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Parallel Repetition for the GHZ Game: Exponential Decay

Mark Braverman * Subhash Khot' Dor Minzer*

Abstract

We show that the value of the n-fold repeated GHZ game is at most 2~2(")_ improving upon the
polynomial bound established by Holmgren and Raz. Our result is established via a reduction to approx-
imate subgroup type questions from additive combinatorics.

1 Introduction

1.1 Multi-player Parallel Repetition and the GHZ Game

The GHZ game is a 3-player game in which a verifier samples a triplet (x,y, z) uniformly from S =
{(z,y,2) |x,y,2 € {0,1},2® y® 2z =0 (mod 2)}, then sends x to Alice, y to Bob and z to Charlie.
The verifier receives from each one of them a bit, a from Alice, b from Bob and ¢ from Charlie, and accepts
ifand only if a @b @® ¢ = x V y V 2. It is easy to prove that the value of the GHZ game, val(GHZ),
defined as the maximum acceptance probability of the verifier over all strategies of the players, is 3/4.
The n-fold repeated GHZ game is the game in which the verifier samples (x;, y;, z;) independently from
Sfori=1,...,n,sends & = (z1,...,2,), ¥ = (y1,...,yn) and Z = (z1,...,2,) to Alice, Bob and
Charlie respectively, receives vector answers f(Z) = (f1(Z),..., fu(Z)), 9(¥) = (91(¥), ..., 9a(¥)) and
h(Z) = (h1(2), ..., hn(2)) and accepts if and only if f;(Z)®g;(¥) ®hi(Z) = z;Vy;Vz foralli =1,...,n.
What can one say about the value of the n-fold repeated game, val(GHZ®™)? As for lower bounds, it is
clearly that case that val(GHZ®™) > (3/4)" and one expects that value of the game to be exponentially
decaying with n. Proving such upper bounds though is significantly more challenging.

The GHZ game is a prime example of a 3-player game for which parallel repetition is not well under-
stood. For 2-player games, parallel repetition theorems with an exponential decay have been known for a
long time [[14} 9] 132} 4]], and in fact the state of the art parallel repetition theorems for 2-player games are
essentially optimal. As for multi-player games, Verbitsky showed [18] that the value of the n-fold repeated
game approaches 0, however his argument uses the density Hales-Jewett theorem and hence gives a weak
rate of decay (inverse Ackermann type bounds in n). More recently, researchers have been trying to in-
vestigate multi-player games more systematically and managed to prove an exponential decay for a certain
class of games known as expanding games [3]]. This work also identified the GHZ game as a bottleneck for
current technique, saying that, in a sense, the GHZ game exhibits the worst possible correlations between
questions for which existing information-theoretic techniques are incapable of handling.

A sequence of recent works managed to prove stronger parallel repetition theorems for the GHZ game [10]
(subsequently simplified by [3]]), and indeed as suggested by [3]] this development led to a parallel repetition
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theorem for a certain class of 3-player games [0, [7], namely for the class of games with binary questions.
Quantitatively, they showed that val(GHZ®") < 1/n(1), and subsequently that for any 3-player game G
with val(G) < 1 whose questions are binary, one has that val(G®") < 1/n*1). The techniques utilized
by these works is a combination of information theoretic techniques (as used in the case of 2-player games)
and Fourier analytic techniques.

1.2 Our Result

The main result of this paper is an improved upper bound for the value of the n-fold repeated GHZ game,
which is exponential in n. More precisely:

Theorem 1.1. There is ¢ > 0 such that for all n, val(GHZ®™) < 275™,

Such bounds cannot be achieved by the methods of [10, |5, 16} [7]], and we hope that the observations
made herein would be useful towards getting better parallel repetition theorems for more general classes of
3-player games.

1.3 Proof Idea

Our proof of Theorem follows by reducing it to approximate sub-group type questions from additive
combinatorics, and our argument uses results of Gowers [8]. Similar ideas have been also explored in the
TCS community (for example, by Samorodnitsky [16]]).

Suppose f: {0,1}" — {0,1}", ¢g: {0,1}" — {0,1}" and h: {0,1}" — {0, 1}" represent the strate-
gies of Alice, Bob and Charlie respectively, and denote their success probability by 7. Thus, we have that

Pr [fx)@gly)@h(z)=zVvyVz]=>mn, (D
(z,y,2)ES™

where the operations are coordinate-wise. Using Cauchy-Schwarz it follows that if we sample z, y, z and
u, v, w conditioned on zVyVz = uVvVw, then f(z)Bg(y) Bh(z) = f(u)®g(v)®h(w) with probability
at least 2, hence f(z)® f(u) ® g(y) ®g(v) ®h(z)®h(w) = 0. What functions f, g, h can satisfy this? We
draw an intuition from [1], that suggested that such advantage can only be gained from linear embeddings.
In this respect, we are looking at the predicate P: ¥3 — {0,1} with alphabet ¥ = {0,1}? defined as
P((z,u), (y,v),(z,w)) =1lifzVyVz =uVoVw,z+y+z = 0and u+v+w = 0. A linear embedding
is an Abelian group (A, +) and a collection of maps ¢: ¥ — A,v: ¥ — Aand §: ¥ — A not all constant
such that ¢(x, u) +v(y,v) + (2, w) = 0. There are 2 trivial linear embeddings into (Zz, +): the projection
onto the first coordinate as well as the projection onto the second coordinate. Thus, one is tempted to guess
that in the above scenario, the functions f, g and h must use these linear embeddings and thus be correlated
with linear functions over Zs. Alas, it turns out that there is yet, another embedding which is less obvious:
taking (A, +) = (Z4, +), ¢(z,u) = x4+ u, y(y,v) = y+v and §(z, w) = z + w. This motivates us to look
at the original problem and see if we can already see (Zg4, +) structure there.

Approximate Homomorphisms. For (z,y,z) € S,if x VyV z = 1, then exactly two of the variables are
1;ifxVyVz=0,thenall of z,y, z are 0. Thus, one can see that the check we are making is equivalent to
checking that 2 f (z)+2g(y)+2h(z) = z+y+2 (mod 4). Indeed, on a given coordinate i, if (z;Vy;V 2;) is
1, then z;+y;+2; = 2 and the answers need to satisfy that f(z);+g(y);+h(z); = 1 (mod 2) which implies
2f(z)i+29(y)i+2h(z); =2 (mod 4). Similarly, if (x;Vy;Vz;) = 0 then z;+y;+2; = 0 and the constraint



says that we want f(z); + g(y); + h(z); = 0 (mod 2) which implies that 2f(x); + 2g9(y); + 2h(2); =0
(mod 4). Thus, the GHZ test can be thought of as a system of equations modulo 4, as suggested by
the above intuition. More precisely, defining F': {0,1}" — Z} by F(x); = 2f(x); — x; and similarly
G,H:{0,1}" — Z} by G(y); = 29(y); — y; and H(2); = 2h(z); — z;, we have the following lemma:

Lemma 1.2. Foreachx,y,z € S™, F(x)+G(y)+H(z) =0 (mod 4) ifand only if f(z);®g(y)i®h(2); =
x; Vy; Vzforalli =1,... n. Consequently,

Pr [F(x)+G(y)+H(z) =0 (mod 4)] > n.
(z,y,2)€S™
Proof. Without loss of generality we focus on the first coordinate. If (x1,y1, 21) = (0,0, 0), then by (I) we
get that f(z)1 @ g(y)1 @ h(z); = 0, hence either all of them are 0 or exactly two of them are 1, and in any
case 2f(z)1+2¢9(y)1+2h(2)1 =0 (mod 4). Otherwise, without loss of generality (x1,y1, 21) = (1, 1,0),
and then by (I)) we get f(x)1 @ g(y)1 ® h(z)1 = 1, and there are two cases. If f(z); = g(y)1 = h(2)1 =1,
then we get that F(x)1 +G(y)1 + H(2)1 =2—14+2—14+2+0 =0 (mod 4). Else, exactly one of them is
1,say f(z)1 = land g(y)1 = h(z)1 = 0,and then F'(x); +G(y)1 +H(2)1 =2—-140-1+0-0=0. O

In words, Lemma says that F, G, H form an approximate “cross homomorphism” from Z3 to ZJ.
Once we have made this observation, the proof is concluded by a routine application of powerful tools from
additive combinatorics.

More specifically, we appeal to results of Gowers and show for any F' that satisfies Lemma [I.2](for some
G and H) must exhibit some weak linear behaviour. Specifically, we show that for such F' there is a shift
s € Z7 such that F(z) € s + {0,2}" for at least ' = Q(n'°") fraction of inputs. On the other hand, on
such points = we get that 2f (z) —x = F(z) = s+ L(x) for some L(x) € {0,2}", and noting that this must
hold modulo 2 we get that there can only be one such point, x = —s (mod 2). Thus, ' < 27", giving an
exponential bound on 7.

2  Proof of Theorem [1.1]

2.1 From Testing to Additive Quadruples

We need the following definition:

Definition 2.1. Ler (A, +), (B, +) be Abelian groups, and let F: A™ — B". We say (z,y,u,v) € A™ X
A™ x A" x A" is an additive quadruple if t +y = u+ v and F(x) + F(y) = F(u) + F(v).

In our application, we will always have A = {0, 1}. For convenience we denote N = 2". Thus, it
is clear that the number of additive quadruples is always at most N3 (as this is the number of solutions
to x +y = u + v). The following lemma asserts that if F, G, H: {0,1}" — B"™ are functions such that
F(z) + G(y) + H(z) = 0 for at least i) of the triples x, y, z satisfying @ y = z (such as the one given in
Lemma|I.2), then each one of the functions F, G and H has a substaintial amount of additive quadruples.

Lemma 2.2. Suppose that F,G, H : {0,1}"" — B" satisfy that

Pr [F(x)+G(y)+H(z) =0] > .
(z,y,2)€S™

Then F has at least n* N3 additive quadruples.



Proof. By the premise and Cauchy-Schwarz
2 2
2
" =E|E [1G<y>—F(x>—H<xeay>ﬂ <E [Ig [Low)=—F@)-HEey)]
=E [ E [1G(y>:F<z>H(w@y)lc:(y):F(x')H(x’@y)]}
E [Lp@)-F@)=H(@oy-H@eoy))-

Making change of variables, we get that n* < Eauw [1p(2)— Fesusuw)=H(w)—H(w) ) - Squaring and using
Cauchy-Schwarz again we get that

2 2
"< E [1P(2)- Paousu)=H@w)—H(w) ] < [IEJ [1F(:p)—F(:v@u@u’):H(u’)—H(u)]:|

! /
T,u,U U,

< |: E [1F(x)F(x@u@u’):F(:{:’)F(I’@u®u’)]:| ’

u,u! | x,x’

which by another change of variables is equal to Ez y v v:24+y=utov [1F(x)+F(y):F(u)+F(v)] , and the claim is
proved. O

2.2 From Additive Quadruples to Linear Structure

We intend to use Lemma to conclude a structural result for F', and towards this end we show that a
function that has many additive quadruples must exhibit some linear structure. The content of this section
is a straight-forward combination of well-known results in additive combinatorics, and we include it here
for the sake of completeness. We need the notions of Freiman homomorphism, sum-sets and a result of
Gowers [8]]. We begin with two definitions:

Definition 2.3. Ler (A, +) and (B, +) be Abelian groups, let n € N and let A C A". A function ¢: A —
B™ is called a Freiman homorphism of order k if for all ay,...,ar € Aand by,..., by € A such that
a1+ ...+ ap =by + ...+ by it holds that

¢(a1) + ...+ ¢lar) = ¢(br) + ... + &(br).
Definition 2.4. Let (A, +) be an Abelian group, let n € N and let A, B C A™. We define
A+B={a+blac Abe B}.

If A = B, we denote the sum-set A + B more succinctly as 2A, and more generally kA denotes the k-fold
sum set of A.

We need a result of Gowers [[8] asserting that a function F' with many additive quadruples can be re-
stricted to a relatively large set and yield a Freiman homomorphism. Gowers states and proves the statement
for Z -, and we adapt his proof for our setting. For the proof we need two notable results in additive combi-
natorics. The first of which is the Balog-Szemerédi-Gowers theorem, and we use the version from [17]:

Theorem 2.5 (Balog-Szemerédi-Gowers). Let GG be an Abelian group, and suppose that I' C G contains at
least & |F|3 additive quadruples, that is, {(a:, y,z,w) € I' | T+y=z+ w}‘ > £ |F|3. Then there exists
IV C T of size at least (& |T|) such that |T” —T'| < O(6~4|T)).
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The second result we need is Pliinnecke’s inequality [[12,[15] (see also [[11]]):

Theorem 2.6 (Pliinnecke’s inequality). Let G be an Abelian group, and suppose thatT' C G has |[I' — T'| <
C|T|. Then |mI’ — rT| < C™*" |T).

Lemma 2.7 (Corollary 7.6 in [8]). Let n € N, and suppose that a function ¢: Zy — Z} has at least § ]Z§|3

additive quadruples. Then there exists A C 7% such that ¢| 4 is a Freiman homomorphism of order 8 and
Al = Q67 |Z3)).

Proof. LetT' = {(x,¢(x)) |z € Z5} be the graph of ¢, and think of it as a set in the Abelian group
Zy x Z}. Then I' contains at least £ |Z§]3 =¢ |I‘\3 solutions to v + v2 = 73 + 4, hence by Theorem [2.5
we may find IV C T such that [T’| > Q(¢|T']) and [I” — I'| < O(6~*|T|). By Theorem 2.6 we get that
|16T" — 16I7| < O(£7324|T’|) < C - [I’| where C = O(£~1%8).

Let Y = {y € Z} |(0,y) € 8T — 8I"'}; we claim that || < C and towards contradiction we assume
the contrary. First, note that we may choose |I”| distinct values of = such that (z,w,) € 8V — 8I" for

some w,. Indeed, we can fix any 15 elements (z;,w;) € IV fori = 1,...,15, and range over all |I”| pairs
(z,w;) € T" to get || elements (z + 2’ — 2", w, + w' — w") € 81" — 8 where 2’ = x1 + ... + 27,
2" = a2+ ...+ x5 and w' = w; + ...+ wy and W’ = ws + ... + w5, which have distinct first

coordinate. Thus, looking at the |I”| elements (z,w,) € 8" — 8" with distinct first coordinate, we get

that (z, w, + y) € 16I" — 161" for all z and y € Y, hence |16I” — 16I”| > C'|I"|, in contradiction. The

set ) will be useful for us as for any 2 € Z%, we may define )V, = {y | (z,y) € 4" — 41"} and get that
Take t = log(C) + 1, choose I, ..., I; C [n] independently and uniformly and consider

W=QyeZy|y y;=0Vi=1,....t
Jjel;

We note that the 0 vector is always in W, but any other y € Z is in W with probability at most 2. Indeed,
if y’s entries are all {0, 2}-valued then y can be in W only if y/2 satisfies ¢ randomly chosen equations
modulo 2, which happens with probability 2. If there are entries of y that are either 1 or 3, then we
get that y (mod 2) is a non-zero vector that must satisfy ¢ randomly chosen equations modulo 2, which
happens with probability 2. Thus, E [|[Y N W\ {0}]] < 27!|Y| < 1, so we may choose W such that
ynw = {0}.

For an a € Z} we define I}, = {(z,y) € I'' |y € a + W}. We claim that there is a choice for a such
that (1) [T| > 47|17 > Q(€257|Z3]), and (2) taking A = {x | Jy such that (x,%) € T}, the function
¢| .4 is a Freiman homomorphism of order 8. Together, this gives the statement of the lemma.

For the first item we have

E[)]= > Prlyea+Wl= > Prly—acW]> > 47" =47,
(z,y)el” (z,y)er” (z,y)er”

so there is an a such that |T,| > 47! |T”|, and we show that the second item holds for all a.

Suppose towards contradiction that ¢| 4 is not a Freiman homomorphism of order 8. Thus we can find
x1,...,28 € Aand 2}, ..., x5 € Athat have the same sum yet (1) +. ..+ ¢(z3) # ¢(z]) +. ..+ P(z5).
Denotingz =x1+...4+axqs—ak—...—ag =2 +... 42 —a5— ... —zg, y = d(x1) + ... + d(aq) —
d(xf) — ... — o(zg) and ' = @(2)) + ... + o(2)) — P(z5) — ... — P(xg) so that y # ¢/, we get that
(z,y), (z,y) € 4!, — AT, C AT — ATV, so y,y € V.. In particular, y — ¢’ € Y, — YV, C V. On the other




hand, by choice of A we get that ¢(x;), #(x;) € a+ W forall i and so y,y’ € 4V — 4W = W and so
y —vy' € W. It follows that y — i/ € ) N W, but by the choice of W this last intersection only contains the
0 vector, and contradiction. O

Thus, combining Lemmas [2.2] and we are able to conclude that F' is a Freiman homomorphism of
order 8 when restricted to a set A C Z5 whose size is at least Q(n'°?8N). A Freiman homomorphism of
order 8 is also a Freiman homomorphism of order 4, and the following lemma shows this tells that there is
a shift of {0,2}" in which F'(x) lies for many x’s:

Lemma 2.8. Let A C 7% and suppose that ¢: A — 7Y is a Freiman homomorphism of order 4. Then there
is s € Zy such that forall x € A, ¢(z) € s +{0,2}™

Proof. Choose any a € A and let s = ¢(a). Then for any = € A, applying the Freiman homomorphism
condition on the tuples (x,z,a,a) and (a, a, a, a) that have the same sum over Z%, we get that 2¢(x) +
2¢(a) = 4¢(a) = 0, so 2(¢(x) — s) = 0. This implies that ¢(x) — s € {0,2}", and the proof is
concluded. O

Combining the last two lemmas we get the following corollary.

Corollary 2.9. Suppose that F': 7 — Z} is a function for which there are G, H : 75 — 7} such that
Priyy 2yesn [F(7) + G(y) + H(2) = 0] = 0. Then there is s € Zjj such that

Pr [F(x) € {0,2}" + 5] > Q(n'"%%).
TELY
Proof. By Lemma we get that F' has at least n* N3 additive quadruples, so by Lemma there is
A C Z2 of size at least Q(1'°2® N) such that F| 4 is a Freiman homomorphism. Applying Lemma we
conclude that there is s € Z} such that F'(z) € s + {0,2}" for all z € A and the proof is concluded. [

2.3 Concluding Theorem [I.1]

Let f, g, h: {0,1}™ — {0, 1}" be strategies that achieve value at least 7 in GHZ®", and define F': Z%§ — Z7
by F(z) = 2f(z) — « and similarly G(y) = 2g(y) — y and H(z) = 2h(z) — z. By Lemma [1.2] we
get that Pr(, , -)egn [F(z) + G(y) + H(z) = 0] > n, hence by Corollary 2.9 there is s € Zj such that
Proczn [F(z) € s 4+{0,2}"] > 1 for n/ = Q(n'"?®). For any such z, we get that 2 (x) — z = F(z) =
s+ L(x) where L(z) € {0,2}",and so z = —s+2f(x) — L(z). Note that this is equality modulo 4 hence it
implies it also holds modulo 2. We also have that 2f(x) — L(x) € {0,2}" so this vanishes modulo 2, hence
we get that z = —s (mod 2). In other words, there can be at most single x such that F'(z) € s + {0,2}"
and s0 Pryezp [F(z) € s+ {0,2}"] < 27". Combining, we get that < 27" and so 1 < 2—n/1028+0(1)
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