
Noisy Radio Network Lower Bounds
Via Noiseless Beeping Lower Bounds

Klim Efremenko∗

Ben-Gurion University

Gillat Kol†

Princeton University

Dmitry Paramonov‡

Princeton University

Raghuvansh R. Saxena§

Microsoft

Abstract

Much of today’s communication is carried out over large wireless systems with differ-
ent input-output behaviors. In this work, we compare the power of central abstractions
of wireless communication through the general notion of boolean symmetric f -channels:
In every round of the f -channel, each of its n parties decides to either broadcast or not,
and the channel outputs f(m), where m is the number of broadcasting parties.

Our first result is that the well studied beeping channel, where f is the threshold-1
function, is not stronger than any other f -channel. To this end, we design a proto-
col over the f -channel and prove that any protocol that simulates it over the beeping
channel blows up the round complexity by a factor of Ω(log n). Our lower bound tech-
nique may be of independent interest, as it essentially generalizes the popular fooling
set technique by exploiting a “local” relaxation of combinatorial rectangles.

Curiously, while this result shows the limitations of a noiseless channel, namely,
the beeping channel, we are able to use it to show the limitations of the noisy version
of many other channels. This includes the extensively studied single-hop radio net-
work model with collisions-as-silence (CAS), which is equivalent to the f -channel with
f(m) = 1 iff m = 1.

In particular, our second and main result, obtained from the first, shows that con-
verting CAS protocols to noise resilient ones may incur a large performance overhead,
i.e., no constant rate interactive code exists. To this end, we design a CAS protocol
and prove that any protocol that simulates it over the noisy CAS model with correlated
stochastic noise, blows up the round complexity by a factor of Ω(log n). We mention
that the Ω(log n) overhead in both our results is tight.

∗klimefrem@gmail.com
†gillat.kol@gmail.com
‡dp20@cs.princeton.edu
§raghuvansh.saxena@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 174 (2022)

mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:dp20@cs.princeton.edu
mailto:raghuvansh.saxena@gmail.com

1 Introduction

As wireless systems have become massively popular, theoretical models for such systems have
become the topic of numerous works. In this paper we study the relative power of central
models abstracting broadcast communication. To this end, we use the notion of symmetric
boolean-valued f -channels.

For a function f : N∪{0} → {0, 1}, the f -channel is a synchronous channel that, in every
round, allows any number of parties to broadcast a bit. The round ends with all participants
receiving the bit f(wt(x)), where xi is the bit broadcast by party i, and wt(x) is the Hamming
weight of x ∈ {0, 1}∗. It is useful to think of parties with xi = 1 as broadcasting, and of
parties with xi = 0 as silent. The output of the channel is then a function of the number of
broadcasting parties.

Given two such channels f and g, we say that the f -channel is at least as strong as (or
stronger than) the g-channel if any protocol over the g-channel can be simulated by a protocol
over the f -channel with only a constant multiplicative blowup in the number of rounds. The
f -channel is strictly stronger than the g-channel if it is stronger, but not vice-versa. The two
channels are equivalent if each is at least as strong as the other. We note that two channels
may be incomparable, meaning that neither is stronger than the other.

Of special interest to us are binary versions of two well-studied channels, the single-hop
radio networks model and the beeping model:

The beeping model. In an n-party protocol over the binary beeping model [CK10],
denoted here beeping, the parties interact in synchronous rounds. In every round, each
party can decide to either beep (emit a signal) or not to beep (stay silent). If at least one
party beeps, all parties hear a beep, otherwise, all parties hear silence1. The beeping model
received a lot of attention in recent years, largely as it captures the simplest possible com-
munication primitive, a detectable burst of ‘energy’, making it very well suited for describing
certain wireless networks as well as signal-driven biological systems2. It is easy to see that
the beeping model is essentially the f -channel for f(m) = 1[m ≥ 1] (the threshold[1]

function).

The cas model. In a round of an n-party protocol over the binary collision-as-silence
single-hop radio networks model [CK85], each party can choose to either broadcasts a bit or
stay silent. In rounds where exactly one party broadcasts, his bit is received by all parties.
Otherwise (if all parties were silent or if at least two parties broadcast), a special ⊥ symbol

1In the original definition of beeping by [CK10], the parties are woken up by an adversary. In this paper
we use a relaxed definition where all parties are woken up at the beginning of the protocol. Since we show
impossibility results, this relaxation of the model only strengthens our results.

2For example, cells communicating by secreting proteins and other chemical markers that are diffused
and sensed by neighboring cells, or fireflies reacting to flashes of light from nearby fireflies. Also see, e.g.,
[AAB+11, NB15].

2

is received by all3. While the above description of the channel does not fit our definition
of an f -channel, as the channel’s inputs and output are non-binary, a simple time-sharing
argument shows that it is equivalent to the f -channel for f(m) = 1[m = 1], and we denote
this channel cas for short4.

The cas vs. beeping problem. It is easy to see that cas is at least as strong as
beeping, as a beeping round can be simulated by a cas round: Parties broadcast in the
cas round if they broadcast in the beeping round, but there is an additional “dummy”
party that broadcasts with them.5 Observe that the output of the cas round is 1 iff the
dummy is the only one to broadcast, which happens iff the value of the beeping round is 0.
What about the other direction?

Problem 1.1. Is cas strictly stronger than beeping?

The noisy cas problem. So far in our discussion of the cas model, we made the strong
assumption that the parties utilizing the channel receive the correct output bit in every
round. We now switch gears and consider the noisy version of this channel, where this
assumption is relaxed. For a function f and ε > 0, the parties utilizing the (correlated)
ε-noisy f -channel, received the correct output bit f(wt(x)) with probability 1− ε, and with
probability ε they receive the opposite bit. It is easy to see that cas is at least as strong as
noisy cas. A natural question is again about the reverse direction:

Problem 1.2. Is cas strictly stronger than noisy cas?

1.1 Our Results

We settle both of the above problems in the affirmative. While seemingly very different,
we show that Problem 1.1 and Problem 1.2 are actually tightly connected, and exploit this
connection.

3The collision-as-silence model is, perhaps, the most common single-hop radio networks model in the
literature. Another very popular model is the collision detection model, where collision and silence are
perceived as different symbols. Our results are stated for the collision-as-silence model, but apply to the
collision detection model as well.

4To see the equivalence, simulate a round of the original non-binary channel with three cas rounds: In
the first cas round, parties broadcast (i.e., their xi is 1) if they broadcast a 0 or a 1 in the original round.
In the second round, parties broadcast only if they broadcast 0 in the original round. In the third round,
parties broadcast only if they broadcast 1 in the original round. A simulation in the other direction is also
possible.

5Even without an extra dummy party, a beeping round can be simulated by constantly many cas rounds.

3

1.1.1 No f-channel is Weaker than beeping

Theorem 1.3 (see formal statement in Theorem 4.1) shows that no non-trivial f -channel is
weaker than beeping.6 A positive answer for Problem 1.1 is obtained from Theorem 1.3 as
a special case.

Theorem 1.3 (Informal). Let f : N∪{0} → {0, 1} be a function such that f is not constant
on N. Then, for all n > 0, there exists an n-party protocol Π over the f -channel, such
that any protocol Π′ that computes the same function as Π over the beeping model has
Ω(|Π| log n) communication rounds.

Here, |Π| denotes the worst-case number of rounds of Π. We mention that the Ω(log n)

blowup in the number of rounds suggested by Theorem 1.3 is tight, as for many f -channels
(e.g., cas), O(log n) beeping rounds suffice in order to compute f (see Section 1.1.3)7.
We also mention that the condition that f is not constant on N cannot be replaced by
the condition that f is a non-constant function. The reason is that, as remarked before,
the beeping channel is the threshold[1]-channel, but threshold[1] is not a constant
function (note that it is constant on N).

Technique. Proving Theorem 1.3 requires proving a lower bound in the beeping model.
Our lower bound proof is inspired by the classical fooling set technique for proving deter-
ministic, two-party communication complexity lower bounds. We mention though that the
fooling set technique completely breaks when applied to the beeping model, as this technique
crucially assumes that, at any point in the execution of the protocol, the set of possible in-
puts constitutes a combinatorial rectangle. While this is not the case for the beeping model,
we show that a “local” version of this method can be made to work for this model (and even
handle randomized protocols8), in a sense made precise in Section 2. We believe that our new
technique will find other applications. A detailed overview of our technique can be found in
Section 2.

1.1.2 Noisy cas is Strictly Weaker than cas

While Theorem 1.3 implies that cas is strictly stronger than beeping, we observe that
beeping is at least as strong as noisy cas (we sketch this argument in Section 1.1.3 and
prove it in Theorem 5.2). A direct corollary of the above is the following Theorem 1.4 (see
formal statement in Theorem 5.1) that shows that cas is strictly stronger than noisy cas,
answering Problem 1.2 (which was the original motivation for this paper) in the positive.

6We note that, as the f -channel’s output is only a function of the number of broadcasting parties (and
is oblivious to the number of silent parties), some channels, like the and channel, cannot be represented as
f -channels.

7There are, however, specific f -channels that require a substantially greater overhead when simulated by
beeping. For example, in [BKOT19], it is shown that the parity function, parity(m) = m mod 2, requires
Ω(n1/6) beeping rounds. Clearly, parity requires only 1 round over the parity-channel.

8See [MSY16] for another (unrelated) randomized lower bound using the fooling set technique.

4

Theorem 1.4 (Main, Informal). Let ε ≥ 0. For all n > 0, there exists an n-party protocol Π

over the cas channel, such that any n-party protocol Π′ that computes the same function
as Π over the ε-noisy cas channel has Ω(|Π| log n) rounds.

We mention that understanding whether cas protocols can be converted to noise resilient
ones with small overhead, was the original motivation for this work. As is typically the case
for (classical or interactive) error correcting codes, a cas protocol Π can be made resilient
by simply repeating every round O(log n) times and taking majority (at least as long as Π is
not too long, say, |Π| ≤ poly(n)). This shows that the Ω(log n) round blowup in Theorem 1.4
is tight.

We mention that our argument showing that beeping is at least as strong as noisy
cas9, generalizes to other noisy f -channels (e.g., to all noisy threshold[k]-channels with
k ≥ 2). For such fs, a separation of the f -channel and the noisy f -channel, analogue to the
one in Theorem 1.4, is also implied by Theorem 1.3. We remark however that there may be
functions f that satisfy the condition of Theorem 1.3 for which the noisy f -channel is strictly
stronger than beeping and the analogue of Theorem 1.4 may not hold10. Characterizing
the set of functions f for which the analogue of Theorem 1.4 holds is an intriguing problem.

1.1.3 beeping is At Least As Strong as Noisy cas

We next sketch an easy argument showing that a noisy cas round can be simulated by
constantly many beeping rounds, showing that Theorem 1.4 can be obtained as a corollary
of Theorem 1.3: Randomly partition the parties into two roughly equal sets [n] = S1 ∪ S2.
For i ∈ {1, 2}, in the ith beeping round, the only beeping parties are parties in Si that
broadcast in the noisy cas round. Now, if no party broadcasts in the noisy cas round, then
no beep is heard in either of the beeping rounds. If exactly one party broadcasts in the
noisy cas round, then a beep is heard in exactly one of the two beeping rounds. Else, if
two or more parties broadcast in the noisy cas round, then with probability at least 1/2 a
beep is heard in both beeping rounds (as the probability that all broadcasting parties beep
in the same round is at most 1/2).

By simply repeating the above simulation, we can simulate an ε-noisy cas round using
O(log(1/ε)) beeping rounds. Additionally, by repeating the above simulation in a “binary
search”-like manner, we can also simulate one round of noiseless cas (ε = 0) using O(log n)

beeping rounds11. This implies that the Ω(log n) blowup in the number of rounds in The-
orem 1.3 is tight for the cas channel. We mention that similar simulation protocols can be
obtained for channels other than cas (e.g., threshold channels).

9We mention that cas is equivalent to the threshold[2]-channel (see Theorem 5.3).
10A good candidate for such a function is the parity function. Owing to the existence of good linear error

correcting codes, the noisy parity-channel may be as strong as the parity-channel.
11In more detail, if exactly one of the first two beeping rounds beeps, say, round i ∈ {1, 2}, we wish to

know if at least two of the parties in Si broadcast in the cas round. To do that, we repeat the simulation
with only the parties in Si participating.

5

1.2 Related Work

1.2.1 Interactive Coding

Interactive error correcting codes encode interactive communication protocols designed to
work over noiseless channels to protocols that also work over noisy channels. The study
of interactive codes was initiated by a seminal paper of Schulman [Sch92] that considered
two-party protocols, and these were also studied by many follow-up works. Interactive
codes for multi-party distributed channels received quite a bit of attention over the last few
years. These include codes for peer-to-peer channels [RS94, JKL15, HS16, ABE+16, BEGH16,
GK19, GKR19] and codes for various wireless channels [CHHZ17, EKS18, CHHHZ19, EKS19,
EKS20, AGL20, EKPS21a, EKPS21b].

We next compare Theorem 1.4 to the most relevant prior work on interactive coding over
wireless channels.

Relation to [EKS18] (interactive coding over cas). [EKS18] shows that any “simple”
protocol Π over cas can be compiled to a protocol Π′ that works over ε-noisy cas, while
only incurring a constant multiplicative overhead in the number of rounds. Here, “simple”
means that the protocol is non-adaptive (a.k.a, oblivious or static). That is, in every round of
Π exactly one party broadcasts and, moreover, the identity of this party is fixed in advance
(thus, it is independent of the received transcript, channel noise, and inputs)12.

As adaptivity can hugely boost the power of wireless channels and is widely used, in this
paper we revisit the [EKS18] result for general (possibly adaptive) protocols. Theorem 1.4
proves that the simulation scheme of [EKS18] cannot be extended to work for general pro-
tocols.

We point out that the [EKS18] protocol works for both the correlated noise model, like
the one assumed by this paper, and the independent noise model, where each party gets a
noisy bit with probability ε, independently from the others. The correlated and indepen-
dent noise models abstract different phenomena – the correlated noise model describes the
situation where there is global interference (e.g., global network problems due to weather,
contaminated environment, etc.), while independent noise is better suited to describe situa-
tions where the noise source is local. We also mention that the interactive coding problems
over these two noise models are incomparable: On the one hand, with correlated noise all
parties have the same received transcript, but on the other hand, if a symbol is corrupted by
noise, none of the parties receive the correct symbol and can warn the others. Whether or
not an impossibility result similar to our Theorem 1.4 can be proved for independent noise
is a great open problem.

12Note that while Π is assumed to be non-adaptive, the simulation protocol Π′ constructed by [EKS18] is
adaptive. However, Π′ also works in the model where if it is not the case that exactly one party broadcasts,
an adversary is controlling the received symbols.

6

Relation to [EKS20] (interactive coding over beeping). [EKS20] studies the beep-
ing channel under correlated noise and shows that an Ω(log n) overhead is required to convert
a protocol to a noise resilient one. In other words, it shows that Theorem 1.4 also holds
for beeping vs. ε-noisy beeping. To this end, [EKS20] shows a lower bound in the noisy
beeping model. In contrast, in this paper we prove a lower bound for the noiseless beeping
model, which is a harder task.

We note however, that our work does not reproduce the main result of [EKS20], as the
protocol that we show is costly over the noiseless beeping channel is not known to be more
expensive over the noisy beeping channel. Rather, we view the result of [EKS20] as com-
plementing ours: Recall that beeping is the threshold[1]-channel, and that, as mention
in Section 1.1.2, our proof shows that Theorem 1.4 holds for every threshold[k] channel
for k ≥ 2. Thus, putting these results together, we get an interactive coding impossibility
result for all threshold[k]-channels.

We remark that while cas is at least as strong as beeping, the interactive coding ques-
tions for these models are incomparable. The reason is that the additional power of cas can
be used by both the noisy and noiseless cas channels. More generally, given two commu-
nication models, even if the first is at least as strong as the second, the interactive coding
questions for these models are incomparable.

Finally, we mention the result of [HMP20], that also studies the beeping model under
correlated noise and shows that the Consensus problem can be made noise resilient. Note
however, that in their model, the noise may only corrupt beeps to be received as silence, but
not vice-versa.

Relation to [EKS19] and [AGL20] (interactive coding over general networks).
[EKS19] and [AGL20] study noisy wireless multi-hop networks (general graph topologies
as opposed to the single-hop clique topology). [EKS19] gives an impossibility result for
interactive coding over cas with independent noise, and [AGL20] (see also [CMT17]) has an
impossibility result for interactive coding over beeping with independent noise (although
their main result is an upper bound). While lower bounds are harder to prove for the
single-hop networks than for arbitrary topology of our choice, our result is incomparable
to [EKS19], as the noise model is different. Characterizing the set of topologies for which
Theorem 1.4 holds is an interesting problem.

Theorem 1.3 gives a lower bound for the noiseless beeping channel. We next compare
it to the related result of [BKOT19]:

Relation to [BKOT19] (noiseless beeping lower bounds). [BKOT19] uses circuit
lower bound techniques to show that protocols over the beeping model (and other related
models) must have at least Ω(nα) rounds, for a constant α > 0, to compute certain boolean
functions (e.g., the parity function). This result is incomparable to Theorem 1.3. As cas
is the 1[m = 1]-channel and since [BKOT19] does not give lower bounds for the 1[m = 1]

7

function, it cannot be used to derive Theorem 1.4. Furthermore, the technique of [BKOT19]
is not “fine enough” to prove Theorem 1.3 for cas (recall from Section 1.1.3 that the Ω(log n)

overhead in Theorem 1.3 is tight for cas).

1.2.2 Broadcast Lower Bounds

Our work is also related to prior work proving lower bounds for (noiseless) broadcast channels.

Lower bounds for noiseless network channels. In this work we consider single-hop
topologies (in particular, the topology and the number of parties is known to everyone). We
also allow the parties to have unique ids, and assume that the parties are always available
to carry out the protocol (e.g., no wake-ups or Byzantine failures). Since this setting is
easier from an algorithm design perspective, our (noiseless) lower bounds carry over to the
harder settings for which prior work in distributed computing showed lower bounds (see,
e.g., [CMS01, New14]).

Multiple access channels. We mention that our definition of f -channels is a special case
of multiple access channels in information theory (for a great survey see [GGLR05]). A
general multiple access channel allows each party i ∈ [n] to communicate a symbol from the
input alphabet Ii. The output of the channel is a symbol from a, possibly different, output
alphabet O, that is computed from the n communicated symbols via a probabilistic function.
Our (noiseless) f -channels have I1 = · · · = In = O = {0, 1} and the function for computing
the output is deterministic and only depends on the number of 1 bits sent by the parties.

We also mention that there are known connections between coding over multiple access
channels and counterfeit coin problems (a.k.a., weighing problems) [Can64, SS63, ER63,
Lin64, Lin65, Lin71, Lin75, Bsh12, MK13, KKP22, to cite a few]. In the basic counterfeit
coin problem, we are given n coins, some of which are heavy (defective), while the remaining
are light (legal). We know the weight of both the legal and the defective coins and have
access to a spring scale that can be used to weigh any subset of the coins. It can be shown
that any weighing scheme for the counterfeit coin problem can be converted to a signature
coding scheme for the multiple access adder channel, see, e.g., Section 7.1 in [GGLR05].

2 Overview

We now provide a detailed overview of the proof of Theorem 1.3. For this, we have to
show that the beeping channel is strictly weaker than the f -channel, for any function
f : N ∪ {0} → {0, 1} that is not constant on N. As f is not constant on N, there exist
a < b ∈ N such that f(a) 6= f(b). Using these, we define the following problem that can
be solved easily over the f -channel and show later that solving it over the beeping channel
takes many more rounds.

8

The hard function. We divide the n players into k sets of n/k players each. For con-
creteness, the reader may assume n = k2 although we shall not heavily rely on this relation
and only use the fact that k is some polynomial in n. Our hard function is the (a, b)-weight
problem where each of the n players has an input bit and the goal is to find out for each
group j, whether group j has exactly a players with input 1 (in which case the output for this
group should be 0) or exactly b players with input 1 (in which case the output for this group
should be 1). The parties can output anything for a group where the number of players with
input 1 is different from a and b.

Note that there exists a k round protocol for the (a, b)-weight problem over the f -channel:
Simply go over all j ∈ [k] and have people in group j broadcast in round j. To finish the
proof, we are going to argue an Ω(k · log(n/k)) lower bound for any protocol solving this
problem over the beeping channel. For the purposes of this overview, we restrict attention
to the case a = 1 and b = 2 as a similar proof works for other values of a and b.

2.1 Fooling Sets

Consider a deterministic two-party communication protocol. A transcript π of the protocol
is the concatenation of the messages sent by the parties in all rounds of the protocol. We
say that a transcript π is realized on the input (x, y), if, when Alice has the input x and
Bob has the input y, the transcript of the protocol is π. It is well known that the set of
inputs on which π is realized is a combinatorial rectangle: If π is realized on (x, y) and on
(x′, y′), then it is also realized on (x′, y) and (x, y′). If the protocol has a short output, it
can be assumed that its output is a function of its transcript. It follows that if the protocol
correctly computes a function f with a short output, and f(x, y) = f(x′, y′), then either the
transcript realized on input (x, y) is different from that realized on input (x′, y′), or we also
have f(x, y) = f(x′, y) = f(x, y′).

This simple fact can be used to get lower bounds on the length of deterministic com-
munication protocols computing a function as follows: Consider for example a protocol for
computing the equality function f(x, y) = 1[x = y]. By definition, we have f(x, x) = f(x′, x′)

for all x, x′ but f(x, x) 6= f(x, x′) for all x 6= x′. Thus, from our conclusion in the previous
paragraph, it must be the case that the transcript realized when the inputs for the parties
are (x, x) is different from that realized when the inputs are (x′, x′) for all x 6= x′. This
means that there must be many different transcripts, implying the protocol must be long.

The above technique for proving lower bounds on the length of deterministic protocols
computing a function f is called the fooling set technique. It works by proving that f has a
large fooling set, where a fooling set for f is a subset of the inputs with the same f value,
such that for every two different inputs (x, y) and (x′, y′) in the set, at least one of (x′, y)

and (x, y′) has a different f value. In the above example for the equality function, the set of
all inputs of the form (x, x) forms a fooling set.

Even though we presented the technique for two party communication protocols, the same
arguments can also be extended to multi-party protocols with a fixed order of speaking. In

9

this context, if there are n parties, we get that if a protocol correctly computes a function
f , and f(x1, x2, · · · , xn) = f(x′1, x

′
2, · · · , x′n), then either the transcript realized when the

inputs to the parties are (x1, · · · , xn) is different from that realized when the inputs are
(x′1, · · · , x′n), or we have f(x1, · · · , xn) = f(x′′1, · · · , x′′n) for all i ∈ [n] and x′′i ∈ {xi, x′i}. We
shall call such inputs x′′ hybrids.

The reason these arguments work for the above channels is that for all these channels,
the set of inputs that lead to any given transcript is a combinatorial rectangle (like in the
case of the two-party channel). However, for the beeping channel this is not the case. For
example, if we consider a one round protocol where the parties simply beep the first bit of
their input, then the set of inputs that lead to the transcript 0 is a combinatorial rectangle,
but the set of inputs that lead to the transcript 1 is the complement of this rectangle, and
may not itself be a rectangle. Thus, fooling set arguments in general do not work for the
beeping channel.

Despite the fact that these fooling set arguments do not hold for the beeping channel,
we shall assume for now that they do (that is, that it suffices to demonstrate a large fooling
set), and present our lower bound under this assumption. We additionally mention that
these arguments, and also the lower bound for the equality function above, hold only for
deterministic protocols. Later, we shall extend them to randomized protocols.

2.2 Lower Bounds Assuming Fooling Sets

In this subsection, we present a proof of our lower bound using fooling sets. Even though
arguments based on fooling sets do not work for the beeping channel, the ideas present will
be instructive and will form an important part of the proof.

2.2.1 Lower Bound Against Deterministic Protocols

We now present a fooling set for the (1, 2)-weight problem. Assuming the arguments above,
this implies a lower bound on the length of a protocol over the beeping channel that
solve the (1, 2)-weight problem. Our fooling set has all the inputs (x1, · · · , xn) that have
exactly 1 player with the input 1 in each of the k groups. To see why any two such inputs
must have a different transcript (equivalently, why these inputs form a fooling set), note that
f(x1, · · · , xn) is the same for all such inputs and also, for any two distinct inputs (x1, · · · , xn)

and (x′1, · · · , x′n), there must exist one group (out of the k groups) such that these two inputs,
when restricted to this group, are different.

Without loss of generality, let this group be the first group (the group of players [k]),
and, as the other cases are similar, assume that:

(x1, · · · , xk) = (1, 0, 0, · · · , 0︸ ︷︷ ︸
k−1 times

) (x′1, · · · , x′k) = (0, 1, 0, · · · , 0︸ ︷︷ ︸
k−2 times

). (1)

10

Defining:
(x′′1, · · · , x′′k) = (1, 1, 0, · · · , 0︸ ︷︷ ︸

k−2 times

), (2)

we see that it is a hybrid as described in the previous section but the correct output on the
hybrid input (x′′1, · · · , x′′n) is different from that on (x1, · · · , xn). This finishes the proof that
any two such inputs must have different transcripts. Thus, the number

(
n
k

)k of such inputs
is also a lower bound on the number of distinct transcripts. As these many transcripts need
a protocol of length at least k · log n

k
, we are done.

2.2.2 Lower Bound Against Randomized Protocols

We now describe how to extend the lower bound to work against general randomized proto-
cols while continuing our assumption that fooling sets based arguments work for the beeping
channel. For this, we first use Yao’s minimax theorem to get that it is enough to define a
“hard” distribution D over the inputs for the (1, 2)-weight problem such that any determin-
istic protocol for this problem fails on a large fraction of inputs from D.

The hard distribution D. We work with the following hard distribution: First, for each
group j ∈ [k], we sample a uniformly and independently random bit to decide whether this
group will have one or two players with input 1. Then, based on the output of this bit, we
uniformly and independently sample a subset of players in this group of size 1 or 2 and give
them the input 1. All the remaining players in the group get the input 0.

The proof. Recall that we need to show that any deterministic protocol is incorrect on a
set of inputs that has a high probability according to D. Also recall that, if any two inputs
in a fooling set give rise to the same transcript, then the protocol is incorrect on at least one
of the possible hybrids formed by those inputs. Thus, if we can show that, unless a protocol
has Ω(k · log(n/k)) rounds, the number of inputs in a fooling set (to be specified later) that
give rise to the same transcript is so large that the probability of incorrect hybrids generated
by these inputs is a constant, we will have our randomized lower bound. We show this next
in the following two steps:

1. Showing that the number of incorrect hybrids is large: Fix a short, correct
protocol and let π be a typical transcript. Define the set Xall to be the set of all
inputs for which the output induced by π is correct, regardless of whether or not they
realize π. Also, define X true ⊆ Xall to be the set of all inputs in Xall that also realize
the transcript π. Observe that all inputs in Xall are equally likely under our hard
distribution D.

Next, observe that as π is a typical transcript of a correct protocol that has length
o(k · log(n/k)), X true has at least a

(
n
k

)−o(k) fraction of the inputs inXall and the output
of π says that at least Ω(k) of the groups have only one player with the input 1. Let

11

Ones ⊆ [k] be this set of groups. As for all j ∈ Ones, there are at most n
k
choices for

the inputs of players in group j in Xall, the above conditions imply that for at least
Ω(k) of the groups in Ones, the number of possible inputs for the players in this group
amongst all the inputs in X true is at least M =

(
n
k

)1−o(1).

For any such input x ∈ X true and any such group, one can take any of the at least
M − 1 possible choices of the inputs of the players in this group that are different
from x on this group, and define a hybrid as in Eqs. (1) and (2),13 that has the same
transcript but for which the output is incorrect. Moreover, as Eq. (2) has exactly two
players with input 1, it can be formed in exactly two ways. Conclude that the number
of incorrect hybrids is at least Ω(k ·M · |X true|).

2. Showing that the probability of incorrect hybrids is large: We now use the
lower bound on the number of incorrect hybrids to get a lower bound on the probability
of incorrect hybrids. For this, note from the definition of the distribution D that the
probability of an input x is proportional to

(
O
(
n
k

))|Ones(x)|, where Ones(x) is the set
of groups that have exactly one player with the input 1 in x. As the number of such
groups is one smaller in each hybrid, we get that the probability of incorrect hybrids
relative to the probability of correct inputs is at least Ω

(
kM
n

)
� 1 by our choice of k

and M . Thus, the protocol errs with high probability.

2.3 Removing the Fooling Set Assumption

The only problem with the argument above is that the fooling set argument does not work
for the beeping channel, i.e., it is not true that if (x1, · · · , xn) and (x′1, · · · , x′n) give rise to
the same transcript, then any hybrid input (x′′1, · · · , x′′n), where x′′i ∈ {xi, x′i} for all i ∈ [n]

will also give rise to the same transcript. However, note from the foregoing subsection that
we never actually use the full power of the fooling set argument, restricting attention only
to hybrids that differ in the inputs of exactly one of the n players from one of the original
inputs (Eqs. (1) and (2)). Specifically, each hybrid only differs on one coordinate from the
input x ∈ X true it was obtained from.

Such a strong condition on the types of hybrids that we use in our argument allow us
to use the following trick to remove the fooling set assumption: Recall that the beeping
channel, in every round, computes and sends the logical OR of the bits sent by the players
in this round. As the hybrids we work with differ in exactly one player, say player i, from
one of the original inputs, the only way this hybrid can lead to a different transcript is if
there exists a round such that player i is the only player beeping (broadcasting a 1) in that
round.

13In the hybrid, the inputs of the players that are not in the chosen group are the same as their inputs in
x. As for players in the chosen group, the player that has a 1 input in x has a 1 input in the hybrid, but
there is an additional player with a 1 input.

12

This means that, unless the protocol has more than Ω(k · log(n/k)) rounds, there are at
most O(k · log(n/k)) players i such that changing the input of player i while taking a hybrid
can affect the transcript. Thus, we can simply remove these “bad” players from the O(k ·M)

players we take hybrids over and make the argument work.

Geometrical interpretation. We finish by also explaining this weaker form of the fooling
set arguments in terms of combinatorial rectangles. Recall that the general fooling set
argument works when the set of inputs X that lead to any given transcript is a combinatorial
rectangle. An equivalent way to express the fact that X is a combinatorial rectangle is that
for any x = (x1, · · · , xn) ∈ X and i ∈ [n], the single-dimensional projection of X on to
coordinate i is equal to the intersection of X with the line ∀j 6= i : Xj = xj.14 What
our weaker fooling set argument shows is that for any x ∈ X, this holds for most of the
coordinates i. Precisely, we show that it holds for all but O(k · log(n/k)) values of i.

Put another way, even if we do not get combinatorial rectangles exactly, we do get a
“local” version of them, that allows us to take hybrids as long as we do not change a lot of
coordinates, and do not change coordinates corresponding to “bad” players. Our fooling set
argument is strong enough to work with this weaker guarantee.

3 Models

Notation. We use 1[E] to denote the indicator random variable for the event E. For a
string s, we use |s| to denote the length of s. For i ∈ [|s|], let si denote the ith coordinate
of s and s<i, s≤i denote the prefix of the first i− 1 and i coordinates of s, respectively. For
x ∈ {0, 1}∗, we denote the Hamming weight of x by wt(x) = |{i ∈ [|x|] : xi = 1}|.

f-channels. The symmetric boolean-valued channel f with noise rate ε (ε-noisy f -channel,
for short) is specified by a constant ε ≥ 0 and a function f : N ∪ {0} → {0, 1}. Let n ∈ N.
A (deterministic) n-party protocol over the ε-noisy f -channel is given by a tuple

Π =
(
T,
{
X i
}
i∈[n]

,Y ,
{
git
}
i∈[n],t∈[T]

, out
)
.

Here, T = |Π| is the number of rounds (or the length) of the protocol, X i is the input space
for player i, Y is the output space of the protocol, git : X i×{0, 1}t−1 → {0, 1} is the function
player i uses to determine what message to broadcast in round t, and out : {0, 1}T → Y is
the function used to determine the output from the received transcript. As usual, we define
a randomized protocol to be a distribution over (deterministic) protocols.

14More precisely, if y =
(

0, · · · , 0︸ ︷︷ ︸
i−1 times

, yi, 0, · · · , 0︸ ︷︷ ︸
n−i times

)
is in the former set, then y′ =

(x1, · · · , xi−1, yi, xi+1, · · · , xn) is in the latter set.

13

Execution of a protocol. The protocol Π starts with all players i ∈ [n] having an input
xi ∈ X i and proceeds in T rounds, maintaining the invariant that before round t, for all
t ∈ [T], all players know a transcript π<t ∈ {0, 1}t−1. In round t, player i broadcasts the
bit bit = git(x

i, π<t). Then, in round t, if bt denotes the string bt = b1
t · · · bnt , all the players

receive the bit πt which equals f(wt(bt)) with probability 1 − εt, and equals 1 − f(wt(bt))

with probability εt, where εt ≤ ε is adversarially chosen. All players append πt to π<t to
get a transcript π≤t and continue the execution of the protocol. After T rounds, all players
output Π(x) = out(π≤T) ∈ Y .

Noiseless channels. Let f : N ∪ {0} → {0, 1}. The f -channel is the ε-noisy f -channel
for ε = 0. Let Π be a deterministic n-party protocol over the f -channel as above. Observe
that the transcript π of the protocol Π is a deterministic function of the input x, and
denote it by transΠ(x). Denote transΠ,t(x) = (transΠ(x))t, transΠ,≤t(x) = (transΠ(x))≤t, and
transΠ,<t(x) = (transΠ(x))<t.

Let F : X 1×· · ·×X n → Y be a (partial) function and x ∈ X 1×· · ·×X n. We say that Π

is correct on x with respect to F if Π(x) = F (x). Let π ∈ {0, 1}T be a candidate transcript
for Π. We say that π is correct on x with respect to F if out(π) = F (x). When F is clear
from the context, we sometimes simply say that Π (or π) is correct on x. Finally, for p > 0

we say that Π solves/computes F with success probability p, if for all x such that F (x) is
well defined, it holds that Π(x) = F (x) with probability at least p regardless of the choices
of εt made by the adversary (in case Π is over an ε-noisy channel).

Special channels. We define the following channels: For ε ≥ 0 and k ≥ 0,

1. ε-noisy threshold[k] is the ε-noisy f -channel for f(m) = 1[m ≥ k]. In addition,
threshold[k] is ε-noisy threshold[k] with ε = 0.

2. beeping = threshold[1].

3. ε-noisy cas is the ε-noisy f -channel for f(m) = 1[m = 1]. In addition, cas is ε-noisy
cas with ε = 0.

For the beeping channel, we will sometimes use special terminology. Let Π be an n-
party protocol over beeping. For t ∈ [|Π|], denote by beepΠ,t(x) = {i ∈ [n] : bit = 1} the set
of all players who beep (i.e., broadcast a 1) in round t. Note that transΠ,t(x) = 1 if and only
if beepΠ,t(x) 6= ∅.

Channel equivalence. Let f, g : N∪{0} → {0, 1}. We say that the f -channel can simulate
the g-channel if for every (deterministic) n-party protocol Π over the g-channel, there is a
(deterministic) n-party protocol Π′ over the f -channel with |Π′| = O(|Π|) and a function h,
such that for every input x for Π, h(transΠ′(x)) = transΠ(x). We say that the f -channel and
the g-channel are equivalent if the f -channel can simulate the g-channel and vice-versa.

14

4 beeping Lower Bound

In this section we prove Theorem 1.3. Fix a function f satisfying the condition of Theo-
rem 1.3, and let 0 < a < b ∈ N be such f(a) 6= f(b). We prove that the following problem is
hard for beeping but easy for the f -channel.

In the (a, b)-weight problem with n players and k groups, n parties, each holding a private
input bit, are partitioned into k sets of n/k parties each. The goal is for the first party to
output a string v ∈ {0, 1}k such that if exactly a parties in group j ∈ [k] have input 1 then
vj = 0, and if exactly b parties in group i have input 1 then vj = 1.

Observe that the (a, b)-weight problem can be computed by a k-round protocol over the
f -channel, by having parties from group j holding a 1 input broadcasting in round j. Thus,
the following Theorem 4.1 will suffice in order to prove Theorem 1.3. The rest of this section
is devoted to proving Theorem 4.1.

Theorem 4.1. Let b > a ≥ 1 and k > (100b)(100b)100 be integers. Let n = k(k+a−1). Then,
every (randomized) protocol over beeping that solves the (a, b)-weight problem with n players
and k groups with success probability greater than 1/n1/300, requires at least Ωa,b(k log(n/k))

rounds.

We will next prove a restricted version of Theorem 4.1, where a = 1:

Theorem 4.2. Let b > 1 and k > (100b)(100b)100 be integers. Let n = k2. Then, every
(randomized) protocol over beeping that solves the (1, b)-weight problem with n players
and k groups with success probability greater than 1/n1/250, requires at least Ωb(k log(n/k))

rounds.

Equipped with Theorem 4.2, we are able to prove Theorem 4.1:

Proof of Theorem 4.1. Suppose for contradiction that there existed some protocol Π over the
beeping model which solves the (a, b)-weight problem with k groups and k + a− 1 parties
in each group, with success probability greater than 1/n1/300 running in oa,b(k log(n/k)).

Let c = b − a + 1. We construct a protocol Π′ for the (1, c)-weight problem where
there are k groups with k players in each group (k2 parties in total). We will first add
k · (a−1) “dummy” parties, a−1 dummy parties in each group, such that all dummy parties
are assumed to have the input 1. To run Π′, the k2 parties will run Π with player 1 also
simulating all the extra k · (a − 1) dummy parties. Note that player 1 can indeed simulate
all these extra parties: Player 1 can compute the bit that each such dummy party would
have sent (as each player hears the same transcript and player 1 knows the inputs of the
dummy parties), and will compute and send the logical OR of all these bits and the bit that
he himself wishes to send.

If a group has only 1 player with a 1 input before the dummy players were added, the
dummy players ensure that this group now has a players with a 1 input. Likewise, if there
were c players with a 1 input in a group, the dummy players ensure that the group now has b

15

such players. Thus, if Π outputs the correct answer for the inputs with the dummy players,
then Π′ will output the correct answer.

However, this leads to a contradiction: The protocol Π′ only runs Π, which, by assumption
takes oa,b(k log(n/k)) rounds of communication, and it gets the correct answer for the (1, c)-
weight problem on any input with probability greater than 1/n1/300. This success probability
is greater than 1/(n′)1/250, where n′ = n− k(a− 1) is the number of parties participating in
Π′, contradicting Theorem 4.2.

4.1 Proof of Hardness of the (1, b)-weight problem

The rest of this section is devoted to proving Theorem 4.2. Fix b, k, n that satisfy the
conditions of Theorem 4.2.

We view an input for the (1, b)-weight problem with n players and k groups as a string
x ∈ {0, 1}n, such that party i gets the input bit xi. Let x ∈ {0, 1}n and j ∈ [k]. We
denote by x|j = x(j−1)·n/k+1, . . . , xj·n/k ∈ {0, 1}n/k the inputs of the parties in group j. Let
X ′ ⊆ {0, 1}n and j ∈ [k]. We denote by X ′|j the projection of X ′ to group j. Formally,
X ′|j = {x|j | x ∈ X ′}.

The hard distribution D. By YaoâĂŹs minimax theorem, to prove Theorem 4.2 it suf-
fices to define a hard distribution D such that any deterministic protocol is correct with
probability at most 1/n1/250 when the inputs x to the parties are drawn from D.

We next define the hard distribution D over the inputs x ∈ {0, 1}n for the (1, b)-weight
problem with n players and k groups. For every j ∈ [k] independently: with probability 1/2

sample x|j uniformly under the constraint that wt(x|j) = 1, and with probability 1/2 sample
x|j uniformly under the constraint that wt(x|j) = b.

Fixing the protocol Π. Define ε = 1
100(b−1)

. For the rest of the text, fix a deterministic
protocol Π with at most T = ε10k log(n/k) = Ob(k log(n/k)) rounds. We assume without
loss of generality that the protocol Π has exactly T rounds. Recall that we require the first
party to give the output. We will also assume that the output of Π can be determined from
the transcript and does not require knowing the input of the first party. This is without loss
of generality, as the first party can beep its input using one round of communication. We
will often omit the subscript Π, e.g., we will write beep(x, t) to mean beepΠ(x, t).

Protocol notation. Let x ∈ {0, 1}n and let π be a transcript for Π. Define

Ones(x) = {j ∈ [k] | wt(x|j) = 1},
Ones(π) = {j ∈ [k] | (out(π))j = 0}.

Additionally, let X(π) = {x ∈ supp(D) | trans(x) = π} be the set of inputs in supp(D)

that generate π. Let X true(π) be the set of all x ∈ X(π) such that the output induced by π

16

is correct for input x, i.e., Ones(x) = Ones(π).

Bad sets. Let x ∈ {0, 1}n. Define B(x) be the set of i ∈ [n] such that there exists t ∈ [T]

satisfying i ∈ beep(x, t) and |beep(x, t)| < b. Also define, for j ∈ [k], the set Bj(x) be the
set of players in B(x) that are also in group j and:

XBad
j (x) = {x′ ∈ {0, 1}n | (x′|j = x|j) ∨ (∃i ∈ Bj(x) : x′i = 1)}.

Finally, define:
JBad(x) = {j ∈ [k] | |Bj(x)| > ε5 log(n/k)}.

Hybrids. Let x, x1, . . . , xb−1 ∈ {0, 1}n and j ∈ [k]. Define hybj(x, x
1, . . . , xb−1) to be a

vector x∗ ∈ {0, 1}n such that for every j′ ∈ [k] \ {j} it holds that x∗|j′ = x|j′ and x∗|j =

OR(x|j, x
1
|j, . . . , x

b−1
|j), where OR stands for the bit-wise OR (i.e., coordinate i of x∗|j is the

logical OR of the ith coordinates of x|j, x1
|j, . . . , x

b−1
|j). Observe that it is always the case that

hybj(x, x
1, . . . , xb−1) ≥ x, where for x, y ∈ {0, 1}n, we write y ≥ x if for all i ∈ [n] it holds

that yi ≥ xi. .

4.2 Key Lemma

The following lemma will be key to Theorem 4.2.

Lemma 4.3. Let π be a transcript such that D(X true(π)) ≥ 2−10T and |Ones(π)| ≥ k/5. We
have:

D(X true(π)) ≤ D(X(π))

n1/200
.

We now present our proof of Theorem 4.2 assuming the key lemma, which shall be proved
in Section 4.3.

Proof of Theorem 4.2. Let Trans = {0, 1}T be the set of all transcripts π for Π. Define:

Trans1 = {π ∈ Trans | D(X true(π)) < 2−10T},
Trans2 = {π ∈ Trans | |Ones(π)| < k/5},
Trans3 = Trans \ (Trans1 ∪ Trans2).

The success probability of Π is∑
π∈Trans

D(X true(π)) ≤
∑
j∈[3]

∑
π∈Transj

D(X true(π)). (3)

We bound each of the three terms on the right hand side one by one. For j = 1, we have by

17

definition of Trans1 that:∑
π∈Transj

D(X true(π)) ≤
∑

π∈Transj

2−10T ≤ |Trans| · 2−10T ≤ 2−9T . (4)

For j = 2, note that any π ∈ Trans2 satisfies |Ones(π)| < k/5. We group the π according to
the value of Ones(π) and use the fact that the number of possible values for Ones(π) is at
most

∑
0≤`<k/5

(
k
`

)
≤ (5e)k/5 ≤ 1.7k to get:∑

π∈Trans2

D(X true(π)) =
∑
O⊆[k]

∑
π∈Trans2

Ones(π)=O

D(X true(π))

≤ 1.7k · max
O⊆[k]

∑
π∈Trans2

Ones(π)=O

D(X true(π))

≤ 1.7k · max
O⊆[k]

∑
π∈Trans2

Ones(π)=O

∑
x:trans(x)=π

Ones(x)=Ones(π)

D(x) (Definition of X true(π))

≤ 1.7k · max
O⊆[k]

∑
x:Ones(x)=O

D(x)

≤ 1.7k · 2−k (Definition of X true(π))

≤ 0.9k.

Finally, for j = 3, we use Lemma 4.3, we have:∑
π∈Trans3

D(X true(π)) ≤ 1

n1/200
·
∑

π∈Trans3

D(X(π)) ≤ 1

n1/200
.

Summing up, we can continue Eq. (3) as;∑
π∈Trans

D(X true(π)) ≤ 2−9T + 0.9k +
1

n1/200
≤ 1

n1/250
.

4.3 Proof of Key Lemma

This section is devoted to proving Lemma 4.3. Fix a transcript π that satisfies the conditions
of Lemma 4.3. We will often omit π from the notation, e.g., we’ll write X to mean X(π)

and Ones to mean Ones(π). Let x ∈ X true and j ∈ Ones. Define:

Hx,j =
{
hybj(x, x

1, . . . , xb−1) | x1, . . . , xb−1 ∈ X true \XBad
j (x) and x1

|j, . . . , x
b−1
|j all distinct

}
.

(5)

18

Lemma 4.4. For all x ∈ X true and j ∈ Ones, we have Hx,j ⊆ X. Additionally, for all
x∗ ∈ Hx,j, we have Ones(x∗) = Ones \ {j}. As a corollary, we get Hx,j ⊆ X \X true.

Proof. We fix an arbitrary x∗ ∈ Hx,j and show that x∗ ∈ X and Ones(x∗) = Ones \ {j}.
Let x1, . . . , xb−1 ∈ X true \ XBad

j (x) be such that x1
|j, . . . , x

b−1
|j are all distinct and x∗ =

hybj(x, x
1, . . . , xb−1). We first claim that wt(x∗|j) = b: Let ` ∈ [b − 1]. Since x` /∈ XBad

j (x),
it holds that x`|j 6= x|j. Since j ∈ Ones and x, x` ∈ X true, it holds that j ∈ Ones(x`) =

Ones(x). Since it is also the case that x1
|j, . . . , x

b−1
|j are all distinct, we conclude that each of

x|j, x
1
|j, . . . , x

b−1
|j have exactly one 1 coordinate in group j and that all these coordinates are

distinct. We get that wt(x∗|j) = b as x∗|j = OR(x|j, x
1
|j, . . . , x

b−1
|j).

Since the definition of hyb implies x∗|j′ = x|j′ for all j′ 6= j ∈ [k], and since Ones(x) = Ones

(as x ∈ X true) and wt(x∗|j) = b, we get that x∗ ∈ supp(D) and that Ones(x∗) = Ones \ {j}.
This also means that x and x∗ differ on the inputs of at most b− 1 parties.

To finish the proof, we need to show that trans(x∗) = π. For this, we show by induction
that for every 0 ≤ t ≤ T , it holds that trans≤t(x∗) = π≤t. The base case t = 0 is trivial. We
next assume that the claim holds for some 0 ≤ t ≤ T − 1 and prove that it holds for t + 1.
Consider the following two cases:

Case (πt+1 = 1): Note that as πt+1 = 1, it holds that beep(x, t+ 1) 6= ∅. We will show
that there exists a player i ∈ beep(x, t + 1) such that x∗i = xi. This is enough as the fact
that player i beeped in round t + 1 given the input x to the players implies that player i
beeps if he sees the transcript π≤t and has the input xi. Since, by the induction hypothesis,
trans≤t(x

∗) = π≤t, this would mean that he also beeps in round t+ 1 given the input x∗. We
conclude that beep(x∗, t+ 1) 6= ∅, and, in particular, trans≤t+1(x∗) = π≤t+1.

We next show that there exists a player i ∈ beep(x, t + 1) such that x∗i = xi. Since x
and x∗ differ on the inputs of at most b − 1 parties, this is clearly true in the case where
|beep(x, t + 1)| ≥ b. Therefore, we assume that |beep(x, t + 1)| < b and show the stronger
statement that x∗i = xi for all i ∈ beep(x, t + 1). Suppose for the sake of contradiction that
there exists i ∈ beep(x, t + 1) such that x∗i 6= xi. By definition of hyb, such an i must be
group j. Also, from the definition of B(x) and the fact that |beep(x, t + 1)| < b, we can
further conclude that i ∈ Bj(x). Now, use the fact that x` /∈ XBad

j (x) for all ` ∈ [b − 1] to
conclude that ∀` ∈ [b− 1] : x`i = 0. By the definition of hyb, we also get that x∗i = xi, and
we are done.

Case (πt+1 = 0): Assume for contradiction that there exists i ∈ beep(x∗, t+ 1) (that is,
beep(x∗, t+ 1) 6= ∅). By the definition of hyb, it holds that x∗i = xi or there exists ` ∈ [b− 1]

such that x∗i = x`i . Assume the latter and let ` ∈ [b − 1] be such that x∗i = x`i (the former
case where x∗i = xi is similar). Then, since i ∈ beep(x∗, t+ 1) and x∗i = x`i , it also holds that
i ∈ beep(x`, t+ 1). Since x` ∈ X, we get a contradiction to the assumption πt+1 = 0.

Lemma 4.5. For all x ∈ X true and j ∈ Ones, it holds that:

|Hx,j| ≥
(
|X true
|j | − |Bj(x)| − 1

b− 1

)
.

19

Proof. Throughout the proof, we use G to denote G = X true \ XBad
j (x). We first show

that |Hx,j| =
(|G|j |
b−1

)
by showing a bijection between the set Hx,j and the set of all subsets

of G|j of size b − 1. The bijection fx,j takes an element x∗ ∈ Hx,j and acts as follows:
By definition of Hx,j, there exists x1, . . . , xb−1 ∈ G with x1

|j, . . . , x
b−1
|j all distinct such that

x∗ = hybj(x, x
1, . . . , xb−1). Pick the lexicographically smallest such x1, . . . , xb−1 and observe

that
{
x1
|j, . . . , x

b−1
|j

}
is a subset of G|j of size b− 1. This is the set output by fx,j.

We now show that fx,j is indeed a bijection by showing that fx,j is both one-to-one
and onto. For the former, note from the definition of hyb that, together with x and j,
the set

{
x1
|j, . . . , x

b−1
|j

}
completely determines x∗. For the latter, note that for any subset{

t1, . . . , tb−1
}
of G|j of size b − 1, there exists x1, . . . , xb−1 ∈ G such that ∀` ∈ [b − 1], we

have x`|j = t`. Observe that for the lexicographically smallest such x1, . . . , xb−1 ∈ G, we have

fx,j
(
hybj(x, x

1, . . . , xb−1)
)

=
{
t1, . . . , tb−1

}
,

implying that the function fx,j is onto.
Next, we finish the proof of the lemma by showing that

∣∣G|j∣∣ =
∣∣∣(X true \XBad

j (x)
)
|j

∣∣∣ ≥∣∣∣X true
|j

∣∣∣−|Bj(x)|−1. For this, we use the fact that for any two sets S, T , we have
∣∣∣(S \ T)|j

∣∣∣ ≥∣∣S|j∣∣− ∣∣∣(S ∩ T)|j

∣∣∣ and that
∣∣∣(X true ∩XBad

j (x)
)
|j

∣∣∣ ≤ |Bj(x)|+ 1. The latter is because for any
x′ ∈ X true ∩XBad

j (x), the definition of X true implies that there is exactly one player in group
j with input 1, i.e., we have wt(x′|j) = 1 and the definition of XBad

j (x) and the fact that
x ∈ X true implies that there are at most |Bj(x)|+ 1 choices for this coordinate.

Observation 4.6. For x ∈ supp(D) it holds that D(x) = 2−k·
((

n/k
b

))|Ones(x)|−k
·(n/k)−|Ones(x)|.

Lemma 4.7. For all x ∈ X true, there exists J ⊆ Ones with |J | ≥ 0.75|Ones| such that for
all j ∈ J , we have:

|Hx,j| ≥
(n
k

)(1−0.75ε)(b−1)

.

Proof. Let J = JLarge \ JBad(x), where

JLarge =
{
j ∈ Ones | |X true

|j | ≥ (n/k)1−ε/2} ,
JBad(x) = {j ∈ [k] | |Bj(x)| > ε5 log(n/k)}.

We claim that |J | ≥ 0.75|Ones|, by showing that |JLarge| > 0.8|Ones| and that |JBad(x)| ≤
0.05|Ones|. We first show that |JBad(x)| ≤ 0.05|Ones|: It holds that |B(x)| ≤ (b−1)T = T

100ε
,

as i can only be in B(x) if there exists a round t ∈ [T] such that i ∈ beep(x, t) and
|beep(x, t)| < b. But, if |JBad(x)| > 0.01k then |B(x)| =

∑
j∈[k] |Bj(x)| ≥ ε5 log(n/k)·0.01k =

T
100ε5

, a contradiction. We get that |JBad(x)| ≤ 0.01k ≤ 0.05|Ones|, where the last inequality
is by our selection of π.

20

We next show that |JLarge| > 0.8|Ones|: Assume for contradiction that |JLarge| ≤ 0.8|Ones|.
Fix j ∈ [k]. We upper bound |X true

|j | by considering the following three cases:

1. If j ∈ JLarge, then since j ∈ Ones, it holds that |X true
|j | ≤ n/k.

2. If j ∈ Ones \ JLarge, then by the definition of JLarge, it holds that |X true
|j | < (n/k)1−ε/2.

3. If j ∈ [k] \ Ones, then, for all x ∈ X true, exactly b parties in group j have a 1 input.
We get |X true

|j | ≤
(
n/k
b

)
.

Now, using these upper bounds and the fact that X true ⊆ X true
|1 × . . .×X true

|k , we get

|X true| ≤ (n/k)|J
Large| ·

(
(n/k)1−ε/2)|Ones|−|JLarge| ·

((
n/k

b

))k−|Ones|

= (n/k)|J
Large|·ε/2 ·

(
(n/k)1−ε/2)|Ones| ·

((
n/k

b

))k−|Ones|

≤ (n/k)(1−ε/10)|Ones| ·
((

n/k

b

))k−|Ones|

. (As |JLarge| ≤ 0.8|Ones|)

Observe that for all x ∈ X true it holds that Ones(x) = Ones, as the output induced by π

is correct for input x. Using Observation 4.6, D(x) = 2−k ·
((

n/k
b

))|Ones|−k
· (n/k)−|Ones|. This

implies,

D(X true) ≤ 2−k ·
((

n/k

b

))|Ones|−k

· (n/k)−|Ones| · (n/k)(1−ε/10)|Ones| ·
((

n/k

b

))k−|Ones|

≤ (n/k)−|Ones|·ε/10.

Because |Ones| ≥ k/5, we get D(X true) ≤ (n/k)−kε/50. However, we choose π such that
D(X true) ≥ 2−10T , and thus, (n/k)−kε/50 ≥ 2−10T . This implies T ≥ (kε/500) log(n/k), which
is a contradiction to the assumed length of Π.

To finish the proof of the lemma, we lower bound |Hx,j| as follows:

|Hx,j| ≥
(
|X true
|j | − |Bj(x)| − 1

b− 1

)
(Lemma 4.5)

≥
(

(n/k)1−ε/2 − ε5 log(n/k)− 1

b− 1

)
(As j ∈ J)

≥

(
max

(
0, (n/k)1−ε/2 − ε5 log(n/k)− 1

)
b− 1

)b−1

(As
(
s
t

)
≥
(
s
t

)t)
≥ n−0.01ε ·

(
max

(
0, (n/k)1−ε/2 − ε5 log(n/k)− 1

))b−1
.

(As ε = 1
100(b−1)

and n > (100b)(100b)100)

21

To finish the proof, note that f(x) =
(
x1−ε/2 − ε5 log(x)− 1

)
− x1−0.7ε is monotone for

x ≥ 5. Moreover, f
(

(100b)(100b)100
)
≥ 0. Therefore, f(n/k) ≥ 0 and we get

|Hx,j| ≥ n−0.01ε · (n/k)(1−0.7ε)(b−1) ≥
(n
k

)(1−0.75ε)(b−1)

.

Define the set:
H =

⋃
x∈Xtrue,j∈Ones

Hx,j.

Lemma 4.8. It holds that |H| ≥ |X true| ·
(
n
k

)(1+ε)(b−1).

Proof. For x∗ ∈ H, define S(x∗) to be the set of all pairs (x, j) ∈ X true × Ones such that
x∗ ∈ Hx,j. We claim that |S(x∗)| ≤ b for all x∗ ∈ H. Before we prove this claim, we show
that it implies the lemma. Indeed, we have:

|H| =
∑

x∗:|S(x∗)|>0

1

=
∑

x∗:|S(x∗)|>0

1

|S(x∗)|
·

∑
x∈Xtrue,j∈Ones

1[(x, j) ∈ S(x∗)]

≥ 1

b
·

∑
x∗:|S(x∗)|>0

∑
x∈Xtrue,j∈Ones

1[(x, j) ∈ S(x∗)] (As ∀x∗ ∈ H : |S(x∗)| ≤ b)

=
1

b
·
∑
x∗

∑
x∈Xtrue,j∈Ones

1[(x, j) ∈ S(x∗)]

=
1

b
·

∑
x∈Xtrue,j∈Ones

|Hx,j|

≥ 1

b
· |X true| · 0.75 · |Ones| ·

(n
k

)(1−0.75ε)(b−1)

(Lemma 4.7)

≥ k

10b
· |X true| ·

(n
k

)(1−0.75ε)(b−1)

(As |Ones| ≥ k/5)

≥ |X true| ·
(n
k

)(1+ε)(b−1)

. (As ε = 1
100(b−1)

and n = k2 > (100b)(100b)100)

It remains to show that |S(x∗)| ≤ b for all x∗ ∈ H. For this, use Lemma 4.4 to conclude
that for all (x, j) ∈ S(x∗), we have {j} = Ones \ Ones(x∗) implying that j is unique. This
also implies that for all (x, j) ∈ S(x∗), we have wt(x∗|j) = b and (using the definition of hyb)
that x∗|j′ = x|j′ and x∗ ≥ x for all j′ 6= j ∈ [k]. Together, we get that there are at most b
choices of x which when combined with the fact that j is unique implies that |S(x∗)| ≤ b.

Proof of Lemma 4.3. Note first that for all x ∈ X true, it holds that Ones(x) = Ones, as the
output induced by π is correct for input x. Additionally, for all x∗ ∈ H, by Lemma 4.4,

22

|Ones(x∗)| = |Ones| − 1. By Observation 4.6 and Lemma 4.8, this means that:

D(H)

D(X true)
=
|H|
|X true|

· D(x∗)

D(x)
=
|H|
|X true|

· n/k(
n/k
b

) ≥ |H|
|X true|

·
(
k

n

)b−1

≥
(n
k

)ε·(b−1)

.

Now, use the definition of H and Lemma 4.4 to get:

0 ≤ D(X true) ≤ D(X)−D(H) ≤ D(X)−D(X true) ·
(n
k

)ε·(b−1)

.

Rearranging and using ε = 1
100(b−1)

and n = k2 finishes the proof.

5 Hardness of Interactive Coding

In this section, we prove the following Theorem 5.1, which implies Theorem 1.4.

Theorem 5.1. Let ε ≥ 0 and k1, k2 ≥ 2. For all n > 0, there exists a (deterministic)
n-party protocol Π over the threshold[k1] channel, such that any (possibly randomized)
n-party protocol Π′ that computes the same function as Π with success probability greater
than 1/n1/300 over the ε-noisy threshold[k2] channel requires Ω(|Π| log n) rounds.

The same holds true if the threshold[k1] channel is replaced by the cas channel, or if
the ε-noisy threshold[k2] channel is replaced by the ε-noisy cas channel, or both.

To prove Theorem 5.1, we use the following Theorem 5.2 that shows that for all k ≥
2 every noisy threshold[k] round can be simulated by constantly many rounds of the
beeping channel.

Theorem 5.2. Let ε ≥ 0 and k ≥ 2, n > 0 be integers. There exists an Ok,ε(1) length
n-party protocol over beeping such that if patry i ∈ [n] has the input bit xi ∈ {0, 1}, then at
the end of the protocol all the parties output a bit b that equals 1[wt(x) ≥ k] with probability
least 1− ε.

Proof of Theorem 5.1. For the case of threshold[k1] channel, define b = k1. Otherwise,
for the cas channel, define b = 2. Assume without loss of generality that that there exists
a k > (100b)(100b)100 such that n = k2, and observe that there exists a deterministic k round
protocol over the channel concerned that solves the (1, b)-weight problem with n players and
k groups. Additionally, we have from Theorem 4.2 that every (randomized) protocol over
the beeping model that solves this problem with success probability greater than 1/n1/300

has at least Ωb(k log(n/k)) rounds.
To finish the proof, we argue that if there is such a protocol over the ε-noisy threshold[k2]

channel, or over the ε-noisy cas channel, then there also exists such a protocol over the
beeping channel, a contradiction. In the case of the ε-noisy threshold[k2], this follows
directly by simulating the protocol round by round and using Theorem 5.2 with k = k2,

23

while in the case of the ε-noisy cas channel, this follows similarly from Theorem 5.2 using
k = 2 and the identity 1[wt(x) = 1] = 1[wt(x) ≥ 1]− 1[wt(x) ≥ 2] for all x ∈ {0, 1}n. Note
that the first term can be computed exactly in one round over the beeping channel.

Proof of Theorem 5.2. We claim that Algorithm 1 below outputs 0 if wt(x) < k and outputs
1, except with probability at most ε, if wt(x) ≥ k.

Algorithm 1 An algorithm computing 1[wt(x) ≥ k] over beeping.
Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs a bit b (supposedly, b = 1 if wt(x) ≥ k and b = 0

otherwise).
1: for 3 log(1/ε) times do
2: Each player i ∈ [n] randomly chooses a number ni ∈ [k2].
3: for j ∈ [k2] do
4: Each player sets bij = xi ∧ 1[ni = j].
5: In one beeping round: Each player i beeps bij. All parties receive the bit zj from

the channel.
6: end for
7: if

∑
j∈[k2] zj ≥ k then

8: return 1
9: end if
10: end for
11: return 0

Let us consider just one iteration of the loop at Line 1. To begin with, note that the only
players who ever broadcast during the algorithm are those with xi = 1, as can be seen at
Line 4. As such, we can restrict our analysis to just those players, as the remaining players
do not influence the execution of the algorithm in any way. Let this group of players be S.

We can now partition S into k2 sets S1, . . . , Sk2 . In particular, Sj consists of the players
i ∈ [n] such that ni = j. It is clear that this partitions S. We also note that at Line 5,
exactly the players in Sj broadcast. Thus, zj is 1 if and only if Sj is non-empty. Furthermore,
we thus get that

∑
j∈[k2] zj is exactly the number of non-empty Sj sets.

Now, we can consider two cases, depending on if wt(x) ≥ k or if wt(x) < k. Let us
analyze the latter case. It is evident that wt(x) = |S|. Furthermore, as S = S1 ∪ · · · ∪ Sk2
and these sets are disjoint, we get that the number of non-empty Sj is at most the size of
|S|. Thus, the sum at Line 7 will be strictly less than k, so the algorithm will never return
1. As such, the algorithm returns 0 with probability 1, as desired.

Now, suppose that wt(x) ≥ k. Thus, |S| ≥ k. Fix k elements of S. We can now analyze
the probability that these k elements each fall into different Sj. Let this event be A.

Pr[A] =

(
k2

k2

)(
k2 − 1

k2

)
· · ·
(
k2 − k + 1

k2

)
≥
(
k2 − k
k2

)k
=

(
1− 1

k

)k
≥ 1

4
.

24

Thus, with probability at least 1
4
, each of the k elements are in a different Sj, so there

are at least k non-empty Sj. Thus, the sum at Line 7 will be at least k, so the algorithm
will return 1. In other words, the probability that the algorithm doesn’t return 1 during
this iteration of the loop at Line 1 is at most 3

4
. By independence of the iterations, the

probability that the algorithm doesn’t return 1 during any of the iterations of the loop is
thus at most (

3

4

)3 log(1/ε)

≤
(

1

2

)log(1/ε)

= ε.

Thus, the algorithm will return 1, except with probability at most ε, as desired.

5.1 cas is threshold[2]

In this subsection, we formally show the claim made in Section 1 that the cas channel is
equivalent to the threshold[2] channel.

Theorem 5.3. The cas channel and the threshold[2]-channel are equivalent.

To show this, we first show a simpler claim about threshold channels, which shall be used
throughout this paper.

Theorem 5.4. For all integers r1 ≤ r2 ∈ N, for all n > 0, there exists an n-party protocol
over threshold[r2] which solves the function f(x) = 1[wt(x) ≥ r1] with success probability
1 in Or1,r2(1) rounds.

Proof. We can assume 1 ≤ r1 < r2 without loss of generality. We begin by analysing the
algorithm find-zerosr2`0,`1 , shown in Algorithm 2. We claim that for all `0, `1 ≥ 1, when
find-zerosr2`0,`1 is run over threshold[r2], it has each player output a tuple (b, S) such
that b ∈ {0, 1}, S ⊆ [n], xi = b for all i ∈ S, and such that |S| = `b.

Note that during an execution of Algorithm 2, each player receives the same zj at Line 4.
As the values of S0 and S1 that each player maintains depend only on the values of zj that
they receive, this means that each player outputs the same result once the algorithm outputs.
As such, we can look at the algorithm from an outside perspective.

We claim that during an execution of Algorithm 2 zj = xj for all j considered during the
loop. For this, note that for exactly r2−1 other players, bij = 1. Thus,

∑
i∈[n] b

i
j = r2−1+xj.

As such, the threshold[r2] channel sets

zj = 1

∑
i∈[n]

bij ≥ r2

 = 1[r2 − 1 + xj ≥ r2] = 1[xj ≥ 1] = xj.

Then, at Line 5, each player adds j to the set Szj = Sxj . As such, in each iteration, one of
S0 or S1 increases by 1, and ensures that for each j ∈ S0, xj = 0 and for each j ∈ S1, xj = 1.

25

Algorithm 2 Algorithm find-zerosr2`0,`1 . This algorithm is used to find a set of players
with the same input.
Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs a pair (b, S).
1: Each player initializes two sets S0 = ∅ and S1 = ∅.
2: for j ∈ [`0 + `1 − 1] do
3: Each player i ∈ [n] sets bij according to

bij =

xi, i− j = 0

1, i− j ∈ [r2 − 1]

0, otherwise

4: Players broadcast with bij to get zj.
5: Szj ← Szj ∪ {j}
6: if S0 ≥ `0 then
7: return (0, S0)
8: end if
9: if S1 ≥ `1 then
10: return (1, S1)
11: end if
12: end for

Furthermore, after `0 + `1 − 1 repetitions of Line 2, either |S0| ≥ `0 or |S1| ≥ `1. Thus, at
that point, each player outputs either (0, S0) or (1, S1), which ensures that the output of
find-zerosr2`0,`1 is as desired.

Using this result, we now demonstrate Algorithm 3, which we claim computes 1[wt(x) ≥ r1]

when run over threshold[r2].
The first thing Algorithm 3 does is run find-zerosr2r2−r1,r1 at Line 13. This takes O(r2)

broadcasts, and returns some pair (b, S). If b = 1, then S is a subset of [n] satisfying |S| = r1

such that xi′ = 1 for all i′ ∈ S, which implies that

1[wt(x) ≥ r1] ≥ 1

[∑
i∈S

xi ≥ r1

]
= 1[|S| ≥ r1] = 1,

which means that returning 1 at Line 15 actually gives the correct result.
In the alternative case that b = 0, then we know that S is a subset of [n] satisfying

|S| = r2 − r1 such that xi′ = 0 for all i′ ∈ S. Thus, due to Line 17, we know that the bi

values satisfy

1

∑
i∈[n]

bi ≥ r2

 = 1

 ∑
i∈[n],xi=1

1 +
∑
i∈S

1 ≥ r2

 = 1[wt(x) + |S| ≥ r2]

26

Algorithm 3 An algorithm for calculating 1[wt(x) ≥ r1] over threshold[r2].
Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs whether or not wt(x) ≥ r1.
13: The players run find-zerosr2r2−r1,r1 on their inputs xi to obtain (b, S).
14: if b = 1 then
15: return 1
16: end if
17: Set bi for players i ∈ [n] according to

bi =

1, xi = 1

1, i ∈ S
0, otherwise

18: Players broadcast with bi to get z.
19: return z

= 1[wt(x) + r2 − r1 ≥ r2] = 1[wt(x) ≥ r1].

Thus, the value of z that is returned at the end of Algorithm 3 is exactly the desired value,
concluding the proof.

We also get a direct consequence from this.

Corollary 5.5. For all integers r1 ≤ r2 ∈ N, if there exists a protocol computing some
function F over threshold[r1] in T rounds, then there exists a protocol computing F over
threshold[r2] in Or1,r2(T) rounds.

This follows via simulating each round of the original protocol using the above result.
Anyway, we now return to the proof of Theorem 5.3.

Proof of Theorem 5.3. To show the desired result, it suffices to show that there exist pro-
tocols solving 1[wt(x) ≥ 2] over cas and solving 1[wt(x) = 1] over threshold[2] in O(1)

rounds of communication (with success probability 1).
First, note that Theorem 5.4 shows that there exists aO(1) round protocol over threshold[2]

computing 1[wt(x) ≥ 1]. Furthermore, there exists a trivial one-round protocol over threshold[2]

computing 1[wt(x) ≥ 2]. Finally, as

1[wt(x) = 1] = 1[wt(x) ≥ 1]− 1[wt(x) ≥ 2],

we get that there exist an O(1) round protocol computing 1[wt(x) = 1] over threshold[2].
Thus, any protocol over cas can be simulated over threshold[2] with only O(1) blow-up
in the number of rounds.

27

Algorithm 4 An algorithm computing 1[wt(x) ≥ 2] over cas.
Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs whether or not wt(x) ≥ 2.
20: Players broadcast with xi ∨ 1[i = 1] to get z1.
21: Players broadcast xi to get z2.
22: return ¬(z1 ∨ z2)

Now, consider Algorithm 4. We claim that this computes 1[wt(x) ≥ 2] over cas in O(1)

rounds, which would complete the proof. To show this, it suffices to consider three possible
cases for wt(x):

• If wt(x) = 0: In this case, xi = 0 for all i ∈ [n]. Thus, z1 = 1 and z2 = 0, and the
algorithm will return 0 = 1[wt(x) ≥ 2].

• If wt(x) = 1: In this case, z2 = 1[wt(x) = 1] = 1, so the algorithm will return
0 = 1[wt(x) ≥ 2].

• If wt(x) ≥ 2: In this case, z1 = z2 = 0, and the algorithm returns 1 = 1[wt(x) ≥ 2].

Thus, this algorithm computes 1[wt(x) ≥ 2], using only 2 broadcasts, which concludes
the proof.

References

[AAB+11] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and
Ziv Bar-Joseph. A biological solution to a fundamental distributed computing
problem. Science, 331(6014):183–185, 2011. 2

[ABE+16] Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Hae-
upler. Reliable communication over highly connected noisy networks. In Sym-
posium on Principles of Distributed Computing (DISC), pages 165–173, 2016.
6

[AGL20] Yagel Ashkenazi, Ran Gelles, and Amir Leshem. Brief announcement: Noisy
beeping networks. In Symposium on Principles of Distributed Computing
(PODC), pages 458–460, 2020. 6, 7

[BEGH16] Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler.
Constant-rate coding for multiparty interactive communication is impossible.
In Symposium on Theory of Computing (STOC), pages 999–1010, 2016. 6

[BKOT19] Mark Braverman, Gillat Kol, Rotem Oshman, and Avishay Tal. On the com-
putational power of radio channels. In International Symposium on Distributed
Computing (DISC), volume 146, pages 8:1–8:17, 2019. 4, 7, 8

28

[Bsh12] Nader H. Bshouty. On the coin weighing problem with the presence of noise. In
Approximation, Randomization, and Combinatorial Optimization: Algorithms
and Techniques (RANDOM/APPROX), volume 7408 of Lecture Notes in Com-
puter Science, pages 471–482, 2012. 8

[Can64] David G Cantor. Determining a set from the cardinalities of its intersections
with other sets. Canadian Journal of Mathematics, 16:94–97, 1964. 8

[CHHHZ19] Keren Censor-Hillel, Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic.
Erasure correction for noisy radio networks. In International Symposium on
Distributed Computing (DISC), 2019. 6

[CHHZ17] Keren Censor-Hillel, Bernhard Haeupler, D. Ellis Hershkowitz, and Goran
Zuzic. Broadcasting in noisy radio networks. In Symposium on Principles
of Distributed Computing (PODC), pages 33–42, 2017. 6

[CK85] Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks-problem
analysis and protocol design. IEEE Trans. Communications, 33(12):1240–1246,
1985. 2

[CK10] Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps.
In International Symposium on Distributed Computing (DISC), pages 148–162,
2010. 2

[CMS01] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selective fam-
ilies, superimposed codes, and broadcasting on unknown radio networks. In
Symposium on Discrete Algorithms (SODA), pages 709–718, 2001. 8

[CMT17] Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo. Naming a
channel with beeps. Fundamenta Informaticae, 153(3)(199–219), 2017. 7

[EKPS21a] Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena.
Computation over the noisy broadcast channel with malicious parties. In In-
novations in Theoretical Computer Science Conference, (ITCS), volume 185,
pages 82:1–82:19, 2021. 6

[EKPS21b] Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena.
Tight bounds for general computation in noisy broadcast networks. In Sympo-
sium on Foundations of Computer Science (FOCS), 2021. 6

[EKS18] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over
the noisy broadcast channel. In Symposium on Theory of Computing (STOC),
pages 507–520, 2018. 6

29

[EKS19] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Radio network coding
requires logarithmic overhead. In Foundations of Computer Science (FOCS),
pages 348–369, 2019. 6, 7

[EKS20] Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Noisy beeps. In
Symposium on Principles of Distributed Computing (PODC), pages 418–427,
2020. 6, 7

[ER63] Paul Erdos and Alfréd Rényi. On two problems of information theory. Magyar
Tud. Akad. Mat. Kutató Int. Közl, 8:229–243, 1963. 8

[GGLR05] László Györfi, S Győri, Bálint Laczay, and M Ruszinkó. Lectures on multiple
access channels, book draft, 2005. 8

[GK19] Ran Gelles and Yael T Kalai. Constant-rate interactive coding is impossible,
even in constant-degree networks. IEEE Transactions on Information Theory,
65:3812–3829, 2019. 6

[GKR19] Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient multiparty
interactive coding for insertions, deletions, and substitutions. In Symposium on
Principles of Distributed Computing (PODC), pages 137–146, 2019. 6

[HMP20] Kokouvi Hounkanli, Avery Miller, and Andrzej Pelc. Global synchronization
and consensus using beeps in a fault-prone multiple access channel. Theoretical
Computer Science, 806:567–576, 2020. 7

[HS16] William M. Hoza and Leonard J. Schulman. The adversarial noise threshold
for distributed protocols. In Symposium on Discrete Algorithms (SODA), pages
240–258, 2016. 6

[JKL15] Abhishek Jain, Yael Tauman Kalai, and Allison Bishop Lewko. Interactive
coding for multiparty protocols. In Innovations in Theoretical Computer Science
(ITCS), pages 1–10, 2015. 6

[KKP22] Marek Klonowski, Dariusz R. Kowalski, and Dominik Pajak. Generalized frame-
work for group testing: Queries, feedbacks and adversaries. Theoretical Com-
puter Science, 919:18–35, 2022. 8

[Lin64] Bernt Lindström. On a combinatory detection problem i. I. Magyar Tud. Akad.
Mat. Kutató Int. Közl, 9:195–207, 1964. 8

[Lin65] Bernt Lindström. On a combinatorial problem in number theory. Canadian
Mathematical Bulletin, 8(4):477–490, 1965. 8

[Lin71] Bernt Lindström. On möbius functions and a problem in combinatorial number
theory. Canadian Mathematical Bulletin, 14(4):513–516, 1971. 8

30

[Lin75] B Lindström. Determining subsets by unramified experiments. in editor jn
srivastava, editor, a survey of statistical designs and linear models, 1975. 8

[MK13] Gianluca De Marco and Dariusz R. Kowalski. Searching for a subset of
counterfeit coins: Randomization vs determinism and adaptiveness vs non-
adaptiveness. Random Struct. Algorithms, 42(1):97–109, 2013. 8

[MSY16] Shay Moran, Makrand Sinha, and Amir Yehudayoff. Fooling pairs in random-
ized communication complexity. In Jukka Suomela, editor, Structural Informa-
tion and Communication Complexity (SIROCCO), volume 9988, pages 49–59,
2016. 4

[NB15] Saket Navlakha and Ziv Bar-Joseph. Distributed information processing in
biological and computational systems. Communications of the ACM, 58(1):94–
102, 2015. 2

[New14] Calvin C. Newport. Radio network lower bounds made easy. In International
Symposium on Distributed Computing (DISC), volume 8784 of Lecture Notes in
Computer Science, pages 258–272, 2014. 8

[RS94] Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for dis-
tributed computation. In Symposium on the Theory of Computing (STOC),
pages 790–799, 1994. 6

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem
for computation. In Foundations of Computer Science (FOCS), pages 724–733,
1992. 6

[SS63] H Shapiro and S Soderberg. A combinatory detection problem. Amer. Math.
Monthly, 70:1066–1070, 1963. 8

31
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

