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Abstract

The Union Closed Set Conjecture states that if a set system X ⊆ P([n]) is closed under
pairwise unions, then there exists a ∈ [n] in at least half of the sets of X. We show that there
is a very natural generalization of the union closed set conjecture which gives a lower bound for
k-set subsets of [n]. This a stronger version of a Conjecture of (Nagel, 2022). We then prove the
Conjecture conditional on the Union Closed Set Conjecture using invariants of Union-Closed
sets. Additionally, we prove that there exists a k-set in .38k|F | sets of a union closed set X
for every n ≥ k > 0. We explain why our result suggests a lack of sharpness of the original
conjecture.

1 De�nitions

In our discussion, we require the following basic de�nitions.

De�nition 1. A set system X is a family of subsets of a universe of elements U(X).
In our paper X always occurs as subsets of the [n].

De�nition 2. U(X). If X is a set system, then U(X) := ∪X′∈XX
′.

In our paper, we will usually assume the above for convenience, without loss of generality.

De�nition 3. X(a). If X is a set system, for all a ∈ U(X) , X(a) := {X ′ ∈ X|a ∈ X ′}. We
also sometimes write this as X({a}).

De�nition 4. X(A). If X is a set system, for all A ⊆ U(X), X(A) := {X ′ ∈ X|A ⊆ X ′}.

2 Introduction

A seemingly simple if not trivial problem postulated by Frankl in 1979, the Union-Closed Sets
Conjecture has escaped proof for decades:

Conjecture 1. (Union-Closed Set Conjecture) (Frankl, 1979). If X is a union-closed set
system of a universe [n], then there exists a ∈ [n] such that |X(a)| ≥ |X|/2.
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At times we refer to the above simply as UCSC. Here we reformulate Conjecture 1 and show its
equivalence to the following Conjecture 2 highlighting a manner of its relevance to computational
complexity theory and in particular, boolean circuit complexity.

Roughly speaking, the following formulation of the conjecture states that any set of length n
strings of 0,1 entries which is closed under bitwise OR, has some entry of the strings which is 1 for
at least half of all of the strings. This formulation �rst appears in (Karpas, 2017).

First, we will require the following de�nition:

De�nition 4. If a x ∈ {0, 1}n, then xs denotes the sth entry of x.

We can now state the following:

Conjecture 2. If {xi}0≤i≤|X| = X ⊆ {0, 1}n and for all xi, xj ∈ X we have that ∨(xi, xj) ∈ X
where ∨(., .) is bitwise OR, then there exists s such that 1 ≤ s ≤ n and X ′ ⊂ X of cardinality at
least |X|/2 such that for all x ∈ X ′, we have that xs = 1.

This formulation is obtained from Conjecture 1 by corresponding each element of the universe
[n] to a position on an n-string string setting each position to be 1 or 0 on the string for a set
A ⊆ [1, 2, .., n] i� the set A contains or does not contain the element corresponding to that entry
respectively.

In this paper, we will treat the conjecture in set-theoretic form and we will state its generalization
in such a manner as well. First we present the recent generalization of (Nagel, 2022):

Conjecture 3. (Generalized-Union Closed Set Conjecture I) (Nagel, 2022)
If X is a union-closed set system of a universe [n], then for every n ≥ k > 0, there exists distinct

elements a ∈ [n] such that |X(a)| ≥ 2−k|X|.
We note that for non-integer fractions we take the �oor function of 2−k|X|.

In this paper we prove the following:

Theorem 1. Conjecture 3 is equivalent to Conjecture 1.

We further generalize this to stating essentially that not only are there additional elements which
occur in smaller fractions, but whole subsets of size k for every k ∈ [n] occur. In other words, the
elements occur together.

Conjecture 4. (Generalized-Union Closed Set Conjecture II) If X is a union-closed
set system of a universe [n], then for every n ≥ k > 0, there exists a k-set A ⊆ [n] such that
|X(A)| ≥ 2−k|X|.

In regards to Conjecture 4, we prove the following:

Theorem 2. Conjecture 4 is equivalent to Conjecture 1.
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While clearly Theorem 2 implies Theorem 1, it is possible to prove Theorem 1 without proving
Theorem 2. The proofs emerge upon taking a deep look at the structural properties of union-closed
sets, both in general (eg. Lemma 1.1, Lemma 2.1) as well as assuming the Union-Closed Sets
Conjecture.

In this paper, we also show the following unconditional result:

Theorem 3. If X ⊆ P([n]) is union-closed, for every n ≥ k > 0 there exists a k-element subset
of [n] A, such that |X(A)| ≥ .38k|X|.

This relies on the following recent progress on Conjecture 1 due to (Gilmer, 2022), (Sawin,
2022), (Alweiss et al, 2022), (Lovett et al, 2022):

Theorem 4. If X ⊆ P([n]) is union-closed, there exists i ∈ [n] such that |X(i)| ≥ .38|X|.

We will show that Theorem 3 follows from a modi�cation of the argument of Theorem 2 incor-
porating Theorem 4 instead of the UCSC.

3 Equivalence Theorems

We now show that Conjecture 3 is in fact equivalent to Conjecture 1.

Theorem 1. If a set X ⊆ P([n]) is union-closed, there necessarily exists an element a ∈ [n]
such that |X(a)| ≥ |X|/2 if and only if there exists distinct elements (ai)n≥i>0, ai ∈ [n] such that,
such that |X(ai)| ≥ 2−i for every n ≥ i > 0. In particular, Conjecture 1 and Conjecture 3 are
equivalent.

Proof.
Conjecture 1 implies Conjecture 2 if k = 1.

For clarity, we denote X as Xn to indicate that it is of the universe of n elements.
Let Xn be an arbitrary union-closed set of universe [n].
Then from the UCSC, there exists a ∈ [n] such that |Xn(a)| ≥ |X|/2.
Let Xn(a) be labelled such that Xn(a) = {X1

n(a), ...., X
|Xn(a)|
n (a)}. Then we de�ne a set Xn−1

on n− 1 elements as follows Xn−1 := {X1
n(a)− {a}, X2

n(a)− {a}, ...., X
|Xn|
n (a)− {a}} ∪Xn|Xn(a).

Intuitively, Xn−1 is the set obtained by removing {a} from every set. And if two sets become
identical by removal of {a}, then we save only one of these.

We now how the following two claims about Xn−1.

Claim 1.1. Xn−1 is union closed.
Proof.
Choose two arbitrary sets X, X ′ within Xn−1. In the original set Xn, we any one of either: Υ1 =

{X,X ′}, Υ2 = {X ∪ {a}, X ′}, Υ2 = {X,X ′ ∪ {a}}, Υ4 = {X ∪ {a}, X ′ ∪ {a}} were contained within
the original set systemXn. And since Xn is union-closed by assumption, the union of Υ1, Υ2, Υ3, Υ4
which is either X ′∪X or (X ′∪X)∪{a} was contained in Xn. In the case of Υ1, (X

′∪X) ∈ X|X(a)
and therefore is in Xn−1. In the cases Υ2, Υ3, and Υ4, (X

′ ∪X)∪ {a} ∈ {X1(a), X2(a), ...., X|X|(a)}
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and so (X ′∪X) ∈ {X1(a)−{a}, X2(a)−{a}, ...., X|X|(a)−{a}} which from the de�nition of Xn−1,
contained in Xn−1. (X ′ ∪ X) ∈ Xn. Therefore, for any two X, X ′ contained in Xn−1, it follows
that X ∪X ′ ∈ Xn−1 and so Xn−1 is union-closed.

e

Claim 1.2. |Xn−1| ≥ |Xn|/2.
Proof.
Xn can be reconstructed at most by at most taking (1) a copy of Xn−1 and (2) a copy of

Xn−1 with {a} appended to every set. To see this, consider that in to reconstruct Xn, (1) any two
identical sets after the removal of {a} absorbed into each other are made distinct once again, and
otherwise, (2) for every set which had no identical set after the removal of {a} set is added back to
Xn with {a} appended if the set contained {a} originally in Xn. (In the latter case, whether {a}
is added or not, does not make a cardinal di�erence to the reconstructed set.) Hence, formally we
have the following:

Xn ⊆ Xn−1 ∪ {X ′ ∪ {a}|X ′ ∈ Xn−1} and therefore |Xn| ≤ |Xn−1|+ |{X ′ ∪ {a}|X ′ ∈ Xn−1}| =
2|Xn−1|.

e

Since Xn−1 is a union-closed family of the universe [n]|{a} which is of size at least |X|/2, from
the UCSC, there exists an element within |X|/4 sets. Now Conjecture 3 will follow by applying
Claim 1.1 and Claim 1.2 recursively. This looks like doing induction, but backwards.

In particular, assume that we've constructed a set of size 2−k|X| = Xn−(k−1) such that at least

half of it contains an element (ie. within 2−(k+1)|X| sets) and that such an element existed for each
0 ≤ k′ ≤ k. If k = n then we are done. Otherwise, assume k < n. Remove this element from all of
the sets in which it appears and consider the resulting set. From Claim 1.1, it is union-closed and
from Claim 1.2 it contains at least 2−(k+1)|X| sets. Then the UCSC implies that this set contains
an element within 2−(k+2)|X| sets.

e

We now prove our stronger result.

Theorem 2. If a set X ⊆ P([n]) is union-closed, there necessarily exists an element a ∈ [n]
such that |X(a)| ≥ |X|/2 if and only if there exists a k-set A ⊆ [1, 2, .., n], such that |X(A)| ≥ 2−k

for every n ≥ k > 0. In particular, Conjecture 1 and Conjecture 4 are equivalent.
Proof.
To prove this theorem, we prove the following more general lemma that will make the next steps

easy The proof will critically rely on a special case of the following Invariance Lemma.

Lemma 2.1 (Union Closure Invariance Lemma). If X ⊆ P([n]) is union-closed, then for
any A ⊆ U(X), X(A) is union-closed.

Proof.
Let X ⊆ P ([n]) be an arbitrary union-closed set and choose an arbitrary A ⊆ ∪X′∈XX

′ = U(X).
Choose X, X ′ ∈ X arbitrarily. By de�nition of X(A), A ⊆ X and A ⊆ X ′ and therefore,
A ⊆ X ′ ∪ X. Since X ′ ∪ X ∈ X by the union-closedness of X, and since X(A) is the set of all
subsets of X which contain A, clearly X ′ ∪X ∈ X(A).

e

We will use the above lemma recursively in order to construct such a k-set subset of [n] common
to 2−k|X| sets in X. To begin this process, we now claim the following:

4



Claim 2.2.
There exists a1, a2 ∈ U(X) such that |X({a1, a2})| ≥ |X|/2−2.
Proof.
We know that there exists a1 ∈ U(X) such that |X({a1})| ≥ |X|/2 from the UCSC. Since

X({a1}) is union closed by Lemma 2.1, therefore, removing {a1} from each of the sets of X({a1}),
we have the set X({a1}) − {a1} := {X ′ − {a} : X ′ ∈ X({a1})} is clearly union-closed. Then
the UCSC implies that there exists an element a2 ∈ [1, 2, ...., n]|{a1} such that a2 occurs in at
least half of X({a1}) and therefore, returning the elements {a1} to X({a1}) − {a1}, we have that
|X({a1, a2})| ≥ |X({a1})|/2 ≥ |X|/4

e

We can now �nish the proof as follows:
Suppose we have constructed a 2−k|X| size subset of X with a common k-set A ⊆ [1, 2, ..., n].

If k = n, then we are done. Otherwise, assume k < n. Then X(A) is union-closed by Lemma
2.1 and therefore, following the pattern of Claim 2.1, there exists ak+1 ∈ [1, 2, ..., n]|A such that
|X(A ∪ {ak+1})| ≥ |X(A)|/2 ≥ 2−(k+1)|X|.

e

4 An Unconditional Result

Relying on recent progress on the conjecture due to (Alweiss et al, 2022), we can say the following:

Theorem 3. There exists a k-set subset of [n] which occurs in .38k|X| sets in X.
Proof Sketch.
We simply repeat the argument of Theorem 2 with .38 instead of 1/2 and replace the assumption

of the UCSC with the Theorem 4 (see Section 2) and Theorem 3 follows.
e

5 Conclusion

In this paper, we show that if the Union-Closed Set Conjecture is true, then not only is there a
1-element subset common to half of the sets, but in fact, we can amplify that result to show that
there is a k-set which is common of |X|/2−k sets for each k ∈ [n].

We run through a basic example of Theorem 1:

Example 1. The Power Set. The power set is a union-closed set where there is a k-set contained
within a |X|2−k fraction of the sets.

This example also gives us a hint towards the lack of sharpness of the conjecture since of course
only the power set can contain all of the elements which are in |X|/2−n.

However for ANY union-closed family which contains all [n] elements, its easy to see the follow-
ing:

Lemma 3 If X ⊆ P([n]) is union-closed and contains all n elements, then ∪X′∈XX
′ ∈ X.

Proof.
This follows from the more general lemma which is the following:
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Lemma 3.1 If X ⊆ P([n]) is union-closed, then X is closed under arbitrary unions.
Proof.
Assume it is closed under unions of size k. For each of those unions of size k is another set in

X, and therefore its union with any other set in X is contained within X by union closure.
e

We can then take a union which is of size |X| (ie. of all the sets in X) and it is contained within
X.

e

It is clear that there could be many union-closed sets containing the universe. Consider the
power set excluding any speci�c number of sets in order of the least to greatest size. This shows
that there are at least 2n − 1 union-closed sets containing the universe. Clearly such a set is still
union closed and the union is {1, 2, ...., n} as long as all the sets are not removed.

However, our theorem only implies the containment of the universe set when the set is equivalent
to the power set. And as we showed there are in fact multiple sets which satisfy the property which
contain the universe. This indicates that the conjecture is actually quite weak and researchers
should keep this in mind when attempting to prove the conjecture. Perhaps a strengthening of it
will determine the problem better making it easier to prove.
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