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Abstract

We construct explicit deterministic extractors for polynomial images of varieties, that is,
distributions sampled by applying a low-degree polynomial map f : Fr

q → Fn
q to an element

sampled uniformly at random from a k-dimensional variety V ⊆ Fr
q. This class of sources

generalizes both polynomial sources, studied by Dvir, Gabizon and Wigderson (FOCS 2007,
Comput. Complex. 2009), and variety sources, studied by Dvir (CCC 2009, Comput. Complex.
2012).

Assuming certain natural non-degeneracy conditions on the map f and the variety V , which
in particular ensure that the source has enough min-entropy, we extract almost all the min-
entropy of the distribution. Unlike the Dvir–Gabizon–Wigderson and Dvir results, our con-
struction works over large enough finite fields of arbitrary characteristic. One key part of our
construction is an improved deterministic rank extractor for varieties. As a by-product, we
obtain explicit Noether normalization lemmas for affine varieties and affine algebras.

Additionally, we generalize a construction of affine extractors with exponentially small error
due to Bourgain, Dvir and Leeman (Comput. Complex. 2016) by extending it to all finite prime
fields of quasipolynomial size.
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1 Introduction

Randomness is a powerful resource in computing. There are many useful randomized algorithms,
and randomness is provably necessary in cryptography and distributed computing. Naturally,
these uses of randomness assume access to uniformly random bits. However, it can be expensive or
impossible to obtain such high-quality randomness. A randomness extractor converts low-quality
randomness into high-quality randomness.

Low-quality random sources can arise in several ways. First, natural sources of randomness
may be defective. Second, in cryptography, if an adversary gains information about a string, then
conditioned on this information, the string is weakly random. Third, in constructing pseudorandom
generators, a similar situation arises when we condition on the state of the computation. Besides
the computer science motivation, randomness extraction questions are natural mathematically.

We model a weak source as a class D of distributions over a finite set Ω. A randomness extractor
for D is a deterministic function that extracts randomness from any distribution in D.

Definition 1.1. An extractor for a class D of distributions with error ε, or an ε-extractor, is a
function Ext : Ω → B such that for any D ∈ D, the distribution Ext(D) is ε-close, in statistical
distance, to the uniform distribution over B.

Typically the codomain B will be {0, 1}m.
The most general class of distributions is the set of distributions with high min-entropy, i.e.,

distributions that do not place much probability on any string. However, it is not hard to show
that it is impossible to extract from such sources. It is possible to extract using an auxiliary seed,
and there are many applications of such seeded extractors (see [Vad12] for a survey). It is also
possible to extract from two independent general weak sources (e.g., [CZ19]). However, if we want
to avoid adding a seed and only have one source, we must restrict the class of distributions further.

Various models of weak sources have been studied. It is not hard to show that if there are not
too many distributions in the class, then most functions are extractors with excellent parameters.
Of course, we really want efficiently-computable extractors.

Models of weak sources tend to be either complexity-theoretic or algebraic. In this work, we
focus on algebraic sources. That is, we consider distributions over subsets Ω which have a “nice”
algebraic structure.

1.1 Algebraic Sources of Randomness

Suppose F is a finite field and Ω = Fn. The simplest class of algebraic sources is the set of affine
sources. An affine source is simply the uniform distribution over an affine subspace V ⊆ Fn of
dimension k. Note that since |V | = |F|k, the single parameter k also determines the min-entropy
of the uniform distribution over the source.

Gabizon and Raz [GR08] constructed an explicit extractor Ext : Fn → Fk−1, assuming the field
size is bounded from below by a large enough polynomial in n. For a large enough field size q, their
construction extracts almost all of the randomness from the source and has error ε = 1/poly(q).

The last feature is slightly undesirable, as ideally, one would like the error to decrease exponen-
tially with k, the dimension of the source. Such a construction was given by Bourgain, Dvir and
Leeman [BDL16], albeit their construction requires the field size to be slightly super-polynomial in
n, and only works for certain fields.
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Over smaller fields, constructing affine extractors for small min-entropy is a more challenging
task. Further, it is possible to show that any function f : Fn

2 → F2 is constant on some affine
subspace of dimension Ω(log n) (see, e.g., Lemma 6.7 of the arXiv version of [ABGS21]), and thus
one cannot hope to extract even a single bit when the min-entropy is smaller than log n (compare
this with the fact that over large fields, the Gabizon–Raz extractor works for any k).

Bourgain [Bou07] constructed an extractor that works over F2 for min-entropy k = cn for a
small constant c. This result was slightly improved by Yehudayoff [Yeh11] and Li [Li11]. Li [Li16]
then presented a much improved construction which works when the min-entropy is as small as
k = logC(n) for some constant C, which was improved by [CGL21] to k = log1+o(1)(n). However,
one drawback of the last two constructions is that the error parameter ε is either constant or
polynomially small, whereas one would hope for it to be exponentially small in k, as in the earlier
constructions of Bourgain, Yehudayoff and Li.

There are several natural ways to generalize affine sources, but some care is needed when defin-
ing those generalizations. As we remarked earlier, for an affine subspace, the single parameter k
determines its size and hence the min-entropy of the corresponding source. For more complicated
algebraic sets, however, as we shall now see, there are multiple parameters controlling their “com-
plexity,” and the connection between those parameters and the min-entropy of the source is not
always obvious.

Dvir, Gabizon and Wigderson [DGW09] considered polynomial sources, which are defined by
applying a low-degree polynomial map P : Fk → Fn on a uniformly random input from Fk. (Note
that affine sources are a special case of polynomial sources when the degree equals one.) They
further impose the algebraic condition that the Jacobian matrix of the map is of full rank, which
in particular guarantees that the min-entropy of the source is high, assuming the characteristic of
the field is large enough. The field size required by the construction of [DGW09] is poly(k, d, n)k.

Dvir [Dvi12] studied a different generalization called variety sources, which are uniform distri-
butions over sets V ⊆ Fn that are the common zeros of a set of low-degree polynomials. Varieties
also have an associated concept of dimension, but unlike the affine case, over finite fields having a
large dimension does not guarantee by itself that the set V is large, and thus this condition must be
imposed explicitly. Dvir presented two constructions. The first requires exponentially large fields
and works for any dimension k. The second requires the variety to have size larger than |F|n/2, but
the field size depends only polynomially on the degree d of the polynomials defining V .

Over F2, the situation is much more mysterious. This setting is well motivated, since it turns out
that explicit constructions of extractors (or even dispersers) for varieties with various parameters
would imply new circuit lower bounds. Golovnev, Kulikov and Williams [GKW21] proved multiple
such results. One is that explicit extractors for varieties of size at least 2εn defined by constant
degree polynomials would imply lower bounds for general circuits of the form Cn for larger constants
C than what is currently known. They also showed that extractors for varieties of size at least 20.99n

defined by polynomials of degree at most n0.01 would imply super-linear lower bounds for boolean
circuits of depth O(log n), a long-standing challenge in complexity theory (see also [HR15]).

As for constructions over F2, Li and Zuckerman [LZ19] showed how to use correlation bounds
against low-degree polynomials to obtain extractors for variety sources defined by degree d poly-
nomials for d = O(1) and size at least 2(1−cd)n for some constant cd that depends on d. Remscrim
[Rem16] proved that the majority function is an extractor for varieties defined by polynomials of

degree at most nα and size at least 2n−nβ
, assuming α+β < 1/2. Thus, all the known constructions

are not strong enough to imply new circuit lower bounds.
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1.2 Our Results

1.2.1 Extractor for Polynomial Images of Varieties

In this paper, we study the class of polynomial images of varieties, which generalizes both variety
sources and polynomial sources. Informally, the source is specified by a variety V ⊆ Fr and a
polynomial map f : V → Fn, and a sample from the source is a random variable X computed by
uniformly at random picking an element x ∈ V and outputting f(x). We would like to construct
an efficient extractor Ext : Fn → {0, 1}m that has small error ε and large output length m. The
largest m we can hope for is the min-entropy of the input, which is approximately k log q, where
q = |F| and k is the dimension of the variety V (see Section 4 for a definition of this notion). Our
main result is a construction of an extractor with m ≈ k log q.

Formally defining such sources takes some care, since varieties and their associated complexity
parameters are easier to define over algebraically closed fields. As in previous work, we further
need to assume some natural non-degeneracy conditions on the variety V and the map f . We now
describe those sources in more detail.

Polynomial images of variety sources. Let F be a field. For h1, . . . , hs ∈ F[X1, . . . , Xn], define

Lh1,...,hs,F := {c0 + c1h1 + · · ·+ cshs : c0, . . . , cs ∈ F} ⊆ F[X1, . . . , Xn],

i.e., Lh1,...,hs,F is the linear span of h1, . . . , hs and 1 over F.
Denote by F the algebraic closure of F. An affine variety V ⊆ Fn

over F is the set of common
zeros of a set of polynomials in F[X1, . . . , Xn]. Two parameters naturally associated with a variety
V are its dimension, denoted dimV , which equals the length of the maximal chain with respect to
inclusion of distinct irreducible subvarieties, and its degree, denoted deg V , which is the number of
intersection points of the variety with an affine subspace of codimension dimV in general position
(we refer to Section 4 for more formal definitions).

Definition 1.2 ((n, k, d) algebraic source). Let n, d ∈ N+ and k ∈ N. We say a distribution D
over Fn

q is an (n, k, d) algebraic source over Fq if there exist r ∈ N, an affine variety V ⊆ Fr
q over

Fq, polynomials h1, . . . , hs ∈ Fq[X1, . . . , Xr] with deg h1 ≥ · · · ≥ deg hs, and f1, . . . , fn ∈ Lh1,...,hs,Fq

such that D = f(UV (Fq)), where f : Fr
q → Fn

q is the polynomial map defined by f1, . . . , fn, and
UV (Fq) is the uniform distribution over V (Fq) := V ∩Fr

q, and further, the following conditions hold:

1. At least one irreducible component of V of dimension dimV is absolutely irreducible.

2. For every irreducible component V0 of dimension dimV that is absolutely irreducible, the
dimension of f(V0) is at least k, where f(V0) ⊆ Fn

q denotes the closure of f(V0), i.e., the
smallest affine variety over Fq containing f(V0).

3. deg V ·
∏k

i=1 deg hi ≤ d.1

In addition, we say D is an irreducible (n, k, d) algebraic source over Fq if V can be chosen to be
irreducible. We say D is a minimal (n, k, d) algebraic source over Fq if V can be chosen to have
dimension k. Finally, we say D is an irreducibly minimal (n, k, d) algebraic source over Fq if V
can be chosen to be irreducible of dimension k.

1Note that dim f(V ) ≥ k by previous conditions. So we necessarily have s ≥ k and deg hi ≥ 1 for i ∈ [k]. This
also implies deg V ≤ d.
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The conditions in Definition 1.2 may look a bit contrived at first glance. However, as we now
explain, they are quite natural, and indeed some form of them, as observed in previous work, is
necessary.

The third condition is simply a convenient way to “pack” multiple “complexity” parameters of
the components of the source that arise in the analysis. That is, d is a single complexity parameter
that, in particular, bounds the degree of the variety V and the product of degrees of the polynomial
map f . Having d as a single parameter simplifies the statements of our theorems and clarifies the
dependence between the various parameters: the larger d is, the larger the field size we require and
the smaller the output length of the extractor.

The purpose of the first two conditions is to guarantee that our source has enough min-entropy.
As observed in previous work [DGW09, Dvi12], it is quite easy to come up with simple varieties V
(even of high dimension) or polynomial maps f (even of low degree) such that sources arising as
f(V ) would have very few points in Fn

q , so that there will be little to no randomness to extract.
The first condition is analogous to (and, as shown in Appendix C, roughly equivalent to)

Dvir’s [Dvi12] condition that the variety V contains enough points in Fn
p . The second condition is

analogous to (and, over fields of large characteristic, implied by) the full-rank Jacobian condition
of Dvir, Gabizon and Wigderson [DGW09]. Thus, not only is some form of conditions 1 and 2
necessary for proving any meaningful results, but moreover, these conditions naturally generalize
the conditions imposed by previous related works.

Finally, we note that the name “(n, k, d) algebraic sources” suppresses the dependence on the
parameter r in the definition, which is the ambient dimension in which the variety V lies. This is
because our result, stated next, has no dependence on r. Even in the case where r is very large
with respect to n, k and d, our results only depend on the latter three parameters. Further, note
that when r is very large, dimV can also be very large compared with n and k. However, as the
definition hints, we will reduce this case to the case where dimV = k.

We can now state our main theorem.

Theorem 1. Let n, d ∈ N+, k ∈ N, and ε ∈ (0, 1/2]. Let q be a power of a prime p. Suppose
q ≥ (nd/ε)c, where c > 0 is a large enough absolute constant. Then there exists an explicit
ε-extractor Ext : Fn

q → {0, 1}m for (n, k, d) algebraic sources over Fq with output length m ≥
k log q − 4 log log p−O(log(nd/ε)).

It can be shown that any (n, k, d) algebraic source D over Fq, where q ≥ (kd)c for a suffi-
ciently large constant c > 0, is (close to) a distribution with min-entropy at least k log q−O(log d).
Moreover, this estimate of the min-entropy is tight up to an additive term O(log d) if D is not an
(n, k+1, d) algebraic source over Fq. See Lemma 7.10 and Proposition 7.11. Therefore, the extrac-
tor in Theorem 1 extracts most of the min-entropy from (n, k, d) algebraic sources. In addition,
Theorem 1 works over finite fields of any characteristic, while the extractors by Dvir, Gabizon, and
Wigderson [DGW09] and Dvir [Dvi12] require large enough characteristics.

As is standard in the literature, by “explicit” we mean that the output of the extractor is
computable in time poly(n, log q) (note that the input length to the extractor is n log q).

Along the way to proving Theorem 1, we construct several other algebraic pseudorandom objects
which are interesting on their own. We mention some of these constructions when we give an
overview of our construction in Section 1.3.
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1.2.2 Affine Extractors for Quasipolynomally Large Fields with Exponentially Small
Error

Recall that an explicit affine extractor is an efficiently computable function Ext : Fn → Fm such
that for every affine subspace V ⊆ Fn of dimension k, and a random variable X uniformly sampled
from V , Ext(X) is close to the uniform distribution over Fm. We would like m to be as close to k
as possible and, ideally, the error parameter ε to be exponentially small in k.

As mentioned earlier, the extractor of Gabizon and Raz [GR08] achieves m = k − 1 and error
ε only polynomially small in the field size q. In particular, the error does not decrease with k.
Bourgain, Dvir and Leeman [BDL16] constructed an affine extractor with m arbitrarily close to
k/2 and error q−Ω(k). However, their construction requires q to be slightly super-polynomial in n,
namely q = nΩ(log logn), and furthermore only works for “most” prime fields Fq. We improve the
analysis of their construction and present a construction with identical parameters that works for
all prime fields, assuming q = nΩ(log logn).

Theorem 2. For every 0 < β < 1/2, there exists a constant C such that the following holds: Let
k ≤ n be integers and F be a prime field of size q ≥ nC log logn. Let m = βk. There exists an
efficiently computable function E : Fn → Fm which is an affine extractor for min-entropy k with
error q−Ω(k).

1.3 Techniques

Our construction from Theorem 1 combines several techniques used in previous related construc-
tions, as well as several new ideas which are required to successfully apply these techniques. It is
convenient to think of the construction as proceeding in several steps.

Preliminary step: decomposing the sources. Our definition for algebraic sources (Definition
1.2) is quite general, and it is convenient to work with slightly “nicer” sources. We start by approx-
imating general (n, k, d) algebraic sources as convex combinations of irreducibly minimal (n, k, d)
algebraic sources. Recall that this means that the variety V is irreducible and has dimension k.

This step is done in Section 7: we first decompose a general source into a convex combination
of irreducible sources in a manner that follows naturally from the decomposition of V itself as a
union of irreducible components. We then decompose an irreducible source into irreducibly minimal
sources roughly by intersecting it with a linear space of the appropriate dimension. Both parts of
the arguments incur a small error.

First step: extracting a short seed. Having reduced to the case of irreducibly minimal sources,
we first design an extractor that extracts a small number of bits from the source. One commonly
used technique for doing that is to show that the source is an ε-biased distribution, i.e., a distribution
whose nontrivial Fourier coefficients are all small. Similar methods work when the source is close
to such a distribution or to a convex combination of such distributions. Analyzing and bounding
the Fourier coefficients is often done using bounds on exponential sums from algebraic geometry,
such as Bombieri’s estimate (Theorem 4.7). We follow this general paradigm as well.

However, the case where the field characteristic is small presents some unique challenges to
overcome. We first prove an extension of Bombieri’s theorem for small characteristic p. This exten-
sion bounds the corresponding exponential sums save for possibly a small set of “bad” characters.
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Hence, we then define and study a more general class than ε-biased distributions: (ε, e)-biased
distributions, which are distributions in which all but at most e of the Fourier coefficients have
absolute value at most ε. We show that the sources we consider are close to convex combinations of
such distributions (for meaningful values of ε and e), and construct extractors for such distributions.

Previously, the XOR lemma has been used to construct extractors for ε-biased sources; see, e.g.,
Rao [Rao07]. We extend these ideas to the more general and challenging setting of (ε, e)-biased
distributions. On the technical level, we construct explicit functions f : Fn

p → Ft
p with the following

properties: for every nontrivial character ψ of Ft
p, both the L1 and the L∞ norms of the Fourier

transform of ψ ◦ f (which is a function from Fn
p to C) are upper bounded by sufficiently small

quantities. We in fact present two constructions of such functions f . The first is based on standard
error-correcting codes over Fp, and the second is an improved construction based on rank-metric
codes. Those constructions appear in Section 3.2.

Second step: applying a seeded extractor. Having extracted a small number of bits, we wish
to use them as a seed in an application of a seeded extractor on the source to extract almost all
the min-entropy. The challenge, of course, is that the seed is correlated with the source, whereas
a seeded extractor requires the seed to be independent of the source. Techniques for dealing
with these problems were developed in [GRS06, GR08], as this is also the general methodology in
their extractor constructions. This is done by analyzing the conditional distribution of the source
conditioned on any possible output of the seeded extractor with a fixed seed, and showing that it
maintains some nice properties. We first analyze the case where the image f(V ) of the polynomial
map is of full rank inside Fk, using the effective fiber dimension theorem. We then consider the
general case. In order to reduce to that case, we apply a rank extractor for varieties, a notion we
define and develop in this work, building upon previous work which developed rank extractors for
linear spaces.

Rank extractor for varieties. Let V ⊆ Fn be a k-dimensional variety. We would like to obtain
a map E : Fn → Fk which “extracts” all the rank from V , in the sense that E(V ) ⊆ Fk is k-
dimensional. The first obvious challenge is that E(V ) need not necessarily be a variety. It is thus
natural in this case to consider the closure of E(V ) in Fn

where F is the algebraic closure of F.
Previous work has considered the case where V is a linear subspace. In this case, observe that

if E is linear, then E(V ) is also a linear subspace. However, there clearly cannot be a single map
E that preserves the dimension of all linear subspaces, as given any fixed E, one could take V to
be the kernel of E. Therefore, a natural relaxation is to consider seeded linear rank extractors,
which are collections of linear maps E1, . . . , Et such that for every V , most of the maps preserve the
dimension. Such objects were first defined and constructed by Gabizon and Raz [GR08]. Improved
and optimal parameters (in terms of the “seed length,” i.e., the number of maps) were obtained by
Forbes and Shpilka [FS12], and a systematic study of these objects appears in [FG15].

In this work, we observe that seeded linear rank extractors for extractors are also seeded linear
rank extractors for varieties (see Section 5). The key insight is that rank extractors (for linear
subspaces) preserve the dimensions of the tangent spaces at nonsingular points of the variety,
which turns out to be a sufficient criterion.

Linear rank extractors are very useful because they enable us to condense sources that are not
full-rank to full-rank sources without increasing the degrees of the polynomial maps. However,
it turns out that it is also possible to construct deterministic rank extractors for varieties, which
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we do in Section 6. Such extractors are obviously not linear maps, although in our constructions,
they are polynomials of fairly small degrees (polynomial in n and in the degree d of the variety).
We remark that Dvir [Dvi12] constructed such an extractor for one-dimensional varieties, and his
extractor is a polynomial of degree exponential in n. In addition, Dvir, Gabizon and Wigderson
[DGW09] constructed rank extractors for polynomial sources using a different technique.

Our construction adapts the construction of Dvir, Kollár and Lovett [DKL14], who constructed
different pseudorandom objects called variety evasive sets. By modifying their proof, we are able to
show that a similar construction yields a deterministic rank extractor for varieties. This essentially
follows because their map φ satisfies the property that for every low-degree variety V and every
point b ∈ Fk, the intersection φ−1(b) ∩ V is a finite set. Dvir, Kollár and Lovett prove it only for
the case b = 0, but it is not hard to extend it to general b.

Explicit Noether normalization lemmas. As a by-product of the above construction of de-
terministic rank extractors for varieties, we prove explicit Noether normalization lemmas for affine
varieties and affine algebras. The Noether normalization lemma [Noe26, Nag62] is a classical result
in commutative algebra and algebraic geometry, which states that any affine variety of dimension
k admits a surjective finite morphism to an affine space of dimension k. We show that the con-
struction in [DKL14] in fact gives a direct construction of such a finite morphism. In contrast,
the textbook proof of Nagata [Nag62] is iterative and uses polynomials of degrees that are at least
doubly exponential in the number of steps of the iteration.

Our proof is inspired by a geometric argument of Kollár, Rónyai and Szabó [KRS96]. See
Section 11 and Appendix D for more details.

Affine extractors with exponentially small error. Our proof of Theorem 2 follows a very
similar route to the proof of the main theorem of Bourgain, Dvir and Leeman [BDL16], who
constructed such an extractor for prime fields Fq for “typical” primes q. Our main contribution is
an improved number-theoretic lemma (Proposition 10.3) which shows how to find n distinct integers
d1, . . . , dn with desirable number theoretic properties. The proof then proceeds by estimating the
Fourier coefficient of the distribution obtained by applying our extractor to a linear subspace using
an exponential sum estimate of Deligne, much in the same way as [BDL16].

1.4 Comparison with Previous Work

The two works closest to ours are by Dvir [Dvi12] and Dvir, Gabizon and Wigderson [DGW09],
both of which construct extractors for sources with algebraic structures.

As mentioned earlier, Dvir, Gabizon and Wigderson [DGW09] study polynomial sources, defined
by picking an element x ∈ Fk

q uniformly at random and applying a polynomial map f : Fk
q → Fn

q of
degree at most d. This is a special case of the sources we consider when the variety V is taken to
be Fk

q .
They further add the non-degeneracy condition that the Jacobian of the mapping f , namely,

its matrix of partial derivatives, has full rank. This in particular guarantees that the source has a
high enough min-entropy. Their main theorem gives an explicit extractor that outputs a constant
fraction of the min-entropy over prime fields Fp of cardinality poly(n, d)Ck for some constant C.
Our construction in Theorem 1, on the other hand, works for a larger class of sources, outputs
almost all the min-entropy, and works over finite fields of small characteristics as well.
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Dvir [Dvi12] considers variety sources, which he defines as uniform distributions over sets of the
type {x : f1(x) = f2(x) = · · · = ft(x) = 0} in Fn

p , where deg fi ≤ d for all i. These sources are also
a special case of the type of sources we consider. One should note, however, the different usage
of the term “degree” in our definitions: Dvir always refers to the degree deg fi of the polynomials
which define the variety V , whereas we refer to the degree deg V of V as an affine variety, which is
often much larger.

Assuming dimV = k and |V | ≥ pk−c for some small constant c > 0, Dvir’s extractor [Dvi12]
outputs a constant fraction of the min-entropy over prime fields of characteristic p > dCn2

for some
constant C. Again, Dvir uses the parameter d differently than we do in Theorem 1. In particular, in
our construction, the field size q is only polynomial in the parameter d (but d might be exponential
in n).

As mentioned in the discussion after Definition 1.2, our assumptions are weaker than those of
[DGW09] and [Dvi12]. Thus, as our sources is more general, the characteristic in our results can
be arbitrary, and our conclusions are stronger (since we extract more output bits), it follows that
in particular our result subsumes the extractors of [DGW09] and [Dvi12].

Dvir [Dvi12] also presents a different construction that outputs a very small number of bits
from very large varieties over small fields. This construction is incomparable with our results.

On the more technical level, we discuss a particular feature of our proof that distinguishes it
from [DGW09, Dvi12] and, in particular, allows us to extend the output length.

For simplicity, consider the case of (1, 1, d) algebraic sources. As mentioned in Section 1.3, we
first prove an extension of Bombieri’s estimate that holds even if the characteristic p is small: if p
is small, this result implies that a (1, 1, d) algebraic source D over Fq is a convex combination of
(ε, d)-biased sources. That is, we allow a few large Fourier coefficients. Then we use the machinery
developed in Section 3 to extract randomness from D. On the other hand, if p is large enough,
then D has no large nontrivial Fourier coefficients; it is ε-biased. In this case, the XOR lemma is
sufficient, as argued in [DGW09, Dvi12].

To apply Bombieri’s estimate to a high-dimensional affine variety V , we follow [DGW09, Dvi12]
and decompose V into a family of affine curves Ci such that the polynomial f that does not vanish
identically on V still does not vanish on most Ci.

In [DGW09], this is achieved using an argument based on the Jacobian criterion for algebraic
independence, but it works only when the characteristic p is large. Instead of using this argument,
we use the decomposition of (n, k, d) algebraic sources into irreducibly minimal (n, k, d) algebraic
sources proved in Section 7, whose proof is based on the effective fiber dimension theorem (Theo-
rem 4.10) and works for any characteristic.

The last idea we introduce is the use of the effective Lang–Weil bound (Theorem 4.6), which
allows us to extract almost log q bits. To explain the idea, consider an affine variety V ⊆ An

Fq

and write V (Fq) as a disjoint union of Ci(Fq) for a family of affine curves Ci over Fq. Let f be a
low-degree polynomial and assume for simplicity that f is non-constant on every Ci. Let χ be a
nontrivial character of Fq. The following win-win argument was used in [DGW09] to bound the bias
δ :=

∣∣Ex∈V (Fq)[χ(f(x))]
∣∣: For a curve Ci, if |Ci(Fq)| is small, say |Ci(Fq)| ≤ ∆ for some threshold

∆, then its contribution to the bias δ is small assuming that V has many rational points. On the
other hand, if Ci(Fq) > ∆, then Bombieri’s estimate (Lemma 8.3), together with the fact that

∣∣∣∣ E
x∈Ci(Fq)

[χ(f(x))]

∣∣∣∣ =
∣∣∣∑x∈Ci(Fq)

[χ(f(x))]
∣∣∣

|Ci(Fq)|
≤

∣∣∣∑x∈Ci(Fq)
[χ(f(x))]

∣∣∣
∆

,
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implies that
∣∣Ex∈Ci(Fq)[χ(f(x))]

∣∣ is small. Considering all curves Ci shows that the bias is small.
We note that no information about |Ci(Fq)| was used in this win-win argument. For this reason, the
choice of threshold ∆ cannot be too large or too small, and the resulting extractors only extract
a constant fraction of log q bits. To improve the output length, we observe that the effective
Lang–Weil bound (Theorem 4.6) together with Lemma 7.2 gives more information about |Ci(Fq)|.
In particular, for an irreducible affine curve C, the number |C(Fq)| is either close to q or very
small, depending on whether C is absolutely irreducible. Exploiting this fact yields an explicit
construction of deterministic extractors that output almost log q bits.

1.5 Open Problems

While improving the dependence on any of the parameters in our construction remains an open
problem, in our opinion, the main challenge is reducing the field size. In our construction for
polynomial images of varieties (Theorem 1), we require field size poly(n, 1/ε, d). We stress that for
certain varieties, d can be exponential in n (although it is by no means necessarily so). Can we
construct extractors for significantly smaller fields, perhaps even constant size?

As mentioned above, over very small fields, such as F2, certain Ramsey-theoretic lower bounds
imply that constructions such as ours that work for any min-entropy cannot exist. A key reason to
study F2 is that explicit extractors with certain parameters imply new circuit lower bounds.

In our construction of new affine extractors (Theorem 2), we obtain a field size that is slightly
super-polynomial in n. It is a very appealing open problem to reduce the field size to a polynomial
in n.

A related problem is reducing the degree of our deterministic rank extractor. In Section 6, we
construct a deterministic rank extractor for varieties whose degree is poly(n, d) for degree d varieties.
Reducing the degree, perhaps to depend only on d, would help lower the field size requirement for
the extractor for polynomial images of varieties to depend only on the degree.

We end with two general questions. Can our constructions or techniques help in designing
extractors for larger and more general classes of sources, either algebraic or complexity-theoretic?
Do our constructions have any complexity-theoretic implications, such as lower bounds for certain
models of computation?

2 Notations and Preliminaries

Let N = {0, 1, . . . }, N+ = {1, 2, . . . , }, and [n] = {1, 2, . . . , n} for n ∈ N. Write Zn for the cyclic
group {0, 1, . . . , n− 1} with addition modulo n.

The cardinality of a set S is denoted by |S|. We also use |c| to denote the absolute value of a
number c ∈ C. Denote by log x the base 2 logarithm of x, and by lnx the natural logarithm of x.
For sets A and B, denote by A \ B the set difference {x ∈ A : x ̸∈ B}. The restriction of a map
f : A→ B to a subset A′ ⊆ A is denoted by f |A′ , which is a map from A′ to B.

A formal Laurent series over a field F has the form

h(T ) = ciT
i + ci+1T

i+1 + . . .

where i ∈ Z and cj ∈ F for j ≥ i. Denote by ord(f) the least degree of the terms that appear in
f , i.e., f = c0T

ord(f) + c1T
ord(f)+1 + · · · where c0 ̸= 0. If f = 0, then let ord(f) = +∞. The set

of formal Laurent series over F is a field, denoted by F((T )). We say f ∈ F((T )) is a formal power
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series over F if ord(f) ≥ 0. The set of formal power series over F is a subring of F((T )), denoted
by F[[T ]].

We write x ∼ D if x is sampled from a distribution D. The support of a distribution D over a
finite set Ω is supp(D) := {a ∈ Ω : Pr[D = a] ̸= 0}. For an event A that occurs with a nonzero
probability under a distribution D, write D|A for the distribution of D conditioned on A. The
product distribution of two distributions D,D′ is denoted by D × D′. The statistical distance
between two distributions D,D′ over a finite set Ω is defined to be

∆(D,D′) := max
A⊆Ω

|Pr[D ∈ A]− Pr[D′ ∈ A]|.

Two distributions D and D′ are ε-close if their statistical distance is at most ε, and we write
D =ε D

′ for this statement.
The uniform distribution over a finite set S is denoted by US . For n ∈ N, denote by Un the

uniform distribution over {0, 1}n.
The min-entropy of a distribution D over a finite set Ω is

Hmin(D) := − log(max
a∈Ω

Pr[D = a]).

We say D is a k-source if Hmin(D) ≥ k.
Let Ω and B be finite sets, and let D be a class of distributions over Ω. A function Ext : Ω → B

is said to be a (deterministic) ε-extractor for D if Ext(D) =ε UB for all D ∈ D. A function
Ext : Ω× {0, 1}ℓ → B is said to be a seeded ε-extractor for D if Ext(D × Uℓ) =ε UB for all D ∈ D,
where ℓ ∈ N is called the seed length of Ext.

Facts about distributions. The following lemmas are standard and can be found in, e.g.,
[Sha08, Section 2].

Lemma 2.1. Let f : A → B be a map between finite sets. Let D and D′ be distributions over A.
If D =ε D

′, then f(D) =ε f(D
′).

Lemma 2.2. Let D = (D1, D2) be a joint distribution over a finite product set A×B. Suppose T
is a subset of A such that Pr[D1 ∈ T ] ≥ 1− ε1 and D2|D1=a =ε2 D

′
2 for some distribution D′

2 over
B and all a ∈ T ∩ supp(D1). Then D =ε1+ε2 D1 ×D′

2.

3 Sources with Low Bias and Their Extractors

In this section, we consider several natural extensions of ε-biased sources which are useful for our
extractor constructions. We then show how to extract randomness from such sources.

3.1 (ε, e)-Biased Sources

Let A be a finite abelian group and let Â denote the dual group of A, that is, the group of characters
over A. A distributionD over A is ε-biased if |E[χ(D)]| ≤ ε for all nontrivial characters χ ∈ Â. This
is a standard definition, introduced in [NN93], which has been immensely useful in the construction
of extractors and in the theory of pseudorandomness in general.

We now introduce two natural generalizations. We say D is (ε, e)-biased if |E[χ(D)]| ≤ ε for all
but at most e characters χ ∈ Â. And we say D is strongly (ε, e)-biased if the set of χ ∈ Â satisfying
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|E[χ(D)]| > ε is contained in an abelian subgroup of A of size at most e. The usefulness of the
latter definition will be clear shortly.

Note that if A is a vector space over a finite field of characteristic p, then an (ε, e)-biased
distribution is also strongly (ε, pe)-biased.

We have the following easy observation, which shows that strongly (ε, e)-biased sources gener-
alize affine sources (of low codimension).

Lemma 3.1. An affine source of codimension at most k in Fn
p is strongly (0, pk)-biased.

The following proposition states that (ε, e)-biased sources are (close to) distributions with high
min-entropy.

Proposition 3.2. Let D be an (ε, e)-biased distribution over A. Then D is ε′-close to a k-source
if ε′ ≥ 2k(ε2 + |A|−1e). In particular, this holds for k = min{2 log(1/ε), log |A| − log e} − log(2/ε′).

Proof. View D as a function D : A→ R such that D(x) = Pr[D = x] for x ∈ A. For χ ∈ Â, we have

D̂(χ) = Ex∈A[D(x)χ(x)] = |A|−1
(∑

x∈A Pr[D = x] · χ(x)
)
= |A|−1E[χ(D)]. So |D̂(χ)| ≤ |A|−1 for

all χ ∈ Â, and |D̂(χ)| ≤ |A|−1ε for all but at most e characters χ ∈ Â. By Parseval’s identity,

∑
x∈A

|D(x)|2 = |A| ·
(

E
x∈A

[
|D(x)|2

])
= |A| ·

∑
χ∈Â

|D̂(χ)|2
 ≤ ε2 + |A|−1e.

Let A′ ⊆ A be the set of x ∈ A such that D(x) > 2−k. Then

ε2 + |A|−1e ≥
∑
x∈A

|D(x)|2 ≥
∑
x∈A′

|D(x)|2 ≥

(∑
x∈A′

D(x)

)
2−k.

So the total probability mass contributed by x ∈ A′ is bounded by ε′ = 2k(ε2 + |A|−1e). This
implies that D is ε′-close to a k-source.

Next, suppose that A and B are finite groups. We wish to bound the bias of conditional
distributions over A (or B), assuming bounds on the bias of a distribution over A× B. We begin
with the following technical calculation.

Lemma 3.3. Let A and B be finite abelian groups. Identifying Â × B̂ with Â×B so that
(χ, θ)(x, y) = χ(x)θ(y) for (x, y) ∈ A × B and (χ, θ) ∈ Â × B̂. Let D = (D1, D2) be a joint
distribution over A×B. For x ∈ supp(D1) and θ ∈ B̂, we have

E[θ(D2|D1=x)] =
∑
χ∈Â

Pr[D1 = x]−1 · |A|−1 · χ(x) · E[(χ, θ)(D)].

Proof. Define δx : A→ {0, 1} to be the indicator function such that δx(z) = 1 if and only if z = x.
Then

E[θ(D2|D1=x)] = Pr[D1 = x]−1 · E[δx(D1)θ(D2)]

= Pr[D1 = x]−1 · E

∑
χ∈Â

δ̂x(χ)χ(D1)

 θ(D2)


11



=
∑
χ∈Â

Pr[D1 = x]−1 · δ̂x(χ) · E[χ(D1)θ(D2)]

=
∑
χ∈Â

Pr[D1 = x]−1 · |A|−1 · χ(x) · E[(χ, θ)(D)]

where the last equality uses the fact δ̂x(χ) = Ez∈A[δx(z)χ(z)] = |A|−1 · χ(x).

As a corollary, we bound the bias of the marginal distribution D2 conditioned on any value of
D1.

Corollary 3.4. Use the notations in Lemma 3.3. Let ε, ε′ > 0. Assume that every character
χ ∈ Â×B ∼= Â × B̂ satisfying E[χ(D)] > ε is contained in the subgroup Â × {1}. Then with
probability at least 1− ε′ over x ∼ D1, the conditional distribution D2|D1=x is |A|ε/ε′-biased.

Proof. Let T be the set of x ∈ A satisfying Pr[D1 = x] ≤ |A|−1ε′. Then Pr[D1 ∈ T ] =∑
x∈T Pr[D1 = x] ≤ ε′. So it suffices to show that |E[θ(D2|D1=x)]| ≤ |A|ε/ε′ holds for every

x ∈ A \ T and every nontrivial character θ of B.
Consider x ∈ A \T and a nontrivial character θ of B. As x ̸∈ T , we have Pr[D1 = x] > |A|−1ε′.

By Lemma 3.3,

|E[θ(D2|D1=x)]| =

∣∣∣∣∣∣
∑
χ∈Â

Pr[D1 = x]−1 · |A|−1 · χ(x) · E[(χ, θ)(D)]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
χ∈Â

χ(x) · E[(χ, θ)(D)]

∣∣∣∣∣∣ /ε′
≤
∑
χ∈Â

|E[(χ, θ)(D)]|/ε′.

Note that for χ ∈ Â, (χ, θ) is not in the subgroup Â × {1} since θ ∈ B̂ is nontrivial. So
|E[(χ, θ)(D)]| ≤ ε by assumption. It follows that |E[θ(D2|D1=x)]| ≤ |A|ε/ε′, as desired.

3.2 Extraction via the XOR Lemma and Rank-Metric Codes

We need the following form of Vazirani’s XOR lemma, taken from [Rao07].

Lemma 3.5 (XOR lemma). Every ε-biased distribution over a finite abelian group A is ε|A|1/2-
close to the uniform distribution over A.

Large characteristic. Over fields of large characteristic, we use the mod-M function in our
constructions as an extractor for low-bias distributions, in a similar manner to [DGW09] and
[Dvi12]. We follow the treatment in [Rao07].

For a finite abelian group A and a function h : A → C, define ∥h∥1 =
∑

x∈A |h(x)| and
∥h∥∞ = maxx∈A |h(x)|.

Lemma 3.6 ([Rao07, Lemma 4.3]). Let A and B be finite abelian groups. Let D be an ε-biased
distribution over A. Suppose f : A → B is a map such that for every character ψ of B, we have

that
∥∥∥ψ̂ ◦ f

∥∥∥
1
≤ τ . Then f(D) is ε′-close to f(UA), where ε

′ = τε|B|1/2.
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Lemma 3.7 ([Rao07, Lemma 4.4]). Let f : ZN → ZM be the map sending a mod N to a modM

for a ∈ {0, 1, . . . , N − 1}. Let ψ be a character of ZM . Then
∥∥∥ψ̂ ◦ f

∥∥∥
1
≤ c logN , where c is an

absolute constant.

When p is large but Fq is possibly non-prime, we simply apply the mod-M function to the last
Fp-coordinate of Fq and use the following corollary of Lemma 3.7.

Corollary 3.8. Let f : Zt
N → Zt−1

N × ZM be the map that sends (a1, . . . , at−1, a mod N) to
(a1, . . . , at−1, a modM) for (a1, . . . , at−1, a) ∈ Zt−1

N × {0, 1, . . . , N − 1}. Let ψ be a character of

Zt−1
N × ZM . Then

∥∥∥ψ̂ ◦ f
∥∥∥
1
≤ c logN , where c is an absolute constant.

Combining Lemma 3.6 and Corollary 3.8 gives the following lemma, which allows us to extract
randomness from ε-biased sources over Fq.

Lemma 3.9. Let f : Zt
N → Zt−1

N × ZM be the map in Corollary 3.8. Then for every ε-biased
distribution D over Zt

N , f(D) is ε′-close to the uniform distribution over Zt−1
N × ZM , where ε′ =

ε · (N t−1M)1/2 · c logN +M/N and c is an absolute constant.

Proof. By Lemma 3.6 and Corollary 3.8, f(D) is ε · (N t−1M)1/2 · c logN -close to f(U). For each
b ∈ ZM , the number of a ∈ {0, 1, . . . , N − 1} satisfying a modM = b is either ⌊N/M⌋ or ⌈N/M⌉,
and its difference from N/M is bounded by one. So f(U) is M/N -close to the uniform distribution
over Zt−1

N × ZM , and the lemma follows.

Small characteristic. The XOR lemma requires the distribution to be ε-biased. However, when
the characteristic is small, we need to deal with the more general class of (ε, e)-biased distributions,
where e is small. The following lemma states that we can extract randomness from such sources
using a function f , provided that the L1 and L∞ norms of the Fourier transforms of certain functions
ψ ◦ f are reasonably bounded.

Lemma 3.10. Let A and B be finite abelian groups. Let D be an (ε, e)-biased distribution over
A. Let f : A → B be a map such that for every nontrivial character ψ ∈ B̂, ∥ψ ◦ f∥1 ≤ a1 and
∥ψ ◦ f∥∞ ≤ a∞. Then f(D) is ε′-close to the uniform distribution over B, where ε′ = (a1ε +
a∞e)|B|1/2.

Proof. Let ψ be a nontrivial character of B. By the XOR lemma, we just need to prove that

|E[ψ(f(D))]| ≤ a1ε+ a∞e.

Let E be the set of χ ∈ Â such that |E[χ(D)]| > ε. Then |E| ≤ e. Writing ψ ◦ f =∑
χ∈B̂ ψ̂ ◦ f(χ) · χ, we have

|E[ψ(f(D))]| = |E[(ψ ◦ f)(D)]|

≤
∑
χ∈Â

|ψ̂ ◦ f(χ)| · |E[χ(D))]|

=
∑

χ∈Â\E

|ψ̂ ◦ f(χ)| · |E[χ(D))]|+
∑
χ∈E

|ψ̂ ◦ f(χ)| · |E[χ(D))]|
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≤

 ∑
χ∈Â\E

|ψ̂ ◦ f(χ)|

 · ε+ |E| ·max
χ∈E

|ψ̂ ◦ f(χ)|

≤ a1ε+ a∞e

as desired.

We turn to constructing functions f with the properties required by Lemma 3.10. As a warm-
up, we first give a construction based on the inner product function and error-correcting codes.
Later, we give an improved construction based on rank-metric codes.

Construction of f based on the inner product function and error-correcting codes.
We construct f by adapting the inner product function IP (x1, . . . , x2r) =

∑r
i=1 x2i−1x2i. Suppose

r, n > 0 are integers such that 2r ≤ n. Let π : Fn
p → F2r

p be a projection over Fp. Let C ⊆ Fr
p be a

linear code over Fp of dimension t and relative distance δ with a generating matrix G = (ci,j) ∈ Ft×r
p

(i.e., C is the row space of G). For i ∈ [t], define fi : Fn
p → Fp by

fi(x) =

r∑
j=1

ci,jy2j−1y2j , where (y1, . . . , y2r) = π(x) ∈ F2r
p .

Let f = (f1, . . . , ft) : Fn
p → Ft

p.

Lemma 3.11. Let f be as above. For every nontrivial character ψ ∈ F̂t
p, we have

∥∥∥ψ̂ ◦ f
∥∥∥
1
≤ pr

and
∥∥∥ψ̂ ◦ f

∥∥∥
∞

≤ p−δr.

Proof. Note that ψ ◦ f may be viewed as a function in π(x) ∈ F2r
p and hence can be written as

a linear combination of the characters of F2r
p . On the other hand, the projection π : Fn

p → F2r
p

induces an injective group homomorphism ι : F̂2r
p ↪→ F̂n

p via χ 7→ χ ◦ π. This means the support of

ψ̂ ◦ f is contained in the subgroup ι(F̂2r
p ) ⊆ F̂n

p of size p2r. By the Cauchy–Schwarz inequality,

∥∥∥ψ̂ ◦ f
∥∥∥
1
=

∑
χ∈ι(F̂2r

p )

|ψ̂ ◦ f(χ)| ≤

 ∑
χ∈ι(F̂2r

p )

|ψ̂ ◦ f(χ)|2


1/2

· pr =
∥∥∥ψ̂ ◦ f

∥∥∥
2
· pr = pr.

where the last equality uses the fact that ψ◦f takes values in the unit circle and hence
∥∥∥ψ̂ ◦ f

∥∥∥
2
= 1

by Parseval’s identity.

We now prove the second claim, i.e., |ψ̂ ◦ f(χ)| ≤ p−δr for χ ∈ F̂n
p . We may also assume

χ ∈ ι(F̂2r
p ) since the support of ψ̂ ◦ f is contained in ι(F̂2r

p ).

Fix a nontrivial character σ of Fp. Then ψ(x1, . . . , xt) = σ(
∑t

i=1 uixi) for some nonzero vector
u = (u1, . . . , ut) ∈ Ft

p. Let (v1, . . . , vr) = uG, which is a nonzero codeword in C. Note that by
definition,

(ψ ◦ f)(x) = σ

(
t∑

i=1

uifi(x)

)
= σ

(
r∑

i=1

viy2i−1y2i

)
, where (y1, . . . , y2r) = π(x) ∈ F2r

p .
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As χ ∈ ι(F̂2r
p ), we have χ(x) = σ(

∑2r
i=1wiyi) for some (w1, . . . , w2r) ∈ F2r

p , where (y1, . . . , y2r) =
π(x). Then

|ψ̂ ◦ f(χ)| =
∣∣∣∣ E
x∈Fn

p

[
(ψ ◦ f)(x)χ(x)

]∣∣∣∣
=

∣∣∣∣∣∣ E
(y1,...,y2r)∈F2r

p

σ( r∑
i=1

viy2i−1y2i

)
· σ

(
2r∑
i=1

wiyi

)∣∣∣∣∣∣
=

∣∣∣∣∣ E
(y1,...,y2r)∈F2r

p

[
σ

(
r∑

i=1

(viy2i−1y2i − w2i−1y2i−1 − w2iy2i)

)]∣∣∣∣∣
=

r∏
i=1

∣∣∣∣ E
y,y′∈Fp

[
σ
(
Pi(y, y

′)
)]∣∣∣∣

where Pi(y, y
′) := viyy

′−w2i−1y−w2iy
′ = (viy−w2i)y

′−w2i−1y. Note that
∣∣Ey,y′∈Fp [σ (Pi(y, y

′))]
∣∣ ≤

1/p whenever vi ̸= 0. (This holds since Ey′∈Fp [σ (Pi(y, y
′))] is zero when vi ̸= 0 and y is assigned

a value in Fp different from w2i/vi, in which case Pi(y, y
′) is a degree-1 polynomial in y′.) As C is

a linear code of relative distance δ, there are at least δr indices i ∈ [r] for which vi ̸= 0. It follows

that |ψ̂ ◦ f(χ)| ≤ p−δr.

By choosing C ⊆ Fr
p to be an explicit asymptotically good linear code over Fp (e.g., an expander

code), we obtain the following result.

Corollary 3.12. There exist absolute constants c, c′ > 0 such that the following holds. For integers
r, n > 0 such that 2r ≤ n, there exists an explicit function Fn

p → Ft
p, where t ≥ cr, such that∥∥∥ψ̂ ◦ f

∥∥∥
1
≤ pr and L∞(ψ̂ ◦ f) ≤ p−c′r for every nontrivial character ψ ∈ F̂t

p.

Construction of f based on rank-metric codes. The bilinear maps used in the above con-
struction may be viewed as diagonal matrices with many nonzeros on the diagonal. We observe that
the analysis only requires the matrices to have a high rank, and they do not have to be diagonal
or even square matrices. This leads to the following improved construction of f based on rank-
metric codes, which are subspaces of matrices such that every non-zero matrix in the subspace has
a high rank. Here we use an optimal construction of rank-metric codes discovered independently
by Delsarte [Del78] and Gabidulin [Gab85].

Definition 3.13 (Delsarte–Gabidulin codes). Let k ≤ r ≤ s be positive integers. Fix g1, . . . , gr ∈
Fps that are linearly independent over Fp. Also fix τ : Fps → Fs

p that is an isomorphism of vec-

tor spaces over Fp. For u = (u1, . . . , uk) ∈ Fk
ps, let fu :=

∑k
i=1 uiX

pi−1 ∈ Fps [X] and Mu :=
(τ(fu(g1)), . . . , τ(fu(gr))) ∈ Fs×r

p , where each τ(fu(gi)) ∈ Fs
p is viewed as a column vector.

Lemma 3.14. For any nonzero u ∈ Fk
ps, the matrix Mu has rank at least r − k + 1.

Proof. Let Z ⊆ Fps be the set of roots of fu in Fps . We have |Z| ≤ deg(fu) ≤ pk−1. Note that for
a column vector y = (y1, . . . , yr) ∈ Fr

p, we have Muy =
∑r

i=1 yiτ(fu(gi)) = τ(fu(
∑r

i=1 yigi)) since
τ is Fp-linear and fu is a linearized polynomial. So Muy = 0 iff

∑r
i=1 yigi ∈ Z. As g1, . . . , gr are

linearly independent over Fp, the map y 7→
∑r

i=1 yigi is injective. So there are at most |Z| ≤ pk−1

choices of y such that Muy = 0. We conclude that the right kernel of Mu has size at most pk−1

and hence has dimension at most k − 1. In other words, the rank of Mu is at least r − k + 1.
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The map u 7→ Mu is an Fp-linear injective map by Lemma 3.14. So {Mu : u ∈ Fk
ps} is a linear

space of dimension ks over Fp, and any nonzero matrix in this space has rank at least r− k+1 by
Lemma 3.14. We record this in the following corollary.

Corollary 3.15. Let k ≤ r ≤ s be positive integers. Let t ≤ ks. There exist explicit matrices
M1, . . . ,Mt ∈ Fs×r

p such that for any nonzero c = (c1, . . . , ct) ∈ Ft
p, the matrix

∑t
i=1 ciMi has rank

at least r − k + 1.

Construction 3.16. Suppose r, n > 0 are integers such that 2r ≤ n. Let s = n − r ≥ r. Let
k ∈ [r] and t ∈ [ks]. And let M1, . . . ,Mt be as in Corollary 3.15. Identify Fn

p with Fs
p × Fr

p. Then
for i ∈ [t], define fi : Fn

p
∼= Fs

p × Fr
p → Fp to be the Fp-bilinear map sending (x, y) ∈ Fs

p × Fr
p to

xTMiy, where x and y are viewed as column vectors. Finally, let f = (f1, . . . , ft) : Fn
p → Ft

p.

Lemma 3.17. Let f be as above. For every nontrivial character ψ ∈ F̂t
p, we have

∥∥∥ψ̂ ◦ f
∥∥∥
1
≤ pr

and
∥∥∥ψ̂ ◦ f

∥∥∥
∞

≤ p−(r−k+1).

Proof. Fix a nontrivial character σ of Fp. Identify Fn
p with Fs

p × Fr
p. Then ψ ◦ f has the form

(x, y) 7→ σ(xTMy) where M ∈ Fs×r is a nontrivial linear combination of the matrices M1, . . . ,Mt.
Let R be the rank of M . Then r − k + 1 ≤ R ≤ min{s, r} = r by Corollary 3.15.

Let U, V ⊆ Fs
p such that U is the left kernel of M and V is a complement of U . We have

codimFp U = dimFp V = R. Identify Fs
p with U × V . Identify F̂n

p with Û × V̂ × F̂r
p so that

(χ1, χ2, χ3) sends (u, v, y) ∈ U × V × Fr
p
∼= Fn

p to χ1(u)χ2(v)χ3(y). Consider χ = (χ1, χ2, χ3) ∈ F̂n
p .

We have
ψ̂ ◦ f(χ) = E

x∈Fn
p

[
(ψ ◦ f)(x)χ(x)

]
= E

(u,v,y)∈U×V×Fr
p

[
σ((u+ v)TMy)χ1(u)χ2(v)χ3(y)

]
= E

(u,v,y)∈U×V×Fr
p

[
σ(vTMy)χ1(u)χ2(v)χ3(y)

]
= E

(v,y)∈V×Fr
p

[
σ(vTMy)χ2(v)χ3(y)

]
E

u∈U

[
χ1(u)

]
(1)

Note Eu∈U

[
χ1(u)

]
= 0 whenever χ1 ̸= 1. So the support of ψ̂ ◦ f is contained in the subgroup

{1}× V̂ × F̂r
p of size pR+r ≤ p2r. Also note that ψ ◦ f takes values in the unit circle of C and hence∑

χ∈F̂n
p
|ψ̂ ◦ f(χ)|2 = Ex∈Fn

p

[
(ψ ◦ f)(x)2

]
= 1 by Parseval’s identity. Then by the Cauchy–Schwarz

inequality, ∥∥∥ψ̂ ◦ f
∥∥∥
1
=

∑
χ∈{1}×V̂×F̂r

p

|ψ̂ ◦ f(χ)| ≤

∑
χ∈F̂n

p

|ψ̂ ◦ f(χ)|2


1/2

· pr = pr.

This proves the first claim.

We now prove the second claim, i.e., |ψ̂ ◦ f(χ)| ≤ p−(r−k+1) for χ ∈ F̂n
p . We may assume

χ = (χ1, χ2, χ3) ∈ {1} × V̂ × F̂r
p since otherwise ψ̂ ◦ f(χ) = 0. Choose w ∈ V such that χ2 sends
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v ∈ V to σ(vTw). Then

|ψ̂ ◦ f(χ)| =

∣∣∣∣∣ E
(v,y)∈V×Fr

p

[
σ(vTMy)χ2(v)χ3(y)

]∣∣∣∣∣
=

∣∣∣∣∣ E
(v,y)∈V×Fr

p

[
σ(vT (My − w))χ3(y)

]∣∣∣∣∣
=

∣∣∣∣ E
y∈Fr

p

[
E

v∈V

[
σ(vT (My − w))

]
· χ3(y)

]∣∣∣∣
≤ Pr

y∈Fr
p

[My = w].

The first equality holds by (1) and the assumption χ1 = 1. The last inequality above holds since
Ev∈V

[
σ(vT (My − w))

]
= 0 when My ̸= w. Finally, note Pry∈Fr

p
[My = w] is either zero or p−R,

depending on whether My = w has a solution. In either case, we have |ψ̂ ◦ f(χ)| ≤ p−R ≤
p−(r−k+1).

Assuming that n is sufficiently large and ε is not too much larger than p−n/2, the construction
above gives explicit deterministic extractors that extract a constant fraction of min-entropy from
(ε, e)-biased sources over Fn

p , as stated by the following theorem.

Theorem 3.18. Let n, t, e ∈ N+ and d, ε′ > 0 such that n ≥ c and t log p ≤ c−1n log p−2 log(de/ε′),
where c > 0 is a large enough absolute constant. Let ε = dp−n/2. Then there exists an explicit
deterministic ε′-extractor f : Fn

p → Ft
p for (ε, e)-biased sources distributed over Fn

p .

Proof. Choose r = n/4, s = n− r, and k = r/2. (For ease of readability, we omit floor and ceiling
functions.) Note t ≤ ks assuming c is large enough. Let f : Fn

p → Ft
p be as in Construction 3.16.

Then
∥∥∥ψ̂ ◦ f

∥∥∥
1
≤ pr and

∥∥∥ψ̂ ◦ f
∥∥∥
∞

≤ p−r/2 by Lemma 3.17. By Lemma 3.10, for any (ε, e)-biased

distribution D over Fn
p , f(D) is ε′′-close to the uniform distribution over Ft

p, where ε
′′ = (prdp−n/2+

p−r/2e) · pt/2. As c is large enough, the conditions in the theorem imply prdp−n/2 · pt/2 ≤ ε′/2 and
p−r/2e · pt/2 ≤ ε′/2. So ε′′ ≤ ε′ and hence f(D) is ε′-close to the uniform distribution.

We also obtain an explicit construction of deterministic extractors that extract most min-
entropy from very dense affine sources, and more generally, (0, e)-biased sources. It is interesting
to compare and constant the theorem below with our construction in Section 10, which requires a
large field size but works for arbitrary min-entropy, and is also based on very different ideas.

Theorem 3.19. Let n, t, e ∈ N+ and ε ∈ (0, 1) such that t ≤ n− 3− 2 logp(e/ε). Then there exists
an explicit deterministic ε-extractor f : Fn

p → Ft
p for (0, e)-biased sources, and in particular, for

affine sources of codimension at most logp e.

Proof. Note that n ≥ t + 3 ≥ 4. Choose r = ⌊n/2⌋ ≥ (n − 1)/2, s = n − r, and k = 2 ≤ r.
Note t ≤ ks since t ≤ n and s ≥ n/2. Let f : Fn

p → Ft
p be as in Construction 3.16. Then∥∥∥ψ̂ ◦ f

∥∥∥
∞

≤ p−(r−k+1) by Lemma 3.17. By Lemma 3.10, for any (0, e)-biased distribution D over

Fn
p , f(D) is ε′-close to the uniform distribution over Ft

p, where ε
′ = p−(r−k+1) · e · pt/2. Finally, note

that ε′ ≤ ε by the choice of t.
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Extracting most min-entropy from strongly (ε, e)-biased sources. We now construct de-
terministic extractors that extract most min-entropy from strongly (ε, e)-biased sources.

The following lemma allows us to reduce to the case of affine sources.

Lemma 3.20. Let π : Fn
p → Fm

p be a surjective Fp-linear map. Let D be a strongly (ε, e)-biased
distribution over Fn

p . Then π(D) is ε′-close to a convex combination of affine sources of codimension

at most logp e in Fm
p , where ε′ = 2(pm/2 · e · ε)1/2.

Proof. Let A be a subspace of Fn
p of size at most e and B be a complement of A such that

by identifying Fn
p with A × B and F̂n

p with Â × B̂, every nontrivial character χ of F̂n
p satisfying

|E[χ(D)]| > ε is in the subgroup Â × {1}. This is possible as D is strongly (ε, e)-biased. Identify
A and B with the subgroups A × {0} and {0} × B of A × B respectively. Then the codimension
of B in Fn

p is at most logp e. Let D1 and D2 be the marginal distributions of D over A and B
respectively.

Let ε0 > 0, whose value is determined later. By Corollary 3.4, for x sampled from D1, with
probability at least 1−ε0, the conditional distribution D2|D1=x is |A|ε/ε0-biased. Fix x ∈ supp(D1)
such that D2|D1=x is |A|ε/ε0-biased. We claim that π(D|D1=x) is ε1-close to an affine source of
codimension at most logp e, where ε1 = pm/2|A|ε/ε0. Note that π(D|D1=x) = π(x) + π(D2|D1=x).
So to prove the claim, we just need to show that π(D2|D1=x) is ε1-close to an affine source of
codimension at most logp e.

Let H = π(B). Then π|B : B → H is a surjective linear map. So the map χ 7→ χ ◦ π
sends a nontrivial character of H to a nontrivial character of B. As D2|D1=x is an |A|ε/ε0-biased
distribution over B, we see that π(D2|D1=x) is an |A|ε/ε0-biased distribution over H. By the XOR
lemma (Lemma 3.5), π(D2|D1=x) is |H|1/2|A|ε/ε0-close to the uniform distribution over H. Note

dimH = dimB − dim(B ∩ kerπ) ≥ dimB − dim(kerπ)

= dimB − (n−m) = m− codimB.

So the codimension of H in Fm
p is at most codimB ≤ logp e. Therefore, the distribution π(D2|D1=x)

is |H|1/2|A|ε/ε0-close to an affine source of codimension at most logp e. This proves the above claim

as |H|1/2|A|ε/ε0 ≤ pm/2|A|ε/ε0 = ε1.
We have shown that for x sampled from D1, with probability at least 1 − ε0, the distribution

D|D1=x is ε1-close to an affine source of codimension at most logp e. It follows thatD is (ε0+ε1)-close

to a convex combination of affine sources of codimension at most logp e, where ε1 = pm/2|A|ε/ε0.
Finally, choose ε0 = (pm/2|A|ε)1/2 so that

ε0 + ε1 = 2ε0 = 2(pm/2 · |A| · ε)1/2 ≤ 2(pm/2 · e · ε)1/2.

Theorem 3.21. Let n, t, e be positive integers and ε, ε′ ∈ (0, 1). Let n′ = min{⌊2 logp(1/ε) −
2 logp(16e/ε

′2)⌋, n}. Suppose t ≤ n′ − 3 − 2 logp(2e/ε
′). Then there exists an explicit ε′-extractor

Ext : Fn
p → Ft

p for strongly (ε, e)-biased sources.

Proof. We construct the extractor Ext as follows.

• Let π : Fn
p → Fn′

p be an explicit linear surjective map.

• Let f : Fn′
p → Ft

p be an explicit deterministic ε′/2-extractor for affine sources of codimension
at most logp e.
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• Finally, let Ext = f ◦ π.

Here the existence of f is guaranteed by Theorem 3.19 as t ≤ n′ − 3− 2 logp(2e/ε
′). We claim that

Ext : Fn
p → Ft

p is a deterministic ε′-extractor for strongly (ε, e)-biased sources.

Consider an arbitrary strongly (ε, e)-biased source D. By the choice of n′, we have 2(pn
′/2 · e ·

ε)1/2 ≤ ε′/2. So by Lemma 3.20, π(D) is ε′/2-close to a convex combination of affine sources of
codimension at most logp e. Then by the affine extractor property of f , we know π(D) is ε′-close
to the uniform distribution. This proves the claim.

Remark 3.22. By Proposition 3.2, an (ε, e)-biased source over Fn
p is ε′-close to a source of min-

entropy at least min{2 log(1/ε), n log p − log e} − log(2/ε′). The output bit-length t log p in Theo-
rem 3.21 matches this bound up to an additive term O(log e+ log(1/ε′) + log p).

Remark 3.23. As (ε, e)-biased sources over Fn
p are strongly (ε, pe)-biased, Theorem 3.21 also gives

deterministic extractors for (ε, e)-biased sources at the cost of replacing e with pe in the theorem
statement. It is interesting to ask for deterministic extractors, explicit or not, that extract most
min-entropy from (ε, e)-biased sources (up to the lower bound in Proposition 3.2) without this
exponential blow-up. We note that the extractors in Theorem 3.18 could extract a constant fraction
of the min-entropy from (ε, e)-biased sources assuming that ε is small enough.

4 Preliminaries on Algebraic Geometry

In this section, we introduce preliminaries and notations on algebraic geometry. One can also refer
to a standard text, e.g., [Sha94, Vak22].

4.1 Terminology

All rings in this paper are commutative rings with unity. A proper ideal I of a ring R is prime
if ab ∈ I implies a ∈ I or b ∈ I for a, b ∈ R. This is equivalent to the condition that R/I is an
integral domain. An ideal I of R is radical if am ∈ I implies a ∈ I for every a ∈ R and m ∈ N+.

Affine varieties. Let F be a field and let F be its algebraic closure. For n ∈ N, the affine n-space
An
F over F is the set Fn

equipped with the Zariski topology, defined as follows. A subset U ⊆ An
F

is closed if it is the set of common zeros of a set of polynomials in F[X1, . . . , Xn]. And U ⊆ An
F is

open if its complement is closed. A closed subset V ⊆ An
F is said to be an affine variety over F,

and its elements are called points of V .2 We say V is defined by a set S ⊆ F[X1, . . . , Xn] if it is the
set of common zeros of the polynomials in S.

We often write An instead of An
F when F is algebraically closed and clear from the context.

A point a ∈ An
F is said to be a rational point if the coordinates of a are all in F. For an affine

variety V over F, denote by V (F) the set of rational points in V . Each rational point is closed (as
a set containing the point itself) in the Zariski topology.

2When F is not algebraically closed, affine varieties (and affine spaces) are often defined in a different way such
that each point of an affine variety is not a single point in Fn

, but an orbit consisting of all the conjugates of a point
in Fn

under the natural action of the automorphism group of F over F. Our definition instead follows that in [Dvi12],
which suffices for us and is more elementary. One can switch between these two definitions by splitting the orbits
into points in Fn

and vice versa. One notable difference between the two definitions is that, in our definition, points
are not necessarily closed in the Zariski topology over F when the field F is not algebraically closed, while they are
always closed in the other definition.
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For an affine variety V ⊆ An
F over F defined by S ⊆ F[X1, . . . , Xn], and an extension field K of

F, denote by VK the affine variety V ′ ⊆ An
K over K defined by S.

Remark. Note that under our definitions, VF is the same as V as subsets of Fn
.

For two affine varieties V, V ′ ⊆ An
F over a field F, we say V is an affine subvariety of V ′ if

V ⊆ V ′. We say V is the affine subvariety of V ′ defined by S ⊆ F[X1, . . . , Xn] if it is the set of
common zeros in V ′ of the polynomials in S.

Irreducibility and absolute irreducibility. An affine variety V over a field F is irreducible if
it is nonempty and cannot be written as the union of finitely many proper affine subvarieties over F.
Otherwise, we say V is reducible. A subvariety V0 of an affine variety V is an irreducible component
of V if V0 is irreducible and maximal (with respect to set inclusion) for this property. Every affine
variety can be uniquely represented as the union of finitely many irreducible components.

An affine variety V over F is absolutely irreducible if VF is irreducible. By definition, the Zariski
topology over F is finer than that over F, i.e., if a set is closed over F, then it is also closed over F.
So absolute irreducibility implies irreducibility.

Let V ⊆ An
F be an irreducible variety over F. The automorphism group Aut(F/F) of F over F acts

naturally on VF such that τ ∈ Aut(F/F) sends a point a = (a1, . . . , an) ∈ VF to (τ(a1), . . . , τ(an)).
Every τ ∈ Aut(F/F) permutes the irreducible components of VF. When F = Fq, the Frobenius
automorphism σ : x 7→ xq of Fq over Fq generates a cyclic group that acts transitively on the set
of irreducible components of VF. In particular, if V is not absolutely irreducible, then σ sends each
irreducible component of VF to a different irreducible component.

The ideal-variety correspondence. For an ideal I of F[X1, . . . , Xn], denote by V (I) the affine
subvariety of An

F over F defined by I. Define V (f1, . . . , fk) = V (⟨f1, . . . , fk⟩) for f1, . . . , fk ∈
F[X1, . . . , Xn]. For an affine variety V ⊆ An over F, denote by I(V ) the ideal of F[X1, . . . , Xn]
consisting of all the polynomials vanishing on V . The ideal I(V ), and in fact every ideal of
F[X1, . . . , Xn], has a finite generating set by Hilbert’s Basis Theorem.

The map V 7→ I(V ) is an inclusion-reversing one-to-one correspondence between the affine
subvarieties of An

F over F and the radical ideals of F[X1, . . . , Xn], with the inverse map I 7→ V (I).
An affine variety V is irreducible iff I(V ) is a prime ideal.

For an affine variety V ⊆ An
F over F, define

F[V ] := F[X1, . . . , Xn]/I(V ),

which is called the coordinate ring of V . When V is irreducible, the ideal I(V ) is prime and F[V ]
is an integral domain. In this case, define the function field of V , denoted by F(V ), to be the field
of fractions of F[V ].

Dimension. The dimension of an irreducible affine variety V over a field F is defined to be the
largest integer m such that there exists a chain of irreducible affine subvarieties ∅ ⊊ V0 ⊊ V1 ⊊
· · · ⊊ Vm = V over F. More generally, the dimension of a nonempty affine variety V , denoted by
dimV , is the maximal dimension of its irreducible components. We have dimV = dimVF for a
nonempty affine variety V over F.

The dimension of an irreducible affine variety V over F also equals the transcendence degree
of F(V )/F, i.e., the largest cardinality of an algebraically independent subset of F(V ) over F. In
particular, dimAn

F = n as its function field F(X1, . . . , Xn) has transcendence degree n over F.
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A nonempty affine variety is equidimensional if its irreducible components have the same di-
mension. Equidimensional affine varieties of dimension one are also called (affine) curves.

The following fact is a geometric version of Krull’s principal ideal theorem. See, e.g., [Vak22,
§12.3].

Lemma 4.1. Let V ⊆ An
F be an irreducible affine variety over a field F. Let f ∈ F[X1, . . . , Xn] such

that f does not vanish identically on V . Then either V ∩ V (f) = ∅ or V ∩ V (f) is equidimensional
of dimension dimV − 1.

Degree. Let F be an algebraically closed field. For an irreducible affine variety V ⊆ An
F over

F, the degree of V in An
F, denoted by deg V , is the number of intersections of V with an affine

subspace of An
F of codimension dimV in general position. Following [HS80, Hei83], for an affine

variety V ⊆ An
F over F with irreducible components V1, . . . , Vk, we let deg V :=

∑k
i=1 deg Vi. For

an affine variety V over an arbitrary field F, let deg V := deg VF.
For a nonzero polynomial f ∈ F[X1, . . . , Xn], we have deg(V (f)) ≤ deg f (and the equality

holds if f is squarefree).
The following version of Bézout’s inequality is very useful for us.

Lemma 4.2 (Bézout’s inequality [HS80, Hei83]). Let V, V ′ ⊆ An
F be affine varieties over a field F.

Then
deg(V ∩ V ′) ≤ deg V · deg V ′.

Morphisms between affine varieties over a field F. Let F be a field. Let f1, . . . , fm ∈
F[X1, . . . , Xn], which define a map f : An

F → Am
F sending a ∈ An

F to f(a) = (f1(a), . . . , fm(a)) ∈ Am
F .

Now suppose V ⊆ An
F and V ′ ⊆ Am

F are affine varieties over F such that f(V ) ⊆ V ′. Then the map
f restricts to a map φ : V → V ′. It is associated with an F-algebra homomorphism

φ♯ : F[V ′] = F[Y1, . . . , Ym]/I(V ′) → F[V ] = F[X1, . . . , Xn]/I(V ),

which sends Yi + I(V ′) to fi(X1, . . . , Xn) + I(V ) for i ∈ [m]. Note that φ♯ simply sends a function
on V ′ to its composition with φ, which is a function on V .

We say the pair (φ,φ♯) is a morphism from V to V ′ (over F) and it is defined by f1, . . . , fm.
For simplicity, we usually suppress φ♯ and denote the morphism by φ when there is no confusion.

A morphism between affine spaces is also called a polynomial map in this paper. Let φ : An
F →

Am
F be a polynomial map. If V ⊆ Am

F is an affine variety defined by a set S of polynomials, then
φ−1(V ) ⊆ An

F is the affine variety defined by φ♯(S). So the preimage of a closed (resp. open) set
under a polynomial map is closed (resp. open).

Zariski closure and dominant morphisms. For a set S ⊆ An
F, the (Zariski -)closure of S,

denoted by S, is the smallest closed set containing S, i.e., the intersection of all affine subvarieties
of An

F that contain S. We say S is dense in V if S = V .
Suppose V ⊆ An

F is an affine variety over F and φ : V → Am
F is a morphism defined by

polynomials f1, . . . , fm ∈ F[X1, . . . , Xn]. The image φ(V ) is not necessarily a closed set in An
F.

To understand the closure φ(V ), note that a polynomial P ∈ F[Y1, . . . , Ym] vanishes on φ(V )
(or equivalently, on φ(V )) iff the composition of P with φ vanishes on V , i.e., φ♯(P ) = 0. So
the ideal of F[Y1, . . . , Yn] defining φ(V ) is precisely the kernel of φ♯ : F[Y1, . . . , Yn] → F[V ]. Let
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ri = Xi + I(V ) ∈ F[X1, . . . , Xn]/I(V ) = F[V ] for i ∈ [n]. Then the coordinate ring F[φ(V )] =

F[Y1, . . . , Ym]/I
(
φ(V )

)
of φ(V ) may be identified with F[f1(r1, . . . , rn), . . . , fm(r1, . . . , rn)] ⊆ F[V ]

via Yi + I
(
φ(V )

)
7→ fi(r1, . . . , rn).

We say a morphism φ : V → V ′ between affine varieties is dominant if φ(V ) = V ′. If φ : V → V ′

is a dominant morphism between affine varieties and V is irreducible, then V ′ is also irreducible.
We also need the following lemma.

Lemma 4.3. Let V ⊆ An
F be an irreducible affine variety over a field F. Let f1, . . . , fs, g1, . . . , gt ∈

F[X1, . . . , Xn]. The polynomials f1, . . . , fs (resp. f1, . . . , fs, g1, . . . , gt) define a polynomial map π1 :
An
F → As

F (resp. π2 : An
F → As+t

F ). Then there exist distinct i1, . . . , ik ∈ [t], where k = dimπ2(V )−
dimπ1(V ), such that the polynomial map π : An

F → As+k
F defined by f1, . . . , fs, gi1 , . . . , gik satisfies

dimπ(V ) = dimπ2(V ) = dimπ1(V ) + k.

Proof. Let ri = Xi + I(V ) ∈ F[X1, . . . , Xn]/I(V ) = F[V ] for i ∈ [n]. Let f̄i = f(r1, . . . , rn) for
i ∈ [s] and ḡi = g(r1, . . . , rn) for i ∈ [t]. The function fields of π1(V ) and π2(V ) are K1 :=
F(f̄1, . . . , f̄s) and K2 := F(f̄1, . . . , f̄s, ḡ1, . . . , ḡt) respectively. So ḡ1, . . . , ḡt is a generating set of
K2/K1. The lemma then follows from the fact in field theory that a generating set of a field
extension K2/K1 always contains a subset that is a transcendence basis of K2/K1 (see [Lan02,
Chapter VIII, Theorem 1.1]).

Fibers of morphisms. Let φ : V → V ′ be a morphism between affine varieties over F. For
b ∈ V ′(F), the preimage φ−1(b) = {a ∈ V : φ(a) = b} is an affine subvariety of V over F. We call
φ−1(b) the fiber of φ over b, or the fiber of V over b if φ is clear from the context.

The following theorem, known as the fiber dimension theorem, relates the dimension of a general
fiber of a dominant morphism φ : V → V ′ between irreducible affine varieties V, V ′ to the dimension
of V and that of V ′.

Theorem 4.4 (Fiber dimension theorem). Suppose φ : V → V ′ is a dominant morphism between
irreducible affine varieties over an algebraically closed field F. Then for every b ∈ φ(V ) and every
irreducible component Z of φ−1(b), it holds that

dimZ ≥ dimV − dimV ′.

Moreover, there exists U ⊆ φ(V ) such that U is a dense open subset of V ′ and dimφ−1(b) =
dimV − dimV ′ holds for all b ∈ U .

See, e.g., [Sha94, §I.6.3, Theorem 7] for a proof. We remark that the above version of the fiber
dimension theorem can be generalized in several ways, but this version suffices for us.

We also need the notion of generic fibers. Let φ : V → V ′ be a dominant morphism defined
by f1, . . . , fm ∈ F[X1, . . . , Xn] between irreducible affine varieties V ⊆ An

F and V ′ ⊆ Am
F over F.

Then F[V ′] = F[Y1, . . . , Ym]/I(V ′) is identified with a subring of F[V ] under φ♯, so that Yi + I(V ′)
is identified with f̄i := fi + I(V ). The generic fiber Vφ of φ is then the affine subvariety of VF(V ′)

defined by f1− f̄1, . . . , fm− f̄m ∈ F(V ′)[X1, . . . , Xn]. Its known from transcendence theory that Vφ
is irreducible of dimension dimV − dimV ′. Thus, the second claim in Theorem 4.4 states that the
dimension of the irreducible components of a general fiber equals that of the generic fiber.

22



Finite morphisms. We say a morphism φ : V → V ′ between affine varieties V and V ′ over F is
a finite morphism if F[V ] is finitely generated as a module over its subring φ♯(F[V ′]). The image
of a closed set under a finite morphism is closed. In particular, a finite morphism is surjective if it
is dominant. Fibers of finite morphisms are finite sets.

4.2 Further Results

We list some further results in algebraic geometry, which are used in later sections.

Estimates for the number of rational points over Fq. We start with the following elementary
upper bound on the number of rational points of an affine variety over a finite field Fq, which can
be derived from Bézout’s inequality [HS80, CM06].

Lemma 4.5 ([HS80, Proposition 2.3]). Let V ⊆ An
F be an affine variety of dimension k and degree

d over a field F. Let S ⊆ F be a finite set. Then |V ∩ Sn| ≤ d|S|k. In particular, if F = Fq, then
|V (Fq)| ≤ dqk.

If V is absolutely irreducible and q is sufficiently large, one can do better than Lemma 4.5 and
show that |V (Fq)| is close to qdimV using the Lang–Weil bound. We need the following effective
version of this bound.

Theorem 4.6 (Effective Lang–Weil bound). Let V ⊆ An
Fq

be an absolutely irreducible affine variety
over Fq of dimension k and degree d. Then

|V (Fq)− qk| < (d− 1)(d− 2)qk−1/2 + 5d13/3qk−1.

In particular, we have |V (Fq)| ≥ qk/2 if q ≥ 20d5.

Theorem 4.6 was proved by Cafure and Matera as [CM06, Theorem 7.1] with an extra condition
that q > 2(k + 1)d2. However, a more careful analysis shows that this condition can be removed.
This was confirmed to us in [Mat22]. See Appendix A for more details. The fact that q does not
need to depend on k is crucial to making our required field size independent of dimV , where V is
an affine variety that defines an (n, k, d) algebraic source over Fq.

Bombieri’s estimate for exponential sums. We also need Bombieri’s estimate for exponential
sums over rational points of curves over Fq.

Theorem 4.7 ([Bom66, Theorem 6]). Let C ⊆ An
Fq

be an affine curve of degree d1 over a finite

field Fq of characteristic p. Let σ : Fp → C× be the character x 7→ e2πix/p of Fp. Suppose
f ∈ Fq[X1, . . . , Xn] is a polynomial of degree d2 such that for any g ∈ Fq[X1, . . . , Xn] and any
irreducible component C0 of C, the function f − (gp − g) does not vanish identically on C0. Then∣∣∣∣∣∣

∑
x∈C(Fq)

(σ ◦ Tr ◦f)(x)

∣∣∣∣∣∣ ≤ (d21 + 2d1d2 − 3d1)q
1/2 + d21.

where Tr denotes the trace map from Fq to Fp.
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Noether normalization. The classical Noether normalization lemma proved by Noether [Noe26]
states that an affine variety V of dimension k over an infinite field F admits a finite morphism
φ : V → Ak

F. Moreover, φ may be chosen to be a linear map. We give the following quantitative
version of this result, which states that the coefficients that specify the linear map can be chosen
from a finite subset S ⊆ F provided that S is large enough.

Lemma 4.8 (Noether normalization). Let V ⊆ An
F be an affine variety of dimension k and degree

d over a field F. Suppose S is a finite subset of F of size greater than d. Then there exists a
polynomial map φ : An

F → Ak
F defined by linear polynomials ℓi =

∑n
j=1 ci,jXi ∈ F[X1, . . . , Xn] with

coefficients ci,1, . . . , ci,n ∈ S for i = 1, . . . , k such that φ|V : V → Ak
F is a finite morphism.

For convenience, we also prove the following lemma, which guarantees the existence of linear
polynomials achieving simultaneous Noether normalization for two affine varieties.

Lemma 4.9. Let K1 and K2 be extension fields of a field F. For i = 1, 2, let Vi ⊆ An
Ki

be an affine
variety of dimension ki and degree di over Ki. Suppose S is a finite subset of F of size greater than
d1 + d2. Then there exist linear polynomials ℓ1, . . . , ℓmax{k1,k2} ∈ F[X1, . . . , Xn] with coefficients in

S such that the morphism Vi → Aki
Ki

defined by ℓ1, . . . , ℓki is finite for i = 1, 2.

See Appendix A for the proofs of Lemma 4.8 and Lemma 4.9.

Effective fiber dimension theorem. We also need an effective version of the fiber dimension
theorem. To suit our needs, we first formulate the theorem in the following general form. Recall
that for h1, . . . , hs ∈ F[X1, . . . , Xn], we denote by Lh1,...,hs,F the linear span of h1, . . . , hs and 1 over
F.

Theorem 4.10 (Effective fiber dimension theorem – general form). Let V ⊆ An be an irreducible
affine variety of dimension k over an algebraically closed field F. Let h1, . . . , hs ∈ F[X1, . . . , Xn] with
deg h1 ≥ · · · ≥ deg hs. Let f1, . . . , fm ∈ Lh1,...,hs,F, which define a polynomial map f : An → Am.

Let k′ = dim f(V ).
Let j1, . . . , jk′ ∈ [m] such that the morphism f ′ : V → Ak′ defined by fj1 , . . . , fjk′ is dominant,

which exist by Lemma 4.3. Let Vf ′ ⊆ An
F(Y1,...,Yk′ )

be the generic fiber of f ′ (see the definition

after Theorem 4.4). Finally, let ℓ1, . . . , ℓk ∈ F[X1, . . . , Xn] be linear polynomials such that both the
morphism π : V → Ak defined by ℓ1, . . . , ℓk and the morphism τ : Vf ′ → Ak−k′

F(Y1,...,Yk′ )
defined by

ℓ1, . . . , ℓk−k′ are finite.
Let t ∈ {0, . . . , k − k′}. Then there exists a polynomial P ∈ F[X1, . . . , Xn] of degree at most

k′ · deg V ·
∏k′

i=1 deg hi that does not vanish identically on V such that the following holds: Let
φ : An → At+m be the polynomial map defined by ℓ1, . . . , ℓt, f1, . . . , fm. Then for every a ∈ V
satisfying P (a) ̸= 0, the fiber φ|−1

V (φ(a)) is equidimensional of dimension k − k′ − t.

As a corollary, we have the following effective fiber dimension theorem, stated in a more standard
form.

Corollary 4.11 (Effective fiber dimension theorem – standard form). Let V ⊆ An be an irreducible
affine variety over an algebraically closed field F. Let h1, . . . , hs ∈ F[X1, . . . , Xn] with deg h1 ≥
· · · ≥ deg hs. Let f1, . . . , fm ∈ Lh1,...,hs,F, which define a polynomial map f : An → Am. Finally,

let W = f(V ) ⊆ Am. Then there exists a polynomial P ∈ F[X1, . . . , Xn] of degree at most dimW ·
deg V ·

∏dimW
i=1 deg hi that does not vanish identically on V such that for every a ∈ V satisfying

P (a) ̸= 0, the fiber f |−1
V (f(a)) is equidimensional of dimension dimV − dimW .
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Proof. Use the notations in Theorem 4.10. Note that the linear polynomials ℓ1, . . . , ℓk satisfying
the conditions in Theorem 4.10 exist by Noether normalization (see Lemma 4.9). Now apply
Theorem 4.10 with t = 0.

Theorem 4.10 is proved in Appendix B.

Degree bound for the images of affine varieties. Finally, we need the following degree bound
for the images of affine varieties (or more precisely, their closures) under polynomial maps.

Lemma 4.12. Let V ⊆ An
F be an affine variety over a field F. Let h1, . . . , hs ∈ F[X1, . . . , Xn] with

deg h1 ≥ · · · ≥ deg hs. Let f1, . . . , fm ∈ Lh1,...,hs,F, which define a polynomial map f : An
F → Am

F .

Finally, let W = f(V ) ⊆ Am
F . Then

degW ≤ deg V ·
dimW∏
i=1

deg hi.

We prove Lemma 4.12 in Appendix C. It generalizes a bound in [BCS97, §8.5], which states
that degW ≤ ddimW if V = An

F and deg fi ≤ d ∈ N+ for i ∈ [m].

5 Linear Seeded Rank Extractors for Varieties

In this section, we consider the problem of constructing seeded rank extractors for varieties that
are linear: i.e., a set of linear maps such that for every variety V most of the maps in the set
preserve the dimension of V . We show that these objects are simply linear seeded rank extractors
for subspaces, a well-known linear algebraic pseudorandom object for which explicit constructions
were given in [GR08, FS12, For14].

The proof is based on the notion of tangent spaces of varieties, which are linear subspaces that
are local first-order approximations of varieties. Intuitively, for an affine variety V , as we look at
smaller and smaller neighborhoods of a nonsingular point a of V , the tangent space TaV would
become a better and better approximation of V . Thus, one should expect that a linear map that
preserves the dimension of TaV , which is a subspace, also preserves the dimension of V . While it
is not entirely obvious what “smaller and smaller neighborhoods” mean in the Zariski topology, we
will see that the claim is indeed true and follows from general facts in algebraic geometry.

Fix F to be an algebraically closed field throughout this section. We first formally define seeded
rank extractors for varieties and subspaces.

Definition 5.1 (Seeded rank extractors). Let φ1, . . . , φℓ : An → Am be polynomial maps, where
n ≥ m. We say (φi)i∈[ℓ] is an (n,m, k, ε) seeded rank extractor for varieties (resp. subspaces) if
for every affine variety (resp. linear subspace) V ⊆ An over F of dimension at least k, all but at
most ε-fraction of φi satisfy dimφi(V ) = m (or equivalently, φi|V : V → Am is dominant). We
call log ℓ the seed length of the seeded rank extractor.

In addition, we say (φi)i∈[ℓ] is linear if each φi is a linear map, i.e., defined by linear polyno-
mials.

The optimal choice of k is k = m, in which case the seeded rank extractor is “lossless.” Explicit
linear (n,m, k, ε) seeded rank extractors for subspaces with seed length O(log n + log(1/ε)) and
k = m was first constructed by Gabizon and Raz [GR08]. We use an improved construction given
in [FS12, For14].
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Lemma 5.2 ([FS12, For14]). Let n ∈ N+ and m ∈ [n]. Let ω ∈ F× such that the multiplicative
order of ω is at least n. Let s1, . . . , sℓ be distinct elements in F×. For i ∈ [ℓ], let φi : An → Am be
the linear map defined by the m×n matrix ((ωj′−1si)

j−1)j′∈[m],j∈[n]. In other words, φi is given by

φi : (a1, . . . , an) 7→

 n∑
j=1

sj−1
i aj ,

n∑
j=1

(ωsi)
j−1aj , . . . ,

n∑
j=1

(ωm−1si)
j−1aj

 .

Then (φi)i∈[ℓ] is a linear (n,m,m, ε) seeded rank extractor for subspaces, where ε = m(n−m)/ℓ.

The main result of this section is the following theorem.

Theorem 5.3. An (n,m, k, ε) linear seeded rank extractor for subspaces is also an (n,m, k, ε) linear
seeded rank extractor for varieties.

Corollary 5.4. The construction (φi)i∈[ℓ] in Lemma 5.2 is a linear (n,m,m, ε) seeded rank extrac-
tor for varieties, where ε = m(n−m)/ℓ.

5.1 Tangent Spaces and the Jacobian Criterion for Smoothness

The proof of Theorem 5.3 uses the notion of tangent spaces.

Definition 5.5 (Tangent space). Let V ⊆ An be an affine variety over F. For a point a ∈ V , the
tangent space TaV of V at a is the linear subspace of An defined by the linear equations

n∑
i=1

∂f

∂Xi
(a) ·Xi = 0, f = f(X1, . . . , Xn) ∈ I(V ).

To explain the intuition, note that at a point a = (a1, . . . , an) ∈ V , the inhomogeneous linear
equations

∑n
i=1

∂f
∂Xi

(a) ·(Xi−ai) = 0 with f ∈ I(V ) define an affine subspace of An passing through
a, which can be seen as a first-order approximation of V locally at a. The tangent space TaV is
defined to be the linear subspace that is a translate of this affine subspace.

The dimension of a tangent space is bounded from below by the dimension of the variety, as
stated by the following lemma.

Lemma 5.6 ([Sha94, §II.1]). dimTaV ≥ dimV for every affine variety V over F and a ∈ V .

The notion of smoothness can be defined in terms of whether the equality in Lemma 5.6 is
attained. For simplicity, we define it only for irreducible affine varieties, which suffices for us.

Definition 5.7 (Smoothness). Let V be an irreducible affine variety over F and let a ∈ V . If
dimTaV = dimV , then we say V is smooth or nonsingular at a, and a is a nonsingular point of
V . Otherwise, we say V is non-smooth or singular at a, and a is a singular point of V .

Denote by Vsing the subset of singular points of V , called the singular locus of V .
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Jacobian criterion for smoothness. The singular locus Vsing of V can be determined via the
Jacobian criterion, which we explain now.

Definition 5.8 (Jacobian matrix). Let f1, . . . , fm ∈ F[X1, . . . , Xn]. The associated Jacobian ma-
trix Jf is an m× n matrix over the ring F[X1, . . . , Xn], defined by

Jf =

(
∂fi
∂Xj

)
i∈[m],j∈[n]

.

Lemma 5.9. Let V ⊆ An be an affine variety over F, and let f1, . . . , fm ∈ F[X1, . . . , Xn] such that
{f1, . . . , fm} is a generating set of I(V ). Then for a = (a1, . . . , an) ∈ V , the tangent space TaV is
the right nullspace of Jf (a).

Proof. By definition, we want to show the following statement:
∑n

j=1
∂fi
∂Xj

(a) · aj = 0 for all i ∈ [m]

iff
∑n

j=1
∂f
∂Xj

(a) · aj = 0 for all f ∈ I(V ). The “if” part is immediate as f1, . . . , fm ∈ I(V ).

To see the “only if” part, consider f ∈ I(V ). Then f =
∑m

i=1 gifi for some g1, . . . , gm ∈
F[X1, . . . , Xn]. So for j ∈ [n],

∂f

∂Xj
(a) =

m∑
i=1

(
∂gi
∂Xj

(a)fi(a) + gi(a)
∂fi
∂Xj

(a)

)
=

m∑
i=1

gi(a)
∂fi
∂Xj

(a)

where the second equality holds as fi vanishes at a ∈ V for i ∈ [m]. It follows that if
∑n

j=1
∂fi
∂Xj

(a) ·
aj = 0 for i ∈ [m], then

∑n
j=1

∂f
∂Xj

(a) · aj = 0.

Corollary 5.10 (Jacobian criterion for smoothness). Let V ⊆ An be an irreducible affine variety
of dimension k over F, and let f1, . . . , fm ∈ F[X1, . . . , Xn] such that {f1, . . . , fm} is a generating
set of I(V ). Then the singular locus of V is given by

Vsing = {a ∈ V : rankJf (a) < n− k},

which is an affine subvariety of V defined by the set of all (n− k)× (n− k) minors of Jf .

Proof. By Lemma 5.9, the condition that rank Jf (a) < n− k is equivalent to dimTaV > k. This is
further equivalent to dimTaV ̸= k by Lemma 5.6. So the claim holds by definition.

Remark. The above Jacobian criterion is related to but different from the Jacobian criterion for
algebraic independence. The latter states that the transcendence degree of F(f1, . . . , fm)/F equals
the rank of the associated Jacobian matrix Jf , and in particular, f1, . . . , fm are algebraically in-
dependent iff rankJf = m. However, this statement requires the characteristic of F to be zero or
large, or more generally, a certain separability condition to hold. On the other hand, the Jacobian
criterion for smoothness that we use holds without extra conditions. In particular, it works in any
characteristic.

We also need the fact that varieties are almost-everywhere-nonsingular.

Lemma 5.11 ([Sha94, §II.1]). The set of nonsingular points of an irreducible affine variety V over
F is a dense open subset of V . That is, Vsing is a proper subvariety of V .
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5.2 Proof of Theorem 5.3

The proof of Theorem 5.3 is based on the following lemma.

Lemma 5.12. Let V ⊆ An be an irreducible affine variety over F and let a ∈ V . Let f1, . . . , fm ∈
F[X1, . . . , Xn], which defines a polynomial map φ : An → Am. Let W be the right nullspace of

Jf (a) =
(

∂fi
∂Xj

(a)
)
i∈[m],j∈[n]

. Suppose dim(W ∩ TaV ) = dimV −m. Then dimφ(V ) = m.

Proof. Let b = (b1, . . . , bm) = φ(a) ∈ Am, so that a ∈ φ−1(b). As V ∩φ−1(b) is a subvariety of both
V and φ−1(b), we have Ta(V ∩ φ−1(b)) ⊆ (TaV ) ∩ (Taφ

−1(b)).
Note that the fiber φ−1(b) ⊆ An is defined by the polynomials f̂1, . . . , f̂m where f̂i := fi − bi

for i ∈ [m]. So f̂i ∈ I(φ−1(b)) for i ∈ [m]. Pick a finite generating set {g1, . . . , gs} of I(φ−1(b))
such that s ≥ m and gi = f̂i for i ∈ [m]. By Lemma 5.9, the tangent space Taφ

−1(b) is the

right nullspace of Jg(a) =
(

∂gi
∂Xj

(a)
)
i∈[s],j∈[n]

. As ∂f̂i
∂Xj

= ∂fi
∂Xj

for i ∈ [m] and j ∈ [n], we have

Jf (a) =
(

∂f̂i
∂Xj

(a)
)
i∈[m],j∈[n]

. As gi = f̂i for i ∈ [m], the matrix Jf (a) is the upper m× n submatrix

of Jg(a). It follows that Taφ
−1(b) ⊆W . So Ta(V ∩ φ−1(b)) ⊆W ∩ TaV . Therefore,

dim(V ∩ φ−1(b)) ≤ dimTa(V ∩ φ−1(b)) ≤ dim(W ∩ TaV ) = dimV −m

where the first inequality holds by Lemma 5.6. On the other hand, by the fiber dimension theorem
(Theorem 4.4),

dim(V ∩ φ−1(b)) ≥ dimV − dimφ(V ) ≥ dimV −m.

This forces dim(V ∩ φ−1(b)) = dimV −m and dimφ(V ) = m.

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let V ⊆ An be an affine variety over F of dimension at least k, and let V0
be an irreducible component of V such that dimV0 = dimV . Let a be a nonsingular point of V0,
which exists by Lemma 5.11. Then dimTaV0 = dimV0 ≥ k.

We claim that for a linear map φ : An → Am, if dimφ(TaV0) = m, then dimφ(V0) = m and
hence dimφ(V ) = m. Note that this claim implies Theorem 5.3. This follows by choosing φ to
be each of the linear maps in an (n,m, k, ε) linear seeded rank extractor and noting that TaV0 is a
linear subspace of An of dimension at least k.

So it remains to prove the above claim. Assume dimφ(TaV0) = m. Suppose φ is defined by
linear polynomials f1, . . . , fm ∈ F[X1, . . . , Xn]. Let W be the kernel of φ. Then

dim(W ∩ TaV0) = dimTaV0 − dimφ(TaV0) = dimV0 −m.

As φ is linear, W equals the right nullspace of the matrix Jf (a) =
(

∂fi
∂Xj

(a)
)
i∈[m],j∈[n]

. So

dimφ(V0) = m by Lemma 5.12. This proves the claim and Theorem 5.3 follows.

6 Deterministic Rank Extractors for Varieties

Let F be an algebraically closed field. In this section, we consider the problem of constructing
explicit deterministic (lossless) rank extractors/condensers for varieties. These are polynomial
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maps An → Am that preserve the dimension of low-degree affine varieties V ⊆ An over F but
reduce the dimension of the ambient space.

Dvir, Gabizon and Wigderson [DGW09] constructed explicit deterministic rank extractors for
polynomial sources. These objects can also be viewed as deterministic rank extractors for varieties
that are the closures of the images of polynomial maps. A key technique used in their analysis is
the Jacobian criterion for algebraic independence, which requires the characteristic of F to be zero
or large.

To solve the problem for general varieties, one natural approach is generalizing the Jacobian
criterion for algebraic independence. A key step in the proof of [DGW09] is showing that a certain
polynomial associated with the Jacobian matrix is nonzero. Thus, it is natural for us to show that
a similar polynomial does not vanish completely on affine varieties and that this is sufficient for
constructing deterministic rank extractors for varieties.

While this idea can be made rigorous, the problem is that proving the nonvanishing of a polyno-
mial on an affine variety appears to be challenging. We need to show that not only is the polynomial
nonzero, but it remains nonzero modulo the ideal defining the variety. It is not clear to us how to
prove such a result due to the generality of the variety.

The DKL construction. Instead of using a Jacobian-based construction, we take a different
approach. Namely, we show that the explicit construction of variety evasive sets by Dvir, Kollár,
and Lovett [DKL14] can be used to construct deterministic rank extractors for varieties. Variety
evasive sets are large finite subsets of An that have small intersections with varieties of low degree
and low dimension. While they do not give deterministic rank extractors for varieties in general,
we show that the construction of variety evasive sets in [DKL14] does give such a construction.

More specifically, Dvir, Kollar and Lovett [DKL14] construct explicit variety evasive sets by
constructing an explicit polynomial map φ : An → Am defined by polynomials f1, . . . , fm ∈
F[X1, . . . , Xn] such that the intersection of φ−1(0) = V (f1, . . . , fm) with any low-degree variety
of dimension at most m is finite, where 0 denotes the origin of An. We observe that this remains
true if φ−1(0) is replaced by φ−1(b) for any b ∈ Am. In other words, for any low-degree variety
V of dimension at most m, the polynomial map φ restricts to a morphism φ|V : V → Am whose
fibers are all finite sets. In the terminology of algebraic geometry, this means φ|V is a quasi-finite
morphism. By the fiber dimension theorem (Theorem 4.4), we then have dimφ(V ) = dim(V ).

In this section, we construct explicit deterministic rank extractors and rank condensers for
varieties by adapting the analysis in [DKL14]. We also formulate the construction in a way that
highlights the connection with linear error-correcting codes. In particular, a linear MDS code yields
a deterministic rank extractor for varieties in the sense that the coefficients of the polynomials that
define the rank extractor are specified by a parity-check matrix of the code.

In Section 11 and Appendix D, we will show that the polynomial map φ has the stronger prop-
erty that φ|V is a finite morphism, not just quasi-finite, and this gives explicit Noether normalization
lemmas for affine varieties and affine algebras.

6.1 The Explicit Construction

We first define deterministic rank extractors and rank condensers for varieties.

Definition 6.1 (Deterministic rank extractors/condensers for varieties). Let n ∈ N+ and m ∈
[n]. A polynomial map φ : An → Am is an (n,m, k, d) deterministic (lossless) rank condenser if
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dimφ(V ) = dimV for every affine variety V ⊆ An over F of dimension at most k and degree at
most d. When k = m, we also say φ is an (n,m, d) deterministic (lossless) rank extractor.

k-regular matrices. Let n ∈ N+ and m, k ∈ [n]. We say a matrix M ∈ Fm×n is k-regular if any
k distinct columns of M are linearly independent. (The same definition was given in [DKL14] but
for only for the special case where k = m.)

The following lemma gives a coding-theoretic characterization of k-regularity. Its proof is
straightforward.

Lemma 6.2. Let K be a subfield of F and let M ∈ Km×n ⊆ Fm×n, where n ∈ N+ and m, k ∈ [n].
The following statements hold.

• M is k-regular iff there does not exist a nonzero vector u ∈ Kn of Hamming weight at most
k such that Mu = 0.

• Suppose k = m. Then M is k-regular iff it is an MDS matrix, i.e., every maximal minor of
M is nonzero.

In particular, assuming K is a finite field, the matrix M is k-regular iff the linear code C =
{u ∈ Kn : Mu = 0} over K defined by the parity check matrix M has minimum distance at least
k + 1. And if k = m, then M is k-regular iff C is a linear MDS code of minimum distance k + 1,
i.e., it is a linear code of dimension n− k and minimum distance k + 1.3

The construction. We now present the explicit construction of deterministic rank extractors
and condensers for varieties. It is based on the explicit construction of variety evasive sets in
[DKL14].

Let n, d ∈ N+ and m, k ∈ [n]. Let d1, . . . , dn be n pairwise coprime integers greater than d.4 Let
M = (ci,j)i∈[m],j∈[n] ∈ Fm×n be a k-regular matrix. Let φ = φ(M) : An → Am be the polynomial
map

φ : (a1, . . . , an) 7→

 n∑
j=1

c1,ja
dj
j , . . . ,

n∑
j=1

cm,ja
dj
j

 .

We remark that, curiously, the construction above is very similar to the construction of an
affine extractor in Section 10, although their purposes and the techniques used to analyze them are
substantially different.

The following theorem and its corollaries are the main results of this section.

Theorem 6.3. For every b ∈ Am and every affine variety V ⊆ An over F of dimension at most k
and degree at most d, the fiber (φ|V )−1(b) = φ−1(b) ∩ V is a finite set.

Corollary 6.4. φ is an (n,m, k, d) deterministic rank condenser for varieties. In particular, if
m = k, then φ is an (n,m, d) deterministic rank extractor for varieties.

Proof (assuming Theorem 6.3). Let V ⊆ An be an affine variety over F of dimension at most k and
degree at most d. Let V0 be an irreducible component of V . Then dimV0 ≤ k and deg V0 ≤ d.
It suffices to show dimφ(V0) = dimV0. This follows from Theorem 6.3 and the fiber dimension
theorem (Theorem 4.4).

3We define the minimum distance of the zero code {0} to be n+ 1, so that the statement also holds for k = n.
4While [DKL14] assumes d1 > · · · > dn, this assumption does not really matter.
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Choosing d1, . . . , dn. We still need to argue that d1, . . . , dn and M can be computed efficiently.
One can choose d1, . . . , dn to be n distinct primes greater than d. The resulting deterministic time
complexity of computing these integers is poly(n, d). The polynomial dependence on d is due to
the fact that there is no known deterministic No(1)-time algorithm for finding primes greater than
an integer N > 0.

To improve the time complexity, we may compute di in the following alternative way. Compute
the smallest n distinct primes p1, . . . , pn, which have order O(n log n). For i ∈ [n], let di be the
smallest power of pi such that di > d, so that di = O(pid) = O(nd log n). Then d1, . . . , dn can be
computed in time poly(n, log d).

Choosing the matrix M . We need to choose a k-regular matrix M . For the problem of con-
structing an (n,m, d) deterministic rank extractor for varieties (i.e., k = m), we need to choose
M ∈ Fn×m to be an MDS matrix by Lemma 6.2. This can be achieved by choosing M to be an
Vandermonde matrix (ωi−1

j )i∈[m],j∈[n] with distinct ω1, . . . , ωn ∈ F.
Suppose F has a finite subfield Fq. Then using a Vandermonde matrix, we need q ≥ n to have

M ∈ Fm×n
q . The condition q ≥ n can be relaxed to q ≥ n− 1 in general, and to q ≥ n− 2 in some

special cases as explicit MDS matrices M ∈ Fm×n
q are known in these cases [MS77].

In the case where k = m ∈ {1, n−1, n}, we do not need any lower bound on q as all-one vectors
and identity matrices are always MDS matrices, and so is the (n−1)×nmatrixM = (ci,j)i∈[n−1],j∈[n]
defined by

ci,j =


1 i = j,

−1 j = n,

0 otherwise.

So we have the following corollary.

Corollary 6.5. For m ∈ {1, n − 1, n}, there exists an explicit construction of an (n,m, d) de-
terministic rank extractor for varieties that is defined by polynomials f1, . . . , fm ∈ F[X1, . . . , Xn]
satisfying the following:

• All the coefficients of f1, . . . , fm are in {0, 1,−1}, and hence are in every subfield of F.

• deg f1, . . . ,deg fm = O((n+ d) log(n+ d)). And the sparse representations of f1, . . . , fm can
be computed in time poly(n, d). The time complexity can be improved to poly(n, log d) at the
cost of increasing the degrees of f1, . . . , fm to O(nd log n).

A similar statement holds for general m ∈ [n] and the coefficients of f1, . . . , fm can be chosen
in a finite field Fq, assuming Fq is a subfield of F and q ≥ n − 1. The time complexity would also
depend polynomially on log q.

The above explicit (n,m, d) deterministic extractor for varieties will be used in the proof of
Theorem 1, but only in the case wherem = 1. Previously, Dvir [Dvi12, Theorem 3.1] gave an explicit
construction of an (n, 1, d) deterministic rank extractor for varieties, where the polynomial defining
the rank extractor is recursively constructed and has degree poly(dn). Corollary 6.5 improves the
degree of the polynomial to Õ(n+ d) or Õ(nd).
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6.2 Proof of Theorem 6.3

Theorem 6.3 can be proved via a simple adaptation of the proof in [DKL14]. For the sake of
completeness, we present the proof below.

First, we need the following two lemmas from [DKL14].

Lemma 6.6 ([DKL14], Lemma 3.1). Let V ⊆ An be an affine variety over F of dimension at least
one. Then there exist Laurent power series h1(T ), . . . , hn(T ) ∈ F((T )) such that

1. at least one hi(T ) has a pole, i.e., hi(T ) ̸∈ F[[T ]], and

2. P (h1(T ), . . . , hn(T )) = 0 for all P ∈ I(V ).

Lemma 6.7 ([DKL14], Lemma 3.5). Let V ⊆ An be an affine variety over F of dimension k < n
and degree d. For every J = {i1, . . . , ik+1} ⊆ [n] of size k + 1, there exists a nonzero polynomial
g ∈ I(V ) ∩ F[Xi1 , . . . , Xik+1

] of degree at most d.

We adapt the proof of [DKL14] to prove the following lemma.

Lemma 6.8. Let M = (ci,j)i∈[m],j∈[n] ∈ Fm×n be a k-regular matrix, and let d1, . . . , dn be pairwise
coprime integers greater than d. Let V ⊆ An be an affine variety over F of dimension at most k and
degree at most d. Then, there do not exist h1(T ), . . . , hn(T ) ∈ F((T )) that simultaneously satisfy
the following conditions:

1. At least one hi(T ) has a pole, i.e., hi(T ) ̸∈ F[[T ]].

2. P (h1(T ), . . . , hn(T )) = 0 for all P ∈ I(V ).

3.
∑n

j=1 ci,jhj(T )
dj ∈ F[[T ]] for all i ∈ [m].

Proof. By replacing k with k′ = dimV , we may assume the dimension of V is exactly k. Assume to
the contrary that there exist h1(T ), . . . , hn(T ) ∈ F((T )) satisfying the three conditions. Let R be
the greatest integer such that the term T−R appears in the Laurent series hj(T )

dj for some j ∈ [n].
By the first condition, at least one of the hj(T ) has a pole, so we know R > 0.

Let J be the set of j ∈ [n] for which the term T−R appears in the Laurent series hj(T )
dj . Then

J ̸= ∅. We claim |J | ≥ k + 1. To see this, let uj ∈ F be the coefficient of the term T−R in hj(T )
dj

for j ∈ [n]. Let u = (u1, . . . , un) ∈ Fn. Then the support of u is precisely J . By the third condition,
for i ∈ [m],

n∑
j=1

ci,jhj(T )
dj ∈ F[[T ]]. (2)

The coefficient of T−R in the LHS of (2) is
∑n

j=1 ci,juj , which equals zero by (2) and the fact that
R > 0. So we get the equation

Mu = 0.

By the k-regularity ofM and Lemma 6.2, the Hamming weight of u is at least k+1, i.e., |J | ≥ k+1.
This proves the claim. Also note that this implies k < n as |J | ≤ n.

From here, the rest of the proof is identical to that of [DKL14, Theorem 2.1]. We present the
proof for the sake of completeness. For j ∈ J , let rj be the maximal integer such that T−rj appears
in hj , and it follows that rj = R/dj .
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Let {j1, . . . , jk+1} be a subset of J of size k+1. By Lemma 6.7, there exists a nonzero polynomial
g(Xj1 , . . . , Xjk+1

) ∈ I(V )∩F[Xj1 , . . . , Xjk+1
] of degree at most d. By the second condition, we have

g(hj1(T ), . . . , hjk+1
(T )) = 0. (3)

Next, we observe that for every monomial Q = Xγ1
j1

· · ·Xγk+1

jk+1
, the term T−

∑k+1
i=1 γirji appears in

Q(hj1(T ), . . . , hjk+1
(T )). Choose a monomial Xα1

j1
· · ·Xαk+1

jk+1
that appears in g such that

∑k+1
i=1 αirji

is maximized. Such a monomial exists as g ̸= 0. Then g must contain a different monomial

Xβ1
j1

· · ·Xβk+1

jk+1
such that

k+1∑
i=1

αirji =
k+1∑
i=1

βirji . (4)

Otherwise, the term T−
∑k+1

i=1 αirji would appear in g(hj1(T ), . . . , hjk+1
(T )), which contradicts (3).

Let D =
k+1∏
i=1

dji . Plugging rji = R/dji into (4) and then multiplying both sides of (4) by D/R,

we get
k+1∑
i=1

αiD/dji =
k+1∑
i=1

βiD/dji . (5)

Consider arbitrary i ∈ [k + 1]. Taking (5) modulo dji , we get

αiD/dji ≡ βiD/dji (mod dji).

As D/dji is coprime to dji , we may cancel it from both sides, which gives

αi ≡ βi (mod dji).

As 0 ≤ αi, βi ≤ deg(g) ≤ d < dji , we have αi = βi. As i ∈ [k + 1] is arbitrary, we have

(α1, . . . , αk+1) = (β1, . . . , βk+1), contradicting the assumption that Xα1
j1

· · ·Xαk+1

jk+1
̸= Xβ1

j1
· · ·Xβk+1

jk+1
.

Remark. Lemma 6.8 was implicitly proved in [DKL14] except that the third condition was replaced
by the stronger statement

∑n
j=1 ci,jhj(T )

dj = 0. Our observation is that the proof still works if

this condition is relaxed to
∑n

j=1 ci,jhj(T )
dj ∈ F, or even

∑n
j=1 ci,jhj(T )

dj ∈ F[[T ]]. (As can be
seen below, the former relaxation suffices for proving Theorem 6.3, but we will need the latter in
Section 11 and Appendix D when we prove that φ|V is a finite morphism.)

Now we are ready to prove Theorem 6.3.

Proof of Theorem 6.3. Assume to the contrary that Theorem 6.3 does not hold. Then there exist an
affine variety V ⊆ An over F of dimension at most k and degree at most d and b = (b1, . . . , bm) ∈ Am

such that φ−1(b) ∩ V is not finite, i.e., dim(φ−1(b) ∩ V ) ≥ 1. Applying Lemma 6.6 to φ−1(b) ∩ V ,
we see that there exist Laurent power series h1(T ), . . . , hn(T ) ∈ F((T )) such that

1. at least one hi(T ) has a pole, and

2. P (h1(T ), . . . , hn(T )) = 0 for all P ∈ I(φ−1(b) ∩ V ).
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As I(V ) ⊆ I(φ−1(b) ∩ V ), the second item implies P (h1(T ), . . . , hn(T )) = 0 for all P ∈ I(V ). In

addition, for i ∈ [m], we have
(∑n

j=1 ci,jX
dj
j

)
− bi ∈ I(φ−1(b)) ⊆ I(φ−1(b) ∩ V ) by the definition

of φ. So the second item also implies

n∑
j=1

ci,jhj(T )
dj = bi ∈ F ⊆ F[[T ]] for i ∈ [m].

But then h1(T ), . . . , hn(T ) satisfy the three conditions in Lemma 6.8, and M = (ci,j)i∈[m],j∈[n] is
k-regular. This contradicts Lemma 6.8.

7 Decomposition and Min-Entropy Estimation of (n, k, d) Alge-
braic Sources

In this section, we prove that every (n, k, d) algebraic source can be (approximately) decomposed
into a convex combination of irreducible, or even irreducibly minimal (n, k, d) sources. In particular,
this reduces the problem of constructing deterministic extractors for general (n, k, d) algebraic
sources to that for irreducibly minimal (n, k, d) algebraic sources. We will use this reduction in
Section 8.

In addition, we show that every (n, k, d) algebraic source D over Fq is close to a distribution
with min-entropy about k log q, and that this estimation is tight up to an additive term of order
O(log d) assuming that k is maximized, i.e., that D is not an (n, k+ 1, d) algebraic source over Fq.

7.1 Decomposition of (n, k, d) Algebraic Sources

First, we prove some useful lemmas.

Lemma 7.1. Let V ⊆ An
F be an affine variety of dimension k over a field F. Let V1, . . . , Vs be the

irreducible components of V . Suppose S is a finite subset of F. For i ∈ [s], let Bi be the subset of
Vi ∩ Sn consisting of the points that are in the intersection of at least two irreducible components
of V . Then

∑s
i=1 |Bi| ≤ (deg V )2|S|k−1.

Proof. For i ∈ [s], we have |Bi| ≤ deg Vi · deg V · qk−1 by Bézout’s inequality (Lemma 4.2) and
Lemma 4.5. So

∑s
i=1 |Bi| ≤

∑s
i=1 deg Vi · deg V · qk−1 = (deg V )2 · qk−1.

Lemma 7.2. Let V ⊆ An
Fq

be an affine variety of dimension k over Fq such that no irreducible

component of V is absolutely irreducible. Then |V (Fq)| ≤ (deg V )2qk−1.

Proof. Naturally identify V (Fq) with VFq
∩ Fn

q . The Frobenius automorphism over Fq sends every
irreducible component of VFq

to a different irreducible component as these irreducible components

are not absolutely irreducible. But it fixes every point in V (Fq) since these points are rational. So
every point in V (Fq) is in the intersection of at least two irreducible components of VFq

. Applying

Lemma 7.1 with F = Fq and S = Fq, we see |V (Fq)| ≤ (deg VFq
)2qk−1 = (deg V )2qk−1.

Lemma 7.3. Suppose S is a finite set and B is a proper subset of S. Let D and D′ be the uniform
distributions over S and S \B respectively. Then D and D′ are |B|

|S| -close.
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Proof. Consider the following process: First sample x ∼ D. If x ̸∈ B, then output x. Otherwise
sample y ∼ D′ and output y. The distribution of the output is exactly D′. So the statistical
distance between D and D′ is at most Prx∼D[x ∈ B] ≤ |B|

|S| .

The next lemma states that every (n, k, d) algebraic source D can be approximately decomposed
into a convex combination of irreducible (n, k, d) algebraic sources, and such a decomposition pre-
serves the minimality (i.e., the property that dimV = k). The idea behind the proof is quite
natural: we start by decomposing V as a union of irreducible components. We then observe that
the contribution of components that are not absolutely irreducible or have dimensions strictly lower
than dimV is small (using Lemma 7.2). In addition, the remaining irreducible components are ap-
proximately disjoint, namely, the intersection of any two distinct irreducible components is small
(by Lemma 7.1). This implies that these irreducible components approximately define a convex
combination of irreducible algebraic sources that is close to D.

Lemma 7.4 (Decomposition into irreducible algebraic sources). Suppose q ≥ max{20d5, 2d2/ε},
where ε ∈ (0, 1). Then every (n, k, d) algebraic source D over Fq is ε-close to a convex combination
of irreducible (n, k, d) algebraic sources Di over Fq. Moreover, if D is a minimal (n, k, d) algebraic
source over Fq, then each Di can be chosen to be an irreducibly minimal (n, k, d) algebraic source
over Fq.

Proof. LetD be an (n, k, d) algebraic source. Let V ⊆ Ar
Fq

and f : Ar
Fq

→ An
Fq

be as in Definition 1.2

so that D = f(UV (Fq)).
Let V∗ be the union of the irreducible components of V that are absolutely irreducible and have

dimension dimV , and let V c
∗ be the union of the remaining irreducible components of V . Then

V∗ ̸= ∅ by the first condition in Definition 1.2. By the effective Lang–Weil bound (Theorem 4.6)
and the assumption that q ≥ max{20d5, 2d2/ε}, we have

|V (Fq)| ≥ |V∗(Fq)| ≥ qdimV /2 ≥ d2qdimV−1/ε. (6)

Consider an irreducible component V0 of V
c
∗ . Either dimV0 < dimV holds or V0 is not absolutely

irreducible. In the former case, we have |V0(Fq)| ≤ deg V0 · qdimV−1 by Lemma 4.5. And in the
latter case, we have |V0(Fq)| ≤ (deg V0)

2 ·qdimV−1 by Lemma 7.2. Summing over all V0, we conclude
that

|V c
∗ (Fq)| ≤ (deg V c

∗ )
2 · qdimV−1. (7)

Let UV∗(Fq) be the uniform distribution over V∗(Fq). By Lemma 7.3, the distributions UV (Fq) and
UV∗(Fq) are ε

′-close, where

ε′ :=
|V (Fq) \ V∗(Fq)|

|V (Fq)|
≤ |V c

∗ (Fq)|
|V (Fq)|

(6), (7)

≤ (deg V c
∗ )

2

d2
· ε. (8)

Let V1, . . . , Vs be the irreducible components of V∗. For i ∈ [s], let Ui be the uniform distribution
over Vi(Fq). Let N =

∑s
i=1 |Vi(Fq)| ≥ |V∗(Fq)|. Define the distribution U ′ to be the convex

combination

U ′ :=

s∑
i=1

|Vi(Fq)|
N

Ui.
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Let B be the set of points in V∗(Fq) that are in the intersection of at least two irreducible components
of V∗, and let Bi = B ∩ Vi(Fq) for i ∈ [s]. Note that all the points in V∗(Fq) \ B have the same
probability 1

N in the distribution U ′.

Let pB = Prx∼U ′ [x ∈ B] =
∑s

i=1 |Bi|
N . Consider the following process: Sample x ∼ U ′. If x ̸∈ B,

then output x. Otherwise, output x′ ∈ V∗(Fq) such that each y ∈ V∗(Fq) is output with probability
py, where

py =

p
−1
B Prx∼UV∗(Fq)

[x = y] if y ∈ B,

p−1
B

(
Prx∼UV∗(Fq)

[x = y]− 1
N

)
= p−1

B

(
1

|V∗(Fq)| −
1
N

)
if y ̸∈ B.

It is easy to verify that the probabilities py do define a distribution over V∗(Fq). Moreover, they are
chosen in the way that the output distribution of the above process is precisely UV∗(Fq). It follows

that UV∗(Fq) and U
′ are pB-close. By Lemma 7.1, we have

∑s
i=1 |Bi| ≤ (deg V∗)

2qdimV−1. So

pB =

∑s
i=1 |Bi|
N

≤ (deg V∗)
2qdimV−1

N
≤ (deg V∗)

2qdimV−1

|V∗(Fq)|
(6)

≤ (deg V∗)
2

d2
· ε. (9)

As deg V∗ + deg V c
∗ = deg V ≤ d, we have

ε′ + pB
(8), (9)

≤ (deg V c
∗ )

2

d2
· ε+ (deg V∗)

2

d2
· ε ≤ ε.

So UV (Fq) and U
′ are ε-close. It follows that D = f(UV (Fq)) and f(U

′) are ε-close. Recall that U ′

is a convex combination of U1, . . . , Us, where each Ui is the uniform distribution over Vi(Fq). And
by definition, f(Ui) is an irreducible (n, k, d) algebraic sources over Fq for i ∈ [s]. It follows that
D is ε-close to a convex combination of the irreducible (n, k, d) algebraic sources f(U1), . . . , f(Us)
over Fq.

Finally, if D is a minimal (n, k, d) algebraic source over Fq, then by definition, the affine variety
V may be chosen such that dimV = k. Then we also have dimVi = k for i ∈ [s] in the above proof.
In this case, each f(Ui) is an irreducibly minimal (n, k, d) algebraic source over Fq by definition. So
D is ε-close to a convex combination of irreducibly minimal (n, k, d) algebraic sources over Fq.

Next, we further decompose an irreducible (n, k, d) algebraic source into a convex combination
of irreducibly minimal (n, k, d) algebraic sources. Our main tool is the effective fiber dimension
theorem (Theorem 4.10). Using this theorem and the results of Section 4, we intersect the variety
V with various translates of a carefully chosen linear subspace. There are some bad events that
could happen for some of these intersections. For example, the intersection may have the “wrong”
dimension, or the resulting variety might have the “correct” dimension k but none of the irreducible
components of dimension k are absolutely irreducible. Using the effective fiber dimension theorem,
we are able to show that these bad events correspond to small portions of the variety V , and
then we again obtain a natural way to decompose the remaining part as a convex combination of
irreducibly minimal (n, k, d) sources.

We start with the following application of the fiber dimension theorem.

Lemma 7.5. Let V ⊆ Ar
Fq

be an irreducible affine variety over Fq. Let φ = (φ1, φ2) : V → An
Fq

be
a dominant morphism defined by f1, . . . , fn, where φ1 and φ2 are defined by the first n1 and the last
n2 polynomials respectively and n1+n2 = n. Let U be the subset of a ∈ V (Fq) such that φ−1(φ(a))
is equidimensional of dimension dimV − n1 − n2. Then we have:
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1. For a ∈ U , the fiber Vφ1(a) := φ−1
1 (φ1(a)) is equidimensional of dimension dimV − n1.

2. For a ∈ U and each irreducible component Z of Vφ1(a), we have dimφ2(Z) ≤ n2. Moreover,
the equality is attained if a ∈ Z.

Proof. Let a ∈ U . By the fiber dimension theorem (Theorem 4.4), every irreducible component of
Vφ1(a) is at least dimV − dimφ1(V ) ≥ dimV − n1. Also note that φ−1(φ(a)) = φ2|−1

Vφ1(a)
(φ2(a)).

Again by the fiber dimension theorem, we have

dimφ−1(φ(a)) ≥ dimVφ1(a) − dimφ2(Vφ1(a)) ≥ dimVφ1(a) − n2.

We know dimφ−1(φ(a)) = dimV −n1−n2 by assumption. So dimVφ1(a) ≤ (dimV −n1−n2)+n2 =
dimV − n1. It follows that Vφ1(a) is equidimensional of dimension dimV − n1, which proves the
first claim.

Let Z be an irreducible component of Vφ1(a). We already know that

dimφ2(Z) ≤ dimφ2(Vφ1(a)) ≤ n2.

Now assume a ∈ Z. Let W be the irreducible component of φ−1(φ(a)) that contains a. We have
dimW = dimV −n1 −n2 by assumption and dimZ = dimV −n1 by the first claim. Note that W
is an irreducible component of φ2|−1

Z (φ2(a)). So by the fiber dimension theorem,

dimV − n1 − n2 = dimW ≥ dimZ − dimφ2(Z) = (dimV − n1)− dimφ2(Z)

which implies that dimφ2(Z) ≥ n2. So dimφ2(Z) = n2.

Consider the setup in the previous lemma and further assume that V is absolutely irreducible.
The following lemma roughly asserts that for most values of b in the image of φ1, the fiber Vb satisfies
the property that all but at most an ε fraction of its points come from irreducible components Z
such that dimZ = dimV − n1, Z is absolutely irreducible, and dimφ2(Z) = n2. In other words,
the set of “bad” points in Vb that belong to other irreducible components is negligible.

Lemma 7.6. Let V ⊆ Ar
Fq

be an absolutely irreducible affine variety over Fq. Let φ = (φ1, φ2) :
V → An

Fq
be a dominant morphism defined by f1, . . . , fn, where φ1 and φ2 are defined by the first

n1 and the last n2 polynomials respectively and n1 + n2 = n. For b ∈ Fn1
q , let Vb = φ−1

1 (b), and
let V ′

b be the union of the irreducible components Z of Vb such that Z is absolutely irreducible of

dimension dimV − n1 and dimφ2(Z) = n2. Define

δ = Pr
a∼UV (Fq)

[dimφ−1(φ(a)) ̸= dimV − n].

Let d ∈ N+ and ε = (2d2/q + δ)1/2. Assume q ≥ 20d5, deg V ≤ d, and deg Vb ≤ d for all
b ∈ φ1(V (Fq)). Then with probability at least 1− ε over b ∼ φ1(UV (Fq)), it holds that

|Vb(Fq) \ V ′
b (Fq)| ≤ ε · |Vb(Fq)|.

Proof. For b ∈ φ1(V (Fq)), let Wb be the union of the irreducible components of Vb of dimension
at most dimV − n1 that are not absolutely irreducible. By Lemma 7.2, we have |Wb(Fq)| ≤
d2qdimV−n1−1. Let B0 =

⋃
b∈φ1(V (Fq))

Wb(Fq). Then

|B0| ≤ |φ1(V (Fq))| · d2qdimV−n1−1 ≤ d2qdimV−1 ≤ (2d2/q) · |V (Fq)|.
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where the last inequality uses Theorem 4.6.
Let U = {a ∈ V (Fq) : dimφ−1(φ(a)) = dimV − n} and B = V (Fq) \U . Then |B| = δ · |V (Fq)|.

Also let U ′ =
⋃

b∈φ1(V (Fq))
V ′
b (Fq) and B

′ = V (Fq) \ U ′.
By Lemma 7.5, for every a ∈ U , the irreducible component Z of Vφ1(a) containing a satisfies

that dimZ = dimV − n1 and dimφ2(Z) = n2. So either Z is not absolutely irreducible (which
implies that a ∈ Z ⊆Wφ1(a) ⊆ B0), or a ∈ Z ⊆ V ′

φ1(a)
⊆ U ′. It follows that U ⊆ B0 ∪U ′ and hence

B′ ⊆ B0 ∪B. Therefore,

|B′| ≤ |B0|+ |B| ≤ (2d2/q + δ) · |V (Fq)| = ε2 · |V (Fq)|.

So we have

E
b∼φ1(UV (Fq))

[
|Vb(Fq) \ V ′

b (Fq)|
|Vb(Fq)|

]
=

∑
b∈φ1(V (Fq))

|Vb(Fq)|
|V (Fq)|

·
|Vb(Fq) \ V ′

b (Fq)|
|Vb(Fq)|

=
|B′|

|V (Fq)|
≤ ε2.

By Markov’s inequality, the probability that |Vb(Fq)\V ′
b (Fq)| > ε·|Vb(Fq)| holds over b ∼ φ1(UV (Fq))

is at most ε.

As a consequence of Lemma 7.6, we also prove the following lemma, which will be used in
Section 9.

Lemma 7.7. Let V ⊆ Ar
Fq

be an absolutely irreducible affine variety over Fq. Let φ = (φ1, φ2) :

V → An
Fq

be a dominant morphism defined by f1, . . . , fn as in Lemma 7.6. Let d ∈ N+ and ε ∈ (0, 1)

such that ε2 ≥ 2(n+ 1)d2/q. Assume q ≥ 20d5. Also assume that f1, . . . , fn ∈ Lh1,...,hs,Fq for some
h1, . . . , hs ∈ Fq[X1, . . . , Xr] with deg h1 ≥ · · · ≥ deg hs such that

deg V ·
n∏

i=1

deg hi ≤ d.

Let D = (D1, D2) = φ(UV (Fq)) where Di = φi(UV (Fq)) for i = 1, 2. Then with probability at least
1− ε over b ∼ D1, the distribution D2|D1=b is ε-close to an (n2, n2, d) algebraic source over Fq.

Proof. Note that deg V ≤ d as the fact that φ is dominant implies that deg hi ≥ 1 for i ∈ [s].
For b ∈ Fn1

q , let Vb and V ′
b be as in Lemma 7.6, i.e., Vb = φ−1

1 (b) and V ′
b is the union of the

irreducible components Z of Vb such that Z is absolutely irreducible of dimension dimV − n1 and
dimφ2(Z) = n2.

Consider a ∈ V (Fq) and let b = φ1(a). Note that Vb = V ∩ V (f1 − f1(a), . . . , fn1 − fn1(a)).
Recall that the polynomial f1, . . . , fn ∈ Lh1,...,hs,Fq are linear combinations of h1, . . . , hs and 1 over
Fq. By Gaussian elimination, we can find integers 1 ≤ j1 < · · · < jt ≤ n, where 0 ≤ t ≤ n1, and
polynomials g1, . . . , gt ∈ Fq[X1, . . . , Xr] such that V (f1 − f1(a), . . . , fn1 − fn1(a)) = V (g1, . . . , gt)
and each gi can be written as a linear combination

gi = ci,jihji + ci,ji+1hji+1 + · · ·+ ci,shs + ci

with ci,j , ci ∈ Fq and ci,ji ̸= 0. Bézout’s inequality (Lemma 4.2) then gives

deg Vb ≤ deg V ·
t∏

i=1

deg gi = deg V ·
t∏

i=1

deg hji ≤ d. (10)
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Let {ĵ1, . . . , ĵs−t} = [s] \ {j1, . . . , jt}, where ĵ1 < · · · < ĵs−t. As g1, . . . , gt vanish identically
on Vb, adding to each fi a multiple of gj for j ∈ [t] does not change fi|Vb

. In particular, for

i ∈ [n], we can eliminate the dependence of fi on hj1 , . . . , hjt and find f̃i ∈ Lhĵ1
,...,hĵs−t

,Fq such that

f̃i|Vb
= fi|Vb

. Then the morphism φ2|Vb
: Vb → An2

Fq
is defined by the polynomials f̃n1+1, . . . , f̃n.

And

deg V ′
b ·

n2∏
i=1

deg hĵi ≤ deg Vb·
n2∏
i=1

deg hĵi

(10)

≤ deg V ·
t∏

i=1

deg hji ·
n2∏
i=1

deg hĵi ≤ deg V ·
n∏

i=1

deg hi ≤ d. (11)

Let δ = Pra∼UV (Fq)
[dimφ−1(φ(a)) ̸= dimV − n]. By the effective fiber dimension theorem

(Corollary 4.11), there exists a polynomial P ∈ Fq[X1, . . . , Xr] of degree at most n · deg V ·∏n
i=1 deg hi ≤ nd that does not vanish identically on VFq

such that for every a ∈ VFq
satisfy-

ing P (a) ̸= 0, the fiber φ−1(φ(a)) is equidimensional of dimension dimV − n. Let B be the set
of a ∈ V (Fq) such that dimφ−1(φ(a)) ̸= dimV − n. Then B ⊆ VFq

∩ V (P ) ∩ Fr
q. By Bézout’s

inequality (Lemma 4.2) and Lemma 4.5, we have

|B| ≤ deg V · degP · qdimV−1 ≤ nd2qdimV−1.

Let δ = Pra∼UV (Fq)
[dimφ−1(φ(a)) ̸= dimV − n]. Then

δ =
|B|

|V (Fq)|
≤ nd2qdimV−1

qdimV /2
= 2nd2/q,

where we use the fact |V (Fq)| ≥ qdimV /2 that follows from Theorem 4.6. So ε ≥ (2(n+1)d2/q)1/2 ≥
(2d2/q + δ)1/2.

By Lemma 7.6, with probability at least 1 − ε over b ∼ φ1(UV (Fq)), it holds that |Vb(Fq) \
V ′
b (Fq)| ≤ ε · |Vb(Fq)|. Fix b such that this holds. Note that D2|D1=b = φ2(UVb(Fq)). So it suffices

to verify that φ2(UVb(Fq)) is ε-close to an (n2, n2, d) algebraic source over Fq.
The set V ′

b (Fq) is nonempty as |V ′
b (Fq)| ≥ (1 − ε)|Vb(Fq)| > 0. By definition, every irreducible

component Z of V ′
b is absolutely irreducible of dimension dimV −n1 and satisfies dimφ2(Z) = n2.

So the distribution φ2(UV ′
b (Fq)) satisfies the first two conditions of (n2, n2, d) algebraic sources in

Definition 1.2. And the third condition also holds by (11). This shows that φ2(UV ′
b (Fq)) is an

(n2, n2, d) algebraic source over Fq.
Finally, as |Vb(Fq) \ V ′

b (Fq)| ≤ ε · |Vb(Fq)|, the distributions UVb(Fq) and UV ′
b (Fq) are ε-close by

Lemma 7.3. It follows that D2|D1=b = φ2(UVb(Fq)) is ε-close to the (n2, n2, d) algebraic source
φ2(UV ′

b (Fq)).

We now use Lemma 7.6 and the effective fiber dimension theorem to decompose irreducible
(n, k, d) algebraic sources, thus completing the proof of the main result of this section.

Lemma 7.8. Suppose q ≥ max{20d5, 2(k + 1)d2/ε2}, where ε ∈ (0, 1). Then every irreducible
(n, k, d) algebraic source over Fq is 3ε-close to a convex combination of irreducibly minimal (n, k, d)
algebraic sources over Fq.

Proof. Let D be an irreducible (n, k, d) algebraic source over Fq. Let V ⊆ Ar
Fq

and f : Ar
Fq

→ An
Fq

be

as in Definition 1.2, where V is irreducible (and hence absolutely irreducible) and D = f(UV (Fq)).
Let kV = dimV ≥ k. By the effective Lang–Weil bound (Theorem 4.6), we have

|V (Fq)| ≥ qkV /2.
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By Lemma 4.3, there exist distinct j1, . . . , jk ∈ [n] such that the morphism φ2 : V → Ak
Fq

defined

by fj1 , . . . , fjk satisfies dimφ2(V ) = k. View φ2 as a morphism over Fq and let Vφ2 ⊆ Ar
Fq(Y1,...,Yk)

be its generic fiber. By working over the algebraically closure of Fq(Y1, . . . , Yk) and following the
proof of (10), we see that the degree of Vφ2 is bounded by d. As q > 2d, applying Lemma 4.9
with S = Fq, we see that there exist linear polynomials ℓ1, . . . , ℓkV ∈ Fq[X1, . . . , Xr] such that the

morphisms π : V → AkV
Fq

defined by ℓ1, . . . , ℓkV and τ : Vφ2 → AkV −k

Fq(Y1,...,Yk)
defined by ℓ1, . . . , ℓkV −k

are finite.
Applying the general form of the effective fiber dimension theorem (Theorem 4.10) to φ2, where

we choose t = kV − k, we see that there exists a polynomial P ∈ Fq[X1, . . . , Xr] of degree at most

k · deg V ·
∏k

i=1 deg hi ≤ kd that does not vanish identically on VFq
such that the following holds:

Let φ : VFq
→ AkV

Fq
be the morphism defined by ℓ1, . . . , ℓkV −k, fj1 , . . . , fjk . Then for every a ∈ VFq

satisfying P (a) ̸= 0, it holds that dimφ−1(φ(a)) = 0. Note that φ is dominant by the finiteness of
τ .

Let φ1 : V → AkV −k
Fq

be the morphism defined by ℓ1, . . . , ℓkV −k. View φ as a dominant morphism

V → AkV
Fq

over Fq. Then φ = (φ1, φ2). Let B be the set of a ∈ V (Fq) = VFq
∩ Fr

q satisfying

dimφ−1(φ(a)) ̸= 0. Then B ⊆ VFq
∩ V (P ) ∩ Fr

q. The degree of VFq
∩ V (P ) is bounded by

deg V · degP ≤ kd2 by Bézout’s inequality (Lemma 4.2). As P does not vanish identically on V ,
either dim(V ∩ V (P )) = kV − 1 or V ∩ V (P ) = ∅. So by Lemma 4.5,

|B| ≤ |VFq
∩ V (P ) ∩ Fr

q| ≤ kd2qkV −1.

Let δ = Pra∼UV (Fq)
[dimφ−1(φ(a)) ̸= 0]. Then

δ =
|B|

|V (Fq)|
≤ kd2qkV −1

qkV /2
= 2kd2/q.

For b ∈ FkV −k
q , let Vb = φ−1

1 (b), and let V ′
b be the union of the irreducible components Z of Vb

such that Z is absolutely irreducible of dimension k and dimφ2(Z) = k. As φ1 is a linear map, we
have deg Vb ≤ deg V ≤ d by Bézout’s inequality.

Note that (2d2/q+ δ)1/2 ≤ (2(k+1)d2/q)1/2 ≤ ε. By Lemma 7.6, with probability at least 1− ε
over b ∼ φ1(UV (Fq)), it holds that

|Vb(Fq) \ V ′
b (Fq)| ≤ ε · |Vb(Fq)|. (12)

Fix b ∈ φ1(V (Fq)) for which (12) holds. Then UV ′
b (Fq) is ε-close to UVb(Fq) by Lemma 7.3.

The set V ′
b (Fq) is nonempty as |V ′

b (Fq)| ≥ (1 − ε)|Vb(Fq)| > 0. By definition, every irreducible

component Z of V ′
b is absolutely irreducible of dimension k and satisfies dimφ2(Z) = k. This also

implies that dim f(Z) ≥ k for every irreducible component Z of V ′
b as the output of φ2 is part of

that of f |V . So the distribution f(UV ′
b (Fq)) satisfies the first two conditions of (n, k, d) algebraic

sources in Definition 1.2. And the third condition also holds as deg Vb ≤ deg V . Finally, we know
dimV ′

b = k. It follows that f(UV ′
b (Fq)) is a minimal (n, k, d) algebraic source over Fq. Therefore,

f(UVb(Fq)) is ε-close to a minimal (n, k, d) algebraic source over Fq.
Let D′ = UV (Fq) so that D = f(D′). For each b ∈ φ1(V (Fq)), the distribution D|φ1(D′)=b is ex-

actly f(UVb(Fq)). We have already shown that with probability at least 1−ε over b ∼ φ1(UV (Fq)), the
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distribution D|φ1(D′)=b = f(UVb(Fq)) is ε-close to the minimal (n, k, d) algebraic source f(UV ′
b (Fq)).

It follows that D is 2ε-close to a convex combination of minimal (n, k, d) algebraic source over Fq.
Finally, by Lemma 7.4, every minimal (n, k, d) algebraic source over Fq is ε-close to a convex

combination of irreducibly minimal (n, k, d) algebraic sources over Fq. It follows that D is 3ε-close
to a convex combination of irreducibly minimal (n, k, d) algebraic sources over Fq.

Combining Lemma 7.4 and Lemma 7.8 yields the following corollary.

Corollary 7.9 (Decomposition into irreducibly minimal algebraic sources). Suppose q ≥
max{20d5, 2(k + 1)d2/ε2}, where ε ∈ (0, 1). Then every (n, k, d) algebraic source over Fq is 4ε-
close to a convex combination of irreducibly minimal (n, k, d) algebraic sources over Fq.

7.2 Estimating the Min-Entropy of (n, k, d) Algebraic Sources

We first prove the following lower bound on the min-entropy of an (n, k, d) algebraic source D (or
more precisely, a distribution D′ close to D). The proof uses the decomposition into irreducible
(n, k, d) algebraic sources (Lemma 7.4).

Lemma 7.10. Suppose q ≥ max{20d5, 2kd2/ε}, where ε ∈ (0, 1/2]. Then every (n, k, d) algebraic
source over Fq is 2ε-close to a k′-source over the set Fn

q , where k
′ = k log q − log d− 2.

Proof. Assume k > 0 as otherwise the lemma holds trivially. Let D be an (n, k, d) algebraic
source over Fq. By Lemma 7.4, we know D is ε-close to an irreducible (n, k, d) algebraic source
D′ over Fq. Suppose D′ = f(UV (Fq)) where V ⊆ Ar

Fq
and f : Ar

Fq
→ An

Fq
are as in Definition 1.2,

and V is absolutely irreducible. So f is defined by polynomials f1, . . . , fn ∈ Lh1,...,hs,Fq , where

h1, . . . , hs ∈ Fq[X1, . . . , Xr], deg h1 ≥ · · · ≥ deg hs, and deg V ·
∏k

i=1 deg hi ≤ d. By the effective
Lang–Weil bound (Theorem 4.6), we have |V (Fq)| ≥ qdimV /2.

By Lemma 4.3, there exist distinct i1, . . . , ik ∈ [n] such that the polynomial map ψ : Ar
Fq

→ Ak
Fq

defined by fi1 , . . . , fik satisfies dimψ(V ) = k. Applying the effective fiber dimension theorem
(Corollary 4.11) to ψ (viewed as a morphism over Fq), we see that there exists a polynomial

P ∈ Fq[X1, . . . , Xr] of degree at most k · deg V ·
∏k

i=1 deg hi ≤ kd that does not vanish identically
on VFq

such that for every a ∈ VFq
satisfying P (a) ̸= 0, it holds that dimψ|−1

VFq
(ψ(a)) = dimV − k.

Let B = {a ∈ V (Fq) : P (a) = 0} = VFq
∩ V (P ) ∩ Fr

q. It follows from Lemma 4.5 and Bézout’s

inequality (Lemma 4.2) that

|B| ≤ deg V · degP · qdimV−1 ≤ kd2qdimV−1.

Let U ′ be the uniform distribution over V (Fq) \B. By Lemma 7.3, the distributions UV (Fq) and U
′

are ε′-close, where

ε′ =
|B|

|V (Fq)|
≤ kd2qdimV−1

qdimV /2
= 2kd2/q ≤ ε.

So D′ = f(UV (Fq)) and f(U
′) are ε-close. It follows that D and f(U ′) are 2ε-close.

It remains to prove that f(U ′) has min-entropy at least k log q − log d − 2. As ψ(U ′) can be
obtained from f(U ′) by projecting to a subset of coordinates, it suffices to show that ψ(U ′) has
min-entropy at least k log q− log d−2. Consider arbitrary a ∈ V (Fq)\B and let b = ψ(a). We have
P (a) ̸= 0 and hence dimψ|−1

V (b) = dimV −k. The fiber ψ|−1
V (b) is the subvariety of V defined by the

k polynomials fi1 −fi1(a), . . . , fik −fik(a) ∈ Lh1,...,hs,Fq . By Gaussian elimination, we can construct
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polynomials g1, . . . , gt from fi1−fi1(a), . . . , fik−fik(a) such that t ≤ k, ψ|−1
V (b) = V ∩V (g1, . . . , gt),

and gi ∈ Lhi,...,hs,Fq for i ∈ [t]. In particular, we have deg gi ≤ deg hi for i ∈ [t]. It follows from
Bézout’s inequality (Lemma 4.2) that

degψ|−1
V (b) ≤ deg V ·

t∏
i=1

deg gi ≤ deg V ·
k∏

i=1

deg hi ≤ d.

Lemma 4.5 then gives
∣∣(ψ|−1

V (b)
)
(Fq)

∣∣ ≤ dqdimV−k. Therefore,

Pr[ψ(U ′) = b] =

∣∣(ψ|−1
V (b)

)
(Fq)

∣∣
|V (Fq) \B|

≤
∣∣(ψ|−1

V (b)
)
(Fq)

∣∣
|V (Fq)|/2

≤ dqdimV−k

qdimV /4
= 4d/qk.

Every element in the support of ψ(U ′) has the form b = ψ(a) for some a ∈ V (Fq) \ B. So ψ(U ′)
has min-entropy at least − log(4d/qk) = k log q − log d− 2, as desired.

The next proposition complements Lemma 7.10 and gives an upper bound on the min-entropy.

Proposition 7.11. Suppose q ≥ 20d5. Let D be an (n, k, d) algebraic source over Fq such that k is
maximal with respect to this condition, i.e., D is not an (n, k+1, d) algebraic source over Fq. Then
the statistical distance between D and any (k log q + 2 log d+ 2)-source is at least 1

4d . Moreover, if
D is an irreducible (n, k, d) algebraic source over Fq, then the statistical distance between D and
any (k log q + log d+ 1)-source is at least 1

2 .

Proof. Suppose D = f(UV (Fq)) where V ⊆ Ar
Fq

and f : Ar
Fq

→ An
Fq

are as in Definition 1.2. As

D is not an (n, k + 1, d) algebraic source over Fq, we know V has an irreducible component V0 of

dimension dimV that is absolutely irreducible such that the dimension of f(V0) is exactly k. We
have |V0(Fq)| ≥ qdimV /2 by the effective Lang–Weil bound (Theorem 4.6) and the assumption that
q ≥ 20d5. Also note that |V (Fq)| ≤ dqdimV by Lemma 4.5.

Let W = f(V0). Then degW ≤ d by Lemma 4.12 and the third condition in Definition 1.2. So
|W (Fq)| ≤ dqk by Lemma 4.5.

Let D′ be a k′-source over the set Fn
q , where k

′ = k log q + 2 log d+ 2. Then

Pr[D′ ∈W (Fq)] ≤ |W (Fq)| · 2−k′ ≤ dqk2−k′ =
1

4d
.

On the other hand, as f(V0(Fq)) ⊆W (Fq) and D = f(UV (Fq)), we have

Pr[D ∈W (Fq)] ≥
|V0(Fq)|
|V (Fq)|

≥ qdimV /2

dqdimV
=

1

2d
.

So the statistical distance between D and D′ is at least 1
2d − 1

4d = 1
4d .

Now assume D is an irreducible (n, k, d) algebraic source over Fq. So V may be chosen to be
irreducible. Then V0 = V and hence Pr[D ∈ W (Fq)] = 1. Let k′′ = k log q + log d + 1 and let D′′

be a k′′-source over the set Fn
q . Then Pr[D′′ ∈ W (Fq)] ≤ |W (Fq)|2−k′′ ≤ dqk2−k′′ = 1

2 . So the

statistical distance between D and D′′ is at least 1− 1
2 = 1

2 .
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8 Extracting a Short Seed

In this section, we consider the problem of constructing explicit deterministic extractors for (n, k, d)
algebraic sources over a finite field Fq in the special case where k = 1.

The main results of this section are explicit constructions of deterministic extractors that extract
almost log q bits from (1, 1, d) algebraic sources and, more generally, (n, 1, d) algebraic sources over
Fq. They are used as building blocks in the construction of the full-fledged deterministic extractors
that extract most min-entropy from (n, k, d) algebraic sources.

Formally, we prove the following theorems.

Theorem 8.1 (Extractor for (1, 1, d) algebraic sources). Let d ∈ N+ and ε ∈ (0, 1/2]. Suppose
q ≥ c0d

5/ε2, where c0 > 0 is a large enough absolute constant. Then there exists an explicit ε-
extractor Ext : Fq → {0, 1}m for (1, 1, d) algebraic sources over Fq such that m ≥ log q−2 log log p−
O(log(d/ε)).

Theorem 8.2 (Extractor for (n, 1, d) algebraic sources). Let d ∈ N+ and ε ∈ (0, 1/2]. Suppose
q ≥ (nd/ε)c0, where c0 > 0 is a large enough absolute constant. Then there exists an explicit ε-
extractor Ext : Fq → {0, 1}m for (n, 1, d) algebraic sources over Fq such that m ≥ log q−2 log log p−
O(log(nd/ε)).

Theorem 8.2 is derived from Theorem 8.1. As in [DGW09, Dvi12], the proof of Theorem 8.1
uses Bombieri’s estimate for exponential sums (Theorem 4.7). However, the argument in [DGW09,
Dvi12] works only when the characterisitic p is large. Moreover, it only yields an extractor that
extracts c log q bits for some constant c ≤ 1/2. We introduce new ideas that allow us to extract
almost log q bits regardless of the characteristic p.

8.1 Exponential Sums over Finite Fields of Arbitrary Characteristic

The purpose of this subsection is to prove the following estimate for exponential sums over curves,
even over finite fields of small characteristics. Recall that Bombieri’s estimate (Theorem 4.7) is
valid as long as the polynomial f does not have the form gp − g on the curve. One way to deal
with this difficulty is to require p to be large. However, we would like to get meaningful results for
arbitrary p, and we do this by paying the cost of excluding a small subgroup of characters from the
estimate.

Lemma 8.3. Let C ⊆ An
Fq

be an irreducible affine curve of degree d1 over a finite field Fq of

characteristic p, and let f ∈ Fq[X1, . . . , Xn] be a polynomial of degree d2 that is not constant on C.

Then the set of characters χ ∈ F̂q for which∣∣∣∣∣∣
∑

x∈C(Fq)

χ(f(x))

∣∣∣∣∣∣ ≤ (d21 + 2d1d2 − 3d1)q
1/2 + d21 (13)

fails to hold is contained in a subgroup of F̂q of size at most d1d2.

Before proving Lemma 8.3, we require some preliminary results. Recall that for a formal
Laurent series f ∈ F((T )), we denote by ord(f) the least degree of the terms that appear in f , i.e.,
f = c0T

ord(f) + c1T
ord(f)+1 + · · · where c0 ̸= 0. And ord(f) = +∞ if f = 0. For i ∈ Z, denote by

coeffi(f) the coefficient of T i in f .
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Lemma 8.4. Let C0 ⊆ An be an irreducible affine curve of degree d over an algebraically closed field
F. Then there exists an F-linear field embedding τ : F(C0) ↪→ F((T )) such that for any polynomial
f ∈ F[X1, . . . , Xn] of degree d that is not constant on C0, the map τ sends f to f̃ ∈ F((T )) such
that

−deg(C0) · d ≤ ord(f̃) < 0.

We defer the proof of Lemma 8.4 to Appendix C.

Lemma 8.5. Let F be a field of characteristic p. Suppose f, g ∈ F((T )) such that f = gp − g and
ord(f) < 0. Let t < 0 and e ≥ 0 be integers such that t is coprime to p and tpe+1 < ord(f) ≤ tpe.
Then

e∑
i=0

(coefftpi(f))
pe−i

= 0.

Proof. The lemma can be proved by expressing the coefficients of f in terms of those of g. We give
an alternative proof. Note that by taking a field extension, we may assume F is algebraically closed
and hence a perfect field. Then the map a 7→ a1/p is an automorphism of F. We will instead prove

+∞∑
i=0

(coefftpi(f))
1/pi = 0. (14)

Note that the LHS of (14) is actually a finite sum and equals
∑e

i=0(coefftpi(f))
1/pi . The lemma

then follows by raising both sides to the pe-th power.
Note that to prove (14), we may assume all terms in g have degree tpi for i ∈ N, as ignoring

the other terms does not affect the coefficients appearing in (14). Moreover, as coefftpi(·) and the

map x 7→ x1/p are both linear in characteristic p, if (14) holds for f1, f2 ∈ F((T )), then it also holds
for f1 + f2. So we may assume g contains only one term cT tpi where c ∈ F and i ∈ N, and hence
f = cpT tpi+1 − cT tpi . The LHS of (14) is then (cp)1/p

i+1 − c1/p
i
= 0.

Proof of Lemma 8.3. Fix an irreducible component C0 of the affine curve CFq
over Fq. It is a

standard fact that the natural inclusion Fq[C] ↪→ Fq[CFq
] induces an inclusion Fq[C] ↪→ Fq[C0].

5 In
particular, as f is not constant on C, it is not constant on C0 either.

Denote by σ be the character x 7→ e2πix/p of Fp. For α ∈ Fq, denote by χα the character of Fq

sending x to (σ ◦ Tr)(αx). The map α 7→ χα is a one-to-one correspondence between Fq and F̂q.
Consider a character χα for which (13) does not hold. Then by Bombieri’s estimate (Theorem 4.7),
there exists g ∈ Fq[X1, . . . , Xn] such that αf − (gp − g) vanishes identically on C, and hence also
on C0.

View f and g as elements of Fq(C0). By Lemma 8.4, there exists an Fq-linear field embedding
τ : Fq(C0) ↪→ Fq((T )) such that f̃ := τ(f) satisfies

−deg(C0) · d2 ≤ ord(f̃) < 0.

5This uses the fact that Fq[CFq ] is an integral extension of Fq[C]. The kernel of Fq[C] → Fq[C0] is I ∩ Fq[C],

where I is the minimal prime ideal of Fq[CFq ] defining the irreducible component C0. As CFq is equidimensional of

dimension one, I is not a maximal ideal of Fq[CFq ]. Then I ∩ Fq[C] is a prime ideal of Fq[C] that is not maximal

either by [AM69, Corollary 5.8]. As C is an irreducible curve, this implies I ∩ Fq[C] = 0. See [AM69, Chapter 5] for
more details about integral extensions.
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Let g̃ = τ(g). Then αf̃ = g̃p − g̃ as τ is an Fq-linear field embedding and αf = gp − g in Fq[C0].
Write ord(f̃) = tpe where t < 0 is coprime to p. By Lemma 8.5,

0 =
e∑

i=0

(coefftpi(αf̃))
pe−i

=
e∑

i=0

αpe−i
(coefftpi(f̃))

pe−i
. (15)

The RHS of (15) is a nonzero polynomial in α independent of g, and its degree is bounded by pe.
Also note that this polynomial is a linearized polynomial, i.e., the degree of every monomial is a
power of p. So its roots in Fq form a subgroup H whose size is at most pe.

Then the set S := {χα : α ∈ H} contains all the characters for which (13) fails to hold. As χα

is defined by x 7→ (σ ◦ Tr)(αx) and Tr(·) is linear, the set S is a subgroup of F̂q, whose size is at
most |H| ≤ pe ≤ |ord(f̃)| ≤ deg(C0) · d2 ≤ d1d2.

Remark. We need the curve C to be irreducible in Lemma 8.3 so that the “bad” characters are
contained in a single subgroup of F̂q of size at most d1d2. For a reducible curve C, a similar proof

shows that these characters are contained in a subset S ⊆ F̂q of size at most d1d2 such that S is

the union of a collection of subgroups of F̂q, one for each irreducible component of C.

8.2 Proofs of Theorem 8.1 and Theorem 8.2

Theorem 8.1 can be proved easily using the techniques we have developed so far. First, we show
that a distribution of the form f(UC(Fq)) is a strongly (ε, d)-biased source, and even an ε-biased
source if the characteristic p is large, where C is a low-degree absolutely irreducible affine curve
over Fq and f is a low-degree polynomial.

Lemma 8.6. Let C ⊆ An
Fq

be an absolutely irreducible affine curve of degree d1 over a finite field

Fq of characteristic p. Let f ∈ Fq[X1, . . . , Xn] be a polynomial of degree d2 that is not constant on
C. Let d ≥ d1d2 and suppose q ≥ 20d5. Then f(UC(Fq)) is strongly (ε, d)-biased over the set Fq,

where ε = 8d2/q1/2. Furthermore, if p > d1d2, then f(UC(Fq)) is ε-biased over the set Fq.

Proof. By Lemma 8.3, there exists a subgroup S ⊆ F̂q of size most d1d2 ≤ d such that for all

χ ∈ F̂q \ S, it holds that∣∣∣∣∣∣
∑

x∈C(Fq)

χ(f(x))

∣∣∣∣∣∣ ≤ (d21 + 2d1d2 − 3d1)q
1/2 + d21 ≤ 4d2q1/2.

By the effective Lang–Weil bound (Theorem 4.6) and the assumption q ≥ 20d5, we have |C(Fq)| ≥
q/2. It follows that for χ ∈ F̂q \ S,

∣∣E[χ(f(UC(Fq)))]
∣∣ =

∣∣∣∑x∈C(Fq)
χ(f(x))

∣∣∣
|C(Fq)|

≤ 4d2q1/2

q/2
= 8d2/q1/2 = ε.

By definition, this means f(UC(Fq)) is strongly (ε, d)-biased.

Now assume p > d1d2. As the size of S ⊆ F̂q is a power of p and |S| ≤ d1d2, we must have
|S| = 1, i.e., S contains only the trivial character. So f(UC(Fq)) is ε-biased.
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We are now ready to prove Theorem 8.1. This follows by first reducing to the case of irreducibly
minimal (1, 1, d) algebraic sources and then applying Lemma 8.6 together with the constructions
in Section 3.

Proof of Theorem 8.1. We will construct an (ε/2)-extractor Ext for irreducibly minimal (1, 1, d)
algebraic sources over Fq with the claimed output length. By Corollary 7.9 and the assumption
that q ≥ c0d

5/ε2, every (1, 1, d) algebraic source over Fq is (ε/2)-close to a convex combination of
irreducibly minimal (1, 1, d) algebraic sources over Fq. It follows that Ext is also an ε-extractor for
(1, 1, d) algebraic sources over Fq.

Let ε0 := 8d2/q1/2 and let c > 0 be a large enough absolute constant. We consider two different
cases depending on how large the characteristic p is.

Case 1: p ≤ (d/ε)c. In this case, let Ext : Fq → Ft
p = {0, 1}m be the (ε/2)-extractor for strongly

(ε0, d)-biased sources given by Theorem 3.21, where we set the parameters

n′ = min{⌊2 logp(1/ε0)− 2 logp(16d/(ε/2)
2)⌋, logp q},

t = ⌊n′ − 3− 2 logp(2d/(ε/2))⌋, and
m = t log p.

As ε0 = 8d2/q1/2 and p ≤ (d/ε)c, we have

m ≥ min{2 log(1/ε0), log q} −O(log(d/ε))−O(log p) = log q −O(log(d/ε)).

Consider an irreducibly minimal (1, 1, d) algebraic source D over Fq. By definition, there exist
r ∈ N+, an absolutely irreducible affine curve C ⊆ Ar

Fq
over Fq of degree d1, and a polynomial

f ∈ Fq[X1, . . . , Xr] of degree d2 that is not constant on C such that d1d2 ≤ d and D = f(UC(Fq)).
By Lemma 8.6, the distribution D is a strongly (ε0, d)-biased distribution over the set Fq, so that
Ext(D) is (ε/2)-close to the uniform distribution over Fq. It follows that Ext is an (ε/2)-extractor
for irreducibly minimal (1, 1, d) algebraic sources, as desired.

Case 2: p > (d/ε)c ≥ d1d2. In this case, identify Fq with the abelian group Zt
N , where N = p

and t = logp q. Let Ext be the map Zt
N → Zt−1

N × ZM in Lemma 3.9, where the parameter M will
be determined shortly. By Lemma 3.9, Ext is an ε′-extractor for ε0-biased distribution, where

ε′ := ε0 · (N t−1M)1/2 · C logN +M/N = 8d2 · (M/p)1/2 · C log p+M/p.

and C > 0 is an absolute constant. By Lemma 8.6 and the fact that p > d1d2, every irreducibly
minimal (1, 1, d) algebraic source over Fq is ε0-biased. So Ext is also an ε′-extractor for irreducibly
minimal (1, 1, d) algebraic sources.

We want to choose M ∈ N+ such that ε′ ≤ ε/2. As p > (d/ε)c and c > 0 is a large enough
constant, such an integer M exists and we can choose M such that logM ≥ log p − 2 log log p −
O(log(d/ε)). So Ext is an (ε/2)-extractor for irreducibly minimal (1, 1, d) algebraic sources with
the output length

m = (t− 1) logN + logM = log q − log p+ logM ≥ log q − 2 log log p−O(log(d/ε)).

In both cases above, we ignore the technicality that the size of the range of Ext may not be a
power of two, i.e., m may not be an integer. But one can always turn the size into a power of two
at the cost of losing O(log(1/ε)) bits in the output by composing Ext with a suitable map. The
details are left to the reader.
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Remark. In the case where p ≤ (d/ε)c, the above proof shows that we could avoid losing 2 log log p
bits in the output. However, this does not make an essential difference as 2 log log p is dominated
by the term O(log(d/ε)) in this case.

We now prove Theorem 8.2 by composing the extractors in Theorem 8.1 with the deterministic
rank extractors for varieties constructed in Section 6.

Proof of Theorem 8.2. Choose sufficiently large d′ = Θ(nd2 log n). Let Ext′ : Fq → {0, 1}m be an
explicit (ε/2)-extractor for (1, 1, d′) algebraic sources over Fq as constructed in Theorem 8.1, where

m ≥ log q − 2 log log p−O(log(d′/ε)) = log q − 2 log log p−O(log(nd/ε)).

Let φ : An
Fq

→ A1
Fq

be an explicit (n, 1, d) deterministic rank extractor for varieties defined by a

polynomial F ∈ Fq[X1, . . . , Xn] as constructed in Corollary 6.5, where degF = O(nd log n). View
φ as a morphism An

Fq
→ A1

Fq
over Fq.

Let Ext := Ext′ ◦φ|Fn
q
: Fn

q → {0, 1}m. We claim that Ext is an ε-extractor for (n, 1, d) algebraic
sources over Fq. To see this, consider an irreducibly minimal (n, 1, d) algebraic sourceD = f(UC(Fq))
arising from an absolutely irreducible affine curve C ⊆ An

Fq
and a polynomial map f : Ar

Fq
→ An

Fq

defined by polynomials f1, . . . , fn. Let d1 = degC and d2 = max{deg f1, . . . ,deg fn}. We have
d1d2 ≤ d by Definition 1.2. Then φ ◦ f : Ar

Fq
→ A1

Fq
is defined by the polynomial F (f1, . . . , fn) of

degree O(d2 ·nd log n). Note that degC ·degF (f1, . . . , fn) = O(d1d2 ·nd log n) = O(nd2 log n) ≤ d′.
So φ(D) = (φ ◦ f)(UC(Fq)) satisfies the third condition of (1, 1, d′) algebraic sources over Fq in
Definition 1.2 with respect to C and φ ◦ f .

We have dim f(C) = 1 by Definition 1.2 and deg f(C) ≤ d1d2 ≤ d by Lemma 4.12. As φ is
an (n, 1, d) deterministic rank extractor for varieties, we have dim (φ ◦ f)(C) = 1. It follows that
φ(D) = (φ ◦ f)(UC(Fq)) is a (1, 1, d′) algebraic source over Fq. As Ext

′ is an explicit (ε/2)-extractor
for (1, 1, d′) algebraic sources over Fq, Ext(D) = Ext′(φ(D)) is (ε/2)-close to Um.

The above proof shows that Ext is an (ε/2)-extractor for irreducibly minimal (n, 1, d) algebraic
sources over Fq. By Corollary 7.9, every (n, 1, d) algebraic sources over Fq is (ε/2)-close to a convex
combination of irreducibly minimal (n, 1, d) algebraic sources over Fq. So Ext is an ε-extractor for
(n, 1, d) algebraic sources over Fq.

9 Deterministic Extractors for (n, k, d) Algebraic Sources

In this section, we provide our main construction of deterministic extractors for (n, k, d) algebraic
sources. Recall that in Section 8 we considered the case of (n, 1, d) algebraic sources.

We start with the case of (n, n, d) algebraic sources, and we follow our general proof technique
as laid out in Section 1.3: the first step of the construction is applying our extractor from Section 8
to obtain a short output, which is then, in the second step, used as a seed for a seeded extractor for
sources with high min-entropy (note that even though we have more structure in our source, since
we are anyway applying a seeded extractor we might as well use an off-the-shelf construction which
works for any source with high min-entropy). Proving that this indeed works requires analyzing the
conditional distribution of an (n, n, d) algebraic source under fixing of a subset of the coordinates,
which is done in Lemma 9.1. This construction is presented and analyzed in Section 9.1.

In order to remove the assumption that k = n and handle general (n, k, d) algebraic sources, we
apply a rank extractor which, roughly speaking, condenses a k-dimensional source in an ambient
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n-dimensional space to a k-dimensional source in an ambient k-dimensional space, and this enables
us to use the extractor from Section 9.1. As discussed at the end of Section 9.1, this can be done
using the deterministic rank extractor of Section 6, but it would have an undesirable effect on
the field size. Thus, we opt to use a linear seeded rank extractor (as defined in Section 5), where
the seed of the rank extractor is chosen pseudorandomly using our extractor for (n, 1, d) algebraic
sources from Section 8.

To summarize, in our composition theorem (Theorem 9.6), we start by applying the extractor
for (n, 1, d) algebraic sources from Section 8 in order to select a seed for the seeded linear rank
extractor from Section 5, we apply the resulting linear map to the source, and then we use the
extractor for full-rank sources from Section 9.1 to obtain the final output. The details of this
construction appear in Section 9.2.

9.1 Deterministic Extractors for Full-Rank Algebraic Sources

The following lemma states that irreducible (n, n, d) algebraic sources have a nice recursive struc-
ture. The statement can be extended to general (n, k, d) algebraic sources in some way, but this
special case is simpler and suffices for us.

Lemma 9.1. Suppose q ≥ max{20d5, 2(n + 1)d2/ε2}, where ε ∈ (0, 1). Let D = (D1, D2) be an
irreducible (n, n, d) algebraic source over Fq, where D1 and D2 are distributions over Fn1

q and Fn2
q

respectively and n1 + n2 = n. Then the following holds:

1. D1 is an irreducible (n1, n1, d) algebraic source over Fq.

2. With probability at least 1−ε over b ∼ D1, the distribution D2|D1=b is ε-close to an (n2, n2, d)
algebraic source over Fq.

Proof. Suppose D = f(UV (Fq)) where V ⊆ Ar
Fq

and f : Ar
Fq

→ An
Fq

are as in Definition 1.2. So V is

absolutely irreducible and dim f(V ) = n. And f is defined by polynomials f1, . . . , fn ∈ Lh1,...,hs,Fq ,
where h1, . . . , hs ∈ Fq[X1, . . . , Xr], deg h1 ≥ · · · ≥ deg hs, and deg V ·

∏n
i=1 deg hi ≤ d.

Let φ1 : V → An1
Fq

be the morphism defined by f1, . . . , fn1 , and similarly, let φ2 : V → An2
Fq

be

the morphism defined by fn1+1, . . . , fn. Then f |V = (φ1, φ2) and Di = φi(UV (Fq)) for i = 1, 2.

We know V is absolutely irreducible. And the dimension of φ1(V ) must be n1 since otherwise
dim f(V ) cannot reach n. By definition, D1 is an irreducible (n1, n1, d) algebraic source over Fq.
This proves the first claim.

As ε2 ≥ 2(n+1)d2/q and q ≥ 20d5, by Lemma 7.7, with probability at least 1− ε over b ∼ D1,
the distribution D2|D1=b is ε-close to an (n2, n2, d) algebraic source over Fq, proving the second
claim.

We also need the following explicit construction of seeded extractors given by Goldreich and
Wigderson [GW97], which is based on expander graphs.

Theorem 9.2 ([GW97]). For n ∈ N, 0 ≤ ∆ ≤ n and ε > 0, there exists an explicit seeded
ε-extractor Ext : {0, 1}n × {0, 1}ℓ → {0, 1}n for (n−∆)-sources with ℓ = O(∆ + log(1/ε)).

We now provide our construction for full-rank algebraic sources. Our construction follows the
general paradigm mentioned in Section 1.3: we first apply our extractor from Theorem 8.1 to obtain
a short output, which is then used as a seed to the extractor from Theorem 9.2. Proving that this
“randomness recycling” technique works in this setting requires Lemma 9.1.
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Theorem 9.3 (Extractor for (n, n, d) algebraic sources). Let n, d ∈ N+ and ε ∈ (0, 1/2]. Suppose
q ≥ (nd/ε)c0, where c0 > 0 is a large enough absolute constant. Then there exists an explicit
ε-extractor Ext : Fq → {0, 1}m for (n, n, d) algebraic sources over Fq such that m ≥ n log q −
2 log log p−O(log(d/ε)).

Proof. If n = 1, then the statement holds by Theorem 8.1. So assume n > 1. By Corollary 7.9,
every (n, n, d) algebraic source over Fq is (ε/2)-close to an irreducible (n, n, d) algebraic source
over Fq. So it suffices to construct an explicit (ε/2)-extractor Ext for irreducible (n, n, d) algebraic
sources over Fq with the claimed output length.

Let ε′ = ε/10. We construct Ext as follows.

1. Let m1 = ⌈(n − 1) log q⌉ and ∆ = log d + 3. Let Ext1 : Fn−1
q × {0, 1}ℓ → {0, 1}m1 be an

explicit seeded ε′-extractor for k-sources, where k = m1 −∆ ≤ (n − 1) log q − log d − 2 and
ℓ = O(∆ + log(1/ε)). This can be done by using Theorem 9.2 to construct an ε′-extractor
Ext′1 : {0, 1}m1 × {0, 1}ℓ → {0, 1}m1 for k-sources and then composing it with an injection
Fn−1
q ↪→ {0, 1}m1 .

2. Let Ext2 : Fq → {0, 1}m2 be an explicit ε′-extractor for (1, 1, d) algebraic sources over Fq such
that m2 ≥ log q− 2 log log p−O(log(d/ε)). Moreover, we assume the constant c0 > 0 is large
enough so that m2 ≥ ℓ = O(log(d/ε)). Such an extractor can be constructed by Theorem 8.1.

3. The map Ext takes (x1, x2) ∈ Fn−1
q × Fq and feeds x2 to Ext2. Let y = (y1, y2) be the output

of Ext2, where y1 ∈ {0, 1}ℓ. (This is possible as m2 ≥ ℓ.) Then Ext outputs (Ext1(x1, y1), y2).

Ext outputs m := m1+m2− ℓ bits. Plugging in the values of m1,m2, ℓ. We see that the output
length of Ext is as claimed.

Let D be an irreducibe (n, n, d) algebraic sources over Fq. Write D = (D1, D2) where D1 is
distributed over Fn−1

q and D2 is distributed over Fq.
By Lemma 9.1, with probability at least 1−ε′ over x1 ∼ D1, the distribution D2|D1=x1 is ε

′-close
to a (1, 1, d) algebraic source over Fq. As Ext2 is an ε′-extractor for (1, 1, d) algebraic sources over
Fq, we see that with probability at least 1−ε′ over x1 ∼ D1, it holds that Ext2(D2)|D1=x1 =2ε′ Um2 .
By Lemma 2.2,

(D1,Ext2(D2)) =3ε′ D1 × Um2 .

By Lemma 9.1, D1 is an (n − 1, n − 1, d) algebraic source over Fq. By Lemma 7.10 and the fact
that k ≤ (n− 1) log q − log d− 2, the distribution D1 is ε′-close to a k-source D′

1. So

(D1,Ext2(D2)) =4ε′ D
′
1 × Um2 . (16)

By the definition of Ext, (16) implies

Ext(D) =4ε′ Ext1(D
′
1 × Uℓ)× Um2−ℓ. (17)

As Ext1 is a seeded ε′-extractor for k-sources, we see

Ext1(D
′
1 × Uℓ) =ε′ Um1 . (18)

It follows from (17) and (18) that Ext(D) =5ε′ Um1 × Um2−ℓ = Um. As 5ε′ = ε/2, we see that Ext
is an (ε/2)-extractor for irreducible (n, n, d) algebraic sources over Fq, and hence an ε-extractor for
(n, n, d) algebraic sources over Fq.
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One can remove the full-rank assumption and construct an extractor for (n, k, d) algebraic
sources over Fq by composing the extractor in Theorem 9.3 with the deterministic rank extractor for
varieties in Section 6. This argument was used by Dvir, Gabizon and Wigderson [DGW09], except
that they considered polynomial sources only and used a different construction of deterministic rank
extractors. The downside of this argument, however, is that such a deterministic rank extractor is
necessarily nonlinear. In particular, our rank extractor uses polynomials of degree at least poly(n),
and so does the one in [DGW09]. Composing with such a rank extractor increases the degree of
each polynomial in the polynomial map by at least a poly(n) factor. The resulting field size q would
then depend at least polynomially on nk, or nn if k = Θ(n), assuming that we want to extract
about k log q bits.

In the next subsection, we show how to remove the full-rank assumption more efficiently using
a linear seeded rank extractor for varieties.

9.2 Removing the Full-Rank Assumption

We now remove the full-rank assumption in Theorem 9.3 without significantly increasing the re-
quired field size. This is done by extending an argument in [GRS06, GR08].

Lemma 9.4 ([GRS06, Lemma 2.6]). Let D = (D1, D2) be a joint distribution over a finite product
set A×B. Suppose D is ε-close to UA×D2. Then for all y ∈ supp(D1), the conditional distribution
D2|D1=y is ε′-close to D2, where ε

′ = 2ε · |A|.

We also need the following lemma.

Lemma 9.5. Suppose q ≥ max{20d5, 2(k + 1)d2/ε2}, where ε ∈ (0, 1). Let D = f(UV (Fq)) be an
irreducible (n, k, d) algebraic source over Fq arising from an affine variety V ⊆ Ar

Fq
and a polynomial

map f : Ar
Fq

→ An
Fq

as in Definition 1.2. Let π : An
Fq

→ Ak−1
Fq

be a linear map over Fq such that

dim (π ◦ f)(V ) = k−1. Then with probability at least 1−ε over b ∼ π(D), the distribution D|π(D)=b

is ε-close to an (n, 1, d) algebraic source over Fq.

Proof. The proof is similar to that of Lemma 7.7, although we are not able to derive the statement
directly from Lemma 7.7 for technical reasons.

By definition, V is absolutely irreducible, and f is defined by polynomials f1, . . . , fn ∈
Lh1,...,hs,Fq , where h1, . . . , hs ∈ Fq[X1, . . . , Xr], deg h1 ≥ · · · ≥ deg hs, and deg V ·

∏k
i=1 deg hi ≤ d.

Append a coordinate Yu of An
Fq

for some u ∈ [n] to the output of π to obtain a linear map

π′ : An
Fq

→ Ak
Fq

such that dim (π′ ◦ f)(V ) = k. This is possible by Lemma 4.3.

Let φ = (π′ ◦ f)|V : V → Ak
Fq
. Then φ is dominant. We can write φ = (φ1, φ2) where

φ1 : V → Ak−1
Fq

equals (π ◦ f)|V and φ2 : V → A1
Fq

is defined by the polynomial fu. As π is a linear
map over Fq and the set Lh1,...,hs,Fq is closed under taking linear combinations over Fq, we know φ
is defined by polynomials in Lh1,...,hs,Fq .

Let δ = Pra∼UV (Fq)
[dimφ−1(φ(a)) ̸= dimV − k]. We first bound δ. By the effective fiber

dimension theorem (Corollary 4.11), there exists a polynomial P ∈ Fq[X1, . . . , Xr] of degree at

most k ·deg V ·
∏k

i=1 deg hi ≤ kd that does not vanish identically on VFq
such that for every a ∈ VFq

satisfying P (a) ̸= 0, the fiber φ−1(φ(a)) is equidimensional of dimension dimV − k. Let B be the
set of a ∈ V (Fq) such that dimφ−1(φ(a)) ̸= dimV − k. Then B ⊆ VFq

∩ V (P ) ∩ Fr
q. By Bézout’s
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inequality (Lemma 4.2) and Lemma 4.5, we have

|B| ≤ deg V · degP · qdimV−1 ≤ kd2qdimV−1.

Therefore,

δ =
|B|

|V (Fq)|
≤ kd2qdimV−1

qdimV /2
= 2kd2/q,

where we use the fact |V (Fq)| ≥ qdimV /2 that follows from Theorem 4.6. So ε ≥ (2(k+1)d2/q)1/2 ≥
(2d2/q + δ)1/2.

For b ∈ Fk−1
q , let Vb = φ−1

1 (b) and let V ′
b be the union of the irreducible components Z of Vb such

that Z is absolutely irreducible of dimension dimV − (k − 1) and dimφ2(Z) = 1. By Lemma 7.6,
with probability at least 1− ε over b ∼ φ1(UV (Fq)) = π(D), it holds that

|Vb(Fq) \ V ′
b (Fq)| ≤ ε · |Vb(Fq)|. (19)

Fix b such that (19) holds. Note that D|π(D)=b = f(UVb(Fq)). By (19) and Lemma 7.3, the
distributions f(UVb(Fq)) and f(UV ′

b (Fq)) are ε-close. So it suffices to verify that f(UV ′
b (Fq)) is an

(n, 1, d) algebraic source over Fq.
The set V ′

b (Fq) is nonempty as |V ′
b (Fq)| ≥ (1 − ε)|Vb(Fq)| > 0. By definition, every irreducible

component Z of V ′
b is absolutely irreducible of dimension dimV −(k−1) and satisfies dimφ2(Z) = 1.

This also implies that dim f(Z) ≥ 1 for every irreducible component Z of V ′
b as φ2 is defined by

fu and hence its output is part of that of f |V . So the distribution f(UV ′
b (Fq)) satisfies the first two

conditions of (n, 1, d) algebraic sources in Definition 1.2.
We now verify the third condition in Definition 1.2. As in the proof of Lemma 7.7, by Gaussian

elimination, we can find integers 1 ≤ j1 < · · · < jt ≤ n, where 0 ≤ t ≤ k − 1, and polynomials
g1, . . . , gt ∈ Fq[X1, . . . , Xr] such that Vb = V ∩ V (g1, . . . , gt), and each gi can be written as a linear
combination

gi = ci,jihji + ci,ji+1hji+1 + · · ·+ ci,shs + ci

with ci,j , ci ∈ Fq and ci,ji ̸= 0. Bézout’s inequality (Lemma 4.2) then gives

deg Vb ≤ deg V ·
t∏

i=1

deg gi = deg V ·
t∏

i=1

deg hji . (20)

Let {ĵ1, . . . , ĵs−t} = [s] \ {j1, . . . , jt}, where ĵ1 < · · · < ĵs−t. As g1, . . . , gt vanish identically on Vb,
adding to each fi a multiple of gj for j ∈ [t] does not change fi|Vb

. In particular, for i ∈ [n], we can

eliminate the dependence of fi on hj1 , . . . , hjt and find f̃i ∈ Lhĵ1
,...,hĵs−t

,Fq such that f̃i|Vb
= fi|Vb

.

Then the morphism f |Vb
: Vb → An

Fq
is defined by the polynomials f̃1, . . . , f̃n. And

deg V ′
b · deg hĵ1 ≤ deg Vb · deg hĵ1

(20)

≤ deg V ·

(
t∏

i=1

deg hji

)
· deg hĵ1 ≤ deg V ·

k∏
i=1

deg hi ≤ d.

So the third condition in Definition 1.2 is also satisfied (with respect to the polynomials f̃i). This
shows that f(UV ′

b (Fq)) is an (n, 1, d) algebraic source over Fq, as desired.
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The following theorem shows how to compose all the ingredients in our construction: an ex-
tractor Ext1 for (n, 1, d) algebraic sources, an extractor Ext2 for full-rank algebraic sources, and a
linear seeded rank extractor φ, in order to obtain extractors for (n, k, d) algebraic sources. The
construction uses Ext1 in order to select the seed for φ, applies φ on the input, and then applies
Ext2 on the resulting “condensed” source.

Theorem 9.6 (Composition of extractors). Let n ≥ k > 1 be integers. Let ε, ε′ ∈ (0, 1). Suppose
we are given the following objects:

• an ε-extractor Ext1 : Fn
q → {0, 1}m1 for (n, 1, d) algebraic sources over Fq,

• an ε-extractor Ext2 : Fk−1
q → {0, 1}m2 for (k − 1, k − 1, d) algebraic sources over Fq, and

• an (n, k − 1, k, ε′) linear seeded rank extractor (φy)y∈{0,1}ℓ for varieties over Fq (see Defini-
tion 5.1) such that ℓ ≤ m1 and each φy is defined by linear polynomials over Fq.

Write Ext1 = (Ext′1,Ext
′′
1), where Ext′1 and Ext′′1 output the first ℓ bits and the last m1−ℓ bits of Ext1

respectively. Assume q ≥ max{20d5, 2(k+1)d2/ε2}. Then the map Ext : Fn
q → {0, 1}m1×{0, 1}m2 =

{0, 1}m1+m2 defined by
Ext(x) := (Ext1(x),Ext2(φExt′1(x)

(x)))

is a (6ε · 2ℓ + 4ε+ ε′)-extractor for (n, k, d) algebraic sources over Fq.

Towards the proof of Theorem 9.6, we start with the following lemma.

Lemma 9.7. Use the notations and assumptions in Theorem 9.6. Let D be an irreducible (n, k, d)
algebraic source over Fq arising from an affine variety V ⊆ Ar

Fq
and a polynomial map f : Ar

Fq
→

An
Fq

as in Definition 1.2. Let y ∈ supp(Ext′1(D)). Assume dimφy(f(V )) = k − 1. Then

(Ext′′1(D),Ext2(φy(D)))|Ext′1(D)=y =3ε·2ℓ+ε Um1+m2−ℓ.

Proof. By Lemma 9.5, with probability at least 1 − ε over b ∼ φy(D), the distribution D|φy(D)=b

is ε-close to an (n, 1, d) algebraic source D′
b over Fq. Fix b ∈ supp(φy(D)) such that this happens,

i.e.,
D|φy(D)=b =ε D

′
b. (21)

As Ext1 is an ε-extractor for (n, 1, d) algebraic sources over Fq, we have

Ext1(D
′
b) =ε Um1 . (22)

Combining (21) and (22), we conclude that with probability at least 1− ε over b ∼ φy(D),

Ext1(D)|φy(D)=b =2ε Um1 .

By Lemma 2.2, this implies

(Ext′1(D),Ext′′1(D), φy(D)) = (Ext1(D), φy(D)) =3ε Um1 × φy(D).

Therefore,

(Ext′1(D),Ext′′1(D),Ext2(φy(D))) =3ε Um1 × Ext2(φy(D)) = Uℓ × Um1−ℓ × Ext2(φy(D)).
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By Lemma 9.4,

(Ext′′1(D),Ext2(φy(D))|Ext′1(D)=y =6ε·2ℓ Um1−ℓ × Ext2(φy(D)). (23)

By assumption, V is irreducible and dimφy(f(V )) ≥ k − 1. As φy is a linear map over Fq and the
polynomials that define f are in Lh1,...,hs,Fq , which is closed under taking linear combinations over
Fq, we see that φy(D) = (φy ◦ f)(UV (Fq)) is a (k − 1, k − 1, d) algebraic source over Fq. As Ext2 is
an ε-extractor for (k − 1, k − 1, d) algebraic source over Fq, we have

Ext2(φy(D)) =ε Um2 . (24)

Combining (23) and (24) yields

(Ext′′1(D),Ext2(φy(D))|Ext′1(D)=y =6ε·2ℓ+ε Um1+m2−ℓ

as desired.

Proof of Theorem 9.6. Let D be an irreducible (n, k, d) algebraic source over Fq arising from an

affine variety V ⊆ Ar
Fq

and a polynomial map f : Ar
Fq

→ An
Fq

as in Definition 1.2. Then dim f(V ) ≥
k. Let T be the set of y ∈ {0, 1}ℓ such that dimφy(f(V )) ≥ k−1. As (φy)y∈{0,1}ℓ is an (n, k−1, k, ε′)
linear seeded rank extractor, we have

Pr
y∼Uℓ

[y ∈ T ] ≥ 1− ε′. (25)

As D is an (n, k, d) algebraic source and hence an (n, 1, d) algebraic source over Fq, and Ext1 is
an ε-extractor for (n, 1, d) algebraic source over Fq, we have Ext1(D) =ε Um1 . So Ext′1(D) =ε Uℓ.
Combining this with (25) yields

Pr
y∼Ext′1(D)

[y ∈ T ] ≥ 1− ε− ε′. (26)

By Lemma 9.7, we have

(Ext′′1(D),Ext2(φy(D)))|Ext′1(D)=y =6ε·2ℓ+ε Um1+m2−ℓ for all y ∈ supp(Ext′1(D)) ∩ T. (27)

By Lemma 2.2, (26) and (27) together yield

Ext(D) = (Ext′1(D),Ext′′1(D),Ext2(φExt′1(D)(D))) =6ε·2ℓ+2ε+ε′ Ext
′
1(D)× Um1+m2−ℓ.

Using the fact Ext′1(D) =ε Uℓ again, we obtain

Ext(D) =6ε·2ℓ+3ε+ε′ Um1+m2 .

The above proof shows that Ext is a (6ε ·2ℓ+3ε+ ε′)-extractor for irreducible (n, k, d) algebraic
sources over Fq. By Lemma 7.4, every (n, k, d) algebraic source over Fq is ε-close to a convex
combination of irreducible (n, k, d) algebraic sources over Fq. So Ext is a (6ε ·2ℓ+4ε+ ε′)-extractor
for (n, k, d) algebraic sources over Fq.
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Putting it together. We now instantiate the objects in Theorem 9.6 and prove Theorem 1.

Proof of Theorem 1. If k = 0, the theorem holds trivially, and we may even use an extractor with
an empty output. If k = 1, the theorem follows from Theorem 8.2. So assume k > 1.

Let ℓ = ⌈log(2n2/ε)⌉. Construct an explicit linear (n, k − 1, k − 1, ε0) seeded rank extractor
(φy)y∈{0,1}ℓ for varieties with ε0 = (k−1)(n−k+1)/2ℓ ≤ ε/2 using the construction in Lemma 5.2

(see also Corollary 5.4). This is possible as |F×
q | = q − 1 ≥ max{n, 2ℓ}. By definition, (φy)y∈{0,1}ℓ

is also a linear (n, k − 1, k, ε0) seeded rank extractor for varieties.

Let ε1 = ε/2
6·2ℓ+4

. Construct an explicit ε1-extractor Ext1 : Fn
q → {0, 1}m1 for (n, 1, d) algebraic

sources over Fq using Theorem 8.2 such that

m1 ≥ log q − 2 log log p−O(log(nd/ε1)) = log q − 2 log log p−O(log(nd/ε)).

We may assume m1 ≥ ℓ as q ≥ (nd/ε)c where c > 0 is a sufficiently large constant. Write
Ext1 = (Ext′1,Ext

′′
1), where Ext′1 and Ext′′1 output the first ℓ bits and the last m1 − ℓ bits of Ext1

respectively.
Finally, construct an explicit ε1-extractor Ext2 : Fk−1

q → {0, 1}m2 for (k − 1, k − 1, d) algebraic
sources over Fq using Theorem 9.3 such that

m2 ≥ (k − 1) log q − 2 log log p−O(log(d/ε1)) = (k − 1) log q − 2 log log p−O(log(nd/ε)).

The choice of ε0 and ε1 guarantees that 6ε1 · 2ℓ + 4ε1 + ε0 ≤ ε. By Theorem 9.6, the map
Ext : Fn

q → {0, 1}m1+m2 defined by Ext(x) := (Ext1(x),Ext2(φExt′1(x)
(x))) is an ε-extractor for

(n, k, d) algebraic sources over Fq, whose output length is

m1 +m2 ≥ k log q − 4 log log p−O(log(nd/ε))

as desired.

Remark. If d = 1, an (n, k, d) algebraic source over Fq is simply an affine source over Fq. In this
case, our output length in Theorem 1 is k log q − O(log log p + log(n/ε)), which is slightly better
than the output length (k − 1) log q in [GR08], This is due to a more careful analysis that we use.
Namely, we use the fact that a linear seeded rank extractor is strong in the sense that most seeds
are good. This allows us to include the seed in the output, which yields the improved output length.
We remark that the analysis of [GR08] can be easily modified to achieve such an improvement too.
Finally, when d = 1, an (k − 1, k − 1, d) algebraic source is already the uniform distribution, as
observed in [GR08]. So one can simply use the identity map Fk−1

q → Fk−1
q as Ext2 and get a slightly

better parameter m2 = (k − 1) log q instead of m2 = (k − 1) log q − 2 log log p−O(log(n/ε)).

10 Affine Extractors with Exponentially Small Error for
Quasipolynomially Large Fields

In this section, we construct affine extractors with exponentially small error, over prime fields of
size q = nO(log log(n)) and any characteristic. Our construction is in fact identical to the extractor of
Bourgain, Dvir and Leeman [BDL16], but our analysis is slightly improved. Specifically, Bourgain,
Dvir and Leeman constructed an affine extractor over prime fields Fq where q = nO(log logn) is a
so-called “typical” prime. Our construction works over any prime finite field of the same size.

Recall that “log” denotes logarithms in base 2. We use “ln” in this section to denote natural
logarithms.
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Definition 10.1 (Divisor counting function). For positive integer n ≥ 1, let ω(n) count the number
of distinct prime factors of n, not counting multiplicity.

Bourgain, Dvir and Leeman use average-case bounds on ω(q − 1) for a “typical” prime q. For
our purposes we need the following worst-case upper bound on ω(n).

Lemma 10.2 ([Rob83], Theorem 13). Let n ≥ 26 be an integer. Then

ω(n) ≤ lnn

ln lnn− 1.1714

The following proposition replaces the use of [BDL16] by finding a set of degrees d1, . . . , dn with
useful properties for the construction.

Proposition 10.3. Let q be a prime number. Fix ε > 0 . Then, if q ≥ n
2
ε
log log(n), there exists

an efficient deterministic algorithm that, in time polynomial in n, finds n integers d1 < d2 < · · · <
dn ∈ N such that LCM(d1, . . . , dn) ≤ qε and each di is coprime to q − 1.

Notice that these properties of d1, . . . , dn are precisely those needed for the affine extractor for
[BDL16].

Proof. Suppose that q = nC log log(n) for a constant C > 0 to be specified later. Let r = ⌈log n⌉. Let
p1, . . . , pr be the least r primes that are coprime to q − 1. Then p1, . . . , pr all belong to the first
ω(q − 1) + r primes.

By Lemma 10.2, we know that for large enough n,

ω(q − 1) ≤ ln q

ln ln q − 1.1714
≤ 1.01

log q

log log q
.

(Recall that we use log for logarithm in base 2). Therefore, p1, . . . , pr are among the first m primes,
where

m ≤ ⌈log n⌉+ 1.01 · log(q)

log log(q)

≤ 1 + log(n) +
1.01C log(n) · log log(n)

log(C) + log log(n) + log log log(n)

≤ 1 + log(n) + 1.01C log(n) ≤ 2C log(n)

The last two inequalities are for large enough n and C.
Next, we would like to bound the magnitude of these m primes. By the Chebyshev bound on

the prime counting function (see, e.g., Theorem 5.4 in [Sho09]), [t] contains at least t ln(2)
2 ln(t) primes.

Therefore, taking t = C ′ log(n) · log log(n), where C ′ = 10C, we get that for large enough n, [t]
contains at least m primes.

Let D = p1p2 · · · pr. Notice that D has 2⌈logn⌉ ≥ n distinct divisors, each of which is coprime to
q − 1. These distinct divisors are the d1, . . . , dn in the theorem statement. In particular, we have
LCM(d1, . . . , dn) ≤ D.

We can upper-bound D as prr. We want to choose q large enough that D ≤ qε. Since pr ≤ t
and r ≤ log(n) + 1, we obtain

D ≤ (C ′ log(n) · log log(n))log(n)+1
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≤ nlog(C
′ log(n)·log log(n))+1

= nlog log(n)+log log log(n)+log(C′)+1

Moreover, qε = nCε·log log(n). For large enough n, it follows that choosing C ≥ 2
ε is enough to

imply that D ≤ qε.
Finally, observe that indeed d1, . . . , dn can be found in time which is polynomial in n, by checking

all integers up to t = O(log n log log n) for primality and co-primality with q−1 in order to compute
p1, . . . , pr, and then multiplying all non-empty subsets of p1, . . . , pr to output d1, . . . , dn

The rest of the proof continues in a very similar manner to the proof of Theorem 3.1 of [BDL16].
For completeness, we provide the main details of the construction and its proof. The following
lemma from [BDL16] gives a convenient form for representing affine subspaces.

Lemma 10.4 ([BDL16], Lemma 3.4). Let V ⊆ Fn be an affine subspace of dimension k. Then,
there is an affine map ℓ : Fk → Fn whose image is V such that there exist k indices 1 ≤ j1 < j2 <
· · · < jk ≤ n, such that

1. For all i < j1, ℓi(t) is a constant in Fq.

2. For all i ∈ [k], ℓji(t) = ti.

3. For every i > 1 and j < ji, ℓj(t) is an affine function which depends only on t1, . . . , ti−1.

We also need the following exponential sum estimate due to Deligne (see [Del74, MK93,

BDL16]). For b ∈ Fn
q , define χb : Fn

q → C to be the additive character χb(x) = ω
⟨b,x⟩
q where

ωq = e2πi/q is a primitive q-th root of unity. Note that this definition is valid even for n = 1.

Theorem 10.5. Let f be an n-variate polynomial over Fq of degree d. Let fd denote the degree-d
homogeneous component of f and suppose that fd is smooth, that is, the only common zero of the
n polynomials {∂fd/∂xi}i∈[n] is the all-zero vector. Then for every non-zero b ∈ Fq,∣∣∣∣∣∣

∑
x∈Fn

q

χb(f(x))

∣∣∣∣∣∣ ≤ (d− 1)nqn/2.

LetA ∈ Fm×n be a matrix where everym columns are linearly independent (e.g., a Vandermonde
matrix). Let d1 < d2 < · · · < dn be as in Proposition 10.3 and define the function E : Fn → Fm by

E(x1, . . . , xn) = A ·

x
d1
1
...
xdnn

 . (28)

Theorem 10.6. For every 0 < β < 1/2, there exists a constant C such that the following holds:
Let k ≤ n be integers and F be a prime field of size q ≥ nC log logn. Then for m = βk the function
E : Fn → Fm as in (28) is an affine extractor for min-entropy k with error q−Ω(k). That is, for
every affine subspace V ⊆ Fn of dimension k, if XV is a random variable uniformly distributed on
V , E(XV ) is q

−Ω(k)-close to uniform on Fk.
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Proof. As we mentioned earlier, our proof is identical to the proof of Theorem 3.1 of [BDL16]. We
provide the details for completeness.

Let V ⊆ Fn be an affine subspace of dimension k and let X be a random variable obtained by
picking a random element from V and applying the extractor E above. Let ℓ be an affine map
whose image is V as in Lemma 10.4.

By Lemma 3.5, it is enough to give an upper bound on |E[χc(X)]| for every non-zero c ∈ Fn
q .

Denote b = cTA, and observe that

χc(E(x)) = ω
b1x

d1
1 +···+bnx

dn
n

q = χ1(b1x
d1
1 + · · ·+ bnqx

dn
n ).

Hence,

|E[χc(X)]| =

∣∣∣∣∣∣q−k
∑
t∈Fk

q

χ1(b1ℓ1(t)
d1 + · · ·+ bnℓn(t)

dn)

∣∣∣∣∣∣ . (29)

Denote D = LCM(d1, . . . , dn) ≤ qε and Di = D/dji for every i ∈ [k]. By performing the

change of variables ti = sDi
i (which is invertible since d1, . . . , dn are all coprime to q− 1), we define

ℓ̃j = ℓj(s
D1
1 , . . . , sDk

k ), so that (29) becomes

|E[χc(X)]| =

∣∣∣∣∣∣q−k
∑
s∈Fk

q

χ1(b1ℓ̃1(s)
d1 + · · ·+ bnℓ̃n(s)

dn)

∣∣∣∣∣∣ , (30)

and the functions ℓ̃1, . . . , ℓ̃k have the following properties (as in Claim 3.5 in [Bou07]):

1. For every i ∈ [k], ℓ̃
dji
ji

= sDi .

2. For all j ̸∈ {j1, . . . , jk}, ℓ̃
dj
j is a polynomial in s1, . . . , sk of degree strictly less than D.

This implies that we can write (30) as

|E[χc(X)]| =

∣∣∣∣∣∣q−k
∑
s∈Fk

q

χ1(bj1s
D
1 + · · ·+ bjks

D
k + g(s))

∣∣∣∣∣∣ , (31)

where g is a polynomial of degree strictly less than D.
Since c is non-zero and every m columns of A are linearly independent, the vector b = cTA has

at most m − 1 < k/2 zero coordinates. Hence, at least k/2 of the values bj1 , . . . , bjk are non-zero.
Suppose without loss of generality that these are the first k/2 coordinates. Thus, we estimate (31)
as

|E[χc(X)]|

≤ q−k/2
∑

sk/2+1,...,sk∈Fq

∣∣∣∣∣∣q−k/2
∑

s1,...,sk/2∈Fq

χ1(bj1s
D
1 + · · ·+ bjk/2s

D
k/2 + gsk/2+1,...,sk(s1, . . . , sk/2))

∣∣∣∣∣∣
with bj1 , . . . , bjk/2 non-zero and deg(gsk/2+1,...,sk) < d for every sk/2+1, . . . , sk. That is, for every
choice of sk/2+1, . . . , sk, the degree D homogeneous component of the polynomial

bj1s
D
1 + · · ·+ bjk/2s

D
k/2 + gsk/2+1,...,sk(s1, . . . , sk/2)

57



is smooth. By Theorem 10.5,

|E[χc(X)]| ≤ q−k/2 ·Dk/2 · qk/4 ≤ q(−1/4+ε/2)k.

Setting ε = 1/4− β/2 > 0 and applying Lemma 3.5, the statistical distance of X from the uniform
distribution on Fm

q is at most

q(−1/4+ε/2)k · qm/2 ≤ q−(ε/2)k,

which concludes the proof.

11 Explicit Noether Normalization for Affine Varieties and Affine
Algebras

The Noether normalization lemma [Noe26, Nag62] is a cornerstone of commutative algebra and
algebraic geometry. It states that any finitely generated commutative algebra over a field F, or
what we call an affine algebra over F, is not too far from a polynomial ring, in the sense that
it is always a finitely generated module over a subring that is isomorphic to a polynomial ring
F[Y1, . . . , Yk]. The geometric interpretation of this statement is that any affine variety V over F is a
“branched covering” of an affine space Ak

F, or more precisely, V admits a surjective finite morphism
φV : V → Ak

F.
When F is an infinite field (or more generally, a sufficiently large field), the polynomials that

define the finite morphism φV may be chosen to be linear polynomials (see, e.g., Lemma 4.8).
In general, φV can always be chosen to be defined by polynomials of sufficiently large degrees.
In fact, counting arguments show that given the variety, a “random” polynomial map defined by
polynomials of sufficiently large degrees would almost surely yield such a finite morphism. See
[BE19] for a quantitative analysis. However, it is not known how to completely “derandomize”
such counting arguments.

The first proof of the Noether normalization lemma for general affine algebras over arbitrary
fields was given by Nagata [Nag53, Nag56, Nag62]. This proof has the interesting feature that it
actually constructs a “universal” polynomial map φ : An

F → Ak
F that works for all low-degree affine

varieties. Namely, for any low-degree affine variety V ⊆ An
F of dimension k, the restriction of φ

to V gives a finite morphism φ|V : V → Ak
F. The existence of such a polynomial map φ that is

independent of V appears to be stronger and more intriguing than the existence of finite morphisms
V → Ak

F. In fact, we do not know how to prove the existence of φ via a counting argument.
While the polynomial map φ constructed by Nagata gives a uniform way of constructing finite

morphisms, a drawback is that the degrees of the polynomials that define φ can get extremely high
due to the iterative nature of the construction. More specifically, the map φ is constructed as a
composition of polynomial maps φi : Ai+1

F → Ai
F, i = n−1, . . . , k such that their restrictions φi|Vi+1

are finite morphisms, where we inductively define Vn = V and Vi = φi(Vi+1) for i = n−1, . . . , k. The
problem is that composing with a polynomial map can increase the degree of a variety exponentially
(see Lemma 4.12). The degree bound for the polynomials defining φ is at least doubly exponential
for this reason.

Thus, it is a natural question to ask if there is a more efficient construction of the universal
polynomial map φ. In this section, we show that the DKL construction in Section 6 is indeed such
a construction, which always works when |F| ≥ n.
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The construction of φ. We first recall the DKL construction in Section 6. Let F be a field.
Let n, d ∈ N+ and m, k ∈ [n]. Let d1, . . . , dn be n pairwise coprime integers greater than d.
Let M = (ci,j)i∈[m],j∈[n] ∈ Fm×n be a k-regular matrix, i.e., any k distinct columns of M are
linearly independent. Let φ = φ(M) : An

F → Am
F be the polynomial map defined by f1, . . . , fm ∈

F[X1, . . . , Xn], where fi :=
∑n

j=1 ci,jX
dj
j . In other words, φ is given by

φ : (a1, . . . , an) 7→

 n∑
j=1

c1,ja
dj
j , . . . ,

n∑
j=1

cm,ja
dj
j

 .

The main results of this subsection are the following theorems.

Theorem 11.1 (Explicit Noether normalization for affine varieties). Let V be an affine variety of
dimension at most k and degree at most d over a field F. Then φ|V : V → Am

F is a finite morphism.

Theorem 11.1 translates into the following algebraic statement, Theorem 11.2, which gives
an explicit Noether normalization lemma for affine algebras, i.e., finitely generated commutative
algebras over a field.

Recall that the Krull dimension of a commutative ring A is the supremum of the lengths of all
chains of prime ideals in A. If V is an affine variety over a field F, then the Krull dimension of its
coordinate ring F[V ] is just the dimension of V .

Theorem 11.2 (Explicit Noether normalization for affine algebras). Suppose A is a commutative
F-algebra generated by a1, . . . , an ∈ A such that the Krull dimension of A is at most k. Let the
ideal I of F[X1, . . . , Xn] be the ideal of all polynomial relations satisfied by a1, . . . , an. Also suppose
the degree of the affine variety V (I) ⊆ An is at most d. Then A is a finitely generated module
over its subring S = F[f1(a), . . . , fm(a)], where f1, . . . , fm are the polynomials defining φ and
a = (a1, . . . , an).

The fact that A is a finitely generated module over S implies that the Krull dimension of
S equals that of A. In the case where the Krull dimension of A is k and k = m, this means
f1(a), . . . , fm(a) are algebraically independent over F, and hence S is isomorphic to a polynomial
ring F[Y1, . . . , Ym] via fi(a) 7→ Yi.

Theorem 11.1 and Theorem 11.2 are proved in Appendix D. The proof is inspired by and closely
follows a geometric proof sketched in [KRS96, Remark 1].

Smaller fields. While k × n MDS matrices are generally not known over small finite fields Fq,
which prevents us from choosingm = k over Fq, it may still be possible to choose largerm for which
(explicit) k-regular m×n matrices over Fq exist, and this would yield a finite morphism φ|V : V →
Am
Fq

by Theorem 11.1. As compositions of finite morphisms are finite [AM69, Corollary 5.4], by

replacing n withm and V with V ′ = φ(V ), we reduce the problem of constructing a finite morphism
on V ⊆ An

Fq
to constructing that on V ′ ⊆ Am

Fq
, where V ′ has the same dimension as V but lives in

a possibly much smaller affine space Am
Fq
. The degree of V ′, however, may be significantly larger

than that of V . See Lemma 4.12 for a general upper bound on the degree.
For example, while we do not know the existence of k × n MDS matrices over small finite

fields Fq, one can still use a BCH-code-like construction to obtain an m× n k-regular matrix with

59



m = O(k logq n), which can be much smaller than n if k ≪ n. Applying the resulting map φ
reduces the dimension of the ambient space from n to m.

However, when q is really small and k is close to n, it may be possible that one can only choose
m = n − 1 and hence only reduce the dimension of the ambient space by one at each step. This
is essentially the same method used in Nagata’s construction. Currently, all constructions of the
universal polynomial map φ : An

Fq
→ Ak

Fq
with k = dimV that we know over a constant-size field

Fq use polynomials of degree at least doubly exponential in min{k, n−k} due to the blow-up of the
degree of the variety. It is an interesting question to ask if there exist constructions with a better
degree bound over constant-size fields.

Appendices

A Noether Normalization via Linear Maps

In this section, we prove the quantitative Noether normalization lemma (Lemma 4.8) and its variant,
Lemma 4.9. We also explain how to remove the condition q > 2(k + 1)d2 in [CM06, Theorem 7.1]
and obtain Theorem 4.6.

Although Lemma 4.8 concerns only affine varieties, we need to deal with projective varieties
that “complete” affine varieties.

Projective spaces and projective varieties. Fix F to be an algebraically closed field. The
projective n-space Pn over F, as a set, is the quotient set

(
Fn+1 \ {0}

)
/ ∼, where 0 is the origin

(0, . . . , 0) and ∼ is the equivalence relation defined by scaling, i.e., u ∼ v if u = cv for some c ∈ F×.
We use (n+ 1)-tuples (x0, . . . , xn) to represent points in Pn.

We equip Pn with the Zariski topology over F, where a subset is closed if it is the set of common
zeros of a set of homogeneous polynomials in F[X0, X1, . . . , Xn]. Call X0, . . . , Xn the homogeneous
coordinates of Pn. A closed subset V ⊆ Pn is said to be a projective variety over F.

The projective space Pn is covered by open subsets Ui := {(x0, . . . , xn) ∈ Pn : xi ̸= 0}, i =
0, . . . , n. Each Ui can be identified with the affine space An via the map

(x0, . . . , xn) 7→
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

And the subspace topology of Ui induced from that of Pn is precisely the Zariski topology of An if
we identify Ui with An this way.

While the sets Ui are symmetric, we often fix i = 0 and regard An as an open subset of Pn

by identifying it with U0 ⊆ Pn as above. Its complement Pn \ An may be identified with Pn−1

(for n > 0) via the map (x0, . . . , xn) 7→ (x1, . . . , xn), and is called the hyperplane at infinity. The
projective closure of an affine variety V ⊆ An, which we denote by Vcl, is the smallest projective
subvariety of Pn that contains V as a subset. And we have Vcl ∩ An = V .

The notions of irreducibility, irreducible components, degree, and dimension all extend to pro-
jective varieties. We have deg Vcl = deg V and dimVcl = dimV for an affine variety V ⊆ An, i.e.,
taking the projective closure preserves the degree and the dimension.

The notions of morphisms and finite morphisms also extend to projective varieties. See, e.g.,
[Sha94]. If φ : V → V ′ is a finite morphism between projective varieties, and φ|φ−1(U) : φ

−1(U) → U
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is a morphism between affine varieties for some open subset U of V ′, then φ|φ−1(U) is also a finite
morphism ([Sha94, §I.5.3, Theorem 5]).

The following lemma gives a way of finding a finite morphism V → Pk defined by linear poly-
nomials.

Lemma A.1 ([Sha94, §I.5.3, Theorem 7]). Let V ⊆ Pn be a projective variety over F. Suppose
ℓ0, . . . , ℓk ∈ F[X0, . . . , Xn] are (homogeneous) linear polynomials that have no common zero on V .
Then they define a finite morphism V → Pk that sends a ∈ V to (ℓ0(a), . . . , ℓk(a)).

Thus, the problem of finding a finite morphism from a projective variety V to Pk reduces to
finding k+1 linear polynomials that have no common zero on V . We use Chow forms to show the
existence of such linear polynomials.

Lemma A.2. Let V ⊆ Pn be an irreducible projective variety over F of dimension k and degree
d. There exists a nonzero polynomial RV ∈ F[Y0,0, . . . , Yk,n] such that for all c0,0, . . . , ck,n ∈ F,
the linear polynomials ℓ0, . . . , ℓk defined by ℓi :=

∑n
j=0 ci,jXj have no common zero on V iff

RV (c0,0, . . . , ck,n) ̸= 0. Moreover, RV is multihomogeneous of degree (d, . . . , d) in

{Y0,0, . . . , Y0,n}, . . . , {Yk,0, . . . , Yk,n},

i.e., it is homogeneous of degree d in each of the k + 1 group of variables.

The polynomial RV is unique up to a scalar and is called the Chow form of V . See, e.g.,
[KPS01].

We also need the following lemma on the existence of a non-root of a polynomial.

Lemma A.3. Suppose P ∈ F[X1,1, . . . , Xk,n] is a polynomial such that for all i ∈ [k], the (total)
degree of P in the variables Xi,1, . . . , Xi,n is at most d. Let S be a finite subset of F of size greater
than d. Then P has a non-root in Skn.

Proof. We assign the values ci,1, . . . , ci,n ∈ S to the k groups of variables {Xi,1, . . . , Xi,n} for
i = 1, . . . , k one by one, such that at each step, the polynomial P remain nonzero. This is obviously
true at the beginning. Now at the beginning of the i-th step, assume that P remains nonzero after
the partial assignment Xi′,j = ci′,j for i′ < i and j ∈ [n], and call this polynomial Pi. View Pi

as a polynomial in the variables Xi+1,1, . . . , Xk,n over the ring F[Xi,1, . . . , Xi,n]. Then as Pi ̸= 0,
it has a term whose coefficient Q is a nonzero polynomial of degree at most d in Xi,1, . . . , Xi,n.
By the DeMillo–Lipton–Schwartz–Zippel lemma [Sch80, Zip79, DL78], there exist ci,1, . . . , ci,n ∈ S
such that Q(ci,1, . . . , ci,n) ̸= 0, and hence Pi remain nonzero after the assignment Xi,j = ci,j ,
j = 1, . . . , n. Continuing this process, we see that P has a non-root in Skn.

We are now ready to prove Lemma 4.8. For convenience, we first restate this lemma.

Lemma 4.8 (Noether normalization). Let V ⊆ An
F be an affine variety of dimension k and degree

d over a field F. Suppose S is a finite subset of F of size greater than d. Then there exists a
polynomial map φ : An

F → Ak
F defined by linear polynomials ℓi =

∑n
j=1 ci,jXi ∈ F[X1, . . . , Xn] with

coefficients ci,1, . . . , ci,n ∈ S for i = 1, . . . , k such that φ|V : V → Ak
F is a finite morphism.

Proof. We may assume that F is algebraically closed. This is because finiteness of morphisms over
F follows from that over F by a descent argument (see Appendix D).
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Suppose V1, . . . , Vs are the irreducible components of V , where dimVt = kt ≤ k and deg Vt = dt
for t ∈ [s]. Identify An with the open subset U0 = {(x0, . . . , xn) ∈ Pn : x0 ̸= 0} of Pn, and let
H = Pn \ U0 be the hyperplane at infinity.

For t ∈ [s], let
Pt = R(Vt)cl ∈ F[Y0,0, . . . , Ykt,n] ⊆ F[Y0,0, . . . , Yk,n].

That is, Pt is the Chow form of the projective closure of Vt. Then Pt is multihomogeneous of degree
(dt, . . . , dt). For t ∈ [s], let P̂t ∈ F[Y1,1, . . . , Yn,n] be the polynomial obtained from Pt by assigning

(Y0,0, Y0,1, . . . , Y0,n) = (1, 0, . . . , 0) and Y1,0 = · · · = Yk,0 = 0. Then each P̂t remains a nonzero

polynomial. In fact, P̂t may be viewed as the Chow form of (Vt)cl ∩H as a projective subvariety of
H ∼= Pn−1 of dimension k − 1. (If dimVt = 0, then (Vt)cl ∩H = ∅ and P̂t is a nonzero constant.)

Suppose c1,1, . . . , ck,n ∈ S satisfy P̂t(c0,0, . . . , cn,k) ̸= 0 for all t ∈ [s]. We claim the linear forms
ℓi =

∑n
j=1 ci,jXi define a finite morphism V → Ak. To see this, note that by the property of

Chow forms, the polynomials ℓ0 := X0 and ℓ1, . . . , ℓk have no common zero on Vcl =
⋃s

t=1(Vt)cl.
So by Lemma A.1, ℓ0, . . . , ℓk define a finite morphism φ : Vcl → Pk. Let U ′

0 be the open subset
{(x0, . . . , xk) ∈ Pk : x0 ̸= 0} of Pk. As ℓ0 = X0, we have ℓ0(x) ̸= 0 for x ̸∈ U0 and hence
φ(H)∩U ′

0 = ∅. So φ−1(U ′
0) = U0∩Vcl = V . As φ is a finite morphism, so is φ|V : V → U ′

0. Finally,
note that φ|V is exactly the morphism V → Ak defined by ℓ1, . . . , ℓk if we identify U0 with Ak.

So it remains to prove the existence of c1,1, . . . , ck,n ∈ S such that P̂t(c1,1, . . . , ck,n) ̸= 0 for t ∈ [s].

This follows by applying Lemma A.3 to P :=
∏s

t=1 P̂t and noting that P is multihomogeneous of
degree (d, . . . , d).

One can prove an analogue of Lemma 4.8 for projective varieties with a similar, and in fact,
simpler proof. But we only need Lemma 4.8 for affine varieties in this paper.

Proof of Lemma 4.9. The proof is the same as that of Lemma 4.8, except that we consider V1 and
V2 simultaneously and apply the union bound when picking each linear polynomial ℓi.

The effective Lang–Weil bound. Lemma A.3 above can also be used to prove the effective
Lang–Weil bound (Theorem 4.6). We restate the theorem below for convenience.

Theorem 4.6 (Effective Lang–Weil bound). Let V ⊆ An
Fq

be an absolutely irreducible affine variety
over Fq of dimension k and degree d. Then

|V (Fq)− qk| < (d− 1)(d− 2)qk−1/2 + 5d13/3qk−1.

In particular, we have |V (Fq)| ≥ qk/2 if q ≥ 20d5.

This bound was proved as [CM06, Theorem 7.1] with an extra condition that q > 2(k + 1)d2.
We first explain why this condition was assumed in [CM06].

To prove [CM06, Theorem 7.1], Cafure and Matera first proved an effective Lang–Weil bound
when V is an absolutely irreducible hypersurface in An

Fq
without the condition q > 2(k + 1)d2 (see

[CM06, Theorem 5.2]). To extend it to the general case, they further argued that if q > 2(k+1)d2,
then there exists an affine linear map π : An

Fq
→ Ak+1

Fq
over Fq, defined by polynomials

∑n
j=1 λijXj+

γi ∈ Fq[X1, . . . , Xn], i = 1, . . . , k + 1, that induces a birational equivalence π|V : V 99K H between
V and a hypersurface H ⊆ Ak+1

Fq
. Such a birational equivalence may be thought of as an “almost

isomorphism” between V and H. In particular, π|V is an “almost bijection” between the set of
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rational points of V and that of H, i.e., there exist dense open subsets U ⊆ V and U ′ ⊆ H such
that the rational points in U are mapped bijectively to those in U ′ under π|V . Furthermore, the
sets (V \U)(Fq) and (H \U ′)(Fq) are small. The effective Lang–Weil bound for affine varieties then
easily follows from the bound for hypersurfaces.

To see intuitively why such a morphism π should exist, note that the quantitative Noether
normalization lemma (Lemma 4.8) already guarantees the existence of a morphism V → Ak

Fq
that

is finite (and hence surjective). However, this map is finite-to-one instead of (almost) one-to-one.
But note that a morphism An

Fq
→ Ak+1

Fq
has one extra coordinate in the output, and we can use

this extra coordinate to distinguish the finitely many preimages of a general point b ∈ Ak
Fq
. Thus,

we should expect that a general affine linear map π : An
Fq

→ Ak+1
Fq

defines an “almost isomorphism”
from V to a hypersurface. Indeed, Cafure and Matera used the Chow form and the discriminant
to prove the existence of such a morphism π. Specifically, they showed that there exists a nonzero
polynomial G in the variables (Λi,j)i∈[k+1],j∈[n] and (Γi)i∈[k+1] over Fq such that π is a desired
morphism whenever the coefficients (λi,j)i∈[k+1],j∈[n] and (γi)i∈[k+1] of the polynomials that define
π form a non-root of G [CM06, Theorem 6.1]. Moreover, G has the property that its degree in
Λi,1, . . . ,Λi,n,Γi is at most 2d2 for i ∈ [k+1] (see the proof of [CM06, Theorem 6.1]). In particular,
its total degree is at most 2(k + 1)d2.

Next, Cafure and Matera used essentially the DeMillo–Lipton–Schwartz–Zippel lemma [Sch80,

Zip79, DL78] and the fact that degG ≤ 2(k+1)d2 to argue that a non-root of G exists in F(k+1)(n+1)
q ,

and this is where they need the condition q > 2(k + 1)d2 [CM06, Corollary 6.2].
However, we can take advantage of the fact that the degree of G in each group of variables

Λi,1, . . . ,Λi,n,Γi is at most 2d2 for i ∈ [k+1], and use Lemma A.3 instead. This immediately allows
us to relax the condition q > 2(k + 1)d2 to q > 2d2.

Finally, observe that when q ≤ 2d2, the bound |V (Fq)− qk| < (d− 1)(d− 2)qk−1/2 +5d13/3qk−1

follows from the trivial lower bound |V (Fq)| ≥ 0 and the upper bound |V (Fq)| ≤ dqk in Lemma 4.5.
So we can remove the condition about q completely.

B The Effective Fiber Dimension Theorem

We prove the general form of the effective fiber dimension theorem (Theorem 4.10) in this section.
The base field F is assumed to be an algebraically closed field.

Generalized Perron Theorem. We need the following result proved by Jelonek [Jel05], gener-
alizing a classical result of Perron [Per27] that bounds the degree of annihilating polynomials for
algebraic dependent polynomials.

Theorem B.1 (Generalized Perron Theorem [Jel05, Theorem 3.3]). Suppose f : An → Am is a
polynomial map defined by polynomials f1, . . . , fm ∈ F[X1, . . . , Xn], where deg fi = di > 0. Let
V ⊆ An be an irreducible affine variety over F, and let W = f(V ) ⊆ Am. Suppose dimV =
dimW = m−1. Then there exists a nonzero polynomial Q ∈ F[Y1, . . . , Ym] such that Q(f1, . . . , fm)
vanishes identically on V and deg(Q(Y d1

1 , . . . , Y dm
m )) ≤ deg V ·

∏m
i=1 di.

Proof of the effective fiber dimension theorem. Now we are ready to prove Theorem 4.10.
For convenience, we first restate the theorem.
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Theorem 4.10 (Effective fiber dimension theorem – general form). Let V ⊆ An be an irreducible
affine variety of dimension k over an algebraically closed field F. Let h1, . . . , hs ∈ F[X1, . . . , Xn] with
deg h1 ≥ · · · ≥ deg hs. Let f1, . . . , fm ∈ Lh1,...,hs,F, which define a polynomial map f : An → Am.

Let k′ = dim f(V ).
Let j1, . . . , jk′ ∈ [m] such that the morphism f ′ : V → Ak′ defined by fj1 , . . . , fjk′ is dominant,

which exist by Lemma 4.3. Let Vf ′ ⊆ An
F(Y1,...,Yk′ )

be the generic fiber of f ′ (see the definition

after Theorem 4.4). Finally, let ℓ1, . . . , ℓk ∈ F[X1, . . . , Xn] be linear polynomials such that both the
morphism π : V → Ak defined by ℓ1, . . . , ℓk and the morphism τ : Vf ′ → Ak−k′

F(Y1,...,Yk′ )
defined by

ℓ1, . . . , ℓk−k′ are finite.
Let t ∈ {0, . . . , k − k′}. Then there exists a polynomial P ∈ F[X1, . . . , Xn] of degree at most

k′ · deg V ·
∏k′

i=1 deg hi that does not vanish identically on V such that the following holds: Let
φ : An → At+m be the polynomial map defined by ℓ1, . . . , ℓt, f1, . . . , fm. Then for every a ∈ V
satisfying P (a) ̸= 0, the fiber φ|−1

V (φ(a)) is equidimensional of dimension k − k′ − t.

One special form of the effective fiber dimension theorem with V = W = Ak was essentially
proved in [GSS19] using Perron’s bound [Per27]. Our proof of Theorem 4.10 can be seen as a
generalization of this proof. It can also be seen as an effective version of a standard proof of the
fiber dimension theorem (see [Vak22, Proof of Theorem 12.4.1]).

Towards proving Theorem 4.10, we first prove the following lemma using the Generalized Perron
Theorem.

Lemma B.2. Use the notations in Theorem 4.10 and assume that deg hi > 0 for i ∈ [s]. Suppose
dimV = dim f(V ) = k = m. Also suppose at least u polynomials among f1, . . . , fk are linear. Let
g ∈ F[X1, . . . , Xn] such that deg g > 0. Then there exists a nonzero polynomial Q ∈ F[Y1, . . . , Yk+1]
satisfying the following:

1. Q(f1, . . . , fk, g) ∈ F[X1, . . . , Xn] vanishes identically on V .

2. View Q as a univariate polynomial in Yk+1 over F[Y1, . . . , Yk] and let Q∗ ∈ F[Y1, . . . , Yk] be
its leading coefficient. Then the degree of Q∗(f1, . . . , fk) ∈ F[X1, . . . , Xn] is at most deg V ·
deg g ·

∏min{k−u,s}
i=1 deg hi.

Proof. Note that changing the coordinate system of Am = Ak via an invertible linear transformation
does not affect the statement. So by permuting the polynomials fi, we may assume the linear
polynomials fi appear at the end of the list f1, . . . , fk. By applying Gaussian elimination, we may
further assume fi ∈ Lhi,...,hs,F (i.e., fi does not depend on h1, . . . , hi−1) for i = 1, . . . ,min{k−u, s},
and deg(fi) ≤ 1 for i = min{k − u, s} + 1, . . . , k. In particular, we have deg fi ≤ deg hi for
i = 1, . . . ,min{k − u, s}.

Let ψ be the polynomial map An → Ak+1 defined by f1, . . . , fk, g. The dimension of ψ(V ) is k
since it cannot exceed k = dimV and the dimension of f(V ) is already k. As dim f(V ) = k, we
necessarily have deg fi > 0 for i ∈ [k]. Applying the Generalized Perron Theorem (Theorem B.1)
to ψ, we see that there exists a nonzero polynomial Q ∈ F[Y1, . . . , Yk+1] such that Q(f1, . . . , fk, g)
vanishes identically on V and

deg
(
Q
(
Y deg f1
1 , . . . , Y deg fk

k , Y deg g
k+1

))
≤ deg V · deg g ·

k∏
i=1

deg fi ≤ deg V · deg g ·
min{k−u,s}∏

i=1

deg hi.
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Let Q∗ ∈ F[Y1, . . . , Yk] be the leading term of Q in Yk+1. Then

deg(Q∗(f1, . . . , fk)) ≤ deg
(
Q∗
(
Y deg f1
1 , . . . , Y deg fk

k

))
≤ deg

(
Q
(
Y deg f1
1 , . . . , Y deg fk

k , Y deg g
k+1

))
≤ deg V · deg g ·

min{k−u,s}∏
i=1

deg hi.

To see that the first inequality holds, note that the monomials of Q∗
(
Y deg f1
1 , . . . , Y deg fk

k

)
corre-

spond one-to-one to the monomials of Q∗(Y1, . . . , Yk), and substituting fi for Y
deg fi
i within each

monomial does not increase its degree.

We use Lemma B.2 to prove Theorem 4.10.

Proof of Theorem 4.10. We may assume deg hi > 0 for i ∈ [s] by removing all polynomials hi that
are constants. Let ψ : An → Ak be the polynomial map defined by ℓ1, . . . , ℓk−k′ , fj1 , . . . , fjk′ . As

τ is finite, we have dimψ(V ) = dimV = k. And we have dimφ(V ) = t + k′ as otherwise the
dimension of ψ(V ) cannot achieve k.

Consider i ∈ {k − k′ + 1, . . . , k}. Applying Lemma B.2 to ψ : An → Ak (which is defined by
ℓ1, . . . , ℓk−k′ , fj1 , . . . , fjk′ ∈ Lh1,...,hs,ℓ1,...,ℓk−k′ ,F) with g = ℓi and u = k− k′, we see that there exists
a nonzero polynomial Qi ∈ F[Y1, . . . , Yk+1] satisfying the following:

1. Qi(ℓ1, . . . , ℓk−k′ , fj1 , . . . , fjk′ , ℓi) vanishes identically on V .

2. Let Q∗
i ∈ F[Y1, . . . , Yk] be the leading coefficient of Qi in Yk+1. Then the degree of

Q∗
i (ℓ1, . . . , ℓk−k′ , fj1 , . . . , fjk′ ) ∈ F[X1, . . . , Xn] is at most deg V ·

∏k′

i=1 deg hi.

For g ∈ F[X1, . . . , Xn], let ḡ := g + I(V ) ∈ F[V ]. Then ℓ̄1, . . . , ℓ̄k−k′ , f̄j1 , . . . , f̄jk′ are al-
gebraically independent over F as ψ|V : V → Ak is dominant. In particular, we have
Q∗

i (ℓ̄1, . . . , ℓ̄k−k′ , f̄j1 , . . . , f̄jk′ ) ̸= 0, or equivalently, Q∗
i (ℓ1, . . . , ℓk−k′ , fj1 , . . . , fjk′ ) does not vanish

on V .
The Zariski closure of the image of V under the polynomial map An → Ak+1 defined

by ℓ1, . . . , ℓk−k′ , fj1 , . . . , fjk′ , ℓi is a hypersurface of Ak+1 defined by a single polynomial, which
we may assume to be Qi. So Qi generates the ideal of the polynomial relations satisfied by
ℓ̄1, . . . , ℓ̄k−k′ , f̄j1 , . . . , f̄jk′ , ℓ̄i.

Let K := F(f̄j1 , . . . , f̄jk′ ), which can be viewed as the function field of the target Ak′ of the
dominant morphism f ′. By the finiteness of τ , the coordinate ring K[Vf ′ ] of Vf ′ is a finitely
generated module over K[ℓ̄1, . . . , ℓ̄k−k′ ]. So ℓ̄i is integral over K[ℓ̄1, . . . , ℓ̄k−k′ ], i.e., it is a root of a
monic polynomial over the ring K[ℓ̄1, . . . , ℓ̄k−k′ ] [AM69, Proposition 5.1]. It follows that the leading
coefficient Q∗

i of Qi does not depend on Y1, . . . , Yk−k′ , although it may depend on Yk−k′+1, . . . , Yk
since f̄j1 , . . . , f̄jk′ are invertible in K. So Q∗

i ∈ F[Yk−k′+1, . . . , Yk].

Let P =
∏k

i=k−k′+1Q
∗
i (fj1 , . . . , fjk′ ). Then P does not vanish identically on V and has degree

at most k′ · deg V ·
∏k′

i=1 deg hi.
Consider a ∈ V such that P (a) ̸= 0, and let Z be an irreducible component of φ|−1

V (φ(a)). Note

that dimZ ≥ dimV − dimφ(V ) = dimV − (t + k′) = k − k′ − t by the first claim in the fiber
dimension theorem (Theorem 4.4).

65



It remains to prove that dimZ ≤ k − k′ − t. For g ∈ F[X1, . . . , Xn], let ¯̄g := g + I(Z) ∈ F[Z].
Note that ¯̄ℓi = ℓi(a) ∈ F for i ∈ [t] since ℓi−ℓi(a) vanishes identically on φ|−1

V (φ(a)) ⊇ Z. Similarly,

we have ¯̄fji = fji(a) ∈ F for i ∈ [k′] since fji − fji(a) vanishes identically on φ|−1
V (φ(a)) ⊇ Z.

For i ∈ {k − k′ + 1, . . . , k}, as Qi(ℓ1, . . . , ℓk−k′ , fj1 , . . . , fjk′ , ℓi) vanishes identically on V ⊇ Z,

we see that ¯̄ℓi is a root of the univariate polynomial

Qi(
¯̄ℓ1, . . . ,

¯̄ℓk−k′ ,
¯̄fj1 , . . . ,

¯̄fjk′ , Yk+1)

=Qi(ℓ1(a), . . . , ℓt(a),
¯̄ℓt+1, . . . ,

¯̄ℓk−k′ , fj1(a), . . . , fjk′ (a), Yk+1) ∈ (F[¯̄ℓt+1, . . . ,
¯̄ℓk−k′ ])[Yk+1].

Its leading coefficient is Q∗
i (fj1(a), . . . , fjk′ (a)), which is a nonzero element in F since P (a) ̸= 0.

So ¯̄ℓi is a root of a monic polynomial over F[¯̄ℓt+1, . . . ,
¯̄ℓk−k′ ] for i ∈ {k − k′ + 1, . . . , k}. It follows

that F(¯̄ℓ1, . . . , ¯̄ℓk) is a finite extension of F(¯̄ℓt+1, . . . ,
¯̄ℓk−k′). On the other hand, as the morphism

π : V → Ak defined by ℓ1, . . . , ℓk is finite and Z is an affine subvariety of V , we know F[Z] is a
finitely generated module over F[¯̄ℓ1, . . . , ¯̄ℓk]. So F(Z) is a finite extension of F(¯̄ℓ1, . . . , ¯̄ℓk), and hence
also a finite extension of F(¯̄ℓt+1, . . . ,

¯̄ℓk−k′). Therefore, the trancendence degree of F(Z) over F is
at most k − k′ − t, i.e., dimZ ≤ k − k′ − t.

C Miscellanea

Absolute irreducibility. The following lemma gives alternative characterizations of absolute
irreducibility when the finite field Fq is large enough.

Lemma C.1. Let V be a nonempty affine variety over Fq of dimension k and degree d. Suppose
q ≥ 20d5. Then the following are equivalent:

(1) At least one irreducible component of V of dimension k is absolutely irreducible.

(2) |V (Fq)| ≥ qk/2.

(3) |V (Fq)| > d2qk−1.

Proof. The fact that (1) implies (2) follows from the effective Lang–Weil bound (Theorem 4.6).
And (2) implies (3) as q ≥ 20d5. Finally, to see that (3) implies (1), suppose that none of the
irreducible components of V of dimension k is absolutely irreducible. Let V ′ be the union of the
irreducible components of V of dimension k, and let V ′′ be the union of the remaining irreducible
components. Then we have |V ′(Fq)| ≤ (deg V ′)2qk−1 by Lemma 7.2 and |V ′′(Fq)| ≤ deg V ′′qk−1 by
Lemma 4.5. It follows that

|V (Fq)| ≤ |V ′(Fq)|+ |V ′′(Fq)| ≤ (deg V ′ + deg V ′′)2qk−1 = d2qk−1.

So (3) implies (1).

Lemma C.1 shows that the condition of absolute irreducibility in the definition of (n, k, d)
algebraic sources (Definition 1.2) is useful as it guarantees the existence of enough rational points.
On the other hand, even if none of the irreducible components of V is absolutely irreducible, it
may still be possible that the variety V has a substantial number of rational points, so that the
randomness extraction question is meaningful.
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Example. Let q be an odd prime power, and let a be a non-square in Fq, i.e., a ∈ F×
q \ (F×

q )
2.

Let r ≥ 2. The affine variety V = V (X2
1 − aX2

2 ) ⊆ Ar
Fq

over Fq is irreducible but not absolutely

irreducible as VFq
consists of the two hyperplanes of Ar

Fq
defined by X1 +

√
aX2 and X1 −

√
aX2

respectively. Let W = V (X1, X2) ⊆ Ar
Fq
, which is an affine subspace of codimension two and is

absolutely irreducible. Then V (Fq) =W (Fq) and hence |V (Fq)| = qr−2.

There is a general algorithm that, given an affine variety V ⊆ Ar
Fq

over Fq such that none of

the irreducible components of V of top dimension (i.e., dimension dimV ) is absolutely irreducible,
outputs an affine subvariety W of lower dimension such that W (Fq) = V (Fq) and W has an
irreducible component of top dimension that is absolutely irreducible. Namely, for every irreducible
component V0 of V of top dimension, replace V0 by the intersection of the irreducible components of
(V0)Fq

. This yields an affine variety over Fq as it is fixed by the Frobenius map over Fq. Repeating

this process, we would eventually obtain an affine subvarietyW ⊆ V such thatW (Fq) = V (Fq) and
at least one irreducible component of W of top dimension is absolutely irreducible, as required by
Definition 1.2. One can then choose the parameters k and d such that D = f(UV (Fq)) = f(UW (Fq))
is an (n, k, d) algebraic source over Fq.

However, the problem is that we do not have a good bound on degW or d. The general bound we
know on degW is doubly exponential in dimV . It seems to be an interesting question to understand
how large degW can be given other parameters such as deg V , dimV , and the dimension r of the
ambient space that contains V .

Proof of Lemma 4.12. We prove Lemma 4.12 now. First, we need the following lemma.

Lemma C.2. Let f : An → Am be a polynomial map over an algebraically closed field F. Let
V ⊆ An be an irreducible affine variety over F, and let W = f(V ) ⊆ Am. Then there exists
an affine subspace H ⊆ An of codimension dimV − dimW such that dim(H ∩ V ) = dimW and
f(H ∩ V ) =W .

Proof. Consider a general point x ∈ W and let t = dim f |−1
V (x). Then t = dimV − dimW

by the fiber dimension theorem (Theorem 4.4). Then there exists an affine subspace H ⊆ An

of codimension t such that H ∩ f |−1
V (x) ̸= ∅, dim(H ∩ f |−1

V (x)) = dim f |−1
V (x) − t = 0, and

dim(H ∩ V ) = dimV − t = dimW . (This can be shown by, e.g., taking H to be the intersection of
t general hyperplanes containing a fixed point of f |−1

V (x) and then applying Lemma 4.1.) Then

dim(f |−1
H∩V (x)) = dim(H ∩ f |−1

V (x)) = 0 = dim(H ∩ V )− dimW.

Let W ′ = f(H ∩ V ). By the fiber dimension theorem (applied to the morphism f |H∩V : H ∩ V →
W ′), we must have dimW ′ = dimW . As V is irreducible, so is W . It follows that W ′ =W .

For convenience, we restate Lemma 4.12 below before presenting its proof.

Lemma 4.12. Let V ⊆ An
F be an affine variety over a field F. Let h1, . . . , hs ∈ F[X1, . . . , Xn] with

deg h1 ≥ · · · ≥ deg hs. Let f1, . . . , fm ∈ Lh1,...,hs,F, which define a polynomial map f : An
F → Am

F .

Finally, let W = f(V ) ⊆ Am
F . Then

degW ≤ deg V ·
dimW∏
i=1

deg hi.
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Proof. By replacing V with VF, we may assume that F is algebraically closed. By considering the
irreducible components of V individually, we may assume that V is irreducible. Then W is also
irreducible. Also, noting that performing an invertible linear transformation on Am

F (and replacing
f1, . . . , fm by their linear combinations accordingly) does not change the degrees of the subvarieties
of Am

F . So by Gaussian elimination, we may assume fi ∈ Lhi,...,hs,F for i ∈ [m], where we let
Lhi,...,hs,F = F if i > s.

Next, we reduce to the case where dimV = dimW . By Lemma C.2, there exists an affine
subspace H ⊆ An

F of codimension dimV −dimW such that dim(H ∩V ) = dimW and f(H ∩ V ) =
W . Also note that deg(H ∩ V ) ≤ deg V by Bézout’s inequality (Lemma 4.2). Thus, by replacing
V with H ∩ V , we may assume dimV = dimW .

Let k = dimW . By the fiber dimension theorem (Theorem 4.4), there exists a dense open
subset U of W contained in f(V ) such that dim f |−1

V (b) = 0 for all b ∈ U . Let B = W \ U , which
is a proper subvariety of W . As W is irreducible, we have dimB < k. A general affine subspace
L ⊆ Am of codimension k then satisfies L∩B = ∅ and |L∩W | = degW . Fix such L. As L∩B = ∅.
We have L ∩W ⊆ U ⊆ f(V ). It follows that L ∩W = f(f |−1

V (L)). Moreover, as dim f |−1
V (b) = 0

for all b ∈ U and L ∩W is a finite subset of U , the set f |−1
V (L) = f |−1

V (L ∩W ) is a finite set.
Suppose L is defined by degree-1 polynomials ℓ1, . . . , ℓk. Then f−1(L) is defined by the poly-

nomials ℓ1(f1, . . . , fm), . . . , ℓk(f1, . . . , fm). By Gaussian elimination, we may assume that for each
i ∈ [k], ℓi(f1, . . . , fm) does not involve the polynomials f1, . . . , fi−1, and hence ℓi(f1, . . . , fm) ∈
Lhi,...,hs,F. In particular, we have deg ℓi(f1, . . . , fm) ≤ deg hi for i ∈ [k].

By Bézout’s inequality, we have |f |−1
V (L)| = |f−1(L) ∩ V | ≤ deg V ·

∏k
i=1 deg hi. Therefore,

deg(W ) = |L ∩W | = |f(f |−1
V (L))| ≤ |f |−1

V (L)| ≤ deg V ·
k∏

i=1

deg hi

as desired.

Proof of Lemma 8.4. We now prove Lemma 8.4, which is restated below.

Lemma 8.4. Let C0 ⊆ An be an irreducible affine curve of degree d over an algebraically closed field
F. Then there exists an F-linear field embedding τ : F(C0) ↪→ F((T )) such that for any polynomial
f ∈ F[X1, . . . , Xn] of degree d that is not constant on C0, the map τ sends f to f̃ ∈ F((T )) such
that

−deg(C0) · d ≤ ord(f̃) < 0.

Let C0 be as in Lemma 8.4. Regard the affine space An as an open subset of the projective
space Pn via (a1, . . . , an) 7→ (1, a1, . . . , an). Let C be the projective closure of C0 ⊆ An in Pn, which
is an irreducible projective curve over F whose degree in Pn equals degC0 (cf. Section A).

For a point y ∈ C, the field F(C) of rational functions on C has a subring Oy,C , called the local
ring of C at y, which consists of the rational functions that have no pole at y [LL89, Section 5]. It
has a unique maximal ideal my,C , which consists of the rational functions on C that vanishes at y.

Let π : C̃ → C be the normalization of C, which is a finite and surjective morphism from a
smooth and irreducible projective curve C̃ to C [Sha94, §II.5].

We need the following facts.

Lemma C.3 ([LL89, Section 5]). For x ∈ C̃ and y = π(x) ∈ C, there exists a field embedding
ρx : F(C) ↪→ F((T )) such that ρx(Oy,C) ⊆ F[[T ]] and ρx(my,C) ⊆ T · F[[T ]].
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In addition, the following statement holds for the maps ρx chosen in [LL89, Section 5].

Lemma C.4 ([LL89, Proposition 3]). Let x ∈ C̃ and y = π(x) ∈ C. Let f and g be linear
homogeneous polynomials nonzero on C such that g(y) ̸= 0. Then f/g restricted to C is in Oy,C ,
and ord(ρx(f/g)) ≤ degC.

Proof of Lemma 8.4. Let f ∈ F[X1, . . . , Xn] be a polynomial of degree d. Identify Xi with Yi/Y0
for i ∈ [n], where Y0, . . . , Yn are the n homogeneous coordinates of Pn. Consider arbitrary x ∈ C̃.
We first show that

ord(ρx(f)) ≥ −deg(C0) · d.

As f is a polynomial of degree d in Y1/Y0, . . . , Yn/Y0, it suffices to show that ord(ρx(Yi/Y0)) ≥
−degC0 for i ∈ [n]. Fix i ∈ [n]. Choose j ∈ {0, 1, . . . , n} such that Yj does not vanish at y. Such an
index j exists as Y0, . . . , Yn do not simultaneously vanish on Pn. By Lemma C.3 and Lemma C.4,
we have

0 ≤ ord(ρx(Yi/Yj)), ord(ρx(Y0/Yj)) ≤ degC = degC0.

Then
ord(ρx(Yi/Y0)) = ord(ρx(Yi/Yj))− ord(ρx(Y0/Yj)) ≥ −degC0,

as desired.
Now assume that f ∈ F[X1, . . . , Xn] is not constant on C0. It remains to show that there exists

x ∈ C̃ such that ord(ρx(f)) < 0. This follows from the following standard argument: Assume to
the contrary that ord(ρx(f)) ≥ 0 for all x ∈ C̃. Then f is a regular function on C̃ and hence defines
a morphism from C̃ to A1. Viewing A1 as an open subset of P1, we get a morphism φ : C̃ → P1

whose image is contained in A1. On the other hand, it is well-known that the image of a morphism
from a projective variety is closed [Sha94, §I.5.2, Theorem 2]. And as C̃ is irreducible, we know
φ(C̃) is also irreducible. The only irreducible closed subsets of P1 are single points and P1 itself.
As f is not constant on C0, we know φ(C̃) is not a single point. So φ(C̃) = P1, which contradicts
the fact φ(C̃) ⊆ A1.

Remark. The last part of the above proof can be strengthened to show that for a nonzero rational
function g on C, ∑

x∈C̃:ord(ρx(g)) ̸=0

ord(ρx(g)) = 0,

i.e., g has as many zeros as poles on C̃, counting multiplicities. This implies the existence of
x ∈ C̃ such that ord(ρx(f)) < 0 as follows: As f is not constant on C0, there exists c ∈ F such
that g := f − c is not identically zero on C0 but has at least one zero. Then g must also have
a pole on C̃, i.e., ord(ρx(g)) < 0 for some x ∈ C̃. Then as f = g + c, we have ord(ρx(f)) =
min{ord(ρx(g)), ord(ρx(c))} = ord(ρx(g)) < 0.

D Explicit Noether Normalization

We first prove Theorem 11.1 in the case where F is algebraically closed.
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Proof of Theorem 11.1 when F is algebraically closed. Assume that F is algebraically
closed. For each u ∈ N, identify Au with an open subset of Pu via (x1, . . . , xu) 7→ (1, x1, . . . , xu).
Define

Γ = {(x, y) ∈ V × Am : y = φ(x)} ⊆ An × Am ⊆ Pn × Pm.

Let Γ̃ be the (Zariski-)closure of Γ in Pn×Pm. Then Γ̃∩ (An×Am) = Γ as Γ is closed in An×Am.
Let ι : V → Γ be the morphism x 7→ (x, φ(x)), which is an isomorphism between the affine

varieties V and Γ over F. Let π1 : Γ̃ → Pn and π2 : Γ̃ → Pm be the projections from Γ̃ to the first
factor and the second factor respectively. Then π2|Γ ◦ ι = φ|V .

Claim D.1. If π−1
2 (Am) ⊆ Γ, then φ|V is a finite morphism.

To prove Claim D.1, we need a result from algebraic geometry. For a closed set Z of An ×Am,
the projection from Z to Am is an example of an affine morphism to Am, making Z an affine variety
over Am. Similarly, for a closed set Z of Pn ×Am, the projection from Z to Am is an example of a
projective morphism to Am, making Z a projective variety over Am. See [Vak22] for the definitions
of these objects with various degrees of generality. We need the following fact.

Lemma D.2. A morphism to a variety is affine and projective iff it is finite.

See [Vak22, Corollay 19.1.6]. The projectivity of π can be relaxed to properness [Gro61, Propo-
sition 4.4.2]. To shed some light on Lemma D.2, consider an affine and projective morphism from
a variety Z to A0 (i.e., a point) over F, which just means that Z is an affine and projective variety
over F. In this case, the lemma simply states that the coordinate ring F[Z] is a finite-dimensional
vector space over F. As Z is affine, the set of regular functions (i.e., functions with no poles) on Z
is F[Z]. On the other hand, it is well-known that any regular function on a connected projective
variety over F is constant. It follows that the dimension of F[Z] is indeed finite and equals the
number of connected components of Z. (In fact, Z is just a finite collection of points.) Lemma D.2
states that finiteness holds more generally for any variety as the target of the morphism.

Proof of Claim D.1. The map π2|Γ : Γ → Am is an affine morphism. Suppose π−1
2 (Am) ⊆ Γ. Then

Γ = Γ̃∩ (Pn ×Am). So π2|Γ is also a projective morphism. It follows from Lemma D.2 that π2|Γ is
finite. As ι is an isomorphism between V and Γ over F, the map φ|V = π2|Γ ◦ ι is also finite.

By Claim D.1, we may assume that π−1
2 (Am) contains a point u ∈ Γ̃ \ Γ. Let x = π1(u) ∈ Pn

and y = π2(u) ∈ Am. Note that x ̸∈ An as otherwise we would have u = (x, y) ∈ Γ̃∩(An×Am) = Γ.
See the following diagrams for an illustration.

Γ̃ Pn u x ∈ Pn \ An

Pm y ∈ Am

π1

π2

π1

π2

Claim D.3. There exist h1(T ), . . . , hn(T ) ∈ F((T )) satisfying the following conditions:

1. At least one hi(T ) has a pole, i.e., hi(T ) ̸∈ F[[T ]].

2. P (h1(T ), . . . , hn(T )) = 0 for all P ∈ I(V ).

3. fi(h1(T ), . . . , hn(T )) ∈ F[[T ]] for i ∈ [m].
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Proof. We follow the argument in [KRS96]. As Γ̃ is the closure of Γ in Pn×Pm, the point u ∈ Γ̃\Γ
cannot possibly be an isolated point of Γ̃ (i.e. a point that is an irreducible component of Γ̃). So
there exists an irreducible curve C ⊆ Γ̃ that passes through u and intersects Γ. This can be shown
by intersecting Γ̃ with general hyperplanes containing u to reduce the dimension, and then picking
an irreducible component of the intersection that contains u.

Let Ou,C be the local ring of C at u, and let mu,C be its unique maximal ideal. Then there
exists a field embedding ρ : F(C) ↪→ F((T )) such that ρ(Ou,C) ⊆ F[[T ]] and ρ(mu,C) ⊆ T ·F[[T ]], as
we have seen in the proof of Lemma 8.4 in Appendix C.

Write x = (x0, . . . , xn). As x ∈ Pn \ An. We have x0 = 0 and xj ̸= 0 for some j ∈ [n]. Let
X0, . . . , Xn be the homogeneous coordinates of Pn. Then Xj does not vanish on x, and hence not on
u either. It follows that Xi/Xj restricted to C is in Ou,C for i = 0, . . . , n. Let gi(T ) = ρ(Xi/Xj) ∈
F[[T ]] for i = 0, . . . , n. As π1(Γ) ⊆ An, the function X0 does not vanish on any point in Γ. As
C intersects Γ, we see that X0 does not vanish identically on C. So X0/Xj restricts to a nonzero
rational function on C and hence g0(T ) = ρ(X0/Xj) ̸= 0. For i ∈ [n], let hi(T ) = gj(T )/g0(T ).

Recall that g0(T ) = ρ(X0/Xj). As x0 = 0, we know X0/Xj restricted to C is in mu,C and hence
g0(T ) ∈ T ·F[[T ]]. And gj(T ) = ρ(1) = 1 by definition. So hj(T ) = gj(T )/g0(T ) has a pole, proving
the first condition.

Consider arbitrary P ∈ I(V ). Let P̃ (X0, . . . , Xn) = X
deg(P )
0 P (X1/X0, . . . , Xn/X0) be the

homogenization of P . We know P vanishes identically on V and hence also on Γ. So P̃ vanishes
identically on its closure Γ̃, which contains the curve C. So P̃ (X0/Xj , . . . , Xn/Xj) restricted to C

is zero. It follows that P̃ (g0(T ), . . . , gn(T )) = ρ(P̃ (X0/Xj , . . . , Xn/Xj)) = 0. Therefore,

P (h1(T ), . . . , hn(T )) = P (g1(T )/g0(T ), . . . , gn(T )/g0(T )) = g0(T )
−deg(P )P̃ (g0(T ), . . . , gn(T )) = 0,

proving the second condition.
Let Y1, . . . , Ym be the coordinates of Am, which (restricted to C) are in Ou,C as u ∈ Pn × Am.

Consider arbitrary i ∈ [m]. Let Fi(X1, . . . , Xn, Yi) = fi(X1, . . . , Xn)−Yi. Let F̃i(X0, . . . , Xn, Yi) =

X
deg(fi)
0 (fi(X1/X0, . . . , Xn/X0)− Yi) be the homogenization of Fi with respect to X1, . . . , Xn. By

definition, Fi vanishes identically on Γ ⊆ An×Am and hence F̃i vanishes identically on Γ̃∩(Pn×Am).
As C∩(Pn×Am) is a subset of Γ̃∩(Pn×Am) and is dense in C, we see that F̃ (X0/Xj , . . . , Xn/Xj , Yi)

restricted to C is zero. Then F̃i(g0(T ), . . . , gn(T ), ρ(Yi)) = ρ(F̃ (X0/Xj , . . . , Xn/Xj , Yi)) = 0.
Therefore,

fi(h1(T ), . . . , hn(T ))− ρ(Yi) = Fi(h1(T ), . . . , hn(T ), ρ(Yi))

= Fi(g1(T )/g0(T ), . . . , gn(T )/g0(T ), ρ(Yi))

= g0(T )
− deg(fi)F̃i(g0(T ), . . . , gn(T ), ρ(Yi))

= 0.

So fi(h1(T ), . . . , hn(T )) = ρ(Yi) ∈ ρ(Ou,C) ⊆ F[[T ]], proving the third condition.

However, Lemma 6.8 states that Claim D.3 cannot be true. So we obtain a contradiction,
implying that the assumption that π−1

2 (Am) contains a point u ∈ Γ̃ \Γ is false. This concludes the
proof of Theorem 11.1 when F is algebraically closed.
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Proof of Theorem 11.1 for arbitrary F. Theorem 11.1 for an aritrary field F follows from the
special case where F is algebraically closed and the fact that finiteness descends under a “faithfully
flat base change.” We explain this now.

In the following, all rings and algebras are commutative with unity.
Let R be a ring. For R-modules M and M ′, their tensor product M ⊗RM

′ over R is defined to
be the R-module generated by the set of elements {a⊗ b : a ∈M, b ∈M ′} subject to the R-bilinear
relations a⊗ b+ a′ ⊗ b = (a+ a′)⊗ b, a⊗ b+ a⊗ b′ = a⊗ (b+ b′), and c(a⊗ b) = (ca)⊗ b = a⊗ (cb)
for a, a′ ∈ M , b, b′ ∈ M ′, and c ∈ R. For an R-algebra S and an R-module M , the tensor product
M ⊗R S is an S-module.

An R-module is free if it has a generating set that is linearly independent over R. We need the
following fact about nonzero free modules (which holds more generally for faithfully flat modules
[Vak22, Definition 25.5.1]).

Lemma D.4. Let F be a nonzero free R-module. Let M → M ′ be an R-module homomorphism.
Then M →M ′ is surjective iff the induced map M ⊗R F →M ′ ⊗R F is surjective.

Lemma D.4 implies the following fact about descent of finiteness.

Lemma D.5. Let S be an R-algebra that is also a nonzero free R-module. Let M be an R-module.
Suppose M ⊗R S is a finitely generated S-module. Then M is a finitely generated R-module.

Proof. Let {r1, . . . , rn} be a finite set of generators of M ⊗R S. By definition, we may write each ri
as a finite sum ri =

∑
j∈Ii mij ⊗ sij over an index set Ii with mij ∈M and sij ∈ S. Form the free

R-module F with the basis {eij : i ∈ [n], j ∈ Ii}. Consider the R-module homomorphism F → M
sending eij to mij . The induced map F ⊗R S → M ⊗R S is surjective as

∑
j∈Ii eij ⊗ sij is sent to

ri for i ∈ [n]. By Lemma D.4, the map F → M is also surjective. So M is generated by the finite
set {mij : i ∈ [n], j ∈ Ii} as an R-module.

Now we are ready to prove Theorem 11.1 in full generality.

Proof of Theorem 11.1. Let φ̃ = φ|V : V → Am
F , which is associated with the F-algebra homomor-

phism φ̃♯ : F[Y1, . . . , Ym] → F[V ]. Let R = φ̃♯(F[Y1, . . . , Ym]) ⊆ F[V ]. By definition, we want to
show that F[V ] is a finitely generated module over R.

For an affine variety W over F, the coordinate ring of WF may be identified with F[W ]⊗F F. As
we already know that Theorem 11.1 holds over algebraically closed fields by the discussion above,
applying Theorem 11.1 to the morphism VF → Am

F defined by f1, . . . , fm shows that F[V ]⊗F F is a

finitely generated module over R⊗F F.
The ring R⊗FF is a free module over R since F is free over F and tensor products commute with

direct sums. By Lemma D.5, to show that F[V ] is a finitely generated module over R, it suffices to
show that F[V ]⊗R (R⊗F F) is a finitely generated module over R⊗F F.

Finally, we have the canonical isomorphisms

F[V ]⊗R (R⊗F F) ∼= (F[V ]⊗R R)⊗F F ∼= F[V ]⊗F F.

See [AM69, Proposition 2.14]. So F[V ]⊗R (R⊗F F) is a finitely generated module over R⊗F F, as
desired.
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Proof of Theorem 11.2. Theorem 11.2 is almost equivalent to Theorem 11.1 except that the
coordinate ring of an affine variety is always reduced (i.e., it has no nonzero nilpotent elements)
while the algebra A in Theorem 11.2 may be non-reduced. Nevertheless, we can easily derive
Theorem 11.2 from Theorem 11.1 as follows.

Let R′ be an algebra over a ring R. We say R′ is integral over R if every b ∈ R′ is a root of a
monic polynomial Xt + at−1X

t−1 + · · · + a0 with the coefficients ai ∈ R. We need the following
fact, which states that integrality is equivalent to finiteness for finitely generated algebras.

Lemma D.6 ([AM69, Proposition 5.1 and Corollary 5.2]). A finitely generated algebra over a ring
R is a finitely generated module over R iff it is integral over R.

Now we give the proof of Theorem 11.2.

Proof of Theorem 11.2. If I is radical, then I = I(V (I)) and hence A ∼= F[V (I)]. In this case, the
theorem follows from Theorem 11.1 and the definition of finite morphisms.

Now consider general I. Identify A with F[X1, . . . , Xn]/I and let Ā = F[X1, . . . , Xn]/rad(I) =
A/nil(A), where rad(I) denotes the radical of I and nil(A) denotes the nilradical of A, i.e., the
radical of the zero ideal. As rad(I) is radical and V (rad(I)) = V (I), we see that Ā is a finitely
generated module over S by Theorem 11.1. So Ā is integral over S by Lemma D.6. Now consider
arbitrary b ∈ A. As Ā is integral over S, there exists a monic polynomial F ∈ S[X] such that the
image of F (b) in Ā is zero, or equivalently, F (b) ∈ nil(A). So F (b)N = 0 for some N ∈ N+. Then
b is a root of the monic polynomial FN . Therefore, A is integral over S and hence is a finitely
generated module over S by Lemma D.6.
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