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Abstract

We show that the value of the n-fold repeated GHZ game is at most 2−Ω(n), improving upon the
polynomial bound established by Holmgren and Raz. Our result is established via a reduction to approx-
imate subgroup type questions from additive combinatorics.

1 Introduction

1.1 Multi-player Parallel Repetition and the GHZ Game

The GHZ game is a 3-player game in which a verifier samples a triplet (x, y, z) uniformly from S =
{(x, y, z) |x, y, z ∈ {0, 1}, x⊕ y ⊕ z = 0 (mod 2)}, then sends x to Alice, y to Bob and z to Charlie.
The verifier receives from each one of them a bit, a from Alice, b from Bob and c from Charlie, and accepts
if and only if a ⊕ b ⊕ c = x ∨ y ∨ z. It is easy to prove that the value of the GHZ game, val(GHZ),
defined as the maximum acceptance probability of the verifier over all strategies of the players, is 3/4.
The n-fold repeated GHZ game is the game in which the verifier samples (xi, yi, zi) independently from
S for i = 1, . . . , n, sends x⃗ = (x1, . . . , xn), y⃗ = (y1, . . . , yn) and z⃗ = (z1, . . . , zn) to Alice, Bob and
Charlie respectively, receives vector answers f(x⃗) = (f1(x⃗), . . . , fn(x⃗)), g(y⃗) = (g1(y⃗), . . . , gn(y⃗)) and
h(z⃗) = (h1(z⃗), . . . , hn(z⃗)) and accepts if and only if fi(x⃗)⊕gi(y⃗)⊕hi(z⃗) = xi∨yi∨zi for all i = 1, . . . , n.
What can one say about the value of the n-fold repeated game, val(GHZ⊗n)? As for lower bounds, it is
clearly that case that val(GHZ⊗n) ⩾ (3/4)n and one expects that value of the game to be exponentially
decaying with n. Proving such upper bounds though is significantly more challenging.

The GHZ game is a prime example of a 3-player game for which parallel repetition is not well under-
stood. For 2-player games, parallel repetition theorems with an exponential decay have been known for a
long time [14, 9, 13, 2, 4], and in fact the state of the art parallel repetition theorems for 2-player games are
essentially optimal. As for multi-player games, Verbitsky showed [18] that the value of the n-fold repeated
game approaches 0, however his argument uses the density Hales-Jewett theorem and hence gives a weak
rate of decay (inverse Ackermann type bounds in n). More recently, researchers have been trying to in-
vestigate multi-player games more systematically and managed to prove an exponential decay for a certain
class of games known as expanding games [3]. This work also identified the GHZ game as a bottleneck for
current technique, saying that, in a sense, the GHZ game exhibits the worst possible correlations between
questions for which existing information-theoretic techniques are incapable of handling.

A sequence of recent works managed to prove stronger parallel repetition theorems for the GHZ game [10]
(subsequently simplified by [5]), and indeed as suggested by [3] this development led to a parallel repetition
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theorem for a certain class of 3-player games [6, 7], namely for the class of games with binary questions.
Quantitatively, they showed that val(GHZ⊗n) ⩽ 1/nΩ(1), and subsequently that for any 3-player game G
with val(G) < 1 whose questions are binary, one has that val(G⊗n) ⩽ 1/nΩ(1). The techniques utilized
by these works is a combination of information theoretic techniques (as used in the case of 2-player games)
and Fourier analytic techniques.

1.2 Our Result

The main result of this paper is an improved upper bound for the value of the n-fold repeated GHZ game,
which is exponential in n. More precisely:

Theorem 1.1. There is ε > 0 such that for all n, val(GHZ⊗n) ⩽ 2−ε·n.

Such bounds cannot be achieved by the methods of [10, 5, 6, 7], and we hope that the observations
made herein would be useful towards getting better parallel repetition theorems for more general classes of
3-player games.

1.3 Proof Idea

Our proof of Theorem 1.1 follows by reducing it to approximate sub-group type questions from additive
combinatorics, and our argument uses results of Gowers [8]. Similar ideas have been also explored in the
TCS community (for example, by Samorodnitsky [16]).

Suppose f : {0, 1}n → {0, 1}n, g : {0, 1}n → {0, 1}n and h : {0, 1}n → {0, 1}n represent the strate-
gies of Alice, Bob and Charlie respectively, and denote their success probability by η. Thus, we have that

Pr
(x,y,z)∈Sn

[f(x)⊕ g(y)⊕ h(z) = x ∨ y ∨ z] ⩾ η, (1)

where the operations are coordinate-wise. Using Cauchy-Schwarz it follows that if we sample x, y, z and
u, v, w conditioned on x∨y∨z = u∨v∨w, then f(x)⊕g(y)⊕h(z) = f(u)⊕g(v)⊕h(w) with probability
at least η2, hence f(x)⊕f(u)⊕g(y)⊕g(v)⊕h(z)⊕h(w) = 0. What functions f, g, h can satisfy this? We
draw an intuition from [1], that suggested that such advantage can only be gained from linear embeddings.
In this respect, we are looking at the predicate P : Σ3 → {0, 1} with alphabet Σ = {0, 1}2 defined as
P ((x, u), (y, v), (z, w)) = 1 if x∨y∨z = u∨v∨w, x+y+z = 0 and u+v+w = 0. A linear embedding
is an Abelian group (A,+) and a collection of maps ϕ : Σ → A, γ : Σ → A and δ : Σ → A not all constant
such that ϕ(x, u)+γ(y, v)+ δ(z, w) = 0. There are 2 trivial linear embeddings into (Z2,+): the projection
onto the first coordinate as well as the projection onto the second coordinate. Thus, one is tempted to guess
that in the above scenario, the functions f, g and h must use these linear embeddings and thus be correlated
with linear functions over Z2. Alas, it turns out that there is yet, another embedding which is less obvious:
taking (A,+) = (Z4,+), ϕ(x, u) = x+u, γ(y, v) = y+ v and δ(z, w) = z+w. This motivates us to look
at the original problem and see if we can already see (Z4,+) structure there.

Approximate Homomorphisms. For (x, y, z) ∈ S, if x∨ y ∨ z = 1, then exactly two of the variables are
1; if x ∨ y ∨ z = 0, then all of x, y, z are 0. Thus, one can see that the check we are making is equivalent to
checking that 2f(x)+2g(y)+2h(z) = x+y+z (mod 4). Indeed, on a given coordinate i, if (xi∨yi∨zi) is
1, then xi+yi+zi = 2 and the answers need to satisfy that f(x)i+g(y)i+h(z)i = 1 (mod 2) which implies
2f(x)i+2g(y)i+2h(z)i = 2 (mod 4). Similarly, if (xi∨yi∨zi) = 0 then xi+yi+zi = 0 and the constraint
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says that we want f(x)i + g(y)i + h(z)i = 0 (mod 2) which implies that 2f(x)i + 2g(y)i + 2h(z)i = 0
(mod 4). Thus, the GHZ test can be thought of as a system of equations modulo 4, as suggested by
the above intuition. More precisely, defining F : {0, 1}n → Zn

4 by F (x)i = 2f(x)i − xi and similarly
G,H : {0, 1}n → Zn

4 by G(y)i = 2g(y)i − yi and H(z)i = 2h(z)i − zi, we have the following lemma:

Lemma 1.2. For each x, y, z ∈ Sn, F (x)+G(y)+H(z) = 0 (mod 4) if and only if f(x)i⊕g(y)i⊕h(z)i =
xi ∨ yi ∨ zi for all i = 1, . . . , n. Consequently,

Pr
(x,y,z)∈Sn

[F (x) +G(y) +H(z) = 0 (mod 4)] ⩾ η.

Proof. Without loss of generality we focus on the first coordinate. If (x1, y1, z1) = (0, 0, 0), then by (1) we
get that f(x)1 ⊕ g(y)1 ⊕ h(z)1 = 0, hence either all of them are 0 or exactly two of them are 1, and in any
case 2f(x)1+2g(y)1+2h(z)1 = 0 (mod 4). Otherwise, without loss of generality (x1, y1, z1) = (1, 1, 0),
and then by (1) we get f(x)1⊕ g(y)1⊕h(z)1 = 1, and there are two cases. If f(x)1 = g(y)1 = h(z)1 = 1,
then we get that F (x)1+G(y)1+H(z)1 = 2−1+2−1+2+0 = 0 (mod 4). Else, exactly one of them is
1, say f(x)1 = 1 and g(y)1 = h(z)1 = 0, and then F (x)1+G(y)1+H(z)1 = 2−1+0−1+0−0 = 0.

In words, Lemma 1.2 says that F,G,H form an approximate “cross homomorphism” from Zn
2 to Zn

4 .
Once we have made this observation, the proof is concluded by a routine application of powerful tools from
additive combinatorics.

More specifically, we appeal to results of Gowers and show for any F that satisfies Lemma 1.2 (for some
G and H) must exhibit some weak linear behaviour. Specifically, we show that for such F there is a shift
s ∈ Zn

4 such that F (x) ∈ s + {0, 2}n for at least η′ = Ω(η10
4
) fraction of inputs. On the other hand, on

such points x we get that 2f(x)−x = F (x) = s+L(x) for some L(x) ∈ {0, 2}n, and noting that this must
hold modulo 2 we get that there can only be one such point, x = −s (mod 2). Thus, η′ ⩽ 2−n, giving an
exponential bound on η.

2 Proof of Theorem 1.1

2.1 From Testing to Additive Quadruples

We need the following definition:

Definition 2.1. Let (A,+), (B,+) be Abelian groups, and let F : An → Bn. We say (x, y, u, v) ∈ An ×
An ×An ×An is an additive quadruple if x+ y = u+ v and F (x) + F (y) = F (u) + F (v).

In our application, we will always have A = {0, 1}. For convenience we denote N = 2n. Thus, it
is clear that the number of additive quadruples is always at most N3 (as this is the number of solutions
to x + y = u + v). The following lemma asserts that if F,G,H : {0, 1}n → Bn are functions such that
F (x) +G(y) +H(z) = 0 for at least η of the triples x, y, z satisfying x⊕ y = z (such as the one given in
Lemma 1.2), then each one of the functions F,G and H has a substaintial amount of additive quadruples.

Lemma 2.2. Suppose that F,G,H : {0, 1}n → Bn satisfy that

Pr
(x,y,z)∈Sn

[F (x) +G(y) +H(z) = 0] ⩾ η.

Then F has at least η4N3 additive quadruples.
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Proof. By the premise and Cauchy-Schwarz

η2 = E
y

[
E
x

[
1G(y)=−F (x)−H(x⊕y)

]]2
⩽ E

y

[
E
x

[
1G(y)=−F (x)−H(x⊕y)

]2]
= E

y

[
E
x,x′

[
1G(y)=−F (x)−H(x⊕y)1G(y)=−F (x′)−H(x′⊕y)

]]
⩽ E

x,x′,y

[
1F (x)−F (x′)=H(x′⊕y)−H(x⊕y)

]
.

Making change of variables, we get that η2 ⩽ Ex,u,u′
[
1F (x)−F (x⊕u⊕u′)=H(u′)−H(u)

]
. Squaring and using

Cauchy-Schwarz again we get that

η4 ⩽ E
x,u,u′

[
1F (x)−F (x⊕u⊕u′)=H(u′)−H(u)

]2
⩽ E

u,u′

[
E
x

[
1F (x)−F (x⊕u⊕u′)=H(u′)−H(u)

]2]
⩽ E

u,u′

[
E
x,x′

[
1F (x)−F (x⊕u⊕u′)=F (x′)−F (x′⊕u⊕u′)

]]
,

which by another change of variables is equal to Ex,y,u,v:x+y=u+v

[
1F (x)+F (y)=F (u)+F (v)

]
, and the claim is

proved.

2.2 From Additive Quadruples to Linear Structure

We intend to use Lemma 2.2 to conclude a structural result for F , and towards this end we show that a
function that has many additive quadruples must exhibit some linear structure. The content of this section
is a straight-forward combination of well-known results in additive combinatorics, and we include it here
for the sake of completeness. We need the notions of Freiman homomorphism, sum-sets and a result of
Gowers [8]. We begin with two definitions:

Definition 2.3. Let (A,+) and (B,+) be Abelian groups, let n ∈ N and let A ⊆ An. A function ϕ : A →
Bn is called a Freiman homorphism of order k if for all a1, . . . , ak ∈ A and b1, . . . , bk ∈ A such that
a1 + . . .+ ak = b1 + . . .+ bk it holds that

ϕ(a1) + . . .+ ϕ(ak) = ϕ(b1) + . . .+ ϕ(bk).

Definition 2.4. Let (A,+) be an Abelian group, let n ∈ N and let A,B ⊆ An. We define

A+ B = {a+ b | a ∈ A, b ∈ B} .

If A = B, we denote the sum-set A + B more succinctly as 2A, and more generally kA denotes the k-fold
sum set of A.

We need a result of Gowers [8] asserting that a function F with many additive quadruples can be re-
stricted to a relatively large set and yield a Freiman homomorphism. Gowers states and proves the statement
for ZN , and we adapt his proof for our setting. For the proof we need two notable results in additive combi-
natorics. The first of which is the Balog-Szemerédi-Gowers theorem, and we use the version from [17]:

Theorem 2.5 (Balog-Szemerédi-Gowers). Let G be an Abelian group, and suppose that Γ ⊆ G contains at
least ξ |Γ|3 additive quadruples, that is,

∣∣{(x, y, z, w) ∈ Γ4
∣∣x+ y = z + w

}∣∣ ⩾ ξ |Γ|3. Then there exists
Γ′ ⊆ Γ of size at least Ω(ξ |Γ|) such that |Γ′ − Γ′| ⩽ O(ξ−4 |Γ′|).
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The second result we need is Plünnecke’s inequality [12, 15] (see also [11]):

Theorem 2.6 (Plünnecke’s inequality). Let G be an Abelian group, and suppose that Γ ⊆ G has |Γ− Γ| ⩽
C |Γ|. Then |mΓ− rΓ| ⩽ Cm+r |Γ|.

Lemma 2.7 (Corollary 7.6 in [8]). Let n ∈ N, and suppose that a function ϕ : Zn
2 → Zn

4 has at least ξ |Zn
2 |

3

additive quadruples. Then there exists A ⊆ Zn
2 such that ϕ|A is a Freiman homomorphism of order 8 and

|A| ⩾ Ω(ξ257 |Zn
2 |).

Proof. Let Γ = {(x, ϕ(x)) |x ∈ Zn
2} be the graph of ϕ, and think of it as a set in the Abelian group

Zn
2 × Zn

4 . Then Γ contains at least ξ |Zn
2 |

3 = ξ |Γ|3 solutions to γ1 + γ2 = γ3 + γ4, hence by Theorem 2.5
we may find Γ′ ⊆ Γ such that |Γ′| ⩾ Ω(ξ |Γ|) and |Γ′ − Γ′| ⩽ O(ξ−4 |Γ′|). By Theorem 2.6 we get that
|16Γ′ − 16Γ′| ⩽ O(ξ−32·4 |Γ′|) ⩽ C · |Γ′| where C = O(ξ−128).

Let Y = {y ∈ Zn
4 | (0, y) ∈ 8Γ′ − 8Γ′}; we claim that |Y| ⩽ C and towards contradiction we assume

the contrary. First, note that we may choose |Γ′| distinct values of x such that (x,wx) ∈ 8Γ′ − 8Γ′ for
some wx. Indeed, we can fix any 15 elements (xi, wi) ∈ Γ′ for i = 1, . . . , 15, and range over all |Γ′| pairs
(x,wx) ∈ Γ′ to get |Γ′| elements (x + x′ − x′′, wx + w′ − w′′) ∈ 8Γ′ − 8Γ′ where x′ = x1 + . . . + x7,
x′′ = x8 + . . . + x15 and w′ = w1 + . . . + w7 and w′′ = w8 + . . . + w15, which have distinct first
coordinate. Thus, looking at the |Γ′| elements (x,wx) ∈ 8Γ′ − 8Γ′ with distinct first coordinate, we get
that (x,wx + y) ∈ 16Γ′ − 16Γ′ for all x and y ∈ Y , hence |16Γ′ − 16Γ′| > C |Γ′|, in contradiction. The
set Y will be useful for us as for any x ∈ Zn

2 , we may define Yx = {y | (x, y) ∈ 4Γ′ − 4Γ′} and get that
Yx − Yx ⊆ Y .

Take t = log(C) + 1, choose I1, . . . , It ⊆ [n] independently and uniformly and consider

W =

y ∈ Zn
4 |

∑
j∈Ii

yj = 0 ∀i = 1, . . . , t

 .

We note that the 0 vector is always in W , but any other y ∈ Zn
4 is in W with probability at most 2−t. Indeed,

if y’s entries are all {0, 2}-valued then y can be in W only if y/2 satisfies t randomly chosen equations
modulo 2, which happens with probability 2−t. If there are entries of y that are either 1 or 3, then we
get that y (mod 2) is a non-zero vector that must satisfy t randomly chosen equations modulo 2, which
happens with probability 2−t. Thus, E [|Y ∩W \ {0}|] ⩽ 2−t |Y| < 1, so we may choose W such that
Y ∩W = {0}.

For an a ∈ Zn
4 we define Γ′

a = {(x, y) ∈ Γ′ | y ∈ a+W}. We claim that there is a choice for a such
that (1) |Γ′

a| ⩾ 4−t |Γ′| ⩾ Ω(ξ257 |Zn
2 |), and (2) taking A = {x | ∃y such that (x, y) ∈ Γ′

a}, the function
ϕ|A is a Freiman homomorphism of order 8. Together, this gives the statement of the lemma.

For the first item we have

E
a

[∣∣Γ′
a

∣∣] = ∑
(x,y)∈Γ′

Pr
a
[y ∈ a+W] =

∑
(x,y)∈Γ′

Pr
a
[y − a ∈ W] ⩾

∑
(x,y)∈Γ′

4−t = 4−t
∣∣Γ′∣∣ ,

so there is an a such that |Γ′
a| ⩾ 4−t |Γ′|, and we show that the second item holds for all a.

Suppose towards contradiction that ϕ|A is not a Freiman homomorphism of order 8. Thus we can find
x1, . . . , x8 ∈ A and x′1, . . . , x

′
8 ∈ A that have the same sum yet ϕ(x1)+ . . .+ϕ(x8) ̸= ϕ(x′1)+ . . .+ϕ(x′8).

Denoting x = x1 + . . .+ x4 − x′5 − . . .− x′8 = x′1 + . . .+ x′4 − x5 − . . .− x8, y = ϕ(x1) + . . .+ ϕ(x4)−
ϕ(x′5) − . . . − ϕ(x′8) and y′ = ϕ(x′1) + . . . + ϕ(x′4) − ϕ(x5) − . . . − ϕ(x8) so that y ̸= y′, we get that
(x, y), (x, y′) ∈ 4Γ′

a − 4Γ′
a ⊆ 4Γ′ − 4Γ′, so y, y′ ∈ Yx. In particular, y − y′ ∈ Yx − Yx ⊆ Y . On the other
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hand, by choice of A we get that ϕ(xi), ϕ(x′i) ∈ a + W for all i and so y, y′ ∈ 4W − 4W = W and so
y − y′ ∈ W . It follows that y − y′ ∈ Y ∩W , but by the choice of W this last intersection only contains the
0 vector, and contradiction.

Thus, combining Lemmas 2.2 and 2.7 we are able to conclude that F is a Freiman homomorphism of
order 8 when restricted to a set A ⊆ Zn

2 whose size is at least Ω(η1028N). A Freiman homomorphism of
order 8 is also a Freiman homomorphism of order 4, and the following lemma shows this tells that there is
a shift of {0, 2}n in which F (x) lies for many x’s:

Lemma 2.8. Let A ⊆ Zn
2 and suppose that ϕ : A → Zn

4 is a Freiman homomorphism of order 4. Then there
is s ∈ Zn

4 such that for all x ∈ A, ϕ(x) ∈ s+ {0, 2}n.

Proof. Choose any a ∈ A and let s = ϕ(a). Then for any x ∈ A, applying the Freiman homomorphism
condition on the tuples (x, x, a, a) and (a, a, a, a) that have the same sum over Zn

2 , we get that 2ϕ(x) +
2ϕ(a) = 4ϕ(a) = 0, so 2(ϕ(x) − s) = 0. This implies that ϕ(x) − s ∈ {0, 2}n, and the proof is
concluded.

Combining the last two lemmas we get the following corollary.

Corollary 2.9. Suppose that F : Zn
2 → Zn

4 is a function for which there are G,H : Zn
2 → Zn

4 such that
Pr(x,y,z)∈Sn [F (x) +G(y) +H(z) = 0] ⩾ η. Then there is s ∈ Zn

4 such that

Pr
x∈Zn

2

[F (x) ∈ {0, 2}n + s] ⩾ Ω(η1028).

Proof. By Lemma 2.2 we get that F has at least η4N3 additive quadruples, so by Lemma 2.7 there is
A ⊆ Zn

2 of size at least Ω(η1028N) such that F |A is a Freiman homomorphism. Applying Lemma 2.8 we
conclude that there is s ∈ Zn

4 such that F (x) ∈ s+ {0, 2}n for all x ∈ A and the proof is concluded.

2.3 Concluding Theorem 1.1

Let f, g, h : {0, 1}n → {0, 1}n be strategies that achieve value at least η in GHZ⊗n, and define F : Zn
2 → Zn

4

by F (x) = 2f(x) − x and similarly G(y) = 2g(y) − y and H(z) = 2h(z) − z. By Lemma 1.2 we
get that Pr(x,y,z)∈Sn [F (x) +G(y) +H(z) = 0] ⩾ η, hence by Corollary 2.9 there is s ∈ Zn

4 such that
Prx∈Zn

2
[F (x) ∈ s+ {0, 2}n] ⩾ η′ for η′ = Ω(η1028). For any such x, we get that 2f(x) − x = F (x) =

s+L(x) where L(x) ∈ {0, 2}n, and so x = −s+2f(x)−L(x). Note that this is equality modulo 4 hence it
implies it also holds modulo 2. We also have that 2f(x)−L(x) ∈ {0, 2}n so this vanishes modulo 2, hence
we get that x = −s (mod 2). In other words, there can be at most single x such that F (x) ∈ s + {0, 2}n
and so Prx∈Zn

2
[F (x) ∈ s+ {0, 2}n] ⩽ 2−n. Combining, we get that η′ ⩽ 2−n and so η ⩽ 2−n/1028+O(1).
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