
Quantum Worst-Case to Average-Case Reductions

for All Linear Problems

Vahid R. Asadi∗ Alexander Golovnev† Tom Gur‡ Igor Shinkar§

Sathyawageeswar Subramanian¶

Abstract

We study the problem of designing worst-case to average-case reductions for quantum algo-
rithms. For all linear problems, we provide an explicit and efficient transformation of quantum
algorithms that are only correct on a small (even sub-constant) fraction of their inputs into ones
that are correct on all inputs. This stands in contrast to the classical setting, where such results
are only known for a small number of specific problems or restricted computational models. En
route, we obtain a tight Ω(n2) lower bound on the average-case quantum query complexity of
the Matrix-Vector Multiplication problem.

Our techniques strengthen and generalise the recently introduced additive combinatorics
framework for classical worst-case to average-case reductions (STOC 2022) to the quantum
setting. We rely on quantum singular value transformations to construct quantum algorithms
for linear verification in superposition and learning Bogolyubov subspaces from noisy quantum
oracles. We use these tools to prove a quantum local correction lemma, which lies at the heart
of our reductions, based on a noise-robust probabilistic generalisation of Bogolyubov’s lemma
from additive combinatorics.

∗University of Waterloo. Email: vrasadi@uwaterloo.ca.
†Georgetown University. Email: alexgolovnev@gmail.com.
‡University of Warwick. Email: tom.gur@warwick.ac.uk. Tom Gur is supported by the UKRI Future Leaders

Fellowship MR/S031545/1 and an EPSRC New Horizons Grant EP/X018180/1.
§Simon Fraser University. Email: ishinkar@sfu.ca.
¶University of Warwick. Email: Sathya.Subramanian@warwick.ac.uk.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 177 (2022)

Contents

1 Introduction 1
1.1 Our contributions . 1
1.2 Related work . 3
1.3 Open problems . 3

2 Techniques 4
2.1 An additive combinatorics approach . 5
2.2 Quantum local correction via a robust Bogolyubov lemma 7
2.3 A toolkit of quantum algorithms for local correction 9
2.4 Quantum worst-case to average-case reductions . 12

3 Preliminaries 14
3.1 Quantum unitary oracles and Fourier transforms . 14
3.2 Average-case quantum algorithms . 15

4 Quantum worst-case to average-case reductions 16
4.1 Quantum algorithms for all linear problems . 17
4.2 Matrix-vector multiplication in the query model . 17

5 Quantum toolkit for local correction 18
5.1 Flagging correct matrix-vector products in superposition 19
5.2 Noisy quantum oracles approximating the indicator function 1X 25
5.3 Quantum sampling from the set of good inputs . 26
5.4 Learning Bogolyubov subspaces from noisy quantum oracles 27

6 Robust quantum local correction via additive combinatorics 30
6.1 Robust probabilistic Bogolyubov lemma . 30
6.2 Quantum local correction lemma . 32

7 Reductions for linear problems 33
7.1 Properties of threshold sets . 34
7.2 Proof of Lemma 4.1 . 34

A Quantum singular value transformation techniques 42
A.1 Fixed-point amplitude amplification . 42
A.2 Singular value threshold projections . 42

ii

1 Introduction

Average-case complexity is a central area of research in the theory of computing, which studies
algorithms that solve problems on average inputs. This notion provides a paradigm for designing
efficient algorithms that work on many relevant inputs, even if the worst-case complexity of the
problem is high (cf., the standard textbooks [Gol08; AB09]).

Worst-case to average-case reductions are transformations of algorithms that are correct on
a small fraction of their inputs into algorithms that are correct on all inputs. That is, given an
algorithm ALG for computing a function f that satisfies Prx[ALG(x) = f(x)] ≥ α, the goal is to
boost the success rate α (i.e., the fraction of inputs upon which the algorithm is correct) to 1
without significantly increasing the algorithm’s complexity. We stress that for general problems
even if there is an efficient way to verify the output of ALG (e.g., if ALG outputs a flag indicating
that it has succeeded), it is still unclear if such a goal is achievable at all.

We can view worst-case to average-case reductions both as a means for deriving average-case
hardness results from worst-case lower bounds, and also as a paradigm for designing worst-case
algorithms by first constructing algorithms that are only required to succeed on a small fraction of
their inputs and then using the reduction to obtain algorithms that are correct on all inputs.

In this work, we study efficient worst-case to average-case reductions where the success rate is
low (e.g., where the average-case algorithm is only correct on 1% of the inputs1) in the setting of
quantum computing. On the one hand, the quantum setting is more complex and poses significant
challenges since we need to transform a much larger class of average-case algorithms. On the other
hand, the quantum setting also allows us to use powerful quantum procedures in the design of the
worst-case algorithms to avoid classical bottlenecks.

This paper deals with the following fundamental question regarding quantum average-case com-
plexity:

Is it possible to transform efficient quantum algorithms that are only correct on 1% of their
inputs into efficient quantum algorithms that are correct on all inputs?

1.1 Our contributions

We provide a strong, positive answer to the question above. In fact, we show that not only are
such transformations possible, but that we can construct explicit and efficient quantum worst-case
to average-case reductions for all linear problems with only constant blowup in the complexity.

This stands in stark contrast to the case of classical algorithms, where such reductions are only
known for a small number of specific problems or restricted models. Furthermore, our reduction
not only supports average-case algorithms in the 1% regime but also algorithms where the success
rate α tends to zero; that is, algorithms that are only correct on a vanishing fraction of their inputs.

In the following, generalising the definition of BQP algorithms to fine-grained search problems
in the standard way, we define an average-case quantum algorithm as a uniformly generated set of
quantum circuits {Cn}n∈N which, upon measurement, output correctly with probability α, where
the probability is taken over both the random input and the measurements. (See formal definitions
in Section 4.)

1We stress that the 1% regime is far more challenging. Indeed, in the 99% regime, simple self-correction can be
used to obtain fine-grained worst-case to average-case reductions for a number of problems [BLR90].

1

A linear problem is characterised by a family of matrices M := {Mn ∈ Fn×n}n∈N, where on
input v ∈ Fn the solution to the problem is the vector Mv, omitting the subscript on M for read-
ability. Linear problems constitute one of the most fundamental classes of problems, generalising
many important computational tasks such as polynomial evaluation, computing discrete Fourier
transformations, homology, and various computational tasks for error correcting codes.

Our main result is a worst-case to average-case reduction which shows that for all linear prob-
lems, an efficient quantum algorithm that is only successful on a small fraction of its inputs can
be explicitly transformed into a similarly efficient quantum algorithm that is correct with high
probability on all inputs. Πx below denotes an orthogonal projection on the output register of ALG
that represents measuring the outcome x ∈ Fn in the standard basis.

Theorem 1 (Informally stated; see Theorem 4.2). Let F be a finite field, M := {Mn ∈ Fn×n}n∈N
be any linear problem, and ALG be an average-case quantum algorithm of (gate) complexity T for
M satisfying

Pr
v,ALG

[ALG(v) =Mv] = E
v∈Fn

[
∥ΠMvALG |v⟩ |0⟩∥2

]
≥ α .

Then, for every constant δ > 0, there exists a worst-case quantum algorithm ALG′ of (gate)
complexity (T + n3/2) · poly(1/α) that succeeds over all inputs with high probability, i.e.,

∀v ∈ Fn Pr
ALG′

[ALG′(v) =Mv] =
∥∥ΠMvALG

′ |v⟩ |0⟩
∥∥2 ≥ 1− δ .

Note that every linear problem can be trivially solved in time O(n2). Our result shows that any
non-trivial (subquadratic) average-case quantum algorithm can be transformed into a non-trivial
(sub-quadratic) quantum algorithm that works for all inputs. We also remark that constructing
worst-case to average-case reductions for linear problems becomes significantly harder as we consider
smaller fields, as we discuss in the technical overview (Section 2). We stress that our reductions
also hold for small fields, including F2.

Our proof of Theorem 1 builds upon a machinery that we develop in the quantum query model.
This allows us to obtain the following worst-case to average-case reduction for the fundamental and
well-studied problem of Matrix-Vector Multiplication in the quantum query model [BŠ06; Kot14].

Theorem 2 (Informally stated; see Theorem 4.3). Let ALG be an average-case quantum query
algorithm with oracle access to a matrix M and a vector v over a finite field F. Suppose that ALG
makes q queries and satisfies

Pr
M,v,
ALG

[ALGM,v =Mv] = E
M∈Fn×n

v∈Fn

[∥∥ΠMvALG
M,v |0⟩

∥∥2] ≥ α .

Then, for every constant δ > 0, there exists a worst-case quantum query algorithm ALG′ with query
complexity (q + n3/2) · poly(1/α) that succeeds on all inputs with high probability, i.e.,

∀M ∈ Fn×n, v ∈ Fn Pr
ALG′

[(ALG′)M,v =Mv] =
∥∥∥ΠMv(ALG

′)
M,v |0⟩

∥∥∥2 ≥ 1− δ .

In the query model, it is known that the worst-case quantum query complexity of Matrix-
Vector Multiplication has a tight lower bound of Θ(n2) (see, e.g., [Kot14]). Hence as an immediate
corollary of Theorem 2, we obtain a tight unconditional average-case lower bound for Matrix-
Vector multiplication, showing that the problem remains hard even if the quantum algorithm is
only required to succeed on a small fraction of the inputs.

2

Corollary 3. For every constant α > 0, every average-case quantum query algorithm for Matrix-
Vector Multiplication with success rate α must make Ω(n2) queries.

1.2 Related work

The study of the average-case complexity originates in the work of Levin [Lev86], and follow-up
works such as [BCG+92]. A long line of works established various barriers to designing worst-case to
average-case reductions for NP-complete problems (see, e.g., [IL90; Imp11] and references therein).
We refer the reader to the classical surveys by Impagliazzo [Imp95], Bogdanov and Trevisan [BT06],
and Goldreich [Gol11] on this topic.

On the other hand, there are known worst-case to average-case reductions for certain prob-
lems [Lip91; FF93; BFN+93; Ajt96; STV01]. For example, the problems underlying the classical
number-theoretic cryptography (such as the RSA, discrete logarithm, and quadratic residuosity
problems) are random self-reducible, and, therefore, admit efficient worst-case to average-case re-
ductions (for fixed parameters). The celebrated work of Shor [Sho94] gave a polynomial time
quantum algorithm breaking the number-theoretic cryptosystems, which sparked interest in post-
quantum cryptography, i.e., cryptography secure even against (polynomial time) quantum adver-
saries. A number of quantum and classical worst-case to average-case reductions [Ajt96; MR04;
Reg09; LPR13; LS15; Gen10] allowed us to base the security of (post-quantum) lattice-based cryp-
tography on the worst-case quantum hardness assumptions for certain computational problems.
Another interesting example of a (quantum) worst-case to average-case reduction was recently
given in [LdW21] for problems related to phase estimation.

Recently, the study of fine-grained complexity [Vas18] of algorithmic problems sparked interest
in designing efficient worst-case to average-case reductions, i.e., reductions that do not suffer a
polynomial overhead in the running time. Such reductions are often motivated by fine-grained
cryptographic applications [BRS+17; BRS+18; GR18; LLV19; BBB19; DLV20].

In a recent work [AGG+22], a new framework for showing efficient worst-case to average-case
reductions was introduced. This framework uses the quasi-polynomial Bogolyubov-Ruzsa lemma to
show reductions in the classical setting that support the low-agreement regime, where the average-
case algorithm is only guaranteed to succeed on 1% of the inputs. This framework was used to
obtain reductions for a few specific problems or restricted models of classical computation.

1.3 Open problems

Our work opens up several new directions of investigation. Below, we highlight three open problems
of particular interest. Recall that in Theorem 1, we have shown fine-grained quantum worst-case to
average-case reductions, where the success rate is arbitrarily small, for all linear problems. These
reductions make crucial use of quantum procedures that speed up classical computational tasks such
as linear verification and learning of Bogolyubov subspaces from approximate indicators encoded
in noisy quantum oracles.

Interestingly, unlike the general result above for quantum algorithms, in the classical setting,
the aforementioned computational tasks constitute a complexity bottleneck, and in turn such worst-
case to average-case reductions are only known for a small number of specific problems or restricted
computational models [AGG+22]. It remains open whether such general results for all linear prob-
lem can also be obtained in the classical setting.

3

Open Problem 1. Are there efficient transformations of classical algorithms (or circuits) for
general linear problems, which are only correct on 1% of their inputs, into similarly efficient worst-
case classical algorithms (or circuits)?

Returning to the quantum setting, it is natural to ask whether the framework we constructed
can be extended beyond the class of linear problems.

Open Problem 2. Can efficient average-case quantum algorithms with success rate 1% for large
classes of non-linear problems be transformed into efficient worst-case quantum algorithms?

The last open problem we would like to raise refers to quantum algorithms that act on data of
exponential size, encoded in the amplitudes of a quantum state, as in the celebrated HHL algorithm
[HHL09]. It would be highly appealing to extend the framework presented in this paper to this
setting, where quantum algorithms are extremely powerful.

Open Problem 3. Can we obtain fine-grained worst-case to average-case reductions for quantum
algorithms such as the HHL algorithm, in which the data (and the output) are encoded in the
amplitudes of a quantum state?

Acknowledgements

We thank Richard Cleve for discussions that inspired this work. We also thank the anonymous
referees for their very helpful suggestions.

Organisation

The rest of the paper is organised as follows. In Section 2, we provide an overview of our techniques
and a high-level overview of the proof of Theorem 2. In Section 3, we give the necessary background
material. In Section 4, we state a general technical lemma (Lemma 4.1) and show how to use it
to derive our worst-case to average-case reductions (Theorem 1 and Theorem 2). The subsequent
sections construct the components that are necessary to prove the aforementioned main technical
lemma, as follows.

In Section 5, we provide a toolkit of quantum algorithms for local correction; our techniques
employ the quantum singular value transformation machinery, which we discuss in Appendix A.
Then, in Section 6, we prove a robust and probabilistic version of Bogolyubov’s lemma from additive
combinatorics, and we use it together with our toolkit of quantum algorithms to obtain a quantum
local correction lemma, which will play a key role in our worst-case to average-case reductions.
Finally, in Section 7 we use all the tools above to prove the main technical lemma (Lemma 4.1).

2 Techniques

We provide a technical overview, highlighting the main conceptual and technical ideas that we use.
Our approach builds on the additive combinatorics framework, recently introduced in [AGG+22];
however, our setting, which captures all linear problems, is significantly more involved and presents
non-trivial challenges that require new additive combinatorics techniques, complexity theoretic
ideas, and quantum algorithms that are tailored to this setting.

We start in Section 2.1, where we present our high-level approach for transforming average-case
quantum algorithms for linear problems into worst-case quantum algorithms. In Section 2.2, we

4

discuss the key technical component underlying our reductions, which is a quantum local correc-
tion lemma based on a robust, probabilistic version of Bogolyubov’s lemma. Our quantum local
correction lemma crucially relies on four quantum algorithms, which we outline in Section 2.3, that
allow us to efficiently flag correct solutions in superposition, construct noisy oracles for approx-
imate indicator functions, efficiently sample good inputs, and learn Bogolyubov subspaces from
noisy set-indicating quantum oracles. Finally, in Section 2.4, we discuss how to apply the quantum
local correction lemma to obtain the desired worst-case to average-case reductions.

2.1 An additive combinatorics approach

In this overview, for simplicity of exposition, we will focus on the proof of Theorem 2 in the quantum
query model; we in fact optimise both the query and gate complexities, so that we can then show
how to extend the result to (uniform) quantum circuits for all linear problems.

Recall that the Matrix-Vector Multiplication problem (MvM) is defined as follows.

Matrix-Vector Multiplication (MvM)

Input: Oracle access to a matrix M ∈ Fn×n and a vector v ∈ Fn.
Output: The matrix-vector product Mv.

Let ALG be an average-case quantum algorithm that is given oracle access to M and v, defined
by

UM |j, k, z⟩ = |j, k, z ⊕Mjk⟩ and Uv |j, z⟩ = |j, z ⊕ vj⟩ ,
for all indices j, k ∈ [n] and z ∈ F. Suppose that using q queries toM and v, the quantum algorithm
ALG satisfies

Pr
M,v,
ALG

[ALGM,v =Mv] = E
M∈Fn×n

v∈Fn

[∥∥ΠMvALG
M,v |0⟩

∥∥2] ≥ α ,

where ΠMv is an orthogonal projection on the output register of ALG that indicates whether the
algorithm outputs the correct answer.

We would like to explicitly transform ALG into a worst-case quantum algorithm ALG′ that
computes Mv with high probability for every matrix M and vector v ∈ Fn; that is, show that for
every constant δ > 0, there exists a worst-case quantum algorithm ALG′ satisfying

∀M ∈ Fn×n, v ∈ Fn Pr
ALG′

[(ALG′)M,v =Mv] =
∥∥∥ΠMv(ALG

′)
M,v |0⟩

∥∥∥2 ≥ 1− δ .

To simplify the discussion, unless specified otherwise, in this overview we restrict our attention
to the field F2, and to arbitrarily small constant values of the success rate parameter α > 0 of
average-case algorithms (say α = 0.01).

Worst-case to average-case reductions via additive combinatorics. Our starting point is
the additive combinatorics framework that was recently introduced in [AGG+22]. Namely, we’d
like to decompose each input vector v into a sum of vectors on each of which the average-case
algorithm ALG is correct. However, since a simple linear decomposition of each v ∈ Fn into
correctly-computed inputs does not exist,2 we shall need more involved machinery from the field of
additive combinatorics.

2Indeed, as in the classical setting, consider the simple counterexample where the average-case algorithm ALGM,v

outputs M · v in case that the first coordinate of v is 1 and otherwise outputs 0. Note that in this case the success

5

To this end, we will start with Bogolyubov’s lemma, a fundamental result in additive combina-
torics which shows that the 4-ary sumset of any dense set in Fn

2 contains a large linear subspace.
More accurately, recall that the sumset of a set A is defined as A + A = {a1 + a2 : a1, a2 ∈ A},
and similarly 4A = {a1 + a2 + a3 + a4 : a1, a2, a3, a4 ∈ A}. These objects can be thought of
as a combinatorial analogue of an approximate subgroup. Considering these sumsets allows us to
extract subspace structure out of an unstructured set, as encapsulated in the following lemma.

Lemma 2.1 (Bogolyubov’s lemma). For any subset A ⊆ Fn
2 of density |A|/2n ≥ α, there exists a

subspace V ⊆ 4A of dimension at least n− α−2.

To see the initial intuition for the additive combinatorics approach to designing worst-case to
average-case reductions, we first make the simplifying assumption that the average-case algorithm
ALG receives a “good” matrix M ∈ Fn×n for which it is successful with probability α, taken over
the measurement and the random input vector v ∈ Fn; that is,

Pr
v
[ALGM,v =Mv] = E

v∈Fn

[∥∥ΠMvALG
M,v |0⟩

∥∥2] ≥ α .

In Section 2.4, we will show how to extend our approach to work on average-case matrices as well.
First note that by an averaging argument, there exists a set of size (α · 2n)/2 of input vectors

v ∈ Fn on which ALG correctly computes the output with probability at least α/2; denote this set
by X. Next, observe that Bogolyubov’s lemma shows that there exists a large subspace V such
that every v ∈ V can be decomposed as

v = x1 + x2 + x3 + x4, for x1, x2, x3, x4 ∈ X . (1)

Recall that each xi ∈ X can be computed correctly by the average-case algorithm with probability
at least α/2. This suggests the natural approach of locally correcting each v ∈ V using four inputs
upon which the average-case algorithm has a non-negligible success probability.

The challenges. While the discussion above outlines a promising approach, already at this point
there are substantial difficulties that arise when trying to pursue it. For starters, even on good
inputs in X the average-case algorithm only computes correctly with probability α/2 (which could
tend to zero!), and so it is unclear how to amplify the success probability of the algorithm such
that it computes correctly on all four elements of X in the decomposition in Eq. (1) with high
probability, which is necessary for the self-correction of inputs in the Bogolyubov subspace V .

We stress that this is not the case with the problems that were considered in [AGG+22] (where
verification was done using Freivald’s algorithm for matrix-matrix multiplication, or using the
unbounded preprocessing power in the data structure model). In contrast, in the setting of gen-
eral linear problems, naive verification of a matrix-vector product costs O(n2), which completely
trivialises the problem; indeed, in the classical setting, o(n2)-query verification of matrix-vector
products is impossible. Further issues include the fact that Bogolyubov’s lemma only guarantees
the existence of a decomposition into elements of X, whereas we need to explicitly obtain such a
decomposition, as well as the fact that the argument above only holds for correcting inputs that
are inside the Bogolyubov subspace V , whereas we need to locally correct all inputs.

rate is α ≥ 1/2, yet no linear decomposition could self-correct matrix-vector multiplication where the first coordinate
of v is 1. Indeed, any such decomposition v =

∑
i vi would have a vi with the first element 1, where ALGM,v fails.

6

Unfortunately, the classical framework that was shown in [AGG+22] fails to address the afore-
mentioned problems in the setting of general linear problems. Indeed, it is not clear whether the
ambitious task of constructing worst-case to average-case reductions for all linear problems is at all
possible for classical algorithms.

Instead, our approach for overcoming these challenges is inherently quantum, and it would
require more involved ideas, both technically and conceptually. We will show a new, noise-robust
version of Bogolyubov’s lemma (see Section 2.2), and together with a toolkit of quantum algorithms
(building on quantum singular value transformations) that we develop (see Section 2.3), we will
prove a new quantum local correction lemma that will play a key role in our reductions, which are
tailored to the strengths and limitations of the quantum setting.

2.2 Quantum local correction via a robust Bogolyubov lemma

Our starting point for addressing the difficulties outlined in Section 2.1 is a new robust and proba-
bilistic analogue of Bogolyubov’s lemma. These additional structural properties will in turn enable
us to deal with inputs outside of the Bogolyubov subspace and efficiently obtain explicit decompo-
sitions of inputs inside the Bogolyubov subspace into inputs upon which the average-case algorithm
is correct.

Then, using the robust probabilistic Bogolyubov lemma, we will show a local correction lemma
for quantum algorithms for linear problems. Our quantum local correction lemma will crucially
make use of the robustness and probabilistic properties, as well as the four quantum procedures
that we present in Section 2.3.

A robust probabilistic Bogolyubov lemma. Recall that our high-level idea for locally correct-
ing faulty inputs in the subspace V guaranteed by Bogolyubov’s lemma proceeds by decomposing
vectors v ∈ V into a linear combination of good inputs from the set X. However, to prove our
quantum local correction lemma, we need to be able to: (1) deal with vectors outside of the Bo-
golyubov subspace V , and (2) efficiently obtain an explicit decomposition of vectors inside V into
good inputs in X. To this end, we shall first need to strengthen Bogolyubov’s lemma to obtain the
following structural properties.

• Robustness. Our local correction lemma relies on learning the heavy part of the Fourier spectrum
of a noisy representation of an approximate indicator of the set X in superposition, using a
quantum procedure that we discuss in Section 2.3. In this setting, we can only learn the heavy
Fourier coefficients of a function g satisfying

∀S ⊂ [n]
∣∣∣|1̂X(S)|2 − |ĝ(S)|2

∣∣∣ ≤ ε ,

for a sufficiently small ε. In fact, each Fourier coefficient we obtain may come from a different
function g. To deal with this problem, which is unique to the quantum setting, we need a version
of Bogolyubov’s lemma where the subspace is defined via a robust set of linear constraints that
can accommodate for the noisy Fourier spectrum.

• Probabilistic decomposition. Bogolyubov’s lemma shows the existence of a large subspace V ⊂
4X, admitting a linear decomposition of each v ∈ V into four vectors from the set of good inputs
X upon which the average-case algorithm is correct. However, we need to efficiently obtain an

7

explicit decomposition v = x1 + x2 + x3 + x4, where each xi ∈ X, for each vector v ∈ V . Hence,
we show that each vector admits sufficiently many such decompositions such that one can be
efficiently sampled using a quantum sampling procedure that we show in Section 2.3.

We thus prove the following robust probabilistic Bogolyubov lemma, which will allow us to deal
with the challenges above. Given an unstructured set X ⊆ Fn, denote the heavy part, exceeding a

threshold γ, of the Fourier spectrum of X by SpecX(γ) = {r ∈ Fn \ {0} :
∣∣∣1̂X(r)

∣∣∣ ≥ γ}.

Lemma 2.2 (Informally stated, see Lemma 6.1). For every X ⊆ Fn of density at least α, let

R ⊆ Fn be a set such that SpecX(α3/2) ⊆ R ⊆ SpecX(α
3/2

2). Let V = {v ∈ Fn : ⟨v, r⟩ = 0 ∀r ∈ R}.
Then dim(V) ≥ n−O(α−2), and for all v ∈ V it holds that

Pr
x1,x2,x3∈X

[v − x1 − x2 − x3 ∈ X] ≥ α2 .

We stress that the probability in Lemma 2.2 is taken over x1, x2, x3 that are uniformly sampled
from X (rather than Fn). To efficiently obtain such a decomposition, we can sample x1, x2, x3 using
the quantum sampling procedure shown in Section 2.3.

Locally correcting outside of the Bogolyubov subspace. While the robust probabilistic
Bogolyubov lemma allows us to locally correct inputs inside the subspace V ⊆ 4X, our goal is to
obtain a worst-case quantum algorithm, hence we need to be able to handle any vector v ∈ Fn, and
not just those in V .

Towards this end, we would like to shift each vector v ∈ Fn \ V into the Bogolyubov subspace.
Using the robustness property of Lemma 2.2 and the quantum algorithm for learning Bogolyubov
subspaces from a noisy representation of indicator functions in superposition (see Section 2.3),
we further decompose each vector in Fn into a sum of elements in the subspace V and a sparse
shift-vector s, which can then be corrected efficiently due to its sparsity.

In more detail, let R ⊆ Fn \ {0} and V = {v ∈ Fn : ⟨v, r⟩ = 0 ∀r ∈ R}. We observe that there
exists a collection of t ≤ |R| vectors B = {b1, . . . , bt}, bi ∈ Fn and indices k1, . . . , kt ∈ [n] such
that span(B) = span(R) and every vector y ∈ Fn can be written as y = v + s, where v ∈ V and
s =

∑t
j=1 cj · e⃗kj for cj = ⟨y, bj⟩ and e⃗kj is a unit vector. We emphasize that the sparsity of the

decomposition is critical as it allows us to shift arbitrary vectors into the Bogolyubov subspace V
without unfavourably blowing up the complexity.

To efficiently obtain the basis b1, . . . , bt ∈ Fn and indices k1, . . . , kt ∈ [n], we rely on the quantum
algorithm for learning Bogolyubov subspaces described in Section 2.3, which allows us to obtain
the approximate high Fourier coefficients of an approximation of 1X from a noisy representation
in superposition, within the desired complexity. This, in turn, allows us to compute the required
basis and set of indices.

The quantum local correction lemma. Putting together all of the components above, we can
now state our quantum local correction lemma, which builds upon the robust probabilistic version
of Bogolyubov’s lemma and the quantum procedures that we will present in Section 2.3.

Loosely speaking, our local correction lemma allows us to efficiently obtain an explicit decom-
position of any vector v ∈ Fn into a linear combination of the form

v = x1 + x2 + x3 + x4 + s ,

8

where x1, x2, x3, x4 ∈ X and s ∈ Fn is a sparse vector.
Specifically, in Section 2.3, we will construct a noisy quantum oracle for approximating the

indicator 1X(v), quantum algorithm for uniformly sampling from X, a quantum verification proce-
dure ÕX that for each v ∈ Fn computes the indicator 1X(v) correctly with high probability, and a
quantum algorithm that learns the Bogolyubov subspace from the noisy oracle that approximates
1X . By combining these four ingredients we prove the following result.

Lemma 2.3 (informally stated, see Lemma 6.2). For a field F = Fp and α-dense set X ⊆ Fn, there
exists t ≤ 4/α2 vectors b1, . . . , bt ∈ Fn

2 and indices k1, . . . , kt ∈ [n] satisfying the following. Given a
vector y ∈ Fn, define s =

∑t
j=1 ⟨y, bj⟩ · e⃗kj , where (e⃗i)i∈[n] is the standard basis. Then,

Pr
x1,x2,x3∈X

[x4 ∈ X] ≥ α2 ,

where x4 is the vector such that y = s+ x1 + x2 + x3 + x4.
Furthermore, there exists a quantum algorithm that calls the quantum verification procedure ÕX

for O(log(1/δ) · (1/α5)) times, uses n ·poly(1/α) ·poly log |F| additional elementary gates, and with
probability at least 1− δ returns the vectors b1, . . . , bt ∈ Fn and indices k1, . . . , kt ∈ [n].

This quantum local correction lemma forms the cornerstone of our quantum average-case to
worst-case reductions, as we explain in Section 2.4. However, before we can turn to the details
of the reduction, we need to address three gaps that still remain: How can we efficiently verify
Matrix-Vector products, so that we can amplify the success probability of quantum algorithms
that are only correct with probability α (which could tend to zero)? Can we efficiently sample
from the set of good inputs X? How can we learn the Bogolyubov subspace from a noisy quantum
oracle that encodes an approximation of the indicator 1X?

2.3 A toolkit of quantum algorithms for local correction

Next, we address the foregoing questions by presenting the key quantum procedures that are re-
quired for our quantum local correction lemma. We stress that these solutions employ the power of
quantum algorithms, and indeed, the lack of such procedures in the classical setting is a bottleneck
that blocks the path to general results such as Theorem 1 and Theorem 2 for classical algorithms.

We achieve quantum speedups for the following four tasks, which are required for our quantum
local correction lemma:

1. Flagging correct matrix-vector products in superposition.

2. Constructing noisy quantum oracles approximating the indicator function 1X .

3. Sampling of vectors from the set X of good vectors.

4. Learning Bogolyubov subspaces from noisy quantum oracles.

Recall that it is essential to perform the above tasks in complexity o(n2); indeed our quantum
algorithms make at most O(n3/2) queries and use at most Õ(n3/2) additional one-qubit and two-
qubit gates. We now proceed to briefly describe the above quantum procedures, and offer a quick
glimpse at our techniques for obtaining them. See Section 5 for details.

9

Flagging correct matrix-vector products in superposition. The first tool we shall need is
a quantum subroutine for verifying whether a vector b ∈ Fn output by a quantum algorithm ALG is
in fact the correct matrix-vector product Mv, a task that classically requires Ω(n2) queries. This
will play an important role in both amplifying the success probability of our local correction lemma
(see Section 2.2) and in the other quantum algorithms in the toolkit we develop.

Since it is crucial for our reduction to use such a verification procedure as a unitary subroutine
in other quantum procedures, we unfortunately cannot apply existing verification algorithms from
the literature. Furthermore, since the algorithm ALG only succeeds on average with low probability,
different input vectors have significantly different success probabilities. To address this, we give
a procedure that flags all of the computational basis states in a superposition as either right or
wrong in a way that respects the success distribution of ALG, and then boost the amplitude of the
solutions.

However, since the success probabilities of different inputs have high variance, choosing a
fixed number of iterations of amplitude amplification causes problems of over-shooting and under-
shooting. Instead, we apply a delicate argument involving fixed-point amplitude amplification,
which converges monotonically towards the flagged state. Towards this end, we identify that the
flagging operation above has the form of a block encoding.3 Having such an object enables us to
use powerful techniques from the repertoire of quantum singular value transformations.

Implementing the strategy above, we construct the following quantum procedure for verifying
matrix-vector products, which works in superposition and marks an ancillary qubit attached to
the output state of ALG whenever the state has non-zero overlap with the correct matrix-vector
product |Mv⟩. See Section 5.1 for details.

Lemma 2.4 (Informally stated; see Lemma 5.2). Given access to a unitary oracle for a matrix
M ∈ Fn×n, and a quantum algorithm ALG that takes as input a vector v ∈ Fn and produces as
output a state that consists of a superposition over vectors in Fn,

ALG |v, 0⟩ =
∑
z∈Fn

γvz |v⟩ |z⟩ |w(z, v)⟩ ,

there is a quantum algorithm ALGverified that annotates the output state of ALG with a flag marking
the vector Mv as correct, and marking all other vectors z ̸=Mv as incorrect with high probability,
i.e.

ALGverified |v, 0⟩ ≈ γv∗ |v⟩ |Mv⟩ |w(Mv, v)⟩ |1⟩flag +

 ∑
z ̸=Mv

γvz |v⟩ |z⟩ |w(z, v)⟩

 |0⟩flag .

ALGverified makes O(1) uses of ALG, O(n3/2) queries to UM and U †
M , Õ(n) ancillary qubits, and

Õ(n3/2) additional one-qubit and two-qubit gates.

Noisy quantum oracles approximating the indicator function 1X . A key ingredient in
our reductions is the indicator function or membership oracle 1X for the subset of good inputs
exceeding probability threshold τ , given by

Xτ : =
{
v ∈ Fn : Pr

[
ALGM (v) =Mv

]
≥ τ

}
.

3A unitary U with the form

(
H ·
· ·

)
, which encodes another (subnormalised) matrix H in its upper left block.

10

Here the notation ALGM emphasises the fact that ALG has query access to the matrix M . In
constructing this indicator function we are faced with yet another challenge: while fixed-point
amplitude amplification is able to boost the probability of outputting the correct success/failure
flag, it is insufficient to perform the type of thresholding operation that is required to implement
the indicator function. The key difficulty is the fact that we need to simultaneously mark inputs
inside set Xτ with the flag one, and those outside Xτ with the flag zero (with high probability).

To overcome this issue, we note that ALGverified is also a block encoding (of another matrix),
and by combining it with the heavier machinery of quantum singular value threshold projection, we
are able to obtain a noisy quantum oracle for a polynomial approximation of the indicator function
on the set Xτ of good inputs to ALG. In Section 5.2, we show how the technique of quantum
singular value transformations can be used to construct a singular value threshold projection built
on ALGverified, which acts as a noisy indicator function on the set of inputs where ALG succeeds
with high probability.

Sampling vectors from the set of good inputs. Using the ability to approximately flag
correct and incorrect answers in superposition, we can synthesize a uniform superposition over the
set Xτ that consists of all inputs on which the average-case algorithm computes correctly with
probability at least τ . Hence by preparing this state and measuring it, we obtain the following
quantum speedup for sampling from Xτ . This will allow us to boost the performance of our
quantum local correction lemma (see Section 2.2), that needs to sample elements from Xτ for a
value of τ = Θ(α) in order to correct vectors in the Bogolyubov subspace.

Lemma 2.5 (Informally stated; see Section 5.3). Given an average-case quantum algorithm ALG
with success rate α, there is a procedure Qsamp which with high probability produces a vector v
on which ALG succeeds with probability at least α/2. Qsamp uses ALG O(1α) times, in addition to

Õ(n3/2) additional one-qubit and two-qubit gates.

Learning Bogolyubov subspaces from noisy quantum oracles. In order to locally correct
vectors that are outside of the Bogolyubov subspace V , we shall need to learn an approximation of
V , so that we can shift arbitrary vectors into V via sparse vectors (see Section 2.2).

Standard quantum procedures for sampling characters according to the probabilities defined
by the Fourier spectrum of a function f use a unitary oracle for f in superposition, and are built
on the Bernstein-Vazirani algorithm. However, in our setting we need to list-decode the heavy
Fourier coefficients of a probabilistic implementation of an indicator function that we obtain from
the linear verification procedure in Lemma 2.4. Hence, we face the challenge of learning the heavy
Fourier characters from a noisy implementation of the function. To this end, we generalise the
techniques used to prove Adcock and Cleve’s quantum Goldreich-Levin lemma [AC02], and obtain
the following quantum procedure.

Lemma 2.6 (Informally stated; see Lemma 5.5). For a function f : Fn → F2, given a noisy
quantum oracle Uf acting on m qubits such that for every input x, measuring the output qubit of
Uf produces f(x) with probability at least 1 − ε, there is a quantum procedure CGL which produces

outputs y ∈ Fn with probability py that satisfy
∣∣∣py − |f̂(y)|2

∣∣∣ ≤ 4ε. CGL uses Uf and U †
f once, in

addition to O(n log |F|) additional one-qubit and two-qubit gates.

We stress that due to the noisy implementation, we do not obtain the heavy Fourier characters
of the actual indicator function of the set of good inputs X, but rather an approximation of these

11

Fourier coefficients. Fortunately, this guarantee suffices for the noise-robust Bogolyubov lemma
that we presented in Section 2.2.

In fact, Lemma 2.6 is not the last link in the chain: a further complication arises from the fact
that any polynomial approximation of the indicator function 1X can only work well in a subset of
X and a subset of its complement, necessarily oscillating in a “wasteland” region corresponding to
vectors on which the success probability of ALG lies in some range (τ − δ, τ + δ).

The polynomial approximation happens at the level of a real-valued function (the success prob-
ability of ALG on input vectors) and the corresponding wasteland slice is apparently small, namely,
an interval of length 2δ. However this hides the fact that the actual number of input vectors falling
into this intermediate set can be alarmingly large, with density as high as 1−α

1−α/2 .
We show that in spite of this difficulty, a combination of careful error analysis of our quantum

Bogolyubov subspace learning technique and, as we discuss in Section 2.4, a carefully chosen random
selection of the threshold τ , allows us to efficiently learn the Bogolyubov subspace.

2.4 Quantum worst-case to average-case reductions

We first present a high-level overview of our reduction for the Matrix-Vector Multiplication problem
in a simplified setting, then sketch how to extend the proof to obtain Theorem 1 and Theorem 2.

Recall that we start with an average-case quantum algorithm ALG that is correct with proba-
bility α on a randomly chosen input, i.e.,

Pr
M,v
ALG

[ALGM,v =Mv] = E
M∈Fn×n

v∈Fn

[∥∥ΠMvALG
M,v |0⟩

∥∥2] ≥ α .

Our goal is to boost the success rate of the algorithm such that we obtain a worst-case quantum
algorithm that succeeds with high probability on all inputs.

For the purpose of a clear exposition, we first make the following simplifying assumptions: (1)
we work over F = F2, (2) we assume α > 0 is an absolute constant (and in turn, we will not
optimise the dependency on it), (3) we fix the error parameter to an arbitrarily small constant,
and (4) we take the average case only on the vectors v ∈ Fn. In other words, we only consider the
case where the given matrix M is a good matrix. Indeed, for the case that this does not hold, we
will later present matrix self-correction techniques to ensure such a condition is satisfied with high
probability.

In order to describe the reduction the following notation will be convenient. For each v ∈ Fn

let pv = PrALG[ALG(v) =Mv] be the probability that ALG correctly computes the output on input
v, where the probability is only over the measurement of ALG.

First, we define threshold sets as follows.

Xτ = {v ∈ Fn : pv > τ} .

Since Prv∈Fn [ALG(v) =Mv] ≥ α, it implies that Ev∈Fn [pv] ≥ α, and hence, by Markov’s inequality,

for τ ≤ α/2 it holds that |Xτ |
|Fn| ≥ α/2. Next, before describing the high-level overview of our proof,

we first discuss a simplified warm-up that contains the main idea, while skipping some technical
complications that we discuss later.

12

Warm-up. Ideally, we could construct the worst-case quantum algorithm ALG′ as follows. We
first learn all of the significant Fourier coefficients of Xα/2 using the quantum learning procedure in
Lemma 2.6. Then, by the quantum local correction lemma (i.e., Lemma 2.3, which in turn, relies on
the robust Bogolyubov lemma), these Fourier coefficients can be used to compute a decomposition
of any input v ∈ Fn as

v = s+ x1 + x2 + x3 + x4, where x1, x2, x3, x4 ∈ Xα/2 ,

and s ∈ Fn is a sparse vector that has only O(1)-non zero entries, which allows us to shift arbitrary
inputs into the Bogolyubov subspace.

More specifically, for each input v ∈ Fn, we can use the Fourier coefficients of Xα/2 in order to
compute the sparse vector s. Then, we sample x1, x2, x3 from Xα/2, and set x4 = v−x1−x2−x3−s.
By the quantum local correction lemma (Lemma 2.3) we have that Pr

[
x4 ∈ Xα/2

]
≥ poly(α), and

hence set the algorithm ALG′ to compute

Ms+ ALGM (x1) + ALGM (x2) + ALGM (x3) + ALGM (x4) .

Note that computing Ms can be done in O(n) time, where O(·) hides the sparsity of s, and Mxi
can be computed correctly using ALG for each i ∈ {1, 2, 3, 4} with probability poly(α). In total,
the above procedure outputs the correct answer with probability at least poly(α). By repeating
the procedure poly(1/α) times and verifying the result at each time, we obtain a reduction that
succeeds with high probability.

Random thresholds. The actual reduction is more subtle. The main reason for this is that
the lemma we use to learn the Bogolyubov subspace (Lemma 2.6) cannot sample from the Fourier
spectrum of the set Xα/2 exactly, as computing pv exactly for a particular v requires a large number
of samples, and so, we cannot apply Lemma 2.3 directly on the set Xα/2.

Instead, we choose a parameter τ ∈ [α/4, α/2], and consider the sets Xτ and Xτ ′ , where
τ ′ = τ −O(α3/2). We choose the parameters so that∣∣∣∣ |Xτ ′ |

|Fn|
− |Xτ |

|Fn|

∣∣∣∣ = O(α3/2) .

See Corollary 7.4 for details on how the random threshold τ is chosen. Then, we apply Lemma 2.3
with respect to some set X∗ such that with high probability Xτ ⊆ X∗ ⊆ Xτ ′ . Note that we do not
have any structural guarantee about X∗ containing a particular vector in Xτ ′ \Xτ .

We use Lemma 2.6 in order to obtain all significant Fourier coefficients of X∗. Observing that
|X∗△Xτ |

|Fn| = O(α3/2), it follows that ∣∣∣X̂∗(y)− X̂τ (y)
∣∣∣ = O(α3/2) ,

for all y ∈ Fn, and hence we can use the Fourier coefficients of X∗ to approximate the Fourier
coefficients of Xτ . Here by X̂ we mean the Fourier coefficients of the indicator function of the set
X.

By the discussion above, we may assume that we know a good approximation of all significant
Fourier coefficients of Xτ . The rest of the reduction follows the same plan as described in the
warm-up above.

13

Extending the average-case over both matrices and vectors. So far, we obtained a worst-
case to average-case reduction where the average-case condition only refers to the vectors in the
Matrix-Vector Multiplication problem. To extend the average case to both vectors and matrices,
we need an additional layer of matrix local correction. To this end, we use the technique of shifting
the given matrix M by a random matrix R, which with probability Ω(α) shifts the input to the set
of good matrices, where matrix-vector multiplications are computed correctly for an Ω(α)-fraction
of vectors. See Section 4.2 for details.

Quantum algorithms for linear problems. Throughout the argument that we outlined above,
we employed a proof strategy that only invokes gate-efficient quantum algorithms (i.e., with gate
complexities that are larger than the query complexity by at most a polylog factor). We do this
precisely due to our interest in uniform quantum algorithms for linear problems: by a careful
instantiation of families of quantum circuits as quantum query algorithms that match the setting
of Theorem 4.3, we obtain in Theorem 4.2 quantum worst-case to average-case reductions for all
linear problems. See Section 4.1 for details.

3 Preliminaries

We establish some minimal standard preliminaries and notation regarding quantum algorithms,
and refer the reader to standard textbooks such as [NC10] for details.

3.1 Quantum unitary oracles and Fourier transforms

We start by providing basic notation and definitions regarding discrete and quantum Fourier trans-
forms, as well as quantum oracles.

Discrete and quantum Fourier transforms. Let F = Fp be the prime field of size p. For a

function f : Fn → R, the Fourier coefficient f̂(y) for y ∈ Fn representing characters χy is given by

f̂(y) =
1

pn

∑
x∈Fn

ωx·yf(x) , (2)

where ω = e2πi/p is a primitive pth root of unity.
Denote the quantum Fourier transform over F by QFTp, having the action

QFTp |x⟩ =
1
√
p

∑
y∈Fp

ωx·y |y⟩ . (3)

Quantum unitary oracles. We let quantum algorithms access a matrixM ∈ Fn×n via a unitary
oracle UM that performs the map

UM |j, k, z⟩ = |j, k, z ⊕Mjk⟩ , (4)

for all indices j, k ∈ [n] and z ∈ F, where ⊕ denotes addition over F. For vectors v ∈ Fn, oracle
access means a unitary Uv that returns components of the vector when queried with an index,
analogously to Eq. (4), i.e.,

Uv |j, z⟩ = |j, z ⊕ vj⟩ , (5)

14

for all j ∈ [n] and z ∈ F. Unless otherwise stated, whenever we assume access to a unitary U as an
oracle we also assume access to U †.

Linear Problems. A linear problem is characterised by a family of matrices M := {Mn ∈
Fn×n}n∈N, where on input v ∈ Fn the solution to the problem is the vector Mv, omitting the
subscript on M for readability.

Linear Problem M
Input: A vector v ∈ Fn.
Output: The matrix-vector product Mv.

This notion captures a wide variety of problems, including such fundamental ones as computing
Discrete Fourier transforms, and polynomial evaluation (Vandermonde matrices). As discussed in
the introduction, in this paper we show that for every linear problem M there exists an efficient
quantum worst-case to average-case reduction, a result for which no analogue is known in the case
of uniform classical algorithms.

Next, we define the central notion that we study in this paper, namely the average-case be-
haviour of quantum algorithms.

3.2 Average-case quantum algorithms

An average-case quantum algorithm ALG is one that succeeds with probability at least α in expec-
tation over (uniformly) random inputs. That is, if ALG is to compute some function f mapping
some known measurable domain V to some co-domain W , then

Pr
ALG
v∈V

[ALG(v) = f(v)] := E
v∈V

[
|Πf(v)ALG(v)|2

]
≥ α . (6)

Here PrALG denotes the probability over the internal (quantum) randomness of the algorithm arising
from its unitary nature and final measurements. Note that the probability above is taken over the
inputs as well as the internal quantum randomness of the algorithm. This is highlighted by the
notation we use, which we elaborate more on below.

This notion of average-case quantum algorithms immediately suggests considering the following
natural modification of quantum oracles.

Noisy quantum oracles. For a function f : Fn → Fm, we can consider a unitary oracle Uf

which on input x ∈ Fn, z ∈ Fm performs the map

Uf |x⟩ |z⟩ = βxsucc |x⟩ |z + f(x)⟩+ βxfail |x⟩ |ψ(x)⟩ , (7)

where βxsucc, β
x
fail ∈ C such that |βxsucc|

2+|βxfail|
2=1, the normalised state |ψ(x)⟩ could be an arbitrary

superposition over |z + v⟩ for vectors v ∈ Fm \ {f(x)}, and + denotes component-wise addition for
vectors over F. We can interpret Uf as a quantum analogue of a classical probabilistic algorithm
for computing f — for an input x ∈ Fn, it outputs the correct value of f(x) ∈ Fm with probability
|βxsucc|

2 when the second register is measured in the computational basis.
More generally, we consider oracles that may entangle a workspace register with the output

Uf |x⟩ |w⟩ |z⟩ = βxsucc |x⟩ |z + f(x)⟩ |w(x, z, f(x))⟩+ βxfail |x⟩ |Ψ(x)⟩ , (8)

15

where |Ψ(x)⟩ is now a normalised state of the form

|Ψ(x)⟩ =
∑
v∈Fn

v ̸=f(x)

γxv |z + v⟩ |w(x, z, v)⟩ . (9)

Quantum algorithms for linear problems. A quantum algorithm for a linear problem M
outputs the correct answer with some probability arising from measurement. Such an algorithm is
represented by a unitary ALG which on an input vector v ∈ Fn has the action

ALG |v⟩ |0⟩ = βvsucc |v⟩ |Mv⟩ |w0(v)⟩+ βvfail |v⟩ |Ψ(v)⟩ , (10)

where βvsucc, β
v
fail ∈ C are complex amplitudes such that |βsucc|2+ |βvfail|2 = 1, |w0(v)⟩ is an arbitrary

normalised state of a workspace register, and

|βvsucc|2 = ∥1⊗ΠMvALG |v⟩ |0⟩∥2

is the success probability of the algorithm, where ΠMv := |Mv⟩⟨Mv| is an orthogonal projection on
to the correct answer subspace of the output register. |Ψ(v)⟩ is a normalised state that is orthogonal
to the state |Mv⟩ that encodes the correct matrix vector product, i.e. ∀v ∈ Fn, ⟨Mv |Ψ(v)⟩ = 0.
In general, it takes the form

|Ψ(v)⟩ =
∑
z∈Fn

z ̸=Mv

γvz |z⟩ |w(v, z)⟩ . (11)

4 Quantum worst-case to average-case reductions

In this section, we provide our quantum worst-case to average-case reductions. To obtain our results
in a modular way, we start by stating a general technical lemma from which we can easily derive
both Theorem 4.2 and Theorem 4.3.

Lemma 4.1. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Let ALGM be a quantum
query algorithm that has oracle access to a matrix M ∈ Fn×n, gets as input a vector v ∈ Fn,
makes Q(n) queries, and attempts to compute Mv. Then, for every constant δ > 0, there exists a
quantum algorithm (ALG′)M that makes O(α−7/2) uses of ALGM , O

(
(Q(n) + n3/2) · α−7/2

)
queries

to UM and U †
M , uses O(n3/2α−7/2 · log n · poly(log |F|)) additional one-qubit and two-qubit gates,

and O(α−2 · n log n) ancillary qubits such that the following holds.
For every matrix M ∈ Fn×n such that ALGM computes Mv correctly with probability α:

Pr
v,ALG

[ALGM (v) =Mv] = E
v∈Fn

[∥∥ΠMvALG
M |v⟩ |0⟩

∥∥2] ≥ α ,

the algorithm (ALG′)M computes Mv correctly for every v ∈ Fn with probability 1− δ:

∀v ∈ Fn Pr
ALG′

[(ALG′)M (v) =Mv] =
∥∥ΠMv(ALG

′)M |v⟩ |0⟩
∥∥2 ≥ 1− δ .

Here and in the following, when we say that ALG′ makes k calls to ALG, we mean that ALG′ on
inputs of length n makes k calls to ALG on inputs of length n.

16

We prove Lemma 4.1 in Section 7, after we develop a toolkit of quantum algorithms in Section 5
and a quantum local correction lemma in Section 6, which will be necessary for our proof.

Equipped with the technical lemma above, in Section 4.1 we formally restate Theorem 1 and
show how it follows from Lemma 4.1. Then, in Section 4.2, we formally restate Theorem 2 and
show how to prove it using Lemma 4.1.

4.1 Quantum algorithms for all linear problems

In this section we deal with uniform quantum algorithms; that is, uniformly generated families
of quantum circuits {Cn}n∈N for each input length n ∈ N. Following the literature on quantum
algorithms for matrix problems we allow Cn to use a unitary gate UM that computes matrix entries
of M as defined in Eq. (4). We obtain the following quantum worst-case to average-case reduction
for linear problems.

Theorem 4.2. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Let M := {Mn ∈
Fn×n}n∈N be any linear problem, and ALG be an average-case quantum algorithm for M that takes
as input a vector v ∈ Fn and satisfies

Pr
v,ALG

[ALG(v) =Mv] = E
v∈Fn

[
∥ΠMvALG |v⟩ |0⟩∥2

]
≥ α .

Then, for every constant δ > 0, there exists a worst-case quantum algorithm ALG′ satisfying

∀v ∈ Fn Pr
ALG′

[ALG′(v) =Mv] =
∥∥ΠMvALG

′ |v⟩ |0⟩
∥∥2 ≥ 1− δ .

ALG′ makes O(α−7/2) uses of ALG, O(n3/2α−7/2) uses of UM and U †
M , O(n3/2α−7/2 log n·poly(log |F|))

additional one-qubit and two-qubit gates, and O(α−2 · n log n) ancillary qubits.

This result follows immediately from Lemma 4.1. Observe that Theorem 4.2 instantiates a
quantum query algorithm ALG as a family {Cn}n∈N of quantum circuits, and considers them as
having access to explicit circuits implementing UM . Thus in particular, the guarantees of Lemma 4.1
about the number of queries to UM and the number of additional gates used by ALG′ hold. There
are no additional overheads in circuit size from implementing access to sampled vectors, which only
cost Õ(n) gates.

In general, an algorithm that solves a linear problem may exploit the special structure of M , or
in the circuit model the matrix entries may be hard-coded. However, note that there is always a
trivial circuit of size O(n2) that solves a linear problem, both in the classical and quantum settings.
Our focus in this work is on fine-grained complexity, and our results hold for the stronger case of
non-trivial quantum circuits {Cn}n∈N of sub-quadratic size.

4.2 Matrix-vector multiplication in the query model

Next, we provide a quantum worst-case to average-case reduction for the Matrix-Vector Multipli-
cation problem in the quantum query model.

Theorem 4.3 (Query complexity of Matrix-Vector Multiplication). Let F = Fp be a prime field,
n ∈ N, and α := α(n) ∈ (0, 1]. Suppose that there exists a quantum query algorithm ALG that has
oracle access to a matrix M ∈ Fn×n and a vector v, makes Q(n) queries, and satisfies

Pr
M,v,
ALG

[ALGM,v =Mv] = E
M∈Fn×n

v∈Fn

[∥∥ΠMvALG
M,v |0⟩

∥∥2] ≥ α .

17

Then, for every constant δ > 0, there exists a worst-case quantum algorithm ALG′ that makes
O(α−9/2) uses of ALG, makes O

(
(Q(n) + n3/2) · α−9/2

)
queries to UM and U †

M , and succeeds on
all inputs with high probability:

∀M ∈ Fn×n, v ∈ Fn Pr
ALG′

[(ALG′)M,v =Mv] =
∥∥∥ΠMv(ALG

′)
M,v |0⟩

∥∥∥2 ≥ 1− δ .

We will prove this worst-case to average-case reduction for the Matrix-Vector Multiplication
problem in the quantum query model using Lemma 4.1 and an efficient quantum verification al-
gorithm for matrix-vector products (see Lemma 2.4 from Section 2.3, or Lemma 5.1 for a formal
statement).

Proof of Theorem 4.3. The algorithm (ALG′)M,v repeats the following procedure O(1/α) times.
Sample a uniformly random matrix R ∈ Fn×n, define M ′ = M − R, and generate unitary oracle
UM ′ for M ′. Each query to UM ′ costs only one query to UM . Now use Lemma 4.1 with UM ′ to try
to compute b′ = M ′ · v . Finally, compute bR = R · v directly without any queries to M , and set
b = b′+ bR. Verify whether b =Mv using Lemma 5.1 with ε = δ/2, and output b if the verification
test passed.

The complexity of the algorithm is determined by O(1/α) applications of Lemma 4.1 and
verifications from Lemma 5.1, and O(n) queries to read the coordinates of v. In particular, the
described algorithm (ALG′)M,v performs O(α−9/2) calls of ALGM,v, and O

(
(Q(n) + n3/2) · α−7/2

)
queries to UM and U †

M .
In order to analyze the correctness of the algorithm (ALG′)M,v, we introduce the following

notation. For a fixed matrix M ∈ Fn×n, let pM = Prv,ALG[ALG
M,v =Mv] denote the probability of

computing ALGM,v =Mv correctly for the fixed value ofM and a uniformly random vector v ∈ Fn.
Let us define the set X ⊆ Fn×n of good matrices where the average-case algorithm ALG succeeds
with probability at least α/2:

X : =
{
M ∈ Fn×n : pM ≥ α

2

}
.

First we observe that |X| ≥ α|F|n2
/2. Indeed, by the assumption of the theorem we have that

EM∈Fn×n [pM] ≥ α. Then,

α ≤ E
M
[pM] < 1 · Pr

M
[pM ≥ α/2] + α/2 · Pr

M
[pM < α/2] ≤ Pr

M
[pM ≥ α/2] + (α/2) · 1 .

Thus, |X| = |F|n2 · PrM [pM ≥ α/2] ≥ α|F|n2
/2.

Since in every iteration of the algorithm, the matrixM ′ =M−R is a uniformly random matrix,
we have that Pr[M ′ ∈ X] ≥ α/2. In the case when M ′ ∈ X, Lemma 4.1 can correctly compute
b′ =M ′v with probability 2/3. Thus, in every iteration, the described procedure computes b =Mv
with probability Ω(α). By repeating this procedure O(1/α) times (each time verifying whether
b = Mv using Lemma 5.1 with ε = δ/2), we have that for every matrix M and every vector v, we
compute the product Mv correctly with probability 1− δ.

5 Quantum toolkit for local correction

In this section, we provide a toolkit of quantum algorithms that will allow us to later obtain a
quantum local correction lemma (in Section 6), which will underlie our quantum worst-case to

18

average-case reductions. Specifically, in Section 5.1, we construct a quantum procedure for flagging
correct matrix-vector products in superposition; we use this in Section 5.2 to obtain a unitary
implementation of an approximation to the indicator function on the set X of good vectors, and in
Section 5.3 to provide a quantum procedure for efficiently sampling from X; finally, in Section 5.4,
we construct a quantum procedure for learning Bogolyubov subspaces from noisy quantum oracles.

5.1 Flagging correct matrix-vector products in superposition

As discussed in the technical overview in Section 2, a key bottleneck in the classical setting is
the efficient verification of computing a matrix-vector product. In the setting of quantum query
complexity, this is the following problem:

Matrix-vector Product Verification (MvPV)

Input: Quantum oracles UM , Uv, and Ub for a matrix M ∈ Fn×n and vectors v, b ∈ Fn.
Output: 1 if Mv = b and 0 otherwise.

Classical query algorithms would analogously have access to an oracle that returns matrix
(vector) entries when queried with a row and column index pair.

The quantum query complexity of MvPV has been studied in detail, starting with the work of
[BŠ06] who showed that matrix-matrix products can be verified with O(n5/3) quantum queries, a
bound that is sublinear in the size of the input (which is n2). [MNR+07] later showed that the
classical techniques of Freivalds can be adapted to the quantum setting to make this algorithm time-
efficient. The special case of matrix multiplication over the Boolean semiring has close relations
to path and triangle finding in graphs, and its quantum query complexity has also been studied
in great depth [MSS07; WW10; Le 12; CKK12; JKM]. [Kot14], gives a detailed review of the
complexities and relationships between different variants of the matrix multiplication and MvPV
problems over arbitrary semirings.

Problem Inputs/Output
Quantum query

complexity

Matrix-vector Multiplication (MvM)
In: M ∈ Fn×n, v ∈ Fn

Out: Mv
Θ(n2)

Matrix-vector Product Verification (MvPV)
In: M ∈ Fn×n, v, b ∈ Fn

Out: Mv = b?
Θ(n3/2)

Table 1: Worst-case quantum query complexity of MvM and MvPV [Kot14].

This extensive literature focuses on the more general problem of matrix-matrix multiplication
and product verification over semirings, especially the Boolean case; on the other hand, our inter-
est here lies in the special case of matrix-vector products over finite fields Fp. In particular, all
the results about matrix-vector product verification that we have come across in past work deal
exclusively with the query complexity, leaving the algorithm achieving the upper bound, and its
computational or gate complexity, implicit. Furthermore, techniques such as those used in [BŠ06]
do not extend well to our setting — (1) because they use the computation of a logical AND via
Grover search, they do not directly lead to a unitary algorithm that can be queried in superposition,

19

due to the traditional problems of overshooting associated with vanilla quantum search; and (2)
because they are phrased in the usual manner of performing amplitude amplification followed by
measurements to extract the output with constant success probability.

In this section, we construct an efficient quantum algorithm for addressing MvPV, with query
and gate complexities bounded by the optimal O(n3/2), which will be conducive to querying in
superposition and consequently to composition with our subsequent subroutine for learning Bo-
golyubov subspaces. As discussed in Section 2.3, we the main technical ingredients we use are
fixed-point amplitude amplification and quantum singular value threshold projection.

5.1.1 A simple case of MvPV

We first consider the standard setting where the input vectors v and b are both given by the usual
exact quantum query oracles. We later use this simple variant to argue about the case where we
only have a noisy version of b, accessed via a noisy quantum oracle.

Lemma 5.1 (QuantumMvPV). Suppose we are given a quantum oracle UM for a matrixM ∈ Fn×n

UM |j, k, z⟩ = |j, k, z ⊕Mjk⟩ (12)

for all indices j, k ∈ [n] and z ∈ F, and quantum oracles Uv, Ub for input vectors v, b ∈ F

Uv |j, z⟩ = |j, z ⊕ vj⟩ (13)

Ub |j, z⟩ = |j, z ⊕ bj⟩ (14)

for all j ∈ [n] and z ∈ F. Then there is a gate-efficient quantum algorithm Qverify that accepts
with certainty if Mv = b, and rejects with probability 1 − ε if Mv ̸= b. Furthermore, Qverify uses

q = O
(
n3/2 · log 1

ε

)
queries to UM and U †

M , O(n) queries to Uv, Ub and their Hermitian conjugates,
O (q log n · poly log |F|) additional one-qubit and two-qubit gates, and O(n log |F|) ancillary qubits.

Proof. We denote multiplication and controlled addition over a finite field by a CCX gate defined
by

CCX |s1⟩ |s2⟩ |z⟩ = |s1⟩ |s2⟩ |z + s1 · s2⟩ , (15)

where s1, s2, z ∈ F and + and · are addition and multiplication in F. Implementing such an
operation requires only O(poly log |F|) elementary two-qubit gates [BBF03]. Throughout this paper
we assume that all algorithms use quantum registers of dimension p = |F| and perform arithmetic
over F, since such arithmetic can be simulated using O(log |F|) qubits with O(poly log |F|) overhead
in gate complexity.

20

Circuit UMv: Quantum circuit for entrywise Matrix-vector product

...
...

...

...
...

...

. . .

|i⟩
|Mi1⟩

|Mi2⟩

|Min⟩

|v1⟩

|v2⟩

|vn⟩

|0⟩ X X X
∣∣∣(Mv)i :=

∑n
j=1Mijvj

〉

UMv — Quantum circuit that uses n oracle
calls each to UM , Uv, U

†
M , U†

v , and
n ·O(poly log |F|) elementary gates, to

implement oracle access to the entries of the
Matrix-vector product Mv. The index i is given
in an additional register, using which the matrix
entries Mij and vector entries Vj are loaded by
oracle calls to UM and Uv (suppressed here for

readability); accounting for all ancillary
registers, the width of the circuit is O(n log |F|)

qubits, and its depth is O(n poly log |F|).

The unitaries UMv, Ub and their Hermitian conjugates can be used once each, along with
quantum arithmetic operations over F using circuits of size O(poly log |F|), to obtain a similar
oracle UMv−b for the vector Mv − b. The registers used for computing (Mv)i and bi can both be
perfectly uncomputed and returned to their initial value in this case. Using quantum adder circuits
[Gid18] it is possible to construct a comparator circuit with O(1) ancillas and O(log |F|) gates that
checks whether an entry (Mv− b)i is zero, and sets a flag qubit to 1 if not. This becomes an oracle
to the component-wise indicator function 1(Mv−b) : [n]× F → {0, 1} mapping an index i ∈ [n] to 0
if (Mv)i = bi, and 1 otherwise. Denote this oracle by U

Mv
?
=b
.

Circuit UMv−b: Quantum circuit for Mv − b

Cn ∋ |i⟩idx

UMv Ub

(
U†)

Mv
(
U†)

b

|i⟩idx

Cp ∋ |0⟩Mv

arithmetic

|0⟩Mv

Cp ∋ |0⟩b |0⟩b

Cp ∋ |0⟩Mv−b |(Mv − b)i⟩

UMv−b — Quantum circuit to implement oracle access to the entries of Mv − b (where we
suppress the workspace registers required by UMv etc.). The width of the circuit is O(n log |F|)

qubits, and the arithmetics step can be implemented with circuits of size O(poly log |F|).

21

We can then perform a quantum search for nonzero entries in Mv − b using U
Mv

?
=b
. We start

by preparing the uniform superposition over indices, query U
Mv

?
=b
, and treat nonzero entries as

marked.
Define the states |ψ0⟩, |ψ1(v, b)⟩, and |ψ0(v, b)⟩ as the uniform superposition over all indices,

and uniform superpositions over indices at which Mv− b has nonzero and zero entries respectively

|ψ0⟩ =
1√
n

∑
i∈[n]

|i⟩

|ψ1(v, b)⟩ =
1

√
mvb

∑
i∈[n]

(Mv)i ̸=bi

|i⟩

|ψ0(v, b)⟩ =
1√

n−mvb

∑
i∈[n]

(Mv)i=bi

|i⟩ , (16)

and mvb = |{i ∈ [n] : (Mv)i ̸= bi}|. Let k := ⌈log n⌉. Without loss of generality we can assume n
is a power of two since we can pad vectors with zeros if not, while at most doubling the complexity.

Consider the operator that creates the uniform superposition over indices and queries Mv
?
= b, i.e.

U =
(
H⊗k ⊗ 1

)
U
Mv

?
=b
.

We omit the workspace registers used by U
Mv

?
=b

because in this case the workspace can be uncom-

puted and returned to the initial all-zeros state.
The action of U on the

∣∣0k+1
〉
state is

U
∣∣∣0k+1

〉
=


|ψ0⟩ |0⟩ Mv = b

√
n−mvb

n |ψ0(v, b)⟩ |0⟩+
√

mvb
n |ψ1(v, b)⟩ |1⟩ Mv ̸= b.

(17)

Since we do not know mvb beforehand, and since we will need a unitary subroutine that is run
over a superposition of input vectors in Fn later on, we use fixed point amplitude amplification
[Gro05; YLC14; Gue19; GSL+19]. This allows the number of iterations of amplitude amplification
to be chosen uniformly for all vectors v without worrying about the problem of under- or over-
shooting faced in vanilla amplitude amplification. For completeness, we give a brief overview and
technical statement of fixed-point amplitude amplification in Appendix A.

The unitary U of Eq. (17) satisfies the conditions required by Theorem A.1 with Π = 1k⊗|1⟩⟨1|,
preparing a state that has a component flagged with |1⟩ whenMv ̸= b. In the worst case forMv ̸= b,
there exists exactly one coordinate i ∈ [n] at which (Mv)i ̸= bi, so that mvb = 1. We hence use
fixed point amplification with the worst-case lower bound of p > 1

2
√
n
to obtain a unitary U ′ with

the action

U ′
∣∣∣0k+1

〉
=


|ψ0⟩ |0⟩ Mv = b

γvbfail |ψ0(v, b)⟩ |0⟩+ γvbsucc |ψ1(v, b)⟩ |1⟩ Mv ̸= b,

(18)

22

where
∣∣γvbsucc∣∣2 ≥ 1−ε. This unitary U ′ makes q = O

(√
n · log 1

ε

)
queries to U and U †, uses O(q log n)

additional elementary gates, and a single ancilla. The only queries in U are those made by U
Mv

?
=b

to UM , Uv, Ub and their conjugates; since U
Mv

?
=b

uses n queries to each of these oracles, the net

query complexity of U ′ is q′ = O(nq) = O(n3/2). Finally since M is of size n2 and q′ = O(n3/2) we
can always first query v and b into an ancillary register, since both are vectors of length n.

Effectively, for any desired success probability ε ∈ (0, 1) we are able to obtain a unitary Qverify :=
U ′ that computes 1Mv=b with one-sided bounded error, measuring the output register of which yields
the claimed guarantees.

5.1.2 Flagging the correct matrix-vector product in superposition

In order to establish our reduction, we need to go beyond verifying whether a certain vector,
obtained by running ALG on an input v ∈ Fn and measuring its output register, is correct. In
particular, we would like to compute the indicator function 1X which marks the vectors on which
ALG succeeds with high probability in superposition over all v ∈ Fn, in order to learn its Fourier
characters of high weight. This is complicated twofold — by the noise or part of the state associated
with failure in the output of ALG, and the entanglement with workspace registers. Nevertheless,
we can compute an approximate, noisy version of the indicator function on good input vectors. As
a first step, we construct an algorithm using ideas from Lemma 5.1 to ensure that whenever ALG
outputs the correct answer, it also outputs a flag indicating success.

Lemma 5.2 (Noisy quantum MvPV). Suppose we are given a quantum oracle UM for a matrix
M ∈ Fn×n

UM |j, k, z⟩ = |j, k, z ⊕Mjk⟩ (19)

for all indices j, k ∈ [n] and z ∈ F, and a noisy quantum algorithm ALG as described in Eq. (10),
i.e.

ALG |v⟩ |0⟩ = βvsucc |v⟩ |Mv⟩ |w0(v)⟩+ βvfail |v⟩ |Ψ(v)⟩ .

Then there exists a gate-efficient quantum algorithm ALGverified that succeeds and outputs Mv with
probability |βvsucc|

2 along with a flag indicating success, and similarly outputs a flag indicating failure
whenever it outputs a vector z ̸=Mv, with probability at least (1−ε)|βvfail|

2. Furthermore, ALGverified

uses q = O
(
n3/2 · log 1

ε

)
queries to UM and U †

M , O(1) queries to ALG, O (q log n · poly log |F|)
additional one-qubit and two-qubit gates, and O(n log |F|) ancillary qubits.

Remark 5.3. The input vectors v and b are taken to be given as states |v⟩ and the right hand
side of Eq. (10)—created using a single query to ALG— respectively. Using a hard-coded circuit of
size O(n log n) we can implement entrywise oracles Uv and Ub that copy out the ith entries of these
vectors into a target register controlled on an index register.

Proof. If ALG had the property that either βvfail = 0 or βvsucc = 0 always, then we could have
proceeded as in Lemma 5.1. Nevertheless, if we first prepare the state ALG |v⟩ |0⟩, prepare a
superposition over indices i ∈ [n] in an ancillary register, and compute the indicator function
1(Mv−b) using fixed circuits of size O(n log n) gates to copy (controlled on an index register) the ith

23

entry from the output registers of ALG, we now have a unitary U that prepares the state

U

(
|v⟩ ⊗

βvsucc |Mv⟩ |w0(v)⟩+ βvfail

 ∑
z∈Fn

z ̸=Mv

γvz |z⟩ |w(v, z)⟩


⊗

∣∣∣0k+1
〉)

= |v⟩ ⊗

βvsucc |Mv⟩ |w0(v)⟩ |ψ0⟩ |0⟩+

βvfail

 ∑
z∈Fn

z ̸=Mv

γvz |z⟩ |w(v, z)⟩
[√

n−mvz

n
|ψ0(v, z)⟩ |0⟩+

√
mvz

n
|ψ1(v, z)⟩ |1⟩

]
 ,

(20)

where the states |ψ0⟩ , |ψ0(v, z)⟩ , |ψ1(v, z)⟩ are defined analogously to Eq. (16), mvz is the number
of indices at which a vector z disagrees with the correct answer Mv, and to avoid clutter we have
not explicitly written the registers used for querying the entriesMij , since they can be uncomputed
as before.

As in Lemma 5.1, we can apply fixed-point amplitude amplification to the unitary U , with the
goal of amplifying the part of the superposition flagged by 1 in the last qubit. Incorrect answers
z ̸=Mv may in general be wrong only at a single co-ordinate, so that in the worst case there may
be a single γvz = 1 with the corresponding mvz = 1. Thus we can use the worst-case lower bound of
1√
n
on the amplitude of the target state flagged by 1. Since U does not affect the state of the input,

output, or workspace registers of ALG, the amplified operator ALGverified := U ′ will also preserve
the same superposition that is produced by ALG, with the component of the state flagged by 1 in
the final register amplified:

ALGverified

(
|v⟩ ⊗

βvsucc |Mv⟩ |w0(v)⟩+ βvfail

 ∑
z∈Fn

z ̸=Mv

γvz |z⟩ |w(v, z)⟩


⊗

∣∣∣0k+1
〉)

= |v⟩ ⊗

βvsucc |Mv⟩ |w0(v)⟩ |ψ0⟩ |0⟩+

βvfail

 ∑
z∈Fn

z ̸=Mv

γvz |z⟩ |w(v, z)⟩
[
γvzfail |ψ0(v, z)⟩ |0⟩+ γvzsucc |ψ1(v, z)⟩ |1⟩

]
 , (21)

where |γvzsucc|
2 > 1− ε, and ALGverified uses q = O

(
n3/2 · log 1

ε

)
queries to UM and U †

M , O(1) queries
to ALG, and O(q log n · poly log |F|) additional elementary gates, and a single ancillary qubit.

Measuring the register containing the output of ALG, we see that ALGverified outputs Mv with
probability at least |βvsucc|

2 just as ALG does, but now the last register contains a flag qubit set to

24

zero to indicate success. When ALGverified outputs an incorrect vector z ̸=Mv, with probability at
least (1 − ε)|βvsucc|

2 the flag qubit is set to 1 to indicate failure, giving the guarantees claimed in
the lemma.

5.2 Noisy quantum oracles approximating the indicator function 1X

To obtain our next two quantum procedures: an efficient sampler for the set X of good inputs to
ALG and a learner for the Bogolyubov subspace, we first need to obtain a unitary implementation
of an approximate version of the indicator 1X , which is a Boolean valued function defined on Fn.
We start by observing that the subroutine ALGverified that we constructed in the previous section
almost has the basic property that a unitary implementing 1X should have: it attaches flags zero
and one to vectors in X and its complement respectively. However, it is noisy in two ways: it errs
with high probability on vectors outside X, and only succeeds with low probability on vectors in
X. What we would like is (a noisy version of) the oracle

UX |v⟩ |0⟩ = |v⟩ |1X(v)⟩ .

To obtain such a unitary, we use the machinery of quantum singular value threshold projection on
top of ALGverified. We now go into the details of our construction below, and give a brief technical
statement of the quantum singular value threshold projection technique in Appendix A.

For an average-case algorithm ALG with average success probability α as defined in Eq. (6),
recall that we are interested in the associated set of “good” input vectors defined by

X = {v ∈ Fn : |βsucc|2 ≥
α

2
} ,

which we know has density at least α/2 in Fn, by the averaging argument in Claim 7.2. The
indicator function of this set takes the value 1X(v) = 1 when v ∈ X and 1X(v) = 0 otherwise.
Denote by U the algorithm ALGverified constructed in Lemma 5.2. Bundling all the workspace
registers together for brevity, we note that it has the following property: defining the projectors
Π = 1

v ⊗ |0⟩⟨0|work,flag and Π̃ = 1 ⊗ |0⟩⟨0|flag, where the identity term acts on all registers except
the flag qubit, we have that

Π̃UΠ =
∑
v∈Fn

|β′vsucc| |wv⟩⟨v, 0, 0| .

We interpret the right hand side above as the singular value decomposition of a matrix with right
singular vectors |v, 0, 0⟩, and left singular vectors |wv⟩ given by

|wv⟩ =
1

|β′vsucc|

(
βvsucc |v,Mv,w0(v), ψ0⟩+ βvfail

∑
z∈Fn

z ̸=Mv

γvzγ
vz
fail |v, z,w(v, z), ψ0(v, z)⟩

)
⊗ |0⟩flag . (22)

The singular values |β′vsucc| are defined by the relation

|β′vsucc|2 = |βvsucc|2 + |βvfail|2
∑
z∈Fn

z ̸=Mv

|γvz |2|γvzfail|2 . (23)

Fixing a threshold parameter t ∈ (0, 1), consider the partition of Fn into the following three sets:

1. a good set Xg
t = {v ∈ Fn : |βvsucc|2 ≥ t+ t2}

25

2. an intermediate set Wt = {v ∈ Fn : |βvsucc|2 ∈
(
t− 2t2, t+ t2

)
}

3. a bad set Xb
t = {v ∈ Fn : |βvsucc|2 ≤ t− 2t2}.

Choosing ε = t2 in Lemma 5.2 we have that when v ∈ Xg
t , |β′vsucc|2 ≥ t + t2, and when v ∈ Xb

t ,
|β′vsucc|2 ≤ t− t2.

We see that U = ALGverified hence satisfies the conditions required in Theorem A.2, so that
we can use it to select the vectors in Xg

t with high probability using the technique of singular
value threshold projection. Since

√
t+ t2 ≥

√
t
(
1 + 1

2 t−
1
8 t

2
)
, we can choose the thresholds in

Theorem A.2 to be t as above, and δ = 1
2 t

3/2 − 1
8 t

5/2, and obtain a unitary Uq with the action

Uq |v, 0, 0⟩ = β̃vsucc |wv⟩ |0⟩flag + β̃vfail |Ψv⟩ |1⟩flag , (24)

where the amplitudes satisfy the following guarantees (Pr(flag = 0) := |β̃vsucc|2 etc):

1. for inputs v ∈ Xg
t , Pr(flag = 0) ≥ 1− 2ε;

2. for inputs v ∈ Xb
t , Pr(flag = 1) ≥ 1− 2ε.

Importantly, we note that for inputs v ∈ Wt, we get no useful guarantee other than the consis-
tency condition Pr(flag = 0) ≤ 1. The unitary Uq can be implemented using q = O(1δ log

1
ε) =

O(1
t3/2

log 1
ε) queries to U , i.e. to ALGverified, and O(q) additional one-qubit and two-qubit gates.

Uq represents a noisy version of the indicator function on Xg
t — applying a Pauli-X gate to

flip the flag qubit, Uq is a noisy quantum oracle for 1X as defined in Eq. (8), with one additional
complication: there is a “wasteland” slice W ⊆ Fn on which Uq gives no guarantee as to the value
of 1X . Note that this can in principle be a very large set — by inspecting the averaging argument in
Claim 7.2 we see that it is possible to construct adversarial examples of ALG for which W can have
density as large as 1−α

1−α/2 for t = α/2. Nevertheless, we will show how to overcome this difficulty in
Section 7.1.

5.3 Quantum sampling from the set of good inputs

Using the subroutine ALGverified, it is also possible to sample from the set of vectors on which ALG
succeeds with at least a desired probability. Suppose we are interested in the set Xτ = {v ∈ Fn :
|βvsucc|

2 > τ} for some τ ∈ (0, 1). We use the same ideas that we presented in the previous section
— using singular value threshold projection from Theorem A.2 with the choice of threshold t =

√
τ

and δ = ηt for some η > 0 and so q = O(1
η
√
τ
log 1

ε), we get a unitary Uq that implements a noisy

version of an approximation to 1X . It is sufficient to choose constant η, e.g. η = 0.01, because
unlike in the case of the indicator function in the previous section, we do not require high precision
with respect to the wasteland slice Wt: instead of sampling from Xτ , we can easily work with
Xτ ′ ⊆ Xτ for τ ′ = (1 + η)τ without any difficulties.

Suppose we prepare the uniform superposition over all v ∈ Fn and run Uq. If the density of Xτ is

µ(Xτ), we see that with the projector Π̃ = 1⊗|0⟩⟨0|flag we have
∥∥∥⟨Xτ , 0

flag|Π̃Uq|0⟩
∥∥∥2 ≥ (1−ε)µ(Xτ),

where

|Xτ ⟩ :=
1√
|Xτ |

∑
v∈Xτ

|v⟩

26

is the uniform superposition over vectors in Xτ . In particular, we can apply fixed-point amplitude

amplification by Theorem A.1 to Uq, to obtain a boosted unitary U ′
q with q′ = O

(
1√

µ(Xτ)
log 1

δ

)
uses of Uq and U †

q , such that
∥∥∥Π̃U ′

q |0⟩ −
∣∣Xτ , 0

flag
〉∥∥∥ ≤ δ. Note that this procedure gives us a way

to sample approximately from the uniform distribution on Xτ that is quadratically faster than a
classical algorithm that draws random samples and verifies whether the ALG computes correctly
on the drawn sample. Applying this argument to the case where τ = α/2, we have the following
corollary.

Corollary 5.4. Given an average-case quantum algorithm ALG with oracle access to the matrix

M ∈ Fn×n via UM , there is a quantum algorithm Qsamp that uses ALG O

(
1√

τµ(Xτ)

)
times and

with high probability outputs a vector v ∈ Xτ on which ALG succeeds with probability at least τ .

Qsamp makes q = O

(
n3/2 · 1√

τµ(Xτ)

)
queries to UM and U †

M , O

(
q log n · poly log |F|

)
additional

one-qubit and two-qubit gates, and O(n log |F|) ancillary qubits.

5.4 Learning Bogolyubov subspaces from noisy quantum oracles

We would next like to design a quantum procedure for efficiently learning the Bogolyubov subspace
from the noisy quantum oracle we constructed above in Section 5.2. Since the Bogolyubov subspace
is characterised by the Fourier coefficients of the indicator 1X , our problem reduces to learning the
Fourier spectrum of functions that are encoded in noisy quantum oracles of the aforementioned
form.

[AC02] studied the problem of using noisy evaluations of a linear Boolean function f(x) = a · x
to determine the underlying string a ∈ Fn

2 , given a guarantee that the evaluations have an average
probability of at least 1

2 + ε of being correct over random x ∈ Fn
2 . Here we show that the circuit

that they consider can be used more generally to sample characters from the Fourier spectrum of
a function f : Fn → F2 that is accessed via a noisy quantum oracle of the type defined in Eq. (8).
In particular, we have the following result.

Lemma 5.5. Suppose we are given as input a noisy quantum oracle Uf to f : Fn → F2, such that

Uf |x⟩
∣∣0m+1

〉
= |x⟩

(
βxsucc |w0(x)⟩ |f(x)⟩+ βxfail |w1(x)⟩

∣∣∣f(x)〉), (25)

where ∀x ∈ Fn, |βxsucc|
2 + |βxfail|

2 = 1 and |βxsucc|
2 ≥ 1 − ε, f(x) = f(x) ⊕ 1 is NOT(f(x)), and

|w0(x)⟩ and |w1(x)⟩ are arbitrary m-qubit states of the workspace register. Then measuring the top
three registers of the following circuit CGL produces output y ∈ Fn, 0m+1 with probability py such
that ∀y ∈ Fn, ∣∣∣|f̂(y)|2 − py

∣∣∣ ≤ 4ε,

where f̂(y) are the Fourier coefficients of f , i.e. f(x) =
∑

y∈Fn f̂(y)χy(x) with χy(x) := ω−x·y.

27

Circuit CGL: Quantum Goldreich-Levin algorithm for Fourier sampling

py = Pr(v = y)

(Cp)
⊗n ∋ |0⟩v QFT⊗n

p

Uf U†
f

(
QFT†

p

)⊗n
y ∈ Fn

Cm ∋ |0⟩anc

|0⟩f

|0⟩ X H |−⟩

Note that the number m of ancillary qubits in the workspace register need not have any relation
to n.

Remark 5.6. In our application, we actually have a weaker assumption on the input Uf , which
in fact is the indicator function of Section 5.2. The guarantee we obtain on the Fourier sampler is
then ∣∣∣|f̂(y)|2 − py

∣∣∣ ≤ 4ε+ 4ρW ,

where ρW := |W |/|F|n is the density of the intermediate set W .

Proof. The input state undergoes the following transformations through the circuit CGL :

|0⟩ |0⟩ |0⟩ |0⟩
QFT⊗n

p ⊗1⊗1⊗X
−−−−−−−−−−−→ 1√

N

∑
x∈Fn

|x⟩ |0⟩ |0⟩ |1⟩ (26)

Uf⊗H
−−−−−−−→ 1√

N

∑
x∈Fn

|x⟩
(
βxsucc |w0(x)⟩ |f(x)⟩+ βxfail |w1(x)⟩

∣∣∣f(x)〉) |−⟩

1⊗1⊗CNOT−−−−−−−→ 1√
N

∑
x∈Fn

|x⟩
(
(−1)f(x)βxsucc |w0(x)⟩ |f(x)⟩+ (−1)f(x)βxfail |w1(x)⟩

∣∣∣f(x)〉) |−⟩

=
1√
N

∑
x∈Fn

(−1)f(x) |x⟩
(
βxsucc |w0(x)⟩ |f(x)⟩ − βxfail |w1(x)⟩

∣∣∣f(x)〉) |−⟩ ,

where N = pn. In order to establish that the output is y ∈ Fn with probability py such that

|py − f̂(y)2| < 4ε on measuring the first register after executing the entire circuit, we will compute
the inner product

βy :=

〈
y, 0, 0,−

∣∣∣∣C∣∣∣∣0, 0, 0, 0〉, (27)

28

since py = |βy|2. Notice that we also have

|y, 0, 0,−⟩
QFT⊗n

p ⊗1⊗1⊗1
−−−−−−−−−−→ 1√

N

∑
v∈Fn

ωy·v |v, 0, 0,−⟩ (28)

Uf⊗1−−−→ 1√
N

∑
v∈Fn

ωy·v |v⟩
(
βvsucc |w0(v)⟩ |f(v)⟩+ βvfail |w1(v)⟩

∣∣∣f(v)〉) |−⟩ ,

and we can compute the amplitude βy in Eq. (27) by taking the inner product between the states

on the last lines of Eqs. (26) and (28). Since f(x) ∈ F2 we have that ⟨f(x)|f(x)⟩ = 0. Similarly,
⟨v|x⟩ = δvx, and while the states of the workspace register may not be orthogonal, they are
normalised. Hence we have

βy =
1

N

∑
v∈Fn

ωy·v(−1)f(v)
(
|βvsucc|

2 − |βvfail|
2

)
. (29)

Since for every v ∈ Fn, |βvsucc|
2 ≥ 1 − ε and |βvsucc|

2 + |βvsucc|
2 = 1, it always holds that |βvsucc|

2 −
|βvsucc|

2 ≥ 1− 2ε. Unlike the Boolean case (i.e. F = F2), the Fourier coefficients of f are no longer
real numbers, and so need some additional care. Nevertheless, using their definition from Eq. (2),
and the Cauchy-Schwarz inequality, we have

∣∣∣f̂(y)− βy

∣∣∣ = 1

N

∣∣∣∣∣∑
v∈Fn

ωy·v(−1)f(v)
(
1−

(
|βvsucc|

2 − |βvfail|
2

))∣∣∣∣∣
≤ 1

N

∣∣∣∣∣∑
v∈Fn

ω2y·v(−1)2f(v)

∣∣∣∣∣
1/2∣∣∣∣∣∑

v∈Fn

(
1−

(
|βvsucc|

2 − |βvfail|
2

))2
∣∣∣∣∣
1/2

≤ 1

N
·
√
N · 2ε

√
N

≤ 2ε. (30)

As |f̂(y)|, |βy| ≤ 1, and since
∣∣∣|x|2 − |y|2

∣∣∣ ≤ |x∗ + y∗||x− y| ≤ 2|x− y| when 0 ≤ |x|, |y| ≤ 1 and x∗

denotes complex conjugation, we finally have that∣∣∣|f̂(y)|2 − py

∣∣∣ ≤ 4ε, (31)

showing that the circuit CGL can sample approximately from the Fourier spectrum of f .

The quantum Fourier transform QFTp over finite fields Fp can be implemented efficiently with
O(log2 |F|) elementary gates and in depth O(log |F|) [Bea97; Hoy97; MRR06].

Learning subspace coefficients of 1X: Our interest is in the indicator function 1X : Fn →
{0, 1}, which takes value 1 on the set of vectors on which ALG succeeds with appreciable proba-
bility |βvsucc|2 ≥ α. Using the unitary Uq of Section 5.2 almost satisfies the condition required for
Lemma 5.5: |βsucc|2 ≥ 1 − ε and |βfail|2 ≤ ε, where ε can be chosen to be o(1). To see the bound

29

noted in Remark 5.6, suppose the densities of the sets Xg
t , X

b
t andWt are ρg, ρb and ρW respectively

and let πv :=

(
1−

(
|βvsucc|

2 − |βvfail|
2

))2

. Then in Eq. (30) we have

∣∣∣f̂(y)− βy

∣∣∣ ≤ 1

N

∣∣∣∣∣∑
v∈Fn

ω2y·v(−1)2f(v)

∣∣∣∣∣
1/2∣∣∣∣∣∑

v∈Fn

(
1−

(
|βvsucc|

2 − |βvfail|
2

))2
∣∣∣∣∣
1/2

≤ 1

N
·
√
N ·

∣∣∣∣∣∣
∑
v∈Xg

t

πv +
∑
v∈Xb

t

πv +
∑
v∈Wt

πv

∣∣∣∣∣∣
1/2

≤ 1√
N

· |2ερgN + 2ερbN + 2ρWN |1/2

≤ 2ε+ 2ρW , (32)

where on the third line we used the definition of Uq to see that the quantity πv ≤ 2ε on both Xg
t

and Xb
t , while we only have the guarantee that πv ≤ 2 on the set Wt, and that ρg + ρb + ρW = 1.

Hence we have the following corollary.

Corollary 5.7. Given an average-case quantum algorithm ALGM as described in Eq. (10) and the
oracle UM for a matrix M ∈ Fn×n, we can learn heavy Fourier characters χy with f̂(y) ≥ c of the
indicator function on the set X of inputs on which ALG succeeds with high probability, using ALG
O(1/c) times, q = O

(
1
c · n

3/2
)
queries to UM and U †

M , O(q · log n ·poly log |F|) additional one-qubit
and two-qubit gates, and O(n log |F|) ancillary qubits.

The procedure is to simply measure the state output by CGL to obtain a character y ∈ Fn,
and then run standard quantum amplitude estimation to estimate the value of the corresponding
Fourier coefficient to additive precision c/100, which will use CGL a total of O(1/c) times.

6 Robust quantum local correction via additive combinatorics

In this section, we prove our main technical tool: a robust quantum local correction lemma for
linear problems. Towards this end, we first prove a noise-robust generalisation of Bogolyubov’s
lemma from additive combinatorics.

6.1 Robust probabilistic Bogolyubov lemma

Recall that Bogolyubov’s lemma states that for any subset A ⊆ Fn
2 of density |A|/2n ≥ α, there

exists a subspace V ⊆ 4A of dimension at least n− α−2.
We would like to use Bogolyubov’s lemma to locally correcting faulty inputs by explicitly com-

puting a decomposition into a linear combination of good inputs, shifted by a sparse vector (see
Section 2.2). Computing the sparse shift vector requires learning the (significant) Fourier spec-
trum of the subspace implied by Bogolyubov’s lemma. The caveat is that our quantum algorithm
for learning the subspace encoded in a noisy quantum state (see Section 5.4) can only obtain an
approximation of the spectrum.

Hence, we need to strengthen Bogolyubov’s lemma to obtain the following structural properties:

30

1. Robustness, in the sense that the linear constraints that define the Bogolyubov subspace can lie
within a range of Fourier thresholds; and

2. Density, in the sense that each element of the Bogolyubov subspace admits many decompositions
into valid inputs, and in turn can be sampled probabilistically using our quantum sampling
procedure (see Section 5.3).

Next, we prove a generalisation of Bogolyubov’s lemma, which achieves the aforementioned
structural properties. In the following, given a set X ⊆ Fn define SpecX(γ) = {r ∈ Fn \ {0} :∣∣∣1̂X(r)

∣∣∣ ≥ γ}.

Lemma 6.1 (Robust Bogolyubov lemma). Let F = Fp be a prime field, and let X ⊆ Fn be a set
of size |X| = α · |F|n for some α ∈ (0, 1]. Let R ⊆ Fn be a set such that SpecX(α3/2) ⊆ R ⊆
SpecX(α

3/2

2).
Let V = {v ∈ Fn : ⟨v, r⟩ = 0 ∀r ∈ R}. Then dim(V) ≥ n− 4/α2, and for all v ∈ V it holds that

Pr
x1,x2,x3∈Fn

[x1, x2, x3, v − x1 − x2 − x3 ∈ X] ≥ α5 ,

or equivalently
Pr

x1,x2,x3∈X
[v − x1 − x2 − x3 ∈ X] ≥ α2 .

Proof. Note first that by Parseval’s identity we have

α = ⟨1X , 1X⟩ = ∥1X∥22 =
∑
r

∣∣∣1̂X(r)
∣∣∣2 .

In particular,
α3

4
· |R| ≤

∑
r∈R

∣∣∣1̂X(r)
∣∣∣2 ≤ ∑

r

∣∣∣1̂X(r)
∣∣∣2 = α; ,

and hence |R| ≤ 4
α2 . In particular, dim(V) ≥ n− |R| ≥ n− 4/α2.

Furthermore, we have∑
r∈Fn\(R∪{0})

∣∣∣1̂X(r)
∣∣∣4 ≤ α3 ·

∑
r∈Fn\(R∪{0})

∣∣∣1̂X(r)
∣∣∣2 ≤ α3(α− α2) ≤ α4 − α5 ,

where the second inequality uses that
∑

r

∣∣∣1̂X(r)
∣∣∣2 = α, and

∣∣∣1̂X(0)
∣∣∣2 = α2. Noting that for every

v ∈ V we have χr(v) = ω⟨v,r⟩ = ω0 = 1 for all r ∈ R, it follows that

Pr
x1,x2,x3∈Fn

[x1, x2, x3, v − x1 − x2 − x3 ∈ V] = (1X ∗ 1X ∗ 1X ∗ 1X)(v)

=
∑
r∈Fn

(1̂X(r))4χr(v)

=
∣∣∣1̂X(0)

∣∣∣4χ0(v) +
∑
r∈R

∣∣∣1̂X(r)
∣∣∣4χr(v)

+
∑

r∈Fn\(R∪{0})

∣∣∣1̂X(r)
∣∣∣4χr(v)

≥ α4 + (α3/2/2)4 · |R| − (α4 − α5)

≥ α5 ,

31

as required.

6.2 Quantum local correction lemma

Equipped with the noise-robust Bogolyubov lemma, we can now employ the four quantum proce-
dures we showed in Section 5 and prove the following quantum local correction lemma for linear
problems, which lies at the heart of our worst-case to average-case reductions.

Lemma 6.2 (Quantum local correction). Let F = Fp be a prime field, and let X ⊆ Fn be a
set of size |X| = α · |F|n, for some α ∈ (0, 1]. Then, there exists a non-negative integer t ≤ 4/α2,
a collection of t vectors B = {b1, . . . , bt ∈ Fn}, and t indices k1, . . . , kt ∈ [n] satisfying the following:

Given a vector y ∈ Fn, define s =
∑t

j=1 ⟨y, bj⟩ · e⃗kj where (e⃗i)i∈[n] is the standard basis. Then

Pr
x1,x2,x3∈Fn

[x1, x2, x3, x4 ∈ X] ≥ α5 ,

where x4 = y − x1 − x2 − x3 − s. Equivalently, we have

Pr
x1,x2,x3∈X

[x4 ∈ X] ≥ α2 .

Furthermore, suppose we have a quantum membership oracle ÕX∗ (that we can query in super-
position) for a set X∗ satisfying the following conditions

•
∣∣∣1̂X∗(r)− 1̂X(r)

∣∣∣ ≤ α3/2

8 for all r ∈ Fn;

• for every input x ∈ Fn, ÕX∗ computes the indicator 1X∗(x) correctly with probability at least
1− α3/2/10.

Then, there exists a quantum algorithm that with probability at least 1−δ returns vectors b1, . . . , bt ∈
Fn and indices k1, . . . , kt ∈ [n] as described above. This algorithm makes O(α−7/2) blackbox queries
to ÕX∗, uses an additional number

O

(
nα−7/2 · log n · poly log |F|

)
of one-qubit and two-qubit gates, and O(nα−2 log |F|) ancillary qubits.

Proof. Fix a set X ⊆ Fn of size |X| = α · |F|n for some α ∈ (0, 1]. By applying Lemma 6.1, we
obtain a subspace V ⊆ Fn of dimension dim(V) = n− t for t = 4/α2. Let R ⊆ Fn

2 \ {0} be a set of
vectors in Fn of size t such that V = {v ∈ Fn

2 : ⟨v, r⟩ = 0 ∀r ∈ R}. Indeed, we can let R be a set of
t linearly independent vectors in V ⊥.

By writing the vectors of R in a matrix and diagonalizing the matrix, we obtain: (1) a set of
vectors B = {b1, . . . , bt ∈ Fn

2} such that span(B) = span(R), and (2) the corresponding pivot indices
k1, . . . , kt ∈ [n] such that bj [kj] = 1 and bj [kj′] = 0 for all j ̸= j′.

Given a vector y ∈ Fn, define s =
∑t

j=1 ⟨y, bj⟩ · e⃗kj , where (e⃗i)i∈[n] is the standard basis, and
let v = y − s. It is straightforward to verify that v ∈ V . Then for any j ∈ [t] we have

⟨v, bj⟩ = ⟨y, bj⟩ −
t∑

j=1

cj · ⟨e⃗kj , bj⟩
(*)
= ⟨y, bj⟩ − cj · ⟨e⃗kj , bj⟩

(**)
= ⟨y, bj⟩ − ⟨y, bj⟩ = 0 ,

32

where (*) is because ⟨e⃗kj′ , bj⟩ = bj [ij′] = 0 for j ̸= j′, and (**) is because ⟨e⃗kj , bj⟩ = bj [ij] = 1.
Now, since v ∈ V , by the guarantees of Lemma 6.1 it follows that

Pr
x1,x2,x3∈Fn

[x1 ∈ X,x2 ∈ X,x3 ∈ X, v − x1 − x2 − x3 ∈ X] ≥ α5 ,

which is equivalent to
Pr

x1,x2,x3∈X
[v − x1 − x2 − x3 ∈ X] ≥ α2 .

For the furthermore part, consider the oracle ÕX∗(x). By the closeness between the Fourier
coefficients of 1X and 1X∗ , we may apply Lemma 6.1. Indeed, letting R = SpecX∗(34α

3/2) we have

a set of Fourier coefficients satisfying the requirements of Lemma 6.1, namely that SpecX∗(α3/2) ⊆
R ⊆ SpecX∗(α3/2/2).

By definition, for every input x ∈ Fn, ÕX∗(x) computes the indicator 1X∗(x) correctly with
probability at least 1 − α3/2/10. Now, we can apply Corollary 5.7 to find a y ∈ Fn such that
1̂X∗(y) ≥ 3α3/2/4 with O(α−3/2) blackbox queries to ÕX∗ , and O(nα−3/2 · poly log |F|) additional
one-qubit and two-qubit gates. By the closeness between the Fourier coefficients of 1X and 1X∗ ,
these y’s also satisfy 1̂X(y) ≥ α3/2/2. Since there are at most t ≤ 4/α2 such coefficients, to find all of
them with probability 1−δ, we need to repeat the sampling procedure above O(α−2) times. Hence,
the total query complexity is O(α−7/2) blackbox queries to ÕX∗ , the total number of additional
gates is

O

(
nα−7/2 · log n · poly log |F|

)
,

and the number of ancillary qubits is O(n · α−2 log |F|).

7 Reductions for linear problems

In this section, we prove Lemma 4.1. Namely, we will present an algorithm ALG′ whose complexity
is as required by the lemma statement. In order to prove the correctness of the algorithm, we will
considerM ∈ Fn×n such that Prv,ALG[ALG

M (v) =Mv] ≥ α, and we will prove for thisM and every
vector v ∈ Fn, that PrALG′ [(ALG′)M (v) = Mv] ≥ 1 − δ. To this end we fix a matrix M satisfying
the premise:

Pr
v,ALG

[ALGM (v) =Mv] ≥ α . (33)

Before describing the proof of Lemma 4.1 we introduce the following notation. For each v ∈ Fn

let pv = PrALG[ALG(v) =Mv] be the probability that ALG computes correctly the output on input
v, where the probability is taken only over the quantum randomness of ALG.

Before proceeding with the proof, we need the following definition of threshold sets.

Definition 7.1. For an algorithm ALGM and a matrix M satisfying Eq. (33), we define the set of
its good inputs, i.e., the inputs v ∈ Fn such that ALGM (v) =M · v with a non-negligible probability
as follows.

Xκ : = {v ∈ Fn : pv ≥ κ} ; .

33

7.1 Properties of threshold sets

Below we prove several claims regarding the threshold sets Xκ.

Claim 7.2. For κ ≤ α/2, the density of Xκ is at least α/2, i.e., |Xκ| ≥ α
2 |F|

n.

Proof. By the assumption of the lemma we have Ev∈Fn [pv] ≥ α, and hence

α ≤ E
v
[pv] ≤ 1 · Pr

v
[pv ≥ α/2] + α/2 · Pr

v
[pv < α/2] ≤ Pr

v
[pv ≥ κ] + α/2 .

Therefore, for all κ ≤ α/2, we have that Prv[pv ≥ κ] ≥ α/2, as required.

Next, we prove that if we choose a random τ ∈ [α/4, α/2] and τ ′ = τ − 1/K for a sufficiently
large K, then, with high probability over the random choices of τ the sets Xτ and Xτ ′ will have
almost the same density.

Claim 7.3. For a parameter K let r ∈ {1, . . . ,K} be chosen uniformly at random. Let τ =

(1 + r/K)α4 ∈ [α4 + α
4K ,

α
2], and τ

′ = τ − α
4K . Then, Pr

[
|Xτ ′ |
|Fn| − |Xτ |

|Fn| ≤
2
K

]
> 1/2.

Proof. Note that the interval [τ, τ ′] is sampled by dividing [α/4, α/2] into K intervals, and taking

one of them uniformly at random, it follows that E
[
|Xτ ′ |
|Fn| − |Xτ |

|Fn|

]
≤ 1/K. The claim follows by

Markov’s inequality.

In particular Claim 7.3 implies the following corollary.

Corollary 7.4. For a parameter K let r ∈ {1, . . . ,K} be chosen uniformly at random. Let τ =
(1 + r/K)α4 ∈ [α4 + α

4K ,
α
2], and τ

′ = τ − α
4K .

Suppose that X∗ ⊆ Fn is an arbitrary set such that Xτ ⊆ X∗ ⊆ Xτ ′. Then with probability at
least 1/2 (over the choice of τ) it holds that∣∣∣1̂X∗(r)− 1̂Xτ (r)

∣∣∣ ≤ 2

K

for all r ∈ Fn.

Proof. By Claim 7.3 we have Pr
[
|Xτ ′ |
|Fn| − |Xτ |

|Fn| ≤
2
K

]
> 1/2. Suppose this event happens and

|Xτ ′ |
|Fn| −

|Xτ |
|Fn| ≤

2
K . Since Xτ ⊆ X∗ ⊆ Xτ ′ , it follows that

|X∗|
|Fn| −

|Xτ |
|Fn| ≤

2
K . We observe that

∣∣∣1̂X∗(r)− 1̂Xτ (r)
∣∣∣ ≤ ∣∣∣∣ |Xτ |

|Fn|
− |X∗|

|Fn|

∣∣∣∣ ≤ 2

K
,

which finishes the proof of the corollary.

7.2 Proof of Lemma 4.1

In this section, we prove Lemma 4.1, which we restate below for convenience.

34

Lemma 4.1. Let F = Fp be a prime field, n ∈ N, and α := α(n) ∈ (0, 1]. Let ALGM be a quantum
query algorithm that has oracle access to a matrix M ∈ Fn×n, gets as input a vector v ∈ Fn,
makes Q(n) queries, and attempts to compute Mv. Then, for every constant δ > 0, there exists a
quantum algorithm (ALG′)M that makes O(α−7/2) uses of ALGM , O

(
(Q(n) + n3/2) · α−7/2

)
queries

to UM and U †
M , uses O(n3/2α−7/2 · log n · poly(log |F|)) additional one-qubit and two-qubit gates,

and O(α−2 · n log n) ancillary qubits such that the following holds.
For every matrix M ∈ Fn×n such that ALGM computes Mv correctly with probability α:

Pr
v,ALG

[ALGM (v) =Mv] = E
v∈Fn

[∥∥ΠMvALG
M |v⟩ |0⟩

∥∥2] ≥ α ,

the algorithm (ALG′)M computes Mv correctly for every v ∈ Fn with probability 1− δ:

∀v ∈ Fn Pr
ALG′

[(ALG′)M (v) =Mv] =
∥∥ΠMv(ALG

′)M |v⟩ |0⟩
∥∥2 ≥ 1− δ .

Let ALGM be the average-case quantum algorithm from the lemma statement that has query
access to the matrix M . Note that given the algorithm ALGM we can define an algorithm ALGM

boost

that given an input v makes O(1/α) calls to ALGM (v) independently, and each time verifies the
result using Lemma 5.2. Therefore, for every constant δ, we may assume that there is at least
an α/2 fraction of inputs on which ALGM

boost outputs the correct answer with probability at least
1− δ/8.

We define (ALG′)M as follows.

35

Algorithm 1: Reduction for linear problems

Input: ALGM , v ∈ Fn, α ∈ (0, 1)
Output: M · v
1. Let K = 4

α3/2 , and let r ∈ {1, . . . ,K} be chosen uniformly at random.

2. Setting a random threshold: Let τ = (1 + r/K)α4 ∈ [α4 ,
α
2 − 1

K], and τ ′ = τ − 1
K .

3. Membership Oracle for X∗: Construct a quantum noisy membership oracle ÕX∗ using
Section 5.2 such that with high probability Xτ ⊆ X∗ ⊆ Xτ ′ .

4. Learning Xτ : Having ÕX∗ defined above, apply the quantum local correction lemma
(Lemma 6.2) with error parameter δ = 1/6 to compute a collection of t = O(1/α2)
vectors B = {b1, . . . , bt ∈ Fn} and indices k1, k2, ..., kt. Indeed, by Corollary 7.4, we may
apply Lemma 6.2.

5. Efficient sampling from Xτ : Sample x1, x2, x3 from Xτ using Corollary 5.4 with κ = τ .

6. Self-correcting v: Using the set B and indices ki computed in Step 3, let s be the t-sparse
vector defined as in Lemma 6.2:

s =

t∑
j=1

⟨v, bj⟩ · e⃗kj , and

x4 = v − x1 − x2 − x3 − s .

7. ComputingM ·v: Let b = ALGM
boost(x1)+ALGM

boost(x2)+ALGM
boost(x3)+ALGM

boost(x4)+M ·s,
where M · s is computed by multiplying M by all t non-zero entries of s.

8. Verification: Using Lemma 5.1 with ε = O(α2) verify whether b =M ·v. If the verification
accepts, return b.

9. Probability amplification: Repeat the steps 5–8 O(1/α2) times.

Correctness: By our choice of the parameters and the justifications in the algorithm, we see that
with constant probability we simultaneously have that (i) the quantum oracle ÕX∗ from Lemma 5.2
for every x ∈ Fn, outputs ÕX∗(x) = 1X∗(x) in Step 3; (ii) The set B and indices ki are computed
correctly by Lemma 6.2 in Step 4; (iii) Step 5 produces uniformly random samples x1, x2, x3 ∈ Xτ .

Assuming successful executions of the previous steps, by Lemma 6.2 for x4 computed in Step 6
we have that

Pr
x1,x2,x3∈Xτ

[x4 ∈ Xτ] ≥ α2 .

Observing that for x1, x2, x3, x4 ∈ X∗ it holds that Pr
[
ALGM

boost(xi) =Mxi ∀i = 1, 2, 3, 4
]
≥ 1−δ/2.

Therefore, with probability Ω(α2), the result computed in Step 7 is the correct output b =M · v.
Given the representation of Xτ from Step 4 we repeat steps 5–8 O(1/α2) times to amplify the

probability of success to 2/3 for every input vector v.

36

Query complexity: First, we bound the number of queries made by our algorithm in each
iteration (Steps 3–8). This amounts to bounding the number of queries required to learn the heavy
Fourier coefficients of 1X∗ in Step 4 (using the oracle from Step 3), queries in Step 5 to sample from
XM , queries in the four executions of ALGM

boost in Step 7 (each corresponding to O(1/α) calls to
ALGM and O(1/α) times verifying the computation), queries required to compute M · s in Step 7,
and queries required for verification in Step 8.

By Lemma 6.2, in Step 4 we need at most O(α−7/2) queries to ALGM , and O(n3/2 · α−7/2)

queries to UM and U †
M to find the set B and indices k1, k2, ..., kt. Note that the algorithm does not

repeat Step 4 O(α−2) times.
In step 5, by Corollary 5.4, we make O(1) uses of the noisy unitary implementation of the

approximate indicator function in Section 5.2, which translates to O(n3/2 · α−3/2) queries to UM

and U †
M and O(α−3/2) queries to ALGM . In Step 7, each application of ALGM

boost uses O(1/α) calls
to ALGM and O(1/α) verification steps. In addition s is t-sparse for t = 4/α2, we compute M · s
by making at most O(n/α2) queries. Step 8 makes O(n3/2) queries to UM and U †

M . Repeating
steps 5–8 for O(1/α2) times leads to the bound of O(n3/2 · α−7/2) on the query complexity of the
constructed algorithm.

Efficiency: Now we count the additional gates used by our algorithm. The membership oracle
from Lemma 5.2 in Step 3, Fourier sampling circuit from Lemma 6.2 in Step 4, and efficient
sampling circuit from Corollary 5.4 in Step 5 all use O(n3/2 log n · α−3/2 · poly(log |F|)) additional
gates. Additionally, we need O(n) gates to represent vectors s and vi for i ∈ {1, 2, 3, 4}. Thus,
in total our algorithm uses O(n3/2 log n · α−7/2 · poly(log |F|)) additional one-qubit and two-qubit
gates, and use O(α−2 · n log n) ancillary qubits.

Large fields: For the case where the field size is large (say, |F| ≥ 10/α), there is a simpler worst
case to average case reduction. Note that since we can efficiently verify a candidate solution using
Lemma 5.1, we can sample a line ℓ passing through the input vector v and a uniformly random
point x ∈ Fn. It is easy to show that with probability at least Ω(α), at least an Ω(α)-fraction of
the points on ℓ are in the good set X, i.e., the set of points on which ALGM outputs the correct
answer with probability at least Ω(α). Thus, with probability Ω(α3), we sample two random points
a, b on ℓ that both belong to X, and then we can interpolate the value of M · v from ALGM (a)
and ALGM (b). We note that this interpolation technique inherently requires large fields, while the
proof presented above works over all finite fields.

Making ALG′ a unitary: Finally, we note that it is straightforward to turn the algorithm ALG′,
which is produced by our reduction, into a unitary quantum algorithm. Yet, it is important to do
this carefully so as to keep the overheads in gate complexity of the resulting unitary within the
desired bound of O(n3/2). We sketch how to do this below.

Suppose we have performed Step 4 and obtained a classical description of the set of vectors B
and the corresponding indices k1, . . . , kt. We now need to perform Steps 5-9 in a unitary manner.
In lieu of Step 5, we maintain three copies of the output state of the unitary Qsamp of Corollary 5.4
in three quantum registers, one each for the vectors x1, x2 and x3. Step 6 only involves arithmetic
operations over F, and we perform the required computation by a unitary circuit that computes
the sparse shift vector in the form of a state |s⟩, using B and k1, . . . , kt. In an ancillary register,

37

we then compute a superposition of vectors corresponding to v− x1 − x2 − x3 − s, using the states
representing the uniform samples x1, x2 and x3.

By using amplitude amplification, we can construct a unitary implementation corresponding to
ALGM

boost with O(1√
α
log 1

δ) uses of ALGverified. Next, we apply this unitary to each of the four regis-

ters corresponding to x1, . . . , x4, and also compute M · s using the circuit described in Section 5.1.
Finally, we perform more arithmetic to compute a state corresponding to the vector b of Step 7
in an ancillary register. Applying Qverify from Lemma 5.1 to the registers containing v and b, we
obtain a version of ALG′ which attaches a flag indicating success to its output register. This can
then be boosted using O(1/α) rounds of fixed-point amplitude amplification to obtain the desired
unitary quantum algorithm.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009 (p. 1).

[AC02] Mark Adcock and Richard Cleve. A quantum Goldreich-Levin theorem with crypto-
graphic applications. In STACS 2002, pages 323–334. Springer, 2002 (pp. 11, 27).

[AGG+22] Vahid R. Asadi, Alexander Golovnev, Tom Gur, and Igor Shinkar. Worst-case to
average-case reductions via additive combinatorics. In STOC 2022, pages 1566–1574.
ACM, 2022 (pp. 3–7).

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC 1996, pages 99–
108. ACM, 1996 (p. 3).

[BBB19] Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The average-case complexity
of counting cliques in Erdős–Rényi hypergraphs. In FOCS 2019, pages 1256–1280.
IEEE, 2019 (p. 3).

[BBF03] Stephane Beauregard, Gilles Brassard, and Jose M. Fernandez. Quantum arithmetic
on Galois fields, 2003 (p. 20).

[BCG+92] Shai Ben-David, Benny Chor, Oded Goldreich, and Michel Luby. On the theory of
average case complexity. Journal of Computer and System Sciences, 44(2):193–219,
1992 (p. 3).

[Bea97] Robert Beals. Quantum computation of fourier transforms over symmetric groups. In
STOC 1997, pages 48–53. ACM, 1997 (p. 29).

[BFN+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3(4):307–318, 1993 (p. 3).

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with ap-
plications to numerical problems. In STOC 1990, pages 73–83. ACM, 1990 (p. 1).

[BRS+17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-
case fine-grained hardness. In STOC 2017, pages 483–496. ACM, 2017 (p. 3).

[BRS+18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs of
work from worst-case assumptions. In CRYPTO 2018, pages 789–819. Springer, 2018
(p. 3).

38

[BŠ06] Harry Buhrman and Robert Špalek. Quantum verification of matrix products. In
SODA 2006, pages 880–889. SIAM, 2006 (pp. 2, 19).

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and Trends
in Theoretical Computer Science, 2(1):1–106, 2006 (p. 3).

[CKK12] Andrew M. Childs, Shelby Kimmel, and Robin Kothari. The quantum query complex-
ity of read-many formulas. In ESA 2012, pages 337–348. Springer, 2012 (p. 19).

[DLV20] Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New tech-
niques for proving fine-grained average-case hardness. In FOCS 2020, pages 774–785.
IEEE, 2020 (p. 3).

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. SIAM
Journal on Computing, 22(5):994–1005, 1993 (p. 3).

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness.
In CRYPTO 2010, pages 116–137. Springer, 2010 (p. 3).

[Gid18] Craig Gidney. Halving the cost of quantum addition. Quantum, 2:74, June 2018 (p. 21).

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008 (p. 1).

[Gol11] Oded Goldreich. Notes on Levin’s theory of average-case complexity. In Studies in
Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, pages 233–247. Springer, 2011 (p. 3).

[GR18] Oded Goldreich and Guy Rothblum. Counting t-cliques: worst-case to average-case
reductions and direct interactive proof systems. In FOCS 2018, pages 77–88. IEEE,
2018 (p. 3).

[Gro05] Lov K. Grover. Fixed-point quantum search. Physical Review Letters, 95(15):1–4, 2005
(pp. 22, 42).

[GSL+19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value
transformation and beyond: Exponential improvements for quantum matrix arith-
metics. In STOC 2019, pages 193–204. ACM, 2019 (pp. 22, 42, 43).

[Gue19] Gian Giacomo Guerreschi. Repeat-until-success circuits with fixed-point oblivious am-
plitude amplification. Physical Review A, 99:022306 1–022306 10, 2, February 2019
(p. 22).

[Haa19] Jeongwan Haah. Product decomposition of periodic functions in quantum signal pro-
cessing. Quantum, 3:190, October 2019 (p. 43).

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical Review Letters, 103(15):150502, 2009. arXiv: 0811.3171
(p. 4).

[Hoy97] Peter Hoyer. Efficient quantum transforms, 1997 (p. 29).

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP in-
stances than picking uniformly at random. In FOCS 1990. IEEE, 1990 (p. 3).

[Imp11] Russell Impagliazzo. Relativized separations of worst-case and average-case complex-
ities for NP. In CCC 2011, pages 104–114. IEEE, 2011 (p. 3).

39

https://arxiv.org/abs/0811.3171

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In CCC 1995, pages 134–
147. IEEE, 1995 (p. 3).

[JKM] Stacey Jeffery, Robin Kothari, and Frederic Magniez. Nested quantum walks with quan-
tum data structures. In SODA 2013. SIAM, pages 1474–1485 (p. 19).

[Kot14] Robin Kothari. Efficient algorithms in quantum query complexity. PhD thesis, 2014,
pages 1–137 (pp. 2, 19).

[LdW21] Noah Linden and Ronald de Wolf. Average-Case Verification of the Quantum Fourier
Transform Enables Worst-Case Phase Estimation. arXiv:2109.10215, 2021 (p. 3).

[Le 12] François Le Gall. Improved output-sensitive quantum algorithms for boolean matrix
multiplication. In SODA 2012, pages 1464–1476. SIAM, 2012 (p. 19).

[Lev86] Leonid A. Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986 (p. 3).

[Lip91] Richard Lipton. New directions in testing. Distributed computing and cryptography,
2:191–202, 1991 (p. 3).

[LLV19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key cryptog-
raphy in the fine-grained setting. In CRYPTO 2019, pages 605–635. Springer, 2019
(p. 3).

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Journal of the ACM, 60(6):1–35, 2013 (p. 3).

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015 (p. 3).

[MNR+07] Frederic Magniez, Ashwin Nayak, Jeremie Roland, and Miklos Santha. Search via
quantum walk. In STOC 2007, pages 575–584. ACM, 2007 (p. 19).

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. In FOCS 2004, pages 372–381. IEEE, 2004 (p. 3).

[MRR06] Cristopher Moore, Daniel Rockmore, and Alexander Russell. Generic quantum fourier
transforms. ACM Transactions on Algorithms, 2(4):707–723, October 2006 (p. 29).

[MSS07] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for the
triangle problem. SIAM Journal on Computing, 37(2):413–424, 2007 (p. 19).

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, 2010, page 676 (p. 14).

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM, 56(6):1–40, 2009 (p. 3).

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factor-
ing. In FOCS 1994, pages 124–134. IEEE, 1994 (p. 3).

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the
XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001 (p. 3).

[Vas18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and com-
plexity. In ICM 2018. World Scientific, 2018 (p. 3).

40

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In FOCS 2010, pages 645–654. IEEE, 2010 (p. 19).

[YLC14] Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum
search with an optimal number of queries. Physical Review Letters, 113:210501, 21,
November 2014 (p. 22).

41

A Quantum singular value transformation techniques

In this appendix, we provide self-contained statements of techniques that make use of the quantum
singular value transformations literature.

A.1 Fixed-point amplitude amplification

An issue that we frequently face while using standard amplitude amplification is the inability
to a priori estimate the number of iterations to perform without overshooting the target state.
When the goal is to output a classical solution to a search problem, one can sidestep this issue by
iterating over the number of rounds of amplification with a multiplicative step size (often called
exponential search). But if the goal of amplification is to obtain a unitary subroutine that can later
be composed with another unitary, this problem can be addressed by the technique of fixed-point
amplitude amplification, which generalises the notion of fixed-point search [Gro05] and converges
monotonically towards the marked state as the number of iterations is increased. We use this
machinery primarily in the proof of Lemma 5.1.

The precise version of fixed-point amplitude amplification that we need is expressed in the
framework of quantum singular value transformations [GSL+19, Theorem 27, arXiv version], as
follows.

Theorem A.1 (Fixed-point amplitude amplification). Let U be a unitary acting on k+1 qubits and
Π an orthogonal projector. If for an input state |ϕin⟩ and p > δ > 0 we have ΠU |ϕin⟩ = p |ϕtar⟩,
then for every ε > 0 there is a unitary Uq such that ∥|ϕtar⟩ − Uq |ϕin⟩∥ ≤ ε. This Uq requires
q = O(1δ log

1
ε) uses of U and U †, one ancillary qubit, and O(q) additional one- and two-qubit

gates.

A.2 Singular value threshold projections

To obtain our unitary implementation of the (noisy) indicator function in Section 5.2, we need two
conditions to be simultaneously satisfied: (1) the singular values that are larger than a threshold t
are boosted close to unity, and (2) the singular values that are below the threshold are suppressed
close to zero. In particular, fixed-point amplitude amplification only guarantees the former con-
dition and is not the right tool for the task. We hence invoke a more sophisticated tool, namely,
quantum singular value threshold projection. We quote the following result that we use [GSL+19,
Theorem 31, arXiv version].

Theorem A.2 (Singular value threshold projections). Let U be a unitary acting on k + 1 qubits
and Π, Π̃ be orthogonal projectors. Suppose

Π̃UΠ =

m∑
j=1

ζj |wj⟩⟨vj |

for ζj ∈ (0, 1) and {wj} and {vj} two sets of orthonormal vectors. Then for any threshold t ∈ (0, 1)
and ε, δ > 0, there exists a unitary Uq that makes q = O

(
1
δ log

1
ε

)
queries to U and U †, and uses

42

O(q) additional one- and two-qubit gates, such that

Π̃UqΠ =
m∑
j=1

ζ ′j |wj⟩⟨vj | , s.t. ∀j ∈ [m],


ζ ′j ≥ 1− ε ζj ∈ [t+ δ/2, 1]

|ζ ′j | ≤ 1 if ζj ∈ (t− δ/2, t+ δ/2)

ζ ′j ≤ ε ζj ∈ [0, t− δ/2]

(34)

Computing the circuits for Uq. The two theorems stated above are in fact constructive and
provide explicit circuits for the unitaries Uq. In the interest of space, we simply note here that there
is a classical runtime overhead of O(q3poly log(q/ε)), and refer the interested reader to [GSL+19;
Haa19] for details. For our applications, this overhead is of order Õ(n3/2).

43

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

