
The power of the Binary Value Principle

Yaroslav Alekseev∗ and Edward A. Hirsch†

Abstract

The (extended) Binary Value Principle (eBVP, the equation
∑n

i=1 xi2
i−1 = −k for k > 0

and in the presence of x2i = xi) has received a lot of attention recently, several lower
bounds have been proved for it [AGHT20, Ale21, PT21]. Also it has been shown [AGHT20]
that the probabilistically verifiable Ideal Proof System (IPS) [GP18] together with eBVP
polynomially simulates a similar semialgebraic proof system. In this paper we consider
Polynomial Calculus with the algebraic version of Tseitin’s extension rule (Ext-PC). Contrary
to IPS, this is a Cook–Reckhow proof system. We show that in this context eBVP still allows
to simulate similar semialgebraic systems. We also prove that it allows to simulate the
Square Root Rule [GH03], which is in sharp contrast with the result of [Ale21] that shows
an exponential lower bound on the size of Ext-PC derivations of the Binary Value Principle
from its square. On the other hand, we demonstrate that eBVP probably does not help in
proving exponential lower bounds for Boolean formulas: we show that an Ext-PC (even with
the Square Root Rule) derivation of any unsatisfiable Boolean formula in CNF from eBVP
must be of exponential size.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Algebraic proof systems . 4
2.2 A semialgebraic proof system . 5

3 Circuit and equational representations 6

4 Explicit BIT definition and basic lemmas 8
4.1 Proof strategy for the simulation . 9
4.2 Basic arithmetic operations . 9
4.3 Definition of BIT . 10
4.4 The binary value lemma . 11
4.5 Useful lemmas about the BIT value . 11

5 Ext-PCZ + eBVP polynomially simulates Ext-LS+,∗,Z 13
5.1 The simulation theorem . 14

6 Ext-PCZ + eBVP polynomially simulates Ext-PC
√

Z + eBVP 15

7 eBVP cannot be used to prove CNF lower bounds 16
7.1 Lower bound over the integers . 16
7.2 Lower bound over the rationals . 19

∗Steklov Institute of Mathematics at St. Petersburg, and Technion. Supported by Lady Davys Fellowship.
†Technion. Partially supported by the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 802020-ERC-HARMONIC.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 176 (2022)

8 Further research 20

1 Introduction

Tseitin’s extension rule [Tse68] is a powerful concept that turns even very weak propositional
proof systems into strong ones: it allows to introduce new variables for arbitrary formulas (it
is enough to do this for the disjunction and the negation). In particular, it turns Resolution (a
rather weak system for which superpolynomial lower bounds are known since [Tse68]) into the
powerful Extended Frege system [CR79] (a strong system for which we do not even know good
enough candidates for superpolynomial lower bounds).

Surprisingly, in the context of algebraic proof systems an exponential lower bound for a
system that uses Tseitin’s rule was proved recently [Ale21]. This system, Extended Polynomial
Calculus (or Ext-PC), combines the algebraic version of the extension rule (so that we can
introduce new variables for polynomials) with the Polynomial Calculus (PC) [CEI96] system.
While it has more power because it allows to talk about polynomials over any algebraically
closed field (or, in the Boolean setting, even just over a ring, such as Z), the exponential lower
bound has been proved for a system of polynomial equations that does not correspond to any
Boolean formula (in particular, a formula in conjunctive normal form, as in Resolution). This
system, called “the Binary Value Principle”, is the equation

∑n
i=1 xi2

i−1 + 1 = 0 along with
the “Boolean axioms” x2i − xi = 0 for every variable xi. It has also been used for proving
other exponential lower bounds [AGHT20, PT21] and (as the Extended Binary Value Principle,
eBVP) for demonstrating a polynomial simulation of polynomial inequalities by polynomial
equations [AGHT20] for generalized proof systems that require polynomial identity testing for
the verification (the algebraic system is the Ideal Proof System, IPS, of [GP18]). Note that
polynomial inequalities are considered to be much more powerful than polynomial equations:
for example, no exponential size lower bound is known even for the simplest proof system LS
(motivated by the optimization procedure by László Lovász and Alexander Schrijver, see [Pud99]
and [GHP02]).

Our results. In this paper, we consider three questions about Ext-PC and eBVP, and prove
three results:

1. How powerful is Ext-PC? We prove (Theorem 5.2) that together with eBVP it polynomially
simulates a similar system that uses inequalities (namely, Ext-LS+,∗, which is LS with
extension variables, squares, and multiplication). This brings the result of [AGHT20] down
to conventional proof systems from proof systems that use polynomial identity testing for
proof verification. It is interesting how far we can weaken the proof systems to keep such
simulation (it becomes harder and harder when we weaken them to formulas or polynomials
written as sums of monomials).

2. Grigoriev and Hirsch [GH03] introduced the square root rule that allows to conclude f = 0
from f2 = 0. It would be needed for the implicational completeness of PC in the non-
Boolean case. It is not needed at all in the Boolean context, however, it could shorten
the proofs. It is impossible to simulate it polynomially in Ext-PC ([Ale21] proves an
exponential bit-size-of-coefficients lower bound on derivations of

∑
xi2

i−1 + 1 = 0 from
(
∑
xi2

i−1 + 1)2 = 0) and PC ([PTT21] proves a linear degree lower bound on derivations
of
∑
xi + 1 = 0 from (

∑
xi + 1)2 = 0). We prove (Theorem 6.1) that in the case of Ext-PC

derivations the square root rule can be polynomially simulated using eBVP.

3. Is it possible to use lower bounds for eBVP for proving lower bounds for formulas in
conjunctive normal form? One could imagine deriving the translation of an unsatisfi-
able formula in conjunctive normal form (using the extension variables) from eBVP and
concluding a lower bound for a formula in CNF. We prove an exponential lower bound

2

(Theorem 7.3) on the size of derivations of such formulas from eBVP, showing an obstacle
to this approach.

Our methods. The divisibility method suggested in [AGHT20, Ale21] allows to prove lower
bounds on the size of algebraic proofs by analysing the scalars appearing in them. The simplest
application of this method substitutes the input variables by the binary representations of all
possible integers, and shows that the constant in the final contradiction in the proof over the
integers divides all of them (if the system allows it). In this paper we further develop this
method: we prove lower bounds for the derivation of a translation of an unsatisfiable formula
in CNF (and not just a contradiction), so there is no single constant at the end. We show an
exponential lower bound over the integers by counting the primes that divide the multiplicative
constants in the derivation of every clause and Boolean equation. The lower bound for rationals
follows using the translation of [Ale21].

In order to show polynomial simulations we use the general approach suggested in [AGHT20]:
to use bit arithmetic for proving facts about (semi)algebraic proofs. However, IPS [GP18] con-
sidered in that paper uses polynomial identity testing for proof verification, and thus allows to
switch between the circuit representations of polynomials at no cost. Our setting is different:
we need to simulate everything using the extension rule. Therefore, in order to simulate in-
equalities we derive gradually the facts that the values produced by bit arithmetic equal the
values of polynomials in the original proof, and that these values are nonnegative. We also need
to define the circuit representation, in particular for the extension variables, in order to reason
about Ext-LS+,∗ proofs. A somewhat similar approach works for the simulation of the square
root rule; however, we need to derive that all individual bits of the zero are zeroes, and then
take the square root.

The organization of the paper. The paper is organized as follows. Three preliminary sections:

Section 2. We define the proof systems and the measures of complexity we use.

Section 3. We define the circuit representation of polynomials appearing in an Ext-PC proof.

Section 4. We define the bit arithmetic translation of circuits and prove useful facts about it.

Sections describing the three results:

Section 5. We prove the Ext-PC+eBVP simulation of inequalities.

Section 6. We prove that eBVP allows Ext-PC to polynomially simulate the square root rule.

Section 7. We prove an exponential lower bound on the size of derivations of formulas in
conjunctive normal form from eBVP.

Eventually, in Section 8 we describe directions for further research.

2 Preliminaries

In this paper we work with polynomials over integers or rationals. We define the size of a
polynomial roughly as the total length of the bit representation of its coefficients. Formally, let
f be an arbitrary integer or rational polynomial in variables {x1, . . . , xn}.

• If f ∈ Z[x1, . . . , xn] then Size(f) =
∑

(dlog |ai|e+ 1), where ai are the coefficients of f .

• If f ∈ Q[x1, . . . , xn] then Size(f) =
∑

(dlog |ai|e+ dlog |bi|e+ 1), where ai ∈ Z, bi ∈ N and
ai
bi

are the coefficients of f .

3

We also use algebraic circuits. Formally, an algebraic circuit is a dag whose vertices (gates)
compute binary operations (addition and multiplication), thus gates have in-degree two; the
inputs (or variables) and constants (nodes computing integers or rationals) are nodes of in-
degree zero. Every gate of an algebraic circuit computes a polynomial in the input variables in
a natural way; we sometimes identify a gate with the circuit consisting of all the nodes on which
the gate depends (thus this gate is the output gate of such circuit).

The size of the circuit is the number of its gates plus the sum of the bit sizes of all constants.
We will also be interested in the syntactic length of an algebraic circuit, defined for circuits over
Z: it is roughly a trivial upper bound on the number of bits of an integer computed by the
circuit. The definition essentially follows [AGHT20], augmenting it with the multiplication.

Definition 1 (syntactic length of algebraic circuit). Consider the gates of an algebraic circuit
G1, . . . , Gk in topological order. We define the syntactic length inductively:

• If Gi is an integer constant, then the syntactic length of Gi is dlog(|Gi|)e.

• If Gi = Gj +Gk, the syntactic length of Gj is t, and the syntactic length of Gk is s, then
the syntactic length of Gi equals max(s, t) + 1.

• If Gi = Gj · Gk, the syntactic length of Gj is t, and the syntactic length of Gk is s, then
the syntactic length of Gi equals s+ t+ 3.

Note. 1. In the latter case the actual number of bits would be s+t; we state s+t+3 because this
is how it is computed in our implementation of the integer multiplication in Sect. 4 — however,
it does not change much asymptotically, the resulting length changes at most polynomially.

2. Note that the circuit size cannot exceed its syntactic length.

2.1 Algebraic proof systems

In what follows, R denotes Q or Z.

Definition 2 (Polynomial Calculus, [CEI96]). Let Γ = {p1, . . . , pm} ⊂ R[x1, . . . , xn] be a set of
polynomials in variables {x1, . . . , xn} over R such that the system of equations p1 = 0, . . . , pm = 0
has no solution. A Polynomial Calculus (PCR) refutation of Γ is a sequence of polynomials
r1, . . . , rs where rs = const 6= 0 and for every l in {1, . . . , s}, either rl ∈ Γ or rl is obtained
through one of the following derivation rules for j, k < l:

• rl = αrj + βrk, where α, β ∈ R,

• rl = xirk.

The size of the refutation is
∑s

l=1 Size(rl). The degree of the refutation is maxl deg(rl).

Note. 1. In this paper we consider Q or Z as R in PCR above or Ext-PCR below. For both
of these rings, we consider the Boolean case, where axioms x2i − xi = 0 are present for every
variable xi, and for this case our proof systems are complete.

2. Note that in the case R = Q one can assume rs = 1, while in the case R = Z an arbitrary
nonzero constant is needed to maintain the completeness.

Tseitin’s extension rule allows to introduce new variables for arbitrary formulas. We use an
algebraic version of this rule that allows to denote any polynomial by a new variable [Ale21].

Definition 3 (Extended Polynomial Calculus, Ext-PC). Let Γ = {p1, . . . , pm} ⊂ R[x1, . . . , xn]
be a set of polynomials in variables {x1, . . . , xn} over R such that the system of equations p1 =

4

0, . . . , pm = 0 has no solution. An Ext-PCR refutation of Γ is a Polynomial Calculus refutation
of a set

Γ′ = {p1, . . . , pm, y1 − q1(x1, . . . , xn), y2 − q2(x1, . . . , xn, y1), . . . ,
ym − qm(x1, . . . , xn, y1, . . . , ym−1)}

where qi ∈ R[x̄, y1, . . . , yi−1] are arbitrary polynomials.
We omit R from the notation of PCR or Ext-PCR when it is clear from the context. The size

of the Ext-PC refutation is equal to the size of the Polynomial Calculus refutation of Γ′.

The square root rule [GH03] allows to conclude that f = 0 from f2 = 0. We can consider it
in the context of both PC and Ext-PC.

Definition 4 (PC
√
, Ext-PC

√
). The proofs in PC

√
, Ext-PC

√
follow Definitions 2, 3 but allow

one more derivation rule in terms of Def. 2:

• derive rl, if r2l = rk

(derive a polynomial if its square has been already derived).

Note. If R is a domain and p2 = 0 for some p ∈ R[x̄], then p = 0.

The extended Binary Value Principle (eBVP) says that that the (nonnegative) integer value of
a binary vector cannot be negative. In order to use this fact in the proof, we need to specify that
such a polynomial can be replaced by 1 (in particular, if eBVP is present without a multiplier,
it produces the contradiction 1 = 0).

Definition 5 (Ext-PC + eBVP). Ext-PC + eBVP operates exactly the same derivation rules as
Ext-PC with one more rule:

• derive rl = g if for some polynomials g, f1, . . . , ft and integer constant M > 0 we have
derived the polynomial rk = g · (M + f1 + 2f2 + . . . + 2nft) along with polynomials rk1 =
f21 − f1, . . . , rkt = f2t − ft.

Note. We can define Ext-PC
√

+ eBVP the same way.

2.2 A semialgebraic proof system

We will consider the following proof system that can be viewed as a generalization of the LS
proof system [Pud99] by the algebraic extension rule. Note that we could move the introduction
of new variables to the beginning of the proof as we did in the definition of Ext-PC, however, it
does not matter.

Definition 6 (Ext-LS+,∗). Let Γ = {p1, . . . , pm} ⊂ R[x1, . . . , xn] be a set of polynomials in
variables {x1, . . . , xn} over R such that the system of equations p1 ≥ 0, . . . , pm ≥ 0 has no
solution. An Ext-LS+,∗ refutation of Γ is a sequence of polynomial inequalities r1 ≥ 0, . . . , rm ≥ 0
where rm = −M (M > 0 is an integer constant) and each inequality rl is obtained through one
of the following inference rules:

• rl = pi for some i, or rl = xi, or rl = 1− xi, or rl = x2i − xi, or rl = xi − x2i , or rk = z2

for any variable z.

• rl = ri · rj or rl = ri + rj for i, j < l. (Note that we can infer 1 as xi + (1− xi), thus we
can multiply by any positive constant.)

• If variable y did not occur in polynomials r1, . . . , rl−1, then we can derive a pair of poly-
nomials rl = y − f , rl+1 = f − y, where f is one of the basic operations (addition,
multiplication, copying) applied to variables not including y, and constants.

5

Note that the newly introduced variables are not necessarily Boolean. The size of the refutation
is
∑m

l=1 Size(rl). The degree of the refutation is maxl deg(rl).

Note. 1. Once again, in the case R = Q we could assume M = 1, while we need an arbitrary
positive constant for R = Z in order to maintain completeness.

2. Note that while the definition of Ext-LS+,∗ is written in a slightly different manner com-
pared to Ext-PC, it is not difficult to see that Ext-LS+,∗ polynomially simulates Ext-PC (in par-
ticular, conversion of equations to inequalities and of ideal inference to cone inference can be
done similarly to [AGHT20, Sect. 4.1.1 of the Technical Report version]).

3 Circuit and equational representations

We will represent the polynomials of the Ext-LS+,∗ derivation as circuits in the input variables.
In order to do this, we define circuit representations of axioms and extension variables.

Definition 7 (Circuit representation: axioms). For a polynomial f ∈ Z[x] appearing in the
axiom f ≥ 0, we consider its arbitrary reasonable circuit representation

Zf,1 = hf,1(x), . . . , Zf,s = hf,s(z1, . . . , zs−1, x)

where hf,i is one of the basic operations (addition, multiplication), a constant or one of the initial
variables. We denote the resulting circuit Zf,s by Zf .

We next define circuit representation for the extension variables.

Definition 8 (Circuit representation: extension variables). Suppose we have a sequence of
extension variables y1, . . . , yk introduced in some derivation by axioms yj = gj(x, y1, . . . , yj−1)
(where 1 < j ≤ k). We can define their values by algebraic circuits computed in a natural way
(the axioms are substituted into each other): define the sequence of circuits Y1(x), . . . , Yk(x) by

• Y1(x) = g1(x),

• for each 1 < j ≤ k, Yj(x) = gj(x, Y1(x), . . . , Yj−1(x)).

We call Yi the circuit representation of the extension variable yi.

With the circuit representation of the extension variables and axioms, we can define the
circuit representation of an Ext-LS+,∗ proof.

Definition 9 (Circuit representation: Ext-LS+,∗ proof). Given an Ext-LS+,∗ refutation p1 ≥
0, . . . ,−M = pm ≥ 0 of a system in variables xi, we construct the circuit representation
P1, . . . , Pm of its polynomials inductively:

• If pl is an axiom, Pl is the circuit representation of this axiom.

• If pl = xi, or pl = 1− xi, then Pl is the simple circuit computing pl.

• If pl = z2 for a variable z, then Pl = Q ·Q, where Q is the circuit representation of y (note
that typically, z is an extension variable).

• If pl is obtained using a binary operation ◦ (addition or multiplication) from pi and pj, we
put Pl = Pi ◦ Pj.

• If pl introduces a new variable, or it is the Boolean axiom x2i − xi (or xi − x2i), we put
Pl = 0.

Note that the axioms and the extension variables appear in Pi’s as subcircuits, and that the inputs
of Pi’s correspond to the original variables of the system.

6

Definition 10 (equational representation). Any algebraic circuit can be represented by equations
(one equation per gate). More precisely, if we have gates G1, . . . , Gm in topological order, then
we can consider variables γ1, . . . , γm with the corresponding set of polynomial equations:

• If Gi = xi or 1 − xi for some input variable, then corresponding polynomial equation for
the γi would be γi = xj or γi = 1− xi.

• If Gi = Gk◦G`, then the corresponding polynomial equation for the γi would be γi = γk◦γ`.

We refer to this set of equations as the equational representation.

The following lemma is used in the simulation of Ext-LS+,∗.

Lemma 3.1. Consider the circuit and equational representations of an Ext-LS+,∗ proof p1 ≥
0, . . . , pt ≥ 0. Consider Pi corresponding to the equational representation with the output variable
πi. Then there is a polynomial-size (in the size of the original proof) Ext-PC derivation of πi = pi
using only the Boolean axioms and the definitions of extension variables of the Ext-LS+,∗ proof.
The extension variables needed in the Ext-PC derivation are those appearing in the equational
representation.

Proof. First of all, note that if we consider any gate Yi from the circuit representation of the
extension variables, then there is a polynomial-size Ext-PC proof of the equality yi = υi, where
υi is the variable corresponding to the gate Yi in the equational representation. It follows by
induction on the construction of the circuit representation (the sets of equations for the variables
υi and yi are exactly the same). Similarly, for any variable Zf representing axiom f , there is a
polynomial-size Ext-PC proof of the equality f = φf , where variable φf corresponds to the gate
Zf .

Now we prove the statement of the lemma. We proceed by induction on the steps of the
Ext-LS+,∗ proof:

1. If pl is an axiom, it follows from the discussion above.

2. Recall that if pl introduces a new variable y, or it is the Boolean axiom x2i −xi (or xi−x2i),
we put Pl = 0, that is, πl = 0 by definition. On the other hand, pl is an axiom for our
Ext-PC proof, that is, pl = 0 is derived in a single step. Therefore πl = 0 = pl.

3. If pl = xi, or pl = 1− xi, then Pl is the simple circuit computing pl. Thus, it is also easy
to prove that πl = pl.

4. If pl = y2 for a variable y, then Pl = Y · Y , where Y is the circuit representation of the
extension variable y (if y is the input variable, the situation is trivial). By the discussion
above there is a polynomial-size derivation of υi = yi. Then using the equation πl = υi ·υi,
we get that πl = υi · υi = y2i = pl.

5. If pl is obtained using a binary operation ◦ (addition or multiplication) from pi and pj ,
we have Pl = Pi ◦ Pj . Then the corresponding equation in the equational representation
πl = πi ◦πj , and we can use the induction assumption to derive πl = πi ◦πj = pi ◦ pj = pl.

In order to simulate the square root derivation rule we need to consider a circuit represen-
tation of an arbitrary polynomial in extension variables, since a derivation in Ext-PC

√
, unlike

derivations in Ext-LS+,∗, does not correspond to an algebraic circuit (algebraic circuits do not
use square root gates).

7

Definition 11 (Circuit representation: polynomials). Consider a polynomial g ∈ Z[x, y], where
x are original variables and y are variables introduced by the extension rule. Def. 8 defines
the circuit representation Y1, . . . , Ym for the variables y1, . . . , ym. Then we can consider any
reasonable circuit G′1, . . . , G

′
t computing the polynomial g given variables x1, . . . , xn, variables

y1, . . . , ym, and the constants. Substituting the subcircuits Y1, . . . , Ym in place of the inputs
y1, . . . , ym of G′i’s, we get the circuit representation G1, . . . , Gl of g.

The syntactic length of the polynomial g is defined as the syntactic length of the circuit
G1, . . . , Gl.

The same proof works for a simplified version of Lemma 3.1:

Lemma 3.2. Consider any polynomial g over the extension variables y1, . . . , yk and the original
Boolean variables x1, . . . , xn, and consider any reasonable circuit representation G′1, . . . , G

′
t of g.

Then we can substitute the subcircuits Y1, . . . , Ym in place of the inputs y1, . . . , ym of G′i’s, and
get the circuit representation G1, . . . , Gl of g.

Then, if we consider an equational representation π1, . . . , πl of the circuit G1, . . . , Gl, then
there is a polynomial-size (in the size of g) Ext-PC derivation of the equation

g = πl.

4 Explicit BIT definition and basic lemmas

In our Ext-PC simulations in Sections 5 and 6, we argue about individual bits of the values
of the polynomials appearing in the Ext-LS+,∗ proof. In this section we construct the circuits
corresponding to these bits and prove auxilary statements about our constructions. We basically
follow [AGHT20] (Theorem 6.1 in the Technical Report version), however, there are important
differences:

1. In the case of Ext-PC proofs, the circuits are used in the meta-language only. In the actual
derivation, the bits are represented by extension variables defined through other extension
variables, etc. (essentially computing the circuit value).

2. Contrary to [AGHT20], we cannot magically switch between different representations of
polynomials, every step of the derivation has to be done syntactically.

The integers are represented in two’s complement form (see the definition of VAL below).
We use the following notation:

BITi(F): if F (x) is a circuit in the variables x, then BITi(F) is a new variable defined through
other extension variables (and x) that computes the i-th bit of the integer computed by
F as a function of the input variables x, where the variables x range over 0-1 values. The
integer is represented in the two’s complement form, that is, its highest bit is the sign bit.

SIGN(F) is used to denote this sign bit.

BIT(F): a collection of new variables that compute the bit vector of F . Note that BIT(F) also
includes SIGN(F).

VAL(z): the evaluation polynomial that converts bit encoding of an integer z in two’s comple-
ment representation to its integer value. Given z0, . . . , zk−1,

VAL(z) =

k−2∑
i=0

2i · zi − 2k−1 · zk−1.

We construct the representation of BITi(F) by induction on the size of F .

8

4.1 Proof strategy for the simulation

Our plan for the simulation of Ext-LS+,∗ in Sect. 5 is as follows:

• Suppose we have an Ext-LS+,∗ refutation p1(x, y) ≥ 0, . . . , pm(x, y) ≥ 0, where pm =
−M > 0. We will consider the circuit representation P1, . . . , Pm of polynomials p1, . . . , pm
in order to speak about BIT(Pi), and will introduce more extension variables according to
the corresponding equational representation of Pi’s.

• We will show by induction that we can derive the following statements in Ext-PC:

1. VAL(BIT(Pi)) = pi.

2. SIGN(Pi) = 0.

Then given the fact that VAL(BIT(Pm)) = pm = −M , where M ∈ N, and SIGN(Pi) = 0,
we can apply eBVP to derive a contradiction in Ext-PC.

Before we accomplish this, we need to define BIT (using the definitions for basic arithmetic
operation) and prove several useful lemmas about what can we derive in Ext-PC (basic facts
about the values, the signs, etc). These will be also useful for the simulation of the square root
rule in Sect. 6.

4.2 Basic arithmetic operations

We now describe circuit constructions of the basic operations that we will need for the BIT
definition. A formal definition of those arithmetic operations essentially follows the scheme of
[AGHT20]. There is, however, one key difference: while in [AGHT20] we defined the operations
as circuits, in our context we define them as new variables alongside with their defining (sets
of) equations. So all the capitalized notation above corresponds to new extension variables
(sometimes with implicit introduction of auxilary extension variables) or vectors of new extension
variables.

Definition 12 (arithmetization operation arit(·)). For a variable xi, arit(xi) := xi. For the
truth values false ⊥ and true > we put arit(⊥) := 0 and arit(>) := 1. For logical connectives
we define arit(A ∧B) := arit(A) · arit(B), arit(A ∨B) := 1− (1− arit(A)) · (1− arit(B)), and
for the XOR operation we define arit(A⊕B) := arit(A) + arit(B)− 2 · arit(A) · arit(B).

Definition 13 (CARRYi, ADDi, ADD). When we use an adder for vectors of different size, we
pad the extra bits of the shorter one by its sign bit. Suppose that we have a pair of length-(k+ 1)
vectors of variables y = (y0, . . . , yk), z = (z0, . . . , zk) of the same size. We first pad the two
vectors by a single additional bit yk+1 = yk and zk+1 = zk, respectively (this is the way to deal
with a possible overflow occurring while adding the two vectors). Define

CARRYi(y, z) :=

{
(yi−1 ∧ zi−1) ∨ ((yi−1 ∨ zi−1) ∧ CARRYi−1(y, z)), i = 1, . . . , k + 1;

0 , i = 0 ,

and
ADDi(y, z) := yi ⊕ zi ⊕ CARRYi(y, z) , i = 0, . . . , k.

Finally, define
ADD(y, z) := (ADDt(y, z), · · · ,ADD0(y, z))

(that is, ADD is a multi-output circuit with k + 2 output bits).

9

Definition 14 (absolute value operation ABS). Let x be a (k + 1)-bit vector representing an
integer in two’s complement. Let s be its sign bit, and let m = e(s) be the (k + 1)-bit vector all
of whose bits are s. Define ABS(x) as the multi-output circuit that outputs k+ 2 bits as follows
(where ⊕ here is bit-wise XOR):

ABS(x) := ADD(x,m)⊕m.

Definition 15 (product of two nonnegative numbers in binary PROD+). Let a be an (r+1)-bit
integer and b be a (k + 1)-bit integer where the sign bit of both a, b is zero. We define k + 1
iterations i = 0, . . . , k; the result of the i-th iteration is defined as the (r + i + 1)-length vector
si = si,r+isi,r+i−1 · · · si,0, where

sij := aj−i ∧ bi, for i ≤ j ≤ r + i,

sij := 0 for 0 ≤ j < i.

(Note that we use the sign bits ak, br in this process although we assume it is zero; this is done in
order to preserve uniformity with other parts of the construction.) The product of a (k + 1)-bit
and an (r+ 1)-bit integers is defined as the sequential addition of all the results in all iterations:

PROD+(a, b) := ADD
(
sk,ADD

(
sk−1, . . . ,ADD (s1, s0)

)
. . .
)
.

The number of output bits of PROD+ is formally k + r + 2 including the sign bit.

Definition 16 (product of two numbers in binary PROD). Let y be an (r + 1)-bit integer and
z be a (k + 1)-bit integer in two’s complement notation. Define the product of y and z by first
multiplying the absolute values of the two numbers and then applying the corresponding sign bit:

PROD(y, z) := ADD
(
PROD+

(
ABS(y),ABS(z)

)
⊕m, s

)
,

where s = yr ⊕ zk and m = e(s), with yr, zk the sign bits of y, z as bit vectors in the two’s
complement notation, respectively.

Note that the number of bits that PROD outputs is k+ r+ 5: given a (k+ 1)-bit number, its
ABS is of size k + 2 (including the zero sign bit), the nonnegative product PROD+ of ABS(x)
and ABS(y) has size (k + 2) + (r + 2), bitwise XOR does not change the length, and adding s
augments the result by one more bit.

4.3 Definition of BIT

Following [AGHT20] we define the bit representation of the values of polynomials computed
by algebraic circuits. In doing this, we construct another circuit. We identify its nodes with
new variables that will appear in our Ext-PC + eBVP proof, and the defining equation for these
variables are exactly the operations computed by the gates of the new circuit. Note that the
inputs of this circuit are the same as the inputs of the original circuit.

Definition 17 (BIT). Let G1 = f1(x), G2 = f2(x,G1), . . . , Gm = fm(x,G1, . . . , Gm−1) be a
topological order of the gates of an algebraic circuit over variables x.

For each Gr we define BITi(Gr) to be a new extension variable with the corresponding
polynomial equation so that BITi(Gr) computes the i-th bit of Gr:
Case 1: Gr = xj for an input xj. Then, BIT0(Gr) := xj, BIT1(Gr) := 0 (in this case there
are just two bits).
Case 2: Gr = α, for α ∈ Z. Then, BITi(Gr) is defined to be the i-th bit of α in two’s
complement notation.
Case 3: Gr = Gk +Gl. Then BIT(Gr) = ADD(BIT(Gk),BIT(Gl)), and BITi(yr) is defined to
be the i-th bit of BIT(yr).
Case 4: Gr = Gk ·Gl. Then BIT(Gr) := PROD(BIT(Gk),BIT(Gl)), and BITi(Gr) is defined
to be the i-th bit of BIT(Gr).

Recall that in the latter two cases the shorter number is padded to match the length of the
longer number by copying the sign bit before applying ADD or PROD.

10

4.4 The binary value lemma

We now show a short proof of the fact that the BIT(G) circuit that we constructed computes
the same binary value as the original circuit G. Moreover, it can be compactly proved in Ext-PC
for the equational representation of BIT(G).

Lemma 4.1 (binary value lemma). Let y1 = f1(x), y2 = f2(x, y1), . . . , ym = fm(x, y1, . . . , ym−1)
be the equational representation of the algebraic circuit

G1(x) = f1(x), . . . , Gm = fm(x,G1(x), . . . , Gm−1(x))

over the variables x = {x1, . . . , xn}, and let t be the syntactic length of G1, . . . , Gm.
Then, there is an Ext-PC proof (using only the Boolean axioms and the equations of the BIT

encoding) of
yi = VAL(BIT(Gi))

of size poly(t) for each 1 ≤ i ≤ m.

Proof. For the proof we refer to the similar lemma from [AGHT20]. That paper talks about
another system, IPS, which incorporates polynomial identity testing for free. However, the proof
of this lemma is syntactic and does not use polynomial identity testing. We will briefly describe
the structure of the proof.

The proof proceed by induction. On each induction step we assume that we have already
constructed Ext-PC proofs for the equations

y1 = VAL(BIT(G1)), . . . , yr = VAL(BIT(Gr))

and construct the proof of the equation yr+1 = VAL(BIT(Gr+1)). The construction of the
Ext-PC proof depends on the way in which the variable yr+1 was introduced. For example, if
yr+1 = yk · yl, then Gr+1 is a product gate and Gr+1 = Gk ·Gl. We need to show that

VAL(PROD(BIT(Gk),BIT(Gl))) = VAL(BIT(Gk)) ·VAL(BIT(Gl)),

which can be done exactly in the same way as in [AGHT20].

4.5 Useful lemmas about the BIT value

In this section we describe technical lemmas about individual bits in the bit representation that
will be used later in the proof of our simulation.

Lemma 4.2. For any vector of variables r0, . . . , rk−1, rk, there is a poly(k)-size Ext-PC+ eBVP
derivation of

r0 = . . . = rk = 0

from
r20 − r0 = 0, . . . , r2k − rk = 0 and r0 + 2r1 + . . .+ 2k−1rk−1 − 2krk = 0.

Proof. Multiply the last equation by rk and replace r2k by rk. We get (r0+2r1+ . . .+2k−1rk−1−
2k)rk = 0, which has (the negation of) an instance of eBVP in the parentheses (for r′i = 1− ri).
It remains to apply the eBVP rule to prove that rk = 0. After that we get

r0 + 2r1 + . . .+ 2k−1rk−1 = 0.

Again, multiply this by rk−1 and replace r2k−1 by rk−1. We get (r0 + 2r1 + . . . + 2k−2rk−2 +

2k−1)rk−1 = 0 with an instance of eBVP inside. After applying the eBVP rule we get that
rk−1 = 0. We can continue in the same way for rk−2, . . . , r0 getting

r0 = . . . = rk = 0.

11

Lemma 4.3 (monotonicity of addition and multiplication). For any two bit vectors r0, . . . , rk−1, rk
and r′0, . . . , r

′
k−1, r

′
k, there is a poly(k)-size Ext-PC derivation of

SIGN(PROD(r, r′)) = 0 and SIGN(ADD(r, r′)) = 0,

from

r20 − r0 = 0, . . . , r2k−1 − rk−1 = 0, r2k − rk = 0,

r′0
2 − r′0 = 0, . . . , r′k−1

2 − r′k−1 = 0, r′k
2 − r′k = 0,

rk = 0,

r′k = 0.

Proof. See [AGHT20] (Lemma 6.7 in the Technical Report version), as the derivation presented
in that paper is literally in Ext-PC.

Lemma 4.4. 1. For any vector of variables r0, . . . , rk−1, rk, there is a poly(k)-size Ext-PC
derivation of

SIGN(PROD(r, r)) = 0

from
r20 − r0 = 0, . . . , r2k−1 − rk−1 = 0, r2k − rk = 0.

2. If additionally PROD(r, r) = 0 is given, there is a poly(k)-size Ext-PC derivation of

r0 = 0, . . . , rk = 0.

Proof. By the definition of PROD,

PROD(r, r) = ADD
(
PROD+

(
ABS(r),ABS(r)

)
⊕m, s

)
,

where s = rk ⊕ rk and m = e(s). Thus we instantly derive that s = 0 and m = 0 and obtain

PROD(r, r) = PROD+

(
ABS(r),ABS(r)

)
,

which completes the proof of the first statement (by the definition of PROD+).
Now we denote r′ := ABS(r). We already know from the definition of ABS that the sign bit

of r′ is equal to 0. Now we will derive that each bit ri is equal to zero by induction, starting
from r0.

Base case: We have the equation PROD+(r′, r′) = 0. Let us denote the vector PROD+(r′, r′)
as t.

Now recall the definition of PROD+: we have k + 1 iterations i = 0, . . . , k; the result of the
ith iteration is defined as the (k + i+ 1)-length vector si = si,k+isi,k+i−1 · · · si,0 where

sij := r′j−i ∧ r′i, for i ≤ j ≤ k + i,

sij := 0 for 0 ≤ j < i.

Eventually, PROD+ is defined as

t := ADD
(
sk,ADD

(
sk−1, . . . ,ADD (s1, s0)

)
. . .
)
.

From this definition, it is immediate that t0 = r′0 since si,0 = 0 for i > 0 (which matches the
intuition of the “school” multiplication procedure). So, we can easily derive that r′0 = 0.

Induction step: Assume we already derived that r′l = 0, . . . , r′0 = 0. After substituting
these values, the definition of s̄i gives us immediately

12

• s̄l = s̄l−1 = . . . = s̄0 = 0,

• sij = 0 for 0 ≤ j ≤ l, i > l,

• sij = 0 for l + 1 ≤ i and l + 1 ≤ j < 2l + 2,

• thus we can conclude that sij = 0 for any i and 0 ≤ j < 2l + 2.

Finally, for j = 2l+ 2 we can derive that sij = 0 for all i > l+ 1 because it is either defined
to be 0 or si,j = r′j−i ∧ r′i and r′j−i = 0 was derived already (since j − i ≤ l). Also s̄i = 0 for
i ≤ l, so si,2l+2 = 0 for i 6= l + 1. Together with the fact that sij = 0 for any j < 2l + 2 we can
derive that

t2l+2 = sl+1,2l+2

(we use here the definition of ADD, which is “school” addition, and we have just obtained that
not only all the bits in the column 2l+2 are zeroes, but also every bit in less significant columns
is zero).

On the other hand, by definition sl+1,2l+2 = (r′l+1 ∧ r′l+1) = r′l+1, so we conclude that
t2l+2 = r′l+1, which gives us r′l+1 = 0.

Thus we have shown that ABS(r) = 0. Now using a simple induction argument again we
can show that r = 0.

5 Ext-PCZ + eBVP polynomially simulates Ext-LS+,∗,Z

In this section we will show that Ext-PCZ + eBVP polynomially simulates Ext-LS+,∗,Z. This
will be done by gradually applying Lemma 4.1 to the circuit representation of the Ext-LS+,∗,Z
derivation.

Theorem 5.1 (the derivation theorem). Suppose we have a system of polynomial equations
f1 = 0, . . . , fk = 0, and that there is an Ext-LS+,∗,Z refutation p1 ≥ 0, . . . , pm ≥ 0 of the
corresponding system f1 ≥ 0, f1 ≤ 0, . . . , fk ≥ 0, fk ≤ 0.

Consider its circuit representation according to Sect. 3. Denote the syntactic length of the
circuit P1, . . . , Pm as t. Then, in terms of Sect. 3 there are poly(t)-size Ext-PCZ + eBVP
derivations of the facts

1. p1 = VAL(BIT(P1)), . . . , pm = VAL(BIT(Pm)).

2. Each sign bit in BIT(Pi) is equal to 0 (written in the form of polynomial equation si = 0
where si is a variable, corresponding to the sign bit of BIT(Pi)).

The axioms used in these derivations are the boolean axioms, the axioms defining extension
variables, and (for the second statement) the input axioms.

Proof. 1. From Lemma 4.1 we know a short proof that the binary value of the BIT circuit
BIT(G) equals the variable corresponding to the output of the original circuit G in the
equational representation of G. By applying this lemma to all circuits appearing in the
proof we get πi = VAL(BIT(Pi)), where the variable πi corresponds to the output of Pi.
It remains to prove the equation πi = pi, which is done by Lemma 3.1.

2. In order to prove that there are polynomial-size derivations of the facts that each sign bit
in BIT(Pi) is equal to 0, we recall that previously proven lemmas give us three statements:

(a) If we have the equation VAL(BIT(Pj)) = 0, then Lemma 4.2 provides a polynomial-
size derivation of SIGN(BIT(Pj)) = 0.

13

(b) If we have equations SIGN(BIT(Pj)) = 0 and SIGN(BIT(Pk)) = 0, then Lemma 4.3
provides a polynomial-size derivation of

SIGN(PROD(BIT(Pj),BIT(Pk))) = 0 and SIGN(ADD(BIT(Pj),BIT(Pk))) = 0.

(c) For any variable yi, Lemma 4.4 provides a polynomial-size derivation of

SIGN(PROD(BIT(Yi),BIT(Yi))) = 0.

We now proceed to proving the statement 2 by induction.
Base case: the base is one of the following cases:

• Pi is a definition of an Ext-LS+,∗,Z proof extension variable or a Boolean axiom. Then
Pi = 0 (that is, it is a trivial circuit) by the construction of the circuit representation
(cf. Lemma 3.1, second item in the proof).

• Pi is an input axiom. By the first statement we derive VAL(BIT(Pi)) = 0 and using
statement (a), we can derive that SIGN(BIT(Pi)) = 0.

• Pi is an input variable or its negation; then SIGN(BIT(Pi)) = 0 is easily seen from
the construction of BIT.

• Pi is a square (of a variable). Then statement (c) provides a polynomial-size derivation
of SIGN(BIT(Pi)) = 0.

Induction step: Suppose we have already proved that SIGN(BIT(Pj)) = 0 for j < k,
and Pk is constructed using an operation Pk = Pj · Pl or Pk = Pj + Pl. Then we can
apply statement (b) and show that SIGN(BIT(y′′k+1)) = 0 with polynomial-size Ext-PC
derivation.

5.1 The simulation theorem

Definition 18 (Syntactic size of a refutation). The syntactic size of an Ext-LS+,∗,Z refutation
is the syntactic size of a corresponding circuit representation from Sect. 3.

Theorem 5.2. Consider arbitrary system of polynomial equations f1 = 0, . . . , fk = 0. Suppose
there is an Ext-LS+,∗,Z refutation for the system f1 ≥ 0, f1 ≤ 0, . . . , fk ≥ 0, fk ≤ 0 of syntactic
size S. Then there is an Ext-PCZ + eBVP refutation for the system f1 = 0, . . . , fk = 0 of size at
most poly(S).

Proof. We use the notation from the previous section.
Consider a size S Ext-LS+,∗-refutation p1 ≥ 0, . . . ,−M = pk ≥ 0 of the system f1 ≥ 0, f1 ≤

0, . . . , fk ≥ 0, fk ≤ 0. By Theorem 5.1(1) there is a poly(S) derivation of the fact that the
value of the polynomial computed in the last line (pk ≥ 0, which is −M ≥ 0) of the original
semialgebraic proof is a negative integer

−M = pk = VAL(BIT(Pk)).

On the other hand, by Theorem 5.1(2) there is a poly(S) derivation of the fact that

s = 0,

where s is a variable corresponding to the sign bit of BIT(Pk). This means that we have an
equation of the form

−M = b0 + 2b1 + 4b2 + . . .+ 2rbr − 2r+1s

where b0, . . . , br, s are the variables corresponding to the bit representation of BIT(Pk). From
this we derive that

b0 + 2b1 + 4b2 + . . .+ 2rbr +M = 0,

which is exactly the case of eBVP, so the contradiction follows in a single step. (Note that
another application of eBVP is in Lemma 4.2.)

14

6 Ext-PCZ + eBVP polynomially simulates Ext-PC
√

Z + eBVP

In this section we show that eBVP simulates the square root rule.
We will be using the following strategy for the simulation:

• Suppose we want to derive g = 0 from g2 = 0, for some polynomial g.

• We consider the bit representation BIT(G2) of g2.

• Lemma 4.1 provides a polynomial-size proof of VAL(BIT(G2)) = g2, thus we have VAL(BIT(G2)) =
0.

• From this, Lemma 4.2 provides a polynomial-size proof of BIT(G2) = 0. Here we make
use of eBVP.

• Now Lemma 4.4 provides a polynomial-size proof of BIT(G) = 0.

• From this we can derive that g = VAL(BIT(G)) = 0.

The formal application of this strategy is given by the following lemma.

Lemma 6.1. Assume that we have a polynomial g ∈ Z[x1, . . . , xn, y1, . . . , ym] where x1, . . . , xn
are Boolean variables (that is, we have the equations x2i − xi = 0), and variables y1, . . . , ym are
other variables introduced via the extension rule (which means that each yj = hj(x, y1, . . . , yj−1),
where hj is a basic arithmetic operation or a constant). Suppose the syntactic length (cf Def. 11
of the polynomial g is t. Then there is a poly(t)-size Ext-PCZ + eBVP derivation of the equation
g = 0 from the equation g2 = 0 (using the equations x2i − xi = 0 and yj − hj(x, y) = 0).

Proof. Consider the circuit representation of the polynomial g. We can now consider the BIT
representation of this circuit, and get (by Lemma 4.1) a polynomial-size derivation of

π1 = VAL(BIT(G1)), . . . , πl = VAL(BIT(Gl)).

On the other hand, we can apply Lemma 3.2 to prove that

g = πl.

Let us add one more gate Gl+1 to the circuit: Gl+1 = Gl · Gl. The corresponding variable in
the equational representation would be πl+1 = πl · πl. Then we can instantly derive from g2 = 0
that

πl+1 = g2 = 0.

Thus, using the equation πl+1 = VAL(BIT(Gl+1)) we can derive that

VAL(BIT(Gl+1)) = 0.

Lemma 4.2 (that uses eBVP) allows us to derive

BIT(Gl+1) = 0.

Now using the fact that BIT(Gl+1) = PROD(BIT(Gl),BIT(Gl)) and Lemma 4.4, we can derive
that

BIT(Gl) = 0.

Now, using the equation g = VAL(BIT(Gl)) we instantly get that g = 0.

We can now state the simulation result.

15

Theorem 6.1. Consider arbitrary system of polynomial equations f1 = 0, . . . , fk = 0. Suppose
there is an Ext-PC

√

Z + eBVP refutation for this system where the sum of the syntactic sizes of
all polynomials in derivation is equal to S. Then there is an Ext-PCZ + eBVP refutation for the
system f1 = 0, . . . , fk = 0 of size at most poly(S).

Proof. We proceed by induction. Assume that we constructed an Ext-PC + eBVP derivation
of polynomials p1, . . . , pl that appeared in the original Ext-PC

√
+ eBVP derivation. We now

show how to derive the polynomial pl+1. If this polynomial is an axiom, or is derived by the
extension rule, or is derived by the eBVP rule, or is derived by addition or multiplication from
previous polynomials, then we can derive it in Ext-PC using the same rule (note that the size
of the derivation is always at most the syntactic length). If the polynomial was derived by the
square root rule, then we can use Lemma 6.1 to simulate this derivation.

7 eBVP cannot be used to prove CNF lower bounds

Exponential lower bounds on the size of proofs of eBVP have been demonstrated for several proof
systems including Ext-PC

√
[Ale21]. However, they have a caveat: eBVP is not a translation of

a Boolean formula in CNF. Is it still possible to use these bounds to prove an exponential
lower bound for a formula in CNF? For example, one could provide a polynomial-size Ext-PC

√

derivation of a translation of an unsatisfiable Boolean formula in CNF from eBVP: together
with the lower bound for eBVP, this would prove a bound for a formula in CNF. One could even
introduce extension variables in order to describe such a formula.

In this section we show that this is not possible: any Ext-PC
√

derivation of an unsatisfiable
CNF from eBVPn (that is, from

∑n
i=1 xi2

i−1 + M = 0) should have exponential size in n. We
start with proving a lower bound over the integers. Then we use this result to extend it to the
rationals. The proof can be viewed as a generalization of the lower bound in [Ale21]; however,
the lower bound is proved not for the derivation of M = 0, but for the derivation of an arbitrary
unsatisfiable CNF, possibly in the extension variables.

7.1 Lower bound over the integers

Suppose we have derived some unsatisfiable formula in CNF from eBVPn in Ext-PC
√

Z . This
means that we have derived polynomial equations of the form C1 · p1 = 0, . . . , Cm · pm = 0,
where each Ci is a nonzero integer constant and each pi is the translation of a Boolean clause.
The translation has the following form:

pi = yj1 · · · yjk · ¬y`1 · · · ¬y`r ,

where each yj is a Boolean variable and ¬y` is a variable introduced via the extension rule
¬y` = 1 − y`. Note that each variable yj can be an extension variable, however, it is necessary
that we should derive that C ′j · (y2j − yj) = 0 for each yj , where C ′j ∈ Z\{0}. We will fix those
equations C ′j ·(y2j−yj) = 0 for later. Note that since we work over the integers, we cannot assume
that all Ci’s and C ′j ’s equal 1 (we cannot divide), though if we derive polynomials multiplied by
nonzero constants, it may still help in proving a lower bound for a CNF.

We start with formally defining how a substitution into the input variables changes polyno-
mials that use extension variables:

Definition 19. Suppose we have introduced variables y1, . . . , ym in an Ext-PC
√

Z derivation as

y1 = q1(x1, . . . , xn), y2 = q2(x1, . . . , xn, y1), . . . , ym = qm(x1, . . . , xn, y1, . . . , ym−1).

Then, for any variable yi and any vector of bit values {b1, . . . , bn} ∈ {0, 1}n we can define
substitution yi|x1=b1,...,xn=bn in the following way:

16

• y1|x1=b1,...,xn=bn := q1(b1, . . . , bn).

• For i > 1 we define

yi|x1=b1,...,xn=bn := qi(b1, . . . , bn, y1|x1=b1,...,xn=bn , . . . , yi−1|x1=b1,...,xn=bn).

For any polynomial f(x1, . . . , xn, y1, . . . , ym) ∈ Z[x, y] we define f |x1=b1,...,xn=bn in the following
way:

f |x1=b1,...,xn=bn = f(b1, . . . , bn, y1|x1=b1,...,xn=bn , . . . , ym|x1=b1,...,xn=bn)

Before proving our lower bound, we observe a property of Boolean substitutions:

Lemma 7.1. Suppose we have an instance of eBVP of the form M + x1 + 2x2 + . . .+ 2n−1xn.
Consider any prime number p < 2n and the binary representation b1, . . . , bk of any number
0 ≤ t < 2n such that t ≡ −M (mod p). Suppose we have an Ext-PC

√

Z derivation of the polynomial
equation f = 0 from M + x1 + 2x2 + . . . + 2n−1xn and the Boolean axioms x2i − xi = 0. Then
the number f |x1=b1,...,xn=bn is divisible by p.

Proof. The proof of this statement is a straightforward induction. It is obvious that the integers

M + b1 + 2b2 + . . .+ 2n−1bn, b2i − bi = 0 and (yi − qi)|x1=b1,...,xn=bn = 0

are divisible by p. Now we will prove the induction step:

• If we have any derivation of the form fl = αfj +βfk, where α, β ∈ Z, then fk|x1=b1,...,xn=bn

and fj |x1=b1,...,xn=bn are divisible by p, so fl|x1=b1,...,xn=bn is divisible by p.

• If fl = xjfk or fl = yjfk, then

fl|x1=b1,...,xn=bn = bjfk|x1=b1,...,xn=bn or
fl|x1=b1,...,xn=bn = yj |x1=b1,...,xn=bn · fk|x1=b1,...,xn=bn ,

so fl|x1=b1,...,xn=bn is divisible by p.

• f2l = fk, then since p is prime and fk|x1=b1,...,xn=bn is divisible by p, fl also should be
divisible by p.

Immediately we get the following corollary:

Corollary 7.1. Suppose we have an instance of eBVP of the form M +x1 + 2x2 + . . .+ 2n−1xn.
Consider any prime number p < 2n and the binary representation b1, . . . , bk of any number
0 ≤ t < 2n such that t ≡ −M (mod p). Suppose we introduced extension variable yi for which
we have an Ext-PC

√

Z derivation of the polynomial equation C ′ · (y2i −yi) = 0 from M+x1 +2x2 +
. . . + 2n−1xn. Then, either the number C ′ is divisible by p, or yi|x1=b1,...,xn=bn ≡ 1 (mod p), or
yi|x1=b1,...,xn=bn ≡ 0 (mod p).

Proof. Straightforward from Lemma 7.1. We know that C ′ · (yi|2x1=b1,...,xn=bn
− yi|x1=b1,...,xn=bn)

is divisible by p. Then, either C ′ or (yi|2x1=b1,...,xn=bn
− yi|x1=b1,...,xn=bn) is divisible by p. If

(yi|2x1=b1,...,xn=bn
− yi|x1=b1,...,xn=bn) is divisible by p, then either yi|x1=b1,...,xn=bn ≡ 1 (mod p),

or yi|x1=b1,...,xn=bn ≡ 0 (mod p).

Now we are ready to prove an exponential lower bound over the integers:

Theorem 7.1. Suppose we have an Ext-PC
√

Z derivation of an unsatisfiable CNF from M +x1 +
. . . + 2n−1xn = 0 and the Boolean axioms. Then at least one of the following three conditions
holds:

17

• The number of clauses in this CNF is at least 2n/3.

• We have derived a polynomial equation C ′ · (y2j − yj) = 0 and the constant C ′ is divisible
by at least Ω(2n/3) different prime numbers.

• There is a clause C ·yj1 · · · yjk ·¬y`1 · · · ¬y`r such that the constant C is divisible by at least
Ω(2n/3) different prime numbers.

Proof. Let Y be the set of variables occurring in our CNF.
Consider the set P of all prime numbers from {1, 2, . . . , 2n − 1}. Now consider any prime

number p ∈ P. As in Lemma 7.1, we can take an arbitrary t ∈ Z, 0 ≤ t < 2n, such that
t ≡ −M (mod p). Consider the binary representation b1, . . . , bn of this integer t. Corollary 7.1
says that for every yi ∈ Y we have derived that C ′i · (y2i − yi) = 0 and either C ′i is divisible by
p, or yi|x1=b1,...,xn=bn ≡ 1 (mod p), or yi|x1=b1,...,xn=bn ≡ 0 (mod p). We fix now this particular
equation for yi in what follows.

Now suppose that for every yi ∈ Y, the constant C ′i from equation C ′i · (y2i − yi) = 0 is not
divisible by p. Then we know that every number yi|x1=b1,...,xn=bn is Boolean modulo p. Thus
every number ¬yi|x1=b1,...,xn=bn is also Boolean modulo p and

yi|x1=b1,...,xn=bn ≡ 1− ¬yi|x1=b1,...,xn=bn (mod p).

Then, since our CNF is unsatisfiable, we know that there is a clause C · yj1 · · · yjk · ¬y`1 · · · ¬y`r ,
such that

(yj1 · · · yjk · ¬y`1 · · · ¬y`r)|x1=b1,...,xn=bn ≡ 1 (mod p).

On the other hand, from Lemma 7.1 we know that

C · (yj1 · · · yjk · ¬y`1 · · · ¬y`r)|x1=b1,...,xn=bn ≡ 0 (mod p).

Therefore, C is divisible by p.
Summarizing everything, we get that for every prime p ∈ P either we have derived a Boolean

equation C ′ · (y2 − y) where C ′ is divisible by p, or there is a clause C · yj1 · · · yjk · ¬y`1 · · · ¬y`r
where the constant C is divisible by p.

Now, if the number of clauses in our CNF is at least 2n/3, then the first condition of the
theorem holds. Suppose we have derived an unsatisfiable CNF with less then 2n/3 clauses. Then
we have less than 2n/3 different variables in our CNF since it is unsatisfiable. Then we have
derived less than 2n/3 equations of the form C ′i · (y2i − yi) and less than 2n/3 clauses of the form
C · (yj1 · · · yjk · ¬y`1 · · · ¬y`r).

We showed that for any prime p ∈ P there is either an equation C ′i · (y2i − yi) such that C ′i
is divisible by p or a clause C · (yj1 · · · yjk · ¬y`1 · · · ¬y`r) such that C is divisible by p. So, since
the total number of those equations is less then 2n/3+1, there is a constant C (maybe C = C ′i)
from one of those equations that is divisible by at least |P|

2n/3+1 prime numbers.
We know that the size of the set P is at least C ′′ · 2n/n by the Prime Number Theorem

for some constant C ′′. Thus the constant C should be divisible by at least C ′′ · 2n

2n/3+1·n prime
numbers, which is sufficient to satisfy the second or the third condition of the theorem.

Corollary 7.2. Any Ext-PC
√

Z derivation of an unsatisfiable CNF in n variables from eBVPn

requires size Ω(2n/3).

Proof. If the number of clauses in this CNF is at least 2n/3, then our derivation already has size
Ω(2n/3).

Otherwise, by Theorem 7.1 there is a constant C in our derivation divisible by at least
Ω
(
2n/3

)
different prime numbers. Thus, the bit size of this integer should be Ω(2n/3).

18

7.2 Lower bound over the rationals

In order to prove a lower bound over Q, we need to convert an Ext-PC
√

Q proof into an Ext-PC
√

Z
proof. We will use the following technical statement from [Ale21]:

Theorem 7.2 ([Ale21], Claim 12). Suppose we have an Ext-PC
√

Q derivation {R1, . . . , Rt} from
some set of polynomials Γ = {f1, . . . , fn} ⊂ Z[x̄]. Also, suppose Rt ∈ Q[x̄], which means that Rt

does not depend on newly introduced variables.
Then there is an Ext-PC

√

Z derivation {R′1, . . . , R′t′} from Γ, where

R′t′ = δc11 · · · δ
cl
l · L

cl+1

1 · · ·Lcl+t

t ·Rt

and

• c1, c2, . . . , cl+t are some non-negative integers.

• Each Li ∈ N is the product of all denominators of coefficients of polynomial Ri.

• The set of constants {δ1, δ2, . . . , δl} ⊂ N is the set of all denominators of the constants in
{γ1, γ2, . . . , γl}, where {γ1, γ2, . . . , γl} ⊂ Q is the set of all constants α and β occurring in
linear combination steps in the proof. This means that some Rj(x̄, ȳ) was derived by using
the linear combination rule with the constants α and β, or in other words, Rj = αRi+βRk

for some previously derived polynomials Ri and Rk.

Note. Observe that the size of the derivation {R′1, . . . , R′t′} can be exponentially larger then the
size of the derivation {R1, . . . , Rt}. However, this fact does not affect our proof, because in the
next theorem we are concerned with divisibility only.

Now we will use Theorem 7.2 to prove a lower bound over the rationals.

Theorem 7.3. Any Ext-PC
√

Q derivation of an unsatisfiable CNF from eBVPn requires size
Ω(2n/3).

Note. Since division by integer numbers is allowed in Ext-PC
√

Q , we can assume that the trans-
lation of the CNF has the following form:

pi = yj1 · · · yjk · ¬y`1 · · · ¬y`r ,

and the translations of equations for Boolean variables has the form y2i − yi = 0.

Proof. If the number of clauses in this CNF is at least 2n/3, then our derivation already has size
Ω(2n/3).

We can thus assume that the number of clauses is less than 2n/3.
From Theorem 7.2 we know that there is an Ext-PC

√

Z derivation from eBVPn where all the
clauses have the following form:

δc11 · · · δ
cl
l · L

cl+1

1 · · ·Lcl+t

t · yj1 · · · yjk · ¬y`1 · · · ¬y`r = 0,

and all the Boolean equations for the variables in those clauses also have the form

δc11 · · · δ
cl
l · L

cl+1

1 · · ·Lcl+t

t · (y2i − yi) = 0.

Then from Theorem 7.1 we know that for some clause or equation for Boolean variables δc11 · · · δ
cl
l ·

L
cl+1

1 · · ·Lcl+t

t is divisible by at least Ω
(
2n/3

)
different prime numbers.

Since δ1, . . . , δl, L1, . . . , Lt are positive integers, we know that δ1 · · · δl · L1 · · ·Lt is divisible
by at least Ω

(
2n/3

)
different prime numbers. We also know that

logdδ1e+ · · ·+ logdδle+ logdL1e+ · · ·+ logdLte ≤ O(Size(S))

19

because all constants L1, . . . , Lt are products of denominators in the lines of our refutation
{R1, . . . , Rt} and all constants δ1, . . . , δl are denominators of rationals in linear combinations
used in our derivation.

On the other hand, we know that for some constant C ′′ the following holds:

δ1 · · · δl · L1 · · ·Lt ≥ 2C
′′·2n/3

since our product is divisible by at least Ω
(
2n/3

)
different prime numbers. Therefore, S ≥

Ω(2n/3).

8 Further research

A long-standing open question in semialgebraic proof complexity is to prove a superpolynomial
lower bound for a rather week proof system (called LS after Lovász and Schrijver), namely for
its most basic version [Pud99]: consider only polynomials of degree at most two, express then as
sums of monomials with coefficients written in binary, allow the addition and the multiplication
by the input variable x or its negation 1 − x only. (That is, no arbitrary multiplication, no
squares axioms (f2 ≥ 0), no extension variables.) Recently lower bounds on very strong proof
systems have been proved for systems of polynomial equations (based on eBVP) that do not
come from Boolean formulas. Does this generalization help to prove superpolynomial lower
bounds for polynomial inequalities, for example, for LS?

We have shown a polynomial simulation of Ext-LS+,∗ proofs in Ext-PC augmented by the
eBVP rule, which was already known for stronger systems IPS vs CPS [AGHT20]. How can we
weaken the basic system so that the statement remains true? For example, following [Bus87] we
can simulate binary arithmetic in logarithmic depth (by formulas), which, unfortunately, gives
only log2n depth proofs. Is it possible to do better?

Acknowledgement

We are grateful to Ilario Bonacina and Dima Grigoriev for fruitful discussions, and to Yuval
Filmus for his detailed comments on an earlier draft of this paper.

References
[AGHT20] Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. Semi-

algebraic proofs, IPS lower bounds and the τ -conjecture: Can a natural number be neg-
ative? In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing
(STOC 2020), pages 54–67, 2020. Technical details can be found in ECCC TR19-142,
https://eccc.weizmann.ac.il/report/2019/142. (document), 1, 1, 1, 2, 2.2, 4, 2, 4.2, 4.3,
4.4, 4.5, 8

[Ale21] Yaroslav Alekseev. A Lower Bound for Polynomial Calculus with Extension Rule. In Valen-
tine Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume 200
of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:18, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. (document), 1, 2, 1, 2.1,
7, 7.2, 7.2

[Bus87] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. The Journal
of Symbolic Logic, 52(4), 1987. 8

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algo-
rithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on
the Theory of Computing (Philadelphia, PA, 1996), pages 174–183, New York, 1996. ACM.
1, 2

20

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36–50, 1979. 1

[GH03] Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret.
Comput. Sci., 303(1):83–102, 2003. Logic and complexity in computer science (Créteil, 2001).
(document), 2, 2.1

[GHP02] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semialgebraic
proofs. Mosc. Math. J., 2(4):647–679, 805, 2002. 1

[GP18] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polyno-
mial identity testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018. (document),
1, 1

[PT21] Fedor Part and Iddo Tzameret. Resolution with counting: Dag-like lower bounds and different
moduli. Comput. Complex., 30(1):2, 2021. (document), 1

[PTT21] Fedor Part, Neil Thapen, and Iddo Tzameret. First-order reasoning and efficient semi-
algebraic proofs. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. 2

[Pud99] Pavel Pudlák. On the complexity of the propositional calculus. In Sets and proofs (Leeds,
1997), volume 258 of London Math. Soc. Lecture Note Ser., pages 197–218. Cambridge Univ.
Press, Cambridge, 1999. 1, 2.2, 8

[Tse68] Grigori Tseitin. On the complexity of derivations in propositional calculus. Studies in
constructive mathematics and mathematical logic Part II. Consultants Bureau, New-York-
London, 1968. 1

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

