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Abstract

We study boolean constraint satisfaction problems (CSPs) Max-CSPfn for all predi-

cates f : {0, 1}k → {0, 1}. In these problems, given an integer v and a list of constraints

over n boolean variables, each obtained by applying f to a sequence of literals, we wish

to decide if there is an assignment to the variables that satisfies at least v constraints.

We consider these problems in the streaming model, where the algorithm makes a small

number of passes over the list of constraints.

Our first and main result is the following complete characterization: For every

predicate f , the streaming space complexity of the Max-CSPfn problem is Θ̃(ndeg(f)),

where deg(f) is the degree of f when viewed as a multilinear polynomial. While the

upper bound is obtained by a (very simple) one-pass streaming algorithm, our lower

bound shows that a better space complexity is impossible even with constant-pass

streaming algorithms.

Building on our techniques, we are also able to get an optimal Ω(n2) lower bound

on the space complexity of constant-pass streaming algorithms for the well studied

Max-CUT problem, even though it is not technically a Max-CSPfn problem as, e.g.,

negations of variables and repeated constraints are not allowed.
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1 Introduction

Constraint satisfaction problems (CSPs) are used extensively in mathematics as they give

a unified framework that allows the expression of a wide variety of computational opti-

mization problems. An instance of a (boolean) CSP is a list of constraints (or clauses)

Ψ = (C1, . . . ,Cm) over n boolean variables x1, . . . , xn. Here, each constraint Ci is obtained

by applying a boolean function to a sequence of variables. The value of Ψ is the maximum

number of constraints that can be satisfied by an assignment to the variables.

CSPs received a lot of attention in the computational setting, where the holy grail is to

classify all CSPs according to their hardness. A surprising classical result from the 1970’s,

known as the dichotomy theorem, shows that the problem of deciding if all the constraints of

a given CSP can be satisfied is either in P or is NP-complete [Sch78, FV98, Bul17, Zhu20].

Another very successful line of research studies the hardness of approximating the value of

a CSP instance (or, equivalently, solving the corresponding gap problems), culminating in

a complete characterization of “approximation-resistant” CSPs, at least under the unique

games conjecture [Rag08] (also see [Mos10, Aus07, Aus10] and the survey of [Kho10]).

The space complexity required to solve general CSPs was only recently studied in the con-

text of streaming algorithms [GT19, CGV20, CGSV21, CGS+22, BHP+21, SSV21]. Stream-

ing algorithms are a restricted set of algorithms where the input is assumed to be given as a

stream of objects that is only scanned once or a few times by the algorithm. In the frame-

work of streaming CSPs, the objects in the stream are constraints (with repeated constraints

allowed).

Recently, [CGSV21] showed that CSPs are never very easy in the streaming setting. In

particular, they give a simple argument showing an Ω(n) lower bound on the space complexity

of any streaming algorithm that solves Max-CSPfn, for any non-constant f . Here, Max-CSPfn
is the problem where on input (Ψ, v), we need to decide whether or not the value of Ψ is

at least v, where v ∈ N and Ψ is a CSP instance over n variables with constraints that are

applications of the predicate f : {0, 1}k → {0, 1} to a sequence of literals (variables and

negations of variables) and constants12.

Are there Max-CSP problems that require substantially more than linear space? We

mention that for other streaming problems where the size of the input is potentially much

larger than n, e.g., graph streaming problems, linear or almost linear space algorithms are

often considered efficient (“semi-streaming”), and Ω(n2) lower bounds are desired3.

This paper. In this paper we give a characterization of the space complexity of multi-pass

streaming algorithms that solve Max-CSPfn, for arbitrary f . For the rest of this section,

1E.g., the constraint Ci can be f(1, x̄5, x̄8, x2).
2We mention that the setting of [CGSV21] is more general: it does not allow the constraints to use

negation of variables, but does allow them to apply any predicate out of a set of predicates F .
3For instance, an Ω(n) multi-pass lower bound for directed reachability and related graph problems is

simple, and recent work focused on improving the bound to Ω(n2−ε) [GO16, AR20, CKP+21].
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assume that the length of the stream is at most polynomial in n. It is easy to see that

for every f , the Max-CSPfn problem can be solved by a one-pass streaming algorithm with

at most Õ(nk) space: Observe that the number of different constraints is only O(nk).4

By counting the number of appearances of each clause in the stream, which only requires

storing O(nk) counters, we essentially store the entire input and can even compute the exact

value of the instance.

Is Ω(nk) space always required? Clearly no, as f may not even depend on all k of its

variables. So, what exactly determines the space complexity of Max-CSPfn?

1.1 Our Results

We start by observing that, in fact, the Max-CSPfn problem admits an Õ(nd)-space, one-pass

streaming algorithm, where d = deg(f) ≤ k is the degree of f when written as a multilinear

polynomial over the reals5. This follows because, for any instance Ψ with n variables, there

exists a degree d polynomial P over the same variables such that the values of Ψ and P on any

assignment x ∈ {0, 1}n are the same. Moreover, this polynomial can easily be maintained

using an Õ(nd)-space streaming algorithm, as it has at most O(nd) coefficients and is just

the sum of the multilinear polynomials corresponding to each individual clause6. Thus, an

algorithm that maintains this polynomial using Õ(nd)-space and outputs its largest value

(over all x) also solves Max-CSPfn.

However, is there yet another, better, streaming algorithm for Max-CSPfn, for any f?

1.1.1 Lower Bounds for Max-CSP

Our main result answers this question in the negative, showing that the above algorithm is

essentially optimal, even if constantly many passes are allowed. This means that the degree

of a predicate fully characterizes the streaming space complexity of the associated Max-CSP

problem.

Theorem 1.1 (cf. Theorem 4.1). Let k ∈ N be a constant and let f : {0, 1}k → {0, 1}. For

n, p ∈ N, the p-pass streaming space complexity of Max-CSPfn is at least Ω
(
ndeg(f)/p

)
.

We mention that with 2n passes, the space complexity of Max-CSPfn drops down to Õ(log n),

for every f . The reason is that, in each pass, the algorithm can count the number of con-

straints satisfied by a certain assignment. We also mention that the formal version (see

Theorem 4.1) of Theorem 1.1 shows a lower bound on the communication complexity of

Max-CSPfn, and is therefore stronger. The same holds for the stronger version (see Theo-

rem 5.1) of Theorem 1.2 below.

4A constraint corresponds to an element of X k, where X = {x1, x̄1, . . . , xn, x̄n, 0, 1}k, and |X | = 2n+ 2.
5For instance, if f(y1, y2, y3) = y1 ∧ y2 ∧ ȳ3, then the corresponding polynomial is y1y2(1− y3).
6For instance, if f(y1, y2, y3) = y1y2(1 − y3) = y1y2 − y1y2y3 and Ci = f(x̄5, 1, x2), then multilinear

polynomial corresponding to Ci is (1− x5) · 1 · (1− x2) = 1− x2 − x5 − x2x5.
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The proof of Theorem 1.1 consists of two key results. The first result, given in Theo-

rem 3.1, shows that any instance of Max-CSPANDd
n , where ANDd is the d-bit conjunction func-

tion, can be expressed as a Max-CSPfn instance for any f that has deg(f) = d.7 Therefore,

to prove Theorem 1.1, it suffices to show an Ω(nd) lower bound on the streaming complexity

of Max-CSPANDd
n , which is done by our second key result, Lemma 4.2. Lemma 4.2, in turn, is

proved using a novel communication complexity reduction from set disjointness. We mention

that our proofs are generally quite simple.

Theorem 3.1 may be of independent interest, as it gives a general way of converting

lower bounds for Max-CSPANDd
n to lower bounds for Max-CSPfn. Indeed, in Appendix A, we

show that it can also be used to obtain a lower bound on the space complexity of multi-pass

streaming algorithms that approximate Max-CSP problems arbitrarily well. We mention that

the space complexity of streaming and sketching algorithms that approximate, within any

constant factor, the value of a given CSP instance was the main interest of [CGSV21] (also

see [CGS+22]), and that they prove beautiful dichotomy (or partial dichotomy) results.8 See

[Sud22] for a recent and great survey.

1.1.2 Lower Bound for Max-CUT

One of the most studied CSPs in the streaming literature is the Max-CUT problem, corre-

sponding to the XOR predicate [KK15, KKS15, KKSV17, BDV18, KK19, AKSY20, AV21].

Note that Max-CUTn is not a proper Max-CSPfn problem, as constraints cannot be repeated

nor use constants or negations of variables. Nevertheless, our techniques can be used to

prove an Ω(n2) lower bound on the space complexity of multi-pass Max-CUTn streaming

algorithms for unweighted graphs. Observe that, indeed, deg(XOR) = 2.

Theorem 1.2 (cf. Theorem 5.1). For n, p ∈ N, the p-pass streaming space complexity of

Max-CUTn is at least Ω(n2/p).

Prior to our work, an Ω(n2) lower bound was only known for one-pass streaming al-

gorithms that solve Max-CUTn [Zel11] and for weighted graphs [BCHD+19]9. Multi-pass

streaming lower bounds were recently shown for the much more general case of approximation

algorithms, but these only obtained sub-linear lower bounds on the space [AKSY20, AV21].

Quadratic multi-pass lower bounds for other graph problems are shown in [ACHKP21].

7Reductions of this form were used in the study of CSPs in the computational setting. For instance, the
XOR of two bits can be expressed using a set of f -clauses, for many different functions f , see e.g. Lemma
5.36 in [CKS01]. However, such reductions do not preserve the degree (reducing it to 2), and would not give
us better than quadratic bounds. Indeed, our proofs are very different from theirs and preserve the degree
of f .

8We note that the space regime in their dichotomies is different than the one we consider in Theorem 4.1:
As the value of any CSP instance can be approximated within any constant factor by a one-pass Õ(n)-
space streaming algorithm, an “easy” CSP for [CGSV21] admits an O(poly log n)-space one-pass streaming
algorithm, and a “hard” CSP requires Ω(nα) space (α ≤ 1), also see [CGS+22]. In the exact version, however,
an Ω(n) lower bound is known [CGSV21] and so, our main result (Theorem 4.1) concerns super-linear space
complexities.

9We thank the anonymous reviewer for telling us that this theorem follows from [BCHD+19].
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2 Models and Preliminaries

2.1 Notation

We use N = {1, 2, 3, . . .} to denote the set of natural numbers (note that 0 /∈ N). We denote

vectors in bold letters (e.g., x and C). Let ` ≥ 1 and let x be a vector with ` coordinates. For

i ∈ [`], we use the notation xi to address coordinate i of x. Let S ⊆ [`], we use the notation

xS to address the vector with |S| coordinates obtained by deleting from x coordinates that

are not in S. We often use the notation (·, ·) to denote vector concatenation, e.g., if each

of x and y is either a vector or an element, then (x,y) denotes the vector obtained by

concatenating y to x.

Let ` ≥ 0. We use 0` and 1` to denote the all-0s and all-1s vectors (respectively) of `

coordinates. For a vector x ∈ {0, 1}`, we denote the Hamming weight of x by ‖x‖. That is,

‖x‖ =
∑

i∈[`] xi.

2.2 Constraint Satisfaction Problems

CSPs. Let k ∈ N be a natural number and f : {0, 1}k → {0, 1} be a boolean function. Let

n ∈ N and consider n boolean variables x1, . . . , xn. Let Xn = {0, 1, x1, x̄1, . . . , xn, x̄n} be the

set of all literals and constants. An instance of the Max-CSPfn problem is defined as a list of

clauses Ψ = (C1, . . . ,Cm), for some m ∈ N, where Ci ∈ X k
n for all i ∈ [m].

Observe that if C ∈ X k
n , then an assignment x ∈ {0, 1}n, fixes the value of f(Ci). We

define the value of Ψ on an assignment x ∈ {0, 1}n to be the number of clauses that it

satisfies:

Ψ(x) =
m∑
i=1

f(Ci).

The value of Ψ is defined as the maximum number of clauses that are satisfied by a single

assignment:

Max-CSPfn(Ψ) = max
x∈{0,1}n

Ψ(x). (1)

The problem of Max-CSPfn is a decision problem that on input (Ψ, v), where Ψ is as above

and v ∈ N, outputs 1 if Max-CSPfn(Ψ) ≥ v and 0 otherwise.

Approximate CSPs. We will also be interested in the approximation version of Max-CSPfn.

For ε ≥ 0, the problem of Max-CSPfn,ε on instance Ψ is to output a value v that satisfies

(1− ε) ·Max-CSPfn(Ψ) ≤ v ≤ Max-CSPfn(Ψ). (2)

Positive CSPs. It will be useful to consider CSPs with a restricted set of possible clauses,

where variables are only used positively (meaning that the negations of variables cannot be
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used). Formally, as before, we define an instance of the Max-Pos-CSPfn problem as a list of

clauses Ψ = (C1, . . . ,Cm). However, now each Ci is in the set {0, 1, x1, . . . , xn}k.10

Predicate degree. Let k ∈ N and f : {0, 1}k → {0, 1} be a boolean function. We define

the degree of f , denoted deg(f), to be the minimum degree of a (multilinear) polynomial

g : Rk → R that satisfies ∀x ∈ {0, 1}k : f(x) = g(x). We mention that it can be assumed,

without loss of generality, that the coefficients of g are integers. Indeed, if not, fixing the

smallest degree term with a non-integer coefficient and setting all the variables in this term

to 1 and all other variables to 0 results in a non-integral value.

Max-AND. Let k ∈ N. We denote ANDk(x1, . . . , xk) =
∧
i∈[k] xi. We use Max-ANDk

n to

denote the Max-CSPANDk
n problem.

Max-CUT. Let n ∈ N and consider a simple, undirected graph G on n vertices. We define

Max-CUTn(G) to be the maximum size of a cut (partitioning of the vertices) in G. Here,

the size of a cut is the number of edges in G that cross the cut. Let v ∈ N. We define

Max-CUTn(G, v) = 1 if Max-CUTn(G) ≥ v, and otherwise Max-CUTn(G, v) = 0.

2.3 Communication Complexity

For a two-party communication task T (x, y), we use CC(T ) to denote the randomized com-

munication complexity of T with success probability at least 2/3.

Max-CSP as a communication task. We denote by CC(Max-CSPfn) the communication

complexity of solving Max-CSPfn instances where the clauses are partitioned between two

parties. Formally, the input to the communication task is (Ψ, v) =
((

ΨA,ΨB
)
, v
)
, where

Alice gets as input ΨA and Bob gets as input ΨB, and v is known to both parties. We will

assume throughout that ΨA and ΨB are of the same size. This technical assumption will be

useful for us as it implies that both Alice and Bob know the total number of clauses. We

define CC(Max-Pos-CSPfn) similarly.

Max-CUT as a communication task. We denote by CC(Max-CUTn) the communication

complexity of solving Max-CUTn instances where the edges of the graph are partitioned

between two parties. Formally, there is a set V of n vertices and both Alice and Bob are given

disjoint sets of edges EA and EB over the vertices in V . Both of them also know a value v

and need to determine whether or not the maximum cut in the graph G = (V,EA ∪ EB) is

at least v.

10We note that we do want to allow constants: consider, for example, the case where f(x1, x2, x3) =
x1 ⊕ x2 ⊕ x3. When not allowing constants, any instance of Max-Pos-CSPfn is trivially maximized by the
all-1s vector.
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Set disjointness. We will use a lower bound on the communication complexity of the

following version of the set disjointness problem: For u,m ∈ N with u ≥ m, an instance

of the DISJu,m problem is a pair (y, z), where y, z ∈ {0, 1}u with ‖y‖ = ‖z‖ = m. The

problem is to compute whether or not the sets indicated by y and z intersect or not, i.e.,

DISJu,m(y, z) = 1(∀i ∈ [u] : yi · zi = 0).

Lemma 2.1 ([Raz90]). Let m ∈ N. We have that CC(DISJ4m+1,m) ≥ Ω(m).

2.4 Streaming Algorithms

We say that p-pass streaming algorithm solves a streaming task if it scans the input p

times and outputs a correct solution with probability at least 2/3. The problems Max-CSP,

Max-CUT have a natural streaming task associated with where the list of clauses/edges are

given in a stream and the target value v is hard-coded in the algorithm.

3 Reducing Max-AND to Max-CSP

The goal of this section is to show the following theorem:

Theorem 3.1. Let k ≥ d ∈ N. Let f : {0, 1}k → {0, 1} be such that deg(f) = d. There exist

non-negative rational numbers {αC}C∈Xk
d

and α, such that for every x ∈ {0, 1}d it holds that

ANDd(x) =
∑
C∈Xk

d

αCf(C)− α.

Proof. To start, note that the non-negativity of α is without loss of generality (given the

other claims), as can be seen by setting x = 0d. We use the following notation: Given

a function j : {0, 1}` → {0, 1}, we write it as the polynomial j(x) =
∑

S⊆[`] jSTS, where

TS =
∏

i∈S xi.

Let S ⊆ [k] be a set of size d with fS 6= 0. We assume without loss of generality that

S = [d]. We define the function h : {0, 1}d → {0, 1} by h(x) = f(x,0k−d) if f[d] > 0, and by

f(x̄1, x2, . . . , xd,0
k−d) if f[d] < 0. Observe that h[d] = |f[d]| > 0.

If h is of the form h(x) = h[d] · T[d] + h∅, we are done, as this implies T[d] = ANDd(x) =
1
h[d]

(h(x) − h∅) and as h[d] > 0 (also recall that, for every S ⊆ [d], the coefficient hS can be

assumed to be an integer). Otherwise, let 0 < d∗ < d be the maximum size of a set S such

that hS 6= 0, and assume without loss of generality that h[d∗] 6= 0.

Let h′, g : {0, 1}d → {0, 1} be given by h′(x) = h(x̄1, x2, . . . , xd∗ ,0
d−d∗) and g(x) =

h(x) + h′(x). We next prove the following three properties about the coefficients of g:

1. g[d] = h[d] > 0.

2. g[d∗] = 0.
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3. Let S be the set of subsets S ( [d] with |S| ≥ d∗ and hS = 0. Then, for every S ∈ S,

it holds that gS = 0.

Before proving the above three properties, we show that they suffice in order to prove

the theorem. We use the following observation that is implied by the second and third

properties: Recall that d∗ is the maximum size of a set S ( [d] with hS 6= 0, and let t be

the number of sets S ( [d] of size d∗ with hS 6= 0. Then, either the maximum size of a set

S ( [d] with gS 6= 0 is strictly smaller than d∗, or the maximum size of such set is d∗ but

there are strictly less than t sets S of size d∗ with gS 6= 0.

The theorem follows from the observation by repeatedly “zeroing out” a leading coef-

ficient. In more detail, consider the sequence of functions h1, h2, . . . , where h1 = h and

hi+1 = hi + (hi)′,11 and where the sequence ends after the function hm if and only if it is of

the form hm(x) = hm[d] · T[d] + hm∅ . By the observation, the sequence indeed ends. Let hm be

the last function in the sequence. Observe that hm is of the form
∑

C∈Xk
d
α′Cf(C) with the

coefficients α′C being non-negative integers, and that, by the first property, hm[d] > 0. This

concludes the proof as we have T[d] = ANDd(x) = 1
hm
[d]

(hm(x)− hm∅ ).

It remains to prove the three above properties. We first calculate the coefficients of h′:

h′(x) = h(x̄1, x2, . . . , xd∗ ,0
d−d∗) =

∑
S⊆{2,...,d∗}

hSTS + hS∪{1}(1− x1)TS

=
∑

S⊆[d∗]: 1/∈S

(hS + hS∪{1})TS −
∑

S⊆[d∗]: 1∈S

hSTS.

Therefore, for S ⊆ [d∗], if 1 ∈ S then h′S = −hS, and if 1 /∈ S, then h′S = hS+hS∪{1}. Observe

that if S is not a subset of [d∗], it holds that h′S = 0, and therefore gS = hS+h′S = hS+0 = hS.

Since d∗ < d, this implies g[d] = h[d], proving the first property.

To prove the second property, note that for any set S ⊆ [d∗] with 1 ∈ S, we have

gS = hS + h′S = hS − h′S = 0. This implies g[d∗] = 0.

To prove the third property, let S ∈ S. Recall hS = 0, and thus S 6= [d∗]. Also recall

that |S| ≥ d∗, and since S 6= [d∗], this means that S is not contained in [d∗]. By the above,

gS = hS = 0.

Our proofs use the following corollaries of Theorem 3.1 to communication complexity

and streaming space complexity.

Corollary 3.2. Let k ∈ N and f : {0, 1}k → {0, 1}. For all n ∈ N, we have:

CC
(
Max-ANDdeg(f)

n

)
≤ CC

(
Max-CSPfn

)
.

Proof. Let d = deg(f). We prove the theorem by reduction. Given an input (Ψ, v) =((
ΨA,ΨB

)
, v
)

for the Max-ANDd
n communication problem over variables x = (x1, . . . , xn),

11The function (hi)′ is obtained from hi by negating one of the variables. However, for a general i, the
negated variable may not be x1.
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we construct an input Φ =
(
(ΦA,ΦB), u

)
for Max-CSPfn over the same variables. To this end,

we generate a set of f -clauses for every AND clause using Theorem 3.1.

In more detail, Alice goes over all the clauses in ΨA. Suppose that clause i is C ∈ X d
n .

Alice generates the f -clauses corresponding to this clause as follows: View C as the vector of

formal variables (X1, . . . , Xd) and let X ′d = {0, 1, X1, X̄1, . . . , Xd, X̄d} be the corresponding

set of formal literals and constants. By Theorem 3.1, there exist wC′ ∈ N ∪ {0} for every

C′ ∈ (X ′d)
k, an integer w, and w′ ∈ N, such that

w′ · ANDd(C) =
∑

C′∈(X ′d)
k

wC′f(C′)− w.

For every C′ ∈ (X ′d)k, Alice adds wC′ copies of the clause C′ to ΦA. Here, we view C′ as an

element in X k
n , as each of its coordinates X ′i, i ∈ [k], is either a bit or is of the form Xj or X̄j

for some j ∈ [d], and Xj itself is either a bit or of the form x` or x̄` for some ` ∈ [n] (e.g., if

X ′i = X̄j and Xj = x̄`, then we identify X ′i with X ′i = X̄j = (x̄`) = x`). Bob constructs ΦB

similarly.

Observe that both Alice and Bob generate the same number of f -clauses for every AND

clause in Ψ. Since we assume that ΨA and ΨB has the same number of clauses, ΦA and ΦB

have the same number of clauses. Let m be the number of clauses in Ψ, i.e., m is the sum

of the lengths of ΨA and ΨB. Observe that since Alice and Bob have the same number of

clauses, they both know m. Also observe that

w′ ·Max-ANDdeg(f)
n (Ψ) = Max-CSPfn(Φ)− w ·m.

Now, set u = w′ · v+w ·m, and note that both Alice and Bob can compute u. To finish the

proof we observe that Max-CSPfn(Φ) ≥ u if and only if Max-ANDdeg(f)
n (Ψ) ≥ v.

Corollary 3.3. Let k ∈ N and f : {0, 1}k → {0, 1}. For all ε′ ≥ 0, there exists ε ≥ 0

such that for all p, n ∈ N, any p-pass streaming algorithm for Max-CSPfn,ε′ implies a p-

pass streaming algorithm for Max-ANDdeg(f)
n,ε with the same space complexity, up to constant

factors.

Proof. Let d = deg(f). Given an instance Ψ of Max-ANDd
n over variables x = (x1, . . . , xn),

presented as a stream of clauses, we can use the same construction as in the proof of Corol-

lary 3.2 to generate an instance Φ of Max-CSPfn over the same variables. Note that this

construction can be implemented in a streaming manner.

Let wC′ ∈ N∪{0} for every C′ ∈ (X ′d)
k, w ∈ N∪{0}, and w′ ∈ N be such as in the proof

of Corollary 3.2, let α = w
w′

be as in Theorem 3.1, and let m be the number of clauses in Ψ.

Note that as before,

w′ ·Max-ANDd
n(Ψ) = Max-CSPfn(Φ)− w ·m.

8



Now, let ε = 2k+1(α + 1)ε′, and suppose that there existed a p-pass streaming algo-

rithm A′ which, given an instance Φ of Max-CSPfn,ε′ returned a value v′ such that (1 −
ε′) · Max-CSPfn(Φ) ≤ v′ ≤ (1 + ε′) · Max-CSPfn(Φ) with probability at least 2/3. Then we

could create a p-pass streaming algorithm A for Max-ANDf
n,ε which turns an instance Ψ of

Max-ANDd
n into an instance Φ of Max-CSPfn as above, runs A′ on the resulting stream Φ to

obtain some v′ as above, and then outputs 1
w′

(v′ − (1− ε′) · w ·m).

Upper bounding the space complexity of A: A requires only O(logm) additional bits

over A′ in order to compute m. However, without loss of generality, we may assume that

every clause of Ψ is satisfied by some assignment of variables, by simply ignoring all clauses

which are not satisfied by any assignment of variables. By a probabilistic argument, this

then ensures that Max-ANDd
n(Ψ) ≥ m/2k, so logm = O(log v′). As A′ has to output v′, it

requires at least log v′ bits of memory, implying that the space required by A and A′ are

within a constant factor.

Proving the correctness of A: Consider v = 1
w′

(v′ − (1− ε′) · w ·m), the value returned

by the algorithm. With probability 2/3, it holds that (1− ε′) ·Max-CSPfn(Φ) ≤ v′ ≤ (1 + ε′) ·
Max-CSPfn(Φ). As such, suppose that this happens.

We claim that v ≥ (1− ε) ·Max-ANDd
n(Ψ). This follows directly as ε ≥ ε′, v′ ≥ (1− ε′) ·

Max-CSPfn(Φ), and w′ ·Max-ANDd
n(Ψ) = Max-CSPfn(Φ)− w ·m.

Next, we claim that v ≤ (1 + ε) · Max-ANDd
n(Ψ) using the fact that v′ ≤ (1 + ε′) ·

Max-CSPfn(Φ). Recalling our assumption that each clause in Ψ is satisfied by some assignment

of variables, we get that Max-ANDd
n(Ψ) ≥ m/2k. Thus,

v =
1

w′
(v′ − (1− ε′) · w ·m)

≤ 1

w′
(
(1 + ε′) ·Max-CSPfn(Φ)− (1− ε′) · w ·m

)
= (1 + ε′) ·Max-ANDd

n(Ψ) + 2ε′ · wm
w′

≤ (1 + ε′) ·Max-ANDd
n(Ψ) + 2ε′ · α2k ·Max-ANDd

n(Ψ)

=
(
1 +

(
1 + α2k+1

)
ε′
)
·Max-ANDd

n(Ψ)

≤ (1 + ε) ·Max-ANDd
n(Ψ).

Thus, (1− ε) ·Max-ANDd
n(Ψ) ≤ v ≤ (1 + ε) ·Max-ANDd

n(Ψ) with probability at least 2/3.

4 Communication Lower Bound for Max-CSP

In this section we prove Theorem 1.1. By standard argument, Theorem 1.1 is implied by the

following communication lower bound:

9



Theorem 4.1. Let k ∈ N and f : {0, 1}k → {0, 1}. For all n ∈ N, we have

CC(Max-CSPfn) ≥ Ω
(
ndeg(f)

)
.

In turn, Theorem 4.1 follows directly from Lemma 4.2 below and Corollary 3.2:

Lemma 4.2. Let k ∈ N. For all n ∈ N, we have

CC
(
Max-ANDk

n

)
≥ Ω

(
nk
)
.

Observe that Lemma 4.2 follows from an Ω
(
nk
)

lower bound on CC(Max-CSPgkn ) for any

function gk : {0, 1}k → {0, 1}. The reason is that any gk can be written in DNF form, by

looking at its truth table and writing it as an OR of a set of AND clauses, such that any

satisfying assignment satisfies exactly one of the AND clauses (and a non-satisfying assign-

ment satisfies none). Now, given an instance of Max-CSPgkn , we convert it to an instance of

Max-ANDk
n by replacing each constraint with the corresponding set of AND clauses. Observe

that the values of the two instances are the same and therefore, a lower bound for Max-CSPgkn
implies a lower bound for Max-ANDk

n. Thus, the following lemma implies Lemma 4.2:

Lemma 4.3. Let k ∈ N and let gk(x1, . . . , xk) = xk⊕
(∨

i∈[k−1] xi

)
. For all n ∈ N, we have:

CC(Max-Pos-CSPgkn ) ≥ Ω
(
nk
)
.

As mentioned above, a weaker version of Lemma 4.3, that shows a lower bound on the

communication complexity of Max-CSPgkn (instead of that of Max-Pos-CSPgkn ) suffices to prove

Lemma 4.2. Nevertheless, we chose to prove the stronger version as it can be shown to also

imply Theorem 1.2 for weighted graphs, as g2(x1, x2) = XOR(x1, x2), and that this is also

part of the reason for selecting these specific gk functions. In Section 5, we give an alternative

proof that also works for unweighted graphs. The rest of this section is devoted to proving

Lemma 4.3.

4.1 Proof of Lemma 4.3

In this section we prove Lemma 4.3. Fix n, k ∈ N. Let U be the set of all subsets of [n] of

size exactly k and let u = |U | =
(
n
k

)
. When we take a set S ∈ U , we denote its elements

by s1 < s2 < . . . < sk and use the notation S−k to denote the set S \ {sk} (the set of all

elements but the largest).

We prove the assertion by reducing DISJu,m to Max-Pos-CSPgkn , for m =
⌊
u
4

⌋
− 1. Note

that by Lemma 2.1, since 4m+1 ≤ u it holds that CC(DISJu,m) ≥ CC(DISJ4m+1,m) ≥ Ω(m) =

Ω
(
nk
)
. Therefore, such a reduction indeed gives the claimed CC(Max-Pos-CSPgkn ) ≥ Ω

(
nk
)
.
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4.1.1 The Reduction

Let (y, z) be an instance of DISJu,m. Recall that ‖y‖ = ‖z‖ = m. We view y and z as

elements in {0, 1}U , vectors indexed by elements of U (for S ∈ U , we write, e.g., yS, to mean

coordinate S of y). We construct an instance (Ψ, C) = ((Ψy,Ψz), C) for Max-Pos-CSPgkn over

the variables x = (x1, . . . , xn) as follows. Let C = 4u− 4m+ k. For every S ∈ U , if yS = 0,

Alice adds to Ψy the following three clauses: xS,
(
xS−k

, 0
)
, and

(
0k−1, xsk

)
. Intuitively,

these clauses allow us to embed an OR clause, as can be seen in the following equality: Let

w ∈ {0, 1}k and let b =
∨
i∈[k−1]wi. Then,

gk(w) + gk(w1, . . . , wk−1, 0) + gk
(
0k−1, wk

)
=

(b⊕ wk) + b+ wk = 2(b ∨ wk) = 2 ·
(∨
i∈[k]

wi

)
. (3)

Likewise, Bob constructs an analogous set of clauses Ψz, using z in place of y.

Additionally, Alice adds the following clauses to Ψy: For i ∈ {1, . . . , n/2}, the clause(
1k−1, xi

)
. Bob adds the following clauses to Ψz: For i ∈ {n/2 + 1, . . . , n}, the clause(

1k−1, xi
)

(we assume that n is even here). Observe that since ‖y‖ = ‖z‖, we get that Ψy

and Ψz have the same number of clauses.

4.1.2 Analysis

We next prove that the reduction works. Let (y, z) be an instance of DISJu,m and let

(Ψ, C) = ((Ψy,Ψz), C) be the instance of Max-Pos-CSPgkn resulting from the reduction. We

next show that Max-Pos-CSPgkn (Ψ) < C if and only if DISJu,m(y, z) = 1.

Let x ∈ {0, 1}n be an assignment. We denote U0(x) =
{
S ∈ U :

∨
i∈S xi = 0

}
. Now, let

us calculate Ψ(x) using Eq. (3) (observe that yS = 0 means 1− yS = 1):

Ψ(x) =
∑
S∈U

(2− yS − zS)
(
gk(xS) + gk

(
xS−k

, 0
)

+ gk
(
0k−1, xsk

))
+
∑
i∈[n]

gk
(
1k−1, xi

)
= 2

∑
S∈U

(2− yS − zS)

(∨
i∈S

xi

)
+
∑
i∈[n]

(1− xi)

= 4u− 2‖y‖ − 2‖z‖ − 2
∑

S∈U0(x)

(2− yS − zS) + n− ‖x‖

= 4u− 4m− 2
∑

S∈U0(x)

(2− yS − zS) + n− ‖x‖. (4)

y and z intersect. First, suppose that DISJu,m(y, z) = 0 and let S∗ ∈ U be such that

yS∗ = zS∗ = 1. Consider the assignment x ∈ {0, 1}n with xi = 0 if and only if i ∈ S∗. We

will show that Ψ(x) = C. To this end, observe that U0(x) = {S∗}, that 2 − yS∗ − zS∗ = 0,

and that ‖x‖ = n− k. By Eq. (4), Ψ(x) = 4u− 4m− 0 + k = C.
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y and z are disjoint. Now suppose that DISJu,m(y, z) = 1. Thus, for every S ∈ U , yS = 0

or zS = 0, implying 2− yS − zS ≥ 1. We will show that Max-Pos-CSPgkn (Ψ) < C.

Let x ∈ {0, 1}n be an assignment. We consider two cases. The first is the case where

U0(x) 6= ∅. Note that in this case, ‖x‖ ≤ n − k and also |U0(x)| =
(
n−‖x‖
k

)
. Also note that

since k ≥ 1, for all ` ≥ k, it holds that
(
`
k

)
≥ `− k. Thus, by Eq. (4), we have

Ψ(x) ≤ 4u− 4m− 2|U0(x)|+ (n− ‖x‖)

= 4u− 4m− 2

(
n− ‖x‖

k

)
+ (n− ‖x‖)

< 4u− 4m−
(
n− ‖x‖

k

)
+ (n− ‖x‖)

≤ 4u− 4m+ k

= C.

Now consider the case where U0(x) = ∅. Note that this implies that ‖x‖ ≥ n − k + 1. By

Eq. (4), we get Ψ(x) ≤ 4u− 4m+ (k − 1) < C.

5 Communication Lower Bound for Max-CUT

In this section, we prove Theorem 1.2. By a standard argument, Theorem 1.2 is implied by

the following communication lower bound:

Theorem 5.1. CC(Max-CUTn) ≥ Ω(n2).

Theorem 5.1 is proved in two steps. We first show a lower bound on the related problem

3IND-SET, and then show how to convert this lower bound to a communication lower bound

for Max-CUT.

5.1 Lower Bound for 3IND-SET

In this section, we prove a lower bound on the communication complexity necessary to solve

the independent set problem 3IND-SETn. In this problem, both Alice and Bob are given

(disjoint) sets of edges over the same set of n vertices and their goal is to output whether or

not the graph formed by the union of their sets has an independent set of size 3.

Theorem 5.2 (see [PS82]12). CC(3IND-SETn) ≥ Ω(n2).

Proof. We prove this result by a reduction. Let m = n2−1
4

. Recall by Lemma 2.1 that

CC(DISJn2,m) ≥ Ω(n2). Given an instance x,y of DISJn2,m, where Alice’s and Bob’s inputs

are viewed as vectors x,y ∈ {0, 1}[n]×[n] respectively, Alice and Bob create an instance of

3IND-SET3n as follows: They view the 3n vertices as 3 disjoint sets V0, VA, and VB of n

vertices each and construct the following edges:

12We thank the anonymous reviewer for telling us that this theorem follows from [PS82].

12



1. The vertices in the set V0 are all connected to each other to form a clique. The same

for the sets VA and VB. Finally, for all j 6= j′ ∈ [n], vertex j in VA is connected to

vertex j′ in VB. Note that these edges are known to both Alice and Bob as they are

independent of their input.

2. For all (j, j′) ∈ [n]× [n], Alice (respectively, Bob) adds an edge between vertex j in V0
and vertex j′ in VA (respectively, VB) if and only if x(j,j′) = 0 (resp. y(j,j′) = 0). These

edges are functions of the input and are only known to one of the parties. Moreover,

Alice’s and Bob’s edges are disjoint.

We claim that the above graph has an independent set of size 3 if and only if Alice’s

and Bob’s inputs for disjointness are intersecting. Indeed, as Item 1 implies that the sets

V0, VA, VB all form cliques, any independent set of size 3 must have exactly one vertex from

each of these sets. Moreover, due to edges between VA and VB defined above, we get that an

independent set of size 3 exists if and only if there exists (j, j′) ∈ [n]× [n] such that vertex

j in V0, vertex j′ in VA, and vertex j′ in VB form an independent set. Due to the edges in

Item 2, this happens if and only if there exists (j, j′) ∈ [n]× [n] such that x(j,j′) = y(j,j′) = 1,

as desired.

5.2 Lower Bound for Max-CUT

We now reduce 3IND-SET to Max-CUT and prove Theorem 5.1.

Proof of Theorem 5.1. We prove this result by a reduction from 3IND-SETn. Given an

instance G = (V,E = EA ∪ EB) of 3IND-SETn, where Alice has edges EA and Bob has

edges EB, Alice and Bob create an instance G′ of Max-CUT21n as follows: They view the

21n vertices as 3 disjoint sets VG, V0, and V1 of n, 10n, and 10n vertices respectively and

construct the following edges:

1. The set V0 and V1 are made to form a complete bipartite graph by connecting every

vertex in V0 with every vertex in V1. Also, for all j ∈ [n], we connect vertex j in VG
to vertex j in V1. Note that these edges are known to both Alice and Bob as they are

independent of their input.

2. For each edge (j, j′) ∈ EA, Alice creates the corresponding edge in VG and also connects

vertex j in VG to vertex j′ in V0 and connects vertex j′ in VG to vertex j in V0. We call

these three edges the “frame” of (j, j′) and note that these edges are functions of Alice’s

input and are only known to her. We construct Bob’s edges analogously. Observe that

Alice’s and Bob’s edges are disjoint (as they were disjoint in the 3IND-SET instance).

We now claim that the constructed instance has a maximum cut size of at least C =

(10n)2 + 2|E| + 3 if and only if G has a 3-independent set13. To see the “if” direction, let

13Note that both the parties can compute C by computing |E| which requires only O(log n) bits of
communication. This communication can be ignored as we are proving an Ω(n2) lower bound.

13



{i, j, k} be an independent set of size 3 in G and consider the cut formed by putting V0 and

vertices i, j, k of VG on one side and every other vertex on the other. This cut has (10n)2 +3

edges of Item 1 above ((10n)2 between V0 and V1 and 3 edges between VG and V1) and also

has 2|E| of Item 2 above (as {i, j, k} is an independent set, 2 out of 3 edges in all the frames

are in the cut). Thus, there exists a cut of size at least C, as desired.

It remains to show the “only if” direction. Suppose that G has no independent set of

size 3 and suppose for the sake of contradiction that the largest (breaking ties arbitrarily)

cut (S, S) in the instance G′ has size at least C. As there are only 3|E| + n ≤ 3
2
· n2 other

edges in the graph, the cut (S, S) must have at least C− 3
2
·n2 > 90n2 of the edges between V0

and V1 in Item 1. Observe that this is possible only if at least 9n of the vertices in V0 are

on one side of the cut and at least 9n of the vertices in V1 are on the other side of the cut.

Without loss of generality, we assume that S has at least 9n of the vertices in V0 (and at

most n of the vertices in V1).

We claim that, in fact, S has all the vertices in V0 and none of the vertices in V1. Indeed,

suppose that there is a vertex in V0 \S and consider the cut obtained by moving this vertex

to S. As 9n of the vertices in V1 are in S, we have by Items 1 and 2 that moving this vertex

to S cuts at least 9n new edges and “uncuts” at most 6n edges, thereby increasing the size

of the cut, and contradicting the fact that (S, S) was the largest cut. A similar argument

applies if there is a vertex in V1 ∩ S and we are done.

Defining T = S \ V0 and using the above claim, we get that T ⊆ VG and (S, S) =

((T ∪ V0), ((VG \ T ) ∪ V1)). Letting ET be the set of edges with both endpoints in T and using

a calculation similar to that in the “if” direction above, we get that the size of the cut (S, S)

is at most (10n)2 + |T |+ 2 · (|E| − |ET |). Now, we claim (proved later) that |ET | ≥ |T |2
4
− |T |

2
,

implying that the size of the cut (S, S) is at most (10n)2 + 2 · |T | + 2 · |E| − |T |
2

2
. Setting

z = |T | in the identity (z − 2)2 = z2 − 4z + 4 ≥ 0, this is at most (10n)2 + 2 + 2 · |E| < C, a

contradiction.

It remains to prove the claim. As T ⊆ VG, we can identify T with a subset of the vertices

in G. With this identification, ET is just the subgraph of G induced by those vertices,

and does not have an independent set of size 3. It follows that the complement of this

subgraph does not have a triangle and therefore, has at most |T |
2

4
edges by Turán’s Theorem

[Man07, Tur41]. As the maximum number of edges is
(|T |

2

)
, we get that:

ET ≥
|T | · (|T | − 1)

2
− |T |

2

4
=
|T |2

4
− |T |

2
.
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A Streaming Lower Bound for Approximate Max-CSP

In this section, we will show a multi-pass lower bound for arbitrarily good approximations

of Max-CSP.

Theorem A.1. Let k, n ∈ N and f : {0, 1}k → {0, 1} with deg(f) > 1. Then, for all ε >

0, p ∈ N, any p-pass streaming algorithm for Max-CSPfn,ε has space complexity Ω
(
n1−O(εp2)

)
.

Theorem A.1 is tight in two respects: First, recall from Section 1 that the space lower

bound cannot be improved beyond O(n), as there is an O(n)-space upper bound for any

function f . Additionally, for the case where deg(f) ≤ 1, there is in fact an Oε(log n)-space,

one-pass streaming algorithm for Max-CSPfn,ε. The reason is that the only way deg(f) ≤ 1

is if f is constant (in which case an algorithm is trivial), or there exists i ∈ [n] such that

f(x) = xi or f(x) = xi, in which case Max-CSPfn,ε is the same as approximating an `1-norm,

algorithms for which can be found in, e.g., [Ind06, KNW10].

Proof of Theorem A.1. Proof by contradiction. Suppose that there exists a p-pass streaming

algorithm A for Max-CSPfn,ε with a better space complexity. As deg(f) > 1, we have by

Corollary 3.3 that there exists ε′ > 0 and a streaming algorithm A′ for Max-AND2
n,ε′ with

the same space complexity, up to constant factors.

We now claim that there exists ε′′ > 0 and a streaming algorithm A′′ for Max-CSPXOR2

n,ε′′

with the same space complexity. Indeed, we can expand any XOR constraint a ⊕ b as the

sequence of two constraints a ∧ b̄ and ā ∧ b and observe that at most one of these two

constraints can be satisfied by any assignment and is satisfied if and only if the assignment

satisfies the constraint a⊕ b. The algorithm A′′ is obtained by running A′ on the expanded

constraints. Finally, as the problem Max-CSPXOR2

n,ε′′ subsumes Max-CUTn,ε′′ , this contradicts

Result 2 in [AV21].
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