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Abstract

Computational problems on point lattices play a central role in many areas of computer science
including integer programming, coding theory, cryptanalysis, and especially the design of secure cryp-
tosystems. In this survey, we present known results and open questions related to the complexity of the
most important of these problems, the Shortest Vector Problem (SVP).
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1 Introduction

Intuitively, a lattice is a regular ordering of points in n-dimensional space.1 Lattices are classically studied
mathematical objects, and in the last 40 years have found a large number of applications in computer
science. These include algorithms for integer programming (starting with [Len83, Kan87]; see [Dad12]
for a more recent reference), coding theory (especially coding in the Gaussian channel; see, e.g., [CS99,
Chapter 3, Section 4.1]), cryptanalysis (e.g., attacks on knapsack cryptography [LO85] and low-exponent
RSA [Cop01, Bon99]), and especially in the development of lattice-based cryptography, that is, cryptosystems
whose security is based on the apparent intractability of computational problems on lattices.

Lattice-based cryptosystems have many attractive properties including being post-quantum, i.e., appar-
ently being secure even against attackers equipped with quantum computers, provable security assuming the
hardness of certain worst-case computational problems on lattices, and functionality that allows for construct-
ing exciting and exotic primitives like fully-homomorphic encryption (FHE); see [Pei16] for a survey. Because
of these properties (and more), in July 2022 the National Institute of Standards and Technology (NIST)
standardized three lattice-based cryptosystems as the culmination of their years-long post-quantum cryp-
tography standardization project [Nat22]. Furthermore, both the sole primary post-quantum key exchange
protocol (CRYSTALS Kyber) and primary digital signature protocol (CRYSTALS Dilithium) standardized
by NIST are lattice-based [ABD+17].

The focus of this survey is on the Shortest Vector Problem (SVP), which is a search problem, and its
decision variant, GapSVP. The Shortest Vector Problem is the most important computational problem on
lattices. In SVP, the goal is to find a shortest non-zero vector in an input lattice, and in GapSVP the goal is
to determine whether the length of such a vector is above or below a given threshold. (We formally specify
how a lattice is represented and define these problems shortly.)

As with any important computational problem, it is natural to ask about the complexity of SVP: Is it
NP-hard? If so, is it hard to approximate? And, precisely how long does it take to solve? These questions
are particularly important given the likely central role of lattice-based cryptography in applications in the
near future. In particular, the security of lattice-based cryptography in practice relies on understanding the
fine-grained hardness of SVP, and proving that GapSVP is sufficiently hard to approximate would prove
that lattice-based cryptography is secure.

In this work, we summarize the complexity of (Gap)SVP in a wide range of regimes, discuss its connections
to cryptography and other areas, and present a variety of open problems related to these things. We refer
the reader to Figures 1, 3 and 4, which summarize the complexity of approximate GapSVP and show that
the problem is interesting with a wide range of approximation factors. Finally, we note that many of the
open problems we give are likely very challenging, and making any progress on them would still be very
interesting (even without fully resolving them).

Additional surveys and open problems on lattice complexity. The book of Micciancio and Gold-
wasser [MG02] is the classic text on the complexity of lattice problems, although there have been many
developments since it was published around 20 years ago. More recent resources on related topics in-
clude a blog post on the fine-grained complexity of lattice problems by Bennett, Golovnev, and Stephens-
Davidowitz [BGS20], and a collection of open problems related to algorithms and complexity aspects of
lattice problems more generally from the Simons Institute’s Summer 2022 Lattices Program [Sim22].

Acknowledgements. The author would like to thank Bill Gasarch, Sasha Golovnev, Chris Peikert, Mike
Rosulek, and Noah Stephens-Davidowitz for helpful comments and for pointing out typos. He would espe-
cially like to thank Noah for his detailed comments and for sharing his refined Latex link-coloring scheme,
and Bill for inviting him to write for the SIGACT News Open Problems Column. Additionally, the author

1Unfortunately, the term “lattice” is overloaded to mean at least two different things in computer science and mathematics.
This article is about the geometric objects (sometimes called point lattices, https://en.wikipedia.org/wiki/Lattice_(group)),
and not about partial orders (https://en.wikipedia.org/wiki/Lattice_(order)).
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Figure 1: A simplified summary of the complexity of γ-GapSVP on lattices of dimension n for constant, polynomial, and
exponential approximation factors γ = γ(n). The problem is NP-hard (under randomized reductions) for γ = O(1), and is
solvable in polynomial time for γ = 2n. If it is hard for γ = nc for a sufficiently large constant c > 0, then lattice-based
cryptography is provably secure. For a more detailed summary, see Figure 3.

would like to thank the Simons Institute for hosting the Summer 2022 Lattices Program and Vinod Vaikun-
tanathan for inviting him to give a talk on the complexity of SVP there. That talk was the seed of this
survey.

1.1 Definitions

Formally, a lattice L is the set of all integer linear combinations of some n linearly independent vectors
b1, . . . , bn ∈ Rn, and the matrix B := (b1, . . . , bn) ∈ Rn×n that has these vectors as its columns is called a
basis of L. That is, the lattice L generated by basis B is

L = L(B) :=
{ n∑

i=1

aibi : a1, . . . , an ∈ Z
}
. (1)

The value n is the dimension of L, and is the important lattice parameter when discussing runtimes and
(possibly super-constant) approximation factors γ = γ(n) of computational problems on lattices.2

The ℓp norm of a vector x ∈ Rn is defined as ∥x∥p :=
(∑n

i=1 |xi|p
)1/p

for 1 ≤ p < ∞, and as ∥x∥∞ :=
maxi∈[n] |xi| for p = ∞. By default, we will work with the Euclidean norm ℓ2, and will simply write ∥x∥
instead of ∥x∥2.

We define λ1(L) to be the length of a shortest non-zero vector in L. Equivalently, λ1(L) is the minimum
distance between any two distinct vectors in L, and so is also called the minimum distance of L. Formally,
we define

λ1(L) := min
v∈L\{0}

∥v∥ = min
u,v∈L,
u̸=v

∥u− v∥ .

We next formally define the (approximate) decision and search versions of the Shortest Vector Problem.
See also the illustration of approximate GapSVP in Figure 2.

Definition 1.1 (Decisional Shortest Vector Problem). For γ = γ(n) ≥ 1, the decision version of the γ-
approximate Shortest Vector Problem (γ-GapSVP) is defined as follows. On input a basis B ∈ Qn×n of a
lattice L and a distance threshold r > 0, decide whether the input satisfies

• (YES instance) λ1(L) ≤ r, or

• (NO instance) λ1(L) > γr

when one of these cases is promised to hold.

2One may define lattices more generally in terms of bases B ∈ Rm×n for m > n. In this case, m is the (ambient) dimension
of the lattice, and n is its rank. The dimension m typically plays a secondary role, and often we can assume essentially without
loss of generality that m = n by projecting, which we do in most of this survey.
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Figure 2: Left: An instance of γ-GapSVP consisting of a basis B = (b1, b2) and r > 0. The goal is to decide whether there
exists a non-zero lattice vector of norm at most r (i.e., there exists such a vector inside the blue circle), or if all non-zero lattice
vectors are of norm greater than γr (i.e., all such vectors are strictly outside the red circle) when one of these cases is promised
to hold. Right: Looking at lattice points in L(B) near the origin shows that the instance is a YES instance of γ-GapSVP
because the non-zero lattice vectors ±(2b1 − b2) are inside the blue circle of radius r.

Definition 1.2 (Search Shortest Vector Problem). For γ = γ(n) ≥ 1, the search version of the γ-approximate
Shortest Vector Problem (γ-SVP) is defined as follows. On input a basis B ∈ Qn×n of a lattice L, output a
non-zero vector v ∈ L satisfying ∥v∥ ≤ γ · λ1(L).

We also define the decision version of the Closest Vector Problem, GapCVP, a closely related problem
that will arise when talking about GapSVP. For a vector t and a lattice L, define the distance between t
and L as dist(t,L) := minv∈L∥t− v∥.

Definition 1.3 (Decisional Closest Vector Problem). For γ = γ(n) ≥ 1, the decision version of the γ-
approximate Closest Vector Problem (γ-GapCVP) is defined as follows. On input a basis B ∈ Qn×n of a
lattice L, a vector t ∈ Qn, and a distance threshold r > 0, decide whether the input satisfies

• (YES instance) dist(t,L) ≤ r, or

• (NO instance) dist(t,L) > γr

when one of these cases is promised to hold.

The vector t in a GapCVP instance is often called the target vector.
In the exact case when γ = 1, we simply write the above problems as GapSVP, SVP, and GapCVP

respectively.3 Finally, we note that although the definitions of λ1(L) and dist(t,L), and Definitions 1.1
to 1.3 all use the Euclidean norm, one can generalize these definitions to arbitrary norms, including to ℓp
norms with p ̸= 2. We will sometimes discuss such generalizations.

2 Foundational Complexity

We start by surveying foundational complexity results related to (Gap)SVP, including NP-hardness, hard-
ness of approximation, and fine-grained hardness. We again refer the reader to Figures 3 and 4, which
summarize many of the results described here and in Section 4. Specifically, Figure 3 captures the complex-
ity of γ-GapSVP in a “polynomial-time world,” and Figure 4 captures the complexity of γ-GapSVP in an
“exponential-time world.”

2.1 Early Results, Algorithms, and NP-hardness

The formal study of the complexity of lattice problems began around 40 years ago with work of van Emde
Boas [vEB81], who proved hardness of the GapCVP in the ℓ2 norm. van Emde Boas also proved that GapSVP

3We emphasize that, somewhat confusingly, the “Gap” qualifier in GapSVP indicates that the problem is a decision problem,
and not that it is an approximation problem. In particular, there are exact and approximate versions of both GapSVP (the
decision version of SVP) and SVP (the search version of SVP).
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Figure 3: A summary of the complexity of γ-GapSVP on lattices of dimension n for approximation factors γ = γ(n),
with some constants and lower-order terms omitted for clarity. The figure shows polynomial-time algorithms, worst-case to
average-case reductions, and protocols, as well as hardness results ruling out polynomial-time algorithms.

The problem has no polynomial-time algorithm for any constant approximation factor γ = O(1) or even near-polynomial
factor γ = n1/ log logn under standard complexity assumptions (shown in the red box labeled “Hardness”). On the algorithmic
side, the problem is solvable in polynomial time for slightly sub-exponential γ = 2O(n log logn/ logn) (shown in the green box
labeled “Algorithms”).

The two most important problems in lattice-based cryptography, the Shortest Integer Solutions Problem (SIS) and the
Learning With Errors Problem (LWE) are provably hard on average—with parameters that allow for constructing private-
key and public-key cryptography, respectively—assuming that γ-GapSVP is hard in the worst case for certain polynomial
approximation factors γ = poly(n) (shown in the yellow box labeled “Cryptography”).

Finally, γ-GapSVP is in coAM for γ = O(
√

n/ logn) and in coNP for γ = O(
√
n) (shown in the orange box labeled “Hardness

Barriers”). These results are often interpreted as barriers to showing (NP-)hardness for the somewhat larger polynomial

approximation factors γ relevant for the hardness of SIS and LWE, since NP-hardness of γ-GapSVP for γ = Ω(
√

n/ logn)
would result in an unexpected complexity theoretic consequence, namely, in the polynomial hierarchy collapsing.

Increasing either of the approximation factors γ in the “Hardness” box, or decreasing any of the approximation factors γ in
the “Hardness Barriers,” “Cryptography,” or “Algorithms” boxes while keeping the corresponding assumption or consequence
the same is an interesting open problem. See also Figure 4 for a summary of the complexity of γ-GapSVP in an “exponential-
time world.” An adapted version of this figure appears in [ABB+22].

in the ℓ∞ norm is NP-hard, and conjectured that GapSVP in the ℓ2 norm was NP-hard. Shortly thereafter,
work of Lenstra, Lenstra, and Lovász [LLL82] complemented this work on hardness by giving a polynomial-
time algorithm for 2O(n)-SVP—the famous LLL algorithm. Subsequently, the BKZ reduction algorithm of
Schnorr [Sch87], slide reduction algorithm of Gama and Nguyen [GN08], and dual BKZ reduction algorithm
of Miccancio and Walter [MW16] improved this by giving polynomial-time algorithms for γ-SVP with slightly
subexponential approximation factor γ = 2O(n log logn/ logn) (see the “Algorithms” box in Figure 3).

Seventeen years after [vEB81], landmark work of Ajtai [Ajt98] largely resolved van Emde Boas’s conjecture
in the affirmative by showing that GapSVP is NP-hard, but with the caveat that the hardness reduction he
used was randomized.4 As a consequence, Ajtai showed that GapSVP is not in RP (or in P) assuming that
NP ̸= RP, which is a stronger assumption than P ̸= NP.

In the following sections, we survey major improvements made to Ajtai’s original result in terms of
hardness of approximation and fine-grained hardness. However, despite progress on those fronts, no one has
been able to give a derandomized hardness reduction even for exact GapSVP. Indeed, it remains a major
open question to show that GapSVP is “properly” NP-hard.

Open Problem 2.1 (Deterministic NP-hardness). Prove that (exact or approximate) GapSVP in the ℓ2
norm is NP-hard under a deterministic Karp reduction.

In fact, it would be interesting to show such hardness in any ℓp norm for p < ∞, which is also unknown
(as mentioned above, [vEB81] showed such hardness in the ℓ∞ norm). See Sections 3.2 and 3.4 and Open
Problems 3.4 and 3.5 for further discussion about derandomizing hardness reductions for GapSVP.

4Additionally, γ-GapSVP is in NP for any approximation factor γ = γ(n) ≥ 1. The witness certifying that an instance (B, r)
is a YES instance is simply a non-zero vector v ∈ L(B) satisfying ∥v∥ ≤ r. So, showing deterministic NP-hardness of GapSVP
would imply that it is NP-complete.
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2.2 Hardness of Approximation

In the years following Ajtai’s seminal work, a sequence of results showed (randomized) hardness of approxi-
mation of γ-GapSVP for successively larger approximation factors γ and in different ℓp norms [CN98, Mic98,
Kho03, Kho04, RR06, HR07, Mic12]. The following result, which is stated as the main theorem in [HR07],
is essentially the culmination of work on hardness of approximation for GapSVP so far.

Theorem 2.2 (Hardness of Approximation for GapSVP, [Kho04], [HR07, Theorem 1.1]). For every 1 ≤ p ≤
∞, there is no randomized polynomial-time algorithm for γ-GapSVP on lattices of rank n in the ℓp norm
with the following approximation factors γ = γ(n) unless the corresponding assumption is violated:

1. Any constant γ ≥ 1, unless NP ⊆ RP;

2. γ = γ(n) = 2(logn)1−ε

for any constant ε > 0, unless NP ⊆ RTIME[2poly(logn)];

3. γ = γ(n) = nc/ log logn for some constant c > 0, unless NP ⊆ RSUBEXP = ∩δ>0RTIME[2n
δ

].

We note that [Kho04] already essentially showed Theorem 2.2, Item 1, and also showed weaker versions
of Items 2 and 3. Additionally, we note that Dinur [Din02] showed the hardness result in Item 3 for GapSVP
in the ℓ∞ norm under a much weaker assumption. Namely, she showed that nc/ log logn-GapSVP in the ℓ∞
norm with some constant c > 0 is NP-hard under a deterministic reduction.

A natural question is whether even stronger hardness of approximation—specifically, hardness of γ-
GapSVP for some polynomial approximation factor γ = nε—holds for GapSVP in some ℓp norm.

Open Problem 2.3 (Hardness of nε-GapSVP). Prove that there is no polynomial-time algorithm for γ-
GapSVP with γ = γ(n) = nε for some constant ε > 0 under a standard complexity assumption.

One generic (if not completely standard) complexity assumption that might be useful for showing such
hardness is the Projection Games Conjecture (PGC), a strong form of the Unique Games Conjecture for-
malized by Moshkovitz [Mos12]. Indeed, [Mos12] notes that PGC implies super-polynomial hardness of nε-
GapCVP in the ℓ2 norm, and asks whether a similar result holds for nε-GapSVP. Mukhopadhyay [Muk22]
recently made progress in this direction by addressing the hardness of GapSVP in the ℓ∞ norm under PGC.

2.3 Fine-Grained Hardness

The goal of fine-grained hardness as a field of study is to prove strong, precise lower bounds on the time
complexity of certain computational problems under well-studied assumptions such as the Exponential Time
Hypothesis (ETH) and Strong Exponential Time Hypothesis (SETH). In the context of lattice problems,
the goal is generally to prove (conditional) exponential lower bounds on lattice problems—e.g., results of the
form “γ-GapSVP has no 2Ω(n)-time algorithm assuming ETH” or “γ-GapSVP has no 2n/20-time algorithm
assuming SETH,” as opposed to “γ-GapSVP has no poly(n)-time algorithm assuming RP ̸= NP,” which is
all that follows from the NP-hardness (under randomized reductions) of γ-GapSVP.5

Fine-grained hardness is closely related to the concept of concrete security in cryptography, where the
goal is to understand the precise amount of time and space needed to break a cryptosystem using a (possibly
heuristic) attack algorithm, and so is especially well-motivated by the need to understand the security of
lattice-based cryptography in practice. Most notably for our setting, the “core-SVP” methodology introduced
in [ADPS16] analyzes the concrete security of lattice-based cryptosystems in terms of the cost of an exact
SVP oracle call (in terms of the rank n of the underlying lattice), and is the standard way of estimating
such security. We also refer the reader to [ACD+18, Wal17], which use this methodology to analyze the
concrete security of many leading lattice-based cryptosystems and discuss the concrete security of lattice-
based cryptography.

The fastest known classical heuristic algorithms for SVP run in roughly (3/2)n/2 ≈ 20.292n time, and
the fastest known quantum heuristic algorithms run in roughly 20.265n time [Laa15, LMvdP15, BDGL16].

5For more on the topics discussed in this section, we refer the reader to [BGS20], a survey focusing specifically on the
fine-grained hardness of lattice problems.
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These best known heuristic algorithms are all so-called “sieving algorithms.” The fastest known provable
classical algorithm for GapSVP runs in 2n+o(n) time [ADRS15], and the fastest known provable quantum
algorithm for GapSVP runs in either 20.950n+o(n) or 20.835n+o(n) time depending on the precise quantum
model of computation used [ACKS21]. (Of course, closing the runtime gaps between (both classical and
quantum) heuristic and provable algorithms is also a very interesting question, but this survey focuses on
complexity rather than algorithms.)

Additionally, [ADPS16] asserts that “it is very plausible that the best quantum SVP algorithm would run
in time greater than [(4/3)n/2 ≈ 20.2075n].” This assertion assumes that sieving algorithms are essentially
optimal for solving SVP (the lower bound of (4/3)n/2 comes from the space complexity of these algorithms).
An important goal for fine-grained complexity is to try to prove that this lower bound holds against all
algorithms.

Indeed, because the core-SVP methodology and time-complexity estimates mentioned above are widely
used, the difference between a 20.265n-time versus 2n/20-time versus 2

√
n-time algorithm for exact or near-

exact SVP means the difference between many real-world lattice-based cryptosystems being secure, insecure
with current parameters, and effectively broken in practice. (Variants of this observation already appear
throughout the literature on the fine-grained hardness of lattice problems; it serves as important motivation
for the whole research area. For example, [BGS20] makes a similar observation.)

Assumptions for fine-grained hardness. The Exponential Time Hypothesis (ETH) asserts that there
is no 2o(n)-time algorithm for the 3-SAT problem on formulas with n variables, and the Strong Exponential
Time Hypothesis (SETH) asserts that for every ε > 0 there exists k ∈ Z+ such that there is no 2(1−ε)n-time
algorithm for the k-SAT problem on formulas with n variables.6 These well-studied assumptions (and their
variants) are very useful for proving (conditional) fine-grained hardness results about lattice problems. In
particular, as we discuss shortly, recent work has shown 2Ω(n)-time lower bounds on algorithms for lattice
problems assuming variants of ETH, and even 2cn-time lower bounds with explicit constants c > 0 assuming
variants of SETH.

Known results on fine-grained hardness. Work of Bennett, Golovnev, and Stephens-Davidowitz [BGS17]
initiated the study of the fine-grained hardness of lattice problems by showing roughly 2n hardness of
GapCVP in most ℓp norms assuming SETH, and follow-up work by Aggarwal, Bennett, Golovnev, and
Stephens-Davidowitz [ABGS21] extended this to all p excluding the even integers 2Z.

Theorem 2.4 (Fine-grained complexity of GapCVP, [BGS17, ABGS21]). For every p ≥ 1 there is no 2o(n)-
time algorithm for GapCVP in the ℓp norm assuming ETH.7 Furthermore, for every p ∈ [1,∞] \ 2Z and
constant ε > 0, there is no 2(1−ε)n-time algorithm for GapCVP in the ℓp norm assuming SETH.

Additionally, [BGS17, ABGS21] also showed analogous results for γ-GapCVP with a small constant approx-
imation factor γ > 1 assuming “Gap” versions of ETH and SETH. The p /∈ 2Z caveat is disappointing
because the Euclidean case of p = 2 is of the most interest, but recent work of Aggarwal and Kumar [AK22]
shows that it is very likely inherent at least for a large class of proof techniques ([BGS17, ABGS21] showed
why their specific proof techniques did not work for p ∈ 2Z).

In elegant follow-up work, Aggarwal and Stephens-Davidowitz [AS18] extended the results of [BGS17]
for GapCVP by showing fine-grained hardness results for GapSVP. Specifically, they gave very efficient
reductions from the hard (approximate) GapCVP instances in [BGS17] and elsewhere to (approximate)
GapSVP instances. We note that the results in [AS18] are not as quantitatively strong and do not apply for
as wide a range of ℓp norms as those of [BGS17]. However, because GapSVP is no harder than GapCVP in
a fine-grained sense (see [GMSS99]) and perhaps substantially easier, this discrepancy is natural.

6ETH is a stronger assumption than P ̸= NP, which is equivalent to 3-SAT not having a poly(n)-time algorithm, and, as the
name implies, SETH is a stronger assumption than ETH, although this is slightly less obvious. There are also stronger variants
variants of ETH and SETH (including randomized, non-uniform, and “Gap” variants), many of which also play an important
role in the fine-grained hardness of lattice problems.

7Although formalized and published for the first time in [BGS17], this result on hardness of GapCVP under ETH was also
known in folklore.
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Theorem 2.5 (Fine-grained complexity of GapSVP, [AS18]). For every p ≥ 1 there exists γ > 1 such that
there is no 2o(n)-time algorithm for γ-GapSVP in the ℓp norm assuming non-uniform Gap-ETH. Further-
more, for every p > p0 ≈ 2.1397, p /∈ 2Z, there is no 2Cpn-time algorithm for GapSVP in the ℓp norm for
some constant Cp ∈ (0, 1) assuming randomized SETH.

Additionally, [BPT22] extended the second result by showing roughly 2Cpn-hardness of γ-GapSVP in the ℓp
norm for p > p0 ≈ 2.1397, p /∈ 2Z with a small constant approximation factor γ > 1 assuming randomized
Gap-SETH.

Finally, we note that close quantum analogs of the results in Theorems 2.4 and 2.5 hold assuming the
quantum analog of SETH. Quantum SETH essentially says that Grover search, which gives a quadratic
speed-up over classical brute-force search, is the optimal quantum algorithm for solving k-SAT for large k
(see [BPS21] for a formal definition). In particular, in the quantum setting, the roughly 2n-time lower bound
in Theorem 2.4 becomes a roughly 2n/2-time lower bound, and the 2Cpn-time lower bound in Theorem 2.5
becomes a 2Cpn/2-time lower bound.

We also refer the reader to Figure 4, which compares the exponential hardness of GapSVP shown in
Theorem 2.5 with exponential-time protocols, reductions, and algorithms for GapSVP.

Open problems on fine-grained hardness. The first natural open question related to fine-grained
hardness is whether it is possible to prove a lower bound matching the “plausible runtime barrier” of 20.2075n

even for quantum SVP algorithms widely assumed in the cryptanalysis literature under some standard
complexity assumption.

Open Problem 2.6 (Exponential hardness in ℓ2). Prove that there is no 20.2075n-time quantum algorithm
for exact SVP in the ℓ2 norm under a standard complexity assumption.

Of course, a natural such starting complexity assumption would be SETH, but [AK22] gives a substantial
barrier to showing such hardness. However, it does not fully rule out such reductions, even barring any
surprising complexity-theoretic consequences. So, one could try to make progress on Open Problem 2.6
either by trying to mitigate the barrier in [AK22], or by showing hardness under a different assumption. We
also note that any progress along the lines of Open Problem 2.6 (i.e., showing 2cn-hardness of SVP for any
explicit constant c > 0 under a standard assumption) would be very interesting.

Another interesting question already asked in [ABGS21, BGS20] is whether it is possible to prove greater-
than-2n hardness for (exact) GapSVP or GapCVP in some other norm. For example, using the intuition
mentioned in [ABGS21, BGS20] that the best running time of an algorithm for SVP in some norm is bounded
by the maximum possible number of shortest non-zero vectors in that norm (i.e., the lattice kissing number
in that norm), one might expect algorithms for SVP in the ℓ∞ norm to take at least roughly 3n time.8 (We
note that lattice problems in the ℓ2 norm are the easiest among all ℓp norms in a precise sense [RR06].)

Open Problem 2.7 (Greater-than-2n hardness in other norms). Prove that that for some constant c >
1, there is no 2cn-time algorithm for exact GapSVP or exact GapCVP in some norm under a standard
complexity assumption.

3 Showing Hardness: A Technical Summary

In this section, we sketch how to prove (randomized) NP-hardness of γ-GapSVP for some small approximation
factor γ > 1, and then how to amplify this approximation factor to obtain the results in Theorem 2.2. This
section is the most technical in the survey; the reader may skip it and proceed to Section 4. Additionally,
we emphasize that this sketch omits various subtleties and details in an attempt to convey the main ideas.

8The vectors {−1, 0, 1}n \ {0} are all shortest non-zero vectors in the integer lattice Zn in the ℓ∞ norm. So, the ℓ∞ kissing
number is at least 3n − 1. Moreover, a packing argument shows that the kissing number in any norm is at most 3n, so this is
essentially tight.
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3.1 Showing Small-Factor Hardness of Approximation: A First Attempt

In this section, we sketch how to prove NP-hardness of γ-GapSVP for a small constant approximation factor
γ > 1 (at largest γ ≈

√
2 for γ-GapSVP in the ℓ2 norm).

Nearly all of the many different NP-hardness proofs for GapSVP start in roughly the same way. Namely,
they reduce from a variant of GapCVP (recall Definition 1.3) called GapCVP′, and use gadget lattices called
locally dense lattices as advice. We start by defining GapCVP′.

Definition 3.1. For γ = γ(n) ≥ 1, γ-GapCVP′ is the decision problem defined as follows. On input a basis
B ∈ Qm×n of a lattice L, a target vector t ∈ Qm, and a distance threshold r > 0, decide whether

• (YES instance) There exists x ∈ {0, 1}n such that ∥Bx− t∥ ≤ r, or

• (NO instance) dist(wt,L) > γr for all w ∈ Z \ {0}

when one of these cases is promised to hold.

We note that GapCVP′ has stronger promises in both the YES and NO cases than “plain” GapCVP.
Namely, in the YES case, the target vector is promised to be close to a binary combination of basis vectors,
and in the NO case, the target vector is promised to be far from all non-zero integer multiples wt of the
target t as opposed to just t. Despite these stronger promises, Arora, Babai, Stern, and Sweedyk showed
that GapCVP′ is NP-hard to approximate to within any constant factor γ.

Theorem 3.2 ([ABSS93]). For any constant γ ≥ 1, γ-GapCVP′ is NP-hard.

A first attempt to reduce an instance (B, t, r) of γ-GapCVP′ to an instance (B′, r′) of γ′-GapSVP for
some approximation factors γ, γ′ ≥ 1 works by “appending −t to B.” In fact, to ensure linear independence
of the columns of B′, we first add some small orthogonal component s > 0 to −t, and then append the
resulting vector to B. Putting everything together, this yields the following attempted reduction:

B, t, r 7→ B′ :=

(
B −t
0 s

)
, r′ :=

√
r2 + s2 . (2)

This construction of B′ from B, t, and s is called Kannan’s embedding. It is easy to see that the trans-
formation in Equation (2) maps YES instances of γ-GapCVP′ to YES instances of γ′-GapSVP by noting
that if ∥Bx − t∥ ≤ r for x ∈ {0, 1}n then ∥B′ · (xT , 1)T ∥ ≤ r′. Furthermore, by setting s to be sufficiently
small and γ to be sufficiently large, we have that if the input instance of γ-GapCVP′ is a NO instance then
∥B′ · (xT , w)T ∥ > γr ≈ γr′ for any x ∈ Zn and w ∈ Z \ {0}. So, if we only needed to consider non-zero w,
we could take γ′ ≈ γ and the reduction would essentially work. However, the trouble with this approach
comes from analyzing ∥B′ · (xT , 0)T ∥ = ∥Bx∥. Indeed, if L(B) happens to contain “overly short” vectors,
then so will L(B′) regardless of whether t is close to L(B).

3.2 The Ajtai-Micciancio and Khot Reductions

There are two related ways to overcome the issue caused by the lattice L(B) in the input GapCVP′ instance
having “overly short” vectors, which we call the “Ajtai-Micciancio reduction” after [Ajt98, Mic98], and the
“Khot reduction” after [Kho04]. The key to both of these reductions is the use of gadget lattice-target pairs
called locally dense lattices, a term that was coined by Micciancio.

Definition 3.3 (Locally Dense Lattices). For constant α satisfying 1/2 ≤ α < 1 and n′, G ∈ Z+, an
(α,G)-locally dense lattice is specified by a basis matrix A ∈ Qn′×n′

and a vector u ∈ Qn′
such that∣∣L(A)− u) ∩ (αλ1(L(A)) · Bn′

2 )
∣∣ ≥ G ,

where Bn′

2 denotes the closed unit Euclidean ball in n′ dimensions.
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That is, there are at least G vectors in the lattice “shift” L(A)−u of norm αλ1(L(A)), or, equivalently,
L(A) has at least G vectors at distance at most αλ1(L(A)) to u (intuitively, there are at least G vectors in
L(A) “close” to u). We call α the relative distance of the locally dense lattice. It is the ratio of the “close
distance” αλ1(L) to the minimum distance λ1(L) of the lattice.9

We note that nearly all of the many hardness reductions for GapSVP are variants of one of these two
reductions and use locally dense lattices. The sole exception is [Kho03], which gives a reduction from the
Label Cover Problem rather than GapCVP′ to GapSVP.10

We describe the reductions below as if they have access to a suitable locally dense lattice already; for now
one may think of them as being provided as auxiliary input or advice. In Section 3.4 we discuss (efficient,
randomized) constructions of locally dense lattices.

The Ajtai-Micciancio reduction. The Ajtai-Micciancio reduction modifies Equation (2) by “stacking”
the basis-target pair (B, t) in the input GapCVP′ instance and the basis-target pair (A,u) defining a
locally dense lattice, and then applies Kannan’s embedding. Additionally, it right-multiplies B by a linear
transformation T such that all possible coefficient vectors x ∈ {0, 1}n of a close vector Bx to t in the input
GapCVP′ instance are contained in T(Y), where Y := {y ∈ Zn′

: ∥Ay − u∥ ≤ α · λ1(L(A))} is the set of
coefficient vectors of vectors v = Ay ∈ L(A) within distance α · λ1(L(A)) of u. Ajtai and Micciancio show
how to sample suitable such linear transformations T efficiently using randomness [Ajt98, Mic98].

That is, the output basis B′ becomes

B′ :=

BT −t
A −u
0 s

 . (3)

One can then check that if the input GapCVP′ instance is a YES instance with ∥Bx − t∥ ≤ r for
x ∈ {0, 1}n, if Ty = x for y ∈ Zn′

, and if y is one of the at least G coefficient vectors such that
∥Ay − u∥ ≤ α · λ1(L(A)), then B′(yT , 1)T is a short non-zero vector in L(B′), implying that λ1(L(B′)) is
small. On the other hand, one can check that if the GapCVP′ instance is a NO instance then λ1(L(B′)) ≥
min{λ1(L(A)),minw ̸=0 dist(wt,L(B)} is large.

The Khot reduction. The Khot reduction first modifies Equation (2) by forming a block-diagonal matrix
from B and A (which is a basis of the direct sum lattice L(B) ⊕ L(A)), and then applying Kannan’s
embedding. That is, the intermediate basis output by the first step in Khot’s reduction is

Bint :=

B 0 −t
0 A −u
0 0 s

 . (4)

Finally, Khot’s reduction computes and outputs a basis B′ of a uniformly random sublattice L′ of L(Bint)
of prime index q ≈ G (i.e., such that |L(Bint)/L′| = q). This process is called sparsification, and computing
B′ is efficient. Intuitively, sparsification has the effect of keeping each point in a finite subset S ⊆ L(Bint)
in L′ with probability 1/q. We next explain why this is useful.

Let A be the number of vectors in L(B) of norm at most r′, and recall that these vectors are what cause
problems in the initial reduction attempted in Equation (2). Let G be the number of “close” vectors in the
locally dense lattice defined by (A,u).11 Then, if A ≪ G, with high probability L′ will contain no short
vectors in the NO case (the only such vectors correspond to short vectors in L(B) and will be removed by

9We note that by the triangle inequality and the definition of λ1(L), there do not exist locally dense lattices with α < 1/2
and G > 1 simultaneously (even with respect to norms other than ℓ2). So, we have chosen to define locally dense lattices only
for α ≥ 1/2.

10The reduction in [Kho03] came before the better-known reduction in [Kho04], which essentially subsumes its results.
Nevertheless, [Kho03] is interesting because it uses different techniques from all other hardness reductions for GapSVP.

11Khot introduced the mnemonic of A for the number of “annoying” vectors in the NO case and G for the number of “good”
vectors in the YES case in the intermediate lattice L(Bint).
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sparsification), but at least one short vector of the form B′ · (xT ,yT , 1)T in the YES case (where Bx is a
close vector to t in the input γ-GapCVP′ instance and Ay is one of the at least G close vectors in L(A) to
u guaranteed by the definition of a locally dense lattice).

Use of randomness. Both the Ajtai-Micciancio reduction and the Khot reduction use randomness in two
places. First, because all efficient constructions of locally dense lattices (in the ℓ2 norm) are randomized,
both reductions use randomness to construct the pairA,u (in most cases only finding u requires randomness;
see also Section 3.4). Additionally, the Ajtai-Micciancio reduction requires randomness to sample the linear
transformation T, and the Khot reduction requires randomness for sparsification (which makes its use of
randomness seem more inherent). Furthermore, although very elegant, the Khot reduction has two-sided
error whereas the Ajtai-Micciancio reduction only has one-sided error (assuming that construction of the
basis A of the locally dense lattice is deterministic).

We also note that deterministic NP-hardness of approximation is in fact known for the decision version
of the Minimum Distance Problem (GapMDP), which is the analog of GapSVP on linear error correcting
codes. Indeed, although the original reduction showing such NP-hardness of approximation for GapMDP
by Dumer, Micciancio, and Sudan [DMS99] was randomized, it was successfully derandomized by Cheng
and Wan [CW09].12 Austrin and Khot [AK11] and Micciancio [Mic14] subsequently showed simplified such
deterministic reductions.

In fact, [DMS99] used an analog of the Ajtai-Micciancio to show hardness, and [CW09] successfully
derandomized it. So, one might optimistically hope that similar techniques to those used to show hardness
of approximation for GapMDP also work for showing deterministic hardness of GapSVP. While some
techniques do not seem to carry over (this can be made precise in certain ways; see [BP22]), connections
between hardness reductions for (approximate) GapMDP and GapSVP certainly warrant further study.

3.3 Amplifying Hardness

The same approach for hardness amplification leads to all three results in Theorem 2.2, namely tensoring.
The tensor product L1 ⊗ L2 of two lattices L1 and L2 is defined as L1 ⊗ L2 := L(B1 ⊗B2), where B1 and
B2 are bases of L1 and L2, respectively, and B1 ⊗ B2 is their Kronecker product. It is easy to show that
λ1(L1 ⊗L2) ≤ λ1(L1) · λ1(L2), but in general this inequality may or may not be tight or even close to tight;
see, e.g., [HR07, Lemma 2.3].

The approach of [Kho04, HR07, Mic12] for showing the results in Theorem 2.2 uses roughly the following
strategy. It starts by reducing γ′-GapCVP′ (for some large constant γ′) to γ-GapSVP for some relatively
small constant approximation factor γ > 1 using one of the reductions in Section 3.2, and additionally argues
that if the GapCVP′ instance has certain properties, then the underlying lattice L in the γ-GapSVP instance
tensors nicely. It then outputs the k-fold tensor product L⊗k of L with itself for some k = k(n) (where n
is the rank of L), which is a γk-GapSVP instance (on a lattice of rank nk). Varying the value of k = k(n)
leads to the three hardness results in Theorem 2.2.

Khot [Kho04] introduced this general strategy, but performed hardness amplification using a variant of
the tensor product that he called the “augmented tensor product.” This already essentially sufficed to show
Theorem 2.2, Item 1, but led to lower factors γ in Items 2 and 3. The key additional insight of Haviv and
Regev [HR07] was that the hard lattices output by Khot’s reduction in fact behave nicely under the standard
tensor product.

Finally, as part of an attempt to derandomize the reductions in [Kho04, HR07], Micciancio [Mic12]
introduced a new distance measure τ(x) for integer vectors x. While not a norm, the quantity τ(x) lower
bounds the ℓ2 norm ∥x∥ of x and is meant to represent a combination of the ℓ2 norm and Hamming
weight of x. Micciancio then showed that the quantity τ(L) := minx∈L\{0} τ(x) tensors nicely in the sense
that τ(L)λ1(L′) ≤ λ1(L ⊗ L′) ≤ λ1(L)λ1(L′) for arbitrary integer lattices L,L′. Using τ , Micciancio gave

12However, in contrast to GapSVP, deterministic NP-hardness of exact GapMDP was known since the original hardness proof
of Vardy [Var97].
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hardness reductions showing the results in Theorem 2.2 with one-side rather than two-sided error.13 (The use
of randomness in all of these reductions occurs in the initial reduction to γ-GapSVP for small γ. Amplifying
γ via tensoring is deterministic.)

3.4 Constructing Locally Dense Lattices

Of course, the reductions described in Section 3.2 (and hence Section 3.3) are only useful if locally dense lat-
tices actually exist and are efficient to construct. Indeed, roughly speaking, whether a locally dense lattice
exists, is efficiently constructible using randomness, or is efficiently constructible deterministically corre-
sponds to whether the Ajtai-Micciancio reduction is non-uniform, randomized, or deterministic, respectively.
Moreover, the specific parameters α and G of the locally dense lattice impact how strong a hardness result
the reductions yield. The largest approximation factor γ for which it is possible to show hardness either via
the Ajtai-Micciancio or Khot reductions (before any tensoring) is γ ≈ 1/α, and the difference between G
being at least 2n

ε

for constant ε > 0, 2Ω(n), and 2cn for an explicit constant c > 0 roughly corresponds to the
difference in being able to show NP-hardness, 2Ω(n)-hardness under ETH, and 2c

′n-hardness for an explicit
constant c′ > 0 under SETH (assuming appropriate hardness of GapCVP′).

Fortunately, constructions of locally dense lattices are known from a variety of different base lattices,
including the Schnorr-Adleman prime number lattice [Ajt98, CN98, Mic98], a variant of Construction A
applied to BCH codes [Kho04, HR07], Construction D applied to a tower of BCH codes [Mic12], the integer
lattice Zn [AS18, BP20, BPT22], exponential kissing number lattices (constructed in [Vlă19], used in [AS18,
BPT22]), and Construction A applied to Reed-Solomon codes [BP22]. These various constructions each
have different merits, such as being more apparently amenable to derandomization, having smaller α, having
larger G, or working in different ℓp norms.14 In particular, for every constant ε > 0, efficient randomized

constructions of locally dense lattices of rank n with α =
√
2 − ε and G = 2n

δ

for some constant δ > 0 are
known [Mic98, BP22]. This value of α is also known to be optimal for the ℓ2 norm (i.e., as small as possible)
for subexponentially large G = G(n).

We conclude with two open problems that were originally asked by and would derandomize the construc-
tions in [Mic98] and [BP22], respectively. Solutions to these problems would (nearly) be sufficient to show
deterministic NP-hardness of GapSVP as asked for in Open Problem 2.1. We note that these problems—
which are about the density of smooth integers and syndromes of parity check matrices of Reed-Solomon
codes, respectively—are interesting math problems in their own right and not even clearly related to lattices
a priori. The first problem is likely very hard.

Open Problem 3.4 (Determinstic local density from prime number lattices, [Mic98, Conjecture 1]). Show
that for any constant ε > 0 there exists a constant d > 0 such that for all sufficiently large n there exists an
odd integer in the range [n, n+ nε] that is square-free and (logd n)-smooth (i.e., all prime factors of n occur
with multiplicity 1 and are at most logd n).

For a prime q and integer 1 ≤ k ≤ q, let H = H(k, q) ∈ F{0,1,...,k−1}×Fq
q be the Vandermonde matrix

with Hi,j = ji. That is, the ith row of H, indexed by i ∈ {0, 1, . . . , k − 1}, consists of the ith powers of the
elements j ∈ Fq. (We define 00 to be 1.) The matrix H(k, q) is a parity-matrix of the Reed-Solomon code
over Fq with block length q and codimension k.

Open Problem 3.5 (Deterministic local density from Reed-Solomon lattices, [BP22]). Show that there
exists ε > 0 such that for all sufficiently large primes q and k := ⌈qε⌉ there exists an efficiently computable
s ∈ Fk

q such that subexponentially many vectors x ∈ {0, 1}q of Hamming weight at most 1.99k such that
Hx = s, where H = H(k, q).

13Despite their reduction having two-sided error, Haviv and Regev [HR07] argue that, by combining their reduction with
self-reducibility properties of SAT, one can turn a fast algorithm for γ-GapSVP into a fast algorithm for SAT with one-sided
error. Hence, they get the hardness results in Theorem 2.2 under assumptions of the form “NP ⊈ RTIME[f(n)]” as opposed to
stronger assumptions of the form “NP ⊈ BPTIME[f(n)].”

14Locally dense lattices with respect to general ℓp norms are defined analogously to Definition 3.3, but with λ1 replaced by

λ
(p)
1 , the lattice’s minimum distance in the ℓp norm, and with Bn

2 replaced by Bn
p , the closed ℓp unit ball.
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That is, in coding theory language, Open Problem 3.5 asserts that for some constant δ > 0 there are at least

2q
δ

many received words x ∈ {0, 1}q ⊆ Fq
q of Hamming weight at most 1.99k with syndrome s.

We note that, assuming for simplicity that 1.99k is an integer, an averaging argument shows that there
exists some s ∈ Fk

q such that at least
(

q
1.99k

)
/qk vectors x ∈ {0, 1}q of Hamming weight 1.99k satisfy Hx = s,

and that (
q

1.99k

)
/qk ≥ q0.99k/(1.99k)1.99k ≈ q0.99k/q1.99εk = q(0.99−1.99ε)qε

is subexponentially large in q for all ε satisfying 0 < ε ≤ 0.49. Furthermore, it is not hard to sample
s ∈ Fk

q such that with good probability at least, say,
(

q
1.99k

)
/(100qk) vectors x ∈ {0, 1}q of Hamming weight

1.99k satisfy Hx = s. However, proving that such an s can be found deterministically appears to be quite
challenging.

We also note that even a “black box” answer to Open Problem 3.5 is not quite enough to show deter-
ministic NP-hardness of GapSVP by itself, the issue being that computing the linear transformation T in
the Ajtai-Micciancio reduction still requires randomness. However, if one could additionally show that the
vectors x ∈ {0, 1} with Hx = s are sufficiently structured then this would likely allow for computing T
deterministically too. Finally, we note in passing that [BP22] shows that a positive resolution of Open Prob-
lem 3.5 would yield list-decoding lower bounds for Reed-Solomon codes, improving on the state-of-the-art
in [GR05].

4 Additional Complexity

Finally, we discuss a number of important additional aspects of the complexity of SVP. In Section 4.1, we
discuss the relationship between the complexity of γ-GapSVP and the security of lattice-based cryptography,
and also describe related results on the structural complexity of γ-GapSVP. In Section 4.2 we discuss variants
of SVP and reductions between them. Finally, in Section 4.3 we discuss additional connections between γ-
GapSVP and cryptography. (There is also overlap between these topics.)

4.1 GapSVP with Polynomial Approximation Factors

In this section we discuss the complexity of γ-GapSVP with polynomial approximation factors γ = γ(n),
which corresponds to the “Cryptography” and and “Hardness Barriers” boxes in Figure 3.

The two key problems in lattice-based cryptography are the Short Integer Solutions Problem (SIS),
from which it is possible to construct many “minicrypt” primitives such as private-key encryption, and the
Learning With Errors Problem (LWE), from which it is possible to construct many “cryptomania” primitives
such as public-key encryption and much more (such as fully homomorphic encryption). We do not define
the SIS or LWE problems here or discuss their properties in detail, and refer the reader to the survey
of Peikert [Pei16] for these things. Rather, here we note that a beautiful line of work on worst-case to
average-case reductions shows that these problems (and the cryptosystems built from them) are provably
hard on average (which implies that the cryptosystems built from them are provably secure) assuming that
γ-GapSVP with a sufficiently large polynomial approximation factor γ = γ(n) is hard in the worst case.

These hardness reductions are one of the hallmark attractive features of lattice-based cryptography, and
from a complexity standpoint give even more motivation for studying approximate GapSVP with a range of
approximation factors. Such reductions began with work of Ajtai [Ajt96], which gave a worst-case to average-
case reduction from γ-GapSVP to SIS, albeit with a large polynomial approximation factor γ. This was later
improved to γ = Õ(n) by Micciancio and Regev [MR04]. Furthermore, work of Regev [Reg05] introduced
the LWE problem and gave an efficient quantum reduction from γ-GapSVP to LWE with γ = Õ(n3/2).
Follow-up work by Peikert [Pei09] and Brakersi, Langlois, Peikert, Regev, and Stehlé [BLP+13] partially
“de-quantized” Regev’s reduction and gave an efficient classical reduction from γ-GapSVP to LWE with
γ = Õ(n2).15

15The notation Õ(f(n)) is shorthand for O(f(n) · poly(log(f(n))).
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In fact, the full story is a bit more complicated. Both SIS and LWE are parameterized by a modulus
q = q(n), SIS additionally has a size bound β = β(n), LWE additionally has an error distribution with width
parameter α = α(n), and the settings of these parameters determine the smallest value of γ for which worst-
case to average-case reductions from γ-GapSVP yield hardness. However, there are meaningful parameter
settings of SIS and LWE (in particular, ones that yield provably secure private- and public-key cryptography,
respectively) for which it suffices to take γ = γ(n) to be the factors stated above.

We first ask whether it is possible to show hardness of SIS or LWE assuming that γ-GapSVP is hard for
a smaller approximation factor γ (which is a weaker hypothesis).

Open Problem 4.1 (Hardness of SIS or LWE from smaller approximation factors). Give a classical
polynomial-time worst-case to average-case reduction from γ-GapSVP to SIS with γ = O(n1−ε) or to LWE
with γ = O(n2−ε) for some constant ε > 0. Or, give a quantum polynomial-time such reduction to LWE
with γ = O(n3/2−ε).

Barriers to hardness. Given the reductions mentioned above showing that, if γ-GapSVP is hard in the
worst-case for sufficiently large polynomial γ, then lattice-based cryptography is provably secure, it is a
natural question whether one can in fact prove such hardness. Indeed, these reductions show that if γ-
GapSVP is NP-hard for γ = n2+ε for ε > 0, then LWE and hence lattice-based cryptography is secure. This
would in turn answer a huge open question in theoretical cryptography by showing how to obtain secure
encryption solely from the assumption P ̸= NP.

Unfortunately, it seems very unlikely that a result of this form is true because of two results placing
γ-GapSVP for γ ≈

√
n in the complexity classes coAM and coNP. More specifically, work of Goldreich and

Goldwasser [GG98] shows that O(
√
n/ log n)-GapSVP is in coAM, and work of Aharonov and Regev [AR04]

shows that O(
√
n)-GapSVP is in coNP. We also note that Peikert [Pei07] showed similar results in different

ℓp norms. (These results all hold for approximate GapCVP with the same approximation factors as well.)
These are very interesting results in their own right, and contribute to our understanding of the rich

structural complexity of GapSVP (as shown in Figure 3). In the context of cryptographic applications, these
results are often considered “hardness barriers” in the sense that they (conditionally) rule out NP-hardness
of γ-GapSVP for factors γ = Ω(

√
n) including the γ = Ω(n) factors needed to show hardness of SIS or

LWE. Indeed, if, say, n-GapSVP were NP-hard, this would imply that NP ⊆ coNP and NP ⊆ coAM, and
the polynomial hierarchy would collapse.16

We also ask whether it is possible to improve our understanding of the structural complexity of approxi-
mate GapSVP and strengthen either of these “barrier” results.

Open Problem 4.2 (Improved coNP or coAM hardness). Prove that γ-GapSVP is in coNP for γ = o(
√
n)

or in coAM for γ = o(
√

n/ log n).

In particular, it would be interesting to improve the γ = O(
√
n) approximation factor for which we know

that γ-GapSVP is in coNP to γ = O(
√
n/ log n), which is the smallest approximation factor for which we

that γ-GapSVP is in coAM.
Finally, we note yet another interesting complexity result for approximate SVP with a polynomial ap-

proximation factor. Specifically, work of Sotiraki, Zampetakis, and Zirdelis [SZZ18] places n-SVP (and a
variant of SIS) in PPP, the complexity class of total search problems that are proven to be total using
pigeonhole arguments.

Protocols and reductions in super-polynomial time. Recent work by Aggarwal, Bennett, Brakerski,
Golovnev, Kumar, Li, Peters, Stephens-Davidowitz, and Vaikuntanathan [ABB+22] addresses Open Prob-
lems 4.1 and 4.2, but with a twist: it considers protocols and worst-case to average-case reductions that run
in super-polynomial time, and specifically ones that run in 2εn time for some small constant ε > 0.

16There is a subtlety in showing that n-GapSVP being NP-hard implies that NP ⊆ coNP and NP ⊆ coAM in that γ-GapSVP
for γ > 1 is promise problem and not a total problem. This subtlety is addressed in [AR04], which shows that this claim does
in fact hold.
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Figure 4: The complexity of γ-GapSVP on lattice of dimension n when algorithms, protocols, and reductions are allowed
to run in 2εn time for small constant ε > 0, with some constants and lower-order terms omitted for clarity. The results
corresponding to all of the protocols and reductions in the “Hardness Barriers” and “Cryptography” boxes are new and appear
in [ABB+22]. They save either a roughly

√
n or roughly n factor in the approximation factor compared to the corresponding

protocol or reduction run in poly(n) time; see Figure 3 for comparison. The approximation factors in the cryptography box are
sufficient to show hardness of SIS and LWE with parameters that imply private-key and public-key cryptography, respectively.

As is the case for Figure 3, increasing the approximation factor γ in the “Hardness” box, or decreasing any of the approxima-
tion factors γ in the “Hardness Barriers,” “Cryptography,” or “Algorithms” boxes while keeping the corresponding assumption
or consequence the same is an interesting open problem. This figure appears in [ABB+22].

In particular, [ABB+22] shows that running in 2εn time allows for saving a factor of roughly
√
n in the

approximation factor γ = γ(n) in the coAM and co-non-deterministic protocols for γ-GapSVP mentioned
above, in the (classical) worst-case to average-case reduction from γ-GapSVP to SIS, and in the quantum
worst-case to average-case reduction from γ-GapSVP to LWE. Additionally, [ABB+22] shows that such a 2εn

running time allows for saving a factor of roughly n in the approximation factor γ in the classical worst-case
to average-case reduction from γ-GapSVP to LWE. Finally, it gives a novel coMA protocol for γ-GapSVP
that only improves on the corresponding co-non-deterministic protocol when run in nearly exponential time
(and saves a factor of roughly n in the approximation factor compared to its own polynomial-time version
when run in this way).

See Figure 4 for a summary of the results obtained in [ABB+22] as well as algorithms and hardness
results for γ-GapSVP in the 2εn-time regime. (The best 2εn-time algorithms for γ-GapSVP use basis reduc-
tion [GN08, MW16, ALNS20] and work for approximation factors γ ≈ n1/ε. The best-known (conditional)
hardness of approximation result in the 2εn-time regime is the one from [AS18] mentioned in Theorem 2.5.)
Additionally, see Figure 3 for a comparison with approximation factors for protocols, reductions, and algo-
rithms in the polynomial-time regime.

Analogous to Open Problems 4.1 and 4.2, it is interesting to ask whether any of the approximation factors
γ in Figure 4 for γ-GapSVP in the 2εn-time regime can be improved. We specifically ask this question for
the protocols and worst-case to average-case reductions in Figure 4, since all of the corresponding results are
new.

Open Problem 4.3 (Improved protocols and reductions in 2εn). Lower one of the approximation factors
γ for the 2εn-time protocols (given in the “Hardness Barriers” box) or worst-case to average-case reductions
(given in the “Cryptography” box) in Figure 4.

Finally, motivated by the coMA protocol given in [ABB+22], it is interesting to consider whether there
is a polynomial-time coMA protocol for γ-GapSVP that achieves a better approximation factor γ than the
polynomial-time Aharonov-Regev coNP protocol, which achieves an approximation factor of γ =

√
n. (We

again note that this is not the case for the coMA protocol in [ABB+22].)

Open Problem 4.4 (A coMA protocol). Give a polynomial-time coMA protocol for γ-GapSVP on lattices
of dimension n with γ = γ(n) = o(

√
n).
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4.2 Variants of SVP and Reductions Between Them

Search-to-decision reductions. One natural question is whether it is possible to give a dimension-
preserving reduction from γ′-SVP to γ-GapSVP that preserves the approximation factor γ as much as possi-
ble. The best-known such reductions appear in work of Cheng, Hu and Pan, and Stephens-Davidowitz [Che13,
HP13, Ste16]. In particular, [Ste16] gives a reduction that, for γ ≤ 1 +O(log n/n), runs in polynomial time
and has γ′ = γn/ logn ≤ O(1). However, one might hope for a much better reduction, e.g., one that preserves
both the dimension n and approximation factor γ′ of the input search instance exactly (or with γ depending
polynomially on n and γ′).

Open Problem 4.5 (Search-to-decision reductions). Give a reduction from γ′-SVP on lattices of dimension
n to γ-GapSVP on lattices of dimension n for γ′ = poly(γ, n).

Using the reductions from γ-GapSVP for γ = poly(n) mentioned in Section 4.1, Open Problem 4.5
would in particular show security of lattice-based cryptography based on the worst-case hardness of poly(n)-
approximate search SVP. We note that trying to find better search-to-decision reductions for lattice problems
as asked for by Open Problem 4.5 is a well-known open problem. In particular, Open Problem 4.5 is similar
to [Sim22, Problems 6 and 7].

Unique SVP. Another variant of SVP is the γ-approximate unique Shortest Vector Problem (γ-uSVP)
is the variant of search SVP on lattices L such that, if v ∈ L satisfies ∥v∥ = λ1(L), then all vectors in L
linearly independent of v have norm greater than γ ·λ1(L). As for γ-GapSVP, γ-uSVP with sufficiently large
polynomial γ = γ(n) is used as a worst-case problem on which to base hardness of lattice-based cryptography.

Despite being a search problem, γ-uSVP is actually easier than γ-GapSVP in the sense that there is
an efficient, dimension-preserving reduction from γ-uSVP to γ-GapSVP [LM09]. One can also show that
(2 − ε)-uSVP in the ℓ∞ norm is NP-hard for any ε > 0. However, relatively little is known about the
hardness of γ-uSVP in the ℓ2 norm. The exact version (γ = 1) was shown to be NP-hard by Kumar and
Sivakumar [KS01], and this was improved slightly to γ = 1+1/poly(n) by Aggarwal and Dubey [AD16] (see
also [Ste16] for an alternate hardness proof with γ = 1+ 1/ poly(n)). Finally, we note that Bennett, Ganju,
Peetathawatchai, and Stephens-Davidowitz [BGPS21] recently showed hardness of γ-uSVP for all constant
γ ≥ 1 (and even superconstant γ = γ(n)) but under non-standard assumptions. (All of these hardness results
for uSVP are under randomized reductions.) However, γ-uSVP is still not known to be NP-hard even for a
fixed constant γ > 1 (say, γ = 1.01).

Open Problem 4.6 (Hardness of uSVP). Prove that γ-uSVP in the ℓ2 norm is NP-hard (under randomized
reductions) for some constant γ > 1.

Parameterized GapSVP. We conclude this section by discussing the parameterized complexity of GapSVP.
In the parameterized version of γ-GapSVP in the ℓp norm, the input consists of an integer basis B and a
distance parameter r > 0 such that k := rp is a positive integer. The task is the same as for normal
GapSVP, i.e., to decide whether the ℓp minimum distance of L(B) is at most r or greater than γr. However,
the runtimes of algorithms for parameterized GapSVP are written as functions not only of n but of k = rp.

A fixed-parameter tractable (FPT) algorithm for a problem with parameter k is one running in time
O(f(k) · poly(n)) for some (possibly fast-growing) function f(k) not depending on the input size n. The
set of problems with FPT algorithms forms the complexity class FPT, which is typically considered to be
the class of “tractable” parameterized problems. On the other hand, the canonical complexity class of
“intractable” parameterized problems is called W[1]-hard. A parameterized problem is W[1]-hard if there
is an FPT reduction from every problem in W[1] to it, and a problem is in W[1] if it is reducible via an
FPT reduction to the k-Clique problem on graphs. (The k-Clique problem is the canonical W[1]-complete
problem—it is both in W[1] and W[1]-hard.) It is a major open question whether FPT = W[1], which is the
analog of the P versus NP question in the parameterized world. See [DF99, DF13] for detailed surveys about
parameterized complexity theory.
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It was a well-known open question whether GapSVP in the ℓ2 norm was W[1]-hard (with respect to
the parameter k = rp). Indeed, it was one of the few remaining open questions in Downey and Fellows’s
classic book [DF99]. However, recent work by Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin,
Manurangsi, and Marx [BBE+21] resolved this question in the affirmative and even showed hardness of
approximation for parameterized GapSVP. Specifically, [BBE+21] showed that γ-GapSVP in the ℓp norm
is W[1]-hard (under randomized reductions) for all p > 1 and some approximation factor γ = γ(p) with
1 < γ < 2 for all such p. This was in turn strengthened in even more recent work by Bennett, Cheraghchi,
Guruswami, and Ribeiro [BCGR22], which showed W[1]-hardness of γ-GapSVP in the ℓp norm for all p > 1
and all constant approximation factors γ ≥ 1, as well as W[1]-hardness of γ-GapSVP in the ℓ1 norm for
any constant γ < 2, again under randomized reductions. Indeed, up to its use of randomness, [BCGR22]
provided a nearly complete picture of the parameterized complexity of GapSVP in ℓp norms, but still left
open the question of showing inapproximability of GapSVP in the ℓ1 norm to within arbitrary constant
factors.

Open Problem 4.7 (Parameterized inapproximability in the ℓ1 norm). Prove that for every constant γ ≥ 1,
parameterized γ-GapSVP in the ℓ1 norm is W[1]-hard (possibly under randomized reductions).

While many of the other open problems in this survey are likely very hard, Open Problem 4.7 seems to
be very much within reach; the techniques used in [BCGR22] fell just short of proving it.

Finally, we note that [BCGR22], building on work of Manurangsi [Man20], proved that parameterized
γ-GapSVP in the ℓp norm on lattices of rank n requires nΩ(k) time to solve for γ = γ(p) < 21/p under the
randomized Gap-ETH assumption.

4.3 Complexity for Cryptography

Hardness on Algebraically Structured Lattices. We next discuss algebraically structured lattices,
an important class of lattices for cryptography in that they often make cryptosystems more time- and
space-efficient. Such algebraically structured lattices include ideal and module lattices, which appear in
cryptosystems based on the Ring-SIS, Ring-LWE, and Module-LWE problems [Mic02, LPR10, LS15], and in
the NTRU cryptosystem [HPS98]. Notably, The CRYSTALS cryptosystems [ABD+17] recently standardized
by NIST are based on Module-LWE. Additionally, for sufficiently large γ there are worst-case to average-case
reductions from γ-SVP on ideal lattices to Ring-SIS and Ring-LWE, and from γ-SVP on module lattices to
Module-LWE [Mic02, LM06, PR06, SSTX09, LPR10, LS15, PRS17]. (This is analogous to the situation for
“plain” LWE, but there the reduction is from γ-GapSVP on arbitrary lattices.) Furthermore, attacks on the
cryptosystems built from these problems are typically based on algorithms for solving exact or near exact
SVP on algebraically structured lattices. (The main potential downside of using algebraically structured
lattices for cryptography is that it might be possible to exploit the added structure for cryptanalysis.)

Consider a ring of the form R = Z[x]/(p(x)) for an irreducible polynomial p(x) of degree n.17 Here n is

the degree of R. The elements of R are polynomials q(x) =
∑n−1

i=0 aix
i of degree at most n− 1 with integer

coefficients a0, . . . , an−1. An ideal I ⊆ R is an additive subgroup of R that is closed under multiplication by
elements of R. One can then construct a lattice from an ideal I ⊆ R via the coefficient embedding, which
simply maps an element q(x) =

∑n−1
i=0 aix

i ∈ I to its coefficient vector (a0, . . . , an−1)
T ∈ Zn.18 A lattice

constructed from an ideal of a ring R of this form via the coefficient embedding (or another embedding) is
called an ideal lattice. Note that applying the coefficient embedding to an ideal of degree n yields a lattice
of dimension n (the degree of an ideal is inherited from its base ring R). In particular, this implies that
computational problems on ideals of degree n (viewed as ideal lattices) are no harder than such problems on
general lattices of dimension n.

17More generally, one can take R to be (any subring of) the ring of integers OK of an algebraic number field K.
18One may also construct a lattice from an ideal using the canonical embedding, which maps q(x) to the vector

(q(α1), . . . , q(αn))T ∈ Cn, where α1, . . . , αn are the n complex roots of p(x). We have defined lattices to be real-valued,
but one may easily define lattices in complex space as well. In particular, one may extend the definition of the Euclidean norm
to complex space; the norm of x ∈ Cn is ∥x∥ =

√
x∗x = (

∑n
i=1 xixi)

1/2. The canonical embedding has some particularly
nice properties such as being able to compute the embedding of the product q1(x)q2(x) for q1(x), q2(x) ∈ R by computing the
coordinate-wise product of the embeddings of q1(x) and q2(x).
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We start by asking the natural question of whether (exact) GapSVP is NP-hard on ideal lattices corre-
sponding to some natural family of base rings, e.g., power-of-2 cyclotomics—polynomial rings of the form
Z[x]/(xn + 1) with n a power of 2—which are frequently used in cryptography.

Open Problem 4.8 (Hardness on Ideal Lattices). Prove that GapSVP is NP-hard on ideal lattices corre-
sponding to some family of base rings (e.g., power-of-2 cyclotomics).

One may also ask about hardness of approximation of GapSVP on ideal lattices. However, unlike for
general lattices, γ-GapSVP on ideal lattices is easy for γ >

√
n. Also unlike for general lattices, worst-case

to average-case reductions reduce from approximate search SVP on ideal lattices. So, the easiness of γ-
GapSVP for relatively small γ on ideal lattices does not preclude getting meaningful cryptographic hardness
from worst-case problems on ideal lattices. (See, e.g., [Ste18] for a discussion of these issues.)

One may also consider (Gap)SVP on a broader class of algebraically structured lattices called module
lattices. Let y1, . . . ,ym ∈ Rℓ for some ℓ ∈ Z+. The module they generate over R is

M :=
{ m∑

i=1

aiyi : a1, . . . , am ∈ R
}
,

and one can apply the coefficient embedding (or another embedding) coordinate-wise to vectors in M to get
an (ℓn)-dimensional lattice, which is called a module lattice. Another key parameter of M is its rank k,
which is the dimension of its span as a vector space over Q[x]/(p(x)). Note that k ≤ ℓ. When k = ℓ = 1,
M is simply an ideal of R, and so module lattices can be seen as a natural generalization of ideal lattices by
considering larger k. Moreover, SVP on module lattices with k > 1 is potentially much harder than when
k = 1. Indeed, there is some evidence for this since various highly non-trivial algorithms have been found
for (approximate) SVP on ideal lattices, but not on module lattices [CGS14, CDPR16, CDW17, DPW19].
See [LS15, AD17, MS20] for more detailed summaries.

So, it is natural to start by asking for a relaxed version of Open Problem 4.8 for module lattices of low
rank k.

Open Problem 4.9 (Hardness on Module Lattices). Prove that GapSVP is NP-hard on module lattices of
constant rank k ∈ Z+ over some family of base rings (e.g., power-of-2 cyclotomics).

Finally, we note that one can ask essentially all of the other same questions about solving (Gap)SVP on
ideal and module lattices that we have for general lattices. For example, can we lower bound the runtime of
the fastest algorithm for GapSVP on such lattices?

Number-theoretic cryptography versus lattice-based cryptography. The factoring problem and
the discrete logarithm problem are likely the two most important number-theoretic problems used in cryp-
tography. Indeed, they underlie the RSA cryptosystem and Diffie-Hellman key exchange, respectively. In
the form of the factoring problem underlying RSA, the goal is to factor a number N of the form N = pq
for large primes p ̸= q into p and q. In the discrete logarithm problem, the goal is, given a generator g of
a cyclic group G = ⟨g⟩ of order n and an element ga ∈ G for some a ∈ Zn as input, to find a. A natural
question is whether these problems can be related to lattice problems by reducing them to γ-GapSVP for
sufficiently large γ.

Open Problem 4.10 (Number-theoretic cryptography versus lattice-based cryptography). Give an efficient
classical reduction from factoring or the discrete logarithm problem to γ-GapSVP for polynomially large
γ = γ(n). In particular, show such a reduction to γ-GapSVP with γ = n2+ε for some constant ε > 0 (which
then also gives a classical reduction to LWE).

Intuitively, showing a reduction of the form in Open Problem 4.10 would prove that lattice-based cryp-
tography is at least as secure as number-theoretic cryptography even against classical adversaries. Indeed,
because the RSA and Diffie-Hellman problems efficiently reduce to the factoring and discrete logarithm prob-
lems, respectively, and because n2+ε-GapSVP efficiently classically reduces to LWE, giving a reduction of
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the form asked for in Open Problem 4.10 would imply an efficient reduction from the RSA problem or Diffie-
Hellman problem to LWE. (We note that quantum reductions from factoring and the discrete logarithm
problem of the form asked about in Open Problem 4.10 trivially exist because of Shor’s algorithm [Sho94].)

Early research on prime number lattices (which eventually led to the original NP-hardness proofs for
GapSVP!) happened in large part due to attempts at showing a reduction from factoring to lattice problems.
Recently, Schnorr [Sch21a, Sch21b] made additional attempts to show results roughly along these lines—in
fact, with the goal of then solving the output lattice problem quickly, and hence breaking RSA—but they
were not successful.

Hardness of approximation relevant for cryptography. Next, we state a very natural problem:
showing that there is no efficient algorithm for γ-GapSVP with γ large enough that it reduces to LWE under
a standard assumption. This would imply that there is no efficient algorithm for LWE, and hence give some
provable security for much of lattice-based cryptography.

Open Problem 4.11 (Super-polynomial hardness of LWE). Prove that there is no (possibly randomized
or quantum) polynomial-time algorithm for n3/2+ε-GapSVP for some constant ε > 0 (or for LWE) under a
standard complexity assumption.

We note that Open Problem 4.11 is in some sense a duplicate of the hardness of approximation result
in Open Problem 2.3, but we view the regimes (which ask for hardness of γ-GapSVP with γ = nε and
γ = n3/2+ε, respectively) as quite different. Indeed, as mentioned in the discussion around Open Problem 2.3,
results showing hardness of γ-GapCVP and of γ-GapSVP in the ℓ∞ norm for γ = nε under a plausible
hardness assumption already exist. More importantly, these and other hypothetical hardness proofs for
these problems with γ = nε for small ε > 0 do not need to bypass the “hardness barrier” results discussed
in Section 4.1. Additionally, Open Problem 4.11 explicitly asks to rule out quantum algorithms and not just
classical algorithms.

Finally, we conclude with what we believe to be the “holy grail” problem of lattice complexity, which asks
to show exponential fine-grained hardness of GapSVP as in Open Problem 2.6 and hardness of approximation
of GapSVP as in Open Problem 4.11 simultaneously and unconditionally. In fact, because [ABB+22] gives
a 2εn-time worst-case to average-case reduction from Õ(n)-GapSVP to LWE with parameters that allow for
constructing public-key cryptography (see Figure 4), and, because we are asking for an exponential runtime
lower bound on γ-GapSVP, it suffices to show hardness with γ = n1+ε (rather than γ = n3/2+ε as in Open
Problem 4.11).

Open Problem 4.12 (The holy grail). Prove unconditionally that there is no (possibly randomized or
quantum) 2cn-time algorithm for n1+ε-GapSVP for some explicit constants c, ε > 0.

Resolving Open Problem 4.12 would imply strong, unconditional security of LWE with cryptographically
relevant parameters, and would therefore prove strong security of lattice-based cryptography. However,
resolving Open Problem 4.12 would also mean proving a statement much stronger than P ̸= NP, and so it is
unlikely to happen anytime in the near future. But, it’s good to have dreams.
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hypotheses. In M. Bläser and B. Monmege, editors, STACS. 2021. 7

[BPT22] H. Bennett, C. Peikert, and Y. Tang. Improved hardness of BDD and SVP under Gap-(S)ETH.
In ITCS. 2022. 7, 11

[CDPR16] R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short generators of principal ideals
in cyclotomic rings. In EUROCRYPT. 2016. 17

[CDW17] R. Cramer, L. Ducas, and B. Wesolowski. Short Stickelberger class relations and application to
Ideal-SVP. In EUROCRYPT. 2017. 17

[CGS14] P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale. ETSI/IQC 2nd
Quantum-Safe Crypto Workshop, 2014. 17

[Che13] K. Cheng. Some complexity results and bit unpredictable for short vector problem. Cryptology
ePrint Archive, Paper 2013/052, 2013. https://eprint.iacr.org/2013/052. 15

[CN98] J. Cai and A. Nerurkar. Approximating the SVP to within a factor (1 + 1/dimε) is NP-hard
under randomized reductions. J. Comput. Syst. Sci., 59(2):221–239, 1999. Preliminary version
in CCC 1998. 5, 11

[Cop01] D. Coppersmith. Finding small solutions to small degree polynomials. In Cryptography and
Lattices, International Conference. 2001. 1

[CS99] J. Conway and N. J. A. Sloane. Sphere packings, lattices, and groups. Springer, 1999. 1

[CW09] Q. Cheng and D. Wan. A deterministic reduction for the gap minimum distance problem. IEEE
Trans. Inf. Theory, 58(11):6935–6941, 2012. Preliminary version in STOC 2009. 10

[Dad12] D. Dadush. Integer Programming, Lattice Algorithms, and Deterministic Volume Estimation.
Ph.D. thesis, Georgia Institute of Technology, 2012. 1

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science.
Springer, 1999. 15, 16

[DF13] R. G. Downey and M. Fellows. Fundamentals of Parameterized Complexity. Texts in computer
science. Springer, 2013 edition, 2013. 15

20

https://blog.simons.berkeley.edu/2020/05/fine-grained-hardness-of-lattice-problems-open-questions/
https://blog.simons.berkeley.edu/2020/05/fine-grained-hardness-of-lattice-problems-open-questions/
https://eprint.iacr.org/2013/052


[Din02] I. Dinur. Approximating SVP∞ to within almost-polynomial factors is NP-hard. Theor. Comput.
Sci., 285(1):55–71, 2002. 5

[DMS99] I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum distance of a
linear code. IEEE Trans. Inf. Theory, 49(1):22–37, 2003. Preliminary version in FOCS 1999. 10
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