fixed x, we invoke Jensen’s inequality to the func-

tion gx(z) = 1
x−z with Z being the random variable in which we sample i ∼ {2, . . . , n}

uniformly at random and return λ2
i . Alongside the fact that

E[Z] =
1

n− 1

n∑
i=2

λ2
i =

nd− d2

n− 1
=
n− d
n− 1

· d ≥ 9d

10
, (4.13)

where the last inequality follows per our assumption d ≤ n
10

, we conclude that for every

x > λ2,

M
Ĝ2(x) = x · E [gx(Z)]− 1 ≥ x · gx(E [Z])− 1 =

9d

10x− 9d
.

Hence, for every y > 0,

N
Ĝ2(y) ≥ 9d

10
·
(

1 +
1

y

)
, (4.14)

and so

N
Ĝ2(ymin) ≥

9

10
(t+ 1)(d− 1). (4.15)

Therefore, for N
Ĝ2(ymin) ≥ 4β(d− 1) = 9

2
(d− 1) to hold, it suffices that t ≥ 4.
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Concluding the proof. Now that we have verified that the hypothesis of the adapter

holds with the setting of parameters β = 9
8
, γ = t + 1, we make some final calculations

and conclude the proof. Substituting the chosen β, γ to Equation (4.9), we get

εn ≤ 128t2d · min
h∈[g/2]

(
d3h

n
+ 9

(
8

9

)h+1
)

= O(t2d) · 2−Ω(ḡ).

Substituting this to Equation (4.8),

N
(Ĝ2)�t

(ymin) ≤
(

1 +
1

t

)t
(t+ 1)dt + εnt · (γ · 4(d− 1))t

≤ e(t+ 1)dt + 2−Ω(ḡ) · (8td)t+3,

which concludes the proof.

4.2.1 Proof of Proposition 4.1 for t = 2, 3

By inspection, the only part of the proof of Proposition 4.1 in which we make use of the

assumption t ≥ 4 is in establishing a lower bound for N
Ĝ2(ymin) (see Equation (4.15)).

Recall that this is achieved by using Jensen’s inequality. In this section we prove that with

a certain strenghening of Jensen’s inequality, given by Lemma 4.11 below, the assumption

t ≥ 4 can be removed.

Lemma 4.11. Let Z be a random variable, and f(z) be a 4-times differentiable function.

Denote µ = E[Z], and ∆i = E (Z − µ)i (e.g., ∆2 is the variance of Z). Define the function

K(z) =
f(z)− f(µ)

(z − µ)4
− f ′(µ)

(z − µ)3
− f ′′(µ)

2(z − µ)2
− f ′′′(µ)

6(z − µ)
.

Then,

E[f(Z)]− f(µ) ≥ f ′′(µ)

2
·∆2 +

f ′′′(µ)

6
·∆3 + inf

z
K(z) ·∆4.

The proof of Lemma 4.11 can be found in Appendix A. With this we turn to complete

the proof of Proposition 4.1 for t = 2, 3 by establishing the following claim.

Claim 4.12. For t ≥ 2 there exist γ > β > 1 and x ∈ [βλ2, γλ2] such thatM
Ĝ2(x) = ymin,

where recall ymin = d
dt−t−1

.

Proof. Let gx(z) = 1
x−z and Z be as defined in the proof of Proposition 4.1. We proceed

as in Equation (4.13) though without bounding it from below to get

µ , E[Z] =
1

n− 1

n∑
i=2

λ2
i =

nd− d2

n− 1
=
n− d
n− 1

· d = (1− δ)d,
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where δ = d−1
n−1

.

Using the notation of Lemma 4.11, by calculating the derivatives of gx(z), we get

E[gx(Z)]− gx(µ) ≥ ∆2

(x− µ)3
+

∆3

(x− µ)4
+ inf

z
Kx(z) ·∆4, (4.16)

where

Kx(z) =
1

(x− µ)4(x− z)
,

and so, since we are in the regime x > z, we get infzKx(z) = 1
(x−µ)4x

.

For calculating the ∆i-s, we compute the first few moments of Z, which we denote by

(m̂i)i. To compute m̂i we consider first the moments, mi = 1
n
· Tr(Ai), of the adjacency

matrix of G2. Note that it suffices to prove the theorem for a graph of girth at least 9 due

to the hidden constant under the Ω in the bound we wish to prove. For such a graph, we

know from [McK81] (page 3) that

m1 = d,

m2 = d2 + d(d− 1),

m3 = d3 + 2d2(d− 1) + 2d(d− 1)2,

m4 = d4 + 3d3(d− 1) + 5d2(d− 1)2 + 5d(d− 1)3.

Since

m̂i =
1

n− 1

(
Tr(Ai)− d2i

)
= mi + εi,

where εi = mi−d2i
n−1

, we have that

∆2 = m̂2 − 2µm̂1 + µ2 = d(d− 1) + δ2,

∆3 = m̂3 − 3µm̂2 + 3µ2m̂1 − µ3 = d3 − 3d2 + 2d+ δ3,

∆4 = m̂4 − 4µm̂3 + 6µ2m̂2 − 4µ3m̂1 + µ4 = 3d4 − 10d3 + 12d2 − 5d+ δ4,

where the δi-s are bounded, in absolute value, by 1
n
· poly(d). Plugging the above to

Equation (4.16), we get that

E[gx(Z)] ≥ 1

x− d
+
d(d− 1)(3d2 − 7d+ x2 − 2x+ 5)

(x− d)4x
+ δ,

for some δ which is bounded by 1
n
· poly(d) in absolute value for all x ≥ 2d. Therefore,

M
Ĝ2(x) = xE[gx(Z)]− 1

≥ d (2d3 + 3d2x− 10d2 − 2dx2 − 2dx+ 12d+ x3 − x2 + 2x− 5)

(x− d)4
+ δ′.

for some δ′ which too is bounded by 1
n
· poly(d) in absolute value for all x ≥ 2d. One

can verify that for all d ≥ 3, setting β = 1.04 and x0 = βλ2 = 4β(d − 1) we get that

M
Ĝ2(x0) ≥ ymin. The fact that M

Ĝ2(x) is decreasing concludes the proof.
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4.3 Haar rotated expander graphs

In this section we prove Proposition 4.2 which recall is the Haar-random analog of The-

orem 1.2. The proof follows the same line of reasoning as the proof of Proposition 4.1

from the previous section, though it diverges at a certain technical point regarding the

choice of ymin. The reason for the change is that given a graph which is not Ramanujan,

we do not have the guarantee that the choice of ymin will adhere with our restriction

N
Ĝ2(ymin) ∈ [βλ2, γλ2].

Proof of Proposition 4.2. We consider two cases, according to the value of t.

The case t ≥ 8λ2

d
. For this case we will use the same choice of ymin as in the proof of

Proposition 4.1 (see Equation (4.6)). Set β = 2, γ = t + 1, and recall (Equation (4.10))

that Nkm2(ymin) = (t+1)2

t
(d− 1). We wish to invoke Proposition 4.4 and so we must verify

that with our choices above, βλ2 ≤ Nkm2(ymin) ≤ γλ2. The lower bound follows since

Nkm2(ymin) ≥ td
2
≥ 2λ2. As for the upper bound, since λ ≥ 2

√
d− 1, Nkm2(ymin) ≤

4t(d − 1) ≤ γλ2. Moving on to the transform of the graph at hand, in the proof of

Proposition 4.1 (see Equation (4.12)), we showed that

N
Ĝ2(ymin) ≤ λ2

(
1 +

1

ymin

)
= λ2 (t+ 1)(d− 1)

d
< λ2(t+ 1) = γλ2.

As for the lower bound, by Equation (4.15),

N
Ĝ2(ymin) ≥

9

10
(t+ 1)(d− 1) >

72λ2

10
· d− 1

d
> 2λ2 = βλ2.

Therefore, we may invoke Proposition 4.4, also using Equation (4.7), to conclude that

N
(Ĝ2)�t

(ymin) ≤
(ymin + 1)t+1

ymin(ymin + d)t
· d2t + εnt · (γλ2)t

=

(
1 +

1

t

)t
(t+ 1)dt + (tλ2)t+4 · 2−Ω(ḡ).

The case t < 8λ2

d
. We now take y0 = d

4λ2
rather than ymin as defined in Equation (4.6),

and set β = 2, γ = 5d. Again, we wish to invoke Proposition 4.4 and so we must verify

that with our choices above, βλ2 ≤ Nkm2(y0) ≤ γλ2. Indeed,

Nkm2(y0) =
d2
(

d
4λ2

+ 1
)2

d
4λ2

(
d

4λ2
+ d
) =

(d+ 4λ2)2

1 + 4λ2
≥ (d+ 4λ2)2

8λ2
≥ 2λ2 = βλ2.

As for the upper bound,

Nkm2(y0) =
(d+ 4λ2)2

1 + 4λ2
≤ (5λ2)2

4λ2
≤ 7λ2 ≤ γλ2.
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Moving on to the transform of the graph at hand, by Equation (4.14), we have that

N
Ĝ2(y0) ≥

9d

10
·
(

1 +
1

y0

)
> 2λ2 = βλ2.

Further, by Equation (4.11),

N
Ĝ2(y0) ≤ λ2

(
1 +

1

y0

)
= λ2

(
1 +

4λ2

d

)
≤ 5λ4

d
≤ γλ2.

Therefore, we may invoke Proposition 4.4 to conclude that

N
(Ĝ2)�t

(y0) ≤
(y0 + 1)t+1

y0(y0 + d)t
· d2t + 4t(5dλ2)t+22−Ω(ḡ).

Now,

(y0 + 1)t+1

y0(y0 + d)t
=

(
1 +

1

y0

)(
y0 + 1

y0 + d

)t
≤ 5λ2

d

(
y0 + 1

d

)t
≤ 5λ2

dt+1
· ey0t ≤ 5λ2

dt+1
· e2,

where for the last inequality we used that t < 8λ2

d
.

5 Quadrature: From Haar to Random Permutations

Our main goal in this section is to reduce the analysis with respect to a sequence of random

permutations to a sequence of Haar random orthogonal matrices which, recall, has been

analyzed in Section 4. Equivalently, we wish to prove the relation between permutation of

matrices, and the multiplicative convolution of their respective characteristic polynomials.

The main result proved in this section is Theorem 5.2 which appears right after the

following definition.

Definition 5.1. Let t ≥ 1 be an integer. Given an n × n real symmetric matrix A and

n × n permutation matrices P1, . . . ,Pt−1, we define the n × n matrices ΨA(P1, . . . ,Pj)

for j = 0, 1, 2, . . . , t recursively as follows: ΨA(⊥) = A2, where ⊥ denotes the empty

sequence. For j ≥ 1,

ΨA(P1, . . . ,Pj) = APjΨA(P1, . . . ,Pj−1)PT
j A.

Theorem 5.2. Let A be an n × n real symmetric matrix with A1 = a1, and pA2(x) be

the polynomial satisfying χx(A
2) = (x − a2)pA2(x). Let P1,P2, . . . ,Pt−1 be independent

random permutation matrices. Then,

E
P1,...,Pt−1

χx (ΨA(P1, . . . ,Pt−1)) =
(
x− a2t

)
(pA2(x))�t.
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The idea and most of the claims in our proof of Theorem 5.2 come from [MSS18]. In

particular, Lemma 5.3 below (which is essentially Lemma 2.3, reproduced here for ease

of reading) is the key ingredient of the proof which is a multiplicative analog of Theorem

4.1 of [MSS18], who considered the additive case. Our proof mimics the proof for the

additive case though it requires a bit more technical work.

Lemma 5.3. Let A,B be real n×n symmetric matrices such that A1 = a1 and B1 = b1.

Denote by pA, pB the polynomials satisfying χx(A) = (x−a)pA(x), χx(B) = (x−b)pB(x).

Let P be a uniformly random n× n permutation matrix. Then,

E
P
χx(APBPT) = (x− ab) (pA � pB) (x).

Proof. The proof of Lemma 5.3 closely follows [MSS18]. We start by setting the ground

for “working” orthogonal to 1. By basic linear algebra, there exists an orthonormal change

of basis matrix V such that VAVT = Â⊕ a, where Â⊕ a denotes the direct sum

Â⊕ a =

(
Â 0

0 a

)
.

Clearly then, χx(A) = (x − a)χx(Â). As 1 is also an eigenvector of B we have that

VBVT = B̂ ⊕ b for some matrix B̂. Since a characteristic polynomial is invariant to a

change of basis, we have that

E
P
χx(APBPT) = E

P
χx
(
(VAVT)(VPVT)(VBVT)(VPTVT)

)
.

Since for every permutation matrix P it holds that P1 = 1, we have that VPVT = P̂⊕1

for some matrix P̂, and so

E
P
χx(APBPT) = E

P
χx

(
(Â⊕ a)(P̂⊕ 1)(B̂⊕ b)(P̂T ⊕ 1)

)
= (x− ab)E

P
χx(ÂP̂B̂P̂T),

where note that we used the fact that P̂T = P̂T. We observe that when P is sampled

uniformly at random from the set of permutation matrices, P̂ is a random element in the

symmetry group of the n-vertex regular simplex, embedded in Rn−1. With this in mind,

according to Definition 4.3, it suffices to prove that

E
P
χx(ÂP̂B̂P̂T) = E

Q
χx

(
ÂQB̂QT

)
, (5.1)

where Q is drawn according to the Haar measure.
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Note that both P̂ and Q in Equation (5.1) are of dimension n − 1. However, in the

remainder of the proof it will be more convenient to work with these matrices, forgetting

that they are induced by n× n matrices, and so we redefine n as the size of the matrices

that follow. To prove Equation (5.1), we make use of the following simple lemma by

[MSS18]. We remind the reader that we denote the group of n × n orthogonal matrices

by O(n).

Lemma 5.4 ([MSS18] Lemma 4.3). Let f : O(n)→ R and let H be a subgroup of O(n).

Assume that for all Q ∈ O(n),

E
P∼H

f(P) = E
P∼H

f(PQ). (5.2)

Then, EP∼H f(P) = EQ f(Q), where Q is Haar random.

We will establish Equation (5.1) by showing that the condition that is given by Equa-

tion (5.2) holds for H = An−1, the symmetry group of the n-vertex regular simplex, with

respect to the function fA,B(Q) = χx
(
AQBQT

)
for every choice of A,B. We mimic

the proof strategy of [MSS18], namely, we prove the above for the group A2 of sym-

metries on the 3-vertex simplex, fixing the remaining n − 2 dimensions, and then show

that this suffices as all orthogonal Haar matrices can be constructed as a product of such

two-dimensional transformations. For ease of notation, throughout the proof, for a 2× 2

matrix M we let M̃ = M⊕ In−2.

Lemma 5.5. Let A,B be a pair of n × n real symmetric matrices. Then, for every

Q ∈ O(2),

E
P∼A2

fA,B(P̃) = E
P∈A2

fA,B(P̃Q). (5.3)

Proof. Let H =

(
1 0

0 −1

)
be the reflection around the horizontal axis and F = {I,H}

be the group generated by H. For an angle θ define Rθ to be the rotation of the plane by

angle θ, that is,

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
.

It is a basic geometric fact that every Q ∈ O(2) can be written as RθD for D ∈ F .

Moreover, the six elements of A2 can be thought of as the three permutations Rτ where

τ ∈ T , {0, 2π
3
, 4π

3
}, multiplied by a matrix D ∈ F .

We start by proving that for every θ,

E
τ∼T

[
χx

(
AR̃τBR̃τ

T
)]

= E
τ∼T

[
χx

(
A(R̃τRθ)B(R̃τRθ)

T
)]
. (5.4)
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To see this, note that the right hand side of this equation can be written as

1

3

∑
τ∈T

χx

(
AR̃τ+θBR̃τ+θ

T)
,

and according to Lemma 5.7, whose proof is deferred to Section 5.1, this equals to

1

3

∑
τ∈T

2∑
k=−2

cke
ik(θ+τ) =

1

3

2∑
k=−2

∑
τ∈T

cke
ik(θ+τ)

=
1

3

2∑
k=−2

cke
ikθ
∑
τ∈T

eikτ

=
1

3

2∑
k=−2

cke
ikθ(e0 + eik

2π
3 + eik

4π
3 )

= c0.

Therefore, this expression is independent of θ, and in particular it coincides with the

expression obtained for θ = 0, proving Equation (5.4).

We proceed by showing that

E
τ∼T

[
χx

(
A(R̃τH)B(R̃τH)T

)]
= E

τ∼T

[
χx

(
A(R̃τHRθ)B(R̃τHRθ)

T
)]
. (5.5)

To see this, note that for every θ, HRθ = R−θH, and so the matrix on the right hand-side

A(R̃τHRθ)B(R̃τHRθ)
T = AR̃τ−θ

(
H̃BH̃T

)
R̃τ−θ

T
,

whereas the matrix that appear on the left hand-side

A(R̃τH)B(R̃τH)T = AR̃τ

(
H̃BH̃T

)
R̃τ

T
.

Thus, Equation (5.5) follows from Equation (5.4) by taking B in the notation of the latter

equation to be H̃BH̃T.

To recap, Equation (5.4) and Equation (5.5) together show that

E
P∼A2

[
χx

(
AP̃BP̃T

)]
= E

P∈A2

[
χx

(
AP̃QBP̃Q

T
)]

(5.6)

for every Q of the form Q = Rθ. Equivalently, Equation (5.3) holds for every such Q. To

conclude the proof, we need to prove the same statement for Q of the form Q = RθH.

To this end, note that

A(P̃RθH)B(P̃RθH)T = A(P̃HR−θ)B(P̃HR−θ)
T.
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Therefore, as A2H has the same distribution as A2, we have that

E
P∼A2

[
χx

(
A(P̃RθH)B(P̃RθH)T

)]
= E

P∼A2

[
χx

(
A(P̃HR−θ)B(P̃HR−θ)

T
)]

= E
P∼A2

[
χx

(
A(P̃R−θ)B(P̃R−θ)

T
)]

= E
P∼A2

[
χx

(
AP̃BP̃T

)]
,

where the last equality follows by Equation (5.6).

With Lemma 5.5 in hand, we proceed with the proof of Lemma 5.3 and prove the

following.

Claim 5.6. For every pair of n × n real symmetric matrices A,B and every Q in the

support of O(n),

E
P∼An

fA,B(P) = E
P∼An

fA,B(PQ)

Proof. For every distinct i, j, k ∈ [n] we denote by Ai,j,k the group of symmetries on the

3-vertex simplex on the respective vertices, fixing the remaining n−2 dimensions. Clearly,

Lemma 5.5 holds for every choice triplet i, j, k. With this in mind, observing also that

An has the same distribution as AnP̃2, where P̃2 is sampled from Ai,j,k, we have that for

every such triplet

E
P∼An

fA,B(P) = E
P∼An

P̃2∈Ai,j,k

fA,B(PP̃2)

= E
P,P̃2

[
χx

(
APP̃2B(P̃2)TPT

)]
= E

P,P̃2

[
χx

(
PTAPP̃2B(P̃2)T

)]
= E

P
Ẽ
P2

fPTAP,B(P̃2).

LetOi,j,k be the Haar random measure on the plane corresponding to vertices i, j, k leaving

the remaining n− 2 dimensions intact. Fix P and note that by Lemma 5.5, for every Q̃2

in the support of Oi,j,k,

Ẽ
P2

fPTAP,B(P̃2) = Ẽ
P2

fPTAP,B(P̃2Q2),
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and so

E
P∼An

fA,B(P) = E
P
Ẽ
P2

fPTAP,B(P̃2)

= E
P
Ẽ
P2

fPTAP,B(P̃2Q2)

= E
P∼An

fA,B(PQ̃2). (5.7)

A basic fact about the orthogonal group is that given Q ∈ O(n), one can write Q as

the product Q = Q̃(1) · · · Q̃(m) where Q̃(`) is in the support of Oi`,j`,k` (see Lemma 4.7 in

[MSS18]). The proof follows by applying Equation (5.7) m times.

Modulo the proof of Lemma 5.7 which is given in the next section, the proof of

Lemma 5.3 follows.

5.1 Proof of Lemma 5.7

As mentioned, the proof of Lemma 5.7, which we turn to now, is the point in which our

proof diverge from the original proof of the analog of statement of Lemma 5.3 to the

additive convolution case. 11

Lemma 5.7. Let A,B be a pair of n× n real symmetric matrices. Then, one can write

χx

(
AR̃θB(R̃θ)

T
)

=
2∑

k=−2

cke
ikθ

for some c−2, c−1, c0, c1, c2 ∈ R[x] that are independent of θ.

For the proof of Lemma 5.7 we need a well-known result about the determinant of a

sum of two matrices in terms of their respective adjugates and compounds. We first recall

these definitions, and begin by introducing the following standard notation: For an n×n
matrix A and S, T ⊆ [n] of equal size, we denote the submatrix of M on the row set S

and column set T by A[S, T ]. We further let [A]S,T = det A[S, T ]. For r ≥ 0, the r-th

adjugate matrix Adjr(A) is the
(
n
r

)
×
(
n
r

)
matrix whose rows and columns are indexed by

subsets of [n] of size r which is defined by

(Adjr(A))S,T = (−1)p(S,T ) [A]T c,Sc ,

11Interestingly, for an invertible A, one can proceed more or less in the lines of the proof of [MSS18].

While this is not the case in general, we note that one can reduce to that case by adding self loops to

the graph at hand (when we turn to use the lemma, we will take A � 0). However, we rather work a bit

harder in the analysis rather than making unnecessary changes to the construction.
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where p(S, T ) =
∑

i∈S i+
∑

j∈T j. The r-th compound matrix Cr(A) is the
(
n
r

)
×
(
n
r

)
matrix

that is also indexed by subsets of [n] of size r, which is given by (Cr(A))S,T = [A]S,T .

Lemma 5.8 (See Chapter 0, Section 8.12 of [HJ12]). Let A,B be a pair of n×n matrices.

Then, for every s, t ∈ R,

det(sA + tB) =
n∑
r=0

sn−rtr · Tr (Adjr(A)Cr(B)).

With this we are ready to prove Lemma 5.7.

Proof of Lemma 5.7. The matrix Rθ can be written as

Rθ = U

(
eiθ 0

0 e−iθ

)
UT,

where U is independent of the angle θ. Hence we can write Rθ ⊕ In−2 = VDθV
T where

V is independent of θ and Dθ is the diagonal matrix whose top two entries are eiθ, e−iθ,

and the remaining entries on the diagonal are 1. By Lemma 5.8, we can write

χx

(
AR̃θB(R̃θ)

T
)

= det
(
xI−AR̃θB(R̃θ)

T
)

=
n∑
r=0

xn−rTr
(

Cr(AR̃θB(R̃θ)
T)
)
.

Thus we are left with showing that for every S ⊆ [n] one can write

C|S|(AR̃θB(R̃θ)
T)S,S =

2∑
k=−2

ck(S)eikθ,

for some c−2(S), c−1(S), c0(S), c1(S), c2(S) ∈ R that are independent of θ. To show this,

fix a set S ⊆ [n] and denote r = |S|. By the Cauchy-Binet formula (see Chapter 0, Section

8.7 of [HJ12]),

Cr(AR̃θB(R̃θ)
T)S,S =

[
AR̃θB(R̃θ)

T
]
S,S

=
∑
T⊆[n]
|T |=r

[A]S,T

[
R̃θB(R̃θ)

T
]
T,S
.

As A is independent of θ we may focus our attention on
[
R̃θB(R̃θ)

T
]
T,S

. We have that

R̃θB(R̃θ)
T = VDθV

TBVDθV
T,

and so, again by the Cauchy-Binet formula[
R̃θB(R̃θ)

T
]
T,S

=
∑

R,P⊆[n]
|R|=|P |=r

[V]T,R
[
DθV

TBVDθ

]
R,P

[
VT
]
P,S

.
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Since V is independent of θ, it suffices to prove that for every R,P as above, one can

write [
DθV

TBVDθ

]
R,P

=
2∑

k=−2

ck(R,P )eikθ,

where c−2(R,P ), . . . , c2(R,P ) ∈ R are independent of θ. This is straightforward to verify

as C = VTBVT is independent of θ and since

(DθCDθ)r,s = cr,se
iθ(δs,1−δs,2+δr,1−δr,2),

where δi,j is the Kronecker delta function. This completes the proof of Lemma 5.7.

5.2 Proof of Theorem 5.2

With Lemma 5.3 in hand we are ready to prove the following lemma that slightly gener-

alizes Theorem 5.2.

Lemma 5.9. Let A1,A2, . . . ,At be n × n real symmetric matrices with Ai1 = ai1,

and pA2
i
(x) the polynomial satisfying χx(A

2
i ) = (x − a2

i )pA2
i
(x). Let P1,P2, . . . ,Pt−1 be

independent random permutation matrices. Define

B1 = A2
1,

Bj = AjPj−1Bj−1P
T
j−1Aj for j = 2, . . . , t.

Then,

E
P1,...,Pt−1

χx (Bt) =

(
x−

t∏
i=1

a2
i

)(
pA2

1
� pA2

2
� · · ·� pA2

t

)
(x).

Proof. For j = 1, . . . , t denote αj =
∏j

i=1 a
2
i . We proceed by induction on j, where the

base case j = 1 trivially holds. It is easy to see that Bj−11 = αj−11. Moreover, by the

induction hypothesis,

E
P1,...,Pj−2

χx(Bj−1) = (x− αj−1)
(
pA2

1
� · · ·� pA2

j−1

)
(x).

Therefore,

E
P1,...,Pj−2

χx(B̂j−1) =
(
pA2

1
� · · ·� pA2

j−1

)
(x), (5.8)

where we remind the reader of the ·̂ notation that was defined at the beginning of the

proof of Lemma 5.3. We have that

E
P1,...,Pj−1

χx(Bj) = E
P1,...,Pj−1

χx(AjPj−1Bj−1P
T
j−1Aj)

= E
P1,...,Pj−2

E
Pj−1

χx
(
AjPj−1Bj−1P

T
j−1Aj

)
. (5.9)
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Note that Bj−1 is independent of Pj−1 and so by Lemma 5.3, for every fixing of P1, . . . ,Pj−2

E
Pj−1

χx
(
AjPj−1Bj−1P

T
j−1Aj

)
= E

Pj−1

χx
(
A2
jPj−1Bj−1P

T
j−1

)
= (x− a2

jαj−1)pA2
j
(x)� χx(B̂j−1)

= (x− αj)pA2
j
(x)� χx(B̂j−1), (5.10)

where we slightly abuse notation in that Bj−1 above is with respect to the specific fixing

of P1, . . . ,Pj−2. At any rate, by Equations (5.8) to (5.10) and using the bi-linearity of

the multiplicative convolution,

E
P1,...,Pj−1

χx(Bj) = (x− αj)pA2
j
(x)� E

P1,...,Pj−2

χx(B̂j−1)

= (x− αj)pA2
j
(x)�

(
pA2

1
� · · ·� pA2

j−1

)
(x).

The proof then follows by the commutativity and associativity of the multiplicative con-

volution.

6 Interlacing: From Random Permutations to a Tailor-

Made Sequence

As mentioned in the introduction, we would like to use our analysis for the expected

characteristic polynomial to deduce something about a specific polynomial. That is, we

would like to prove that there exists a polynomial (a characteristic polynomial of some

graph) whose second largest root can be bounded. This is not true in general. Given a

real-rooted polynomial which is the sum of two polynomials, each of the two polynomials

may not even be real-rooted, let alone having bounded roots. However, there is a case in

which such a deduction can be made, and this case being if the polynomials over which

we take the expectation form an interlacing family, a term that will be formalized below.

The main theorem that we will use for relating the expectation to a specific polynomial

is Lemma 6.3, which was used similarly in [MSS18].

Let p(x) and q(x) be real-rooted polynomials of the same degree n, and let α1 ≥
· · · ≥ αn be the roots of p(x) and β1 ≥ · · · ≥ βn be the roots of q(x). We say that q(x)

interlaces p(x), and write q → p, if βn ≤ αn ≤ βn−1 ≤ · · · ≤ β1 ≤ α1. If q(x) is of

degree n − 1, we use the same condition without the left most inequality. In this case,

as there is no confusion, we sometimes say that p and q interlace. A common interlacing

for polynomials p(x), q(x) of the same degree n is a third polynomial r(x) that interlaces

both p(x) and q(x). We remark that it does not matter if the common interlacing is of

degree n or n− 1, though in our proofs, the degree will be n.

36



Definition 6.1 (Interlacing families [MSS13]). Let T = (V,E) be a full rooted ordered

binary tree12 such that every v ∈ V is labeled by a polynomial pv(x) ∈ R[x]. Denote

PT = {pv(x)}v∈V . The collection (T,PT ) is called an interlacing family if the following

holds:

1. For every v ∈ V , pv(x) is a monic, real-rooted polynomial. Furthermore, all poly-

nomials in PT have the same degree.

2. For every internal node v with sons u,w it holds that pv(x) = αpu(x) + βpw(x) for

some non-negative α = α(v), β = β(v).

3. For every two siblings u,w ∈ V , the corresponding polynomials pu(x), pw(x) have a

common interlacing ru,w(x).

Definition 6.2 ([MSS13]). A set of polynomials P is said to form an interlacing family

if there exists an interlacing family (T,PT ) such that for every leaf v, pv(x) ∈ P.

Lemma 6.3. Let p1(x), . . . , pm(x) be a set of polynomials of degree n which forms an

interlacing family. Let T be the corresponding tree having root r. Then, for every j ∈ [n]

there exists i ∈ [m] such that the j-th largest root of pi(x) is at most the j-th largest root

of pr(x).

For proving Lemma 6.3, we introduce the following notation: For a real-rooted poly-

nomial p(x) of degree n, and j ∈ [n], we let λj(p(x)) denotes its j-th largest root. We

make use of the following simple claim from [Spi19].

Claim 6.4. Let p1(x), p2(x) be two polynomials of degree n with a positive leading coef-

ficient, having a common interlacing. Then, for every α ∈ [0, 1] and every j ∈ [n] there

exists i ∈ {1, 2} such that

λj(pi(x)) ≤ λj(αp1(x) + (1− α)p2(x)).

Proof of Lemma 6.3. Fix j ∈ [n]. By Claim 6.4 and Property (2) of Definition 6.1, every

non-leaf v in T has at least one son u for which λj(pu(x)) ≤ λj(pv(x)). Starting from the

root, we can proceed down the tree, maintaining this invariant, until we reach a leaf.

With these definitions in place, also denoting the set of n × n permutation matrices

by Sn, we are in a position to state the main result of this section.

12Recall that in an ordered tree, the sons of a given node are ordered. In particular, in a full ordered

binary tree, every internal node has a left son and a right son.
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Theorem 6.5. Let A be a real symmetric n× n matrix. Then, the polynomials

{χx (ΨA(P1, . . . ,Pt−1)) | P1, . . . ,Pt−1 ∈ Sn} (6.1)

form an interlacing family (T,PT ) such that the root of T is labeled by the polynomial

E
P1,...,Pt−1

χx (ΨA(P1, . . . ,Pt−1)) , (6.2)

where, in the expectation above, P1, . . . ,Pt−1 are sampled uniformly and independently at

random from Sn.

Towards proving Theorem 6.5 we set some notation. Given i, j ∈ [n] we denote

the n × n matrix that corresponds to the involution (i j) by Γi,j. That is, Γi,jei = ej,

Γi,jej = ei and for every k ∈ [n] \ {i, j}, Γi,jek = ek. An n× n matrix Γ is called a swap

matrix if Γ = Γi,j for some i, j ∈ [n]. For α ∈ [0, 1], a random swap S = S(α, i, j) is a

random n × n matrix which is equal to Γi,j with probability 1 − α and to the identity

matrix with probability α.

The basic building block for describing the tree underlying the proof of Theorem 6.5

is the full, rooted, ordered binary tree T1. With every node of the tree we associate a

distribution over Sn such that the following properties hold:

1. To a leaf v that is labeled by Q ∈ Sn, we have that νv = Q. That is, the distribution

associated with v is the distribution in which Q is sampled with probability 1.

2. Let v be an internal node with left son u and right son w. Then, there exist

iv, jv ∈ [n] and αv ∈ [0, 1] such that

νw = νuΓiv ,jv ,

νv = αvνu + (1− αv)νw.

3. To the root r corresponds the distribution νr which is uniform over Sn.

The description of a tree T1 with the above properties was given in [MSS18]. For

completeness, and since we use a somewhat different notation, we sketch the construction

in Appendix B. Moving forward, the depth of T1 is denoted by N .

We wish to construct a tree Tm representing a product distribution of m permutations

on n elements; That is, we draw each of the permutations uniformly and independently

at random. The construction is the intuitive one, and formally goes as follows: starting

with T1, which we think of as the first drawn permutation, to each of its leaves, we attach
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another copy of T1, and repeat this process for m times (the overall depth of the tree is

mN).

Let x be a node of T1 with corresponding distribution νx, and let v be an occurrence

of x in a copy of T1, after T1 has been attached to a leaf r times. Denote those interme-

diate leaves by l1, . . . , lr, and their corresponding permutations by Q1, . . . ,Qr. Then, the

(product) distribution of v is defined by

νv = Q1 × · · · ×Qr × νx × Sn × · · · × Sn,

where Sn repeats m− (r+ 1) times and denotes here, with a slight abuse of notation, the

uniform distribution over the set Sn.

For proving the main result of this section, Theorem 6.5, we need to prove a more

general result, which considers the distributions of the tree not only with respect to the

matrix A, but rather for all matrices of a certain form. To this end, we need further

notations as given by the following definitions.

Definition 6.6. Given an n×n real matrix M and n×n permutation matrices P1, . . . ,Pm,

we define the n×n matrices MP1,...,Pj for j = 0, 1, . . . ,m recursively as follows: For j = 0

we set M⊥ = I, and for j ≥ 1,

MP1,...,Pj = MPjMP1,...,Pj−1
.

Definition 6.7 (Property ? for distributions). A probability distribution ν on Smn is said

to satisfy property ? if for every pair of n × n real matrices M,N, with N symmetric,

the polynomial

ϕ(ν,M,N)(x) , E
P∼ν

[
χx(MPNMT

P)
]

is real-rooted.

Definition 6.8 (Property ? for trees). Let T = (V,E) be a rooted ordered binary tree

such that with every v ∈ V we associate a distribution νv. T is said to satisfy property ?

if the following holds:

1. ∀v ∈ V the distribution νv satisfies property ?; and

2. For every pair of matrices M,N such that N is symmetric, and every pair of siblings

u,w in T , the polynomials ϕ(νu,M,N)(x) and ϕ(νw,M,N)(x) have a common

interlacing.

The following straightforward assertion, left without a proof, will be useful.
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Claim 6.9. For every pair of distributions ν, µ on Sn, α ∈ [0, 1], and every pair of n× n
real matrices M,N,

ϕ(αν + (1− α)µ,M,N) = αϕ(ν,M,N) + (1− α)ϕ(µ,M,N). (6.3)

Claim 6.10. Let m ≥ 1 be an integer, and ν a distribution over Sm−1
n . For every distri-

bution µ over Sn, every Q ∈ Sn and for all n× n real matrices M,N,

ϕ((µQ)× ν,M,N) = ϕ(µ× ν,M,QNQT).

Proof. We have that

ϕ((µQ)× ν,M,N) = E
P∼µ
R∼ν

χx
(
MRM(PQ)N(PQ)TMTMT

R

)
= E

P∼µ
R∼ν

χx
(
MRMP(QNQT)PTMTMT

R

)
= ϕ(µ× ν,M,QNQT).

Lemma 6.11. Let m ≥ 1 be an integer, and ν a distribution over Sm−1
n . Let ν1, ν2 be

distributions over Smn such that ν1 = µ1× ν and ν2 = µ2× ν for some distributions µ1, µ2

over Sn. Assume that

1. µ2 = µ1Γ for some swap matrix Γ; and

2. Both ν1 and ν2 satisfy property ?.

Then, for every n× n real matrices M,N such that N is symmetric, ϕ(ν1,M,N)(x) and

ϕ(ν2,M,N)(x) have a common interlacing, and every convex combination of ν1 and ν2

satisfies property ?.

For the proof of Lemma 6.11 we need the following sequence of lemmata that relate

interlacing and real rooted-ness. The proofs can be found in, e.g., Chapter 42 of [Spi19].

Lemma 6.12. Let p(x), q(x) be polynomials of degree n, n−1 respectively with a positive

leading coefficient, and let pt(x) = p(x)−tq(x). If p(x), q(x) interlace then for every t > 0,

pt(x) is real rooted and p→ pt.

Lemma 6.13. Let p(x), q(x) be polynomials of degree n, n−1, respectively, both of which

have a positive leading coefficient. Let pt(x) = p(x) − tq(x). If pt(x) is real-rooted for

every t ∈ R then p(x) and q(x) interlace.

40



Lemma 6.14. Let A be an n × n real symmetric matrix and v ∈ Rn. For t ∈ R define

pt(x) = χx(A + t · vvT). Then, there exists a degree n − 1 monic polynomial q(x) such

that pt(x) = χx(A)− t · q(x).

Lemma 6.15. Let p0(x), p1(x) be polynomials of degree n with a positive leading coeffi-

cient, having a common interlacing. Then, q(x) = tp0(x) + (1− t)p1(x) is real-rooted for

every t ∈ [0, 1].

We also make use of the following lemma which states that applying a swap to a

matrix is a rank two update of a specific form.

Lemma 6.16 (Lemma 3.10 in [MSS18]). Let A be a real n×n symmetric matrix and Γ ∈
Sn a swap matrix. Then, there exist vectors u,v ∈ Rn such that ΓAΓT = A−uuT +vvT.

Proof of Lemma 6.11. Fix M,N as in the statement of the lemma. By Claim 6.10 and

Lemma 6.16, as µ2 = µ1Γ, we have that

ϕ(ν2,M,N) = ϕ(ν1,M,ΓNΓT) = ϕ(ν1,M,N− uuT + vvT)

for some u,v ∈ Rn. For t ∈ R define

pt(x) = ϕ(ν1,M,N + t · vvT)(x). (6.4)

We have that

pt(x) = E
P∼µ1
R∼ν

χx
(
MPR(N + t · vvT)MT

PR

)
= E

P∼µ1
R∼ν

χx
(
MPRNMT

PR + t ·wPRwT
PR

)
,

where MPR = MRMP and wPR = MPRv. By Lemma 6.14, for every term in the

expectation we can write

χx
(
MPRNMT

PR + t ·wPRwT
PR

)
= χx

(
MPRNMT

PR

)
− t · qPR(x),

where qPR(x) is monic of degree n− 1. We can therefore write

pt(x) = ϕ(ν1,M,N)(x)− t · q(x), (6.5)

where q(x) = EP,R[qPR(x)] is a monic polynomial of degree n− 1.

As ν1 satisfies property ?, observing Equation (6.4), we see that pt(x) is real-rooted

for every t ∈ R. Hence, looking also on Equation (6.5), we have by Lemma 6.13 that
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q → ϕ(ν1,M,N). Therefore, Lemma 6.12 (which, with its notation, is applied with

p(x) = ϕ(ν1,M,N)(x) and q(x) as itself), when specialized to t = 1, yields

ϕ (ν1,M,N)→ ϕ
(
ν1,M,N + vvT

)
.

A similar argument, invoked by defining

p̂t(x) = ϕ(ν1,M,N− uuT + vvT + t · uuT)(x). (6.6)

instead of pt(x) from Equation (6.4), can be carried out to show that

ϕ(ν2,M,N)→ ϕ(ν1,M,N + vvT).

Thus, ϕ(ν1,M,N + vvT) is a common interlacing of ϕ(ν1,M,N) and ϕ(ν2,M,N), estab-

lishing the first part of the lemma. To conclude the proof, we invoke Lemma 6.15 which

ensures that every convex combination of ϕ(ν1,M,N) and ϕ(ν2,M,N) is real-rooted, and

so, by Claim 6.9, every convex combination of ν1 and ν2 satisfies property ?.

Claim 6.17. Let ν1, ν2 be distributions over Smn that satisfy property ?. Assume that

for every real n × n matrices M,N, with N symmetric, we have that ϕ(ν1,M,N) and

ϕ(ν2,M,N) have a common interlacing. Then, for every Q ∈ Sn, both Q×ν1 and Q×ν2

have the same properties.

Proof. Fix a pair of matrices M, N as above. Then for i ∈ {1, 2},

ϕ (Q× νi,M,N) (x) = E
P∼νi

χx
(
MP

(
MQNQTMT

)
MT

P

)
= ϕ

(
νi,M,MQNQTMT

)
(x).

Denote N′ = MQNQTMT. Since N′ is symmetric, by the assumption on ν1, ν2 we get

that Q×ν1 and Q×ν2 satisfy property ? and that ϕ(Q×ν1,M,N) and ϕ(Q×ν2,M,N)

have a common interlacing.

Proposition 6.18. Tm satisfies property ?.

Proof. The proof is by induction on m ≥ 1, where in each induction step there will be an

inner inductive argument from the leaves upwards to the root. Starting with the base case

m = 1, to every leaf l of the tree we associate a permutation Q, and so the expectation

is over a single element, hence

ϕ(νl,M,N)(x) = χx(MQNQTMT)

which is real-rooted. Therefore, for every leaf l, νl satisfies property ?.
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We proceed by induction from the leaves of T1 upwards. Let v be a node in T1 with left

son u and right son w, for which νu and νw satisfy property ?. By Property (2) of T1, we can

write νw = νuΓ for some swap matrix Γ. Moreover, νv is a convex combination of νw, νu.

Lemma 6.11 then implies that νv satisfies property ?. Furthermore, by Lemma 6.11,

for every pair of matrices M,N, with N symmetric, the polynomials ϕ(νu,M,N)(x)

and ϕ(νw,M,N)(x) have a common interlacing. We therefore conclude that T1 satisfies

property ?.

Let m ≥ 2, and assume Tm−1 satisfies property ?. By Claim 6.17, for every Q ∈ Sn

and every node v in Tm−1 it holds that Q × νv satisfies property ?. Furthermore, for

every pair of siblings u,w and for all matrices M,N as above, ϕ(Q × νu,M,N) and

ϕ(Q × νw,M,N) have a common interlacing. By the construction of Tm, this applies to

the entire tree except for the first (N − 1) layers, and so we are left to handle only the

part from the root to the first concatenation of T1.

The nodes of depth N - the “leaves” of the first appearance of T1 - satisfy property ?.

In the first (N − 1) layers, to each node v we associated a distribution µv × ν, where ν is

the uniform distribution over Sm−1
n . Furthermore, for every pair of siblings u,w we have

µw = µuΓ for some swap matrix Γ. By Claim 6.9 we get that the distribution associated

with any parent of these leaves is a convex combination of the corresponding distributions

of its children. We can now use induction from the “leaves” of depth N to the root, using

Lemma 6.11, to get the desired property over all of the tree.

Theorem 6.5 readily follows by Proposition 6.18 as follows.

Proof of Theorem 6.5. Consider the tree T = Tt−1(A) that has the same tree structure

as Tt−1 though we ignore the distribution νv attached to a node v in Tt−1 and only

associate the polynomial ϕ(νv,A,A
2)(x) to the node. Note that the polynomials in

PT , {ϕ(νv,A,A
2)}v∈V are all monic, real-rooted, and have same degree, n. Moreover,

to every leaf l corresponds some distribution which outputs P = (Pt−1, . . . ,P1) with

probability 1 for some permutation matrices Pt−1, . . . ,P1 . Recalling Definition 5.1 and

Definition 6.7, note that

ϕ(ν`,A,A
2)(x) = χx

(
APA2AT

P

)
= χx (ΨA(P1, . . . ,Pt−1)) . (6.7)

Namely, the leaves of Tm(A) are labeled by polynomials from Equation (6.1). Observe

that, as Tm satisfies property ?, (T,PT ) is an interlacing family. Thus, the polynomials

that are given by Equation (6.1) form an interlacing family. Moreover, since the distribu-

tion that is associated to the root of Tt−1 is the uniform distribution over St−1
n , we have

that the polynomial associated with the root of T is the one given by Equation (6.2),

concluding the proof.
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7 Proof of Theorem 1.1 and Theorem 1.2

In this section we put it all together and prove the following two theorems which formalize

Theorem 1.1 and Theorem 1.2. We recall that for a graph G with adjacency matrix A and

a sequence of permutation matrices P = (P1, . . . ,Pt−1), we let GP be the graph whose

adjacency matrix is

AP , APt−1 · · ·AP1A
2PT

1 A · · ·PT
t−1A.

Theorem 7.1. Let G be a d-regular Ramanujan graph on n vertices with girth g. Denote

ḡ = min(g, 1
6
· logd n). Then, for every t ≥ 2 there exists a sequence of permutation

matrices P = (P1, . . . ,Pt−1) such that

λ(GP) ≤
(

1 +
1

t

)t
(t+ 1)dt + 2−Ω(ḡ) · (td)t+3.

Theorem 7.2. Let G be a d-regular λ-spectral expander on n vertices with girth g. Denote

ḡ = min(g, 1
6
·logd n). Then, for every t ≥ 2 there exists a sequence of permutation matrices

P = (P1, . . . ,Pt−1) such that

λ(GP) ≤

O(λ2dt−1), t < 8λ2

d
;(

1 + 1
t

)t
(t+ 1) · dt + (tλ2)t+4 · 2−Ω(ḡ), otherwise.

We turn to prove Theorem 7.1. The proof of Theorem 7.2 is identical but for invoking

Proposition 4.2 instead of Proposition 4.1.

Proof of Theorem 7.1. Let A be the adjacency matrix of G, and write χx(A
2) = (x −

a2)pA2(x). By Proposition 4.1,

maxroot
(
(pA2(x))�t

)
≤
(

1 +
1

t

)t
(t+ 1)dt + 2−Ω(ḡ) · (td)t+3.

Theorem 5.2 states that

E
P1,...,Pt−1

χx (ΨA(P1, . . . ,Pt−1)) =
(
x− a2t

)
p�tA2(x),

and so

secmaxroot

(
E

P1,...,Pt−1

χx (ΨA(P1, . . . ,Pt−1))

)
≤
(

1 +
1

t

)t
(t+ 1)dt + 2−Ω(ḡ) · (td)t+3,

where secmaxroot(p(x)) denotes the second largest root of the real-rooted polynomial p(x).

By Theorem 6.5, the polynomials

{χx (ΨA(P1, . . . ,Pt−1)) | P1, . . . ,Pt−1 ∈ Sn}
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form an interlacing family (T,PT ) such that the root of T is labeled by the polynomial

E
P1,...,Pt−1

χx (ΨA(P1, . . . ,Pt−1)) .

By Lemma 6.3, invoked with j = 2, there exists a sequence of permutations P =

(P1, . . . ,Pt−1) ∈ St−1
n such that

λ2(ΨA(P1, . . . ,Pt−1)) ≤ secmaxroot

(
E

P1,...,Pt−1

χx (ΨA(P1, . . . ,Pt−1))

)
≤
(

1 +
1

t

)t
(t+ 1)dt + 2−Ω(ḡ) · (td)t+3.

Observing that ΨA(P1, . . . ,Pt−1) is a PSD matrix, meaning in particular that

λn(ΨA(P1, . . . ,Pt−1)) ≥ 0,

implies that

λ(ΨA(P1, . . . ,Pt−1)) = λ2(ΨA(P1, . . . ,Pt−1)),

which concludes the proof.
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A Missing Proofs

For the proof Claim 3.5, we prove the following easy claim.

Claim A.1. For every t ≥ 0, µ2(t) = µ(
√
t)+µ(−

√
t)

2
√
t

. In particular, if µ is symmetric around

0 then µ2(t) = µ(
√
t)√
t

.

Proof. Let X be a random variable with probability density function µ, and define the

random variable Y = X2. Clearly Y has probability density function µ2. For every integer

k ≥ 0 we have that

E[Y k] = E[X2k] =

∫ ∞
−∞

t2kµ(t)dt =

∫ 0

−∞
t2kµ(t)dt+

∫ ∞
0

t2kµ(t)dt.

By substituting variables y = t2, and noting that dy = 2tdt, we get that

E[Y k] =

∫ 0

∞
ykµ(−√y)

dy

−2
√
y

+

∫ ∞
0

ykµ(
√
y)

dy

2
√
y

=

∫ ∞
0

yk
µ(
√
y) + µ(−√y)

2
√
y

dy.

On the other hand, E[Y k] =
∫∞

0
ykµ2(y)dy, and so the proof follows.

Proof of Claim 3.5.

Gµ(x) =

∫
R

1

x− t
µ(t)dt =

∫ 0

−∞

1

x− t
µ(t)dt+

∫ ∞
0

1

x− t
µ(t)dt

=

∫ ∞
0

1

x+ t
µ(t)dt+

∫ ∞
0

1

x− t
µ(t)dt,
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where in the last equality we used the symmetry assumption. Thus,

Gµ(x) = 2x

∫ ∞
0

1

x2 − t2
µ(t)dt = x

∫ ∞
0

1

x2 − t2
µ(t)

t
2tdt = x

∫ ∞
0

1

x2 − s
µ2(s)ds,

where in the last equality we replaced s = t2 and used Claim A.1. The proof then follows

as the RHS equals to xGµ2(x2).

Proof of Lemma 4.11. We can write the Tailor expansion of f(z) around µ in the following

way:

f(z) = f(µ) + f ′(µ)(z − µ) +
f ′′(µ)

2
(z − µ)2 +

f ′′′(µ)

6
(z − µ)3 +K(z)(z − µ)4, (A.1)

noting that K(z) as defined above can be extracted from Equation (A.1). Taking the

expectation of both sides, we get

E[f(Z)]− f(µ) =
f ′′(µ)

2
∆2 +

f ′′′(µ)

6
∆3 + E[K(Z)(Z − µ)4].

Since (z − µ)4 is a non-negative function,

E[K(Z)(Z − µ)4] ≥ inf
z
K(z) · E

[
(Z − µ)4

]
= inf

z
K(z) ·∆4,

which concludes the claim.

B The construction of T1

In this section, for completeness, we sketch the construction of the tree T1 that is used

by the proof of Theorem 6.5. Recall that T1 is a full rooted ordered binary tree such that

with every node of the tree we associate a distribution over Sn such that the following

holds:

1. To a leaf v that is labeled by Q ∈ Sn, we have that νv = Q. That is, the distribution

associated with v is the distribution in which Q is sampled with probability 1.

2. Let v be an internal node with left son u and right son w. Then, there exist

iv, jv ∈ [n] and αv ∈ [0, 1] such that

νw = νuΓiv ,jv ,

νv = αvνu + (1− αv)νw.

3. To the root r corresponds the distribution νr which is uniform over Sn.
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To construct T1 we make use of the following lemma.

Lemma B.1 (Lemma 3.5 in [MSS18]). Let P be a random permutation matrix of order

n × n. Then, there exist random swaps T1, . . . ,TN , where N = N(n), such that the

distribution of P is equal to the distribution of T1T2 · · ·TN .

We construct T1 from the root downwards recursively, where the proof of correctness

is by induction on the number of random swaps that participate in the distribution of

a node. Recall that, for every k ∈ [N ], we can write the matrix corresponding to Tk

by αkI + βkΓk, where Γk is some swap matrix Γik,jk , αk ∈ [0, 1] and βk = 1 − αk. We

slightly abuse notation and denote the above matrix also by Tk. For k ∈ [N ] denote

Mk = T1 · · ·Tk. To the root of the tree we associate the distribution corresponding to

MN which, by Lemma B.1, is the uniform distribution over Sn, establishing Property (3)

above. Now,

MN = MN−1TN

= MN−1 (αNI + βNΓN)

= αNMN−1 + βNMN−1ΓN .

The sub-tree that is rooted at the left son of the root is constructed in a recursive manner

so that the distribution associated with this son corresponds to MN−1. To the right son

corresponds the distribution MN−1ΓN , and so Property (2) above holds for the root and

its two sons.

To the right son we associate the distribution that corresponds to MN−1ΓN which is

not of the form suitable for recursion. That is, while the number of random swaps has

decreased, it is not immediately clear how to proceed as before as the rightmost term is

not of the form αI + βΓ. To remedy this, observe that

MN−1ΓN = MN−2TN−1ΓN

= MN−2 (αN−1I + βN−1ΓN−1) ΓN

= MN−2 (αN−1ΓN + βN−1ΓN−1ΓN)

= MN−2ΓN

(
αN−1I + βN−1Γ

−1
N ΓN−1ΓN

)
.

Note that Γ−1
N ΓN−1ΓN is also a swap matrix. Proceeding in the manner, we can “push”

ΓN all the way so that it appears to the left of MN−2, making the necessary conjugation

to all the swaps in the product. This results with MN−1ΓN = ΓNM̂N−1 for M̂N−1 which

is the product of at most N − 1 random swaps. As the number of random swaps has

decreased (note that ΓN to the left is a deterministic permutation), by recursion, we can

construct the sub-tree rooted at the right son.
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