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Abstract

The Forster transform is a method of regularizing a dataset by placing it in radial isotropic
position while maintaining some of its essential properties. Forster transforms have played a
key role in a diverse range of settings spanning computer science and functional analysis. Prior
work had given weakly polynomial time algorithms for computing Forster transforms, when
they exist. Our main result is the first strongly polynomial time algorithm to compute an
approximate Forster transform of a given dataset or certify that no such transformation exists.
By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial
time algorithm for distribution-free PAC learning of halfspaces. This learning result is surprising
because proper PAC learning of halfspaces is equivalent to linear programming. Our learning
approach extends to give a strongly polynomial halfspace learner in the presence of random
classification noise and, more generally, Massart noise.
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1 Introduction

1.1 Forster Transforms and Their Applications

The Forster transform is a method of regularizing a dataset X (in particular, by placing it in radial
isotropic position) while maintaining some of its essential properties. Forster transforms have been
an essential tool in a diverse range of settings, including functional analysis [Bar98, GGdOW17],
communication complexity [For02], coding theory [DSW17], mixed determinant/volume approxi-
mation [GS02], learning theory [HM13, HKLM20, DKT21, DPT21] and the Paulsen problem in
frame theory [KLLR18, HM19]. The reader is referred to [AKS20] for a more detailed discussion.

Known algorithms for computing (approximate) Forster transforms [HM13, AKS20, DKT21]
rely on black-box convex optimization (e.g., the ellipsoid algorithm) and consequently have weakly
polynomial runtimes. Here we study the question of whether Forster transforms can be computed
in strongly polynomial time. We then leverage Forster transforms for the problem of PAC learning
halfspaces (both in the realizable setting and in the presence of semi-random label noise).

Intuitively speaking, a Forster transform is a mapping that turns a dataset into one with good
anti-concentration properties. Specifically, given a dataset X ⊂ Rd∗1, a Forster transform of X is
an invertible linear transformation A ∈ Rd×d such that the set of points Y = {Ax/‖Ax‖2, x ∈ X}
is in isotropic position (i.e., has identity second moment matrix). Formally, we have the following
more general definition allowing for approximate isotropic position.

Definition 1.1 (Approximate Forster Transform). Let X be a set of n nonzero points in Rd and
0 ≤ ε ≤ 1 be an error parameter. An ε-approximate Forster transform of X is an invertible linear

transformation A ∈ Rd×d such that, considering the mapping fA : Rd∗ 7→ Sd defined by fA(x)
def
=

Ax/‖Ax‖2, the matrix MA(X)
def
= (1/n)

∑
x∈X fA(x)fA(x)> satisfies 1−ε

d I �MA(X) � 1+ε
d I.

An exact Forster transform (corresponding to ε = 0 in Definition 1.1) aims to linearly transform
a given dataset so that the normalizations of these points are in isotropic position. This notion
is known as “Forster’s isotropic position” or “radial isotropic position” and can be viewed as
an outlier-robust analogue of isotropic position. As already mentioned, radial isotropy has been
extensively studied in functional analysis and computer science.

Remark 1.2. At a high-level, a Forster transform aims to transform a given dataset so that it
becomes “well-conditioned” in a well-defined technical sense. We note that several other such
transformations have been studied in the literature, including the “outlier-removal technique” of
Dunagan and Vempala [DV04a] (improving on [BFKV96]) and the rescaling method of Dunagan
and Vempala [DV04b] for linear programming. We provide a summary of these techniques and a
comparison to radial isotropy in Section 1.5.

Existence Forster [For02] showed that if the set of points X is in general position, then a Forster
transform exists. Interestingly, generalizations of Forster’s theorem appear implicitly in [Bar98]
and explicitly in [GS02]. We note that there are datasets for which a Forster transform does not
exist. For example, if there is a d/3-dimensional subspace that contains half of the points in X,
then after applying any such transformation to our dataset, this will still be the case; thus, there
will be a d/3-dimensional subspace over which the trace of the second moment matrix is at least
1/2. In a recent refinement of the aforementioned works, [HKLM20] showed that this is the only
thing that can go wrong. That is, a Forster transform of a given dataset X exists unless there is a
k-dimensional subspace, for some 0 < k < d, containing at least a k/d-fraction of the points in X.

1We use R∗ to denote the set R \ {0}.
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Efficient Computability Forster’s existence proof proceeds via a non-constructive iterative ar-
gument. By analyzing a convex program proposed by Barthe [Bar98], Hardt and Moitra [HM13]
(see also [AKS20]) showed that the ellipsoid method yields a weakly polynomial time algorithm
to compute an approximate Forster transform (when it exists). (More recently, [DKT21] pointed
out that a simple explicit SDP can be used to obtain a similar guarantee.) We remind the reader
that the term weakly polynomial time algorithm refers to the fact that the number of arithmetic
operations performed by the algorithm scales polynomially with the bit complexity of the numbers
in the input. Specifically, in our Forster setting, the number of arithmetic operations required by
the ellipsoid method is poly(n, d, b, log(1/ε)), where ε is the accuracy parameter of Definition 1.1,
n is the size of the dataset X, and b is the bit complexity of X.

Starting from the convex programming formulation in [Bar98], Artstein-Avidan, Kaplan, and
Sharir [AKS20] gave an SVD-based gradient-descent method for computing approximate Forster
transforms. This method incurs a poly(1/ε) runtime dependence and is still weakly polynomial,
i.e., the number of arithmetic operations scales polynomially in the bit complexity b. Finally, it is
interesting to remark that Forster’s rescaling is a special case of operator scaling and tensor scaling
(see [GdO18] for a survey). Efficient algorithms have been developed for these more general tasks,
see, e.g., [AGL+18, BFG+18], albeit with weakly polynomial guarantees.

Weakly versus Strongly Polynomial Time As is standard for computational purposes, we
assume that every integer or rational number appearing in the input is encoded using its binary
representation. Let N ∈ Z+ denote the number of integer numbers given as input and b ∈ Z+

denote the bit complexity of the largest integer appearing in the input description. An algorithm
for the underlying computational problem is called weakly polynomial, if its worst-case running time
is bounded by a fixed-degree polynomial in the Turing machine model of computation.

The concept of strongly polynomial time was introduced by Megiddo [Meg83], under the name
“genuinely polynomial”. A strongly polynomial time algorithm satisfies the following properties
(see, e.g., Section 1.3 of [GLS88]): (i) it uses only elementary arithmetic operations (specifically,
integer addition, subtraction, multiplication, and division), (ii) the number of arithmetic operations
is bounded above by a polynomial in N , and (iii) the algorithm is a polynomial space algorithm:
that is, all numbers appearing in all intermediate computations are rational numbers with bit
complexity bounded above by a polynomial in the input size (i.e., poly(N, b)).

The key difference between strongly and weakly polynomial time lies in property (ii) above. In
a weakly polynomial algorithm, the number of arithmetic operations is allowed to scale with the bit
complexity of the numbers in the input. In sharp contrast, in a strongly polynomial time algorithm
no bit complexity dependence is allowed.

Forster Transforms in Strongly Polynomial Time? Motivated by the fundamental nature
and the varied applications of Forster transforms, here we ask the following question:

Is there a strongly polynomial time algorithm to compute
an approximate Forster transform of a given dataset (assuming one exists)?

Our main algorithmic result (Theorem 1.5) answers this question in the affirmative by giving the
first randomized strongly polynomial-time algorithm for computing approximate Forster transforms
— corresponding to ε = Ω(poly(1/(n, d))) in Definition 1.1. Importantly, a constant value of ε
suffices for our learning theory application to learning halfspaces. Obtaining a strongly polynomial
time algorithm for inverse exponential values of ε is left as an interesting open problem (see Section 8
for a discussion).
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1.2 Halfspaces and Efficient PAC Learnability

One of the main motivations behind this work was leveraging Forster transforms as a tool for
the algorithmic problem of distribution-free PAC learning of halfspaces. We review the relevant
background in the subsequent discussion.

Halfspaces We are concerned with the efficient learnability of halfspaces in Valiant’s distribution-
free PAC model [Val84]. A halfspace or Linear Threshold Function (LTF) is any Boolean-valued
function f : Rd 7→ {±1} of the form f(x) = sign(w · x− t), for some w ∈ Rd (known as the weight
vector) and t ∈ R (known as the threshold). (The function sign : R 7→ {±1} is defined as sign(u) = 1
if u ≥ 0, and sign(u) = −1 otherwise.) Halfspaces are one of the most extensively studied classes of
Boolean functions due to their central role in several areas, including complexity theory, learning
theory, and optimization [Ros58, Nov62, MP68, Yao90, GHR92, FS97, Vap98, STC00, O’D14].

Background on PAC Learning The major goal of computational learning theory is to develop
learning algorithms for expressive concept classes that are both statistically and computationally
efficient. To facilitate the subsequent discussion, we formally define Valiant’s PAC model.

Definition 1.3 (PAC Learning). Let C be a class of Boolean-valued functions over X = Rd and
DX be a fixed but unknown distribution over X. Let f be an unknown target function in C. A
PAC example oracle, EX(f,DX), works as follows: Each time EX(f,DX) is invoked, it returns a
labeled example (x, y), where x ∼ DX and y = f(x). Let D denote the joint distribution on (x, y)
generated by the above oracle. Given an accuracy parameter γ > 0 and access to i.i.d. samples
from D, the learner wants to output a hypothesis h : Rd 7→ {±1} such that with high probability
the misclassification error of h is at most γ, i.e., we have that Pr(x,y)∼D[h(x) 6= y] ≤ γ.

The hypothesis h in Definition 1.3 does not necessarily belong to the class C. Namely, we
focus on the standard notion of improper learning, where the learner can output any efficiently
computable hypothesis. The special case where h is required to lie in C is known as proper learning.
While proper learning might be desirable for some applications (e.g., due to its interpretability),
there exist natural concept classes for which proper learning is computationally hard and improper
learning is easy (see, e.g., [KV94]). An improper hypothesis is as useful as a proper one for the
purpose of predicting new function values.

Remark 1.4. The PAC model of Definition 1.3 is known as realizable because of the assumption
that the labels are consistent with the target concept. While our main learning application is on
the realizable learning of halfspaces in strongly polynomial time (Theorem 1.6), our positive result
extends for learning halfspaces in the presence of random or semi-random label noise (Theorem 1.8).

PAC Learning Halfspaces and Linear Programming With this terminology, we return to
our discussion on halfspaces. Suppose we are given a multiset of n labeled examples, (x(i), y(i)), with
x(i) ∼ DX and y(i) = f∗(x(i)), where f∗(x) = sign(w∗ · x− t∗) is the target halfspace. Then we can
find a consistent halfspace hypothesis h(x) = sign(ŵ · x− t̂ ) (i.e., a halfspace that agrees with the
training set) via a reduction to Linear Programming (LP); see, e.g., [MT94]. Indeed, each example
(x(i), y(i)) gives rise to the linear inequality (w · x(i) − t)y(i) ≥ 0 over variables (w, t) ∈ Rd+1.
This gives us an LP with d + 1 variables and n constraints, which is feasible (as (w∗, t∗) is a
feasible solution by assumption). We can thus use any polynomial-time LP algorithm to compute
a feasible solution (ŵ, t̂ ). By standard VC-dimension generalization results (see, e.g., [KV94]),
if the sample size n is sufficiently large, namely for some n = Õ(d/γ), the halfspace hypothesis
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h(x) = sign(ŵ ·x− t̂ ) with high probability satisfies Pr(x,y)∼D[h(x) 6= y] ≤ γ. This straightforward

reduction gives a PAC learning algorithm for halfspaces on Rd with sample complexity Õ(d/γ)
and running time polynomial in the input size. Formally speaking, the running time of such an
algorithm is weakly polynomial, i.e., its worst-case number of arithmetic operations scales with the
bit complexity of the input examples.

Interestingly, the aforementioned reduction can be reversed. That is, one can use any PAC
learner that outputs a halfspace hypothesis as a black-box to solve the linear feasibility problem
Aw ≥ 0, w 6= 0, where A ∈ Rn×d and w ∈ Rd, by considering each linear constraint as an example.
Intuitively, the vector w can be viewed as the weight vector defining the target halfspace.

Learning Halfspaces in Strongly Polynomial Time? All known polynomial time algorithms
for LP, including the ellipsoid algorithm and interior-point methods, are weakly polynomial. The
existence of a strongly polynomial LP algorithm is a major open question in computer science,
famously highlighted by Smale [Sma98]. The straightforward reduction of PAC learning halfspaces
to LP leads to a weakly polynomial learner. Interestingly, the reduction in the opposite direction
has lead various authors (see [Coh97] and recently [DGT19, CKMY20]) to suggest that learning
halfspaces in strongly polynomial time is equivalent to strongly polynomial LP. The catch, of course,
is that this equivalence only holds if we restrict ourselves to proper learners.

Several weakly polynomial time algorithms for PAC learning halfspaces have been developed
over the past thirty years, starting with the pioneering works [BFKV96, Coh97, DV04b] and recently
in [DGT19, CKMY20, DKT21]. (These works do not proceed by a black-box reduction to solving
LPs.) These learners succeed not only in the realizable setting, but also in the presence of (semi)-
random label noise. Importantly, all prior learners are weakly polynomial — even restricted to the
realizable setting. This discussion serves as a motivation for the following question:

Is there a strongly polynomial time algorithm for PAC learning halfspaces?

The main learning-theoretic result of this paper (Theorem 1.6) answers the above question in the
affirmative. This algorithmic result generalizes to yield strongly polynomial time algorithms for
learning halfspaces in “benign” noise models, including Random Classification Noise (RCN) [AL88]
and, more generally, Massart noise [MN06] (Theorem 1.8).

1.3 Our Results

The main algorithmic result of this work is the first randomized strongly polynomial time algorithm
for computing an approximate Forster transform of a given dataset, assuming that one exists.

Theorem 1.5 (Approximate Forster Transforms in Strongly Polynomial Time). There exists a
randomized algorithm that given a set X ⊂ Rd∗ of size n and a parameter ε ∈ (0, 1), runs in time
strongly polynomial in nd/ε, and has the following high probability guarantee: either the algorithm
computes an ε-approximate Forster transform of X, or it correctly detects that no Forster transform
of X exists by finding a proper subspace W ⊂ Rd such that |X ∩W | > (n/d) dim(W ).

In more detail, the algorithm of Theorem 1.5 performs poly(n, d, 1/ε) arithmetic operations on
poly(n, d, 1/ε, b)-bit numbers, where b is the bit complexity of the points in X. As discussed in
the introduction, previous algorithms for this problem rely on the ellipsoid method and therefore
are weakly polynomial even for constant values of ε. The running time of our algorithm has a
polynomial dependence in 1/ε; hence, our algorithm does not run in polynomial time when ε is
inverse super-polynomially small in n, d. Importantly, for our application in halfspace learning (and
several other applications of Forster transforms) constant values of the parameter ε suffice.
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By using the algorithm of Theorem 1.5 as a black-box (for ε = 1/2), we establish our main
learning result (see Theorem 7.5 for a more detailed statement).

Theorem 1.6 (PAC Learning Halfspaces in Strongly Polynomial Time). Let D be a distribution
over labeled examples (x, y) ∈ Rd × {±1} such that the distribution over examples is arbitrary and
the label y of example x satisfies y = f(x), for an unknown halfspace f : Rd 7→ {±1}. There is an
algorithm that, given γ > 0, draws n = poly(d/γ) i.i.d. samples from D, runs in strongly polynomial
time, and returns a strongly polynomial time computable hypothesis h : Rd 7→ {±1} such that with
high probability we have that Pr(x,y)∼D[h(x) 6= y] ≤ γ.

Given the equivalence of proper halfspace learning and LP, we view this algorithmic result as
fairly surprising. Theorem 1.6 gives the first strongly polynomial time PAC learning algorithm for
halfspaces. In more detail, if b is the bit complexity of the examples (i.e., the maximum number
of bits required to represent each coordinate of each example vector), our algorithm uses poly(n)
arithmetic operations on poly(n, b)-bit numbers. Finally, we note that the hypothesis h computed
by our algorithm is a decision-list of poly(d/γ) many halfspaces. Importantly, for each point x, the
value h(x) is computable in strongly polynomial time (in n).

Remark 1.7. The list of concept classes for which efficient learners have been developed in Valiant’s
distribution-free PAC model is fairly short. The class of halfspaces is of central importance in this
list. Specifically, a strongly polynomial algorithm for PAC learning halfspaces immediately implies
(via the kernel trick) strongly polynomial learners for broader concept classes, including degree-k
polynomial threshold functions for any k = O(1) (see, e.g., [BEHW89]).

It is worth pointing out that the idea of using Forster transforms for halfspace learning was
recently used in [DKT21] for the problem of PAC learning with Massart noise. In the Massart
model [MN06], an adversary independently flips the label of each point x with unknown probability
η(x) ≤ η < 1/2. The learner of [DKT21] used a weakly polynomial Forster transform routine. By
instead using our algorithm of Theorem 1.5, we obtain the following generalization of Theorem 1.6.

Theorem 1.8 (PAC Learning Massart Halfspaces in Strongly Polynomial Time). Let D be a
distribution over labeled examples (x, y) ∈ Rd × {±1} such that the distribution over examples is
arbitrary and the label y of example x satisfies (i) y = f(x) with probability 1 − η(x), and (ii)
y = −f(x) with probability η(x), for an unknown halfspace f : Rd 7→ {±1}. Here η(x) is an
unknown function that satisfies η(x) ≤ η < 1/2 for all x. There is an algorithm that, given γ > 0,
draws n = poly(d/γ) i.i.d. samples from D, runs in strongly polynomial time, and returns a strongly
polynomial time computable hypothesis h : Rd 7→ {±1} such that with high probability we have that
Pr(x,y)∼D[h(x) 6= y] ≤ η + γ.

Theorem 1.8 generalizes Theorem 1.6 (which corresponds to the case of η = 0). For the
special case of uniform noise (i.e., when η(x) = η < 1/2 for all x) — this is known as Random
Classification Noise [AL88] — Theorem 1.8 achieves the information-theoretically optimal error and
runs in strongly polynomial time. It thus qualitatively improves on the classical work of [BFKV96]
who gave a weakly polynomial time algorithm with the same error guarantee.

Theorem 1.8 similarly improves prior work on learning halfspaces with Massart noise. Prior
algorithms for learning Massart halfspaces have weakly polynomial runtimes and achieve the same
error as Theorem 1.8, which is believed to be the computational limit for the problem. In more
detail, the first (weakly) polynomial learner for Massart halfspaces was given in [DGT19] and
achieves error η+γ, as our Theorem 1.8. While this error guarantee is not information-theoretically
optimal in the Massart model (the optimal error is OPT = Ex[η(x)]), there exists strong evi-
dence [DK20, NT22, DKMR22] that the bound of η cannot be improved by any polynomial time
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algorithm. Finally, we note that subsequent work to [DGT19] gave a proper learner for Massart
halfspaces [CKMY20], which is inherently weakly polynomial.

1.4 Our Techniques

1.4.1 Strongly Polynomial Approximate Forster Transform

Overview of Algorithmic Approach Letting fA(x)
def
= Ax/‖Ax‖2, given a dataset X of n

points in Rd∗, our goal is to efficiently compute an invertible linear transformation A ∈ Rd×d

such that the matrix MA(X)
def
= (1/n)

∑
x∈X fA(x)fA(x)> is approximately equal to (1/d) I;

in particular, we would like it to have eigenvalues in [1−ε
d , 1+ε

d ]. Since the trace of MA(X),
tr(MA(X)), is always equal to 1, this goal is equivalent to finding a matrix A such that the
squared Frobenius norm of MA(X), ‖MA(X)‖2F , is close to 1/d (Lemma 3.1). This observation
gives rise to the natural idea of using an iterative algorithm to compute such an A. In partic-
ular, given a linear transformation A such that ‖MA(X)‖2F is somewhat small, our goal is then
to find another linear transformation C ∈ Rd×d such that the corresponding second moment ma-
trix MCA(X) = (1/n)

∑
x∈X fCA(x)fCA(x)> has squared Frobenius norm, ‖MCA(X)‖2F , somewhat

smaller than ‖MA(X)‖2F . Equivalently, since for any point x ∈ Rd∗ it holds that fCA(x) = fC(fA(x)),

we consider the set of transformed points XA = fA(X)
def
= {fA(x) : x ∈ X} and aim to make the

second moment matrix of fC(XA) smaller than the second moment matrix of XA. If for any in-
vertible A we can find such a C, then by iteratively replacing A by CA we can achieve smaller and
smaller values of ‖MA(X)‖2F , until in the limit it approaches 1/d.

Since tr(MA(X)) = 1, if ‖MA(X)‖2F is bounded away from 1/d, some of the eigenvalues of
MA(X) (which average to 1/d) must differ substantially from 1/d. This in turn implies that
MA(X) must have a reasonably-sized eigenvalue gap. In particular, this means that there exist
subspaces V and V ⊥, that are each spanned by eigenvectors of MA(X), such that the eigenvalues
of V ⊥ exceed the eigenvalues on V by at least some reasonably large δ > 0. Roughly speaking, if
we can find a matrix C that decreases the squared Frobenius norm of MA(X) on V ⊥ × V ⊥ and
increases the squared Frobenius norm on V × V , this will improve the desired squared Frobenius
norm.

A natural approach to achieve this goal is to let C be equal to IV ⊥ + (1 + α)IV , the identity
on V ⊥, and (1 + α) times the identity on V , for some suitable α > 0. It is not hard to see that
this choice of C strictly decreases the second moment matrix on V ⊥, and strictly increases it on
V . Unfortunately, it might also create cross-terms that will increase the Frobenius norm. To
understand the effect of the cross-terms, it is important to consider how close vectors in XA are
to being in V or in V ⊥. In particular, let β be the maximum distance that any vector in XA is
from being in either V or V ⊥. If α = O(1), this moves approximately αβ2 of the trace of MA(X)
from V ⊥ to V , which improves (i.e., decreases) the squared Frobenius norm by roughly αβ2 (times
some inverse poly(dn/ε) factors). On the other hand, this also creates cross-terms in the order of
αβ, which increases the squared Frobenius norm by a quantity on the order of α2β2. Thus, as long
as α is less than β times a sufficiently small polynomial in dn/ε, we obtain an improvement in the
squared Frobenius norm on the order of αβ2/poly(dn/ε).

This improvement suffices for our purposes, unless β happens to be very small. The latter occurs
if all of the points in XA are either very close to V or very close to V ⊥. In such a case, the simple
choice of matrix C described in the previous paragraph may not be sufficient, as it will produce
too many cross-terms. In order to make progress here, we require a different approach, which we
describe next. To describe our approach for this case, we introduce additional terminology. We
let XB

A be the set of points in XA that are close to V ⊥. Moreover, let U be the span of the |V |
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smallest eigenvectors of the matrix
∑

x∈XB
A
xx>, and let U⊥ be the orthogonal subspace. We now

define the new matrix C to be IU⊥ + (1 + α)IU , the identity on U⊥ and some very large multiple
(1 +α) of the identity on U . We claim that this choice actually does not create much in the way of
cross-terms. In particular, the matrix

∑
x∈XB

A
(Cx)(Cx)> = C>

∑
x∈XB

A
xx>C will have no U×U⊥

term, since
∑

x∈XB
A
xx> does not — as U is an eigenspace of

∑
x∈XB

A
xx>. The second moment

matrix
∑

x∈XB
A
fC(x)fC(x)> will have some contribution to U × U⊥ cross-terms coming from the

renormalization; but these will only be on the order of (αβ)4. On the other hand, the matrix∑
x∈XA\XB

A
fC(x)fC(x)> will have small U × U⊥ terms, because each fC(x) will nearly lie in U⊥.

If β is sufficiently small, this leads to roughly (αβ)2 mass being moved from U⊥ × U⊥ to U × U ,
while only creating off-diagonal terms on the order of (αβ)4. Thus, this alternate choice of C can
be used to decrease the squared Frobenius norm by poly(α/(dn)).

The preceding outline provides a procedure that produces a sequence of matrices A1, A2, . . .
such that if ei = ‖MAi(X)‖2F − 1/d, then ei+1 < ei − poly(ei/(dn)). Therefore, after polynomially
many iterations, we have that ‖MAm(X)‖2F < 1/d + (ε/d)2, which implies we have obtained an ε-
approximate Forster transform. This gives us an efficient algorithm for computing an approximate
Forster transform in the real RAM model, assuming the availability of an algorithm for exact
eigendecomposition computation.

Additional Technical Obstacles The above iterative procedure forms the basis of our final
strongly polynomial time algorithm. Unfortunately, as is, this procedure does not directly imply a
strongly polynomial time algorithm for two reasons: First, we need to control the bit complexities
of the matrices Ai (which might become exponentially large). Second, we need to show that
our algorithm works with approximate eigendecompositions (which can further be implemented in
strongly polynomial time). We elaborate on these issues in the following discussion.

Controlling the Bit Complexity via Rounding Recall that, in a strongly polynomial time
algorithm, all intermediate numbers computed throughout the algorithm must fit in polynomial
space. To handle the bit complexity in our setting, we establish the following statement. If the
points in the initial dataset X ⊂ Rd∗ of size n have bit complexity at most b, then the following
holds: given a matrix A ∈ Rd×d and any δ > 0, we can approximate A by another matrix A′ of bit
complexity poly(b, d, n, log(1/δ)) such that ‖MA′(X)‖2F < ‖MA(X)‖2F + δ (see Theorem 5.1). This
structural result suffices for our purposes for the following reason: Replacing each intermediate
matrix Ai (in our iterative procedure) by the corresponding A′i obtained by rounding (for an
appropriately small δ) at each step of our algorithm suffices to keep the bit-complexity under
control.

To prove the desired structural result, we proceed as follows: First, if A has condition number at
most exp(poly(n, b, d)), it suffices to merely approximate each entry ofA to some poly(bdn/ log(1/δ))
bits of precision. The difficulty arises if the condition number of A is quite large — in fact, expo-
nentially large in our other parameters. If the condition number of A is large, it is because there
are large multiplicative gaps in the singular values of A. In such a case, there will be subspaces
V and V ⊥ such that the V ⊥-component of any vector is multiplied by a huge amount relative to
the V -component. In particular, any vector that was not exponentially close to V to begin with,
after multiplying by A ends up essentially in V ⊥. Our basic strategy here is to decrease the size
of this singular value gap of A to be at most (merely) exponential, without much affecting any of
the normalized transformed vectors. Our goal is to scale down the subspace V ⊥ to decrease the
multiplicative eigenvalue gap. However, we must ensure that the vectors of X that are sufficiently
close to V ⊥ after applying A do not end up being essentially in V . To achieve this, we consider a
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subspace W spanned by such problematic vectors and build an improved matrix AT such that T
does not affect vectors in W , but rescales significantly vectors lying in a subspace R that is very
close to V ⊥. Via this step, we can reduce the condition number of A to be appropriately bounded
without affecting the mapping fA significantly; after that, we can make do with a suitably precise
rounding to obtain the output matrix A′.

Approximate Eigendecomposition in Strongly Polynomial Time So far, we have assumed
the availability of a routine for exact eigendecomposition. In fact, there are several places in the
above intuitive overview of our algorithmic approach where we need to compute an eigenvalue
decomposition of a matrix. This is required first when we need to find the initial eigenvalue gap in
MA(X) ∝

∑
x∈XA

xx>, and again later when we need to find the span of the large eigenvalues of∑
x∈XB

A
xx>. Unfortunately, computing exact eigenvalues is impossible in our model of computation

(as doing so might require finding roots of high-degree polynomials). Fortunately, it is sufficient
for us to find merely an approximate eigenvalue decomposition of these matrices. A subtle and
important point is that our required notion of approximation is significantly stronger than the
typical guarantees explicitly available in the literature. Interestingly, we show that the desired
strongly polynomial guarantees can be achieved in our model using some variation of the power
iteration method. This requires a novel proof of correctness, that we provide here.

We are now ready to describe our strongly polynomial approximate eigendecomposition routine
in tandem with a sketch of its analysis (see Proposition 4.1). The standard power iteration method
says that in order to approximate the principal eigenvector of a symmetric, PSD matrixM , it suffices
to multiply a random vector v by a large power t of M . If we express v as a linear combination
of eigenvectors of M , then multiplying by a large power of M scales each of these components by
an amount depending on the eigenvalue. It is not hard to see that if there is a reasonable gap
between the largest and second largest eigenvalues, then the vector M tv will likely end up close
to a multiple of the largest eigenvector. Once an approximate principal eigenvector is computed,
one can attempt to repeat the same procedure, i.e., projecting onto the orthogonal subspace to
find the second largest eigenvalue; and so on. This iterative procedure is known to succeed in
finding approximations to the eigenvectors and eigenvalues in question, so long as the eigenvalues
are not too close to each other. On the other hand, if M has (nearly) degenerate eigenspaces,
then this method may fail to separate eigenvectors with very similar eigenvalues. However, in this
(near-)degenerate case, such an approximation is usually not needed, as the eigenvalues are close to
begin with. One can hope that the matrix M̂ corresponding to the computed eigendecomposition
is close to M in an appropriate sense. In particular, standard results (see, e.g., [Par98]) show how
to compute such an M̂ satisfying ‖M − M̂‖2 ≤ ε‖M‖2.

Unfortunately, this notion of approximation is not sufficient for our purposes. For example,
in the case where the parameter β is small in our Forster algorithm, it is important for us to
compute the spaces V ′ and W ′ to very good accuracy. This is because the linear transformation
that we apply will multiply elements of V ′ by a large factor of roughly 1/β. This means that
we need to compute V ′ to error on the order of β in order to ensure the accuracy of our result.
More generally, we will need a qualitatively stronger guarantee for our approximate eigenvalue
decomposition. In particular, we need that for some small ε > 0, for any vector v, it holds that
|v>(M − M̂)v| ≤ ε(v>Mv). This means that if v lies in a space spanned by eigenvectors of M
with very small eigenvalues (as V ′ is above), then we need that M̂v to be correspondingly small.
Fortunately, we can obtain this much stronger “multiplicative” guarantee via power iteration. The
intuitive reason this works is essentially because if we have a space V ′ spanned by eigenvectors of
M with eigenvalues at most β, then multiplying a random vector v by powers of M reduces the size
of the projection of v onto V ′ by a power of β. This means that power iteration produces vectors
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that are very nearly orthogonal to V ′ with the error in this approximation scaling with β.

1.4.2 Learning Halfspaces in Strongly Polynomial Time

As already mentioned in the introduction, we leverage our algorithm for approximate Forster trans-
forms to obtain the first strongly polynomial algorithm for PAC learning halfspaces. It turns out
that this approach goes through both in the realizable case (Definition 1.3) and in the presence of
(semi-random) Massart noise on the labels. In fact, it is not difficult to verify that by plugging in
our new Forster algorithm into the learning algorithm of [DKT21], one directly obtains a strongly
polynomial halfspace learner in the presence of Massart noise. For the sake of the completeness,
here we focus on the realizable case and provide a simpler, self-contained algorithm and proof.

Note that it is without loss of generality to assume that the threshold of the target halfspace is
zero (one can reduce the general case to the homogeneous case). The main challenge in PAC learn-
ing halfspaces is that the target halfspace may have very bad anti-concentration (aka “margin”). If
the margin is not too small (i.e., at least inverse polynomial), simple iterative algorithms (e.g., per-
ceptron) efficiently learn halfspaces (in strongly polynomial time). A natural idea is then to reduce
the general case to the large margin case by appropriately transforming the data. A number of such
reductions have been developed in the literature [BFKV96, DV04a, DV04b, DKT21]. The methods
developed in [BFKV96, DV04a, DV04b] are inherently not strongly polynomial. Recently, [DKT21]
pointed out that one can use Forster transforms for this purpose.

For our purposes, we require a stronger guarantee than what is provided by the vanilla percep-
tron algorithm. Specifically, we want a learning algorithm for halfspaces that correctly classifies at
least some reasonable fraction of points, if the points are guaranteed to be well-conditioned (for
example, in the sense of being unit vectors with E[xx>] ≈ I). By using an approximate Forster
algorithm, we can transform the input points in order to make them well-conditioned, while pre-
serving the notion of halfspaces. We can then apply our learner to this set in order to learn a
classifier that works on some reasonable fraction of the points. Repeating this procedure iteratively
on the unclassified points eventually gives a halfspace learning algorithm.

More precisely, the modified perceptron algorithm of [DV04b] is a strongly polynomial time
algorithm with the following performance guarantee: given labeled examples consistent with an
unknown linear classifier, the algorithm learns a classifier that correctly labels all points whose
margin is not too small. It is not hard to see that, for points in approximate radial isotropic
position, at least a 1/d-fraction of points have not-too-small margin. Therefore, if we have a set of
points in approximate radial isotropic position, the modified perceptron algorithm finds (in strongly
polynomial time) an explicit halfspace that separates out a roughly 1/d-fraction of the points all
of the same sign. By standard generalization bounds, this gives us an algorithm that in strongly
polynomial time learns a partial classifier, i.e., outputs a partial function that correctly classifies
an Ω(1/d)-fraction of the points while misclassifying an O(γ/d)-fraction. In other words, this
procedure produces a partial classifier that labels at least a 1/d-fraction of points and misclassifies
at most a γ-fraction of these points.

To learn an arbitrary halfspace, we use our approximate Forster transform to put the points
in approximate radial isotropic position without changing the notion of a halfspace on them. We
then apply the above partial learner to these new points in order to obtain a non-trivial partial
classifier that makes mistakes on only a γ-fraction of its classified set. We repeat this process on
the unclassified points, using a new approximate Forster transform, to learn a non-trivial fraction
of the unclassified points. Repeating this procedure iteratively as necessary, we eventually obtain
a partial classifier that produces an answer on essentially all points of the domain and only makes
mistakes on a γ-fraction of them.
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1.5 Related Work

In this section, we summarize additional prior work that was not covered in the introduction.

Comparison to Strongly Polynomial Algorithm for Matrix Completion It is worthwhile
to compare our techniques for the Forster transform to [LSW00], who developed the first strongly
polynomial time algorithm for the matrix scaling problem. To put this problem in terms more
analogous to ours, one is given a set of d vectors x1, x2, . . . , xd in Rd. The goal is to find a diagonal
matrix A such that if yi := Axi/‖Axi‖1 is the `1 normalization of Axi, then the absolute deviation
of the jth coordinates of the y’s around 0 are (approximately) the same for all j. In particular,
it should hold that

∑d
i=1 |(yi)j | ≈ 1 for all 1 ≤ j ≤ d. Note that for our problem, we have n

(possibly greater than d) vectors, A can be any matrix, we take yi to be the `2 normalization and
we want the mean square deviation of the y’s in any direction (not just along coordinate axes) to
be approximately the same.

The algorithm in [LSW00] works roughly as follows. We construct A through an iterative
sequence of improvements. Given a specific A, we compute the appropriate values of yi and then
compute the absolute deviations of each coordinate. If these are all close to each other, we are done.
Otherwise, by sorting the deviations and finding the largest gap, we can split our coordinates into
two sets, B and S, so that the deviation of any coordinate in B is substantially larger than the
deviation of any coordinate in S. One then defines the diagonal matrix C to be (1 + δ) on the
coordinates in S and 1 on the coordinates in B, and replaces A by A′ := CA. It is not hard to
see that by doing this, one increases the deviations along all coordinates in S while decreasing
it along all coordinates in B (and keeping the total sum of deviations the same). By picking δ
carefully, [LSW00] show that the variance of these coordinate-wise deviations can be decreased by
some polynomial amount in each step. Thus, by iterating this method a polynomial number of
times, one obtains a scaling where the coordinate-wise deviations are sufficiently close.

The starting point for our algorithm is somewhat similar. Given a matrix A, we try to find a
matrix C such that the matrix A′ := CA is closer to satisfying our condition (in the sense that
‖MA′(X)‖F should be smaller than ‖MA(X)‖F by an additive inverse polynomial term). To do
this, we compute subspaces VS and VB (by finding an eigenvalue gap in MA(X)) such that the
variance of the yi := Axi/‖Axi‖2 in any direction along VB is substantially larger than along any
direction in VS . Ideally, we would like to take C = I + αIVS for some carefully selected α. While
this does only increase the variance in directions along VS and decrease it along VB, in our setting
this also creates off-diagonal terms that increase our potential. While it is always possible to ensure
that this error does not overwhelm the progress we make by taking α small enough, in some cases
(particularly where all of the y’s are either very close to lying in VB or very close to lying in VS), this
is not compatible with making polynomial progress in each step. In this other case, we need to use
a subtly different method for finding C in order to minimize the contribution of these off-diagonal
terms. Furthermore, unlike in [LSW00], the matrices C used might have large numerical complexity
(perhaps on the order of the complexity of A). If we naively apply the iterative algorithm as is,
it might lead to computations involving matrices with exponentially large bit complexity. In order
to fix this, we also need to add a rounding step, whereby in each stage we reduce the numerical
complexity of A down to some manageable level but without substantially affecting our potential.

Comparison to Other Data Transformations The Forster transform is one of several data
transformations that have been studied in the literature to make a dataset “well-conditioned”.
Here we explain two similar in spirit such transformations, namely the “outlier removal” tech-
nique [BFKV96, DV04a] and the rescaling method of [DV04b]. Both of these techniques have been
used to obtain weakly polynomial learners for halfspaces with random noise.
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The “outlier-removal” technique was introduced in [BFKV96] and was significantly refined by
Dunagan and Vempala [DV04a]. Given a dataset X and a parameter β > 0, a point in X is called
a β-outlier if there exists a direction v such that the squared length of x along v is more than β
times the average squared length of X along v. The goal of the method is to efficiently find a
large subset of X ′ ⊆ X such that X ′ has no β-outliers, for as small β as possible. This would
give a reasonable sized sub-distribution on which the desired anti-concentration holds. As shown
in [DV04a], the parameter β (which affects the quality of the resulting anti-concentration) needs to
scale polynomially with the bit complexity b of the dataset X. Consequently, the resulting runtimes
in applications of this method will be inherently weakly polynomial. Interestingly, this is the reason
that the (random noise tolerant) halfspace learner of [BFKV96] is only weakly polynomial.

A different algorithm for learning halfspaces with random classification noise is implicit in
the rescaled perceptron algorithm of Dunagan and Vempala [DV04b] for efficiently solving linear
programs (see also [Bet04]). The key ingredient of their approach is a rescaling step that linearly
transforms the data so that, roughly speaking, the margin increases in each iteration by a factor
of 1 + 1/d. Since the initial margin scales with the bit complexity, so does the total number of
iterations. (Since this leads to a proper learning algorithm, a dependence on the bit complexity is
expected; otherwise, one would obtain a strongly polynomial algorithm for LP!)

Strongly Polynomial Special Cases of LP A line of work, starting in the 80s, has developed
strongly polynomial time algorithms for interesting special cases of LP, including minimum cost
circulations [Tar85, GT89, Orl93], min cost flow and multi-commodity flow problems [Tar86, VY96],
and generalized flow maximization [Vég14, OV17, OV20] (see also [DHNV20, DNV20]). Strongly
polynomial time algorithms have also been developed for certain structured convex programs, see,
e.g. [Vég16, GV19] in the context of equilibrium computation, and [LSW00] for matrix scaling.

1.6 Organization

The structure of this paper is as follows: In Section 2, we record basic notation and facts that will
be used throughout this paper. Section 3 presents our Forster decomposition algorithm, assuming
exact eigendecomposition and ignoring bit complexity issues. Section 4 establishes our strongly
polynomial guarantees for approximate eigendecomposition. Section 5 shows that we can efficiently
round the entries of the underlying matrix without losing much in the desired guarantees. Finally,
Section 6 puts all the pieces together to obtain our strongly polynomial Forster algorithm. Section 7
presents our strongly polynomial halfspace learning algorithm. Finally, in Section 8 we summarize
our results and provide directions for future work.
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2 Preliminaries

Here we introduce some terminology and establish a basic technical fact (Fact 2.1) that will be
used throughout this paper.

Basic Notation We use Z+ to denote the non-negative integers, Rd for the d-dimensional real
coordinate space, Rd∗ for Rd \ {0}, and Sd for the unit `2-sphere. For a set S ⊂ R, we will denote

max(S)
def
= maxx∈S x and min(S)

def
= minx∈S x.

For x ∈ Rd, we use ‖x‖2 to denotes the `2-norm of x. We use tr(·), ‖ · ‖F , and ‖ · ‖2 for the
trace, Frobenius norm, and spectral norm of a square matrix. For matrices A,B ∈ Rd×d, we write
A � B (or B � A) to denote that A − B is positive semidefinite (PSD). We use I for the d × d
identity matrix, where the dimension will be clear from the context. If M ∈ Rd×d is a PSD matrix,
we denote by λi(M) and qi(M) the i-th largest eigenvalue and corresponding eigenvector of M .
That is, λ1(M) ≥ λ2(M) ≥ . . . ≥ λd(M) ≥ 0 and Mqi(M) = λi(M)qi(M) for all i ∈ [d]. We
denote by Λ(M) the set of eigenvalues of M and Q(M) the set of eigenvectors. That is, Λ(M) =
{λi(M), i ∈ [d]} and Q(M) = {qi(M), i ∈ [d]}. For S ⊆ [d], we denote ΛS(M) = {λi(M), i ∈ S}
and QS(M) = {qi(M), i ∈ S}.

For a finite set of vectors S ⊂ Rd, we use span(S) for their span. For a subspace V ⊂ Rd, we
use dim(V ) for its dimension and V ⊥ for its orthogonal complement. For x ∈ Rd and a subspace
V , we will denote by projV x the projection of x onto V . If V = span(S), we will sometimes use
projS x to denote projV x. For conciseness, we sometimes use x(V ) for projV x. We denote by IV
the d× d matrix with eigenvalues 1 in V and 0 in V ⊥ (the projection of I onto V ).

Additional Notation and Basic Fact For a dataset X ⊂ Rd∗ of size |X| = n and a linear

transformation A ∈ Rd×d, let fA : Rd∗ → Sd be defined by fA(x)
def
= Ax
‖Ax‖2 . We aim to find an

invertible A ∈ Rd×d such that fA brings a given datasetX in (approximate) radial isotropic position.

We denote fA(X)
def
=
{

Ax
‖Ax‖2 | x ∈ X

}
We will use various “covariance-like” matrices for the initial

dataset X and its subsets. For X ′ ⊆ X, we denote MA(X ′)
def
= (1/n)

∑
x∈X′ fA(x)fA(x)>. For

subspaces V1, V2 ⊂ Rd and X ′ ⊆ X, we denote by MV1,V2
A (X ′)

def
= (1/n)

∑
x∈X′ f

(V1)
A (x)f

(V2)
A (x)>,

where we used the shorthand notation y(V ) = projV y. Note that the normalization factor is fixed
in both cases. We start by recording some useful properties of the transformation fA.

Fact 2.1. Let A,B ∈ Rd×d be full-rank matrices. For any x ∈ Rd∗ and a ∈ R∗, the following hold:

(a) faA(x) = fA(ax) = fA(x).

(b) fBA(x) = fB(fA(x)).

(c) For B � I, we have that ‖fBA(x)− fA(x)‖2 ≤ ‖B − I‖2.

(d) Let V ⊆ Rd be a subspace and let B = I+aIV for some a > 0. Then, f
(V )
BA (x) = λ(x) f

(V )
A (x),

where 1 ≤ λ(x) ≤ 1 + a, and f
(V ⊥)
BA (x) = µ(x) f

(V ⊥)
A (x), where 1

1+a ≤ µ(x) ≤ 1.

See Appendix A for the simple proof.
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3 Approximate Forster Transform in Strongly Polynomial Time

In this section, we describe and analyze our algorithm that either computes an approximate Forster
transform of a given dataset or certifies that no Forster transform exists. There are two technical
caveats in the algorithm presented in this section: First, we assume the existence of exact routines
for matrix eigendecomposition. Second, we do not bound the bit complexity of the associated
numbers. Both of these technical issues are handled in subsequent sections.

3.1 Algorithm Pseudocode

The algorithm aims to find a matrix A ∈ Rd×d such that the transformation fA : Rd → Rd brings
the set X in (approximate) radial isotropic position. Starting from the initial guess A = I, the
algorithm iteratively improves the current matrix A until the desired approximation is obtained or
a proper subspace W of Rd is found such that |X ∩W |/n ≥ dim(W )/d.

Algorithm 1 Main algorithm for computing Forster Transform

1: function ForsterTransform (set X ⊂ Rd∗ of n points, accuracy parameter ε)
2: Let A← I . Initialization of transformation matrix A
3: MA ←MA(X) = (1/n)

∑
x∈X fA(x)fA(x)>

4: while ‖MA‖2F >
1
d + ε2

d2
do

5: Set A← ImproveTransform(A,X)
6: Set MA ←MA(X) = (1/n)

∑
x∈X fA(x)fA(x)>

7: return A

3.2 Analysis of Algorithm 1

Our Potential Function Our algorithm measures the improvements between consecutive iter-
ations using the potential function

ΦX(A)
def
= ‖MA‖2F (1)

corresponding to the squared Frobenius norm of the matrix

MA
def
= MA(X)

def
= (1/n)

∑
x∈X

fA(x)fA(x)> .

Recall that approximate radial isotropy condition amounts to the condition 1−ε
d I � MA � 1+ε

d I.
Equivalently, we want that ‖MA − 1

dI‖2 ≤
ε
d or that the eigenvalues of MA lie in [1−ε

d , 1+ε
d ]. This

is guaranteed to hold when the potential function becomes less than 1/d+ ε2/d2, as shown in the
following lemma.

Lemma 3.1. Consider any dataset X ⊆ Rd∗ and any full-rank matrix A ∈ Rd×d. The following
properties hold for the potential ΦX(A)= ‖MA‖2F .

1. 1/d ≤ ΦX(A) ≤ 1.

2. If ΦX(A) ≤ 1/d + ε2/d2 for some ε ∈ (0, 1), then for every eigenvalue λ of MA it holds that
|λ− 1/d| ≤ ε/d.

3. If ΦX(A) > 1/d+ ε2/d2 for some ε ∈ (0, 1), then (a) there exists an eigenvalue λ of MA such
that |λ−1/d| > ε/d2 and (b) there exists a pair of consecutive eigenvalues λi and λi+1 of MA

such that λi − λi+1 > ε/d3.
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Algorithm 2 Find Improved Transform Matrix

1: function ImproveTransform (current matrix A ∈ Rd×d, X⊂ Rd∗, accuracy parameter ε)
2: Set MA ←MA(X) = (1/n)

∑
x∈X fA(x)fA(x)>

3: Compute the set of eigenvalues, Λ = Λ(MA), and eigenvectors, Q = Q(MA), of MA.

4: Set γ ← O( ε2

d4n2 ), where n := |X|
5: Partition (Λ, Q) into two sets of eigenvalues and corresponding eigenvectors, (ΛB, QB) and

(ΛS, QS), maximizing min(ΛB)−max(ΛS).

. Consider the Following Two Cases

6: if there exists x ∈ X such that
∥∥projQB

fA(x)
∥∥

2
,
∥∥projQS

fA(x)
∥∥

2
≥ γ then

7: Set U ← span(QS).
8: Set α← ε

8nd3
.

9: else
10: Set XB ← {x ∈ X : ‖projQB

fA(x)‖2 ≥ γ}.

11: Set MB
A ←MA(XB)

def
= (1/n)

∑
x∈XB fA(x)fA(x)>.

12: Let Qb and Qs be the sets of top |QB| and bottom |QS| eigenvectors of MB
A respectively.

13: Set U ← span(Qs).

14: Set β ← maxx∈XB ‖f (U)
A (x)‖2.

15: if β = 0 then

. No Forster Transform Exists

16: Output the subspace span(Qb).
17: else . Case where β > 0

18: Set α← 1
β ε/(3d

2n)− 1

19: return A′ := (I + αIU )A

Proof. Note that for any set X the matrix MA is PSD (as an autocorrelation matrix). Let λi =
λi(MA), i ∈ [d], with λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0, be its eigenvalues. Then we have that

d∑
i=1

λi = tr(MA) = (1/n)
∑
x∈X

tr
(
fA(x)fA(x)>

)
= 1 ,

where we used the linearity of the trace and the fact that all points fA(x) have unit `2-norm.
Moreover, for the squared Frobenius norm of MA it holds that ‖MA‖2F = tr(M2

A) =
∑d

i=1 λ
2
i .

Below we prove each of the stated properties.

1. Given that
∑d

i=1 λi = 1, the maximum possible value of ‖MA‖2F =
∑d

i=1 λ
2
i is equal to 1, and

the minimum possible value is equal to 1/d (which is achieved when λi = 1/d, for all i ∈ [d],
i.e., when MA = (1/d)I, as desired).

2. Since
∑d

i=1 λi = 1, it holds that
∑d

i=1 λ
2
i = 1/d+

∑d
i=1(λi−1/d)2. By the assumed upper bound

on ΦX(A), we get that
∑d

i=1(λi − 1/d)2 ≤ ε2/d2, and thus maxi∈[d] |λi − 1/d| ≤ ε/d.

3. By the assumed lower bound on ΦX(A), we get that
∑d

i=1(λi− 1/d)2 > ε2/d2. By an averaging
argument, there exists j ∈ [d] such that with (λj − 1/d)2 > ε2/d3, and thus |λj − 1/d| > ε/d2.
This proves (a). Since λ1 ≥ max{λj , 1/d} and λd ≤ min{λj , 1/d}, it follows that λ1−λd > ε/d2.
This implies that there is a gap between consecutive eigenvalues of MA, namely there exists
i ∈ [d− 1] such that λi − λi+1 > ε/d3. This proves (b).
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Bounding the Decrease in Potential We now proceed with the analysis. We show that
the algorithm ImproveTransform either correctly determines that no Forster transform exists
or computes a transformation matrix with significantly reduced potential value. This statement
implies correctness and simultaneously allows us to bound the running time of our algorithm.

The main result of this section is the following proposition.

Proposition 3.2. Let A ∈ Rd×d be a full-rank matrix and X be a set of n points in Rd∗ such that

ΦX(A) > 1
d + ε2

d2
for some ε ∈ (0, 1). The algorithm ImproveTransform returns a matrix A′

such that
ΦX(A)− ΦX(A′) ≥ Ω(ε5/(n5d11)) (2)

or correctly determines that no Forster Transform of X exists, in which case it returns a subspace
W such that |X ∩W | > (n/d) dim(W ).

In the rest of this section, we provide a proof of Proposition 3.2.
Assuming that a Forster transform of X exists, the algorithm ImproveTransform returns

the matrix A′ = (I + α IV )A, where V ⊂ Rd is an appropriate proper subspace of Rd and α ∈ R>0

is a carefully selected parameter (that depends on the structure of the dataset X). The algorithm
distinguishes two cases: In the first case, α is a small positive quantity, equal to ε/(8nd3), see
Line 8 in Algorithm 2. In the second case, α is set to 1

β ε/(3d
2n)− 1, and can be significantly larger

than 1 as it depends on a small parameter β which is a function of the dataset X. See Line 18 in
Algorithm 2.

3.2.1 A Useful Structural Result

We will use the notation MA = MA(X) and MA′ = MA′(X). To bound the desired quantity,
ΦX(A)− ΦX(A′) = ‖MA‖2F − ‖MA′‖2F , we will make essential use of the following key lemma:

Lemma 3.3. For any X ⊂ Rd∗ and any full-rank matrix A ∈ Rd×d the following holds. For any

subspace V ⊂ Rd and any scalar α > 0, for A′
def
= (I + αIV )A, we have that

ΦX(A)− ΦX(A′) ≥ 2
(
λk(M

V ⊥,V ⊥

A )− λ1(MV,V
A )− 2Df

)
Df − 2‖MV,V ⊥

A′ ‖2F , (3)

where k = dim(V ⊥) and Df
def
= 1

n

∑
x∈X

(
‖f (V )
A′ (x)‖22 − ‖f

(V )
A (x)‖22

)
.

Lemma 3.3 bounds the improvement in potential in terms of two opposing contributions. On
the one hand, there is a decrease in the potential proportional to the amount of mass Df transferred
from the subspace V ⊥ to the subspace V times the eigenvalue gap between the subspaces V and
V ⊥. On the other hand, there is an increase in potential due to the cross terms V × V ⊥ that get
created after the transformation by A′.

Proof of Lemma 3.3. By definition, we have that ΦX(A) − ΦX(A′) = ‖MA‖2F − ‖MA′‖2F . We
decompose each matrix into block matrices specified by the subspaces V and V ⊥. We write MA as

MV,V
A +MV,V ⊥

A +MV ⊥,V
A +MV ⊥,V ⊥

A , where we recall that for subspaces S and T we defined MS,T
A

as ISMAIT . Since V and V ⊥ are orthogonal subspaces, we also have that

‖MA‖2F = ‖MV,V
A ‖2F + ‖MV,V ⊥

A ‖2F + ‖MV ⊥,V
A ‖2F + ‖MV ⊥,V ⊥

A ‖2F .

We can thus express ‖MA‖2F − ‖MA′‖2F as the sum of the following three terms:
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(i) ‖MV,V
A ‖2F − ‖M

V,V
A′ ‖

2
F

(ii) ‖MV ⊥,V ⊥

A ‖2F − ‖M
V ⊥,V ⊥

A′ ‖2F

(iii) 2‖MV,V ⊥

A ‖2F − 2‖MV,V ⊥

A′ ‖2F

By Fact 2.1 part (d), for any x ∈ Rd∗, we have that f
(V )
A′ (x)(f

(V )
A′ (x))> � f

(V )
A (x)(f

(V )
A (x))> and

f
(V ⊥)
A′ (x)(f

(V ⊥)
A′ (x))> � f

(V ⊥)
A (x)(f

(V ⊥)
A (x))>. Since MV,V

A is equal to (1/n) times the sum of

f
(V ⊥)
A (x)(f

(V ⊥)
A (x))> over x ∈ X, we obtain MV,V

A′ �M
V,V
A and MV ⊥,V ⊥

A′ �MV ⊥,V ⊥

A .
We will use the following linear-algebraic fact to bound from below the first two terms.

Fact 3.4. Let A,B ∈ Rd×d be symmetric PSD matrices. If A � B, then it holds that

2 tr(A−B)λk(B) ≤ ‖A‖2F − ‖B‖2F ≤ 2tr(A−B)λ1(A) ,

where k = rank(A) and λk(B) is the k-th largest eigenvalue of B.

Proof. We use • to denote the entrywise inner product between two matrices. Note that A • B =
tr(A>B) which is equal to tr(AB) if the matrices are symmetric. We have that

‖A‖2F − ‖B‖2F = (A−B) • (A+B) = tr((A+B)(A−B)).

Since both A+B and A−B are PSD, multiplication by A+B increases the eigenvalues of A−B
by at least a factor of 2λk(B) and at most 2λ1(A). Thus, tr((A+B)(A−B)) is bounded between
2tr(A−B)λk(B) and 2tr(A−B)λ1(A).

We start by bounding term (i) from below. Using Fact 3.4 applied to the matrices MV,V
A′ and MV,V

A ,
we get that

‖MV,V
A ‖2F − ‖M

V,V
A′ ‖

2
F ≥ 2λ1(MV,V

A′ ) tr(MV,V
A −MV,V

A′ )

=
2

n
λ1(MV,V

A′ )
∑
x∈X

(
‖f (V )
A (x)‖22 − ‖f

(V )
A′ (x)‖22

)
. (4)

Similarly, we can bound below term (ii). Using Fact 3.4 applied to the matrices MV ⊥,V ⊥

A and

MV ⊥,V ⊥

A′ , we get that

‖MV ⊥,V ⊥

A ‖2F − ‖M
V ⊥,V ⊥

A′ ‖2F ≥ 2λk(M
V ⊥,V ⊥

A′ )tr(MV ⊥,V ⊥

A −MV ⊥,V ⊥

A′ )

=
2

n
λk(M

V ⊥,V ⊥

A′ )
∑
x∈X

(
‖f (V ⊥)
A (x)‖22 − ‖f

(V ⊥)
A′ (x)‖22

)
=

2

n
λk(M

V ⊥,V ⊥

A′ )
∑
x∈X

(
‖f (V )
A′ (x)‖22 − ‖f

(V )
A (x)‖22

)
, (5)

where k = rank(MV ⊥,V ⊥

A′ ) and the last equality follows since ‖f (V )
A (x)‖22 + ‖f (V ⊥)

A (x)‖22 = 1.
Finally, we straightforwardly bound from below the third term as follows:

2‖MV,V ⊥

A ‖2F − 2‖MV,V ⊥

A′ ‖2F ≥ −2‖MV,V ⊥

A′ ‖2F . (6)

Overall, recalling that Df = 1
n

∑
x∈X(‖f (V )

A′ (x)‖22 − ‖f
(V )
A (x)‖22), (4), (5), (6) give that

ΦX(A)− ΦX(A′) ≥ 2
(
λk(M

V ⊥,V ⊥

A′ )− λ1(MV,V
A′ )

)
Df − 2‖MV,V ⊥

A′ ‖2F .
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To complete the proof, we note that

λ1(MV,V
A′ ) ≤ λ1(MV,V

A ) + ‖MV,V
A −MV,V

A′ ‖2

and that

λk(M
V ⊥,V ⊥

A′ ) ≤ λk(MV ⊥,V ⊥

A′ ) + ‖MV ⊥,V ⊥

A −MV ⊥,V ⊥

A′ ‖2 = λk(M
V ⊥,V ⊥

A′ ) + ‖MV,V
A −MV,V

A′ ‖2

Finally, we have that

‖MV,V
A −MV,V

A′ ‖2 ≤
1

n

∑
x∈X

∥∥∥f (V )
A′ (x)f

(V )
A′ (x)> − f (V )

A (x)f
(V )
A (x)>

∥∥∥
2

=
1

n

∑
x∈X

(
‖f (V )
A′ (x)‖22 − ‖f

(V )
A (x)‖22

)
,

where the last equality follows from Fact 2.1(d). Combining the above completes the proof of
Lemma 3.3.

In the following two subsections, we analyze the two cases of ImproveTransform separately.
Note that ImproveTransform requires that we be able to do exact singular value decompositions
in order to compute the subspace U . Our final algorithm will not be able to do this exactly and
will need to make do with an approximate singular value decomposition (see Section 4). In order to
make our extension easier, we will show that the potential decrease holds even when U is replaced
by some V which satisfies some approximation of the properties that U does.

3.2.2 Case I: There exists x ∈ X such that ‖projQB
fA(x)‖2, ‖projQS

fA(x)‖2 ≥ γ

In order to analyze this case, we prove the following proposition:

Proposition 3.5. Suppose that X is a set of n points in Rd∗ and A an invertible d × d matrix.
Suppose that V ⊂ Rd is a subspace so that for α, ρ > 0 with α ≤ ε/(64nd3):

1. The maximum over x ∈ X of min(‖f (V )
A (x)‖2, ‖f (V ⊥)

A (x)‖2) equals ρ.

2. λmin(MV ⊥V ⊥
A (X))− λmax(MV V

A (X)) ≥ ε
2d3
.

3. ‖MV V ⊥
A (X)‖F ≤ αρ.

Then for C = (I + αIV )A we have that ΦX(C) ≤ ΦX(A)− ρ2ε/(8nd3).

We note that if ΦX(A) > 1
d + ε2

d2
, then by Lemma 3.1 part 3, the difference between the largest

and smallest eigenvalues of MA(X) will be at least ε/d2, and therefore the largest eigenvalue gap
will be at least ε/d3. Thus, for V taken to be the U given in Algorithm 2, Property 2 will hold.

Furthermore, for as U is an eigenspace of MA(X), MU,U⊥

A (X) = 0 and Property 3 will hold.
The rest of this section will be devoted to proving Proposition 3.5.
To bound below the improvement in potential, we will make essential use of Lemma 3.3. We

bound the relevant quantities in the following lemmas.

Lemma 3.6. Letting Df = 1
n

∑
x∈X

(
‖f (V )
C (x)‖22 − ‖f

(V )
A (x)‖22

)
, we have that αρ2

2n ≤ Df ≤ 2α.
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Proof. By Fact 2.1(c), it follows that Df ≤ 2α, as C = (I + αIV )A and ‖(I + αIV ) − I‖2 ≤ α.

This implies that ‖f (V )
C (x) − f (V )

A (x)‖2 ≤ ‖fC(x) − fA(x)‖2 ≤ α for all x. Thus (since x → x2 is

2-Lipschitz on [0, 1]), we have that ‖f (V )
C (x)‖22 − ‖f

(V )
A (x)‖22 ≤ 2α for all x, so Df ≤ 2α.

To bound Df from below, consider an x∗ ∈ X that maximizes the quantity

min{‖projQB
fA(x)‖2, ‖projQS

fA(x)‖2}

over x ∈ X. Recall that the maximum value of the above quantity equals ρ.
By assumption, we must have that ρ ≥ γ. As Fact 2.1(d) implies that all terms in the sum

defining Df are nonnegative, we have that

Df ≥
1

n

(
‖f (V )

(I+αIV )A(x∗)‖22 − ‖f
(V )
A (x∗)‖22

)
.

Let y = fA(x∗), and recall that we use y(V ) = f
(V )
A (x∗) and y(V ⊥) = f

(V ⊥)
A (x∗) for the projections

of y onto V and V ⊥ respectively. With this notation, we can write

Df ≥
1

n

(
‖f (V )
I+αIV

(y)‖22 − ‖y(V )‖22
)

=
1

n

(
(1 + α)2‖y(V )‖22

(1 + α)2‖y(V )‖22 + ‖y(V ⊥)‖22
− ‖y(V )‖22

)
,

where we used Fact 2.1(b) and the definition of the transformation fA. The Pythagorean theorem

and the definition of y give that ‖y(V )‖22 + ‖y(V ⊥)‖22 = ‖y‖22 = 1. We thus obtain

Df ≥
1

n

(
2α ‖y(V )‖22 ‖y(V ⊥)‖22

(1 + α)2

)
≥ 2αρ2(1− ρ2)

(1 + α)2n
≥ αρ2

2n
≥ αγ2

2n
,

where the last inequality follows since α is sufficiently smaller than 1 and ρ2 ≤ 1
2 .

Finally, we bound ‖MV,V ⊥

C ‖2F from above in the following lemma:

Lemma 3.7. We have that ‖MV,V ⊥

C ‖2F ≤ 4α2ρ2.

Proof. By the triangle inequality for the Frobenius norm, we have that

‖MV,V ⊥

C ‖2F ≤
(
‖MV,V ⊥

A ‖F + ‖MV,V ⊥

C −MV,V ⊥

A ‖F
)2

.

We have that ‖MV,V ⊥

A ‖F ≤ αρ, by assumption. We bound above the second term using the following
sequence of inequalities:

‖MV,V ⊥

C −MV,V ⊥

A ‖2F =

∥∥∥∥∥ 1

n

∑
x∈X

(
f

(V )
C (x)f

(V )⊥

C (x)> − f (V )
A (x)f

(V ⊥)
A (x)>

)∥∥∥∥∥
2

F

≤ max
x∈X

∥∥∥f (V )
C (x)f

(V ⊥)
C (x)> − f (V )

A (x)f
(V ⊥)
A (x)>

∥∥∥2

F

= max
x∈X

∥∥∥∥∥ 1 + α

‖(1 + α)f
(V )
A (x)‖2 + ‖f (V ⊥)

A (x)‖2
f

(V )
A (x)f

(V ⊥)
A (x)> − f (V )

A (x)f
(V ⊥)
A (x)>

∥∥∥∥∥
2

F

≤ max
x∈X

∥∥∥αf (V )
A (x)f

(V ⊥)
A (x)>

∥∥∥2

F

≤ α2ρ2(1− ρ2) ≤ α2ρ2 ,

where the third line uses Fact 2.1(b) and the definition of the transformation fA.
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Combining the above lemmas, we obtain that

ΦX(A)− ΦX(C) ≥
( ε

2d3
− 4α

) αρ2

n
− 8α2ρ2 .

We note that so long as α ≤ ε/(64nd3) the above is at least

(
αρ2

)(( ε

4d3

) 1

n
− 8α

)
≥ αρ2ε/(8nd3).

This completes our proof of Proposition 3.5.

3.2.3 Case II: For all x ∈ X, either ‖projQB
fA(x)‖2 ≤ γ or ‖projQS

fA(x)‖2 ≤ γ

In this case, all points x ∈ X lie within a γ margin from the subspaces spanned by the vectors
QB and QS . The algorithm updates the matrix A by considering only the set of “big” points
XB, i.e., the points in X whose images under fA have sufficiently large projections on the sub-
space spanned by the large eigenvectors of MA. In more detail, instead of using the eigenvectors
QB, QS of the matrix MA = MA(X), the algorithm uses the eigenvectors Qb, Qs of the matrix
MA(XB) = (1/n)

∑
x∈XB fA(x)fA(x)>, setting U = span(Qs). This is done to ensure that the

cross-terms MU,U⊥

A (XB) start out at 0 initially and remain small despite significant rescaling of the
subspace U . Moreover, despite the change in the definition, we show (in Claim 3.9 and Claim 3.10)
that the corresponding subspaces U and U⊥ satisfy a similar margin condition to the subspaces
spanned by QB and QS and that there is still a significant eigenvalue gap between U and U⊥. The
margin condition is shown in Claim 3.9 and Claim 3.10, and the eigenvalue bounds are proven in
Lemmas 3.12 and 3.11.

These properties will allow us to bound the decrease in potential in this case. We will show the
following result.

Proposition 3.8. Suppose that X is a set of n points in Rd∗ and A an invertible d × d matrix.
Suppose that for some k < n that λk(MA(X))−λk+1(MA(X)) ≥ ε/(2d3). Let W be the span of the
d− k smallest eigenvalues of MA(X).

Suppose furthermore that for some γ at most a sufficiently small multiple of ε2/(d4n2) that

every x ∈ X satisfies min(‖f (W )
A (x)‖2, ‖f (W⊥)

A (x)‖2) ≤ γ. Let XB denote the set of x ∈ X so that

‖f (W )
A (x)‖2 ≤ γ and XS = X\XB. Let 0 < δ < γ. Suppose that V ⊂ Rd is a (d − k)-dimensional

subspace so that:

1. tr(MV,V
A (XB)) ≤ tr(MW,W

A (XB)) + δ2,

2. tr(MV ⊥,V ⊥

A (XB)) ≥ tr(MW⊥,W⊥

A (XB))− δ2,

3. λk(M
V ⊥,V ⊥

A (XB)) ≥ λk(MA(XB))− δ,

4. ‖MV,V ⊥

A (XB)‖F ≤ βδ,

where β = maxx∈XB ‖f (V )
A (x)‖2. Then if β = 0, V ⊥ contains more than kn/d elements of X.

Otherwise, setting α = ε/(3βd2n)− 1 and C = (I + αIV )A, we have that

ΦX(C) ≤ ΦX(A)− Ω(ε3/(d7n3)) .
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We note that if V is taken to be the space of the bottom d − k eigenvalues of MA(XB) that
the above properties trivially hold with δ = 0. Properties 1 and 2 follow from the variational
characterization of eigenspaces. Properties 3 and 4 hold trivially.

We know that elements of XB are close to W⊥ and elements of XS are close to W . We will need
to claim that elements of XB are also close to V ⊥ and elements of XS are close to V . We establish
this in the next two claims.

Claim 3.9. We have that 1
n

∑
x∈XB ‖f (V )

A (x)‖22 ≤ γ2 + δ2. In particular, for any x ∈ XB, it holds

that ‖f (V )
A (x)‖2 ≤

√
2nγ.

Proof. This follows from Property 1 and the fact that

tr(MW,W
A (XB)) =

1

n

∑
x∈XB

‖f (W )
A (x)‖22 ≤ γ2.

Claim 3.10. We have that 1
n

∑
x∈X\XB ‖f (V ⊥)

A (x)‖22 ≤ γ2 + δ2. In particular, for any x ∈ X \XB,

it holds that ‖f (V ⊥)
A (x)‖2 ≤

√
2nγ.

Proof. Recalling that W⊥ is the span of the principle eigenvectors of MA(X), by the variational
characterization of eigenspaces, it maximizes the quantity tr(MZ,Z

A (X)) = 1
n

∑
y∈fA(X) ‖y(Z)‖22 over

all subspaces Z with dim(Z) = dim(W⊥) = k. In particular, it holds that

1

n

∑
y∈fA(X)

‖y(W⊥)‖22 ≥
1

n

∑
y∈fA(X)

‖y(V ⊥)‖22 .

On the other hand, by Property 2, we have that

1

n

∑
y∈fA(XB)

‖y(V ⊥)‖22 = tr(MV ⊥,V ⊥

A (XB)) ≥ tr(MW⊥,W⊥

A (XB))− δ2 =
1

n

∑
y∈fA(XB)

‖y(W⊥)‖22 − δ2 .

Subtracting the above two inequalities, we get that

1

n

∑
x∈X\XB

‖f (V ⊥)
A (x)‖22 ≤

1

n

∑
x∈X\XB

‖f (W⊥)
A (x)‖22 + δ2 ≤ γ2 + δ2 .

This gives the claim.

The case that β > 0: Here we assume that β > 0 and show that we can obtain an improvement
in our potential function. To bound below the improvement in potential, we will make essential
use of Lemma 3.3, and we bound the relevant quantities in a sequence of lemmas.

We begin by bounding below λk(M
V ⊥,V ⊥

A (X)). In particular, we show that it is nearly as big
as λk(MA(X)). Morally, this holds because

λk(MA(X)) = λk(M
W⊥,W⊥

A (X)) ≈ λk(MV ⊥,V ⊥

A (X)) .

Formally, we have the following.

Lemma 3.11. We have that λk(M
V ⊥,V ⊥

A (X)) ≥ λk(MA(X))− 4γ, for k = dim(V ⊥).
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Proof. We bound the k-th largest eigenvalue of MV ⊥,V ⊥

A via the following sequence of inequalities.

λk(M
V ⊥,V ⊥

A (X)) ≥ λk(MV ⊥,V ⊥

A (XB)) (7)

≥ λk(MA(XB))− γ (8)

≥ λk(MW⊥,W⊥

A (XB))− 3γ (9)

≥ λk(MW⊥,W⊥

A )− 3γ − γ2 (10)

= λk(MA)− 3γ − γ2 . (11)

Inequality (7) follows since

MV ⊥,V ⊥

A (X) = MV ⊥,V ⊥

A (XB) +MV ⊥,V ⊥

A (X \XB) �MV ⊥,V ⊥

A (XB) .

Inequality (8) follows from Property 3 and δ ≤ γ.
Inequality (9) follows since Inequality (10) follows since

‖MW⊥,W⊥

A (X)−MW⊥,W⊥

A (XB)‖2 = ‖MW⊥,W⊥

A (X \XB)‖2.

This is at most γ2 as it is bounded by

sup
‖v‖2=1

v>

 1

n

∑
x∈XS

fA(x)(W⊥)(fA(x)(W⊥))>

 v ≤ sup
‖v‖2=1

max
x∈XS

|v · fA(x)(W⊥)|2 ≤ γ2 .

Equality (11) follows since MW⊥,W⊥

A and MA agree in the top k eigenvalues by definition of
the subspace W , as the span of the top k eigenvectors of MA.

Lemma 3.11 now follows as γ2 ≤ γ ≤ 1.

Next we bound from above λ1(MV,V
A (X)). In particular, we show that it is not much larger

than λk+1(MA(X)). Morally, this holds because

λk+1(MA(X)) = λ1(MW,W
A (X)) ≈ λ1(MV,V

A (X)) .

Formally, we have the following.

Lemma 3.12. We have that λ1(MV,V
A (X)) ≤ λk+1(MA(X)) + 8γ.

Proof. We bound the largest eigenvalue of MV,V
A via the following sequence of inequalities.

λ1(MV,V
A ) ≤ λ1(MV,V

A (X \XB)) + 2γ2 (12)

≤ λ1(MA(X \XB)) + 4γ + 2γ2 (13)

≤ λ1(MW,W
A (X \XB)) + 6γ + 2γ2 (14)

≤ λ1(MW,W
A (X)) + 6γ + 2γ2 (15)

≤ λk+1(MA(X)) + 8γ . (16)

Inequality (12) follows since λ1(MV,V
A ) ≤ λ1(MV,V

A (X \XB)) + λ1(MV,V
A (XB)) and

λ1(MV,V
A (XB)) = ‖MV,V

A (XB)‖2 ≤
1

n

∑
x∈XB

‖f (V )
A (x)‖22 ≤ 2γ2 ,
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where the last inequality follows from Claim 3.9 and since δ ≤ γ.
Inequality (13) follows since ‖MA(X \XB)−MV,V

A (X \XB)‖2 ≤ 4γ. Indeed, note that

‖MA(X \XB)−MV,V
A (X \XB)‖2 ≤

1

n

∑
x∈X\XB

‖f (V )
A (x)f

(V )
A (x)> − fA(x)fA(x)>‖2

≤ 2

n

∑
x∈X\XB

‖f (V )
A (x)− fA(x)‖2 =

2

n

∑
x∈X\XB

‖f (V ⊥)
A (x)‖2 ≤ 4γ ,

where the last inequality follows from Claim 3.10.
Inequality (14) follows since

‖MW,W
A (X \XB)−MA(X \XB)‖2 ≤

1

n

∑
x∈X\XB

‖f (W )
A (x)f

(W )
A (x)> − fA(x)fA(x)>‖2

≤ 2

n

∑
x∈X\XB

‖f (W )
A (x)− fA(x)‖2 =

2

n

∑
x∈X\XB

‖f (W⊥)
A (x)‖2 ≤ 2γ ,

where the last inequality follows from the definition of X \XB.
Inequality (15) follows since MW,W

A (X) �MW,W
A (X \XB).

Inequality (16) follows since λ1(MW,W
A ) = λk+1(MA(X)) and γ2 ≤ γ ≤ 1.

This completes the proof of Lemma 3.12.

Note that together Lemmas 3.11 and 3.12 show that λk(M
V ⊥,V ⊥

A (X))−λ1(MV,V
A (X)) is nearly

as large as λk(MA(X))− λk+1(MA(X)) ≥ ε/(2d3).
Next we bound the off-diagonal terms of the transformed vectors.

Lemma 3.13. We have that ‖MV,V ⊥

C ‖2F ≤ ((1 + α)3β3 + (1 + α)βδ + 2γ)2.

Proof. By the triangle inequality, we have that

‖MV,V ⊥

C ‖F ≤ ‖MV,V ⊥

C (XB)‖F + ‖MV,V ⊥

C (X \XB)‖F .

We use this to bound the contributions from the vectors in XB separately from the contributions
from X \XB.

For the contribution from XB, we note that if x ∈ XB and y = fA(x), then one obtains fC(x)
by multiplying the V -part of y by (1 + α) and rescaling slightly. Thus, the V \ V ⊥ component of

fC(x)fC(x)> is roughly y(V )(1+α)y(V ⊥)T . Summing over all y ∈ fA(XB) gives roughly MV,V ⊥

A (XB),
which is small by assumption.

In particular, we have that

‖MV,V ⊥

C (XB)‖F ≤ ‖MV,V ⊥

C (XB)− (1 + α)MV,V ⊥

A (XB)‖F + (1 + α)βδ

=

∥∥∥∥∥∥ 1

n

∑
y∈fA(XB)

(1 + α)y(V )y(V ⊥)T

‖y(V ⊥) + (1 + α)y(V )‖22
− (1 + α)

1

n

∑
y∈fA(XB)

y(V )y(V ⊥)T

∥∥∥∥∥∥
F

+ (1 + α)βδ

=

∥∥∥∥∥∥(1 + α)

n

∑
y∈fA(XB)

(
1

‖y(V ⊥) + (1 + α)y(V )‖22
− 1

)
y(V )y(V ⊥)T

∥∥∥∥∥∥
F

+ (1 + α)βδ

≤ (1 + α)

n

∑
y∈fA(XB)

(
1− 1

‖y(V ⊥) + (1 + α)y(V )‖22

)
‖y(V )y(V ⊥)T ‖F + (1 + α)βδ

≤ ((1 + α)β)3 + (1 + α)βδ .
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The first inequality follows from Property 4. The second equality follows from the fact that fC(x) =

fI+αIV (fA(x)), by Fact 2.1(b), and thus for y = fA(x) this is equal to y(V )+αy(V
⊥)

‖y(V )+(1+α)y(V
⊥)‖2

. The last

inequality follows since ‖y(V )(y(V ⊥))>‖F ≤ β and ‖y(V ) + (1 + α)y(V ⊥)‖22 ≤ 1 + (1 + α)2β2.
To bound the contribution from X \ XB, we note that applying fI+αIV can only decrease

the size of the V ⊥-component of a vector. Thus, for each x ∈ X \ XB, fC(x) will have a small
V ⊥-component. In particular, we have

‖MV,V ⊥

C (X\XB)‖F =

∥∥∥∥∥∥ 1

n

∑
y∈fC(X\XB)

y(V )(y(V ⊥))>

∥∥∥∥∥∥
F

≤ 1

n

∑
y∈fC(X\XB)

‖y(V )(y(V ⊥))>‖F

≤ 1

n

∑
y∈fC(X\XB)

‖(y(V ⊥))>‖2 ≤ 2γ ,

where the last inequality follows since for any x ∈ X \XB, it holds that ‖f (V ⊥)
C (x)‖2 ≤ ‖f (V ⊥)

A (x)‖2,
as follows from Fact 2.1(d).

Combining this with the above proves our lemma.

Finally, we need to bound Df , showing that it is neither too big nor too small. This follows by
noting that the greatest amount that any vector was modified is on the order of αβ. In particular,
we have that:

Lemma 3.14. We have that 1
n

(
(1+α)2β2

1+(1+α)2β2 − γ2
)
≤ Df ≤ (1 + α)2β2 + 2γ2, where

Df =
1

n

∑
y∈fC(X)

‖y(V )‖22 −
1

n

∑
y∈fA(X)

‖y(V )‖22 .

Proof. By the definition of β, there exists x∗ ∈ XB with ‖f (V )
A (x∗)‖2 = β. Such a point satisfies

‖f (V )
C (x∗)‖22 = ‖f (V )

I+αIV
(fA(x∗))‖22 =

(1 + α)2‖f (V )
A (x∗)‖22

‖f (V ⊥)
A (x∗)‖22 + (1 + α)2‖f (V )

A (x∗)‖22
=

(1 + α)2β2

1− β2 + (1 + α)2β2
.

This point will contribute at least

1

n

(
‖f (V )
C (x∗)‖22 − ‖f

(V )
A (x∗)‖22

)
≥ 1

n

(
(1 + α)2β2

1 + (1 + α)2β2
− γ2

)
to Df .

Moreover, for any other x ∈ XB, ‖f (V )
C (x)‖22 ≤ ‖f

(V )
C (x∗)‖22.

Thus, for points x ∈ XB, we have that

0 ≤ ‖f (V )
C (x)‖22 − ‖f

(V )
A (x)‖22 ≤ (1 + α)2β2 .

Finally, for all points x ∈ X \XB, we have that 0 ≤ ‖f (V )
C (x)‖22−‖y

(V )
A (x)‖22 ≤ 1− (1− 2γ2) ≤ 2γ2.

This implies the required bounds.
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Combining the Lemmas 3.11, 3.12, 3.13, 3.14 with Lemma 3.3 and setting η = (1 + α)β =
ε/(3d2n), we get that

ΦX(A)− ΦX(C) ≥

≥ 2
(
λk(MA(X))− 4γ − λk+1(MA(X))− 8γ − 2η2 − 4γ2

) 1

n

(
η2

1 + η2
− γ2

)
− 2(η3 + ηδ + 2γ)2

≥
( ε

2d3
− 16γ − 2η2

)(η2 − 2γ2

n

)
− 2(η3 + ηδ + 2γ)2

≥
( ε

2d3
− 16γ − 2η2

)(η2 − 2γ2

n

)
− 6η6 − 6(ηδ)2 − 24γ2.

Given that both γ and η2 are less than a sufficiently small multiple of ε
d3

, the above is at least

εη2

3d3n
− 6η6 − 6(ηδ)2 − 24γ2.

Given that δ is less than a sufficiently small multiple of ε
dn , and γ a small multiple of ε2/(d4n2),

this is
Ω(εη2/(d3n)) = Ω(ε3/(d7n3)).

The case of β = 0: We now argue that in the case that β = 0, no Forster transform exists, as
the algorithm correctly identifies a subspace of dimension k containing more than a k/d fraction of
the points of X.

Since we have that λk(MA(X))−λk+1(MA(X)) ≥ ε/(2d3) by assumption, either λk(MA(X)) ≥
1
d + ε

4d3
or λk+1(MA(X)) ≤ 1

d −
ε

4d3
. The algorithm returns the subspace V ⊥ of dimension k, which

contains all points XB as β = 0. We claim that |XB|/n > k/d, which would complete our analysis.
This is essentially because the large eigenvalues of MA(X) on V ⊥ imply that XB must have many
points.

We consider two subcases below.

Case 1: λk(MA(X)) ≥ 1
d + ε

4d3
. In this case, we have that

|XB|
n

= tr(MA(XB)) ≥ k λk(MA(XB))

≥ kλk(MV ⊥,V ⊥

A (XB))− kδ

≥ kλk(MV ⊥,V ⊥

A (X))− kδ − 2kγ2

≥ kλk(MA(X))− 7kγ

≥ k/d+ k(ε/(4d3)− 7γ) > k/d ,

where the second line above follows from Property 3, the third line from Claim 3.10. The fourth
line follows from Lemma 3.11, and the rest from ε/d3 � γ > δ.

Case 2: λk+1(MA(X)) ≤ 1
d −

ε
4d3

. In this case, we have that

|XS |
n

= tr(MA(XS)) = tr(MV,V
A (XS)) + tr(MV ⊥,V ⊥

A (XS)).

By Claim 3.10 we have that tr(MV ⊥,V ⊥

A (XS)) ≤ 2γ2. On the other hand since β = 0, all elements
of XB are orthogonal to V and thus

tr(MV,V
A (XS)) = tr(MV,V

A (X)).
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This is at most (k−d)λ1(MV,V
A (A)), which by Lemma 3.12 is at most (k−d)λk+1(MA(X))+8dγ.

Combining with the above, we get that

|XS |
n
≤ (k − d)λk+1(MA(X)) + 10dγ ≤ (k − d)/d− (k − d)ε/(4d3) + 10dγ < (k − d)/d .

Hence in this case as well |XB|/n = 1− |XS |/n > k/d.

This completes the proof of Proposition 3.8.
This completes the proof of Proposition 3.2.

4 Approximate Eigendecomposition in Strongly Polynomial time

In this section, we give a simple algorithm that computes an approximate eigendecomposition with
multiplicative error guarantees in strongly polynomial time.

Proposition 4.1. Given a d × d PSD matrix M , an accuracy parameter ε > 0 and a failure
probability δ > 0, there is an algorithm that computes orthogonal vectors q1, . . . , qd and scalars ai
such that the matrix M̂ =

∑d
i=1 aiqiq

>
i satisfies the following: for all v ∈ Rd, it holds that

|v>(M − M̂)v| ≤ ε (v>Mv) .

The algorithm performs poly(d/ε, log(1/δ)) arithmetic operations on poly(d/ε, log(1/δ), b)-bit num-
bers, where b is the bit complexity of the entries of M .

Proof. We assume throughout that d is sufficiently large and ε sufficiently small.
Our algorithm is based on the power method. In more detail, by taking a large power of M

times a random vector, we can obtain an approximation of the principal eigenvalue. Taking a large
power of M times another random vector and projecting onto the orthogonal complement of the
first, gives us an approximation to the second eigenvector. Repeating this process, we obtain an
approximation to the full eigendecomposition. Unfortunately, we cannot quite hope to learn the
eigenvectors themselves in general. Specifically, in the case where some of the eigenvalues are close,
we would require very large powers of M in order to distinguish them. However, in this case, it is
not necessary to learn the eigenvalues exactly in order to obtain a good approximation.

It is well-known that the aforementioned standard approach can be used to get an approximate
eigendecomposition such that ‖M − M̂‖2 ≤ ε‖M‖2. Unfortunately, this guarantee is weaker than
the result that we require. For our application, we require that if M has a large eigenvalue gap
somewhere, then M̂ very precisely finds this gap. Fortunately, if there is a large eigenvalue gap,
this makes the power method that much stronger. Indeed, multiplying by a suitable power of M
will cause the components of the small eigenvector to shrink by an amount proportional to a power
of the gap size.

Our algorithm is presented in pseudocode below.
It is easy to see that this algorithm runs in the appropriate time and bit-complexity bounds.

The difficulty is in showing that the resulting M̂ satisfies the desired error bounds. We begin by
giving this analysis under the assumption that M is non-singular.

We start by noting that if we take q′i to be the normalization of qi and take a′i to be (q′i)
>M(q′i),

then we have that a′i(q
′
i)(q

′
i)
> = aiqiq

>
i , leading to the same matrix M̂ . (Note that we cannot use

a′i and q′i in our algorithm only because normalizing qi requires taking square roots; an operation
that is not efficiently implementable in our model). We note that the q′i are obtained from wi by
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Algorithm 3 Computing the approximate eigendecomposition of a matrix M

1: function EigenDecomposition(Matrix Md×d, accuracy parameter ε, error probability δ)
2: Let A be a random d × d matrix where the entries are i.i.d. uniform samples from
{1, 2, . . . , N}, for N at least a sufficiently large constant multiple of d/δ.

3: Let w1, w2, . . . , wd be the column vectors of M tA, for t a sufficiently large constant multiple
of d6/ε2 log(d/δ).

4: for i = 1 to d do
5: Let qi be the projection of wi onto the orthogonal complement of w1, w2, . . . , wi−1.
6: Let ai = 0 if qi = 0 and ai = q>i Mqi/(qi · qi) otherwise.

7: return {ai, qi}

applying Gram-Schmidt. From here on, we will consider the equivalent algorithm, where the qi are
obtained from the wi by applying Gram-Schmidt.

Let the eigendecomposition of M be given by M =
∑d

i=1 λiviv
>
i , where the vi are an orthonor-

mal basis and where λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. Let η = ε2/d3.
We say that two consecutive eigenvectors vi and vi+1 are in the same block if λi+1 ≥ λi/(1+η).

We say that λi and λj are in the same block for i ≤ j, if λk and λk+1 are in the same block for all
i ≤ k < j. Note that if λi and λj are in the same block, their ratio is at most (1 + η)d; and that if
they are in different blocks, their ratio is at least (1 + η).

Let α1, . . . , αd be the columns of A. Let βi be the unique vector in span(α1, α2, . . . , αi) such
that vj · βi = 0 if j < i, and vi · βi = 1. We note that if B is the matrix with columns βi, applying
Gram-Schmidt to the columns of M tB yields the same result as applying it to the columns of M tA.
We will need the following claim:

Claim 4.2. With probability at least 1 − δ over the choice of A, we have that for all 1 ≤ i ≤ d it
holds that ‖βi‖2 ≤ O(d2/δ)i.

Proof. We note that βm =
∑m

i=1 tiαi, so that vj ·(
∑m

i=1 tiαi) =
∑m

i=1 ti(vj ·αi) is equal to 0 for j < m,
and equal to 1 for j = m. In particular, the ti form the unique vector such that Dm[t1, t2, . . . , tm]> =
[0, 0, . . . , 0, 1]>, where Dm is the m×m matrix defined by (Dm)j,i = [vj ·αi]1≤i,j≤m. Using Cramer’s
rule, we find that each ti is a sub-determinant of Dm divided by det(Dm). Since the sub-determinant
has absolute value at most the product of the norms of its rows or O(N

√
m)m−1 = O(N

√
d)m, it

suffices to show that |det(Dm)| = Ω(Nδ/d3/2)m.
In particular, we will prove that with probability at least 1 − δ over the choice of A we have

that |det(Dk)| = Ω(Nδ/(d3/2))k for all k. In fact we show that conditioning on the values of
α1, α2, . . . , αm−1, the probability that | det(Dm)| > Ω(Nδ/d3/2)|det(Dm−1)| is at least 1− δ/d. If
this holds for all m, our result will follow.

To show this, we note that conditioning on α1, α2, . . . , αm−1 fixes all but the last column of Dm,
which is linear in αm. The determinant of Dm equals a sum over the last column of the relevant
entry times an appropriate sub-determinant. In particular, det(Dm) =

∑m
i=1Ci(vi · αm) = u · αm,

where v =
∑m

i=1Civi and Ci are the appropriate sub-determinants. Note that vm · u = Cm =
det(Dm−1). Therefore, |u| ≥ | det(Dm−1)|. This implies that u must have an entry of size at least
|det(Dm−1)|/

√
d. Fixing all other entries of αm, we note that there is a probability of at least

1 − (δ/d) that |u · αm| � Nδ/d3/2. If this holds, then |det(Dm)| ≥ Ω(Nδ/d3/2)| det(Dm−1)|, as
desired. This completes our proof.

We will show that so long as the conclusion of Claim 4.2 holds, our algorithm will produce an
appropriate error guarantee.
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We begin by defining
γi := M tβi/λ

t
i ,

where γi = 0 if λi = 0. Note that in this case λj will be 0 for all j > i, and thus M tβi = 0.
Applying Gram-Schmidt to M tβi or to γi gives the same result, and thus qi can be thought of as
the result of applying Gram-Schmidt to the γi. Furthermore, we note that

vj · γi =


0 , if j < i

1 , if j = i

O(d2/δ)d(λj/λi)
t , otherwise.

This implies that if λi and λj are in different blocks, then

|vj · γi| ≤ s min

(
λj
λi
,
λi
λj

)
,

where
s = (d/δ)−3d3 .

We require the following claim.

Claim 4.3. Letting qi be obtained from γi by Gram-Schmidt, we have that if 1 ≤ m ≤ d and if λi
and λm are in different blocks, then

|vi · qm| ≤ s min

(
λm
λi
,
λi
λm

)
Mm ,

where M is (Cd2/δ)d+d2, for a sufficiently large universal constant C > 0.

Proof. We proceed by induction on m. The case of m = 1 follows immediately from the above
observation and the fact that q1 = γ1/‖γ1‖2 and that ‖γ1‖2 ≥ v1 · γ1 = 1.

For the inductive step, we begin by assuming that our claim is true for all smaller values of m.
We note that qm = rm/‖rm‖2, where

rm := γm −
m−1∑
j=1

(γm · qj)qj .

We note that if m > j and λm and λj are in different blocks, then

|γm · qj | ≤
d∑

k=1

|vk · γm||vk · qj |

≤ d s max
k

min

(
λm
λk
,
λk
λm

)
min

(
λj
λk
,
λk
λj

)
O(d2/δ)dMm−1

≤ sO(d2/δ)d min

(
λm
λj
,
λj
λm

)
Mm−1 ,

where the second line above follows from the inductive hypothesis, the fact that λk cannot be in
the same block as both λm and λj , and the fact that ‖γm‖2 ≤ ‖βm‖2 = O(d2/δ)d.
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From this we conclude that if λm and λk are in different blocks, then

|rm · vk| ≤ |γm · vk|+
m−1∑
j=1

|qj · vk||qj · γm| .

We know that

|γm · vk| ≤ smin

(
λm
λk
,
λk
λm

)
.

For λj in the same block as λm, we have that |qj · vk||qj · γm| is at most

|γm||qj · vk| ≤ sO(d2/δ)d min

(
λm
λk
,
λk
λm

)
Mm−1 .

For λj and λm in different blocks, using the above bound on |γm · qj |, it is at most

sO(d2/δ)d min

(
λm
λj
,
λj
λm

)
min

(
λk
λj
,
λj
λk

)
Mm−1 ,

which means that

|qj · vk||qj · γm| ≤ sO(d2/δ)d min

(
λm
λk
,
λk
λm

)
Mm−1 .

Summing over j, we find that for λm and λk in different blocks, we have that

|rm · vk| ≤ sO(d2/δ)d min

(
λm
λk
,
λk
λm

)
Mm−1 . (17)

We now just need to show that ‖rm‖2 is not too small. To achieve this, we will show that qm has
a reasonably large projection onto the space orthogonal to q1, . . . , qm−1. To show this, let ` be the
smallest number such that λ` and λm are in the same block. For ` ≤ i ≤ m, let r′i denote the
projection of γi onto the space orthogonal to q1, q2, . . . , q`−1. Namely, we define

r′i := γi −
`−1∑
j=1

(γi · qj)qj .

We note that since each |γi ·qj | ≤ sO(d2/δ)dMd, we have that ‖r′i−γi‖2 ≤ sO(d2/δ)dMd. We note
that rm is the component of r′m orthogonal to r′`, . . . , r

′
m−1. This equals the ratio of the volumes of

the parallelepiped with sides r′`, . . . , r
′
m to the volume of the one with sides r′`, . . . , r

′
m−1. The latter

volume is at most ‖r′`‖2 ‖r′`+1‖2 · · · ‖r′m−1‖2 ≤ O(d2/δ)d
2
. We can bound the former from below by

the determinant of the matrix with entries vi · r′j , for ` ≤ i, j ≤ m. However, we note that

|vi · r′j − vi · rj | ≤ ‖rj − r′j‖2 ≤ sO(d2/δ)dMd .

On the other hand, the matrix with entries vi ·rj is a lower diagonal matrix with 1’s on the diagonal
and entries of size at most O(d2/δ)d. This matrix has determinant 1, and the difference between
its determinant and that of the matrix with entries vi · r′j is at most O(d2/δ)d

2
sMd ≤ 1/2. Thus,

the matrix with entries vi · r′j has determinant at least 1/2. This implies that ‖rm‖2 ≥ O(d2/δ)−d
2
.

Combining this with Equation (17) yields

|qm · vk| ≤ sO(d2/δ)d+d2 min

(
λm
λk
,
λk
λm

)
Mm−1 ≤ s min

(
λm
λk
,
λk
λm

)
Mm ,

whenever λm and λk are in different blocks. This completes our inductive step.
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Claim 4.3 implies that if λi and λj are in different blocks we have that

|vi · qj | ≤ min

(
λm
λi
,
λi
λm

)
(ε/d)3 .

We now will try to understand the size of the ai’s. We have the following sequence of (in)equalities:

ai = q>i Mqi

=
d∑
j=1

λj |vj · qi|2

=
∑

λj in same block as λi

λi(1 +O(dη))|vj · qi|2 +O

 ∑
λj in different block from λi

(ε/d)6λj(λi/λj)


= λiO(dη + ε6/d6) + λi

∑
λj in same block as λi

|vj · qi|2

= λiO(dη + ε6/d6) + λi − λi
∑

λj not in same block as λi

|vj · qi|2

= λi(1 +O(ε2/d2)) ,

where we used the fact that the vj ’s form an orthonormal basis, and therefore 1 = ‖qi‖22 =
∑

j |vj ·
qi|2.

Our result will now follow from the proceeding claim:

Claim 4.4. For any 1 ≤ i, j ≤ d, we have that |v>i (M − M̂)vj | < (ε/d2)
√
λiλj .

Proof. We begin with the case where λi and λj are not in the same block. We have that v>i Mvj = 0
and that

|v>i M̂vj | ≤
d∑

k=1

ak|vi · qk||vj · qk| =
d∑

k=1

O(λk)(ε/d)3 min

(
λk
λi
,
λi
λk

)
min

(
λk
λj
,
λj
λk

)
.

This in turn is at most

d∑
k=1

O(λk)(ε/d)3(
√
λi/λk)(

√
λj/λk) < (ε/d2)

√
λiλj .

If λi and λj are in the same block, then we have that

v>i M̂vj =

d∑
k=1

ak(vi · qk)(vj · qk) .

The contribution from λk not in the same block is once again O(λiε/d
2). The contribution from
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λk in the same block can be bounded above as follows:∑
λk in the same block as λi

ak(vi · qk)(vj · qk) =
∑

λk in the same block as λi

λi(1 +O(ε2/d2))(vi · qk)(vj · qk)

= O(λiε
2/d2) + λi

∑
λk in the same block as λi

(vi · qk)(vj · qk)

= O(λiε
2/d2) + λi(vi · vj)− λi

∑
λk not in the same block as λi

(vi · qk)(vj · qk)

= O(
√
λiλjε

2/d2) + λiδi,j

= O(
√
λiλjε

2/d2) + v>i Mvj .

This completes the proof of the claim.

To complete our analysis, let v =
∑d

i=1 civi. Then, we have that v>Mv =
∑d

i=1 c
2
iλi ≥ maxi(|ci|

√
λi)

2.
On the other hand, we have that

|v>(M−M̂)v| ≤
d∑

i,j=1

|ci| |cj | |v>i (M−M̂)vj | ≤
d∑

i,j=1

(ε/d2) |ci| |cj |
√
λiλj ≤ εmax

i
(|ci|

√
λi)

2 ≤ ε(v>Mv) .

This completes our analysis in the case where M is non-singular. When M is singular and rank k,
then assuming that the conclusion of Claim 4.2 holds, we note that applying the same analysis to
the vectors M tα1, . . . ,M

tαk as elements of the k-dimensional vector space Image(M), we get the
desired result.

5 Matrix Rounding

In this section, we establish our efficient rounding procedure, establishing the following:

Theorem 5.1 (Matrix Rounding). There is an algorithm that given (i) a set of n points X ⊆
{−2b, . . . , 2b}d\{0} with b ∈ Z+, so that X spans Rd, (ii) a full-rank d×d matrix A ∈ {−2rb, . . . , 2rb}d×d,
with r ∈ Z+, and (iii) an accuracy parameter ε ∈ (0, 1), outputs a matrix A′ with integer entries
of magnitude at most (dε )

O(d3b) such that for all points x ∈ X it holds ‖fA(x)− fA′(x)‖2 ≤ ε. The
algorithm performs poly(d, n, r) arithmetic operations on poly(d, n, r, b, log(1/ε))-bit numbers.

This theorem will allow us to avoid having the matrices A in our main algorithm blow up in
bit complexity since every round we can replace A by A′ to reduce the bit complexity with at most
a small loss of potential.

Notation For a matrix A and a subspace W , we let A(W ) = AIW be the matrix whose i-th row
is the i-th row of A projected onto the subspace W . We let σmax(A) to be the maximum singular
value of a matrix A and σmin(A) to be the minimum non-negative singular value.

We also use dxc to denote the integer closest to the real number x, and use dAc to denote the
matrix obtained by applying d·c to each entry of the matrix A.

The rounding process is presented in Algorithm 4. The main idea of the algorithm is to itera-
tively reduce the condition number of matrix A without significantly affecting the transformation
on the pointset X. To achieve this, the algorithm identifies a subspace V such that V and V ⊥

have large multiplicative singular value gap σmin(A(V ⊥))/σmax(A(V )). It then aims to rescale the
subspace V ⊥ so that the condition number decreases. As this could significantly affect the trans-
formation for some points in X, it rescales instead a different subspace R that is very close to V ⊥,
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but at the same time leaves unaltered the transformation for the set of problematic points in X
lying in a subspace W . Applying this technique iteratively, we reduce to the case where A has
bounded condition number. At this point, we can simply replace A by the matrix obtained by an
appropriate rounding of A’s entries.

Algorithm 4 Rounding the matrix

1: function Round(Matrix A ∈ {−2rb, . . . , 2rb}d×d, Set X of n points in {0, . . . , 2b}d, accuracy
parameter ε)

2: Let N ← (dε )
O(d3b)

3: while not terminated do
4: Compute estimates σ̄1 and σ̄d such that σ1(A) ≤ σ̄1 ≤ 2σ1(A) and 1

2σd(A) ≤ σ̄d ≤ σd(A).

5: if the condition number σ̄1(A)/σ̄d(A) ≥ N then return ddεA/σ̄dc,
6: Round the entries of A setting A← d2O(rdb)

ε A/σ̄dc
7: Using approximate eigendecomposition find a subspace V and a parameter G, such that

1

2
max

1≤i≤d−1

σi(A)

σi+1(A)
≤ G ≤ σmin(A(V ⊥))

σmax(A(V ))
≤ max

1≤i≤d−1

σi(A)

σi+1(A)
.

8: Obtain (wi, pi)
d
i=1 by running EigendecompositionFromSet(A,X)

9: Find the smallest index m ≥ 0 such that pm+1 ≥ 1
dG

(m+1)/dσmax(A(V ))

10: Let W ← span{w1, . . . , wm}, g ← min{pm+1,σmin(A(V⊥))}
max{σmax(A(W )),σmax(A(V ))}

11: Consider the subspace R← span(W ∪ V ⊥) ∩W⊥,
12: and note that by Claim 5.11 it holds that I = IR + IW + IW⊥∩V
13: Define a matrix T that rescales the subspace R by δ = Θ(2−b) ,
14: i.e. T = δIR + IW + IW⊥∩V
15: Set A← AT

Algorithm 5 Eigendecomposition with respect to a Set

1: function EigendecompositionFromSet(Matrix A, Set X of n points)

2: Let w1 = arg minx∈X
‖Ax‖2
‖x‖2 and p1 = minx∈X

‖Ax‖2
‖x‖2

3: for i = 2 to d do
4: Set Wi−1 = span{w1, . . . , wi−1}

5: Set wi = arg minx∈X\Wi−1

‖Ax(W
⊥
i−1)‖2

‖x(W
⊥
i−1

)‖2

6: Set pi = minx∈X\Wi−1

‖Ax(W
⊥
i−1)‖2

‖x(W
⊥
i−1

)‖2

7: return (wi, pi)
d
i=1

This works by applying an iterative process to decrease the condition number of A followed
by appropriate rounding. In this iteration, we take V to be a subspace spanned by the small
singular vectors of A right before a large eigenvalue gap. We then define a sequence of vectors
w1, w2, . . . , wn, where wi is (roughly) the element of X not in the span of w1, w2, . . . , wi−1 with
‖Awi‖2 minimal; and take W to be the span of w1, w2, . . . , wm, where ‖Awm+1‖2 is substantially
larger than any of the previous values. This gives us a subspace W where any x ∈ X is either
in W or has ‖Ax‖2 substantially larger than the corresponding value for any small element of W .
We then replace A by AT , where T acts as the identity on W and W⊥ ∩ V , but shrinks things
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considerably in orthogonal directions. As elements in x ∈ W are preserved by T and x ∈ X \W
have most of their contributions to Ax coming from parts orthogonal to W and V , we show (see
Proposition 5.4) that fA(x) ≈ fAT (x) for all x ∈ X, and thus this operation does not substantially
change the potential. Furthermore, since T scales down the directions orthogonal to V (which
are the large singular directions of A), we show (see Proposition 5.3) that the condition number
of AT is substantially smaller than the condition number of A, which implies that repeating this
process enough times will eventually terminate with a matrix with not-too-large condition number.
Finally, in Proposition 5.2, we show that once we have reduced the condition number, rounding the
appropriate matrix entries will not substantially change the Forster transform on any given vector.

The analysis of Algorithm 4 is based on three key propositions.

Proposition 5.2. Let A be any matrix with smallest singular value σd(A) > 0, Given ε ∈ (0, 1)
and σ̄ such that 1

2σd(A) ≤ σ̄ ≤ σd(A), the integer matrix Â = d dσ̄εAc satisfies

- κ(Â) ≤ κ(A)(1 + 4ε),

- for all x ∈ Rd, ‖fA(x)− fÂ(x)‖2 ≤ 2ε, and

- the entries of Â have magnitude O(dκ(A)/ε).

Proposition 5.2 shows that so long as A has bounded condition number, letting A′ be the
rounding of an appropriate multiple of A yields a bounded precision matrix that nearly preserves
all of the transformed points.

Proposition 5.3. Let A ∈ Rd×d be a full-rank matrix. Let V,W be subspaces of Rd so that

σmin(A(V ⊥)) ≥ gmax{σmax(A(W )), σmax(A(V ))}

for some g > 10. Define T = δIR + IR⊥ for δ ≥ 8g−1 and R = span(W ∪ V ⊥) ∩W⊥. It holds that

κ(AT ) ≤ 30δκ(A) .

Proposition 5.3 shows that after every iteration the condition number of the matrix A is signif-
icantly reduced by a factor of O(δ).

Proposition 5.4. Let A ∈ Rd×d be a full-rank matrix and X be a set of points. Let V,W be
subspaces of Rd so that

minx∈X\W ‖Ax(W⊥)‖2/‖x(W⊥)‖2
max{σmax(A(W )), σmax(A(V ))}

≥ g and min
x∈X\W

‖x(W⊥)‖2 ≥ ρ

for some ρ ∈ (0, 1) and g > 1. Define T = δIR + IR⊥ for δ ∈ (0, 1) and R = span(W ∪ V ⊥) ∩W⊥.
For all x ∈ X, it holds that

‖fA(x)− fAT (x)‖2 ≤
16

(g − 1)ρδ
.

Proposition 5.4 shows that for every iteration of the algorithm, the update of A has a negligible
effect on the transformation fA.

We defer the proofs of the propositions to Sections 5.2, 5.3, 5.4, and proceed with the proof of
Theorem 5.1.
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5.1 Proof of Theorem 5.1

Before we proceed with the proof, we argue that the steps of the algorithm are well-defined. In
particular, we must show that the choice of m is feasible. Indeed, the following claim shows that
such an index m ∈ {0, . . . , d− 1} as required in Line 9 always exists, as there is at least one pi with
pi ≥ (G/d)σmax(A(V )).

Claim 5.5. There is an index i ∈ {1, . . . , d} such that pi ≥ (G/d)σmax(A(V )).

Proof. Letting ui = w
(W⊥i−1)

i /‖w(W⊥i−1)

i ‖2, we note that the ui’s form an orthonormal basis of Rd

and that pi = ‖Aui‖2. Therefore, we have that
√∑d

i=1 p
2
i = ‖A‖F ≥ σmin(A(V ⊥)) ≥ Gσmax(A(V )).

Since
√∑d

i=1 p
2
i ≤
√
dmaxdi=1 pi, this means there is at least one pi with value at least (G/d)σmax(A(V )).

We now proceed to bound the improvement on the condition number of matrix A at every
iteration. Starting with a matrix A with condition number κ(A), the algorithm finds a subspace

V with a large multiplicative singular value gap G, i.e., σmin(A(V⊥))

σmax(A(V ))
≥ G. This gap G is at least

κ(A)1/d, as the following claim shows.

Lemma 5.6. At any iteration of the algorithm, G ≥ 1
2κ(A)1/d, and g ≥ 1

2dκ(A)1/d2.

Proof. We prove each of the bounds separately.
We first bound G: Indeed, we have that

G =
σmin(A(V ⊥))

σmax(A(V ))
≥ 1

2
max

1≤i≤d−1

σi(A)

σi+1(A)
≥ 1

2

(
σmax(A)

σmin(A)

)1/d

=
1

2
κ(A)1/d .

We now bound g: Recall that g = min{pm+1,σmin(A(V⊥))}
max{σmax(A(W )),σmax(A(V ))} . To show the statement, we

lower bound all four combinations of numerators and denominators separately.

• Term σmin(A(V ⊥))/σmax(A(V )):

By the definition of G, we have that

σmin(A(V ⊥)) ≥ Gσmax(A(V )).

• Term pm+1/σmax(A(V )):

Recall that the subspace W is defined by computing an eigendecomposition of A with respect
to the set of points X to obtain (wi, pi)

d
i=1. It sets W = span{w1, . . . , wm} by choosing the

smallest m ≥ 0 so that pm+1 ≥ 1
dG

(m+1)/dσmax(A(V )). This implies that

pm+1 ≥
1

d
G1/dσmax(A(V )) .

• Term pm+1/σmax(A(W )):

We also have that max1≤i≤m pi ≤ 1
dG

m/d ≤ G1/dpm+1

Moreover, we have that

d max
1≤i≤m

pi ≥

√√√√ m∑
i=1

p2
i = ‖A(W )‖F ≥ ‖A(W )‖2 = σmax(A(W )) .

This implies that σmax(A(W )) ≤ dmaxmi=1 pi which in turn gives that σmax(A(W )) ≤ dG1/dpm+1.

33



• Term σmin(A(V ⊥))/σmax(A(W )):

Moreover, the definition of m implies that for all i ≤ m, we have pi ≤ 1
dG

i/dσmax(A(V )), and
since m < d, we have

max
1≤i≤m

pi ≤
1

d
G1−1/dσmax(A(V )) ≤ 1

d
G−1/dσmin(A(V ⊥)) .

This implies that

σmin(A(V ⊥)) ≥ G1/dσmax(A(W )) .

Overall, we have that g ≥ 1
dG

1/d ≥ 1
2dκ(A)1/d2 .

We can now apply Proposition 5.3 to bound from above the condition number κ(AT ) of the
matrix AT for T = δIR + IR⊥ . For δ ≥ 8g−1, we get that

κ(AT ) ≤ 30δκ(A) ≤ O(2−b)κ(A). (18)

Initially, the condition number is bounded by (2d)rdb, as the following claim shows:

Claim 5.7. For any full-rank matrix A ∈ {−2rb, . . . , 2rb}d×d, we have that κ(A) ≤ dd2rdb.

Proof. Note that κ(A) = σmax(A)
σmin(A) . We have that

√
det(A>A) =

∏d
i=1 σi(A), and thus we obtain

σmax(A)d−1σmin(A) ≥
√

det(A>A) ≥ 1, where the last inequality follows since A is full-rank and
has integer entries. This implies that κ(A) ≤ σmax(A)d. The statement follows since σmax(A) ≤
‖A‖F ≤

√
d222rb ≤ d2rb.

Thus, since at any iteration we have that g ≥ Ω(2b), as κ(A) ≥ N ≥ 2Ω(d2b), the condition
number significantly improves at every iteration by a factor of O(2−b); after O(dr) iterations, it
will become max{2Ω(d2b), N}.

We now proceed to bound the change in the transformation ‖fA(x) − fAT (x)‖2 for all x ∈ X,
using Proposition 5.4. To do this, we need to lower bound ρ. In particular, we show that for all
x ∈ X \W , it holds that ‖x(W⊥)‖2 ≥ d−d2−db.

Claim 5.8. For any iteration of Round, we have that minx∈X\W ‖x(W⊥)‖2 ≥ d−d2−db.

Proof. Note that at any iteration, the bit complexity of X stays the same as only the matrix A gets
updated. Fix any x ∈ X \W . Since W is the span of the linearly independent vectors w1, . . . , wm,

for any x ∈ X \W , ‖x(W⊥)‖2 = Vol(w1,...,wm,x)
Vol(w1,...,wm) , where Vol(z1, . . . , zk) is the k-dimensional volume

of the parallelepiped defined by the vectors z1, . . . , zk.
Note that Vol(z1, . . . , zk) is given by

√
det(Z>Z), where Z is the matrix [z1| . . . |zk]. Since

the vectors w1, . . . , wm, x ∈ {−2b, . . . , 2b}d are integer vectors and linearly independent, the corre-
sponding volumes of the parallelepipeds they define have volume at least 1 and at most dd2db.

We thus get that we can apply Proposition 5.4 with ρ = d−d2−db. In particular, we conclude
that for all x ∈ X we have

‖fA(x)− fAT (x)‖2 ≤
16

(g − 1) ρδ
≤ dO(db)

κ(A)1/d2
.

The total incurred error for the transformation across all iterations is at most

‖fA(x)− fA′(x)‖2 ≤
dO(db)

N1/d2

∞∑
i=0

2−bi/d
2 ≤ dO(db)

N1/d2
,
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where the first inequality is because κ(A) ends at N and decreases by a factor of Ω(2b) every time.

This is at most ε/2, if N ≥
(
d
ε

)Ω(d3b)
.

Overall, we obtain a matrix A′ with condition number at most N ≥
(
d
ε

)Ω(d3b)
such that ‖fA(x)−

fA′(x)‖2 ≤ ε/2. Applying Proposition 5.2, we show that by rounding A′ to have integer entries of

magnitude at most
(
d
ε

)O(d3b)
, we get that ‖fA(x)− fA′(x)‖2 ≤ ε

To ensure that the numerical operations of every iteration are poly(d, n), we need to efficiently
identify the subspace V . We note that we only need to compute the singular vectors approximately,
so that the singular values are approximated within a small constant. We can achieve this in poly(d)
operations using the algorithm of Proposition 4.1. Under this approximation, the multiplicative
gap G satisfies G ≥ 1

2κ(A)1/d, which results in the same order of improvement, when the condition
number of A goes from κ(A) to Θ(2−b)κ(A) at every iteration. Thus, overall, the number of
arithmetic operations is poly(d, n, r), as the number of iterations is at most O(dr).

To ensure that the bit complexity of the operations remains bounded, we need some additional
care. It is easy to see that if the bit complexity of the points is poly(d, n, r, log(1/ε)), it remains
poly(d, n, r, log(1/ε)) at the end of a single iteration. Yet, the increase may be significant over
multiple iterations and the bit complexity may blow up exponentially.

To keep the bit complexity bounded, we can apply Proposition 5.2 with accuracy parameter
ε/2O(rdb), to round the resulting matrix A, so that it has entries with bit complexity O(log(κ(A))+
drb log(1/ε)). This has negligible effect on the decrease of the condition number at every iteration
(as it only increases it by at most a fixed constant), and ensures that the bit complexity of A at
every iteration is bounded by a fixed polynomial in d, n, r, b and log(1/ε). Moreover, the introduced
error in the transformation fA for every iteration is at most ε/2O(drb), and thus over all O(dr)
iterations, it is at most O(ε), as desired.

We finally remark that all constants used in the algorithm can be computed as a function of

the entries of X and A. In particular, 2O(b) = maxx∈X ‖x‖O(1)
∞ and 2O(rb) = maxi,j ‖Aij‖O(1).

This completes the proof of Theorem 5.1. We now proceed with the proofs of Propositions 5.2,
5.3, and 5.4.

5.2 Proof of Proposition 5.2

Let Ar , d
σ̄εA. To prove the proposition, we first bound the condition number of Â and then show

that the transformation fÂ is close to fA.

Matrix Ar has singular values σ1(Ar) = d
σ̄εσ1(A) ≤ 2dεκ(A) and σd(Ar) = d

σ̄εσd(A) ≥ d
ε .

Moreover, after rounding the entries of matrix Ar to the nearest integer to obtain Â, for any unit
vector v, we have that

‖(Â−Ar)v‖2 ≤
d

2
,

since Â−Ar has entries of magnitude at most 1/2.
Therefore, we get that Â has singular values σ1(Â) ≤ σ1(Ar)+ d

2 ≤ σ1(Ar)(1+ε/2) and σd(Â) ≥
σd(Ar)− d

2 ≥ σd(Ar)(1− ε/2). This implies that the condition number is at most κ(Ar)(1 + 4ε) =

κ(A)(1 + 4ε). Moreover, the magnitude of every entry is at most σ1(Â) ≤ 2dεκ(A)(1 + ε/2).
To bound the effect of the rounding on the transformation, we note that by Fact 2.1, fAr = fA
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and thus for any x we have that

‖fA(x)− fÂ(x)‖2 = ‖fAr(x)− fÂ(x)‖2 =

∥∥∥∥∥ Arx

‖Arx‖2
− Âx

‖Âx‖2

∥∥∥∥∥
2

≤

∥∥∥∥∥Arx− Âx‖Arx‖2

∥∥∥∥∥
2

+

∥∥∥∥∥ Âx

‖Arx‖2
− Âx

‖Âx‖2

∥∥∥∥∥
2

=
‖(Ar − Â)x‖2
‖Arx‖2

+

∣∣∣∣∣1− ‖Âx‖2‖Arx‖2

∣∣∣∣∣
≤ 2
‖(Ar − Â)x‖2
‖Arx‖2

≤ d

σd(Ar)
≤ 2ε .

5.3 Proof of Proposition 5.3

For any matrix T̂ , we can bound the condition number of κ(AT ) by κ(AT̂ )κ(T̂−1T ). We define
T̂ = δIV ⊥+IV as the matrix that rescales the subspace V ⊥ by δ. We argue that κ(AT̂ ) ≤ 10δκ(A).

Claim 5.9. For any δ ≥ g−1, it holds that κ(AT̂ ) ≤ 10δκ(A).

Proof. We first show that σmax(AT̂ ) ≤ 2δσmax(A). Indeed, for any unit vector v ∈ Rd, we have
that

‖AT̂v‖2 = ‖δAv(V ⊥) +Av(V )‖2 ≤ δ‖Av(V ⊥)‖2 + ‖Av(V )‖2 ≤ δσmax(A) + g−1σmax(A) .

and since δ ≥ g−1, this gives the required bound on σmax(AT̂ ).
We now argue that σmin(AT̂ ) ≥ 1

5σmin(A). For any unit vector v ∈ Rd, we have that

‖AT̂v‖2 = ‖δAv(V ⊥) +Av(V )‖2 ≥ δ‖Av(V ⊥)‖2 − ‖Av(V )‖2
≥ δσmin(A(V ⊥))‖v(V ⊥)‖2 − σmax(A(V ))‖v(V )‖2
≥ δgσmax(A(V ))‖v(V ⊥)‖2 − σmax(A(V ))‖v(V )‖2
≥ σmax(A(V ))(‖v(V ⊥)‖2 − ‖v(V )‖2) ,

where the last inequality follows since δ ≥ g−1. Since, σmin(A) ≤ minv∈V :‖v‖2=1 ‖Av‖2 ≤ σmax(A(V )),

we get that the above is at least σmin(A)(‖v(V ⊥)‖2 − ‖v(V )‖2). This is greater than 1
5σmin(A) if

‖v(V )‖2 < 3
5 . Moreover, if ‖v(V )‖2 ≥ 3

5 , we have that

‖AT̂v‖2 ≥ σmin(A)‖T̂ v‖2 ≥ σmin(A)‖v(V )‖2 ≥
3

5
σmin(A) ,

which again gives the required bound on σmin(AT̂ ).

To complete the proof of Proposition 5.3, we now bound κ(T̂−1T ).

Claim 5.10. We have that κ(T̂−1T ) ≤ 3.

Proof. Note that T̂−1 = IV + 1/δIV ⊥ and that T = δIR + IW + IW⊥∩V . Since,

δT̂−1IR = IR − (1− δ)IV IR,
T̂−1IW = IW + (1− 1/δ)IV ⊥IW ,

T̂−1IW⊥∩V = IW⊥∩V ,
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and I = IR + IW + IW⊥∩V , this implies that

T̂−1T = I + (1/δ − 1)IV ⊥IW − (1− δ)IV IR .

Our result will follow by bounding each of the terms ‖(1/δ−1)IV ⊥IW ‖2, ‖(1−δ)IV IR‖2 individually
below 1/4.

To bound the first term, we argue that for every unit vector w ∈W , we have that

‖w(V ⊥)‖2 ≤ 2/g .

This is because ‖Aw‖2 ≤ σmax(A(W )) ≤ g−1σmin(A(V ⊥)), but

‖Aw‖2 ≥ ‖Aw(V ⊥)‖2 − ‖Aw(V )‖2 ≥ σmin(A(V ⊥))‖w(V ⊥)‖2 − σmax(A(V ))‖w(V ⊥)‖2
≥ σmin(A(V ⊥))(‖w(V ⊥)‖2 − g−1‖w(V )‖2) ≥ σmin(A(V ⊥))(‖w(V ⊥)‖2 − g−1) .

We thus get that ‖IV ⊥IW ‖2 ≤ 2g−1. Thus,

‖(1/δ − 1)IV ⊥IW ‖2 ≤ 2/(δg)le1/4 .

To bound ‖IV IR‖2, it suffices to show that for any unit vector x ∈ R, ‖IV x‖2 is small. As
x ∈ span(W ∪ V ⊥), we can write x = xW + xV ⊥ with xW ∈W and xV ⊥ ∈ V ⊥. Since x ∈W⊥, we
have that

0 = xW · x = ‖xW ‖22 + xW · xV ⊥ .

Thus,
‖xW ‖22 = |xW · xV ⊥ | ≤ ‖xV ⊥‖2‖IV ⊥IWxW ‖2 ≤ (2/g)‖xV ⊥‖2‖xW ‖2 ,

which implies that ‖xW ‖2 ≤ (2/g)‖xV ⊥‖2. and that ‖x‖2 ≥ ‖xV ⊥‖2 − ‖xW ‖2 ≥ (g/2 − 1)‖xW ‖2.
Therefore,

‖IV x‖2 = ‖IV xW ‖2 ≤ ‖xW ‖2 ≤ (g/2− 1)−1‖x‖2 .

Thus for g > 10, ‖(1− δ)IV IR‖2 ≤ 1/4.

5.4 Proof of Proposition 5.4

We first show the following claim that relates the subspace R to V and W .

Claim 5.11. For any subspaces V,W of Rd, and R = span(W ∪ V ⊥) ∩W⊥, it holds that I =
IR + IW + IW⊥∩V .

Proof. We first argue that vectors in W , R and W⊥∩V are pairwise orthogonal. Indeed, any vector
in the latter two subspaces belongs in W⊥ and thus is orthogonal to W . Moreover, note that any
vector r ∈ R belongs in span(W ∪V ⊥) and can be written as r = w+v for some w ∈W and v ∈ V ⊥.
For any u ∈W⊥∩V , it holds that u·r = u·w+u·v = 0, because u·w = 0 as u ∈W⊥ and w ∈W and
u·v = 0 as u ∈ V and v ∈ V ⊥. We now argue that span(W,R,W⊥∩V ) = Rd. Indeed, span(W,R) =
span(W, span(W ∪ V ⊥) ∩W⊥) = span(W, span(W, projW⊥V

⊥) ∩W⊥) = span(W, projW⊥V
⊥) =

span(W,V ⊥). This is true, as for any subspaces A,B, span(A,B) = span(A,projA⊥B). Thus,
span(W,R,W⊥ ∩ V ) = span(W,V ⊥,W⊥ ∩ V ) = Rd.

We now proceed to show Proposition 5.4 assuming x ∈ X \W as in the case that x ∈ W , we
have that Tx = x and so fA(x) = fAT (x). We argue that for any such point x ∈ X \W , both fA(x)

and fAT (x) are close to Ax(R)

‖Ax(R)‖2
. To do this, we use Claim 5.12, which shows that the contributions

to Ax of the projections of x to W and W⊥ ∩ V are small.
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Claim 5.12. For any x ∈ X \W ,

‖Ax(R)‖2 ≥ (g − 1)ρmax{‖Ax(W )‖2, ‖Ax(W⊥∩V )‖2} .

Proof. We analyze two cases separately.

We first bound ‖Ax(W⊥∩V )‖2. If x(W⊥∩V ) = 0, we have that ‖Ax(W⊥∩V )‖2 = 0. Otherwise, we
have that

‖Ax(W⊥)‖2 ≥ g‖x(W⊥)‖2σmax(A(V )) ≥ g‖x(W⊥)‖2
‖Ax(W⊥∩V )‖2
‖x(W⊥∩V )‖2

≥ g‖Ax(W⊥∩V )‖2 .

By the triangle inequality and since x(W⊥) = x(R) +x(W⊥∩V ), we get that ‖Ax(R)‖2 ≥ ‖Ax(W⊥)‖2−
‖Ax(W⊥∩V )‖2. This implies that ‖Ax(R)‖2 ≥ (g−1)‖Ax(W⊥∩V )‖2 and ‖Ax(R)‖2 ≥ (1−1/g)‖Ax(W⊥)‖2.

We now bound ‖Ax(W )‖2. If x(W ) = 0, we have that ‖Ax(W )‖2 = 0. Otherwise, we have that

‖Ax(W⊥)‖2
‖x(W⊥)‖2

≥ gσmax(A(W )) ≥ g‖Ax
(W )‖2

‖x(W )‖2
.

Now since ‖Ax(R)‖2 ≥ (1− 1/g)‖Ax(W⊥)‖2, we get that

‖Ax(R)‖2 ≥ (g − 1)
‖x(W⊥)‖2
‖x(W )‖2

‖Ax(W )‖2 ≥ (g − 1)ρ‖Ax(W )‖2 .

Using Claim 5.12, we now have that for µ = 1
(g−1)ρ :

‖fA(x)− Ax(R)

‖Ax(R)‖2
‖2 ≤ ‖fA(x)− Ax(R)

‖Ax‖2
‖2 + ‖Ax

(R)

‖Ax‖2
− Ax(R)

‖Ax(R)‖2
‖2

≤ ‖Ax
(W⊥∩V )‖2 + ‖Ax(W )‖2

‖Ax‖2
+

∣∣∣∣∣‖Ax(R)‖2
‖Ax‖2

− 1

∣∣∣∣∣
≤ 2µ

‖Ax(R)‖2
‖Ax‖2

+

∣∣∣∣∣‖Ax(R)‖2
‖Ax‖2

− 1

∣∣∣∣∣
Since ‖Ax‖2

‖Ax(R)‖2
∈ [1− 2µ, 1 + 2µ], we get that:

‖fA(x)− Ax(R)

‖Ax(R)‖2
‖2 ≤

4µ

1− 2µ
.

Similarly we get that ‖fAT (x) − Ax(R)

‖Ax(R)‖2
‖2 ≤ 4µ/δ

1−2µ/δ , by noting that ATx(R) = δAx(R),

ATx(W⊥∩V ) = Ax(W⊥∩V ) and ATx(W ) = Ax(W ).
Combining the above we get that,

‖fA(x)− fAT (x)‖2 ≤
4µ

1− 2µ
+

4µ/δ

1− 2µ/δ
≤ 16µ/δ ,

for δ ∈ [0, 1] and µ/δ ∈ [0, 1/4].
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6 Full Algorithm: Proof of Theorem 1.5

In this section, we will put together the basic algorithm from Section 3 with the approximate eigen-
decomposition algorithm from Section 4 and the bit complexity reduction routine from Section 5
to prove Theorem 1.5. The final algorithm is given in pseudocode below.

Algorithm 6 Full Forster Transform Algorithm

1: function ForsterTransform (set X⊂ Rd∗ of n points, accuracy parameter ε)
2: Let A← I . Initialization of transformation matrix A
3: while ‖MA(X)‖2F >

1
d + ε2

d2
do

4: Set A← ImproveTransform(A,X, ε, δ), for δ a sufficiently small polynomial in ε/dn.
5: if ImproveTransform returned a subspace V then
6: return V .
7: Set A← Round(A,X, ζ), for ζ a sufficiently small multiple of ε5/(d10n5).

8: return A

The full version of our ImproveTransform function is given in pseudocode below.

Algorithm 7 Find Improved Transform Matrix

1: function ImproveTransform (current matrix A ∈ Rd×d, X ⊂ Rd∗, accuracy parameter ε,
error parameter δ)

2: Let C be a sufficiently large constant.
3: Set n← |X|.
4: Set a1, . . . , ad, q1, . . . , qd ← EigenDecomposition(MA(X), η, δ), for η = ε4/(C3d8n4).
5: Sort ai‖qi‖22 in descending order of size.
6: Find k maximizing ak‖qk‖22 − ak+1‖qk+1‖22.
7: Let W be the span of qk+1, . . . , qd.
8: Let γ be ε2/(Cd4n2)

. Consider the Following Two Cases

9: if there exists x ∈ X such that ‖projW fA(x)‖2 , ‖projW⊥fA(x)‖2 ≥ γ then
10: Set V ←W .
11: Set α← ε/(64nd3).
12: else
13: Set XB←{x ∈ X : ‖projW⊥fA(x)‖2 ≥ γ}.
14: Let c1, c2, . . . , cd, r1, r2, . . . , rd ← EigenDecomposition(MA(XB), η)
15: Let V be the span of the d− k vectors ri with the smallest values of ci‖ri‖22.

16: Set β ← maxx∈XB ‖f (V )
A (x)‖2.

17: if β = 0 then

. No Forster Transform Exists

18: return The subspace V ⊥.
19: else . Case where β > 0

20: Set α← ε/(3βd2n)− 1

21: return (I + αIV )A

The rest of this section will be devoted to proving the correctness of this algorithm.
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To begin with, we note that if the algorithm returns a matrix A, it must be the case that
‖MA(X)‖2F ≤ 1/d + ε2/d2, and so by Lemma 3.1, A will be an ε-Forster transform matrix. Also
note that upon applying Round, we replace A with a matrix whose entries have bit complexity
poly(bdn/ε). From there it is not hard to see that all arithmetic computations performed by this
algorithm are done to only polynomial precision. Finally, we note that in each iteration of the main
while loop, our algorithm performs a polynomial number of arithmetic operations. Therefore, in
order to prove correctness, we need to establish the following:

1. If our algorithm returns a subspace V , then |X ∩ V | > |X|dim(V )/d.

2. In each iteration of our while loop, the potential function ΦX(A) := ‖MA(X)‖2F decreases by
at least an inverse-polynomial amount.

We note that if this is the case, we will only need to call EigenDecomposition a polynomial
number of times, and thus we may assume that all such calls succeed, which we will assume
hereafter.

We begin with a basic consequence of our eigendecomposition lemma:

Lemma 6.1. We have that ‖MA(X)−
∑d

i=1 aiqiq
>
i ‖F ≤

√
dη.

Proof. Letting M = MA(X) and M̂ =
∑d

i=1 aiqiq
>
i , we have that for any unit vector v it holds

that |v>(M − M̂)v| ≤ η (v>Mv) ≤ η. This means that ‖M − M̂‖2 ≤ η. We note that since this is
the maximum eigenvalue of M − M̂ , and since the Frobenius norm of M − M̂ is the square root of
the sum of squares of the eigenvalues, we have that ‖M − M̂‖F ≤

√
dη, as desired.

We next show that our approximate eigendecomposition exhibits an eigenvalue gap. In partic-
ular, we establish the following lemma.

Lemma 6.2. We have that ak ‖qk‖2 − ak+1 ‖qk+1‖2 ≥ (3/4)(ε/d3).

Proof. Note that tr(MA(X)) = 1. Therefore, by Lemma 6.1 and letting M̂ =
∑d

i=1 aiqiq
>
i , we have

that that |tr(M̂)− 1| ≤
√
d ‖MA(X)− M̂‖F ≤ d η. Moreover, we have that ‖M̂‖F ≥ ‖MA(X)‖F −√

dη. Thus, ‖M̂‖2F ≥ 1/d+ ε2/d2 +O(η). On the other hand, we can write

‖M̂‖2F =

d∑
i=1

(ai ‖qi‖22)2 =

d∑
i=1

(ai‖qi‖22−1/d)2+2 tr(M̂)/d−1/d =

d∑
i=1

(ai‖qi‖22−1/d)2+1/d+O(dη) .

This implies that
d∑
i=1

(ai ‖qi‖22 − 1/d)2 ≥ ε2/d2 +O(dη) .

Thus, there must be some i with
∣∣ai‖qi‖22 − 1/d

∣∣ ≥ (99/100)ε/d2. Since the average value of ai‖qi‖22−
1/d is (tr(M̂)−1)/d = O(dη), the difference between the biggest and smallest values of ai ‖qi‖22−1/d
must differ by at least (3/4)(ε/d2). Therefore, the biggest single gap between consecutive values of
‖qi‖22 must be at least (3/4)(ε/d3). This completes our proof.

It is now easy to show that ImproveTransform decreases our potential in the case where there
exists x ∈ X such that ‖projW fA(x)‖2 , ‖projW⊥fA(x)‖2 ≥ γ. To prove this, we would like to apply
Proposition 3.5. In particular, in this case, we let ρ = maxx∈X(min(‖projW fA(x)‖2 , ‖projW⊥fA(x)‖2)).
By assumption, we have that ρ > γ and ρ = maxx∈X(min(‖projW fA(x)‖2 , ‖projW⊥fA(x)‖2)), as
the first property in Proposition 3.5 requires.
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Next we let M = MA(X), and M̂ =
∑d

i=1 aiqiq
>
i . We note that

λmin(M̂V ⊥,V ⊥)− λmax(M̂V,V ) = ak ‖qk‖22 − ak+1 ‖qk+1‖22 ≥ (3/4)(ε/d3) .

Therefore, by Lemma 6.1, we have that

λmin(MV ⊥,V ⊥)− λmax(MV,V ) = ak ‖qk‖22 − ak+1 ‖qk+1‖22 ≥ ε/(2d3) ,

showing that Property 2 holds.
Finally, we note that

M̂V,V ⊥ = 0 .

Thus, by Lemma 6.1, we have that

‖MV,V ⊥‖F ≤
√
dη ≤ α ≤ αρ ,

thus showing that the third property applies.
Therefore, applying Proposition 3.5, if there is an x ∈ X such that ‖projW fA(x)‖2 , ‖projW⊥fA(x)‖2 ≥

γ, then setting C = ImproveTransform(A,X, ε), we have that

ΦX(C) ≤ ΦX(A)− ρ2ε/(8nd2) ≤ ΦX(A)− γ2ε/(8nd2) .

For the case where all x ∈ X have min(‖projW fA(x)‖2 , ‖projW⊥fA(x)‖2) ≤ γ, we would like
to apply Proposition 3.8. We begin by showing that all of the necessary properties apply.

For starters, letting M̂ =
∑d

i=1 aiqiq
>
i and M = MA(X), we have that

λk(M̂)− λk+1(M̂) = ak‖qk‖22 − ak+1‖qk+1‖22 ≥ (3/4)(ε/d3) .

Since ‖MA(X)− M̂‖F ≤
√
dη, we have that

λk(MA(X))− λk+1(MA(X)) ≥ (3/4)(ε/d3)− 2
√
dη ≥ ε/(2d3) .

The requirement that for each x ∈ X that min(‖projW fA(x)‖2 , ‖projW⊥fA(x)‖2) ≤ γ is a bit
subtle, since the W used in Proposition 3.8 is the relevant eigenspace of MA(X), while our W is
merely an approximation of it. Fortunately, it is not hard to show that these spaces are relatively
close to each other.

Lemma 6.3. If v is a unit eigenvector of M , then ‖projW (v)‖2 ≤ 3d7/2η/ε ≤ γ/
√
d if it is one of

the top k eigenvectors, and ‖projW⊥(v)‖2 ≤ (3d7/2η/ε) ≤ γ/
√
d otherwise.

Proof. We have by definition that Mv = λv for some λ. We have that either λ ≤ λk(M̂) −
(3/8)(ε/d3) or λ ≥ λk+1(M̂) + (3/8)(ε/d3). Without loss of generality, we assume the latter. We
note that by Lemma 6.1 that ‖Mv − M̂v‖2 ≤

√
dη, and thus ‖M̂v − λv‖2 ≤

√
dη.

Letting v(W ) and v(W⊥) denote the projections of v onto W and W⊥, and noting that M̂v(W ) ∈
W and M̂v(W⊥) ∈W⊥, we have that

‖M̂v(W ) − λv(W )‖2 ≤
√
dη .

On the other hand, we have that λIW − M̂W,W ≥ (3/8)(ε/d3)IW . Therefore, we have that

(3/8)(ε/d3)‖v(W )‖2 ≤
√
dη .

From this, we conclude that ‖v(W )‖2 ≤ 3d7/2η/ε ≤ γ/
√
d. This completes our proof.
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From the preceding, we note that for any unit vector u that is a linear combination of either
the top-k or bottom d−k eigenvectors of M that u is γ-close to either W⊥ or W respectively (since

it is a sum of relevant eigenvectors). We have that for any x ∈ X that either ‖f (W )
A (x)‖2 ≤ γ or

‖f (W⊥)
A (x)‖2 ≤ γ. In the former case, if u is a unit vector that is a linear combination of the bottom

d − k eigenvectors, then u is γ-close to W , so u · fA(x) ≤ 2γ. This implies that the projection of
fA(x) onto the eigenspace of the bottom d − k eigenvectors has norm at most 2γ. Similarly, if

‖f (W⊥)
A (x)‖2 ≤ γ, then the projection of fA(x) onto the eigenspace of the top-k eigenvectors is

at most 2γ. This shows that the hypothesis of Proposition 3.8 involving the projections of these
vectors onto what it calls W is satisfied with γ replaced by 2γ.

For Property 1 we let M̃ :=
∑d

i=1 cirir
>
i , and note that ‖M̃ −MA(XB)‖F ≤

√
dη. We note

that V is the (d − k)-dimensional subspace minimizing tr(M̃V,V ). In particular, this implies that
for U the span of the bottom d− k eigenvectors of MA(X), we have that

tr(MV,V
A (XB)) ≤ tr(M̃V,V ) +dη ≤ tr(M̃U,U ) +d η ≤ tr(MU,U

A (XB)) + 2dη ≤ tr(MU,U
A (XB)) +γ2/4 .

This shows that Property 1 holds for δ = γ/2.
Property 2 holds similarly. Property 3 holds since

λk(M
V ⊥,V ⊥

A (XB)) ≥ λk(M̃V ⊥,V ⊥)−
√
dη = λk(M̃)−

√
dη ≥ λk(MA(XB))−2

√
dη ≥ λk(MA(XB))−γ/2 .

For Property 4, recall that β = maxx∈XB ‖f (V )
A (x)‖2. This implies that ‖MV,V

A (XB)‖2 ≤ β2. By

the relative error property of Proposition 4.1, this implies that for M̃ :=
∑d

i=1 rir
>
i that ‖M̃V,V ‖2 ≤

2β2. Also note that by definition M̃V,V ⊥ = 0. Next, let v be a unit vector in V and w a unit vector
in V ⊥. We have that

(v ± βw)>M̃(v ± βw) = v>M̃v + β2w>M̃w ≤ 3β2 .

Thus, by the relative error property of Proposition 4.1, we have that

(v ± βw)>MA(XB)(v ± βw) = (v ± βw)>M̃(v ± βw) +O(ηβ2) .

Taking the difference, we get that

2βv>MA(XB)w = (v + βw)>MA(XB)(v + βw)− (v − βw)>MA(XB)(v − βw)

= (v + βw)>M̃(XB)(v + βw)− (v − βw)>M̃(v − βw) +O(ηβ2)

= (v>M̃v + β2w>M̃w)− (v>M̃v + β2w>M̃w) +O(ηβ2)

= O(ηβ2) .

Thus,
v>MA(XB)w = O(ηβ) .

Summing over a basis of v ∈ V and w ∈ V ⊥, we get that

‖MV,V ⊥

A (XB)‖F = O(dηβ) ≤ (γ/2)β .

This shows that Property 4 holds.
Thus, we can apply Proposition 3.8 and find that if we return a subspace, it has the desired

property; and otherwise that setting C = ImproveTransform(A,X, ε), we have that

ΦX(C) ≤ ΦX(A)− Ω(ε3/(d7n)) .

Thus, in either case, if ImproveTransform(A,X, ε) returns a matrix, the value of ΦX(A) de-
creases by Ω(ε5/(d10n5)). Since ζ is less than half of this, each iteration of ForsterTransform’s
main while loop decreases ΦX(A) by at least Ω(ε5/(d10n5)). Therefore, our algorithm terminates
in at most polynomially many iterations.
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7 PAC Learning Halfspaces in Strongly Polynomial Time

In this section, we give our strongly polynomial improper PAC learner for halfspaces, thereby
establishing Theorem 1.6.

7.1 Approximate Forster Decomposition

Theorem 1.5 is often difficult to use directly as it does not always guarantee a Forster ransform.
This is necessary because if many points are concentrated on a subspace, it may be the case that
no such transform exists. However, in this case we can at least find a dense subspace and hopefully
can find a Forster transform on that subspace. In general, we have the following result:

Proposition 7.1 (Forster Decomposition). There is an algorithm that given a multiset X of n
points in Rd∗ and ε > 0, runs in time strongly-polynomial in dn/ε, and with high probability returns
a subspace V ⊆ Rd with V 6= 0 and a linear transformation A : V → Rdim(V ), such that

1. |X ∩ V | ≥ (n/d) dim(V ).

2. The eigenvalues of 1
|X∩V |

∑
x∈X∩V fA(x)(fA(x))> are in [(1− ε)/ dim(V ), (1 + ε)/dim(V )].

Proof. The algorithm here is quite simple, presented in pseudocode below.

Algorithm 8 Extended Forster Transform Algorithm

1: function ForsterSubspace (set X⊂ Rd∗ of n points, accuracy parameter ε)
2: Let V = Rd.
3: Let d′ = dim(V ) and let L be a linear isomorphism between V and Rd′ of bit complexity

comparable to the bit complexity of V .
4: Let X ′ := {L(x) : x ∈ X ∩ (V )}.
5: Run Algorithm 6 on X ′ ⊆ Rd′ .
6: If it returns a subspace W , set V ← L−1W and return to Step 3.
7: Otherwise, if it returns a matrix A, return (V,AL).

The essential guarantee of this algorithm is that V is always a subspace of bounded bit com-
plexity, such that |X ∩ V | ≥ |X| dim(V )/d. This is clearly true initially. If it was true for V , and
our algorithm finds a subspace W , it will also be true of V ′ = L−1W . To see this, we note that

|V ′ ∩X| = |{x ∈ X ∩ V : L(x) ∈W}| = |X ′ ∩W | ≥ |X ′|dim(W )/d′

≥ |X| dim(V ) dim(W )/(dim(V )d) = |X| dim(W )/d .

On the other hand, we note that W is generated by points in X ′, and thus V ′ is generated by points
in X, which in turn implies the bounded complexity claim. In particular, this allows us to define
an L with polynomial bit-complexity, which (along with the observation that dim(V ) shrinks by at
least one each iteration) makes the algorithm clearly strongly polynomial.

The correctness follows from the above proof that |X ∩V | ≥ |X| dim(V )/d, and the fact that A
gives an ε-approximate Forster transform of X ′ on W . This completes the proof of Proposition 7.1.
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7.2 PAC Learning Halfspaces

Since we work in the distribution-independent setting, will assume without loss of generality that
the target halfspace is homogeneous, i.e., has zero threshold. We can straightforwardly reduce
the general case to the homogeneous case by increasing the dimension by 1. In particular, if we
associate point x ∈ Rd with x′ = (x,−1) ∈ Rd+1

∗ , then we note that w · x− t = (w, t) · (x,−1), and
thus a general halfspace over the x vectors is equivalent to a homogeneous halfspace over the x′.

The basic idea of our PAC learning algorithm is that if we are given a set of points in approximate
radial isotropic position, we can use a variant of the perceptron algorithm to efficiently compute a
hypothesis that correctly classifies a reasonable fraction of these points. In particular, we will be
using the following lemma, a version of which appears in [BFKV97, DV04b]:

Lemma 7.2. Let S be a set of n labeled examples (x, y) ∈ Rd × {±1} such that there exists an
unknown vector w ∈ Rd∗ with y = sign(w · x) for each (x, y) ∈ S, and let γ > 0 be a parameter.
There exists an algorithm that given S and γ has running time strongly polynomial in nd/γ, and
returns a vector v ∈ Rd∗ that for all (x, y) ∈ S with |v · x| ≥ γ‖v‖2‖x‖2 satisfies y = sign(v · x).

Proof. We begin with the assumption that we know a vector v such that v · w ≥ 3‖w‖2/γ and
‖v‖22 = O(d/γ2). The algorithm is the following:

1. While there exists an (x, y) ∈ S with |v · x| ≥ γ‖v‖2‖x‖2 and y 6= sign(v · x), do:

(a) Let x̂ be a positive multiple of x with `2-norm between 1 and 2.

(b) v ← v + y(x̂).

2. Return v.

It is clear that the returned value of v has the desired property and that each operation can be
performed with limited precision. It remains to show that, under the given assumptions on v, this
algorithm will terminate in a polynomial number of iterations.

For this, we note that in each iteration if we let v′ be the new value of v, we have that

‖v′‖22 = ‖v‖22 + 2yv · (x̂) + ‖x̂‖22 ≤ ‖v‖22 + 4 + 2y(v · x)‖x̂‖2/‖x‖2 .

Noting that y and (v · x) have opposite signs, the RHS above is at most

‖v‖22 + 4− 2|v · x|/‖x‖2 ≤ ‖v‖22 + 4− 2‖v‖2γ .

Therefore, so long as ‖v‖2 ≥ 3/γ, we have that ‖v′‖22 ≤ ‖v‖22 − 2.
On the other hand, we have that

v′ · w = v · w + y(x̂ · w).

Since y has the same sign as x · w, which has the same sign as x̂ · w, the above quantity is at
least v · w. This means that v · w only increases over the course of our algorithm, and therefore
throughout the algorithm ‖v‖2 ≥ |v · w|/‖w‖2 ≥ 3/γ. Give the above, this implies that ‖v‖22 must
decrease by at least 2 each iteration. This cannot happen more than ‖v‖22 times, and therefore the
algorithm will terminate after at most O(d/γ2) iterations.

It remains to show how to efficiently find a v with v · w ≥ 3‖w‖2/γ and ‖v‖22 = O(d/γ2). We
claim that it is always possible to take v to be an appropriately large constant multiple of

√
d/γ

times plus or minus a standard basis vector. This is because some coordinate of w must have
absolute value at least ‖w‖2/

√
d. Thus, we can run the above algorithm in parallel for each such

initial value of v and run until one of them returns an answer.
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Combining the modified perceptron algorithm of Lemma 7.2 with an approximate Forster trans-
form, gives us a way to learn a reasonable fraction of the points for any linearly separable dataset.

Lemma 7.3. Let S be a multiset of labeled examples (x, y) ∈ Rd∗ × {±1} such that there exists an
unknown vector w ∈ Rd∗ with y = sign(w ·x) for each (x, y) ∈ S. There exists a strongly polynomial
time algorithm that with high probability returns a subspace V of Rd, a linear transformation A :
V → Rdim(V ), and a vector v ∈ V such that for every (x, y) ∈ S with x ∈ V and |v · (Ax)| ≥
‖v‖2 ‖Ax‖2/(2

√
d) we have that y = sign(v · x). Furthermore, this holds for at least a 1/(4d)-

fraction of points (x, y) ∈ S.

Proof. First, we apply the algorithm of Proposition 7.1 to the multiset X = {x ∈ Rd : (x, y) ∈ S}
with ε = 1/2, to obtain V and A. We then let S′ := {(Ax, y) : (x, y) ∈ S, x ∈ V }. We note that for
all (z, y) ∈ S′ we have that y = sign(w · x) = sign(((A>)−1w) · z). This means that we can apply
the algorithm of Lemma 7.2 to S′, which we do with γ = 1/(2

√
d) to obtain v.

By the statement of Lemma 7.2, we have that for each (Ax, y) ∈ S′ with |v·(Ax)| > ‖v‖2 ‖Ax‖2/(2
√
d)

that y = sign(v · (Ax)), as desired. It remains to show that this applies to a large fraction of points
(x, y) ∈ S.

To establish this, we note that

1

|S|
∑

(x,y)∈S,x∈V

(Ax) (Ax)>

‖Ax‖22
=

(
|S′|
|S|

) 1

|S′|
∑

(x,y)∈S,x∈V

(Ax) (Ax)>

‖Ax‖22

 � (dim(V )

d

)(
I

2 dim(V )

)
� I

2d
.

Therefore, we have that

1

|S|
∑

(x,y)∈S

1{x ∈ V }
(

v · (Ax)

‖Ax‖2 ‖v‖2

)2

≥ v>
(
I

2d

)
v/‖v‖22 ≥

1

2d
.

This means that the average value over (x, y) ∈ S of g(x) := 1{x ∈ V }
(

v·(Ax)
‖Ax‖2‖v‖2

)2
is at least

1/(2d). The contribution from terms with g(x) < 1/(2
√
d) is at most 1/(4d). Since g(x) ≤ 1 for

all x, this implies that at least a 1/(4d)-fraction of points (x, y) ∈ S have g(x) ≥ 1/(2
√
d). This

completes the proof of Lemma 7.3.

Ideally, we would like a version of Lemma 7.3 that works over a distribution rather than a
finite set. This can be achieved by running the algorithm of Lemma 7.3 on a suitably large set of
samples. To establish generalization guarantees, we leverage the fact that the collection of possible
classifiers comes from a set of bounded VC-dimension.

Proposition 7.4. Let D be a distribution over Rd × {±1} such that for some unknown vector
w ∈ Rd∗ we have that for (x, y) ∼ D that y = sign(w · x) almost surely. Given ε, δ > 0 with
ε < 1/(20d), there exists an algorithm that draws n = O(d2 log(1/δ)/ε2) i.i.d. samples from D, runs
in time strongly polynomial in n, d, and with probability at least 1− δ returns a vector subspace V
in Rd, a linear transformation A : V → Rdim(V ) and a vector v ∈ V , such that:

1. The probability over (x, y) ∼ D that x ∈ V , |v ·(Ax)| ≥ ‖v‖2 ‖Ax‖2/(2
√
d), and y 6= sign(v ·x)

is at most ε.

2. The probability over (x, y) ∼ D that x ∈ V and |v · (Ax)| ≥ ‖v‖2 ‖Ax‖2/(2
√
d) is at least

1/(5d).
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Proof. We take a set S of n i.i.d. samples from D and apply the algorithm of Lemma 7.3 to them
for n a sufficiently large constant multiple of (d2 log(1/δ)/ε2). This is clearly a strongly polynomial
time algorithm. It remains to prove correctness.

We note that the probability over (x, y) drawn uniformly from S that x ∈ V , |v · (Ax)| ≥
‖v‖2 ‖Ax‖2/(2

√
d), and y 6= sign(v·x) is 0. Furthermore, the probability over (x, y) drawn uniformly

from S that x ∈ V and |v · (Ax)| ≥ ‖v‖2 ‖Ax‖2/(2
√
d) is at least 1/(4d). It suffices to show that

(with high probability over our samples) these probabilities over S are within ε of the corresponding
probabilities if (x, y) were drawn from D.

In fact, we will show that with probability 1− δ over our choice of samples the following holds:
for any choice of V,A, and v, the probabilities over S and D of these events differ by at most ε.
This will follow from the VC-Inequality [DL01], if we can show that these events come from classes
of VC-dimension O(d2). We now proceed with the argument. We note that these events depend
only on the following simpler events:

• Whether y = 1.

• Whether x ∈ V .

• Whether (v · x) > 0.

• Whether |v · x|2 ≥ ‖v‖22 ‖Ax‖22/(4d).

The first of these is a specific event, so has VC-dimension 0. The second event checks membership
in a subspace, which has VC-dimension d. The third event checks membership in a halfspace, hence
also has VC-dimension d. The last of these events is a degree-2 threshold condition, which has VC
dimension O(d2). Since the events we care about are logical combinations of finitely many events
of VC-dimension O(d2), they come from classes with VC-dimension O(d2). This completes our
proof.

We are now ready to prove the main result of this section.

Theorem 7.5. Let D be a distribution over Rd×{±1} such that for some unknown vector w ∈ Rd∗
we have that for (x, y) ∼ D that y = sign(w ·x) almost surely. Given ε, δ > 0 with ε < 1/(20d) there
is an algorithm that draws n = O(d9/2 log(1/ε) log(d/εδ)/ε2) i.i.d. samples from D, runs in strongly
polynomial time, and returns a strongly polynomial time computable function f : Rd → {±1} such
that with probability 1− δ over the samples it holds that Pr(x,y)∼D[f(x) 6= y] ≤ ε.

Proof. For simplicity, we allow our algorithm to output a function f valued in {0, 1,−1}. The
algorithm is as follows:

It is easy to see that the sample complexity and runtime are as desired.
For correctness, we note that S is a set of i.i.d. samples from the distribution of D conditioned

on fi−1(x) = 0. By the conclusion of Proposition 7.4, this means that, with probability at least
1 − δ/(2r) over the samples, the probability that fi(x) = 0 is at most (1 − 1/(2

√
d)) times the

probability that fi−1(x) = 0. Furthermore, with probability at least (1 − δ/(2r)), we have that
|S| < 2M Pr[fi−1(x) = 0]. Combining the above, we see that with probability 1 − δ, when our
algorithm returns an f , it is the case that Pr(x,y)∼D[f(x) = 0] ≤ ε/2.

Furthermore, if all the calls to the algorithm from Proposition 7.4 succeed, then the probability
over (x, y) ∼ D conditioned on fi−1(x) = 0 that fi(x) = y is at least 1/(5d), while the probability
that fi(x) = −y is at most ε/(10d).

Using this, we can show by induction on i that

Pr(x,y)∼D[fi(x) = −y] < (ε/2) Pr(x,y)∼D[fi(x) = y] .
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Algorithm 9 Halfspace Learning Algorithm

1: function LearnLTF (sample access to distribution D over Rd∗×{±1}, accuracy parameter ε)
2: Let f0 ≡ 0.
3: Let C > 0 be a sufficiently large universal constant.
4: Let r = C

√
d log(1/ε) ∈ Z+.

5: for For i = 1 to r do
6: Take M := Cd4 log(d/εδ)/ε2 samples from D and call the resulting multiset T .
7: Let S be the set of (x, y) ∈ T such that fi−1(x) = 0.
8: if |S| < εM/4 then
9: return fi−1

10: else
11: Run the algorithm from Proposition 7.4 with parameters ε← ε/(10d) and δ ← δ/(2r)

to obtain V,A, v, using S as the set of samples.
12: Let

fi(x) :=


fi−1(x) , if fi−1(x) 6= 0

sign(v · (Ax)) , if fi−1 = 0, x ∈ V, and |v · (Ax)|/(2
√
d)

0 , otherwise.

This combined with the result that Pr(x,y)∼D[fi(x) = 0] < ε/2 for the returned fi, gives our final
result.

8 Conclusions and Open Problems

In this work, we designed the first strongly polynomial time algorithm for computing ε-approximate
Forster transforms of a given dataset2. By using this algorithm is an essential ingredient, we gave
the first strongly polynomial time algorithm for distribution-free PAC learning of halfspaces, both
in the realizable setting and in the presence of semi-random label noise. This algorithmic result is
surprising (even in the realizable case), as obtaining a strongly polynomial proper PAC learner is
equivalent to strongly polynomial LP — a major unsolved problem in TCS.

A number of open problems suggest themselves:

• Our ε-approximate Forster transform algorithm has runtime scaling polynomially with 1/ε. That
is, our algorithm runs in strongly polynomial time when ε is at least inverse polynomial in n, d.
An obvious open question is to develop a strongly polynomial algorithm with a polylog(1/ε)
runtime dependence. To achieve such a guarantee with our approach, one needs to circumvent
two obstacles: First, one would need to reduce the number of iterations of our algorithm (that
is controlled by the progress in our potential function). Second, one would require a strongly
polynomial approximate eigendecomposition subroutine with a polylog(1/ε) runtime dependence.

• We believe that the following question is of independent interest: Is there a strongly polynomial
time algorithm for approximate eigendecomposition with a polylog(1/ε) runtime dependence?
Moreover, is there a deterministic algorithm?

2While our Forster algorithm is randomized, we remark that the only source of randomness is due to the method
we use to compute an approximate eigendecomposition. It is plausible that deterministic algorithms exist for this
purpose, in which case our Forster algorithm becomes deterministic as well.
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• The running time of our algorithm is strongly polynomial in n, d, but the polynomial dependence
is quite large (of the order of (nd)10). While we did not make any effort to optimize the degree
of the polynomials, it would be interesting to understand the quantitative limitations of our
approach. Can our approach lead to algorithms with good practical performance?

• As mentioned in the introduction of this paper, Forster’s rescaling can be viewed as a very special
cases of operator scaling and tensor scaling [GdO18]. These tasks have attracted significant
attention in recent years from various communities, and efficient (weakly polynomial) algorithms
(in some cases with a poly(1/ε) dependence) have been developed, see, e.g., [AGL+18, BFG+18]
and references therein. It would be interesting to explore whether our approach can be extended
to yield strongly polynomial algorithms (when ε is not too small) for such generalizations.
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APPENDIX

A Proof of Fact 2.1

We show each property separately.

(a) This follows directly from the fact that the transformation fA(x) = Ax
‖Ax‖2 is scale-invariant.

(b) We have that fB(fA(x)) = fB

(
Ax
‖Ax‖2

)
= fB(Ax) = BAx

‖BAx‖2 = fBA(x), where the second

equality follows from part (a).

(c) Let α = ‖B− I‖2 and y = fA(x). Note that ‖y‖2 = 1. By property (b), we equivalently want
to show that ‖fB(y)− y‖2 ≤ α. We have that

‖fB(y)− y‖2 =

∥∥∥∥ B

‖By‖2
y − y

∥∥∥∥
2

≤ max
v∈Rd:‖v‖2=1

∥∥∥∥ B

‖By‖2
v − v

∥∥∥∥
2

=

∥∥∥∥ B

‖By‖2
− I
∥∥∥∥

2

.

The desired statement follows from the fact that the matrix B
‖By‖2 has eigenvalues between

1
1+α and 1 + α, as B has eigenvalues between 1 and 1 + α and ‖By‖2 ∈ [1, 1 + α].

(d) We have that

f
(V )
BA (x) = projV fB(fA(x)) = projV

(I + aIV )fA(x)

‖BfA(x)‖2
=

(1 + a)f
(V )
A (x)

‖BfA(x)‖2
.

Since 1 ≤ ‖BfA(x)‖2 ≤ 1 + a, it follows that 1 ≤ λ(x)
def
= (1+a)
‖BfA(x)‖2 ≤ 1 + a, as desired.

Similarly, we can write

f
(V ⊥)
BA (x) =

f
(V ⊥)
A (x)

‖BfA(x)‖2
.

Since 1 ≤ ‖BfA(x)‖2 ≤ 1 + a, it follows that 1
1+a ≤ µ(x)

def
= 1
‖BfA(x)‖2 ≤ 1.

This completes the proof of Fact 2.1.
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