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Abstract

We provide another proof to the EL Theorem. We show the tradeoff between compressibility
of codebooks and their communication capacity. A resource bounded version of the EL Theorem
is proven. This is used to prove three instances of resource bounded derandomization. This
paper is in support of the general claim that if the existence of an object can be proven with
the probabilistic method, then bounds on its Kolmogorov complexity can be proven as well.

1 Introduction

A problem is a collection of instances and the goal is to determine whether the instance satisfies
a certain property, i.e. has a solution. This can be formulized by a computable function V :
Σ∗ × Σ∗ → Σ, where instances x ∈ Σ∗ are the first argument and solutions y ∈ Σ∗ are the second
argument, i.e {y : V (x, y) = 1}. An example is Sat, where instances are formulas and the solutions
are assignment of the variables which satisfies it. Through the recently introduced method of
derandomization, [Eps22b, Eps22a], this approach can be aligned with Algorithmic Information
Theory in a new way: bounds on the Kolmogorov complexity of the simplest solutions can be
proven. The notion of a “solution” is fluid, for example in MaxSat, in [Eps22a], a solution could
entail any assignment that satisfies 6/7 the optimal number of possible satisfiable clauses.

The procedure for derandomization is as follows. The first step is to prove solutions to certain
instances of problems have solutions that occur with probability at least p, with respect to a simple
probability measure P over the solution candidate space. This is done by often employing the
Lovász Local Lemma (Lemma 5). Then, by applying conservation of information (Lemma 1) and
the EL Theorem (Corollary 1), bounds on the Kolmogorov complexity of the simpliest solution can
be proven. More specifically there exists some solution encoded into x ∈ Σ∗, with

K(x) <log K(P )− log p+ I(〈description of the instance〉;H).

K is the prefix-free Kolmogorov complexity function. I(x;H) = K(x)−K(x|H) is the asymmetric
mutual information term between x ∈ Σ∗ and the halting sequence H ∈ Σ∞. The instance itself
can be incredibly complex (for example a formula with exponential number of clauses to variables),
but for all non-exotic instances, the term I(〈description of the instance〉;H) will be negligible. The
main step of derandomization is the application of EL Theorem, also known as the Sets Have Sim-
ple Members Theorem:

Theorem. (EL) For finite D ⊂ Σ∗,minx∈D K(x) <log m(D) + I(D;H).
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The term m(D) is equal to
∑

x∈D m(x), where m is the algorithmic probability. There are
several proofs in the literature for the EL Theorem [She12, Eps19, Lev16]. In Section 3 of this
paper we provide a new proof, which follows analogously to the proof in [Lev16], except left-total
machines are not used.

In this paper, we will be applying derandomization to classical channels. Using derandomiza-
tion, we will show a tradeoff between the compression size of a codebook vs. the communication
capacity that the codebook allows. If the codebook is allowed more bits to be compressed to,
the more capacity the codebook has in communicating information. Derandomization of code-
books is possible because they can be proven to exist in classical information theory by using the
probabilistic method. This paper is in support of the following claim.

Claim 1 If the existence of an object can be proven with the probabilistic method, then bounds on
its Kolmogorov complexity can be proven as well.

1.1 Resource Bounded Derandomization

In this paper, we show a resource bounded version of derandomization. By assuming the verifier
V , defined in the previous section, runs in polynomial time, derandomizations can be reformulated
using time bounded Kolmogorov complexity. To accomplish this, we introduce a resource bounded
EL theorem, Corollary 3. This theorem follows almost directly from Theorem 4.1 in [AF09]. The
theorem is as follows. Let FP′ = {f : f ∈ FP, if ‖x‖ = ‖y‖ then ‖f(x)‖ = ‖f(y)‖}.

Theorem. (Resource Bounded EL) Assume Crypto. Let L ∈ P, A ∈ FP′, and assume
δn = |Σn ∩A−1(Ln)|/2n. Then for some polynomial p, minx∈Ln Kp(x) < − log δn +O(log n).

The function Kt is the t-time bounded Kolmogorov complexity and its formal definition can be
found in Section 2. Crypto is a cryptographic assumption which ensures the existence of a certain
type of pseudorandom generator. It can be found in Assumption 1. This theorem enables resource
bounded derandomization, in which certain problems constructed in uniform polynomial time have
simple solutions, with respect to Kt. The following theorem is, to our knowledge, the first of its kind.

Theorem. (Resource Bounded Derandomization) Assume Crypto. then

1. Let {Gn} be a uniformly computable in polynomial time sequence of k-regular graphs, with
k ≥ 5. There is a polynomial p where for each Gn, there is a partition x of b k

3 ln kc components
each containing a cycle with

Kp(x) < 2n/k2 +O(log n).

2. For vector v, ‖v‖∞ = maxi |vi|. A binary matrix M has entries of 0s or 1s. Let {Mn}
be a uniformly polynomial time computable sequence of n × n binary matrices. There is a
polynomial p where for each Mn there is a vector b ∈ {−1, 1}n such that ‖Mnb‖∞ ≤ 4

√
n lnn

and
Kp(b) = O(log n).

3. Let Φn be a k(n)-SAT formula, using n variables, m(n) clauses, uniformly polynomial time
computable in n. Furthermore, each variable occurs in at most 2k(n)/k(n)e−1 clauses. There
is a polynomial p and a satisfying assignment x of Φn where

Kp(x) < 2m(n)e2−k(n) +O(log n).
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1.2 Future Work

Future work entails exploring EL Theorems and Derandomizations under different resource con-
staints and access to random bits. For example if the universal Turing machine has access to some
amount of random bits then is a modified EL Theorem such that with high probability, a simple
program will produce a member of a set? This paper shows an EL Theorem for polynomial time
constraints. A natural area of study would be over Kt with exponential t. Is there one in which
the universal Turing machine has space constraints?. In the recent literature, there are notions of
time bound Kolmogorov complexity enhanced by random bits [GKLO, Oli19]. Can they be used
to create randomized, time bounded, EL Theorems? Given a new EL Theorem with constraints
and/or random bits, are there accompanying derandomization theorems that can be proven?

2 Conventions

As noted in the introduction, K(x|y) is the conditional prefix free Kolmogorov complexity. m(x) is
the algorithmic probability. I(x;H) = K(x)−K(x|H) is the amount of information that the halting
sequence H ∈ Σ∞ has about x. For some function t : N → N, the t-time bounded Kolmogorov
complexity is Kt(x) = min{‖p‖ : U(p) = x in time t(‖x‖)}. A probability is elementary, if it has
finite support and rational values. The deficiency of randomness of x relative to a elementary
probability measure Q is d(x|Q) = − logQ(x) −K(x|Q). We recall for a set D ⊆ Σ∗, m(D) =∑

x∈D m(x). For the nonnegative real function f , we use <+ f , >+ f , and =+ f to denote
< f+O(1), > f−O(1), and = f±O(1). We also use <log f and >log f to denote < f+O(log(f+1))
and > f−O(log(f+1)), respectively. Derandomization of Section 4 uses the following lemma, which
is conservation of mutual information information with the halting sequence over deterministic
processing.

Lemma 1 ([Eps22b]) For partial computable f : Σ∗ → Σ∗, I(f(a);H) <+ I(a;H) + K(f).

3 A New Proof to the EL Theorem

This section shows a new proof to the Sets Have Simple Members Theorem [Lev16, Eps19]. We
also provide a proof that non-stochastic elements have high mutual information with the halting
sequence, a well known result in the literature. This proof also does not rely on left-total machines,
which the original proof did.

Definition 1 (Stochasticisty) A string x is (α, β)-stochastic if there exists an elementary prob-
ability measure Q such that

K(Q) ≤ α and d(x|Q) ≤ β.

Theorem 1 (Epstein,Levin) Let P be a lower-semicomputable semimeasure and c be a large
constant. Every (α, β)-stochastic set D with s = d− logP (D)e contains an element x with

K(x) < s+ α+ 2 log β + K(s) + 2 log K(s) + c.

The theorem is directly implied by the following lemma.
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Lemma 2 Let P be a lower-semicomputable semimeasure and c be a large constant. If a set D is
(α, β)-stochastic relative to an integer s = d− logP (D)e, then D contains an element x with

K(x) < s+ α+ log β + K(log β) + K(s) + c.

Note that if y is (α, β)-stochastic relative to s, then it is (α, β+K(s))-stochastic. Hence the lemma
implies the theorem.

Lemma 3 Let P be a discrete mesure and Q be a measure on sets. There exists a set S of size
dβ/γe such that

Q({D : P (D) ≥ γ and D is disjoint from S}) ≤ exp(−β).

Proof. We use the probabilistic method, and show that if we draw dβ/γe elements according to
the distribution P , then the obtained set S satisfies the inequality with positive probability. The
probability that a fixed set D with P (D) ≥ γ is disjoint from S is

≤ (1− γ)β/γ ≤ exp(−β).

Hence the expected Q-measure of such a D is at most exp(−β) and the required set S exists. �

Proof of Lemma 2 for computable P . Let Q be an elementary probability measure with
K(Q) ≤ α and d(D|Q, s) ≤ β. Without loss of generality, we assume that β is large positive power
of 2. Fix a search procedure that on input Q, β, and γ = 2−s finds a set satisfying the conditions
of Lemma 3.

For large β, the set D must intersect the obtained set S. Indeed, consider the Q-test g(X|Q, s)
that is equal to exp(β) if X is disjoint from S, and is zero otherwise. This is indeed a test, because
the above lemma implies that its expected value for X ∼ Q is bounded by 1. Since the test is
also computable, it is a lower bound to the optimal test t(X|Q, s), up to a constant factor. By
stochasticity of the set D, g(D|Q, s) < O(1)t(D|Q, s) < O(2β), because 2d(X|Q,s) is an optimal Q
test relative to s. Thus for large enough β, D intersects Q.

It remains to construct a description of each element in S of the size given in the proposition.
We construct a special decompressor that assigns short description to each element in S. On input
of a string, the decompressor interprets the string as a concatenation of 4 parts:

1. A prefix-free description of Q of size at most α.

2. A prefix-free description of log β of size K(log β).

3. A prefix-free description of s of size K(s).

4. An integer of bitsize log(β/γ) = s+ log β.

It interprets the last integer as the index of an element in the set S of size dβ/γe that is computed
by the search procedure on input Q, β, and γ. The element is the output of the decompressor. The
proposition is proven for computable P . �
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Remark 1 If P is computable, a set S satisfying the conditions of the lemma can be easily searched.
But if P is not computable, then the collection of sets D with P (D) ≥ γ grows over time. Thus
after constructing a good S, it can happen that a large Q-measure of sets D appears that does not
contain an element from S, and that new elements to S need to be added. This type of interactive
construction leads to an equivalent characterization of the problem in terms of a game which is
shown in [She12]. Below, another proof is presented.

Proof of Lemma 2 for lower-semicomputable P . We still assume that β is a large power of
2. Let γ = 2−s/2. We can rewrite P = γ

β (P1 + · · · + Pf + P∗), with f ≤ β/γ, such that P1, . . . Pf
are probability measures with finite support obtained by a lower semi-computable approximation
of P , and P∗ is a lower-semicomputable semimeasure.

Construction of a lower-semicomputable test g over sets. We first construct tests g1, . . . gf together
with a list of strings z1, . . . , zf . Let g0(X) = 1. Assume we already constructed z1, . . . , zi−1 and
gi−1 for some i = 1, . . . , f . Choose zi such that the test

gi(X) =


gi−1(X) if gi−1(X) ≥ exp(β)
exp(Pi(X))gi−1(X) if gi−1(X) < exp(β) and X is disjoint from {z1, . . . , zi}
0 otherwise.

satisfies Egi(X) ≤ Egi−1(X) where the expectations are taken for X ∼ Q. Let g(X) be equal to
exp(β) if there exists an i such that gi(X) ≥ expβ, otherwise let g(X) = 0. End of construction

We first show that each required string zi in the construction exists. Suppose z1, . . . , zi−1 and
gi−1 have already been constructed. We show the existence of zi using the probabilistic method.
If we draw zi according to Pi, then for each set X for which the second condition of gi is satisfied,
we have

Ezi∼Pigi(X) ≤ (1− Pi(X))gi−1(X) expPi(X) ≤ gi−1(X),

because of the inequality 1 + r ≤ exp(r) for all reals r. If X satisfies the first or third condition,
then Egi(X) ≤ Egi−1(X) is trivially true. So

EX∼QEzi∼Pigi(X) ≤ EX∼Qgi−1(X),

Ezi∼PiEX∼Qgi(X) ≤ EX∼Qgi−1(X),

and the required zi exists.
We have G(x) ≤ O(t(X|Q, (γ, β))), where t is the optimal test because the construction implies

Eg ≤ 1 and is effective, thus g is lower semicomputable. Every set X with P (X) ≥ 2−s = 2γ
satisfies P1(X) + · · · + Pf (X) ≥ β

γP (D) − 1 ≥ 2β − 1 ≥ β by choice of Pi. Any such X that is
disjoint from the set {z1, . . . , zf} satisfies

gf (X) = exp(P1(X)) exp(P2(X)) . . . exp(Pf (X)) ≥ exp(β).

This implies d(X|Q, s) > β for large β, because up to O(1) constants, we have

1.44β ≤ log g(X) ≤ d(X|Q, (β, γ)) ≤ d(X|Q, s) + 2 log β.

By the assumption on (α, β)-stochasticity of D, we have d(D|Q, s) ≤ β and hence D must contain
some zj . The theorem follows by constructing a description for each string zi of bitsize s + α +
log β + K(log β) + K(s) in a similar way as above. �
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3.1 Non-Stochastic Objects

The stochasticity of an object can be measured by

Ks(x) = min{K(P ) +O(log max{d(x|P ), 1}) : P is an elementary probability measure}.

This term combines the complexity of the model P with how well it fits x, i.e. the randomness
deficiency d. It is well known in the literature that non-stochastic objects have high mutual
information with the halting sequence [VS17]. In the following lemma, we reprove this fact, without
using left-total machines, which was used in the original proof.

Lemma 4 Ks(x) <log I(x;H).

Proof. We dovetail all programs to the universal Turing machine U . For p ∈ Domain(U), n(p) ∈
N is the position in which the program p ∈ Σ∗ terminates. Let Ωn =

∑
p:n(p)<n 2−‖p‖ and Ω = Ω∞

be Chaitin’s Omega. Let Ωn
t be Ωn restricted to the first t digits. Let x∗ ∈ ΣK(x), with U(x∗) = x

with minimum n(x∗). Let k(p) = max{` : Ω
n(p)
` = Ω`} and k = k(x∗). We define the elementary

probability measure Q(x) = max{2−‖p‖+k : k(p) = k, U(p) = x}, Q(∅) = 1−Q(Σ∗ \ {∅}).

d(x|Q) = − logQ(x)−K(x|Q) <+ (K(x)− k)−K(x|Ωk)

<+ (K(x|Ωk) + K(Ωk)− k)−K(x|Ωk) <
+ (k + K(k))− k

<+ K(k).

K(x|H) <+ K(x|Q) + K(Q|H) <+ K(x|Q) + K(Ωk|H)

<+ − logQ(x) + K(k) <+ (K(x)− k) + K(k)

k <log K(x)−K(x|H)

Ks(x) <+ K(Q) +O(log max{d(x|P ), 1}) <+ k +O(K(k)) <log I(x;H).

�

The following corollary comes from Theorem 1 and Lemma 4.

Corollary 1 (Epstein,Levin) For finite D ⊂ Σ∗, minx∈D K(x) <log − log m(D) + I(D;H).

4 Classical Channels

There are deep connections between classical information theory and algorithmic information the-
ory, with many theorems of the former appearing in an algorithmic form in the latter. In this
section we revisit this connection. In particular we prove properties about the compression size of
shared codebooks. A standard setup in information theory is two parties Alice and Bob who want
to communicate over a noisy channel and share a codebook over a noiseless channel. However one
might ask is how many bits did it take to communicate the codebook? By using derandomization,
the tradeoff between codebook complexity and communication capacity can be proven.
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Definition 2 (Discrete Memoryless Channel) The input and output alphabets X and Y are
finite. The channel (X , p(y|x),Y) is represented by a conditional probability distribution p(y|x). To
send multiple symbols, we have p(yn|xn) =

∏n
i=1 p(yi|xi). The capacity of channel with respect to a

distribution Q over X is

CQ = I(X : Y ) where random variables (X,Y ) are distributed according to Q(x)p(y|x).

The term I is the mutual information between random variables.

Definition 3 (Codebook) A (M,n) codebook for channel (X , p(y|x),Y) contains the following:

1. An encoder Encn : {1, . . . ,M} → X n.

2. A decoder Decn : Yn → {1, . . . ,M}.

The rate of the codebook is R = logM
n . The conditional probability of error is λi =

∑
yn
p(yn|xn =

Enc(i))[Dec(yn) 6= i], where [·] is the indicator function. The average error rate of the codebook

with respect to a fixed channel p is P
(n)
e = 1

M

∑M
i=1 λi. It is the probability that, given the uniform

distribution over {1, . . . ,M} for the sending symbols, the receiver decodes a symbol different from
the encoded one.

This section shows the following high level description of a communication scheme is possible:
there is a sender Alice and a receiver Bob that communicate through a noisy memoryless discrete
channel and Alice can send a codebook to Bob once on a side noiseless channel. Bob has oracle
acess to the channel function p(y|x) but Alice does not. Given a computable distribution Q over
the input alphabet, and assuming the channel is non-exotic, Alice can hypothetically send ∼K(Q)
bits plus some encoded parameters describing a codebook to Bob on the side channel. Then Alice
and Bob can communicate with any rate R less than the capacity CQ over the noisy channel. This
setup is formalized with Theorem 3. To prove this theorem, some results are needed from classical
information theory.

4.1 Jointly Typical Sequences

We need the following definition and theorem, which can be found in [CT91], in the proof of
Theorem 3. H(X) is the entropy of random variable X, and I(X : Y ) is the mutual information
between random variables X and Y .

Definition 4 The set A
(n)
ε of jointly typical sequences {(xn, yn)} with respect to the distribution

p(x, y) is the set of n-sequences with empirical entropies ε-close to the true entropies. X and Y are
the finite discrete alphabet of random variables X and Y . Let p(xn, yn) =

∏n
i=1 p(xi, yi).

A(n)
ε ={(xn, yn) ∈ X n × Yn :∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ < ε

}
.
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The following theorem details properties about the set A
(n)
ε . A proof for it can be found in [CT91].

Theorem 2 (Joint AEP) Let (Xn, Y n) be sequences of length n drawn i.i.d. according to p(xn, yn) =∏n
i=1 p(xi, yi). Then

1. Pr
(

(Xn, Y n) ∈ A(n)
ε

)
→ 1− o(1).

2. If (X̃n, Ỹ n) ∼ p(xn)p(yn)(X̃n and Ỹ n are independent with the same marginals as p(xn, yn)),

then Pr
(

(X̃n, Ỹ n) ∈ A(n)
ε

)
≤ 2−nI(X:Y )−3ε.

4.2 Naive Sender Paradigm

Theorem 3 For channel C = (X , p(y|x),Y) and every computable distribution Q over X , for every
rate R < CQ, there is a (2nR, n) codebook (Encn,Decn) with rate R and average error rate o(1)
such that there is a program p with ‖p‖ <log K(n,R,Q) + I((n,R,Q,C);H) and

U(p, x) = Encn(x),

U(p,C, x) = Decn(x).

Proof. We start by generating a (2nR, n) code randomly according to distribution Q. We generate
2nR codewords x ∈ X independently according to the distribution

Q(xn) =

n∏
i=1

p(xi).

The codewords can be represented as rows of a matrix

C =

 x1(1) x2(1) . . . xn(1)
...

...
. . .

...
x1(2

nR) x2(2
nR) . . . xn(2nR)


Each entry is generated i.i.d according to Q(x), with

Pr(C) =

2nR∏
w=1

n∏
i=1

p(xi(w)).

Consider the following algorithm for encoding and decoding a message.

1. A random code C is generated according to Q(x).

2. The code C is sent to both the sender and the receiver. Only the receiver is assumed to know
the channel transition matrix p(y|x) for the channel. This differs from the standard literature,
which assumes knowledge of p by the sender.

3. A message W is chosen according to the uniform distribution.

Pr(W = w) = 2−nR, w = 1, 2, . . . , 2nR.

4. The wth codeword Xn(w) corresponding to the wth row of C is sent over the channel.
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5. The receiver receives a sequence Y n according to the distribution

P (yn|xn(w)) =

n∏
i=1

p(yi|xi(w)).

6. The receiver decares that the index Ŵ was sent if the following conditions are satisfied:

• (Xn(Ŵ ), Y n) is jointly typical, i.e. (Xn(Ŵ ), Y n) ∈ A(n)
ε .

• There is no other index W ′ 6= Ŵ such that (Xn(W ′), Y n) ∈ A(n)
ε .

If no such Ŵ exists or if there are more than one, an error is declared, and the decoder
outputs 0.

7. There is a decoding error if Ŵ 6= W . Let E be this event.

We now analyze the probability of the error with respect to the random codebook C.

Pr(E) =
∑
C

Pr(C)P (n)
e (C)

=
∑
C

Pr(C) 1

2nR

2nR∑
w=1

λw(C)

=
1

2nR

2nR∑
w=1

∑
C

Pr(C)λw(C)

=
∑
C

Pr(C)λ1(C) (1)

= Pr(E|W = 1),

where Equation 1 is due to symmetry of the code construction. We define

Ei = {(Xn(i), Y n) ∈ A(n)
ε }, i ∈ {1, 2, . . . , 2nR}.

So Ei is the event that the ith code and Y n are jointly typical, noting that Y n is the result of
sending the first codeword Xn(1) over the channel. So

Pr(E|W = 1) = P (Ec1 ∪ E2 ∪ E3 . . . E2nR |W = 1) ≤ P (Ec1|W = 1) +
2nR∑
i=2

P (Ei|W = 1).

Due to the code generation procedure, Xn(1) and Xn(i) are independent for i 6= 1, and therefore,
so are Y n and Xn(i). Due to Theorem 2 (2), the probability that Xn(i) and Y n are jointly typical
is ≤ 2−n(I(X;Y )−3ε), where random variables X and Y are distributed acording to Q(x)p(y|x). So
by Theorem 2 (1), for sufficiently large n,

Pr(E) = Pr(E|W = 1) ≤ P (Ec1|W = 1) +

2nR∑
i=2

P (Ei|W = 1)

≤ ε+

2nR∑
i=2

2−n(I(X:Y )−3ε)

= ε+
(
2nR−1

)
2−n(I(X:Y )−3ε)

≤ ε+ 23nε2−n(I(X:Y )−R)

≤ 2ε,
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under the condition R < I(X : Y )−3ε = CQ−3ε. Hence if R < CQ we can choose an ε and n so the
average probability of error, averaged over codebooks is less than 2ε. We now remove the average
over codebooks. Since the average error rate Pe(C) is small, there exists at least one codebook C∗
with a small average probability of error, with

Pr(E|C∗) =
1

2nR

2Rn∑
i=1

λi(C∗) ≤ 2ε.

Connection with Algorithmic Information Theory. We now derive the statements of the
theorem. Define P to be the probability over codebooks used in earlier in this proof that uses the
distribution Q to generate the codewords. Thus K(P ) <+ K(Q,n,R). Let D be the set of encoded
codebooks that achieve an error rate less than or equal to 2ε. By the arguments above, P (D) ≥ 0.5.
This set D is computable from Q, n, R, and C, with K(D|(Q,n,R,C)) = O(1). Thus by Corollary
1 and Lemma 1, there is a codebook C∗ ∈ D that has an error rate ≤ 2ε, with

K(C∗) <log K(P )− logP (D) + I(D;H)

<log K(Q,n,R) + I((Q, r, n,C);H). (2)

Thus the sender can use solely C∗ to send messages to the receiver. The receiver needs to determine
if sequences are jointly typical, and thus uses (C∗, Q,C) to decode the messages. Note that with
careful analysis of the proof of Lemma 2 for computable probabilities, one can construct a short
program for C∗ (with size less than that of Equation 2) that can also compute Q. Thus, we can
construct a program p with the properties described in the theorem statement. �

5 Resource Bounded EL Theorem

In this section we derive the resource bounded EL theorem. We also derive an interesting corollary
to Theorem 4.1 in [AF09] which states to invert a hash function f−1(x), one can find a secret key π
of size approximiately equal to x that will efficiently decompress to a pre-image of x with respect to
f . The results in this section are not unconditional, they require the existence of the pseudorandom
generator, introduced in [Nis94].

Assumption 1 Crypto is the assumption that there exists a language in DTIME(2O(n)) that
does not have size 2o(n) circuits with Σp

2 gates. This asssumption is need in the proof of Theorem
4 in [AF09] to assume the existence of a pseudorandom generator g : Σk logn → Σn, computable in
time polynomial in n.

Definition 5 FP′ = {f : f ∈ FP and if ‖x‖ = ‖y‖ then ‖f(x)‖ = ‖f(y)‖}.

Definition 6 For A ∈ FP′ we say that A samples D ⊂ Σn with probability γ, if |Σn∩A−1(D)|/2n >
γ.

Theorem 4 ([AF09]) Assume Crypto. Let F ∈ FP′. Let m,n ∈ N where Σn ⊇ f(Σm). Let
Ty = {w ∈ Σm : F (w) = y} and Vk = {y : ‖y‖ = n and |Ty| ≥ 2k}. There exists a function

G : Σm−k+O(logm) → Σm

computable in polynomial time such that for all y ∈ Vk, range(G) ∩ Ty 6= ∅.

10



Remark 2 In the previous theorem, the running time of G is a polynomial function of the running
time of F . This was noted in [LOZ22]. In addition, in subsequent theorems and corollaries of
this section, the polynomial time function p in the resource bounded complexity Kp is a polynomial
function of the running times of the algorithms of the theorem/corollary statements. Furthermore,
due to [AF09], G can be encoded in O(1) bits.

The following corollary implies that to invert x with a hash function f , one can find a secret key π
of size approximately equal to x that efficiently expands to an element in f−1(x).

Corollary 2 Assume Crypto. Let f ∈ FP′, where f(Σn) ⊆ Σn−k. Then for some polynomial p
where for Σn ⊇ D = f−1(x),

min
y∈D

Kp(y) = n− log |D|+O(log n).

Proof. Follows directly from Theorem 4. �

Corollary 3 (Resource EL) Assume Crypto. Let L ∈ P, A ∈ FP′, and assume A samples Ln
with probability δn. Then for some polynomial p,

min
x∈Ln

Kp(x) < − log δn +O(log n).

Proof. Let F ∈ FP′ where F (Σn) ⊆ Σn and for x ∈ Σn, F (x) = 1n if A(x) ∈ Ln and F (x) = 0n

otherwise. Let k ∈ N be maximal such that δn ≥ 2k−n. Let ` = n − k + O(c log n). By Theorem
4, there exists a function G : Σ` → Σn running in polynomial time such that there exists x ∈ `,
with G(x) = 1n. This is because 1n ∈ Tk, using the definition in Theorem 4, because A produces a
member of Ln with probability at least δn and all of Ln is mapped to 1n. We define a program P
that uses G to map x to a string y, then use A to map y to a string z ∈ Ln. This program P is of
size ` and runs in polynomial time. �

A verifier V : Σ∗ × Σ∗ → Σ is a function computable in polynomial time with respect to the
first argument. For a given x, Proofs(x) = {y : V (x, y) = 1}.
Corollary 4 Assume Crypto. Let {xn} be uniformly computable in polynomial time. For a
verifier V (x, y), let A ∈ FP′ sample Proofs(xn) with probability γn. Thus there is a polynomial p
and y ∈ Proofs(xn) with

Kp(y) < − log γn +O(log n).

6 Resource Bounded Derandomization

In this section, we use Corollary 4 to produce three examples of resource bounded derandomization.
The resource free versions of these theorems can be found in [Eps22a].

Lemma 5 (Lovasz Local Lemma) Let E1, . . . , En be a collection of events such that ∀i : Pr[Ei] ≤
p. Suppose further that each event is dependent on at most d other events, and that ep(d+ 1) ≤ 1.

Then, Pr
[⋂

iEi
]
>
(

1− 1
d+1

)n
.

Proposition 1 (Mutual Independence Principle) Suppose that Z1, . . . Zm is an underlying
sequence of independent events and suppose that each event Ai is completely determined by some
subset Si ⊂ {Z1, . . . , Zm}. If Si ∩ Sj = ∅ for j = j1, . . . , jk then Ai is mutually independent of
{Aj1 , . . . , Ajk}.
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6.1 Vertex-Disjoint-Cycles

Theorem 5 Assume Crypto. Let {Gn} be a uniformly computable in polynomial time sequence
of k-regular graphs, with k ≥ 5. There is a polynomial p where for each Gn, there is a partition x
of b k

3 ln kc components each containing a cycle with

Kp(x) < 2n/k2 +O(log n).

Proof. We partition the vertices of G into c = bk/3 ln kc components by assigning each vertex to
a component chosen independently and uniformly at random. With positive probability, we show
that every component contains a cycle. It is sufficient to prove that every vertex has an edge leading
to another vertex in the same component. This implies that starting at any vertex there exists a
path of arbitrary length that does not leave the component of the vertex, so a sufficiently long path
must include a cycle. A bad event Av = {vertex v has no neighbor in the same component}. Thus

Pr[Av] =
∏

(u,v)∈E

Pr[u and v are in different components]

=

(
1− 1

c

)k
< e−k/c ≤ e−3 ln k = k−3.

Av is determined by the component choices of itself and of its out neighbors Nout(v) and these
choices are independent. Thus by the Mutual Independence Principle, (Proposition 1) the depen-
dency set of Av consist of those u that share a neighor with v, i.e., those u for which ({v}∪N(v))∩
({u} ∪N(u)) 6= 0. Thus the size of this dependency is at most d = (k + 1)2.

Take d = (k + 1)2 and p = k−3, so ep(d + 1) = e(1 + (k + 1)2)/k3 ≤ 1, holds for k ≥ 5. Thus,
noting that k ≥ 5, by Lovasz Local Lemma, (Lemma 5),

Pr

[⋂
v∈G

Av

]
>

(
1− 1

d+ 1

)n
=

(
1− 1

(k + 1)2 + 1

)n
>

(
1− 1

k2

)n
. (3)

Graphs Gn of size n are encoded in strings of size kndlog ne and partitions are the proofs, encoded
in strings of size ndlog ke. The verify V returns 1 if each partition contains a cycle. The verifier
runs in time O(n log n). We define a sampling function A ∈ FP′ over the partition/proofs that is
the same as the probability used in the Lovasz Local Lemma, i.e. the uniform distribution. Thus
A(x) = x. A samples Proofs(Gn) with probability γn, where by Equation 3,

− log γn < −n log(1− 1/k2) < 2n/k2.

Thus by Corolloray 4, there is a polynomial p, where for each graph Gn ∈ Q of n vertices, there is
a partition x ∈ Proofs(Gn) with

Kp(x) < 2n/k2 +O(log n).

�
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6.2 Balancing-Vectors

Corollary 5 Assume Crypto. For vector v, ‖v‖∞ = maxi |vi|. A binary matrix M has entries of
0s or 1s. Let {Mn} be a uniformly polynomial time computable sequence of n× n binary matrices.
There is a polynomial p where for each Mn there is a vector b ∈ {−1, 1}n such that ‖Mnb‖∞ ≤
4
√
n lnn and

Kp(b) = O(log n).

Proof. Let v = (v1, . . . , vn) be a row of M . Choose a random b = (b1, . . . , bn) ∈ {−1,+1}n. Let
i1, . . . , im be the indices such that vij = 1. Thus

Y = 〈v, b〉 =

n∑
i=1

vibi =

m∑
j=1

vijbij =

m∑
j=1

bij .

E[Y ] = E[〈v, b〉] = E

[∑
i

vibi

]
=
∑
i

E[vibi] =
∑

viE[bi] = 0.

By the Chernoff inequality and the symmetry Y , for τ = 4
√
n lnn,

Pr[|Y | ≥ τ ] = 2 Pr[v · b ≥ τ ] = 2 Pr

 m∑
j=1

bij ≥ τ

 ≤ 2 exp

(
− τ2

2m

)
= 2 exp

(
−8

n lnn

m

)
≤ 2n−8.

Thus, the probability that any entry in Mb exceeds 4
√
n lnn is smaller than 2n−8. Thus, with

probability 1− 2n−7, all the entries of Mb have value smaller than 4
√
n lnn.

Let A(x) = x be the uniform sampling function. The verifier V takes in a matrix M and a
vector b and returns 1 iff ‖Mb‖∞ ≤ 4

√
n lnn. Let D ⊂ Σn consist of all strings that encode vectors

bx ∈ {−1,+1}n in the natural way such that ‖Mbx‖∞ ≤ 4
√
n lnn. By the above reasoning, A

samples D with probability ≥ 1 − 2n−7 > 0.5. So by Corollary 4, there is a polynomial p, where
for each n× n matrix Mn there is a binary vector b ∈ {−1, 1}n with ‖Mb‖∞ ≤ 4

√
n lnn and

Kp(b) = O(log n).

�

6.3 k-Sat

Corollary 6 Assume Crypto. Let Φn be a k(n)-SAT formula, using n variables, m(n) clauses,
uniformly polynomial time computable in n. Furthermore, each variable occurs in at most 2k(n)/k(n)e−
1 clauses. There is a polynomial p and a satisfying assignment x of Φn where

Kp(x) < 2m(n)e2−k(n) +O(log n).

Proof. The sample space is the set of all 2n assigments. We choose a random assignment, where
each variable is independently equally likely to have a true or false assignment. For each clause CJ ,
Ej is the bad event “Cj is not satisfied”. Let p = 2−k(n) and d = (2k(n)/e)−1. Thus ∀j, Pr[Ej ] ≤ p
as each clause has size k(n) and each Ej is dependent on at most d other events since each variable
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appears in at most 2k(n)/k(n)e − 1 other clauses, and each clause has k(n) variables. Thus since
ep(d+ 1) ≤ 1, by the Lovasz Local Lemma 5, we have that,

Pr

⋂
j

Ej

 > (1− 1

d+ 1

)m(n)

=
(

1− e

2k(n)

)m(n)
. (4)

Let Dn ⊂ Σn be the set of all assignments that satisfy φn. We use a uniform sampler, with

A(x) = x. By the above reasoning, A samples Dn with probability γn >
(

1− e
2k(n)

)m(n)
. Thus

− log γn < −m(n) log
(

1− e/2k(n)
)
< 2em(n)2−k(n).

By Corollary 4, there is a polynomial p, where for all n, there is a satisfying assignment x ∈ Dn of
Φ(n) with

Kp(x) < 2m(n)e2−k(n) +O(log n).

�
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