
Learning versus Pseudorandom Generators

in Constant Parallel Time

Shuichi Hirahara∗ Mikito Nanashima†

November 20, 2022

Abstract

A polynomial-stretch pseudorandom generator (PPRG) in NC0 (i.e., constant parallel time)
is one of the most important cryptographic primitives, especially for constructing highly ef-
ficient cryptography and indistinguishability obfuscation. The celebrated work (Applebaum,
Ishai, and Kushilevitz, SIAM Journal on Computing, 2006) on randomized encodings yields
the characterization of sublinear-stretch pseudorandom generators in NC0 by the existence of
logspace-computable one-way functions, but characterizing PPRGs in NC0 seems out of reach at
present. Therefore, it is natural to ask which sort of hardness notion is essential for constructing
PPRGs in NC0. Particularly, to the best of our knowledge, all the previously known candidates
for PPRGs in NC0 follow only one framework based on Goldreich’s one-way function.

In this paper, we present a new learning-theoretic characterization for PPRGs in NC0 and
related classes. Specifically, we consider the average-case hardness of learning for well-studied
classes in parameterized settings, where the number of samples is restricted to fixed-parameter
tractable (FPT), and show that the following are equivalent:

• The existence of (a collection of) PPRGs in NC0.

• The average-case hardness of learning sparse F2-polynomials on a sparse example distribu-
tion and an NC0-samplable target distribution (i.e., a distribution on target functions).

• The average-case hardness of learning Fourier-sparse functions on a sparse example distri-
bution and an NC0-samplable target distribution.

• The average-case hardness of learning constant-depth parity decision trees on a sparse
example distribution and an NC0-samplable target distribution.

Furthermore, we characterize a (single) PPRG in ⊕-NC0 by the average-case hardness of learning
constant-degree F2-polynomials on a uniform example distribution with FPT samples. Based on
our results, we propose new candidates for PPRGs in NC0 and related classes under a hardness
assumption on a natural learning problem. An important property of PPRGs in NC0 constructed
in our framework is that the output bits are computed by various predicates; thus, it seems to
resist an attack that depends on a specific property of one fixed predicate.

Conceptually, the main contribution of this study is to formalize a theory of FPT dualization
of concept classes, which yields a meta-theorem for the first result. For the second result on
PPRGs in ⊕-NC0, we use a different technique of pseudorandom F2-polynomials.

∗National Institute of Informatics, Japan. s hirahara@nii.ac.jp
†Tokyo Institute of Technology, Japan. nanashima.m.aa@is.c.titech.ac.jp

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 164 (2022)

1 Introduction

A dichotomy between learning and cryptography is one of the central topics in theoretical computer
science. An implication from cryptography to hardness of learning has already been studied in
the pioneering work by Valiant [Val84], who observed that the existence of a secure cryptographic
primitive implies the hardness of learning polynomial-size circuits (P/poly). Many follow-up studies
further showed the hardness of learning more restricted classes such as AC0 under several crypto-
graphic or deeply related assumptions [KV89; Kha93; AK95; AR16; Dan16; DS16; CIKK16; Vad17;
DV21]. The opposite implication from hardness of learning to cryptography is relatively less un-
derstood and first studied by Impagliazzo and Levin [IL90] and Blum, Furst, Kearns, and Lipton
[BFKL94]. Particularly, Blum, Furst, Kearns, and Lipton [BFKL94] formulated the average-case
hardness of PAC learning and presented constructions of several cryptographic primitives based on
the average-case hardness of learning. These early studies characterized a central cryptographic
primitive called a one-way function (OWF) by the average-case hardness of learning P/poly. The
dichotomy between learning and cryptography has been further studied over decades in various
settings [NR06; OS17; San20; Nan20; Nan21].

In general, the complexity for computing cryptographic primitives is deeply related to the com-
plexity of a concept class for learning (i.e., a class of target functions learners try to learn). This
observation leads us to study the dichotomy between learning and cryptography in low complexity
classes. One motivation of this is highly efficient cryptography based on the hardness assumption
of learning simple classes, as mentioned by Blum, Furst, Kearns, and Lipton [BFKL94]. This di-
rection is successful in certain fields; e.g., several candidates for a cryptographic primitive called a
weak pseudorandom function were proposed in low complexity based on the hardness of learning
problems for which no efficient algorithm is known at present [ABGKR14; BCGIKS21]. Another
motivation is identifying the capability of efficient learning based on well-established arguments in
cryptography. This direction has also been demonstrated for decades in studies on cryptographic
hardness of learning [e.g., KV89; Kha93; AR16; DV21].

In this work, we study a dichotomy between learning and polynomial-stretch pseudorandom gen-
erators (PPRGs) computable in constant-depth circuits (i.e., NC0), where a PPRG is a fundamental
cryptographic primitive stretching a given n-bit random seed into an n1+Θ(1)-bit pseudorandom
string that is indistinguishable from a truly random string by efficient adversaries. This research
question is strongly motivated by both sides of constructing highly efficient cryptography and iden-
tifying the capability of efficient learning. Below, we explain further backgrounds.

From the perspective of cryptography. A PPRG in NC0 is one of the most studied prim-
itives in parallel cryptography [cf. CM01; App13] because of its remarkable applications, such as
highly efficient cryptography [IKOS08] and a recent breakthrough on indistinguishability obfus-
cation (iO) based on well-founded assumptions [JLS21; JLS22]. Despite its importance, to the
best of our knowledge, the only known framework for constructing PPRGs in NC0 is one based on
Goldreich’s OWF [Gol11]. For example, the celebrated work by Applebaum, Ishai, and Kushile-
vitz [AIK06] on randomized encodings only yields the characterization of sublinear-stretch PRGs
in NC0, but characterizing PPRGs in NC0 seems out of reach at present. Therefore, it is natural to
inquire into a new candidate for PPRGs in NC0 and a characterization result through the lens of
the dichotomy between learning and cryptography.

Strictly speaking, we mainly discuss a generator defined as a collection of PPRGs, where the
generator has a public index randomly and efficiently (but not in NC0) selected in the preprocess-
ing [cf. Gol06, Section 2.4.2]. This relaxed setting is standard, especially when we discuss a PPRG
in NC0 [cf. App13, Remark 1.1], and such relaxation does not affect the applications mentioned
above.

2

From the perspective of computational learning theory. An ultimate goal in computa-
tional learning theory is to identify the simplest concept class that is not efficiently learnable under
a plausible hardness assumption. Many hardness results of learning in the current frontline are
related to PPRGs in NC0. Applebaum, Barak, and Wigderson [ABW10] proved the hardness of
learning O(log n)-junta functions under the existence of PPRGs in NC0 with an additional assump-
tion on input-output connections. Applebaum and Raykov [AR16] and Daniely and Vardi [DV21]
proved the hardness of learning for central classes such as depth-3 AC0 circuits and ω(1)-term DNF
formulas under assumptions related to polynomial-stretch Goldreich’s PRG, which is a special case
where the output bits are computed by one fixed predicate. Oliveira, Santhanam, and Tell [OST22]
proved that a security of polynomial-stretch Goldreich’s PRG implies the impossibility of improv-
ing parameters of natural properties for simple classes such as DNF-XOR circuits under a plausible
assumptions on the existence of suitable expanders, where a natural property is a notion deeply
related to learning [CIKK16; CIKK17].

Since the equivalence between pseudorandomness and unpredictability follows from the well-
known result by Yao [Yao82], a reader might expect a correspondence between PPRG in NC0 and
hardness of learning NC0. However, this intuition seems incorrect because while a PPRG in NC0

is conjectured to exist, learning NC0 (i.e., functions with constant locality) is trivially feasible by
applying Occam’s razor [BEHW87]. In this sense, there seems to exist a gap between pseudoran-
domness and hardness of learning when we consider considerably low complexity classes such as
NC0. Nevertheless, can we obtain some learning-theoretic characterization for a collection of PPRG
in NC0? In this work, we provide an affirmative answer to this question.

1.1 Our Learning Model

We introduce the learning model mainly discussed in this work, which is a natural variant of the
PAC learning model. For the formal definition, see Section 3.2.

We consider a distribution-specific average-case learning model, introduced by Blum, Furst,
Kearns, and Lipton [BFKL94]. In this model, an unknown Boolean-valued target function f (con-
tained in some concept class C) is selected according to a known target distribution, and a learner is
given samples of the form (x, f(x)), where x is called an example and selected identically and inde-
pendently according to a known example distribution. After learning with the samples, the learner
tries to guess a value of f(x) for an additionally given input x (called a challenge) selected accord-
ing to the same example distribution with good probability; specifically, with probability at least
1/2+γ (we refer to γ as an advantage) over the choices of randomness for the learner, samples, and
a target function. We define the sample complexity as the number of samples the learner requires.
We say that a class C is not learnable with respect to some class (e.g., polynomial-time samplable)
of example distributions and target distributions in this distribution-specific model if there exist an
example distribution and a target distribution in the class such that C is not learnable under these
example and target distributions.

A new perspective in this paper is to consider parameterized complexity of learning for a parame-
terized concept class and parameterized classes of example distributions and target distributions. We
remark that parameterized learnability has been discussed in certain previous studies [e.g. AKL09].
The main difference from the previous formulation is the separate consideration of time complex-
ity and sample complexity. In this paper, we only consider fixed-parameter tractability on sample
complexity, and the time complexity can be arbitrary polynomial depending on parameters (or
sub-exponential functions). Specifically, for parameters k1, . . . , kc on a concept class C and classes
of example distributions and target distributions, we say that C is learnable with (k1, . . . , kc)-FPT
samples if C is learnable with f(k1, . . . , kc) · nΘ(1) samples, where f is some computable function.

3

Our learning model captures a (natural) situation in which collecting labeled data is more expensive
than using computational resources. This formulation also provides a new perspective on param-
eterized complexity of learning; e.g., PAC learning k-junta (i.e., functions depending on only k
coordinates of the input) is known to be W[2]-hard [AKL09], but feasible with FPT samples (with
k2k · nΘ(1) samples and in O(nk) time) by Occam’s razor [BEHW87]. By contrast, it can be shown
that learning degree-d F2-polynomials is infeasible even in this setting based on the VC theory [cf.
SB14].1

We define the sparsity of a distribution as the maximum Hamming weight of samples.

Definition 1. For c ∈ N, we say that a family D = {Dn}n∈N of distributions on {0, 1}∗ is c-sparse
if Prx←Dn [wt(x) ≤ c] ≥ 1 − negl(n), where wt(x) represents the Hamming weight of x, and negl(n)
represents some negligible function, i.e., for any polynomial p(n), it holds that negl(n) < 1/p(n) for
any sufficiently large n ∈ N.

1.2 Our Results

As a main result, we show that a collection of PPRGs in NC0 is characterized by the learnability
of various central classes with FPT samples with respect to a sparse example distribution and an
NC0-samplable target distribution.

Theorem 1 (informal). The following are equivalent:

1. There exists a collection of (infinitely-often secure2) PPRGs in NC0.

2. c-sparse F2-polynomials are not polynomial-time learnable on average with respect to a tar-
get distribution samplable by a depth-d NC0 circuit and a samplable distribution on c′-sparse
example distributions with (c, c′, d)-FPT samples.

3. c-Fourier-sparse functions are not polynomial-time learnable on average with respect to a tar-
get distribution samplable by a depth-d NC0 circuit and a samplable distribution on c′-sparse
example distributions with (c, c′, d)-FPT samples.

4. For any f ∈ {OR}∪{MODm : m ∈ N\{1}}, degree-d f -decision trees are not polynomial-time
learnable on average with respect to a target distribution samplable by a depth-d′ NC0 circuit
and a samplable distribution on c-sparse example distributions with (d, c, d′)-FPT samples.

Informally, Theorem 1 yields a new dichotomy between highly efficient pseudorandom generators
and sample-efficient heuristics for learning with sparse data. Below we argue that the learning
settings of Theorem 1 are natural.

Concept classes. For the formal descriptions of each parameterized concept class, see Sec-
tion 3.1. Here, we remark that the sparsity of F2-polynomials and Fourier representations is one
of the most important complexities of Boolean functions [cf. ODo14]. The fourth item above con-
cerns the extensions of decision trees, containing the well-studied class of parity decision trees3 [e.g.,

1We can also show that learning degree-d F2-polynomials with FPT samples is infeasible even in the average-case
setting over uniformly random degree-d F2-polynomials (see Lemma 6).

2In this paper, we mainly discuss the relationships between learnability for all example sizes and PPRGs with
infinitely often security (i.e., the security holds for infinitely many seed lengths). Note that the same results hold for
generators with sufficiently large security (i.e., the security holds for any sufficiently large seed length) by considering
the learnability on infinitely many example sizes (see also Remark 1).

3In fact, the equivalence between constant-depth parity decision trees and constant-Fourier-sparse functions follows
from the work by Kushilevitz and Mansour [KM93]. However, it is unclear whether these learning settings are
equivalent when we restrict the target distributions to NC0-samplable because the transformation between these
representations may be infeasible in NC0.

4

KM93]. Although OR decision trees have received relatively less research attention compared with
the other concepts, learning OR decision trees with sparse data seems to be a natural setting where
the decision is made by a few queries about whether some unusual features are observed. Inter-
estingly, our result shows that the average-case learnability for these various concepts becomes
equivalent when data are sparse through the existence of a collection of PPRGs in NC0.

Example distributions. We remark two points. First, we consider a distribution of example
distributions (i.e., average cases on example distributions), where the example distribution is se-
lected at the initialization step (see Definition 7 for the formal description). Note that this captures
more general settings of learning than the previous distribution-specific setting in [BFKL94]; e.g.,
our framework captures a distribution determined by some hidden random parameter. From the
perspective of cryptography, the hardness assumption on a distribution of example distributions is
weaker than ones in distribution-specific settings. Second, we consider learning on sparse example
distributions. Such a learning framework naturally captures learning on data with rarely observed
features, such as symptoms of patients.

Target distributions. We consider NC0-samplable distributions as target distributions, and
this is a natural assumption in average-case complexity theory in learning; e.g., the uniform dis-
tribution over functions in C is often regarded as a projection of random strings onto the binary
representations for functions in C (e.g., random DNFs), and almost all target distributions consid-
ered in previous studies on average-case learning are NC0-samplable [JS05; Sel08; Sel09; JLSW11;
AC15].

We also remark that Theorem 1 holds even in super-polynomial regimes; e.g., sub-exponential-
time average-case hardness of learning with FPT samples corresponds to a collection of PPRGs
secure against sub-exponential-time adversaries (where the loss of security is only polynomial).
Note that super-polynomial security is applied for the construction of iO based on well-founded
assumptions [JLS21; JLS22]. Particularly, Jain, Lin, and Sahai [JLS21] assumed (i) the hardness
of learning problems LWE and LPN, (ii) the existence of a collection of PPRGs in NC0, and (iii)
the Diffie-Hellman-style assumption (i.e., SXDH). Our result characterizes assumption (ii) based on
the hardness of learning and, along with their work, opens an interesting research direction: Is the
well-founded hardness assumption of learning sufficient for constructing iO (i.e., Obfustopia)?

Next, we present several related results on the hardness of learning and PPRGs in relaxed
complexity classes, which are obtained by relaxing some conditions in Theorem 1.

On removing sparsity conditions. Although Theorem 1 shows one characterization of a
collection of PPRGs in NC0 by learnability with sparse data, the sparsity is somewhat restrictive,
and there exist a large amount of non-sparse data in the real world. As a second result, we show
that learnability with non-sparse data for the classes in Theorem 1 still characterizes a collection of
PPRGs in superclasses of NC0.

Theorem 2 (informal). The following hold:

1. There exists a collection of PPRGs in O(1)-sparse F2-polynomials iff c-sparse F2-polynomials
are not polynomial-time learnable on average with respect to a target distribution samplable by
a c′-sparse F2-polynomial and a samplable distribution on example distributions with (c, c′)-
FPT samples.

2. There exists a collection of PPRGs in O(1)-Fourier-sparse functions iff c-Fourier sparse func-
tions are not polynomial-time learnable on average with respect to a target distribution sam-
plable by a c′-Fourier sparse functions and a samplable distribution on example distributions
with (c, c′)-FPT samples.

5

The generators above still have good parallelism in the sense that each output bit is computable
by a constant number of parallel and simple computations (i.e., logical AND or logical XOR).

On obtaining a single PPRG. The theorems above hold only in the case of a collection of
PPRGs, and the learning-theoretic characterization of a single PPRG is currently open. Although
a collection of PPRGs is standard in parallel cryptography, a single parallel PPRG is still a natural
and desirable primitive because it does not require the additional public random strings.

As a third result, we show that if we allow NC0 circuits to have one top-most XOR-gate with
unbounded fan-in, where the other types of gates (i.e., NOT, OR, and AND) have bounded fan-in
(we denote this class4 by ⊕-NC0), then a single PPRG in ⊕-NC0 is characterized by the hardness of
learning constant-degree F2-polynomials on the uniform example distribution.

Theorem 3 (informal). For any polynomial r(n), the following are equivalent:

1. There exists a PPRG in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to a uni-
form example distribution and a target distribution samplable by a degree-d′ F2-polynomial
using r(n)-bit random seeds with (d, d′)-FPT samples.

We remark several points. First, in the theorem above, the length of the seeds for selecting a
target function is also fixed to some polynomial r(n) independent of the parameters (i.e., degree
of F2-polynomials). This restriction is essential for the result because if we remove this restriction,
then unlearnability with FPT samples holds unconditionally even for time-unbounded learners (see
Section 5.1). Second, the average-case hardness of learning on the uniform example distribution is
equivalent to weak pseudorandom functions (WPRFs), where a WPRF is an efficiently samplable
family of functions indistinguishable from a random function on inputs passively selected uniformly
at random [NR99]. Thus, Theorem 3 can also be regarded as the equivalence between PPRG and
WPRF within the class ⊕-NC0.

Finally, we show that if we consider a general case of samplable distributions of example distri-
butions (instead of the uniform example distribution), then the dichotomy in Theorem 3 is extended
to a collection of PPRGs in ⊕-NC0. In other words, we can characterize the difference between a
single PPRG and a collection of PPRGs in ⊕-NC0 by the difference in the generality of example
distributions on the hardness of learning.

Theorem 4 (informal). For any polynomial r(n), the following are equivalent:

1. There exists a collection of PPRGs in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to a tar-
get distribution samplable by a degree-d′ F2-polynomial using r(n)-bit random seeds and a
samplable distribution on example distributions with (d, d′)-FPT samples.

Note that Theorems 2–4 also hold in super-polynomial regimes with polynomial security loss.
Theorems 1–4 indicate that by selecting a parameterized example distribution and a parame-

terized target distribution arbitrarily and by assuming the hardness of learning with FPT samples,
we can construct a secure parallel PPRG. Conversely, if we believe in PPRGs in the correspon-
dence class, then such a hard-to-learn parameterized setting must exist. However, we remark that

4It is not hard to verify that ⊕-NC0 is indeed equivalent to NC0[⊕] (i.e., a class of NC0 circuits with XOR-gates
with unbounded fan-in) and a class of constant-degree F2-polynomials.

6

Theorems 1–4 are general results on the dichotomy between the hardness of learning and paral-
lelly computable PPRGs, and they do not explicitly specify the distributions with respect to which
learning is hard on average with FPT samples.

Here, we propose a natural learning task, learning random parity decision trees, whose hardness
does not contradict our current knowledge.

Definition 2 (Learning random parity decision trees). Let D = {Dn}n∈N be an arbitrary example
distribution, where Dn is a distribution on {0, 1}n for each n ∈ N. For any d ∈ N and m : N→ N,
we define a problem of learning random depth-d parity decision trees (d-LRPDT) on D with m(n)
samples as follows:

Input: samples {(x(i), T (x(i)))}i∈{1,...,m(n)} and a challenge xc, where x(1), . . . , x(m(n)), xc ∈
{0, 1}n are selected according to Dn, and T is a random parity decision tree of depth
d and size 2d in which each query at internal nodes is ⊕i∈Sxi for a uniformly random
subset S ⊆ {1, . . . , n} (selected independently for each node) and each leaf is labeled by
a uniformly random value in {0, 1} (selected independently for each leaf).
Output: T (xc)

For any polynomial m(n) and p(n), we say that d-LRPDT is (m(n), 1/p(n))-hard on D if no ran-
domized polynomial-time algorithm solves d-LRPDT on D with m(n) samples with probability at
least 1/2+1/p(n), i.e., for any randomized polynomial-time algorithm A and sufficiently large n ∈ N,

Pr
A,Dn,T

[
A
(

(x(1), T (x(1))), . . . , (x(m(n)), T (x(m(n)))), xc

)
= T (xc)

]
<

1

2
+

1

p(n)
.

By Theorem 1, if d-LRPDT is hard with FPT samples on some parametrized sparse example
distribution, then a collection of PPRGs exists in NC0. By inspecting our proof, we show that the
sample complexity can be made as small as n1+ε for an arbitrarily small constant ε > 0.

Corollary 1. Let ε ∈ (0, 1) be an arbitrary constant. Suppose that there exist d ∈ N and an example
distribution D such that d-LRPDT is hard on D with n1+ε samples5. Then, we can construct parallel
PPRGs according to the complexity of D as follows:

• If D is O(1)-sparse and samplable, then a collection of PPRGs in NC0 exists.

• If D is the uniform distribution, then a PPRG in ⊕-NC0 exists.

• If D is samplable, then a collection of PPRGs in ⊕-NC0 exists.

The first and third items hold even for samplable distributions on example distributions.

For instance, as a natural candidate for O(1)-sparse example distributions, we propose the
uniform distribution over binary strings of Hamming weight c ∈ N.

Corollary 2. If there exist c, d ∈ N and ε ∈ (0, 1) such that d-LRPDT is hard on the uniform
example distribution over binary strings of Hamming weight c with n1+ε samples, then a collection
of PPRGs in NC0 exists.

We remark that it is consistent with our knowledge that d-LRPDT cannot be solved. Depth-d
parity decision trees are exactly learnable by the Goldreich–Levin algorithm when additional query
access to the target function (i.e., membership query) is available [GL89; KM93]. However, it is

5For the requirement for the advantage of learning, see Section 6.

7

a central open question whether the membership query is necessary, and d-LRPDT is a natural
test case for this question. An efficient learner for random log-depth decision trees was developed
by Jackson and Servedio [JS05], but it is unclear whether this algorithm can be extended to the
case of random parity decision trees. From Corollary 1, we propose further learning-theoretic and
cryptographic analysis of the hardness of learning parity decision trees as a future research direction.
Particularly, one important property of the PPRGs constructed in Corollary 1 is that the output
bits are computed by various predicates. Therefore, they seem to resist an attack that depends on
a specific property of one fixed predicate, even in the setting in Corollary 2.

1.3 Related Work

Applebaum, Barak, and Wigderson [ABW10] proved the hardness of learning O(log n)-junta func-
tions under the existence of PRGs in NC0 with an additional assumption that (roughly speaking) a
small subset of output bits can be embedded indistinguishably with good local expansion. Apple-
baum and Raykov [AR16] proved the hardness of learning depth-3 AC0 circuits under the assumption
related to polynomial-stretch Goldreich’s PRGs, which matches the unconditional upper bound pre-
sented in [LMN93]. We remark that their assumption is reducible to a more reliable assumption
on Goldreich’s OWFs due to the search-to-decision reduction developed in [App13; AR16], where
they essentially use the structures of Goldreich’s OWFs. Daniely and Vardi [DV21] showed the
hardness of learning ω(1)-term DNF formulas and related classes on a product example distribution
by assuming Goldreich’s PRG for arbitrary polynomial stretch. We remark that our results are in-
comparable with these previous studies. We assume the existence of the more general cryptographic
primitive (i.e., a collection of PPRGs in NC0) to show the hardness of learning other simple and
central classes. This generalization weakens the hardness result to a more general class of example
distributions instead of product distributions compared with [DV21], while we can also obtain the
opposite direction from the hardness of learning to cryptography. The result of [OST22] on natural
properties also differs in the learning setting, particularly natural properties essentially correspond
to learning with membership queries on the uniform example distribution [CIKK16].

Blum, Furst, Kearns, and Lipton [BFKL94] constructed OWFs, PRGs, and private-key encryp-
tion schemes based on the average-case hardness of learning. To construct PPRGs by using their
technique, we need to assume a stronger hardness assumption on learning with membership queries.
The use of membership queries was removed by Naor and Reingold [NR99], and we apply the same
technique to show one direction in Theorem 3. Note that the complexity of these PPRGs depends
on the complexity of evaluating concept classes. Thus, this approach does not seem to yield a PPRG
in NC0 because if a concept class has the evaluation performed in NC0, then such a class is trivially
learnable. The followup studies [NR06; OS17; San20; Nan20; Nan21] discussed relationships be-
tween cryptography and hardness of learning in P and P/poly. Other studies [e.g., Reg09] developed
various cryptographic schemes based on the hardness of learning linear functions with noise, but
it is not clear whether PPRGs in NC0 are obtained as a consequence of these studies. LRPDT is
regarded as a related problem in which we learn parity with noise determined by a constant number
of other parities, and it is indeed reducible to learning parity with noise in the case of a uniform
example distribution [FGKP06].

With regard to parallel cryptography, the constructions of PRGs in NC0 were presented by Ap-
plebaum, Ishai, and Kushilevitz [AIK06] (sublinear-stretch) and Applebaum, Ishai, and Kushilevitz
[AIK08] (linear-stretch). Recently, Ren and Santhanam [RS21] and Liu and Pass [LP21] charac-
terized the existence of OWF in NC0 based on the average-case meta-complexity notion, which
only yields sublinear-stretch PRGs in NC0, and PPRGs in NC0 seem out of reach at present. Some
candidates for a collection of PPRGs in NC0 were studied by Cook, Etesami, Miller, and Trevisan

8

[CEMT09], Bogdanov and Qiao [BQ12], Applebaum, Bogdanov, and Rosen [ABR12], Applebaum
[App13], O’Donnell and Witmer [OW14], Applebaum and Lovett [AL18], and Couteau, Dupin,
Méaux, Rossi, and Rotella [CDMRR18] based on the framework of Goldreich’s OWF [Gol11]. This
type of generator is natural but somewhat restrictive in the sense that all output bits are computed
by the same predicate fixed in advance. One advantage of the previous framework is that the secu-
rity of the generator can be based on a hardness notion of one-wayness, which is more reliable than
pseudorandomness [App13].6 By contrast, an advantage of the framework proposed in this study is
that the output bits of the resulting generator are computed by various predicates; thus, it seems
to resist an attack that depends on a specific property of one fixed predicate.

We will introduce a key notion of FPT dualization with the junta-sparse condition in Section 2,
and it seems conceptually related to the analysis of Boolean functions on Hamming balls and slices
(i.e., substrings of fixed Hamming weight). Particularly, Filmus and Ihringer [FI19] and Filmus
[Fil22] proved that every constant-degree polynomial on a slice is also O(1)-junta on the same slice.
By contrast, our result can also be rephrased as that every sparse polynomial on a Hamming ball
is a dual of O(1)-junta.

2 Techniques

In this section, we present an overview of key notions and proof sketches of the main results.

2.1 Proof Techniques for Theorems 1 and 2

The key notion to show Theorems 1 and 2 is the dualization of concept classes, which was explicitly
discussed independently by Applebaum, Barak, and Wigderson [ABW10] and Vadhan [Vad17] and
applied (implicitly or explicitly) in recent studies on the hardness of learning [DS16; Dan16; Nan20;
Nan21; DV21]. Informally, the dualization of a concept class C consists of two mappings from
examples to target functions in C and from target functions in C to examples satisfying the following
condition. If an example x (resp. a target function f ∈ C) is mapped to a target function x∗ ∈ C
(resp. an example f∗) by these mappings, then the value of x∗(f∗) is equal to f(x). We refer to
this x∗ (resp. f∗) as a dual of x (resp. f) and use the superscript ∗ to represent duals.

First, we observe that the dualization of a concept class C provides a relationship between a
collection of PRGs and learnability for C . On the one hand, if there exists a collection G of PRGs in
C , then we can construct a sample set of size m from the pseudorandom string y = G(x) of length
m (where x is a random seed) as {(G∗i , yi)}i∈[m], where Gi ∈ C represents the function computing
the i-th bit of G, and G∗i is its dual. Notice that x∗(G∗i) = Gi(x) = yi for each i ∈ [m]. Therefore, if
we consider this x∗ as a target function for learning C and the uniform distribution over the samples
as the example distribution, any feasible learner cannot distinguish these labels from random labels
unless the learner looks at almost all samples in the set. On the other hand, we can obtain a
collection of PRGs from the problem of learning C by translating a sample set {(x(i), f(x(i)))}i∈[m]

(where f is a target function) into a generator G(f∗) = (x(1))∗(f∗) ◦ · · · ◦ (x(m))∗(f∗). By the
equivalence between pseudorandomness and unpredictability [Yao82], if learning C is hard even with
non-negligible advantage, then the value of G(f∗) = f(x(1)) ◦ · · · ◦ f(x(m)) must be pseudorandom.
If we assume that the target distribution is samplable in a complexity class C ′ and regard the seed
to the sampler as a random seed to G, then we can implement this G in C ◦ C ′.

6In terms of learning, the difference between one-wayness and pseudorandomness is similar to the difference between
proper learning and improper learning. In general, proper learning is often harder than improper learning [cf. PV88].

9

At a high level, we will use the argument above to show Theorems 1 and 2. However, there
are the obstacles. First, the argument from PRG to the hardness of learning only yields hardness
of learning with a fixed sample complexity depending on the stretch of the PRG. Second, more
importantly, NC0 cannot be dualized. Intuitively, for an NC0-computable f : {0, 1}n → {0, 1} (i.e.,
f depends on only O(1) coordinates) and input x ∈ {0, 1}n, the value of f(x) depends on Ω(log n)-
bit information of f , such as relevant coordinates. Thus, we cannot regard f(x) as a function
depending on only O(1)-bit information in a representation of f . In Appendix A, we formally show
the impossibility of the dualization of NC0 based on the lower bound on communication complexity.
Below we present how we deal with these two obstacles.

FPT Dualization

We deal with the first obstacle by assuming polynomial-stretch PRGs. The merit of a PPRG is
that we can amplify the stretch of a PRG to an arbitrary polynomial within NC0 by applying the
original generator constant times based on the GGM construction [GGM86]. After applying the
original generator computable by a depth-d circuit c times, the depth of the generator increases up
to cd, whereas c affects the exponent of the stretch of the PRG. Intuitively, this observation leads
to the hardness of learning with FPT samples for a parameter involved in the depth.

To apply the dualization technique above in the parameterized setting, we extend the notion of
dualization to the parameterized setting as follows. For any parameterized concept class C , we use
a subscript and superscript to refer to an input size and a parameter, respectively.

Definition 3 (FPT dualizable). Let C k be a parameterized concept class. We say that C is fixed-
parameter tractably (FPT) dualizable if there exist a polynomial pdual : N→ N, computable functions
f1, f2 : N → N, and polynomial-time computable mappings g : N × {0, 1}∗ → C and h : N × C →
{0, 1}∗ such that for any k, n ∈ N, x ∈ {0, 1}n, and f ∈ C k

n , the following hold: (i) g(k, x) ∈
C
f2(k)
f1(k)·pdual(n), (ii) h(k, f) ∈ {0, 1}f1(k)·pdual(n), and (iii) (g(k, x))(h(k, f)) = f(x).

We use the notation x∗(k) or x∗ (resp. f∗(k) or f∗) to refer to g(k, x) (resp. h(k, f)) in the
definition above; e.g., the third condition above can be written as x∗(f∗) = f(x) for each f and x.

Junta-Sparse Condition

At a high level, the idea to overcome the second obstacle is applying the dualization of superclasses
of NC0 and focusing on its substructure, i.e., the correspondence between NC0 and a subset of strings,
particularly in our case, sparse strings. To formalize this idea, we introduce a key condition of FPT
dualization named the junta-sparse condition, which serves as dualization of NC0 partially in the
actual dualization of the superclass. Intuitively, the junta-sparse condition claims that (i) any O(1)-
junta function (i.e., a function that depends on only O(1) coordinates) is contained in the concept
class, and (ii) O(1)-junta functions and strings of constant Hamming weight get interchanged by
the FPT dualization. The condition is formally stated as follows:

Definition 4 (junta-sparse condition). Let C k be an FPT dualizable class. We say that C satisfies
the junta-sparse condition if the following hold:

1. There exist computable functions g, h : N → N such that for any k ∈ N and any k-junta f , it
holds that f ∈ C g(k) and wt(f∗) ≤ h(k).

2. There exists a computable function g : N×N→ N such that for any c, k ∈ N and any x ∈ {0, 1}∗
with wt(x) ≤ c, it holds that x∗(k) is g(c, k)-junta.

10

Meta-Theorem

The proof of Theorem 1 consists of the following two parts. As the first step, we prove meta-
theorem which shows that if a parameterized concept class C is FPT dualizable by mappings
computable in NC0 and it satisfies the junta-sparse condition, then the existence of a collection
of PPRGs in NC0 corresponds to the average-case hardness of learning C with FPT samples with
respect to (a samplable distribution of) sparse example distributions and an NC0-samplable target
distribution7. Note that verifying the condition in the meta-theorem (i.e., dualization with the junta-
sparse condition) is purely a puzzle-like problem involved in representation for Boolean functions
and directly related to neither learning theory nor cryptography (cf. Section 4.3). Namely, if you
can solve the puzzle for some concept class C , then it automatically implies the equivalence between
the existence of a collection of PPRGs in NC0 and the average-case hardness of learning C with
sparse data based on our meta-theorem. As the second step to show Theorem 1, we solve this
puzzle, i.e., demonstrate that concept classes in Theorem 1 (i.e., c-sparse F2-polynomials, c-Fourier-
sparse functions, and depth-d {OR,Modm}-decision trees) are FPT dualizable by NC0-computable
mappings and satisfy the junta-sparse condition.

We show the outline of the proof of the meta-theorem based on the argument mentioned at the
beginning of this subsection.

A collection of PPRGs in NC0 ⇒ hardness of learning : Suppose that there exists a collection G
of PPRGs. For contradiction, we assume that there exists an efficient learner L for C that requires
only FPT samples. We amplify the stretch of G by the GGM construction [GGM86] within NC0,
let G′ be the amplified generator, and construct the sample set S from the duals of G′ and a
pseudorandom string y = G′(x). Since G′ is computable in NC0, each function computing each bit
of G′ is O(1)-junta. Thus, by the junta-sparse condition, the Hamming weight of each example is
bounded above by a constant (depending on the depth of G′). In addition, since the mappings in
FPT dualization are computable in NC0, the target distribution of the dual of the random seed x
is NC0-samplable. Thus, the learning problem on the uniform distribution over the samples in S is
a valid setting for L. Let c be the number of applications of G to construct G′. Then, the sample
complexity of L increases in the sense of FPT for c, whereas c affects the exponent of the stretch of
G′. Therefore, for a sufficiently large c ∈ N, the learner L cannot read a large fraction of S. Thus,
L can predict some bit in G′(x) from other bits, and this contradicts that G is PRG.

Hardness of learning ⇒ a collection of PPRGs in NC0: Suppose that learning C is hard on
average with FPT samples. Since the target distribution is NC0-samplable, each bit of the repre-
sentation of C depends on only constant bits of a random seed. By the technical assumption (in
footnote 7) on the FPT upper bound on the length of the representation of C , we can assume that
the length of the seed for the target distribution is bounded above by some FPT function. Using
the hardness assumption for a sample complexity m(n) polynomially larger than the upper bound
on the length of the seed, we construct the collection G of PRGs by taking duals of examples. Re-
member that the input size of G is the length of the seed for the target distribution, and the output
size is m(n). Thus, G has polynomial-stretch. In addition, the Hamming weight of the examples is
constant except with negligible probability by the hardness assumption. Thus, by the sparse-junta
condition, each bit of G is O(1)-junta, and G is implemented in NC0. Technically, when we consider
the advantage in learning, this argument only yields a collection of PPRGs with a fixed indistin-
guishable parameter. We can convert such a collection of weak PPRGs into a collection of standard
PPRGs (with a negligible indistinguishable parameter) by applying the technique by Applebaum
and Kachlon [AK19].

7Strictly speaking, we also need a technical assumption that the length of the binary representation for C is
bounded above by some FPT function.

11

Theorem 2 is shown based on the following observation: If a concept class C is FPT dualizable
and closed under the composition (where the junta-sparse condition is no longer needed), the above
argument yields the equivalence between a collection of PPRGs in C and the average-case hardness
of learning C with FPT samples. See Section 4.4 for the formal argument.

2.2 Proof Techniques for Theorem 3

Theorem 3 shows the equivalence between the existence of a (single) PPRG in ⊕-NC0 and the
average-case hardness of learning constant-degree F2-polynomials with FPT samples with respect
to a uniform example distribution and a target distribution samplable by a constant-degree F2-
polynomial. In fact, ⊕-NC0 is equivalent to the class of constant-degree F2-polynomials because (i)
any constant-degree F2-polynomial is implemented by a ⊕-NC0 circuit that first computes monomials
in parallel and takes the summation of them by the top-most XOR gate, and (ii) any ⊕-NC0 circuit
is implemented by a constant-degree F2-polynomial by expressing each sub-circuit connected to the
top-most XOR-gate as a constant-degree F2-polynomial (note that the top-most XOR-gate does
not increase the degree of the resulting F2-polynomial). Therefore, we only need to establish the
relationship between a PPRG and learnability within the class of constant-degree F2-polynomials.

Before presenting the idea, we briefly explain why we cannot apply the dualization techniques in
Section 2.1 directly to show Theorem 3. In fact, the class of degree-d F2-polynomials is simply du-
alizable as follows: for any degree-d F2-polynomial f(x) =

∑
S:|S|≤d fS

∏
i∈S xi, where fS represents

the coefficient of f on
∏
i∈S xi, we regard the coefficients of f as the input and the value of

∏
i∈S xi

as a coefficient on the monomial fS for each subset S, i.e., the dual of x is a degree-1 F2-polynomial
taking the coefficients of f as the input. An issue is that this dualization is no longer FPT in the
sense that each n-input degree-d polynomial is converted into a string of length

∑d
i=1

(
n
i

)
= Θ(nd).

If we apply this dualization in the argument in Section 2.1, then a parameter affects the exponent
of the sample complexity of learners, and this causes several problems: e.g., in the direction from
PPRG to the hardness of learning, we cannot prepare a sufficient number of samples using the
GGM construction so that the learner cannot read the entire sample set. In addition, the argument
in Section 2.1 yields only a collection of PPRGs.

An alternative to show the direction from a PPRG to hardness of learning is to construct an F2-
polynomial pseudorandomly. As a preliminary observation, if we select a polynomial f uniformly at
random from all n-input F2-polynomials of degree d, then for m = 1

2

∑d
i=1

(
n
i

)
inputs x(1), . . . , x(m) ∈

{0, 1}n selected uniformly at random, we can show that the distribution of f(x(1)), . . . , f(x(m)) is
statistically close to an m-tuple of random bits even when x(1), . . . , x(m) are given. In the formal
proof, we verify this by applying the results obtained by Ben-Eliezer, Hod, and Lovett [BHL12].
For now, we assume this. Then, we observe that even if we select a degree-d F2-polynomial f by a
pseudorandom string generated by a PPRG, the labels of the sample set {(x(i), f(x(i)))} must be
computationally indistinguishable from random labels. By the equivalence of pseudorandomness
and unpredictability [Yao82], such a pseudorandom F2-polynomial f must be unpredictable.

Based on the argument above, we can create a hard learning problem with FPT samples based
on a PPRG G, as follows. For contradiction, we assume that there exists an efficient learner L
that requires only FPT samples. Then, we use the GGM construction to amplify the stretch of G,
let G′ denote the amplified PRG, and select a pseudorandom F2-polynomial using G′. Remember
that the number c of applications of G affects the exponent of the stretch of G′. Thus, for each
d ∈ N, we can select a sufficiently large c such that a degree-d pseudorandom F2-polynomial can
be selected by G′. Note that G′ is still computable by an F2-polynomial of degree dc. We regard
this G′ as a sampling algorithm for selecting a target function in degree-d F2-polynomials. For the
degree-d pseudorandom F2-polynomial, we can retrieve 1

2

∑d
i=1

(
n
i

)
= Θ(nd) samples that are hard

12

to predict. By contrast, each d determines c and the degree of the sampling algorithm for the target
distribution; thus, d affects the required number of samples only in the FPT sense. Therefore, by
taking a sufficiently large d, we can prepare a sufficient number of samples for L, and L yields an
efficient adversary for G′ and G. This is a contradiction.

To show the opposite direction from the average-case hardness of learning to a PPRG, we apply
the idea presented by Naor and Reingold [NR99]. First, we observe that for each constant-degree F2-
polynomial f and input x, the value of f(x) is evaluated by a constant-degree F2-polynomial taking x
and the binary representation of f as the input (where we naturally assume that each f is represented
by the coefficients of f). Then, the construction of a PPRG G is outlined as follows. We use the
hardness assumption for a sample complexity m(n) sufficiently larger than (n+ r(n))2, where r(n)
is the upper bound on the seed length for the target distribution in Theorem 3. Let R = n+ r(n).
Then, G selects R2 examples x(1), . . . , x(R2) and R2 target functions f (1), . . . , f (R2) according to
the hard example distribution and target distribution by using its own random seed. Then, G
outputs R4 bits f (i)(x(j)) for each i, j ∈ {1, . . . , R2} as a pseudorandom string. We can prove the
pseudorandomness of G using the hybrid argument and the equivalence between unpredictability
and pseudorandomness [Yao82]. Since G requires only a R2(n+ r(n))-bit random seed to select the
examples and the target functions, G stretches an R3-bit random seed into an R4-bit pseudorandom
string. Thus, G has polynomial-stretch. Note that we apply the standard padding technique to
obtain a PPRG defined on all input lengths. Since the sampling algorithm for the target distribution
and the evaluation algorithm are computable by constant-degree F2-polynomials, this generator is
implemented by a constant-degree F2-polynomial by taking composition. Thus, we obtain a PPRG
computable by a constant-degree F2-polynomial. Note that the construction in the formal proof
is more complicated because we apply the XOR lemma to amplify the success probability of the
adversary to the desired advantage of a learner. For details, see Section 5.1.

2.3 Proof Ideas for Theorem 4

Theorem 4 shows the equivalence of a collection of PPRGs in ⊕-NC0 and the average-case hardness of
learning constant-degree F2-polynomials with FPT samples with respect to (a samplable distribution
of) example distributions and a target distribution samplable by a constant-degree F2-polynomial.
One direction from the average-case hardness of learning to a collection of PPRGs is shown in the
same way as in Section 2.2 except that the sampling algorithm for the example distributions is
simulated during preprocessing, where the examples are hardwired in the generator.

We present a rough idea to show the other direction from a collection of PPRGs to the hard-
ness of learning. Note that we cannot apply the technique in Section 2.2 because the sampler of
generators cannot be implemented in constant-degree F2-polynomials in general, and the sampling
algorithm for selecting a pseudorandom F2-polynomial is not always implemented in constant-
degree F2-polynomials. Thus, we take the strategy based on FPT dualization again. As discussed
in Section 2.2, it is unclear whether FPT dualization of constant-degree F2-polynomials is feasible.
However, to show the direction from a PPRG to hardness of learning based on the argument in
Section 2.1, the type of functions we need to dualize is restrictive, i.e., composite functions of the
original pseudorandom generator G (in the GGM construction). We apply this observation to avoid
the obstacle involved in the dualization of general constant-degree F2-polynomials.

The outline follows the argument in Section 2.1. Let G′ be the collection of PPRGs obtained by
applying G c times to amplify the stretch. We create the sample set from G′ and a pseudorandom
string y = G′(x), where each example corresponds to the dual of the function computing each bit
of G′. Intuitively, for each position i, we define the dual of the i-th bit of G′ as c concatenated
descriptions of G that are relevant for computing the i-th bit of G′. Then, we consider a target

13

function as a constant-degree F2-polynomial that computes the description of G′ by taking the
composition of the given descriptions of G and then applies the random seed x, where we regard
this x to be hardwired by another constant-degree F2-polynomial given x as the input. We regard
the latter F2-polynomial as the sampling algorithm for the target distribution. Consequently, we
can prevent the dependence of c and the degree d of G′ on the exponent of the input size and the
sample complexity in learning. By contrast, c affects the exponent of the stretch of G′. Thus, based
on the similar argument as in Section 2.1, we can show the average-case hardness of learning by
selecting sufficiently large c. We will present the details in Section 5.2.

Organization of The Paper

The remainder of this paper is organized as follows. In Section 3, we present preliminaries for formal
arguments. In Section 4, we introduce FPT dualization and show Theorems 1 and 2 by proving the
meta-theorem. In Section 5, we present the formal proofs of Theorems 3 and 4. In Section 6, we
verify Corollary 1. In Appendix A, we show the impossibility of dualization of NC0.

3 Preliminaries

For each n ∈ N, let [n] := {1, . . . , n}. For any x ∈ {0, 1}∗, let wt(x) denote the Hamming weight of
x. For any x ∈ {0, 1}n and i ∈ [n], let xi denote the i-th bit of x. For any x ∈ {0, 1}n and i, j ∈ [n]
with i < j, let x[i,j] = xi ◦ xi+1 ◦ · · · ◦ xj . For any f : {0, 1}n → {0, 1} and any k ∈ N with k ≤ n, we
say that f is k-junta if f depends on only at most k out of n coordinates in the input. We say that
a multi-output function f : {0, 1}n → {0, 1}m has locality k if each output bit of f is computed by a
k-junta. For any m ∈ N, we define a symmetric function Modm : {0, 1}∗ → {0, 1} as Modm(x) = 1
iff x ≡ 0 mod m.

We use the notation negl to represent some negligible function, i.e., for any polynomial p and
sufficiently large n ∈ N, it holds that negl(n) < 1/p(n). We also use the notation poly to refer to
some polynomial.

For a distribution D, we use the notation x← D to denote random sampling x according to D.
For a finite set S, we use the notation x ←u S to denote the uniform sampling from S. For each
n ∈ N, let Un denote the uniform distribution over {0, 1}n. In this paper, we abuse the notation
for distribution to refer to a random variable selected according to the same distribution. For two
distributions D1 and D2, we let D1 ≡s D2 denote that D1 and D2 are statistically indistinguishable,
i.e., for any Boolean-valued function f , it holds that |Pr [f(D1) = 1]− Pr [f(D2) = 1] | ≤ negl(n).

For any n, d ∈ N with d ≤ n, let
(
n
≤d
)

=
∑d

i=0

(
n
i

)
= O(nd). We use the following lemma.

Lemma 1 ([BHL12, Claim 2.4]). For any β ∈ (0, 1), there exists a constant γ ∈ (0, 1) such that for
any m, d ∈ N and for any sufficiently large n ∈ N,

(
m
≤d
)
≤ β ·

(
n
≤d
)

implies m ≤ n(1− γ/d).

Let C = {Cn}n∈N be an arbitrary class of functions (i.e., a complexity class), where Cn ⊆
{f : {0, 1}n → {0, 1}} for each n ∈ N. When we discuss the computability in C in this paper, we
implicitly assume its uniformity, i.e., we say that a family of multi-output functions f = {fn}n∈N,
where f : {0, 1}n → {0, 1}m(n), is computable in C if there exists a polynomial-time algorithm A
such that for any n ∈ N and i ∈ [m(n)], the algorithm A(1n, i) outputs the description of a function
gi ∈ Cn such that gi(x) is the i-th bit of fn(x) for any input x ∈ {0, 1}n. Let NC0 (resp. ⊕-NC0) be
the complexity class of constant-depth circuits (resp. constant-depth circuits in which the top-most
gate can be a ⊕-gate with unbounded fan-in).

14

3.1 Boolean Functions and Representations

In this paper, we consider a distribution on functions samplable in low complexity. In such cases, the
choice of binary encodings of the functions may affect the results because the translation between
two different representations may be infeasible in low complexity. Thus, we specify the binary
representations for concept classes in a natural manner as follows.

3.1.1 F2-polynomials

Any Boolean-valued function f : {0, 1}n → {0, 1} has a unique representation as a polynomial in
F2 obtained by expanding f(x) =

∑
a∈Fn2

f(a)1l(x = a) =
∑

a∈Fn2
f(a)

∏
i∈[n](xi + ai + 1) under

operations of F2.
For each S ⊆ [n] and x ∈ Fn2 , let xS =

∏
i∈S xi. For each F2-polynomial p : Fn2 → Fn and

S ⊆ [n], we use the notation pS to refer to the coefficient of p on S, i.e., p(x) =
∑

S pSx
S . We define

the degree of an F2-polynomial p as the maximum number d such that there exists a subset S of
coordinates such that |S| = d and pS = 1. Then, we specify the binary representation of degree-d
F2-polynomials naturally by a string of length

(
n
≤d
)

concatenating all coefficients on S with |S| ≤ d
in some canonical order.

The following lemma plays a key role in the proof of Theorem 3.

Lemma 2 ([BHL12, Lemma 1.4]). For any n,m ∈ N and any 2m distinct points x1, . . . , x2m ∈ Fn2 ,
the following set is a linear subspace of F2m

2 and the dimension is at least
(
m
≤d
)
:{

vp ∈ F2m

2 : p is a degree-d F2-polynomial and vpi = p(xi) for each i ∈ [2m]
}
.

3.1.2 Fourier Representations

When we consider the Fourier representation of Boolean functions, we regard any Boolean-valued
function f : {0, 1}n → {0, 1} as a function mapping from {0, 1}n to {−1, 1} by considering (−1)f(x).
For each α ∈ {0, 1}n, we define a function χα : {0, 1}n → {−1, 1} as χα(x) = (−1)〈x,α〉, where 〈·, ·〉
denotes the inner product in Fn2 . Then, any Boolean function f : {0, 1}n → {−1, 1} has a unique

representation of the form f(x) =
∑

S⊆[n] f̂(α)χα(x), where f̂(α) = Ex←u{0,1}n [f(x)χα(x)] and is
called a Fourier coefficient of f on α. For further background on Fourier analysis, refer to the
textbook by O’Donnell [ODo14].

For any function f : {0, 1}n → {−1, 1}, the Fourier sparsity of f is defined as |{S ⊆ [n] : f̂(S) 6=
0}|. For any s ∈ N and any function f of Fourier sparsity s, each Fourier coefficient f̂(α) takes the
form of Mα/2

dlog se, where Mα ∈ {−2dlog se, . . . , 0, . . . , 2dlog se} [GOSSW11; ODo14, Exercise 3.32].
Thus, we assume that each n-input function f of Fourier sparsity s is represented by an O(ns log s)-
bit string, where each term in f is represented by a tuple of dlog se+1 bits indicating the coefficient
(i.e., Mα above) and n bits indicating the coordinates that are contained in the term (i.e., α above).
For instance, f(x1, . . . , xn) = x1 ∨ x2 is 4 Fourier-sparse function and represented in this form as
((−2, 0n), (2, 10n−1), (2, 010n−2), (2, 110n−2)).

3.1.3 Decision Trees and Extensions

A decision tree (DT) is a representation of Boolean functions and is defined as a rooted binary tree
in which the internal nodes are labeled by a variable xi, and the leaves are labeled by {0, 1}. For
an n-input DT T and input x ∈ {0, 1}n, the value of T (x) is determined as follows: T queries the
value in x according to the label at the root, and if the answer is true (resp. false), then T looks at
the right (resp. left) subtree and repeats the same process for the subtree. T repeats this until it

15

reaches some leaf and then outputs the binary label of the reached leaf. We define the depth of DT
as the maximum length of a path from the root to the leaves.

For any (family of) symmetric function f (e.g., OR and Modm), we define an f -decision tree
(f -DT) in the same manner as above except that each internal node is labeled by the query of the
form f(xi1 , . . . , xik) for some k ∈ [n] and {i1, . . . , ik} ⊆ [n] (instead of xi).

Without loss of generality, we can assume that the number of internal nodes of any depth-d
f -DT is exactly 2d − 1 by adding dummy nodes, where nothing is queried, and a configuration
automatically proceeds to the false subtree. We also assume a standard canonical ordering in
2d − 1 nodes (root to leaves) and 2d leaves (left to right). Then, for any (family of) symmetric
function f , we naturally specify the binary representation of n-input f -decision trees of depth f as
a (2d− 1) · n+ 2d-bit string consisting of 2d− 1 strings in {0, 1}n that represent the sets of relevant
coordinates in [n] for 2d − 1 internal nodes and 2d binary labels on leaves.

3.2 Learning

We define a concept class as a subset of Boolean-valued functions. For any concept class C and
n ∈ N, we use the notation Cn to represent a subset of C restricted to the input size n, i.e.,
Cn = C ∩ {f : {0, 1}n → {0, 1}}. We also define a parameterized class C = {C k}k∈N as a family
of concept classes such that C k ⊆ C k+1 for each k ∈ N. Note that we often use a subscript and a
superscript to refer to input size and a parameter, respectively.

Following the study by Blum, Furst, Kearns, and Lipton [BFKL94], we mainly discuss the
average-case learnability based on the following prediction model. Note that the prediction model
has the same capability as the standard PAC learning model with no assumption on the hypothesis
class [HKLW88]. For convenience, we regard the time bound of a learning algorithm as a function
in the input length of a target function (i.e., the example size) instead of a function in the input
length of learning algorithms.

Definition 5 (average-case learning). Let C be a concept class. Let D = {Dn}n∈N and F =
{Fn}n∈N be families of distributions, where Dn is a distribution on {0, 1}n and Fn is a distribution
on Cn. For any functions t,m : N→ N and γ : N→ (0, 1/2), we say that C is (t,m, γ)-learnable on
average with respect to D and F if there exists a randomized algorithm L such that for all sufficiently
large n ∈ N,

Pr
L,f,x(1),...,x(m(n)),xc

[
L((x(1), f(x(1))), . . . , (x(m(n)), f(x(m(n)))), xc) outputs f(xc) in time t(n)

]
≥ 1

2
+γ(n),

where x(1), . . . , x(m(n)), xc ← Dn and f ← Fn.
We refer to D (resp. F) as an example (resp. a target) distribution. We also refer to f , xc, and

γ above as a target function, a challenge, and an advantage, respectively.

Without loss of generality, we ignore the cases in which m(n) > t(n). Next, we define the key
notion of this work, i.e., FPT sample complexity.

Definition 6 (FPT samples). For c ∈ N, let k1, . . . , kc be parameters on a concept class C and
classes of example distributions and target distributions. For any functions t : N → N and γ : N →
(0, 1/2), we say that C is (t, γ)-learnable on average with (k1, . . . , kc)-FPT samples if there exists
a function m(n, k1, . . . , kc) = f(k1, . . . , kc) · nO(1) for some f : Nc → N such that for any choice of
k1, . . . , kc ∈ N and any choice of an example distribution D and target distribution F that satisfy
the settings of the parameters, C is (t,mk1,...,kc , γ)-learnable on average with respect to D and F ,
where mk1,...,kc(n) := m(n, k1, . . . , kc).

16

We define distributions on example distributions as example distributions samplable with shared
randomness to introduce the average-case variant of distribution specifc learning.

Definition 7 (samplable with shared randomness). We say that an example distribution is sam-
plable with shared randomness if there exists a polynomial-time sampling algorithm S such that for
any example size n ∈ N, examples in {0, 1}n are selected identically and independently according to
S(Upoly(n); r), where r is an auxiliary random string selected uniformly at random from {0, 1}poly(n)

at the initiation and shared through sampling processes.

Note that learning on example distribution samplable with shared randomness is the notion
sandwiched between distribution-free learning and distribution-specific learning in the following
sense. Any distribution-free learner that succeeds on all (unknown) example distributions also
succeeds on any example distribution samplable with shared randomness regardless of the choice
of shared randomness. In addition, if there exists a learner that succeeds on D for each example
distribution D samplable with shared randomness, then there exists a distribution-specific learner
that succeeds on D′ for each samplable example distribution D′.

We also discuss another formulation of learning, which was introduced explicitly by Vadhan
[Vad17].

Definition 8 (RRHS-refutation). Let C be a concept class, D be an example distribution, and F
be a target distribution on C . For functions t,m : {0, 1}n → N and γ : N→ (0, 1/2), we say that C
is (t,m, γ)-random-right-hand-side-refutable (RRHS-refutable) on average with respect to D and F
if there exists a randomized t(n)-time algorithm A such that for any n ∈ N,

Pr
A,x,f

[
A((x(1), f(x(1))), . . . , (x(m(n)), f(x(m(n))))) = 1

]
− Pr
A,x,b

[
A((x(1), b(1)), . . . , (x(m(n)), b(m(n)))) = 1

]
≥ γ(n),

where f ← Fn, x(i) ← Dn, and b(i) ←u {0, 1} for each i ∈ [m(n)].

Vadhan [Vad17] observed that RRHS-refutability is equivalent to learnability. In this work, we
use one direction from the hardness of learning to the hardness of RRHS-refuting, which follows
from Yao’s next-bit generator [Yao82].

Theorem 5 ([Yao82; Vad17]). Let m : N → N and γ : N → (0, 1/2) be any polynomial-time com-
putable functions. Let D be an arbitrary example distribution and F be an arbitrary target distribu-
tion on a concept class C . Then, there exists a polynomial q such that for any time-bound function
t(n), if C is not (t(n),m(n), γ(n))-learnable on average with respect to D and F , then C is not
(t(n)/q(n),m(n),m(n)γ(n))-RRHS-refutable on average with respect to D and F .

We introduce the following useful fact, which follows from the XOR lemma. For the formal
argument, see the work by Nanashima [Nan21].

Fact 1. For any polynomial m⊕, p, there exist polynomials m, `, q and a randomized algorithm
Boost such that for any example distribution Dex and any samplable target distribution Dtarg on
a concept class C , the following hold.

• ` is determined by only p (i.e., independent of m⊕).

• Boost is given m(n) samples and a challenge according to Dex and Dtarg with a description
of a randomized algorithm L⊕ and outputs a prediction for the challenge.

17

• We define a concept class C⊕ by C⊕n = C⊕n′`(n′), where n′ is the maximum integer satisfying

n′`(n′) ≤ n and

C⊕n`(n) =

f(x(1) ◦ · · · ◦ x(`(n))) :=
⊕

i,j∈[`(n)]

f (i)(x(j))

∣∣∣∣∣∣f (i) ∈ Cn, x
(j) ∈ {0, 1}n

 .

Let D⊕ex and D⊕targ be families of distributions, where (D⊕ex)n and (D⊕targ)n are the distributions

of x⊕ := x(1) ◦ · · · ◦ x(`(n′)) and f⊕(x⊕) :=
⊕

i,j f
(i)(x(j)) for x(1), . . . , x(`(n′)) ← (Dex)n′

and f (1), . . . , f (`(n′)) ← (Dtarg)n′, respectively (where n′ is the maximum integer satisfying
n′`(n′) ≤ n). If L⊕ (t(n),m⊕(n), 1/p⊕(n))-learns C⊕ on average with respect D⊕ex and D⊕targ
for some polynomial p⊕, then Boost (t(n`(n))q(n),m(n), 1/2− 1/p(n))-learns C on average
with respect to Dex and Dtarg for any sufficiently large n.

3.3 Pseudorandom Generator

We define a pseudorandom generator that stretches a short random seed to a long pseudorandom
string indistinguishable from a random string by time-bounded adversaries. For convenience, in
this paper, we regard the time-bound of adversaries as a function in the input length of a generator
(i.e., the length of the hidden random seed) instead of a function in the input length of adversaries.

Definition 9 (pseudorandom generator). Let t : N → N be any time-bound function. We say
that a family G = {Gn}n∈N, where Gn : {0, 1}n → {0, 1}`(n) for some function ` : N → N, is an
(infinitely often) pseudorandom generator (PRG) against t(n)-time adversaries if `(n) > n and for
any randomized t(n)-time algorithm A, there exist infinitely many n ∈ N such that∣∣∣∣ Pr

A,Un
[A(1n, Gn(Un)) = 1]− Pr

A,U`(n)
[A(1n, U`(n)) = 1]

∣∣∣∣ ≤ negl(n).

In addition, we say that a PRG G is a polynomial-stretch PRG (PPRG) if `(n) > n1+ε holds for
some constant ε > 0.

For any polynomial p(n), we say that G is a weak PRG with indistinguishable parameter 1/p(n)
against t(n)-time adversaries if `(n) > n and for any randomized t(n)-time algorithm A, there exist
infinitely many n ∈ N such that∣∣Pr[A(1n, Gn(Un)) = 1]− Pr[A(1n, U`(n)) = 1]

∣∣ ≤ 1/p(n).

We usually omit the subscript n from the notation above. Instead, we use the notation Gi for
i ∈ [n] to refer to the function computing the i-th bit of G. We also often omit 1n from the input
to adversaries.

Note that any generator in NC0 has a constant locality because any depth-d circuit only depends
on at most 2d coordinates of the input.

Remark 1. In this paper, we mainly discuss the equivalence between learnability for all input sizes
as in Section 3.2 and PPRGs with infinitely often security as above. However, our results are
easily extended to the equivalence between learnability for infinitely many input sizes and PPRGs
with sufficiently large security based on the following observation. In reductions from adversaries to
learners (resp. from learners to adversaries) we discuss in this paper, it is not hard to verify that
each seed length (resp. input size) n is mapped some distinct interval In on input sizes (resp. seed
lengths) of size poly(n) such that ∪n∈NIn = N.

18

We also extend the definition above to a collection of pseudorandom generators.

Definition 10 (a collection of PRGs). We say that a family G = {Gn,z}n∈N,z∈{0,1}poly(n), where

Gn,z : {0, 1}n → {0, 1}`(n) for some function ` : N → N, is a collection of PRGs against t(n)-time
adversaries if (i) `(n) > n, (ii) for any (n, z), the binary representation8 of Gn,z is computable from
(1n, z) in time poly(n), and (iii) for any randomized t(n)-time algorithm A, there exist infinitely
many n ∈ N such that∣∣∣∣∣ Pr

z←u{0,1}poly(n),A,Un
[A(Gn,z, Gn,z(Un)) = 1]− Pr

z←u{0,1}poly(n),A,U`(n)
[A(Gn,z, U`(n)) = 1]

∣∣∣∣∣ ≤ negl(n),

where the input Gn,z refers to the binary representation of Gn,z. Moreover, if `(n) > n1+ε holds for
some constant ε > 0, then we say that G is a collection of PPRGs.

We also define a collection of weak PRGs in the same manner as Definition 9.

We often omit the subscripts n and z from the notation above and refer to a choice of z as a
choice of G.

We introduce two useful theorems shown in earlier studies. The first theorem shows the way to
amplify the stretch of PPRG by applying the original PPRG repeatedly constant time.

Theorem 6 ([GGM86]). For any function G = {Gn}n∈N, where G : {0, 1}n → {0, 1}n1+ε
for some

constant ε > 0, and for any constants c ∈ [dε−1e] and d ∈ N, we define functions G(0,c) = {G(0,c)
n }n∈N

and G(d) = {G(d)
n }n∈N, where G(0,c) : {0, 1}n → {0, 1}n1+cε

and G(d) : {0, 1}n → {0, 1}nd+1
, induc-

tively as follows:

G(0,1)(x) = G(x)

G(0,c)
n (x) = Gn(G(0,c−1)

n (x)[1,n]) ◦Gn(G(0,c−1)
n (x)[n+1,2n]) ◦ · · · ◦Gn(G(0,c−1)

n (x)[n1+(c−1)ε−n+1,n1+(c−1)ε])

G(1)(x) = G(0,dε−1e)
n (x)[1,n2]

G(d)
n (x) = G(1)

n (G(d−1)
n (x)[1,n]) ◦G(1)

n (G(d−1)
n (x)[n+1,2n]) ◦ · · · ◦G(1)

n (G(d−1)
n (x)[nd−n+1,nd]).

For each d ∈ N, there exists a polynomial q such that for any time-bound function t, if G is a
PPRG against t(n)-time adversaries, then G(d) is also a PPRG against t(n)/q(n)-time adversaries.
Furthermore, this also holds for a collection of PRGs.

The second theorem shows that any weak PPRG with indistinguishable parameter n−Θ(1) can
be converted into a PPRG (with negligible indistinguishable parameter) without loss of constant
locality.

Theorem 7 ([AK19]). For any constant d ∈ N, a > 0, and ε, ε′ > 0, there exist d′ ∈ N, a polynomial
q, and δ ∈ (0, 1) such that any collection of weak PPRGs of stretch n1+ε and indistinguishable
parameter 1/na computable in depth-d NC0 against t(n)-time adversaries can be converted into a
collection of PPRGs of stretch n1+ε′ in depth-d′ NC0 against t(nδ)/q(n)-time adversaries.

4 Learning vs. PPRGs in Constant-Parallel Time

In this section, we show Theorems 1 and 2.

8Specifically, when we discuss a collection of PPRGs in a class C of Boolean functions, this is the binary represen-
tation for C.

19

Theorem 1. For any a > 1, the following are equivalent:

1. There exists a collection of PPRGs in NC0.

2. c-sparse F2-polynomials are not polynomial-time learnable on average with advantage n−a

with respect to a c′-sparse example distribution samplable with shared randomness a target
distribution samplable by a depth-d NC0 circuit with (c, c′, d)-FPT samples.

3. c-Fourier-sparse functions are not polynomial-time learnable on average with advantage n−a

with respect to a c′-sparse example distribution samplable with shared randomness and a target
distribution samplable by a depth-d NC0 circuit with (c, c′, d)-FPT samples.

4. For any f ∈ {OR} ∪ {MODm : m ∈ N \ {1}}, degree-d f -decision trees are not polynomial-
time learnable on average with advantage n−a with respect to a c-sparse example distribution
samplable with shared randomness and a target distribution samplable by a depth-d′ NC0 circuit
with (d, c, d′)-FPT samples.

Theorem 2. For any a > 1, the following hold:

1. There exists a collection of PPRGs in O(1)-sparse F2-polynomials iff c-sparse F2-polynomials
are not polynomial-time learnable on average with advantage n−a with respect to an example
distribution samplable with shared randomness and a target distribution samplable by a c′-
sparse F2-polynomial with (c, c′)-FPT samples.

2. There exists a collection of PPRGs in O(1)-Fourier-sparse functions iff c-Fourier sparse func-
tions are not polynomial-time learnable on average with advantage n−a with respect to an
example distribution samplable with shared randomness and a target distribution samplable by
a c′-Fourier sparse functions with (c, c′)-FPT samples.

4.1 FPT Dualization and Junta-Sparse Condition

First, we review the key notions for showing Theorem 1.

Definition 4 (FPT dualizable). Let C k be a parameterized concept class. We say that C is FPT
dualizable if there exist a polynomial pdual : N → N, computable functions f1, f2 : N → N, and
polynomial-time computable mappings g : N × {0, 1}∗ → C and h : N × C → {0, 1}∗ such that

for any k, n ∈ N, x ∈ {0, 1}n, and f ∈ C k
n , the following hold: (i) g(k, x) ∈ C

f2(k)
f1(k)·pdual(n), (ii)

h(k, f) ∈ {0, 1}f1(k)·pdual(n), and (iii) (g(k, x))(h(k, f)) = f(x).
Moreover, for parameterized classes C k and D`, we say that C is FPT dualizable in D if (i) C

is FPT dualizable and (ii) there exists a computable function l : N→ N such that for any k ∈ N, it
holds that g(k, ·) and h(k, ·) are computable in D l(k).

We use the notation x∗(k) or x∗ (resp. f∗(k) or f∗) to refer to g(k, x) (resp. h(k, f)) in the
definition above. For example, the third condition above can be rewritten as x∗(f∗) = f(x) for any
f ∈ C and x ∈ {0, 1}∗.

Definition 5 (junta-sparse condition). Let C k be an FPT dualizable class. We say that C satisfies
the junta-sparse condition if the following hold:

1. There exist computable functions g, h : N → N such that for any k ∈ N and any k-junta f , it
holds that f ∈ C g(k) and wt(f∗) ≤ h(k).

2. There exists a computable function g : N×N→ N such that for any c, k ∈ N and any x ∈ {0, 1}∗
with wt(x) ≤ c, it holds that x∗(k) is g(c, k)-junta.

20

4.2 Meta-Theorems

We present the meta-theorems for Theorem 1.

Theorem 8 (PPRG in NC0 ⇒ hardness of learning). Let p(n) be an arbitrary polynomial and C k

be a parameterized class that is FPT dualizable in NC0 (parameterized by depth) and satisfies the
junta-sparse condition. There exist a polynomial q(n) and a constant ε > 0 such that for any time-
bound function t(n), if there exists a collection of PPRGs in NC0 against t(n)-time adversaries, then
C is not (t(nε)/q(n), 1/p(n))-learnable on average with respect to a c-sparse example distribution
samplable with shared randomness and a target distribution samplable by a depth-d NC0 circuit with
(k, c, d)-FPT samples.

Proof. Let G be a collection of PPRGs with locality d0, and let G be its generator, i.e., G(1n; r)
outputs a description of G in polynomial time for a random seed r ∈ {0, 1}poly(n). Let f1, f2, pdual
be the functions in Definition 3 for the FPT dualization of C . Then, we select a constant ε ∈ (0, 1]
such that (log n · pdual(n))ε ≤ n, i.e., log n · pdual(n) ≤ n1/ε.

We fix an FPT sample-complexity function mk,c,d(n) = fm(k, c, d) · pm(n) arbitrarily, where
fm : N × N × N → N, and pm is a polynomial. Then, we select a sufficiently large D ∈ N such
that nD ≥ p(log n · pdual(n)) · pm(log n · pdual(n)). We construct a collection of PPRGs G(D) in
Theorem 6 based on G. It is easily verified that the locality of G(D) is at most some constant D′,
i.e., each output of G(D) is computable by a D′-junta function. By the junta-sparse condition, any

D′-junta function is contained in C k for some k ∈ N. The description of G
(D)
i for each i ∈ [nD+1]

as a function in C k is computable in polynomial time by using G.
Now, we introduce the hard problem for learning C . We specify the example distribution Dex by

the following sampling algorithm S using shared randomness. On input 1n and shared randomness
r ∈ {0, 1}poly(n), the sampling algorithm S generates the description of G by executing G(1n; r).
Then, S selects i←u [nD+1] by an (unshared) random seed, and computes f ∈ C k corresponding to

the D′-junta function G
(D)
i . Finally, S outputs the dual f∗ ∈ {0, 1}f1(k)·pdual(n) of f as an example.

We also define the target distribution Dtarg as the distribution of x∗ ∈ C
f2(k)
f1(k)·pdual(n) for randomly

selected x←u {0, 1}n.
By the junta-sparse condition, Dex is c-sparse for some constant c ∈ N. Since C is FPT dualizable

in NC0, the target distribution Dtarg is samplable by a depth-d NC0 circuit for some constant d ∈ N.
Therefore, if we assume that C is (t(nε)/q(n), 1/p(n))-learnable on average with sample complexity
mk,c,d for contradiction, there exists an algorithm that succeeds in (t(nε)/q(n),mk,c,d(n), 1/p(n))-
learning C k on average with respect to Dex and Dtarg.

By selecting sufficiently large q(n), we will show that for any time-bound function T , any
learner L that (T (n),mk,c,d(n), 1/p(n))-learns C k (on average with respect to Dex and Dtarg) can be
converted into a T (n1/ε) ·q(n1/ε)-time adversary that breaks G. Since (t((n1/ε)ε)/q(n1/ε)) ·q(n1/ε) =
t(n), any algorithm that succeeds in (t(nε)/q(n),mk,c,d(n), 1/p(n))-learning C k yields a t(n)-time
adversary G. This contradicts that G is a PRG against t(n)-time adversaries.

First, we construct an adversary A for G(D) as follows: On input w ∈ {0, 1}nD+1
and the descrip-

tion of G(D) (note that w is a pseudorandom string generated by G(D) or a truly random string),
A simulates the example distribution Dex by selecting a random index i←u [nD+1], computing the

D′-junta function corresponding to G
(D)
i and its dual (for simplicity, we let G∗i denote this dual

string of length N := f1(k) ·pdual(n)), and generating a sample (G∗i , wi). After generating mk,c,d(N)
samples, A also generates a challenge G∗ic for ic ←u [nD+1] and feeds it to L. If L outputs some
prediction b ∈ {0, 1}, then A checks whether b = wic . If so, A outputs 1; otherwise, it outputs 0.
We remark that the running time of A is bounded above by poly(n) · T (N).

21

In the case in which w ← G(D)(x) for x ←u {0, 1}n, we have wi = G
(D)
i (x) = x∗(G∗i) for all

i. Therefore, the simulated samples are valid for the target function x∗. Furthermore, it is not
hard to verify that A executes L on the example distribution Dex and the target distribution Dtarg.
Therefore, we have

Pr
A,Un,G

[A(G(D), G(D)(Un)) = 1] = Pr
L,Dex,Dtarg

[L succeeds in learning] ≥ 1

2
+

1

p(N)
.

By contrast, in the case in which w ←u {0, 1}n
D+1

, the labels in the simulated samples are
selected truly at random. Because any learning algorithm cannot guess a random label not contained
in the given samples better than a random guess, i.e., with success probability 1/2, we have

Pr
A,Un,G

[A(G(D), UnD+1)) = 1] = Pr
L,Dex

[L succeeds in learning]

≤ 1

2
·
(

1−
mk,c,d(N)

nD+1

)
+ 1 ·

mk,c,d(N)

nD+1

=
1

2
+
mk,c,d(N)

2nD+1

≤ 1

2
+

fm(k, c, d) · pm(N)

2n · p(log n · pdual(n)) · pm(log n · pdual(n))

Therefore, for sufficiently large n,

Pr
A,Un,G

[A(G(D), UnD+1)) = 1] ≤ 1

2
+
fm(k, c, d) · pm(N)

2n · p(N) · pm(N)

≤ 1

2
+

1

2p(N)

and the advantage of A is at least(
1

2
+

1

p(N)

)
−
(

1

2
+

1

2p(N)

)
≥ 1

2p(N)
≥ 1

2p(n · pdual(n))
.

Thus, A successfully breaks G(D).
By Theorem 6, the adversary A for G(D) can be converted into an adversary A′ for G such

that the running time of A is bounded above by poly(n) · T (N) ≤ q(n1/ε) · T (log n · pdual(n)) ≤
q(n1/ε) · T (n1/ε) for a sufficiently large polynomial q.

Next, we prove the opposite direction.

Theorem 9 (hardness of learning ⇒ PPRG in NC0). Let p(n) = nΘ(1) be a polynomial, and let C k

be a parameterized class that is FPT dualizable in NC0 (parameterized by depth). Assume that for
any k ∈ N and sufficiently large n ∈ N, the length of the representation for C k is at most p(n)1−ε

for some constant ε ∈ (0, 1). Then, there exist a polynomial q(n) and a constant δ > 0 such that
for any time-bound function t(n), if C is not (t(n), 1/p(n))-learnable on average with respect to a
c-sparse example distribution samplable with shared randomness and a target distribution samplable
by a depth-d NC0 circuit with (k, c, d)-FPT samples, then there exists a collection of PPRGs in NC0

against t(nδ)/q(n)-time adversaries.

Proof. We use the hardness assumption for the sample complexity function mk,c,d(n) = m(n) :=
p(n)1−ε/2 (i.e., independent of parameters). Then, there exist constants k, c, d ∈ N, an example

22

distribution Dex, and a target distribution Dtarg for the hard problem of learning C k, where Dex is
c-sparse and samplable with shared randomness, and Dtarg is samplable by a depth-d NC0 circuit.
We remark that the length of the representation for C is at most p(n)1−ε. Since Dtarg is samplable
by a depth-d NC0 circuit, each bit of such a representation is determined by a constant number of
random seeds for Dtarg. Therefore, without loss of generality, we assume that the length of random
bits for Dtarg is at most `(n) = p(n)1−3ε/4(= nΘ(1)) for sufficiently large n ∈ N.

We construct a collection of weak PPRGs in NC0, where the indistinguishable parameter is
p(`−1(n))−ε/2 = n−Θ(1). Then, we apply Theorem 7 to obtain a collection of (standard) PPRGs in
NC0.

By Theorem 5, the hardness assumption implies that C k is not RRHS-refutable on aver-
age with respect to Dex and Dtarg with m(n) samples and advantage p(n)−ε/2. Now, we intro-
duce the generator G of PPRGs. On input 1`(n), the generator G first generates m(n) examples
x(1), . . . , x(m(n)) ← Dex. Since Dex is samplable with shared randomness, G can perfectly simulate
Dex in polynomial time. Then, G computes their duals (x(1))∗, . . . , (x(m(n)))∗, where the input to
each (x(m(n)))∗ is the dual of the target function selected according to Dtarg. By the junta-sparse
condition, these duals (x(1))∗, . . . , (x(m(n)))∗ are O(1)-junta except with negligible probability when
the dual of a target function is given as input. Since Dtarg is samplable by a depth-d NC0 circuit
whose input is the random seed r ∈ {0, 1}`(n), and the dual of the target function is computable in
NC0, by considering the composition of (x(1))∗, . . . , (x(m(n)))∗, the NC0 circuit computing the dual,
and the NC0 circuit sampling the target function, we make m(n) NC0 circuits G1(r), . . . , Gm(n)(r),

where each Gi corresponds to (x(i))∗. Finally, G outputs G(r) := G1(r) ◦ · · · ◦ Gm(n)(r) as the
description of the NC0-computable generator.

We remark that the above-mentioned generator is only defined for input size `(n). This can be
converted into a generator defined for all input sizes n by the standard technique, i.e., for a given
n-bit random seed, the generator uses only `(n′) bits, where n′ is the maximum integer such that
`(n′) ≤ n (for details, refer to the textbook by Goldreich [Gol06]). Let G denote the generator.
Then, the length N of the output of G is at least

N = m(n′) = p(n′)1−ε/2 = `(n′)1+ ε
4−3ε > `(n′ + 1)1+ε′ > n1+ε′

for some ε′ ∈ (0, ε
4−3ε) and any sufficiently large n. Thus, G has polynomial-stretch.

Next, we show that G satisfies the security condition of a weak pseudorandom generator by
contradiction. We assume that there exists a T (n)-time adversary A such that∣∣∣∣ Pr

G,A,Un
[A(G,G(Un)) = 1]− Pr

G,A,UN
[A(G,UN) = 1]

∣∣∣∣ > 1/p(`−1(n))ε/2. (1)

Now, we construct a refuting algorithmR for C k as follows. On input (x(1), b(1)), . . . , (x(m(n)), b(m(n))),
the algorithm R constructs the generator G in the same way as G, i.e., R computes (x(i))∗ and the
composed function Gi for each i ∈ [m(n)]. Then, R executes A(G, b(1) ◦ · · · ◦ b(m(n))) and returns
the same answer. We remark that each x(i) is selected according to Dex. Thus, R correctly sim-
ulates the distribution of the generator G. In the case in which f ← Dtarg and b(i) = f(x(i))
for each i, we have b(i) = f(x(i)) = (x(i))∗(f∗) = Gi(r), where r is the seed for selecting f , and
the distribution of b(1) ◦ · · · ◦ b(m(n)) corresponds to G(U`(n)). By contrast, in the case in which

b(i) ←u {0, 1} for each i, the distribution of b(1) ◦ · · · ◦ b(m(n)) corresponds to a uniform distribution.
Therefore, by (1), R refutes C k on Dex and Dtarg with m(n) samples and advantage grater than
1/p(`−1(`(n)))ε/2 = p(n)−ε/2.

By Theorem 5, the refuter R can be converted to a learner with advantage 1/p(n). By selecting
a sufficiently large polynomial q(n) and a sufficiently large constant a > 1, the running time of the

23

learner is bounded above by q(n) ·T (`(n)) ≤ q(n) ·T (na). Thus, by letting δ = 1/a, any t(nδ)/q(n)-
time adversary for G is converted into a learning algorithm that works in time q(n) · t(nδ·a)/q(na) ≤
t(n) with advantage 1/p(n), which is a contradiction.

4.3 FPT Dualizable Classes with Junta-Sparse Condition

In this section, we present FPT dualization in NC0 with the junta-sparse condition for c-sparse
F2-polynomials, c-Fourier-sparse functions, and depth-d {OR,Modm}-decision trees. Then, we can
show Theorem 1 by applying Theorems 8 and 9 for all polynomial time-bounds t(n). To apply
Theorem 9, we leverage the fact that for any a > 0 and the parameter of the class, the length of
the binary representations of target functions is at most n1+a for sufficiently large input size n ∈ N.

4.3.1 c-Sparse F2-Polynomials

For each c-sparse F2-polynomial f = M1 + · · · + Mc, where each Mi represents a monomial, and
for each input x ∈ {0, 1}n, we define their duals as a binary string f∗ ∈ {0, 1}cn+c and a 2c-sparse
F2-polynomial x∗. For simplicity, we assume that f∗ is indexed by {0, · · · , n}× [c] instead of [cn+c].
Then, f∗ and x∗ is determined as follows.

f∗(i,j) =

{
1l(xi ∈Mj) if i ∈ [n]

1l(Mj ≡ 1) if i = 0

x∗(f∗) =
∑
j∈[c]

∏
i:xi=1

f∗(i,j) +
∑
j∈[c]

f∗(0,j).

The dualization above is trivially computable in NC0. The correctness is verified as follows:

x∗(f∗) =
∑
j∈[c]

∏
i:xi=1

f∗(i,j) +
∑
j∈[c]

f∗(0,j)

=
∑
j∈[c]

(∏
i:xi=1

1l(xi ∈Mj) + 1l(Mj ≡ 1)

)

=
∑
j∈[c]

Mj(x)

= f(x).

In addition, the junta-sparse condition is verified as follows:

Lemma 3. c-sparse F2-polynomials satisfy the junta-sparse condition by the FPT dualization in
NC0 above.

Proof. (1.) Any n-input k-junta function is represented as an n-input F2-polynomial of degree k and
sparsity 2k. It is not hard to verify that for any degree-k 2k-sparse F2-polynomial, the Hamming
weight of its dual f∗ is at most 2k · k.

(2.) For any n, c, c′ ∈ N and x ∈ {0, 1}n with wt(x) ≤ c′, the dual x∗c depends on only
c · wt(x) + c ≤ cc′ + c coordinates.

24

4.3.2 c-Fourier-Sparse Functions

For each x ∈ {0, 1}n and each c-Fourier-sparse function f = M12−dlog ceχα1 + · · · + Mc2
−dlog ceχαc ,

where Mi ∈ {−2dlog ce, . . . , 2dlog ce} and αi ∈ {0, 1}n for each i ∈ [c], we define their duals as a binary
string f∗ ∈ {0, 1}(dlog ce+n+1)c and a function x∗ of Fourier sparsity c′ := 2cdlog ce.

For each i ∈ [c], let bi ∈ {0, 1}dlog ce be the binary representation of the absolute value of
Mi. Then, f∗ consists of c triples of bi, αi, and bineg ∈ {0, 1}, where bineg = 1 iff Mi < 0.

We also specify x∗ as x∗ =
∑

(i,j)∈[c]×[dlog ce]Ni,j2
−dlog c′eχi,j + N ′i,j2

−dlog c′eχ′i,j , where Ni,j , N
′
i,j ∈

{−2dlog c′e, . . . , 2dlog c′e} and χ′i,j , χ
′
i,j : {0, 1}(dlog cen+1)c → {−1, 1} are determined as follows:

Ni,j = 2dlog c′e+j−1−dlog ce (≤ 2dlog c′e−1)

N ′i,j = −Ni,j = −2dlog c′e+j−1−dlog ce

χi,j(f
∗) = (−1)

bineg+
∑
k:xk=1(αi)k

χ′i,j(f
∗) = (−1)b

i
jχi,j(f

∗) = (−1)
bij+b

i
neg+

∑
k:xk=1(αi)k .

It is not hard to verify that the dualization above is computable in NC0. The correctness is verified
as follows:

x∗(f∗) =
∑

(i,j)∈[c]×[dlog ce]

Ni,j2
−dlog c′eχi,j(f

∗) +N ′i,j2
−dlog c′eχ′i,j(f

∗)

=
∑
i∈[c]

∑
j∈[dlog ce]

2j−1−dlog ce(−1)
bineg+

∑
k:xk=1(αi)k − 2j−1−dlog ce(−1)

bij+b
i
neg+

∑
k:xk=1(αi)k

=
∑
i∈[c]

(−1)
∑
k:xk=1(αi)k2−dlog ce(−1)b

i
neg

∑
j∈[dlog ce]

2j · (1− (−1)b
i
j)/2

=
∑
i∈[c]

(−1)〈x,αi〉2−dlog ce · (−1)b
i
neg

∑
j∈[dlog ce]

2j · bij

=
∑
i∈[c]

χαi(x) · 2−dlog ceMi

= f(x).

In addition, the junta-sparse condition is verified as follows:

Lemma 4. c-Fourier sparse functions satisfy the junta-sparse condition by the FPT dualization in
NC0 above.

Proof. (1.) Based on the unique Fourier representation, any n-input k-junta function is represented
as a degree-k function of Fourier sparsity at most 2k. It is not hard to verify that for any degree-k
2k-Fourier sparse function, the Hamming weight of its dual f∗ is at most 2k · (dlog 2ke + k + 1) =
2k · (2k + 1).

(2.) For any n, c, c′ ∈ N and x ∈ {0, 1}n with wt(x) ≤ c′, the dual x∗c depends on only
2cdlog ce · (2 + wt(x)) ≤ 2cdlog ce(2 + c′) coordinates.

4.3.3 Degree-d Modm-Decision Trees and OR-Decision Trees

In this subsection, we present the FPT dualization for Modm-DT that satisfies the junta-sparse
condition. Note that the case of OR-DT follows in the same way.

25

For each x ∈ {0, 1}n and depth-d Modm-DT T , we define their duals as a binary string T ∗ ∈
{0, 1}(2d−1)n+2d and a depth-(d+ 1) Modm-DT x∗. For simplicity, we assume that T ∗ consists of a

tuple t ∈ {0, 1}(2d−1)n and ` ∈ {0, 1}2d , and t is indexed by [2d − 1]× [n] instead of [(2d − 1)n]. Let
{j1, . . . , jc} = {j ∈ [n] : xj = 1}, where c := wt(x). Then, T ∗ (i.e., t and `) and x∗ are defined as
follows:

ti,j = 1l(xj is relevant to the query at node i)

`i = (the label at leaf i),

and for any i ∈ [2d+1 − 1] and j ∈ [2d+1],

(the query at node i in x∗) =

{
Modm(ti,j1 , . . . , ti,jc) i ≤ 2d − 1

Modm(`i−(2d−1)) i ≥ 2d

(the label at leaf j in x∗) = 1l(leaf j is the false subtree of its parent node).

The dualization above is computable in NC0. We also verify the correctness. On evaluating x∗(T ∗),
any answer to the query at node i ∈ [2d− 1] is consistent with the answer to the query at node i in
T (x) because

Modm(ti,j1 , . . . , ti,jc) = Modm(x1 ∧ ti,1, . . . , xn ∧ ti,n) = Modm(xki1
, . . . , xki·),

where
{ki1, . . . , ki·} = {k ∈ [n] : xk is relevant to the query at node i in T}.

For any i ∈ [2d+1−1]\[2d−1], the answer to the query at node i is Modm(`i−(2d−1)) = ¬`i−(2d−1)

for any m ≥ 2. Note that x∗ outputs 1 (i.e., true) iff the answer to the query at degree d + 1 is
false. Thus, x∗(T ∗) is consistent with T (x).

Furthermore, the junta-sparse condition is verified as follows:

Lemma 5. For any m ≥ 2, degree-d Modm-DT satisfies the junta-sparse condition by the FPT
dualization in NC0 above.

Proof. (1.) Any n-input k-junta function is represented as a degree-k Modm-DT, where each query
is represented as Modm(xi) = ¬xi for some i ∈ [n]. It is not hard to verify that the Hamming
weight of the dual of such a Modm-DT is at most (2d − 1) + 2d.

(2.) For any n, d, c ∈ N and x ∈ {0, 1}n with wt(x) ≤ c, the dual x∗d depends on only
(2d − 1) · wt(x) + 2d ≤ (2d − 1)c+ 2d coordinates.

4.4 Relaxed Hardness Assumption

In this section, we present the meta-theorem for Theorem 2. First, we introduce a natural condition
of parameterized concept classes.

Definition 11 (junta-composition condition). Let C k be a parameterized class. We say that C
satisfies the junta-composition condition if the following hold:

1. For any k, n′, n ∈ N with n′ ≤ n, it holds that C k
n′ ⊆ C k

n (i.e., paddable with dummy inputs).

2. There exists a computable g : N→ N such that any k-junta function is contained in C g(k) for
each k ∈ N.

26

3. There exists a computable g : N×N→ N such that for any k, k′, n, n′ ∈ N, f (1), . . . , f (n) ∈ C k
n′,

and f ′ ∈ C k′
n , the composite function f ′′ : {0, 1}n′ → {0, 1} defined as f ′′(x) = f ′(f (1)(x), . . . , f (n)(x))

is contained in C g(k,k′). In addition, the representation of f ′′ is computable from f (1), . . . , f (n),
and f ′ in polynomial time.

It is easily verified that c-sparse F2-polynomials and c-Fourier-sparse functions satisfy the junta-
composition condition.

Suppose that G is a weak PPRG of output length n1+ε, where each bit is computable in C k

satisfying the junta-composition condition. For the translation to a (standard) PPRG of output
length n1+ε′ in Theorem 7, we only need the following operations [for details, refer to App13; AK19]:
Let f (1), . . . , f (n1+ε) be the functions computing each bit of G. Then, the operations are either of

• f (i)(x) := f (i0)(f (i1)(x), . . . , f (in)(x)) for some i0 ∈ [n1+ε] and i1, . . . , in < i (for amplifying
the stretch);

• f (i)(x(1), . . . , x(t)) := f (i1)(x(1))⊕ · · · ⊕ f (it)(x(t)) for some t ∈ N and i1, . . . , it < i (for ampli-
fying the unpredictability); or

• f (i)(x(1), . . . , x(poly(n)), r) := g(f (i1)(x(1)), . . . , f (ipoly(n))(x(poly(n))), r) for some i1, . . . , ipoly(n) <

i, r ∈ {0, 1}poly(n), and some O(1)-junta function g [for applying the extractor presented in
AK19],

and the resulting PPRG is computable by f (i1), . . . , f (i
n1+ε

′) for some indices i1, . . . , in1+ε′ .

If the f (1), . . . , f (n1+ε) ∈ C k and C k satisfies the junta-composition condition, it is not hard to
verify that each f (i) is contained in C k′ for some k′ by induction. Therefore, we have the following
analog of Theorem 7.

Theorem 10 ([AK19]). Let C k be a parameterized class satisfying the junta-composition condition.
For any k ∈ N, a > 0, and ε, ε′ > 0, there exist k′ ∈ N (computable from k), a polynomial q, and
δ ∈ (0, 1) such that any collection of weak PPRGs in C k of stretch n1+ε and indistinguishable
parameter 1/na against t(n)-time adversaries can be converted into a collection of PPRGs in C k′

of stretch n1+ε′ against t(nδ)/q(n)-time adversaries.

Now, we present the meta-theorem for Theorem 2, where we only assume the FPT dualization
and the junta-composition condition.

Theorem 11 (PPRG in C ⇒ hardness of learning C). Let p(n) be an arbitrary polynomial, and
let C k be a parameterized class that is FPT dualizable in a parameterized class F ` and satisfies
the junta-composition condition. There exist a polynomial q(n) and a constant ε > 0 such that
for any time-bound function t(n), if there exist k ∈ N and a collection of PPRGs in C k against
t(n)-time adversaries, then C k is not (t(nε)/q(n), 1/p(n))-learnable on average with respect to an
example distribution samplable with shared randomness and an F `-samplable target distribution
with (k, `)-FPT samples.

Proof. (sketch.) The theorem follows in the same way as Theorem 8. The proof is outlined as
follows:

First, we assume a collection of PPRGs in C k for some k ∈ N. Then, for each FPT sample
complexity m, we amplify the stretch sufficiently by applying Theorem 10 so that any learning
algorithm with sample complexity m cannot read all the output bits of the generator (where we use
the junta-composition condition to apply Theorem 10). We remark that each bit of the generator
is computable in C k′ for some k′. Next, we specify the hard learning problem where the example

27

distribution Dex is the uniform distribution over the duals of the functions computing the generator,
and the target distribution Dtarg is the distribution of x∗k

′
for x ←u {0, 1}n. It is not hard to

verify that Dex is samplable with shared randomness. By FPT dualization for F `, this Dtarg is a
distribution on C k′′ for some k′′ ∈ N and F `-samplable for some ` ∈ N. Therefore, this is a valid
case for the hardness of learning, and any learner succeeds in learning on average with respect to
Dex and Dtarg with sample complexity m can be converted into the adversary for the collection of
PPRGs, as in the proof of Theorem 8. This is a contradiction.

Next, we show the opposite direction.

Theorem 12 (hardness of learning C ⇒ PPRG in C). Let p(n) = nΘ(1) be a polynomial and C k

be a parameterized class that is FPT dualizable in C k and satisfies the junta-composition condition.
Assume that for any k ∈ N and sufficiently large n ∈ N, the length of the representation for C k is
at most p(n)1−ε for some constant ε ∈ (0, 1). Then, there exists a polynomial q(n) and a constant
δ > 0 such that for any time-bound function t(n), if C k is not (t(n), 1/p(n))-learnable on average
with respect to an example distribution samplable with shared randomness and a C k′-samplable
target distribution with (k, k′)-FPT samples, then there exists a collection of PPRGs in C against
t(nδ)/q(n)-time adversaries.

Proof. (sketch.) The theorem follows in the same manner as Theorem 9. The proof is outlined as
follows:

First, we construct a collection of weak PPRGs in C k (for some k ∈ N) based on the hardness
assumption of learning. Then, we apply Theorem 10 to convert the weak PPRG into a standard
PPRG in C , where we use the junta-composition condition to apply Theorem 10. For the collection
of weak PPRGs, we apply the same construction as Theorem 9, i.e., each bit of the generator takes
the form of x∗ for some x ∈ {0, 1}∗, where x is an example selected according to the example
distribution in the hard learning problem (note that the difference with Theorem 9 is that x is not
always sparse in this case). By the FPT dualization in C k, each bit of the generator is computable
in C k for some k ∈ N when the description of the dual of a target function is given as the input.
Remember that a target function in the hard learning problem is samplable in C k′ for some k′ ∈ N,
and the dual of the target function is computable in C k′′ for some k′′ ∈ N. Therefore, by considering
the composite functions of these three types of functions, we can construct a generator whose input
is the random seed for selecting a target function. By the junta-composition condition, each bit of
the generator is computable in C k′′′ for some k′′′ ∈ N.

Theorem 2 holds by applying Theorems 11 and 12 for all polynomial time-bounds t(n).

5 Learning vs. PPRG in Constant-Degree Polynomials

We show Theorem 3 in Section 5.1 and Theorem 4 in Section 5.2.

Theorem 3. For any polynomial p(n), r(n), the following are equivalent:

1. There exists a PPRG in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with advantage 1/2 −
1/p(n) with respect to a uniform example distribution and a target distribution samplable by
a degree-d′ F2-polynomial using r(n)-bit random seeds with (d, d′)-FPT samples.

Theorem 4. For any polynomial p(n), r(n), the following are equivalent:

28

1. There exists a collection of PPRGs in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with advantage 1/2 −
1/p(n) with respect to an example distribution samplable with shared randomness and a target
distribution samplable by a degree-d′ F2-polynomial using r(n)-bit random seeds with (d, d′)-
FPT samples.

5.1 PPRG vs. Learning on Uniform Example Distribution

In this section, we show the equivalence between a PPRG in constant-degree F2-polynomials (i.e., ⊕-
NC0) and average-case hardness of learning constant-degree F2-polynomials with respect to the uni-
form example distribution and a target distribution samplable by constant-degree F2-polynomials.
First, we show the following key lemma.

Lemma 6. For any d ∈ N, let p : Fn2 → F2 denote a random degree-d F2-polynomial, i.e., each
coefficient of p is selected uniformly at random from {0, 1}. Let m(n) = 1/2 ·

(
n
≤d
)
. Then,(

(U (1)
n , p(U (1)

n)), . . . , (U (m(n))
n , p(U (m(n))

n))
)
≡s
(

(U (1)
n , U

(1)
1), . . . , (U (m(n))

n , U
(m(n))
1)

)
.

Proof. We identify
[(

n
≤d
)]

with {S ⊆ [n] : |S| ≤ d} in some canonical ordering. For ` ∈ N and

x(1), . . . , x(`) ∈ Fn2 , we define a matrix A[x(1), . . . , x(`)] ∈ F
`×(n≤d)
2 by A[x(1), . . . , x(`)]i,S =

∏
j∈S x

(i)
j

for each i ∈ [`] and S ⊆ [n] with |S| ≤ d.

We identify a degree-d F2-polynomial p with a string in F
(n≤d)
2 consisting of coefficients. Then, for

each x(1), . . . , x(m) ∈ Fn2 and each n-input degree-d F2 polynomial p, the vector [p(x(1)), . . . , p(x(m))]T

is represented as A[x(1), . . . , x(m)] · p.
Now, we assume that x(1), . . . , x(m) satisfies that A[x(1), . . . , x(m)] has full rank. Then, there

exists a full-rank matrix B ∈ Fm×m2 such that

I := [e1, . . . , em, ∗, . . . , ∗] = B ·A[x(1), . . . , x(m)],

where e1, . . . , em ∈ Fm2 , and each ei is the unit vector (i.e., eij = 1 iff i = j). In this case, we have

A[x(1), . . . , x(m)]·p = B−1I·p = B−1·
[
p1 + f1

(
pm+1, . . . , p(n≤d)

)
, . . . , pm + fm

(
pm+1, . . . , p(n≤d)

)]T
,

for some functions f1, . . . , fm. Since B−1 has full rank, if p is selected uniformly at random, then
[p(x(1)), . . . , p(x(m))]T is also distributed uniformly at random over the choice of p. Thus, it is
sufficient to show that the probability that A[x(1), . . . , x(m)] does not have full rank is negligible
over the choices of x(1), . . . , x(m).

Fix i ∈ [m] arbitrarily. Suppose that we have selected x(1), . . . , x(i−1) such that A[x(1), . . . , x(i−1)]
has full rank, and we select a new x(i) ∈ Fn2 uniformly at random. Then, we show that the conditional
probability that A[x(1), . . . , x(i)] also has full rank with probability at least 1 − 2−Ω(n). If this is
correct, then by the union bound, the probability that A[x(1), . . . , x(m)] does not have full rank is
bounded above by m · 2−Ω(n) = O(nd) · 2−Ω(n) = negl(n) because there must exist i ∈ [m] such that
A[x(1), . . . , x(i)] does not have full rank in such a case.

Let V ≤ F
(n≤d)
2 be the linear subspace spanned by the rows in A[x(1), . . . , x(i−1)]. Note that

dimV ≤ i − 1. For each x ∈ Fn2 , we define x̃ ∈ F
(n≤d)
2 , where x̃S =

∏
j∈S xj for each S ⊆ [n] with

29

|S| ≤ d. Let U = {x̃ : x ∈ Fn2}. Then, it is not hard to verify that

Pr
x(i)

[
A[x(1), . . . , x(i)] does not have full rank

∣∣∣x(1), . . . , x(i−1)
]

=
|V ∩ U |
|U |

.

Let k = blog |V ∩ U |c. Then, we have 2k ≤ |V ∩ U | ≤ 2k+1. We fix 2k distinct elements

y(1), . . . , y(2k) ∈ Fn2 such that ỹ(1), . . . , ỹ(2k) ∈ V ∩ U . Let V ′ = span{y(1), . . . , y(2k)}. Then, V ′

is a linear subspace of V . By Lemma 2, we have(
k

≤ d

)
≤ dimV ′ ≤ dimV ≤ i− 1 ≤ m =

1

2

(
n

≤ d

)
.

By Lemma 1, there exists a constant γ ∈ (0, 1) such that k ≤ n(1 − γ/d) for any sufficiently large
n ∈ N. Therefore, we conclude that

Pr
x(i)

[
A[x(1), . . . , x(i)] does not have full rank

∣∣∣x(1), . . . , x(i−1)
]

=
|V ∩ U |
|U |

≤ 2k+1

2n

≤ 2 · 2n(1−γ/d)

2n

= 2−
γ
d
n+1

= 2−Ω(n)

We remark that Lemma 6 implies that learning degree-d F2-polynomials is infeasible with
2−1 ·

(
n
≤d
)

= Ω(nd) samples and non-negligible advantage even for time-unbounded learners with
respect to the uniform example distribution and the uniform target distribution over degree-d F2-
polynomials. In this sense, the upper bound on the seed length for a target distribution is essential
in Theorems 3 and 4.

We now show one direction from PPRGs to the average-case hardness of learning.

Theorem 13. For any polynomial p(n), there exists a polynomial q such that for any time-bound
function t(n), if there exists a PPRG computable by constant-degree F2-polynomials against t(n)-
time adversaries, then degree-d F2-polynomials are not (t(n)/q(n), 1/p(n))-learnable on average with
respect to a uniform example distribution and a target distribution samplable by a degree-d′ F2-
polynomial using an n-bit random seed with (d, d′)-FPT samples.

Proof. We assume that G is a PPRG computable in degree-d0 polynomials for some d0 ∈ N. Fix an
FPT sample-complexity function md,d′(n) = f(d, d′)·pm(n) arbitrarily, where pm(n) is a polynomial.
We select d ∈ N such that 1/2 ·

(
n
≤d
)
> log n · pm(n).

We consider a pseudorandom degree-d F2 polynomial pPR : Fn2 → F2, where each coefficient
is selected by a pseudorandom string G(d)(Un), where G(d) is the PPRG in Theorem 6. Then, we
specify a target distribution Dtarg for the hard problem as the distribution of pPR. Since each
pseudorandom bit of G(d)(Un) is computable by a degree-d′ F2-polynomial for some d′ ∈ N, the
target distribution Dtarg is samplable by the degree-d′ F2-polynomial using an n-bit random seed.

We prove the theorem by contradiction. Suppose that there exists a t(n)-time algorithm L that
learns degree-d F2-polynomial with respect to the uniform example distribution and Dtarg with

30

md,d′(n) samples. Because no learning algorithm can guess a random function non-negligibly bet-
ter than a random guess, L is converted into a distinguisher D with advantage 1/p(n) − negl(n)

for the following two distributions: (1) (U
(1)
n , pPR(U

(1)
n)), . . . , (U

(md,d′ (n))
n , pPR(U

(md,d′ (n))
n)) and (2)

(U
(1)
n , U

(1)
1), . . . , (U

(md,d′ (n))
n , U

(md,d′ (n))

1). Since f(d, d′) · pm(n) < log n · pm(n) < 1/2 ·
(
n
≤d
)

for suffi-

ciently large n ∈ N, by Lemma 6, D distinguishes (1) (U
(1)
n , pPR(U

(1)
n)), . . . , (U

(md,d′ (n))
n , pPR(U

(md,d′ (n))
n))

and (2’) (U
(1)
n , pR(U

(1)
n)), . . . , (U

(md,d′ (n))
n , pR(U

(md,d′ (n))
n)), where pR is a truly random degree-d F2-

polynomial. Then, we can construct an O(md,d′(n) + t(n))-time adversary A for G(d) that is given
a pseudorandom or random string r, selects a degree-d polynomial pr by using r, makes md,d′(n)
samples for pr for random inputs, and feeds them to D. By Theorem 6, A is converted into an
adversary A′ breaking G. It is not hard to verify that the running time is bounded above by
poly(n) ·O(md,d′(n) + t(n)) ≤ q(n) · t(n) for some polynomial q.

Next, we show the opposite direction, i.e., from the average-case hardness of learning to PPRGs.
Theorem 3 is obtained by applying Theorems 13 and 14 for all polynomial time-bounds t(n).

Theorem 14. For any polynomial p(n), r(n), there exist a polynomial q and a constant ε > 0 such
that for any time-bound function t(n), if degree-d polynomials are not (t(n), 1/2− 1/p(n))-learnable
on average with respect to a uniform example distribution and a target distribution samplable by a
degree-d′ F2-polynomial using an r(n)-bit random seed with (d, d′)-FPT samples, then there exists a
PPRG computable by a constant-degree F2-polynomial against t(nε)/q(n)-time adversaries.

Proof. Let m(n) and `(n) be the polynomials obtained by applying Fact 1 for p(n) and m⊕(n) =
`(n)2(n+ r(n))2 (note that these are well-defined because `(n) is determined by only p(n)). Then,
based on the hardness assumption, there exist constants d, d′ ∈ N and a target distribution Dtarg

on degree-d F2-polynomials for the hard learning problem with m(n) samples and advantage 1/2−
1/p(n), where Dtarg is samplable by a degree-d′ F2-polynomial using an r(n)-bit random seed. Let

ptarg : {0, 1}r(n) → {0, 1}(
n
≤d) be the degree-d′ F2-polynomials that select a target function according

to Dtarg.

For R(n) = `(n)(n + r(n)), we construct a PPRG G : {0, 1}R(n)3 → {0, 1}R(n)4 . We remark
that G is defined on only the input length R(n)3. For a PPRG on any input length, we apply the
following simple technique. For a given n-bit random seed, we find the maximum integer n′ such
that R(n′)3 ≤ n, separate the seed into blocks of size n′, and apply the original PRG to each block
(where the remaining seed of length n − n′ · bn/n′c is outputted directly). For the security proof,
we apply the standard hybrid argument [for details, refer to Gol06]. Since R(n)3 is a polynomial in
n, it is not hard to verify that the resulting PRG still preserves polynomial-stretch.

Now, we present the construction of G for input length R(n)3. For convenience, we assume
that the random seed R(n)3 is separated into `(n)R(n)2 strings xi,j ∈ {0, 1}n and yi,j ∈ {0, 1}r(n)

indexed by (i, j) ∈ [R2(n)] × [`(n)]. First, G(x, y) generates target functions f i,j = ptarg(y
i,j) for

each i, j. Then, G computes bi1,i2 :=
⊕

j1,j2∈[`(n)] f
i1,j1(xi2,j2) for all i1, i2 ∈ [R(n)2] and outputs

them as a pseudorandom string of length R(n)2 ·R(n)2 = R(n)4.
In the following, we show that (i) each bi1,i2 is computed by a constant-degree F2-polynomial,

and (ii) the above-mentioned G is a pseudorandom generator, which implies the theorem.
For statement (i), we remark that for any depth-d F2-polynomial f i1,j1 and the input xi2,j2 ,

the value of f i1,j1(xi2,j2) is computable by depth-(d + 1) F2-polynomial given f i1,j1 and xi2,j2 as
input because f i1,j1(xi2,j2) =

∑
S:|S|≤d f

i1,j1
S xi2,j2S . Furthermore, each bit of f i1,j1 is computable by

degree-d′ F2-polynomials in yi1,j1 . Therefore, each f i1,j1(xi2,j2) is computable by an F2-polynomial
of degree d′(d+ 1), and so is bi1,i2 :=

⊕
j1,j2∈[n] f

i1,j1(xi2,j2).

31

Next, we show statement (ii) by contradiction. The outline of the proof is as follows. First,
by assuming that there exists an adversary A that breaks G with non-negligible advantage, we
show that degree-d F2-polynomials are learnable on D⊕ex and D⊕targ with R(n)2 − 1 samples and

non-negligible advantage, where D⊕ex and D⊕targ are the distributions of x⊕ = x(1) ◦ · · · ◦ x(`(n)) and

f⊕(x⊕) :=
⊕

i,j f
(i)(x(j)) for x(1), . . . , x(`(n)) ← Un and f (1), . . . , f (`(n)) ← Dtarg, respectively. Then,

by applying the XOR lemma (i.e., Fact 1), we show that degree-d F2-polynomials are learnable with
respect to Un and Dtarg with m(n) samples and an advantage of 1/2 − 1/p(n), which contradicts
the hardness assumption of learning.

For sufficiently large n ∈ N, we assume that9

Pr
[
A(G(UR(n)3)) = 1

]
− Pr

[
A(UR(n)4) = 1

]
≥ 1/poly(n). (2)

We construct a learner L⊕ on D⊕ex and D⊕targ as follows. On input (x(1), b(1)), . . . , (x(R(n)2), b(R(n)2))

and a challenge xc, where each x(i) consists of xi,1, . . . , xi,`(n) ← Un, the learner L⊕ randomly selects
I1, I2 ←u [R(n)2] and f i,j ← Dtarg for each i < I1 and j ∈ [`(n)]. For simplicity, L⊕ changes the
indices as x(I2) := xc and (x(i), b(i)) := (x(i+1), b(i+1)) for each i > I2, i.e., L⊕ inserts the challenge
in the I2-th position in samples. Then, L⊕ executes A(b1,1, . . . , bR(n)2,R(n)2), where each bi1,i2 is
defined by

bi1,i2 =

⊕
j1,j2∈[`(n)] f

i1,j1(xi2,j2) if i1 < I1

b(i) if (i1 = I1) ∧ (i2 < I2)

ri1,i2 if (i1 = I1) ∧ (i2 ≥ I2)

ri1,i2 if i1 > I1,

where ri1,i2 ←u {0, 1}. If A outputs 1, then L⊕ outputs rI1,I2 as a prediction; otherwise, 1− rI1,I2 .
We show the correctness of L⊕. For each I1 and I2, we define the hybrid distribution HI1,I2 as

the distribution of b1,1, . . . , bR(n)2,R(n)2 selected as

bi1,i2 =

⊕
j1,j2∈[n] f

i1,j1(xi2,j2) if i1 < I1⊕
j1,j2∈[n] f

i1,j1(xi2,j2) if (i1 = I1) ∧ (i2 ≤ I2)

ri1,i2 if (i1 = I1) ∧ (i2 > I2)

ri1,i2 if i1 > I1,

where f i1,j1 ← Dtarg, x
i2,j2 ← Dex, and ri1,i2 ←u {0, 1}. Then, it is easily verified that H1,0 ≡

UR(n)4 , HR(n)2,R(n)2 ≡ G(UR(n)3), and HI1,0 ≡ HI1−1,R(n)2 for each I1 ∈ [R(n)2]. Therefore, by
inequality 2, we have

Pr[A(HR(n)2,R(n)2) = 1]− Pr[A(H1,0) = 1] ≥ 1/poly(n).

For each I1, I2 selected by L⊕, the probability that L⊕ outputs the correct prediction bc is

Pr[rI1,I2 = bc] Pr[A(HI1,I2) = 1] + Pr[rI1,I2 = 1− bc] Pr[A(H̄I1,I2) = 0]

=
1

2
+

1

2
Pr[A(HI1,I2) = 1]− 1

2
Pr[A(H̄I1,I2) = 1],

where H̄I1,I2 is the same distribution as HI1,I2 except that the (I1, I2)-th bit is flipped.

9Strictly speaking, we test the behavior of the adversary first, then take a negation according to the result to
remove the vertical bars for an absolute value.

32

We remark that

Pr[A(HI1,I2−1) = 1] =
1

2
Pr[A(HI1,I2) = 1] +

1

2
Pr[A(H̄I1,I2) = 1].

Thus, the probability that L⊕ succeeds in predicting bc conditioned on I1, I2 is

1

2
+

1

2
Pr[A(HI1,I2) = 1]− 1

2
Pr[A(H̄I1,I2) = 1]

=
1

2
+

1

2
Pr[A(HI1,I2) = 1]−

(
Pr[A(HI1,I2−1) = 1]− 1

2
Pr[A(HI1,I2) = 1]

)
=

1

2
+ Pr[A(HI1,I2) = 1]− Pr[A(HI1,I2−1) = 1].

Therefore, the success probability of L⊕ is at least∑
I1,I2∈[R(n)2]

1

R(n)4

(
1

2
+ Pr[A(HI1,I2) = 1]− Pr[A(HI1,I2−1) = 1]

)
=

1

2
+

1

R(n)4
(Pr[A(HR(n)2,R(n)2) = 1]− Pr[A(H1,0) = 1])

≥ 1

2
+

1

poly(n)R(n)4

≥ 1

2
+

1

poly(n)
,

where the first equality holds because HI1,0 ≡ HI1−1,R(n)2 for each I1 ∈ [R(n)2].

Since L⊕ succeeds in learning on D⊕ex and D⊕targ with R(n)2−1 < R(n)2 = m⊕(n) (< m⊕(n`(n)))
samples, Boost in Lemma 1 succeeds in learning on Un and Dtarg with m(n) samples and advantage
1/2−1/p(n) (for sufficiently large n). It is not hard to verify that if the running time of A is bounded
by T (n), then the running time of the learner is at most poly(n) · T (R3(n)) ≤ q(n) · T (na) for a
sufficiently large polynomial q and a sufficiently large constant a ≥ 1. By letting ε = 1/a, the
theorem follows.

5.2 A Collection of PPRGs vs. Learning on Example Distribution Samplable
with Shared Randomness

In this section, we show the equivalence between a collection of PPRGs in constant-degree F2-
polynomials and average-case hardness of learning constant-degree F2-polynomials with respect to
an example distribution samplable with shared randomness and a target distribution samplable by
constant-degree F2-polynomials. First, we introduce a useful lemma.

Lemma 7. For n, d, d′ ∈ N, let p1, . . . , pn : {0, 1}n → {0, 1} be degree-d F2-polynomials, and let
p′ : {0, 1}n → {0, 1} be a degree-d′ F2-polynomial. We define a degree-dd′ F2-polynomial q : {0, 1}n →
{0, 1} as q(x) := p′(p1(x), . . . , pn(x)). Then, the representation of q is computed by degree-(d′ + 1)
F2-polynomials given p1, . . . , pn, p

′ as the input.

Proof. For each S ⊆ [n] with |S| ≤ dd′, we show that qS is computed by a degree-(d′ + 1) F2-
polynomial given p1, . . . , pn, p

′ as the input.
We consider the expansion of the following formula:

q(x) =
∑

I⊆[n]:|I|≤d′
p′I
∏
i∈I

pi(x) =
∑

I⊆[n]:|I|≤d′
p′I
∏
i∈I

∑
J⊆[n]:|J |≤d

(pi)Jx
J .

33

For convenience, let rI(x) := p′I
∏
i∈I
∑

J⊆[n](pi)Jx
J for each I, i.e., q(x) =

∑
I:|I|≤d′ p

′
I · rI(x).

Fix I ⊆ [n] with k := |I| ≤ d′ arbitrarily, and let I = {i1, . . . , ik}. Since x2
i = xi for each i ∈ [n],

by expanding rI , it is not hard to verify that

(rI)S =
∑

J1,...,Jk⊆[n]:
J1∪···∪Jk=S

(pi1)J1 · (pi2)J2 · · · · · (pik)Jk .

Therefore, the degree of (rI)S as an F2-polynomial in p1, . . . , pn, p
′ is at most k = |I|. Since

qS =
∑

I:|I|≤d′ p
′
I · (rI)S , the degree of qS is at most d′ + 1 as an F2-polynomial in p1, . . . , pn, p

′.

Now, we show one direction from a collection of PPRGs to the average-case hardness of learning.

Theorem 15. For any polynomial p(n), there exist a polynomial q and a constant ε ∈ (0, 1) such
that for any time-bound function t(n), if there exists a collection of PPRGs in constant-degree F2-
polynomials against t(n)-time adversaries, then degree-d F2-polynomials are not (t(n)/q(n), 1/p(n))-
learnable on average with respect to an example distribution samplable with shared randomness and
a target distribution samplable by a degree-d′ F2-polynomial using an n-bit random seed with (d, d′)-
FPT samples.

Proof. We assume that G is a collection of PPRGs in degree-d0 polynomials for some d0 ∈ N.
Without loss of generality, we can assume that the output length ofG is n2; otherwise, we regardG(1)

in Theorem 6 as G. Fix an FPT sample-complexity function md,d′(n) = f(d, d′) · pm(n) arbitrarily,
where pm(n) is a polynomial. We select d ∈ N such that nd+1 > log n·pm(nd0+1·log n)·p(nd0+1·log n).

Now, we specify an example distribution Dex and a target distribution Dtarg for the hardness of
learning with sample complexity md,d′ . We define Dex as the distribution of the concatenation of
binary representations Gi1·n+1, . . . , Gi1·n+n, . . . , Gid−1·n+1, . . . , Gid−1·n+n, Gid , where i1, . . . , id−1 ←u

[n−1]∪{0} and id ←u [n2] (where the choice of G is simulated by shared randomness). We remark
that the following composition of the selected polynomials

Gi1,...,id(x) := Gid(Gid−1+1(· · ·Gi2·n+1(Gi1·n+1(x), . . . , Gi1·n+n(x)), . . . ,), . . . , Gid−1+n(. . .))

is distributed according to the uniform distribution over G
(d)
1 , . . . , G

(d)

nd+1 .
The outline of the remaining proof is as follows. First, we show that (i) for any x ∈ {0, 1}n, there

exists a constant-degree F2-polynomial x∗ such that x∗(Gi1·n+1, . . . , Gid) = Gi1,...,id(x) for any choice
of i1, . . . , id. Then, we define the distribution Dtarg as the distribution of x∗ for x ←u {0, 1}n and
show that (ii) Dtarg is samplable by constant-degree F2-polynomials that takes x as the input (i.e., a
random seed). Finally, by a similar proof as Theorem 8, we show that (iii) learning constant-degree
F2-polynomials is hard with respect to Dex and Dtarg.

By induction in d, we show that for any x ∈ {0, 1}n, there exists a degree-(d0 + 1)d−1 F2-
polynomial that is given Gi1·n+1, . . . , Gid and outputs Gi1,...,id . The base step (i.e., d = 1) is trivial.
For the inductive step, we assume that the claim holds in the case of d− 1. Then, for any i ∈ [n],
there exists a degree-(d0 +1)d−2 F2-polynomial qi that is given Gi1·n+1, . . . , Gid−2·n+n, Gid−1·n+i and
outputs Gi1,...,id−1+i for each i1, . . . , id−1. Now, we apply Lemma 7 for p1 = Gi1,...,id−1+1, . . . , pn =
Gi1,...,id−1+n, and p′ = Gid . Then, the degree-(d0 + 1) polynomial q in Lemma 7 outputs Gi1,...,id for
given Gi1,...,id−1+1, . . . , Gid . Since each bit of Gi1,...,id−1+i is computed by qi, this q is implemented by
an F2-polynomial in Gi1·n+1, . . . , Gid , where the degree is at most (d0 +1)d−2 ·(d0 +1) = (d0 +1)d−1.

This claim implies statement (i) for the following reason. Since the degree of Gi1,...,id(x) is at
most dd0, it is written as

Gi1,...,id(x) =
∑

S:|S|≤dd0

(Gi1,...,id)Sx
S .

34

We can regard this expression as a degree-1
(
n
≤dd0

)
-input F2-polynomial in Gi1,...,id . By the claim

above, each bit of the representation of Gi1,...,id is computed by degree-(d0 +1)d−1 F2-polynomials in
Gi1·n+1, . . . , Gid . Thus, Gi1,...,id(x) is computed by a degree-(d0+1)d−1 F2-polynomial x∗(Gi1·n+1, . . . , Gid),
which is determined only by x. We remark that, by the argument above, we reduce the input size
from O(nd

d
0) to O(d · nd0) ≤ nd0 · log n at the expense of the degree of the target function.

Next, we show statement (ii), i.e., the target distribution Dtarg of x∗ for x← {0, 1}n is samplable
by degree-dd0 F2-polynomials. Based on the argument above, the polynomial x∗ is represented as

x∗(Gi1·n+1, . . . , Gid) =
∑

S:|S|≤dd0

pS(Gi1·n+1, . . . , Gid)x
S ,

where pS is some polynomial of degree (d0 + 1)d−1 for each S ⊆ [n] with |S| ≤ dd0. Thus, for each

T ⊆
[
((d− 1)n+ 1)

(
n
≤d0

)]
(note that ((d− 1)n+ 1)

(
n
≤d0

)
is the input length of x∗), the coefficient

(x∗)T is written as

(x∗)T =
∑

S:|S|≤dd0

(pS)T · xS .

Therefore, x∗ is computed by an F2-polynomial (given x as the input) of degree dd0, and Dtarg is
samplable by F2-polynomials of degree dd0, where the seed length is |x| = n.

Finally, we prove statement (iii) by contradiction. Suppose that there exists an algorithm L that
succeeds in (t(n), 1/p(n))-learning F2-polynomials with sample complexitym(n) := m(d0+1)d−1,dd0

(n).

Then, we construct an adversary A for G(d) based on L, which also yields an adversary for G.
On input w ∈ {0, 1}nd+1

and a description of G, where w is a pseudorandom string generated by
G(d) or a truly random string, A simulates the example distribution Dex by selecting Gi1·n+1, . . . , Gid
for i1, . . . , id−1 ←u [n− 1] ∪ {0} and id ←u [n2]. For convenience, we let N denote the size of each
example, i.e., N := ((d − 1)n + 1)

(
n
≤d0

)
= O(d · nd0+1). After generating m(N) samples, A also

generates a challenge according to Dex and feeds them to L. Let ic ∈ [nd+1] be the position in G(d)

that corresponds to the challenge. If L outputs some prediction b ∈ {0, 1}, then L′ checks whether
b = wic . If so, L′ outputs 1; otherwise, it outputs 0.

In the case in which w ← G(d)(x) for x←u {0, 1}n, we have x∗(Gi1·n+1, . . . , Gid) = G
(d)
i (x) = wi

for each (i1, . . . , id) and the corresponding position i ∈ [nd+1]. Therefore, the simulated samples
are valid for the target function x∗. Since A executes L on the example distribution Dex and target
distribution Dtarg, we have

Pr
A,G,Un

[A(G(d)(Un)) = 1] = Pr
L,Dex,Dtarg

[L succeeds in learning] ≥ 1

2
+

1

p(N)
.

By contrast, in the case in which w ←u {0, 1}n
d+1

, the labels in the simulated samples are
selected truly at random. Because no learning algorithm can guess a random label not contained

35

in the given samples better than a random guess, i.e., with a success probability of 1/2, we have

Pr
A,U

nd+1

[A(Und+1) = 1] = Pr
L,Dex

[L succeeds in learning]

≤ 1

2
·
(

1− m(N)

nd+1

)
+ 1 · m(N)

nd+1

≤ 1

2
+
m(nd0+1 log n)

2nd+1

≤ 1

2
+
f((d0 + 1)d−1, dd0) · pm(nd0+1 log n)

2nd+1

≤ 1

2
+

nd+1 · f((d0 + 1)d−1, dd0)

2 log n · nd+1 · p(nd0+1 · log n)

≤ 1

2
+

1

2p(nd0+1 · log n)

≤ 1

2
+

1

2p(N)
,

for sufficiently large n. Therefore, the advantage of A is at least(
1

2
+

1

p(N)

)
−
(

1

2
+

1

2p(N)

)
=

1

2p(N)
,

and A succeeds in breaking G(d).
By Theorem 6, we can construct an adversary for G. It is not hard to verify that the running

time is bounded above by t(N) · q(n) ≤ t(na) · q(n) for a sufficiently large polynomial q and a
sufficiently large constant a ≥ 1. For the theorem, we let ε = 1/a. We remark that for input size
N = ((d− 1)n+ 1)

(
n
≤d0

)
, the length of the random seeds for Dtarg is at most n ≤ N .

Next, we show the opposite direction from the average-case hardness of learning to a collection
of PPRGs. We obtain Theorem 4 by applying Theorems 15 and 16 for all polynomial time-bounds
t(n).

Theorem 16. For any polynomial p(n), r(n), there exists a polynomial q and a constant ε > 0
such that for any time-bound function t(n), if degree-d F2-polynomials are not (t(n), 1/2− 1/p(n))-
learnable on average with respect to an example distribution samplable with shared randomness and a
target distribution samplable by degree-d′ F2-polynomials using an r(n)-bit random seed with (d, d′)-
FPT samples, then there exists a collection of PPRGs computable by a constant-degree F2-polynomial
against t(nε)/q(n)-time adversaries.

Proof. (sketch.) The construction of a collection of PPRGs mainly follows the construction of the
PPRG in the proof of Theorem 14.

Let m(n) and `(n) be the polynomials obtained by applying Fact 1 for p(n) and m⊕(n) =
(`(n)r(n))1+δ, where δ > 0 is an arbitrary constant. Then, based on the hardness assumption, there
exist constants d, d′ ∈ N, an example distribution Dex, and a target distribution Dtarg on degree-d
F2-polynomial for the hard learning problem with m(n) samples and advantage 1/2−1/p(n), where
Dex is samplable with shared randomness, and Dtarg is samplable by a degree-d′ F2-polynomial using

r(n)-bit random seeds. Let ptarg : {0, 1}r(n) → {0, 1}(
n
≤d) be the degree-d′ F2-polynomial selecting a

target function according to Dtarg.

For R(n) = `(n)r(n), we construct a collection of PPRGs G : {0, 1}R(n) → {0, 1}R(n)1+δ . For con-
venience, we assume that the random seed of length R(n) is separated into `(n) strings yj ∈ {0, 1}r(n)

36

indexed by j ∈ [`(n)]. Our generator G is specified with m(n)`(n) strings xi,j ∈ {0, 1}n indexed
by (i, j) ∈ [m(n)] × [`(n)], which are selected according to Dex in the selection of G. First, G(y)
generates target functions f j = ptarg(y

j) for each j. Then, G computes bi :=
⊕

j1,j2∈[`(n)] f
j1(xi,j2)

for each i ∈ [m(n)] and outputs them as a pseudorandom string of length m(n) = R(n)1+δ.
The security proof for G is almost the same as Theorem 14. Next, we verify that the generator

is implemented as a collection of generators in constant-degree F2-polynomials. For each i ∈ [m(n)],
the i-th output bit of G is

bi :=
⊕

j1,j2∈[`(n)]

f j1(xi,j2) =
∑
j1,j2

∑
S:|S|≤d

f j1S (xi,j2)S . =
∑
j1,j2

∑
S:|S|≤d

pStarg(y
j1)(xi,j2)S ,

where pStarg represents the degree-d′ polynomial computing the coefficient of f on S. Since the
selector of G can select a shared randomness, G can simulate the example distribution perfectly.
By hardwiring the values of xi,j2 in the expression above (as a part of G), each output bit of G
is computable by a degree-d′ F2-polynomial given y as the input. Thus, we conclude that G is a
collection of PPRGs in constant-degree F2-polynomials.

6 PPRGs based on Hardness of d-LRPDT

In this section, we verify Corollary 1 based on the proofs of Theorems 9, 14, and 16. For each d ∈ N,
we use the notation `d to refer to the length of the binary representation of degree-d parity decision
trees, i.e., `d(n) = (2d − 1) · n+ 2d.

Corollary 3 (The first item of Corollary 1). For any ε ∈ (0, 1), if d-LRPDT is (n1+ε, n−(1+ε))-hard
on an O(1)-sparse example distribution samplable with shared randomness for some d ∈ N, then a
collection of PPRGs in NC0 exists.

Proof. Let p(n) = n1+ε. Then, for each d ∈ N, it holds that `d(n) ≤ n1+ε(1−ε)/2 = p(n)1−ε/2 for
sufficiently large n ∈ N. In the proof of Theorem 9, we use the hardness assumption of learning for

the sample complexity m(n) = p(n)1− (ε/2)
2 = n(1+ε)(1− ε

4
) = n1+ 3ε

4
− ε

2

4 ≤ n1+ε. Thus, by the FPT
dualization of parity decision trees (i.e., Mod2-DTs), the corollary holds.

Corollary 4 (The second item of Corollary 1). For any ε ∈ (0, 1), if d-LRPDT is (n1+ε, n−(2+ε))-
hard on the uniform example distribution for some d ∈ N, then a PPRG in ⊕-NC0 exists.

Proof. First, we observe that any depth-d parity decision tree is represented by a degree-d F2-
polynomial as follows: Let T be an arbitrary depth-d parity decision tree. For each path p ∈ {0, 1}d
in T , let χp1, . . . , χ

p
d be the queried linear functions at the internal nodes on the path p, and let bp

the binary label at the leaf corresponding to p. Then, it is not hard to verify that for each input x,

T (x) =
∑

p∈{0,1}d
bp

d∏
i=1

1l{χpi (x) = pi} =
∑

p∈{0,1}d
bp

d∏
i=1

(χpi (x) + 1 + pi).

Since the degree of χpi is at most 1, the depth-d parity decision tree T is expressed as a degree-d
F2-polynomial. Furthermore, a random degree-d F2-polynomial corresponding to a random depth-
d parity decision tree is selected by a degree-(d + 1) F2-polynomial according to the expanded
expression of the above by using a `d(n)-bit random seed. Let r(n) = n1+ε/16 + n. Then, for any
sufficiently large n ∈ N, we can bound the seed length above by `d(n) ≤ n1+ε/16 = r(n)− n.

37

Let p(n) = n2+ε. Now, we apply the proof of Theorem 14, where we slightly change the con-
struction of the PPRG G and do not use Fact 1 (i.e., the XOR lemma). Specifically, we let G select

r(n)1+ε/4 examples x1, . . . , xr(n)1+ε/4 ∈ {0, 1}n uniformly at random and r(n)1+ε/4 random degree-d

parity decision trees f1, . . . , f r(n)1+ε/4 as degree-d F2-polynomials, and output bi1,i2 := f i1(xi2) for
each i1, i2 ∈ [r(n)1+ε/4]. We remark that by the hybrid argument in the proof of Theorem 14,
we can convert the hardness of d-LRPDT with advantage 1/p(n) and sample complexity r(n)
into a weak PPRG G that stretches an r(n)2+ε/4-bit random seed to an r(n)2+ε/2-bit pseudo-
random string, and the indistinguishable parameter is r(r−1(n1/(2+ε/4)))2+ε/2/p(r−1(n1/(2+ε/4))) =
n(2+ε/2)/(2+ε/4)/p(r−1(n1/(2+ε/4))), where we interpret the upper bound on the advantage r(n)2+ε/2/p(n)
of distinguishers as a function in the seed length r(n)2+ε/4. For sufficiently large n ∈ N, we have
r(n) ≤ n1+ε/8 ≤ n1+ε. Thus, the hardness assumption of learning satisfies the requirement on the
sample complexity in Corollary 4. In addition, we have r−1(n) ≥ n1/(1+ε/8), and the indistinguish-
able parameter is at most

n
2+ ε

2
2+ ε

4

p(r−1(n
1

2+ ε
4))
≤ n

8+2ε
8+ε

n
32(2+ε)

(8+ε)2

= n
− 32(2+ε)−(8+2ε)(8+ε)

(8+ε)2 = n
− 8ε−2ε2

(8+ε)2 = n−Ω(1).

Thus, we can translate the weak PPRG G into a standard PPRG by Theorem 10, where we use the
junta-composition condition of degree-d F2-polynomials.

Corollary 5 (The third item of Corollary 1). For any ε ∈ (0, 1), if d-LRPDT is (n1+ε, n−(1+ε))-hard
on an example distribution samplable with shared randomness for some d ∈ N, then a collection of
PPRGs in ⊕-NC0 exists.

Proof. Let r(n) = n1+ε/4 and p(n) = n1+ε. Again, we use the observation that d-LRPDT is regarded
as learning degree-d F2-polynomials selected by a degree-(d + 1) F2-polynomial by using an r(n)-
bit random seed. Thus, we can apply the proof of Theorem 16 (without the XOR lemma) and
convert the hardness of d-LRPDT with advantage 1/p(n) and sample complexity r(n)1+ε/4 into a
collection of weak PPRGs that stretches an r(n)-bit random seed to an r(n)1+ε/4-bit pseudorandom
string, and the indistinguishable parameter is r(r−1(n))1+ε/4/p(r−1(n)) = n1+ε/4/p(r−1(n)), where
we interpret the upper bound on the advantage r(n)1+ε/4/p(n) of distinguishers as a function in the
seed length r(n). For sufficiently large n ∈ N, we have r(n)1+ε/4 = n(1+ε/4)2 ≤ n1+ε/2+(ε/2)2 ≤ n1+ε.
Thus, the hardness assumption of learning satisfies the requirement on the sample complexity in
Corollary 5. Furthermore, the indistinguishable parameter is at most

n1+ ε
4

p(r−1(n))
=
n1+ ε

4

n
1+ε
1+ ε

4

=
n1+ ε

4

n1+ 3ε
4+ε

= n
− 8ε−ε2

4(4+ε) = n−Ω(1).

Thus, we can translate the collection of weak PPRGs into a collection of PPRGs by Theorem 10,
where we use the junta-composition condition of degree-d F2-polynomials.

Acknowledgment

We thank the anonymous ITCS reviewers for providing helpful comments and suggestions. Shuichi
Hirahara is supported by JST, PRESTO Grant Number JPMJPR2024, Japan. This work was done
when the second author was supported by JST, ACT-X Grant Number JPMJAX190M, Japan.

38

References

[ABGKR14] A. Akavia, A. Bogdanov, S. Guo, A. Kamath, and A. Rosen. “Candidate Weak
Pseudorandom Functions in AC0 ◦ MOD2”. In: Proceedings of the 5th Conference
on Innovations in Theoretical Computer Science. ITCS ’14. Princeton, New Jersey,
USA: Association for Computing Machinery, 2014, pp. 251–260.

[ABR12] B. Applebaum, A. Bogdanov, and A. Rosen. “A Dichotomy for Local Small-Bias
Generators”. In: Theory of Cryptography. Ed. by Ronald Cramer. Springer Berlin
Heidelberg, 2012, pp. 600–617.

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. “Public-key cryptography from
different assumptions”. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010. Ed. by
Leonard J. Schulman. ACM, 2010, pp. 171–180. doi: 10.1145/1806689.1806715.
url: https://doi.org/10.1145/1806689.1806715.

[AC15] D. Angluin and D. Chen. “Learning a Random DFA from Uniform Strings and State
Information”. In: Proceedings of the 26th International Conference on Algorithmic
Learning Theory. ALT’15. Springer International Publishing, 2015, pp. 119–133.

[AIK06] B. Applebaum, Y. Ishai, and E. Kushilevitz. “Cryptography in NC0”. In: SIAM
Journal on Computing 36.4 (2006), pp. 845–888.

[AIK08] B. Applebaum, Y. Ishai, and E. Kushilevitz. “On Pseudorandom Generators with
Linear Stretch in NC0”. In: Comput. Complex. 17.1 (Apr. 2008), pp. 38–69.

[AK19] B. Applebaum and E. Kachlon. “Sampling Graphs without Forbidden Subgraphs and
Unbalanced Expanders with Negligible Error”. In: IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS19). 2019, pp. 171–179.

[AK95] D. Angluin and M. Kharitonov. “When Won’t Membership Queries Help?” In: Jour-
nal of Computer and System Sciences 50.2 (1995), pp. 336–355.

[AKL09] V. Arvind, J. Köbler, and W. Lindner. “Parameterized Learnability of Juntas”. In:
Theor. Comput. Sci. 410.47-49 (Nov. 2009), pp. 4928–4936.

[AL18] B. Applebaum and S. Lovett. “Algebraic Attacks against Random Local Functions
and Their Countermeasures”. In: SIAM Journal on Computing 47.1 (2018), pp. 52–
79.

[App13] Benny Applebaum. “Pseudorandom Generators with Long Stretch and Low Local-
ity from Random Local One-Way Functions”. In: SIAM J. Comput. 42.5 (2013),
pp. 2008–2037.

[AR16] Benny Applebaum and Pavel Raykov. “Fast Pseudorandom Functions Based on Ex-
pander Graphs”. In: Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I. Ed. by
Martin Hirt and Adam D. Smith. Vol. 9985. Lecture Notes in Computer Science.
2016, pp. 27–56.

[BCGIKS21] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. “Low-Complexity
Weak Pseudorandom Functions in AC0[MOD2]”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021. Vol. 12828.
Lecture Notes in Computer Science. Springer, 2021, pp. 487–516.

39

https://doi.org/10.1145/1806689.1806715
https://doi.org/10.1145/1806689.1806715

[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. “Occam’s Razor”. In:
Inf. Process. Lett. 24.6 (Apr. 1987), pp. 377–380.

[BFKL94] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. “Cryptographic Primitives Based
on Hard Learning Problems”. In: Proceedings of the 13th Annual International Cryp-
tology Conference on Advances in Cryptology. CRYPTO ’93. 1994, pp. 278–291.

[BHL12] I. Ben-Eliezer, R. Hod, and S. Lovett. “Random low-degree polynomials are hard to
approximate”. In: Comput. Complex. 21.1 (2012), pp. 63–81. doi: 10.1007/s00037-
011-0020-6. url: https://doi.org/10.1007/s00037-011-0020-6.

[BQ12] A. Bogdanov and Y. Qiao. “On the Security of Goldreich’s One-Way Function”. In:
Comput. Complex. 21.1 (Mar. 2012), pp. 83–127.

[CDMRR18] G. Couteau, A. Dupin, P. Méaux, M. Rossi, and Y. Rotella. “On the Concrete Se-
curity of Goldreich’s Pseudorandom Generator”. In: Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application of
Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II. Ed. by Thomas Peyrin and Steven D. Galbraith. Vol. 11273.
Lecture Notes in Computer Science. Springer, 2018, pp. 96–124.

[CEMT09] J. Cook, O. Etesami, R. Miller, and L. Trevisan. “Goldreich’s One-Way Function
Candidate and Myopic Backtracking Algorithms”. In: Theory of Cryptography. Ed.
by Omer Reingold. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 521–
538.

[CIKK16] M. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. “Learning Algo-
rithms from Natural Proofs”. In: Proceedings of the 31st Conference on Computa-
tional Complexity. CCC’16. Tokyo, Japan: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016.

[CIKK17] M. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. “Agnostic Learn-
ing from Tolerant Natural Proofs”. In: Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017).
Vol. 81. LIPIcs. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017, 35:1–35:19.

[CM01] M. Cryan and P. B. Miltersen. “On Pseudorandom Generators in NC0”. In: Math-
ematical Foundations of Computer Science 2001, 26th International Symposium,
MFCS 2001 Marianske Lazne, Czech Republic, August 27-31, 2001, Proceedings.
Vol. 2136. Lecture Notes in Computer Science. Springer, 2001, pp. 272–284.

[Dan16] A. Daniely. “Complexity Theoretic Limitations on Learning Halfspaces”. In: Proceed-
ings of the Forty-eighth Annual ACM Symposium on Theory of Computing. STOC’16.
New York, NY, USA: ACM, 2016, pp. 105–117.

[DS16] A. Daniely and S. Shalev-Shwartz. “Complexity Theoretic Limitations on Learning
DNF’s”. In: Proceedings of 29th Conference on Learning Theory. Vol. 49. COLT’16.
Columbia University, New York, USA: PMLR, 23–26 Jun 2016, pp. 815–830.

[DV21] A. Daniely and G. Vardi. “From Local Pseudorandom Generators to Hardness of
Learning”. In: Conference on Learning Theory, COLT 2021, 15-19 August 2021,
Boulder, Colorado, USA. Vol. 134. Proceedings of Machine Learning Research. PMLR,
2021, pp. 1358–1394.

40

https://doi.org/10.1007/s00037-011-0020-6
https://doi.org/10.1007/s00037-011-0020-6
https://doi.org/10.1007/s00037-011-0020-6

[FGKP06] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. “New Results for Learning
Noisy Parities and Halfspaces”. In: 2006 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’06). Oct. 2006, pp. 563–574.

[FI19] Yuval Filmus and Ferdinand Ihringer. “Boolean constant degree functions on the slice
are juntas”. In: Discret. Math. 342.12 (2019). doi: 10.1016/j.disc.2019.111614.
url: https://doi.org/10.1016/j.disc.2019.111614.

[Fil22] Yuval Filmus. “Junta threshold for low degree Boolean functions on the slice”. In:
CoRR abs/2203.04760 (2022). doi: 10.48550/arXiv.2203.04760. arXiv: 2203.
04760. url: https://doi.org/10.48550/arXiv.2203.04760.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. “How to Construct Random Functions”.
In: J. ACM 33.4 (Aug. 1986), pp. 792–807. issn: 0004-5411.

[GL89] O. Goldreich and L. A. Levin. “A Hard-Core Predicate for All One-Way Functions”.
In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Comput-
ing. STOC ’89. Seattle, Washington, USA: Association for Computing Machinery,
1989, pp. 25–32.

[Gol06] O. Goldreich. Foundations of Cryptography: Volume 1. New York, NY, USA: Cam-
bridge University Press, 2006. isbn: 0521035368.

[Gol11] O Goldreich. “Candidate One-Way Functions Based on Expander Graphs”. In: Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 76–87.

[GOSSW11] P. Gopalan, R. O’Donnell, R. A. Servedio, A. Shpilka, and K. Wimmer. “Testing
Fourier Dimensionality and Sparsity”. In: SIAM Journal on Computing 40.4 (2011),
pp. 1075–1100.

[HKLW88] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. “Equivalence of Mod-
els for Polynomial Learnability”. In: Proceedings of the First Annual Workshop on
Computational Learning Theory. COLT’88. 1988, pp. 42–55.

[IKOS08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Cryptography with Constant
Computational Overhead”. In: Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing. STOC ’08. Victoria, British Columbia, Canada: Association
for Computing Machinery, 2008, pp. 433–442.

[IL90] R. Impagliazzo and L. Levin. “No better ways to generate hard NP instances than
picking uniformly at random”. In: Proceedings of the 31st Annual Symposium on
Foundations of Computer Science. FOCS’90. 1990, pp. 812–821.

[JLS21] A. Jain, H. Lin, and A. Sahai. “Indistinguishability Obfuscation from Well-Founded
Assumptions”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. STOC 2021. Virtual, Italy: Association for Computing Ma-
chinery, 2021, pp. 60–73.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability Obfuscation from
LPN over Fp, DLIN, and PRGs in NC0”. In: Advances in Cryptology - EUROCRYPT
2022 - 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings,
Part I. Ed. by Orr Dunkelman and Stefan Dziembowski. Vol. 13275. Lecture Notes
in Computer Science. Springer, 2022, pp. 670–699.

[JLSW11] J. Jackson, H. Lee, R. Servedio, and A. Wan. “Learning random monotone DNF”.
In: Discrete Applied Mathematics 159.5 (2011), pp. 259–271.

41

https://doi.org/10.1016/j.disc.2019.111614
https://doi.org/10.1016/j.disc.2019.111614
https://doi.org/10.48550/arXiv.2203.04760
https://arxiv.org/abs/2203.04760
https://arxiv.org/abs/2203.04760
https://doi.org/10.48550/arXiv.2203.04760

[JS05] J. Jackson and R. Servedio. “Learning Random Log-Depth Decision Trees under
Uniform Distribution”. In: SIAM Journal on Computing 34.5 (2005), pp. 1107–1128.

[Kha93] M. Kharitonov. “Cryptographic Hardness of Distribution-Specific Learning”. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing.
STOC ’93. San Diego, California, USA: Association for Computing Machinery, 1993,
pp. 372–381.

[KM93] E. Kushilevitz and Y. Mansour. “Learning Decision Trees Using the Fourier Spec-
trum”. In: SIAM J. Comput. 22.6 (Dec. 1993), pp. 1331–1348.

[KV89] M. Kearns and L. G. Valiant. “Cryptographic Limitations on Learning Boolean For-
mulae and Finite Automata”. In: Proceedings of the Twenty-First Annual ACM Sym-
posium on Theory of Computing. STOC ’89. Seattle, Washington, USA: Association
for Computing Machinery, 1989, pp. 433–444.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. “Constant Depth Circuits, Fourier Transform,
and Learnability”. In: J. ACM 40.3 (July 1993), pp. 607–620.

[LP21] Yanyi Liu and Rafael Pass. “On the Possibility of Basing Cryptography on EXP 6=BPP”.
In: Advances in Cryptology – CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part
I. Berlin, Heidelberg: Springer-Verlag, 2021, pp. 11–40. isbn: 978-3-030-84241-3. doi:
10.1007/978-3-030-84242-0_2. url: https://doi.org/10.1007/978-3-030-
84242-0_2.

[Nan20] M. Nanashima. “Extending Learnability to Auxiliary-Input Cryptographic Primi-
tives and Meta-PAC Learning”. In: Proceedings of the 33rd Conference on Learning
Theory, COLT’20. Vol. 125. PMLR, Sept. 2020, pp. 2998–3029.

[Nan21] M. Nanashima. “A Theory of Heuristic Learnability”. In: Proceedings of the 34th
Conference on Learning Theory, COLT’21. PMLR, 2021.

[NR06] Moni Naor and Guy N. Rothblum. “Learning to impersonate”. In: Machine Learn-
ing, Proceedings of the Twenty-Third International Conference (ICML 2006), Pitts-
burgh, Pennsylvania, USA, June 25-29, 2006. Ed. by William W. Cohen and Andrew
W. Moore. Vol. 148. ACM International Conference Proceeding Series. ACM, 2006,
pp. 649–656.

[NR99] Moni Naor and Omer Reingold. “Synthesizers and Their Application to the Parallel
Construction of Pseudo-Random Functions”. In: J. Comput. Syst. Sci. 58.2 (1999),
pp. 336–375.

[ODo14] R. O’Donnell. Analysis of Boolean Functions. New York, NY, USA: Cambridge Uni-
versity Press, 2014.

[OS17] I. Oliveira and R. Santhanam. “Conspiracies between Learning Algorithms, Circuit
Lower Bounds, and Pseudorandomness”. In: Proceedings of the 32nd Computational
Complexity Conference. CCC’17. Riga, Latvia: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017.

[OST22] Igor Carboni Oliveira, Rahul Santhanam, and Roei Tell. “Expander-Based Cryptog-
raphy Meets Natural Proofs”. In: Comput. Complex. 31.1 (2022), p. 4.

[OW14] R. O’Donnell and D. Witmer. “Goldreich’s PRG: Evidence for Near-Optimal Polyno-
mial Stretch”. In: 2014 IEEE 29th Conference on Computational Complexity (CCC).
2014, pp. 1–12.

42

https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-030-84242-0_2

[PV88] L. Pitt and L. Valiant. “Computational Limitations on Learning from Examples”.
In: J. ACM 35.4 (Oct. 1988), pp. 965–984.

[Reg09] O. Regev. “On Lattices, Learning with Errors, Random Linear Codes, and Cryptog-
raphy”. In: J. ACM 56.6 (Sept. 2009).

[RS21] H. Ren and R. Santhanam. “Hardness of KT Characterizes Parallel Cryptogra-
phy”. In: 36th Computational Complexity Conference (CCC 2021). Ed. by Valen-
tine Kabanets. Vol. 200. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 35:1–
35:58. isbn: 978-3-95977-193-1. doi: 10.4230/LIPIcs.CCC.2021.35. url: https:
//drops.dagstuhl.de/opus/volltexte/2021/14309.

[San20] R. Santhanam. “Pseudorandomness and the Minimum Circuit Size Problem”. In:
11th Innovations in Theoretical Computer Science Conference, ITCS 2020. Vol. 151.
LIPIcs. 2020, 68:1–68:26.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. New York, NY, USA: Cambridge University Press, 2014. isbn:
1107057132, 9781107057135.

[Sel08] L. Sellie. “Learning Random Monotone DNF Under the Uniform Distribution”. In:
Proceedings of the 21st Annual Conference on Learning Theory. COLT’08. Omni-
press, 2008, pp. 181–192.

[Sel09] L. Sellie. “Exact Learning of Random DNF over the Uniform Distribution”. In:
Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing.
STOC’09. Bethesda, MD, USA: ACM, 2009, pp. 45–54.

[Vad17] S. Vadhan. “On Learning vs. Refutation”. In: Proceedings of the 2017 Conference on
Learning Theory (COLT’17). Vol. 65. Proceedings of Machine Learning Research.
Amsterdam, Netherlands: PMLR, July 2017, pp. 1835–1848.

[Val84] L. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (1984), pp. 1134–
1142. issn: 0001-0782. doi: 10.1145/1968.1972.

[Yao82] A. Yao. “Theory and Application of Trapdoor Functions”. In: Proceedings of the
23rd Annual Symposium on Foundations of Computer Science. FOCS’82. Nov. 1982,
pp. 80–91.

A Impossibility of Dualization of NC0

In this section, we show that dualization of O(1)-junta (i.e., Boolean-valued functions in NC0) is
impossible even in the statistical setting. The formal statement is the following.

Theorem 17. O(1)-junta is not dualizable, i.e., for every k, k′ ∈ N, there is no pair of functions g
and h satisfying that for every n ∈ N, x ∈ {0, 1}n, and every k-junta function f : {0, 1}n → {0, 1},

1. x∗ := g(x) is a k′-junta function of input size n′ = poly(n);

2. f∗ := h(f) ∈ {0, 1}n′; and

3. f(x) = x∗(f∗).

To show Theorem 17, we recall the notion of 2-round communication protocols.

43

https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://drops.dagstuhl.de/opus/volltexte/2021/14309
https://drops.dagstuhl.de/opus/volltexte/2021/14309
https://doi.org/10.1145/1968.1972

Definition 12 (2-round communication protocol). Let C be a concept class (i.e., a subset of
Boolean-valued functions). A 2-round communication protocol for evaluating C is a pair of de-
terministic algorithms (Input,Function) (they are possibly not efficiently computable) satisfying that
there exist functions minput(n) and mfunction(n) such that for every n ∈ N, every x ∈ {0, 1}n, and
every f ∈ Cn,

1. Input takes x as input and sends a message a ∈ {0, 1}mInput(n) to Function.

2. Function takes f and the message a as input and sends a message b ∈ {0, 1}mfunction(n) to Input.

3. Input obtains the message b additionally and outputs f(x).

For convenience, we call a 2-round communication protocol for evaluating C with the message-length
functions minput(n) and mfunction(n) an (minput(n),mfunction(n))-protocol for evaluating C .

Any concept class C has a trivial (n, 1)-protocol (for evaluating C), where Input sends x ∈
{0, 1}n, and Function sends back f(x) ∈ {0, 1}. Thus, nontrivial cases are when Input does not send
the whole input x.

Now, we show Theorem 17 by observing that any dualization of NC0 yields a 2-round commu-
nication protocol for evaluating O(1)-junta with short messages, but such a protocol does not exist
information theoretically.

Proof of Theorem 17. Fix k, k′ ∈ N arbitrarily. Theorem 17 follows from Claims 1 and 2.

Claim 1. If there exist the functions g and h for dualization as in Theorem 17, then there exists
an (O(log n), O(1))-protocol for evaluating k-junta.

Claim 2. For any ε > 0, there is no ((1− ε)n, o(log n))-protocol for evaluating k-junta.

Proof of Claim 1. We can construct an (O(log n), O(1))-protocol for evaluating k-junta based on g
and h as follows: for any n ∈ N, x ∈ {0, 1}n, and any k-junta function f : {0, 1}n → {0, 1},

1. Input(x) computes the dual x∗ = g(x) and sends all indices i1, . . . , ik′ ∈ [n′] of the relevant
variables of x∗ to Function, where the message length is at most O(k′ log n′) = O(log n).

2. Function(f ; i1, . . . , ik′) computes the dual f∗ ∈ {0, 1}n′ and sends f∗i1 , . . . , f
∗
ik′
∈ {0, 1} that are

relevant to computing x∗(f∗) to Input, where the message length is at most O(k′) = O(1).

3. Input, given f∗i1 , . . . , f
∗
ik′

, computes and outputs x∗(f∗) = f(x).

Proof of Claim 2. Suppose that there exists a ((1− ε)n,m(n))-protocol (Input,Function) for evalu-
ating k-junta, where ε > 0 and m(n) = o(log n). We derive a contradiction.

Fix a sufficiently large n ∈ N with εn − 1 ≥ 2m(n) = o(n) arbitrarily. We can classify each
input string x ∈ {0, 1}n according to the massage sent by Input(x). Since the length of the message
is (1 − ε)n, the number of possible messages is at most 2(1−ε)n. Thus, there exists a message a ∈
{0, 1}(1−ε)n such that Sa = {x ∈ {0, 1}n : Input(x) sends a} has cardinality at least 2n/2(1−ε)n = 2εn.

We focus on the case in which the given input x is contained in Sa. By the definition of Sa, the
first message sent by Input is fixed to a. Thus, the second message sent by Function is determined
only by a given k-junta function f . Again, we classify k-junta functions according to the second
message as follows: for every b ∈ {0, 1}m(n),

Tb = {f : {0, 1}n → {0, 1}|f is k-junta and Function(f ; a) sends b}.

44

We show that there exist x ∈ Sa and f, f ′ ∈ Tb such that f(x) 6= f ′(x) holds. This contradicts
the correctness of (Input,Function) because, in the both cases of {(x, f), (x, f ′)}, the transcript is
the same (i.e., the first message is a, and the second message is b); thus, Input cannot distinguish
between f and f ′ and outputs the same value y ∈ {0, 1}, and f(x) = f ′(x) = y must hold for the
correctness. Thus, our goal is to find such x ∈ Sa and f, f ′ ∈ Tb.

Let d = |Sa| ≥ 2εn. For each j ∈ [n], we define vj ∈ {0, 1}d as vj = vj1 · · · v
j
d, where vji is the j-th

bit of the i-th string x in Sa (in lexicographic order) for each i ∈ [d]. If there are at most c distinct
vectors in v1, . . . , vn (say, vj1 , . . . , vjc), then the cardinality of Sa is at most 2c because each x ∈ Sa
is determined only by the patterns of (vj1i , . . . , v

jc
i) ∈ {0, 1}c, where i is the lexicographic order of x

in Sa. Since |Sa| ≥ 2εn, there are at least c ≥ εn distinct vectors vj1 , . . . , vjc in v1, . . . , vn.
We consider 1-junta functions (i.e., k-junta functions) χj1 , . . . , χjc , where χj`(x) = xj` for each

` ∈ [c]. Remember that the number of the separation {Tb}b∈{0,1}m(n) of k-junta functions is at most

2m(n) ≤ εn− 1 ≤ c− 1. Thus, by the pigeonhole principle, there exist `, `′ ∈ [c] and b ∈ {0, 1}m(n)

such that χj` , χj`′ ∈ Tb. Since vj` and vj`′ are distinct vectors, there exists i ∈ [n] such that

vj`i 6= v
j`′
i . Let x ∈ Sa be the i-th string in Sa.

We verify that x ∈ Sa and χj` , χj`′ ∈ Tb satisfy the condition that χj`(x) 6= χj`′ (x) for contra-
diction as follows:

χj`(x) = xj` = vj`i 6= v
j`′
i = xj`′ = χj`′ (x).

45
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

