
Round-vs-Resilience Tradeoffs

for Binary Feedback Channels

Mark Braverman∗

Princeton University

Klim Efremenko†

Ben-Gurion University

Gillat Kol‡

Princeton University

Raghuvansh R. Saxena§

Tata Institute of Fundamental Research

Zhijun Zhang¶

Princeton University

Abstract

In a celebrated result from the 60’s, Berlekamp showed that feedback can be used

to increase the maximum fraction of adversarial noise that can be tolerated by binary

error correcting codes from 1
4 to 1

3 . However, his result relies on the assumption that

feedback is “continuous”, i.e., after every utilization of the channel, the sender gets the

symbol received by the receiver. While this assumption is natural in some settings, in

other settings it may be unreasonable or too costly to maintain.

In this work, we initiate the study of round-restricted feedback channels, where the

number r of feedback rounds is possibly much smaller than the number of utilizations

of the channel. Error correcting codes for such channels are protocols where the sender

can ask for feedback at most r times, and, upon a feedback request, it obtains all the

symbols received since its last feedback request. We design such error correcting pro-

tocols for both the adversarial binary erasure channel and for the adversarial binary

corruption (bit flip) channel. For the erasure channel, we give an exact characteriza-

tion of the round-vs-resilience tradeoff by designing a (constant rate) protocol with r

feedback rounds, for every r, and proving that its noise resilience is optimal.

Designing such error correcting protocols for the corruption channel is substantially

more involved. We show that obtaining the optimal resilience, even with one feedback

round (r = 1), requires settling (proving or disproving) a new, seemingly unrelated,

∗mbraverm@gmail.com. Supported in part by the NSF Alan T. Waterman Award, Grant No. 1933331, a
Packard Fellowship in Science and Engineering, and the Simons Collaboration on Algorithms and Geometry.

†klimefrem@gmail.com. Supported by the Israel Science Foundation (ISF) through grant No. 1456/18
and European Research Council Grant number: 949707.

‡gillat.kol@gmail.com. Supported by a National Science Foundation CAREER award CCF-1750443 and
by a BSF grant No. 2018325.

§raghuvansh.saxena@gmail.com. Supported by the Department of Atomic Energy, Government of India,
under project no. RTI4001.

¶zhijunz@princeton.edu. Supported by a National Science Foundation CAREER award CCF-1750443.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 179 (2022)

mailto:mbraverm@gmail.com
mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:raghuvansh.saxena@gmail.com
mailto:zhijunz@princeton.edu

“clean” combinatorial conjecture, about the maximum cut in weighted graphs versus

the “imbalance” of an average cut. Specifically, we prove an upper bound on the

optimal resilience (impossibility result), and show that the existence of a matching

lower bound (a protocol) is equivalent to the correctness of our conjecture.

1

Contents

1 Introduction 1

1.1 Our Results and Conjecture . 2

1.1.1 The (Adversarial) Binary Erasure Channel 2

1.1.2 The (Adversarial) Binary Corruption Channel 3

1.2 Related Work . 5

1.3 Open Problems . 7

2 Proof Overview 8

2.1 Result for the Erasure Channel – Theorem 1.1 8

2.2 Result for the Corruption Channel – Theorem 1.4 10

2.2.1 Conjecture 1.3 Implies a Tight Protocol 12

2.2.2 A Tight Protocol Implies Conjecture 1.3 14

3 Model and Preliminaries 15

3.1 Notation and Preliminaries . 15

3.2 Our Model: Round-Restricted Binary Feedback Channels 15

4 Optimal List-Decodable Small Codes 16

4.1 Definitions of List Decodability . 16

4.2 Lemmas about derase and dcorr . 17

4.2.1 Lemmas about derase . 17

4.2.2 Lemmas about dcorr . 19

5 Protocols Against Erasures 19

5.1 Our Protocol . 20

5.2 Analysis . 20

5.2.1 Proof of Theorem 5.1 When r = 1 . 21

5.2.2 Proof of Theorem 5.1 When r > 1 . 22

6 Impossibility Result for Erasures 23

6.1 Proof of Theorem 6.1 When r = 1 . 23

6.2 Proof of Theorem 6.1 When r > 1 . 24

7 Impossibility Result for Corruptions 25

8 An Equivalent Form of Conjecture 1.3 26

8.1 The Vectors Interpretation . 26

8.2 Recasting Conjecture 1.3 . 27

i

9 Protocols Against Corruptions 30

9.1 The Protocol . 30

9.2 Proof of Theorem 9.1 . 33

9.3 Proof of Lemma 9.6 . 34

10 Converse of Theorem 9.1 38

10.1 Proving a Weaker Version of Theorem 10.2 38

10.2 Proof of Theorem 10.2 . 42

11 Discussion on Conjecture 1.3 48

11.1 Conjecture 1.3 on Cliques . 48

11.2 Conjecture 1.3 on Unweighted Graphs . 49

A Technical Preliminaries 54

A.1 Concentration Bounds . 54

A.2 Properties of Binomial Coefficients . 54

A.3 Properties of the Function d . 55

ii

1 Introduction

Cybernetics. Consider the following two scenarios. Scenario one: a steersperson wishes

to steer a longship to shore. She maintains a steady course in a changing environment (wind,

waves, storms, currents, tides, etc.) by adjusting her steering in continual response to the

effect it is observed as having. Scenario two: a teacher has a semester-worth of topics he

wishes to teach to his class. He schedules exams throughout the semester to help him adapt

his pace and determine what material should be repeated.

The above two scenarios are examples of cybernetics, a field that studies self-regulating

processes. A core concept in cybernetics is circular causality, which is typically implemented

using feedback mechanisms, where the observed outcomes of actions are taken as inputs for

further actions. This is the case for, e.g., spacecraft navigators, artificial limbs, and our bod-

ies’ regulation of hormone and blood sugar levels. The term Cybernetics1 was coined in 1948

by the mathematician and philosopher Norbert Wiener for “the science of control and com-

munication in the animal and the machine” [Wie48], following exchanges between numerous

fields during the 1940s, including anthropology, mathematics, neuroscience, psychology, and

engineering.

Feedback in information theory. Cybernetics grew alongside and built on Claude Shan-

non’s information theory, that was developed to improve the transmission of information and

introduced the notion of error correcting codes. Shannon was interested in knowing whether

the existence of a “feedback link” in the channel, where after every utilization of the chan-

nel, the (possibly incorrect) symbol obtained by the receiver is also given to the sender,

allows for better codes. A discouraging early result by Shannon showed that feedback does

not improve the capacity of memoryless channels [Sha56]. It would be another decade or

so before Berlekamp proves that feedback can, in fact, increase the maximum fraction of

adversarial errors that can be tolerated. Specifically, Berlekamp showed that the maximum

noise resilience of the (adversarial) binary channel increases from 1
4
to 1

3
given feedback

[Ber64, Ber68] (also see [Zig76, SWS92, ADL06]).

A key property of the feedback channel exploited by Berlekamp’s result, as well as by

follow up work, is that it supports “continuous” feedback – after every communication round,

the sender gets the symbol received by the receiver. This assumption is natural in some

settings, e.g., in scenario one, the steersperson continuously watches the ship’s motion as she

steers. However, this assumption may be unreasonable or too costly to maintain in other

settings, e.g., in scenario two, the teacher may not want to continuously quiz his students.

This work: round-restricted feedback. Motivated by such examples, in this work, we

initiate the study of round-restricted feedback channels, where the number of feedback rounds

is possibly much smaller than the number of communication rounds. Specifically, we wish

1Interestingly, Cybernetics comes from the Greek word “Kubernetes”, which means steersperson.

1

to design protocols with optimal noise resilience that allow the sender (Alice) to transmit a

message to the receiver (Bob), where during the execution of the protocol, the sender can ask

for feedback at most r times. Upon such a request, the sender obtains all the bits received

by the receiver from the last time feedback was solicited.

One can consider two models for scheduling the feedback rounds: the adaptive and the

non-adaptive models. In the non-adaptive model, the sender decides ahead of time (before

the protocol is run and before the input is known) when to schedule the r feedback rounds,

while in the adaptive model, the timing of each feedback request may depend on the pre-

viously received feedback. In the second scenario, for example, the non-adaptive setting

corresponds to scheduling all exams at the beginning of the semester, while the adaptive

setting corresponds to scheduling the next exam after the previous one was given. While our

techniques hold for both the adaptive and non-adaptive settings, we choose to present our

results for the non-adaptive setting. See Section 1.3 and Section 2.1 for a discussion of the

implication of our techniques for the adaptive setting.

We consider such message transmission protocols with r feedback rounds over both the

(adversarial) binary erasure channel, that erases some of the sent bits (those bits are received

as ‘⊥’), and over the (adversarial) binary corruption channel, that flips some of the sent

bits. As was mentioned before, classical results in information theory show that with no

feedback the maximum noise resilience of the binary corruption channel is 1
4
[Plo60], while

with continuous feedback, the maximum resilience improves to 1
3
[Ber64, Ber68]. For the

binary erasure channel, it is known that with no feedback the maximum resilience is 1
2
, and

it is easy to see that with continuous feedback it approaches 1: the sender re-transmits each

symbol until the receiver receives it.

We mention that rounds (or passes) are often considered to be a scarce resource and that

round-restricted algorithms are extensively studied in other communication settings, e.g.,

communication complexity, distributed computing, streaming algorithms, and cryptographic

protocols, and that we draw inspiration from these settings.

1.1 Our Results and Conjecture

1.1.1 The (Adversarial) Binary Erasure Channel

As discussed above, the maximum resilience of the erasure channel is known for the extreme

cases of no feedback and of continuous feedback. Our first result is an optimal round-vs-

resilience tradeoff for the erasure channel with any number of non-adaptive feedback rounds.

Theorem 1.1. The maximum noise resilience of the (adversarial) binary erasure channel

with r rounds of feedback is 5
7
if r = 1 and 1− 7

12(r+1)
if r > 1. Furthermore, the maximum

noise resilience can be obtained by a deterministic, constant-rate protocol.

Theorem 1.1 can be viewed as a “hierarchy theorem”, showing that more feedback rounds

allow for strictly better resilience. On the other hand, Theorem 1.1 also shows that a constant

2

number Oϵ(1) of feedback rounds already suffices to get a noise resilience of 1 − ϵ for the

erasure channel.

Techniques. The main ingredient in our proof of Theorem 1.1 is the construction of a

list decodable code for the binary erasure channel with m codewords, for all (not necessarily

asymptotic) values ofm. Our code is optimal in the sense that it achieves the maximum error

resilience for every list size simultaneously. We emphasize that for our protocols, we need

such a code for all possible m, which corresponds to all possible “block sizes”. We call codes

with small m’s “small codes”. Given these codes, the protocols we use to prove Theorem 1.1

are rather simple – after every feedback round, Alice and Bob agree on a (smaller, unless

there was a lot of noise) set Γ of candidate inputs x and Alice encodes x with our optimal list

decodable code with m = |Γ| codewords. On the analysis front, we are able to argue that,

unless the adversary erases many of the sent bits, the size of the candidate set Γ shrinks

substantially between feedback rounds, and measure this shrinkage exactly. See Section 2.1

for a detailed overview.

1.1.2 The (Adversarial) Binary Corruption Channel

Theorem 1.1 gives a complete characterization of the noise resilience of the erasure feedback

channel as a function of the number of feedback rounds. However, as will be explained next,

the case of corruptions is much more involved, and we will focus on protocols with one round

of feedback. We mention that since the adaptive and non-adaptive models are the same for

protocols with one feedback round, the results in this section hold for both the adaptive and

non-adaptive settings. Our next theorem gives an upper bound on the noise resilience of

such one-round protocols.

Theorem 1.2. The maximum noise resilience of the (adversarial) binary corruption channel

with one round of feedback is at most 7
23
.

We conjecture that the upper bound of 7
23

on the noise resilience in Theorem 1.2 is tight,

and that it can be achieved by a constant-rate protocol. Perhaps surprisingly, proving this

is equivalent to showing the following combinatorial conjecture about the existence of large

cuts in graphs.

Conjecture 1.3. Let G be a graph with n vertices and non-negative edge weights summing

up to 1. Let wt(S) be the sum of weights of all the edges with both endpoints in the subset of

vertices S, and let Max-Cut(G) be the maximum total weight of all the edges across any cut

in G. Then,2

Max-Cut(G) ≥ 2
3
− 16

15
· E
S⊆[n]

[
min

(
wt(S),wt(S)

)]
. (1)

2As the expectations of wt(S) and wt(S), for a uniformly random S, are 1
4 , Eq. (1) can be equivalently

written as Max-Cut(G) ≥ 6
15 + 8

15 · ES⊆[n]

[∣∣wt(S)− wt(S)
∣∣], where the term inside the expectation is the

“imbalance” of a random cut.

3

We prove Conjecture 1.3 for (large enough) graphs where all edges have equal weight,

i.e., “unweighted” graphs (see Section 11). However, the case for general weighted graphs

seems much harder, and, despite our best effort, we were unable to prove (or disprove) it.

We also mention that Conjecture 1.3 is tight for some graphs (e.g., cliques of size 3 and 5

with edges of equal weight), and related bounds on Max-Cut were studied in other contexts,

e.g., [PT86, Alo02, GY21].

The next theorem gives the equivalence between Conjecture 1.3 and the tightness of

Theorem 1.2.

Theorem 1.4. Theorem 1.2 is tight if and only if Conjecture 1.3 holds. Furthermore,

Conjecture 1.3 implies a constant rate protocol achieving the maximum noise resilience.

In essence, Theorem 1.4 connects the problem of designing optimal error correcting pro-

tocols with one round of feedback to a combinatorial question about graphs. As we discuss

later in Section 2.2, our techniques can also be used to connect the problem of designing op-

timal error correcting protocols with multiple rounds of feedback to similar questions about

graphs.

Techniques. The proof of Theorem 1.4 is technically involved and a detailed overview

can be found in Section 2.2. At a high level, the main ingredient in designing our protocol

is the construction of a special type of “weighted” codes, called dc-codes. A dc-code C is

parameterized by a “distance contribution function” dc that assigns a value in [0, 1] to each

possible message x ∈ {0, 1}k. We require that for all x ̸= x′ ∈ {0, 1}k, the codewords C(x)

and C(x′) are at least (relative) Hamming distance dc(x) + dc(x′) apart. Equivalently, we

ask that the balls of radii dc(x) around C(x) are all disjoint.3 We note that unlike traditional

error correcting codes that have only one distance guarantee for all pairs of codewords (i.e.,

the minimum distance), the distance guarantees for different pairs of codewords in a dc-code

are different. In fact, traditional codes can be viewed as dc-codes for a constant dc function.

dc-codes for non-constant dc functions are useful for our protocol as if the adversary

already used up many of its corruptions before the feedback round, Alice knows she can

afford to send her message x encoded with an error correcting code that does not guarantee

a large distance between C(x) and the other codewords. Geometrically, designing a dc-code

is a sphere packing problem where we need to pack spheres of different radii dc(x). As for

some x’s a small radius dc(x) suffices, some of the spheres are small, which allows the other

spheres being packed to be larger.

The proof of Theorem 1.4 shows that Conjecture 1.3 implies the existence of dc-codes that

are needed for our protocol to work. We assume that Alice uses a uniformly random code to

encode her message before the feedback. The codeword sent by Alice can be corrupted by the

channel in many ways, and each such way would imply a function dc such that Alice would

like to use a dc-code to encode her message after the feedback. We denote by Q the set of dc

3We mention that dc-codes are an example of non-equally spaced codes defined in [EKSZ22].

4

functions for which the corresponding dc-codes are needed by our protocol. We also denote

by P the set of dc functions for which dc-codes exist. We wish to show Q ⊆ P . To this

end, we show that both P and Q are closed and convex, and that in every direction z, the

extremal point of P in direction z is “farther” than the extremal point of Q in direction z. We

then recast this geometric problem as a combinatorial problem by interpreting the direction

vector z as a weighted graph G, and show that the extremal point of P in direction z

corresponds to a Max-Cut in G (as in the left hand side of Conjecture 1.3), while the extremal

point of Q in direction z corresponds to the right hand side of Conjecture 1.3.

For the converse direction of Theorem 1.4, we show that the arguments in the above

paragraph are actually equivalences, except for the assumption that Alice uses a randomly

sampled code to encode her message before the feedback. At a high level, we use Ramsey

theory to show that the assumption that this code is a random code is, at least in some sense,

without loss of generality (see Section 2.2.2 for a more precise statement).

1.2 Related Work

Feedback channels were studied since the early days of information theory and are still

actively studied [Sha56, Hor63, For68, Ber68, Bur76, Sah08, Sha09, ESSG10, SF11, SW13,

to cite a few]. While feedback does not increase the capacity of discrete memoryless channels

with vanishing error, there are settings where feedback is known to allow improvement, like

in the 0-error capacity case [Sha56], and under variable decision time [Bur76].

Partial feedback. Haeupler, Kamath, and Velingker [HKV15] considered the setting

where the feedback is partial, and showed that even if Alice receives feedback bits from

Bob for an arbitrarily small constant fraction of her transmissions, resilience close to (the

optimal resilience of) 1
3
is possible using a randomized protocol. However, the number of

feedback rounds their protocol needs grows linearly with n, the length of Alice’s input. See

[WQC17] for a subsequent result.

Independently and concurrently to our work, [GGZ23] improved [HKV15] and showed

a deterministic protocol that uses O(log n) feedback bits over O(1) feedback rounds to get

resilience approaching 1
3
, along with a similar result for the erasure channel showing that

the resilience approaches 1 for this channel. The main difference between [GGZ23] and

the current work is that we focus on finding the optimal resilience for any given number r

of feedback rounds whereas [GGZ23] focuses on showing that the resilience approaches the

optimal value as the constant r increases. Additionally, their work measures both the number

of feedback rounds and the number of feedback bits, while we only focus on the number of

rounds.

Two-way codes and interactive codes. As discussed above, feedback is also known to

increase the noise resilience of the adversarial binary corruption channel [Ber64, Ber68], and

this result played a big role in recent work in interactive coding [EKS20, GZ22b, GZ22a] and

5

two-way coding [GKZ22, GZ22c, EKSZ22]. In interactive coding [Sch92, Sch93, Sch96], we

wish to simulate a communication protocol Π that was designed to work over the noiseless

channel, by a protocol Π′ that works over a noisy channel. In the setting of two-way codes,

like in the setting of traditional error correcting codes, Alice wishes to transmit a message x

to Bob over a noisy channel. However, unlike the case of traditional codes, where Alice is

the only party that can transmit messages, in two-way codes Bob can also use the (noisy)

channel to transmit messages back to Alice.

Observe that since Bob has no input, any two-way code can be run over the feedback

channel and thus two-way error correcting codes can be viewed as protocols over a noisy

feedback channel. In particular, since the noise tolerance of the binary corruption channel is

only 1
3
, the noise resilience of binary two-way codes over the binary corruption channel is at

most 1
3
. In the same way, results for the bounded round feedback channel give upper bounds

on the noise resilience of the corresponding two-way channels.

Gupta, Kalai, and Zhang [GKZ22, GZ22c] studied two-way error correcting codes over

the binary erasure channel. Their main result is a code that is resilient to a 3
5
fraction of

adversarial errors, improving on the noise tolerance of the one-way binary erasure channel

that is known to be 1
2
. We mention that the two-way coding schemes of [GKZ22, GZ22c]

exchange (almost) linear number of messages. The work of [GKZ22] also gives an upper

bound of 2
3
on the maximum tolerance of the two-way binary erasure channel, and an upper

bound of 2
7
on the maximum tolerance of the two-way binary corruption channel. Given those

upper bounds, a corollary of our results is that even a single round of noiseless feedback allows

for a better error tolerance than any number of noisy feedback rounds over both the erasure

and corruption channels4.

The recent work of Efremenko, Kol, Saxena, and Zhang [EKSZ22] shows that the maxi-

mum noise resilience of two-way error correcting codes for the binary corruption channel is

strictly better than the noise resilience of traditional error correcting codes for this channel,

which is known to be 1
4
[Plo60]. At a very high level, those results for two-way codes are

obtained by implementing a (weak) feedback mechanism over channels with no built-in feed-

back. Related ideas were used in [EKS20, GZ22b, GZ22a] to give interactive binary error

correcting codes with high noise resilience.

4To see why, observe that if Bob’s messages are noiseless, we can assume without loss of generality that
Bob’s messages are much shorter, say at most an ϵ fraction, of Alice’s messages. Indeed, if not, consider
a modified protocol where all messages from Alice are repeated k times, for some large k. For the erasure
channel, either all the repetitions of a bit from Alice are erased or Bob knows the bit exactly. Thus, his
communication does not grow with k. For the corruption channel, it suffices for Bob to say how many of the
repetitions were received as 1, which can be done using log k ≪ k bits.

Moreover, we mention that for this claim, we do not need to rely on Conjecture 1.3, as a lower bound
slightly smaller than 7

23 (but greater than 2
7) on the maximum error resilience of protocols with one feedback

round over the binary corruption channel can be obtained unconditionally using our techniques (but is not
included in the current work).

6

List decodable codes. List decodable codes were introduced in the 50’s [Eli57, Woz58]

and have been studied over numerous papers and found many applications since then. We

next list the works most related to ours. Most of the work on list decoding was done

in the asymptotic regime, where the number of codewords goes to infinity. In this work,

we are interested in the optimal list decodable codes for any (potentially small) number

of codewords. However, as an ingredient in our proof, we use the asymptotic results of

[ABP19] (see also [Bli86, GS00, Bli09]) for optimal list decoding of the corruption channel

(see Lemma 4.5). The list decoding question was also considered for other channels, for

example, over the corruption channel with feedback [Sha09] and the erasure channel [Gur03].

1.3 Open Problems

Our work suggests the study of feedback channels through a new lens, namely, their feedback

round complexity. We next list some suggestions for future work in this direction.

Graph-theoretic conjectures. The most immediate question we leave open is proving

Conjecture 1.3 for all weighted graphs. We also propose the following potentially related

conjecture, which is tight for all odd cliques with edges of equal weight.

Conjecture 1.5. Let G be a graph with n vertices and non-negative edge weights summing

up to 1. Let wt(i) be the sum of weights of all edges incident on vertex i. Then,

Max-Cut(G) ≥ 1

2
+

1

8
·
∑
i∈[n]

wt(i)2.

Round-vs-resilience tradeoff for other channels. Proving Conjecture 1.3 would imply

that our protocol in Theorem 1.4 has optimal noise resilience among protocols with one round

of feedback over the corruption channel. Obtaining a general round-vs-resilience tradeoff for

any number of feedback rounds r for the corruption channel and for other well-studied

channels (e.g., the binary insertion-deletion channel5, the binary deletion-only channel, and

non-binary channels), would be interesting.

Adaptive corruptions over the erasure channel. Theorem 1.1 considers the case of

non-adaptive feedback rounds, where Alice decides ahead of time when to ask for feedback.

It can be shown that the case of adaptive feedback rounds, where Alice chooses when to ask

for another round of feedback after seeing the previous feedback, allows for (strictly) better

round-vs-resilience tradeoffs. Our techniques can be used to write a recursive formula for

the noise resilience in the adaptive case, and finding a “clean”, closed-form formula for this

setting (if one exists) is left open (see Section 2.1).

5We note that this first requires a suitable definition for the insertion-deletion channel with constant
number of rounds.

7

Acknowledgements

We thank Noga Alon for discussions regarding Conjecture 1.3.

2 Proof Overview

In this section, we overview the proofs of Theorems 1.1 and 1.4, starting with the relatively

easier Theorem 1.1.

2.1 Result for the Erasure Channel – Theorem 1.1

The defining feature of the erasure channel is that the receiver (Bob) either receives the bit

sent by Alice or receives a special erasure symbol ⊥. This means that in any round where

Bob receives ⊥, he is certain that this is due to the erasures in the channel, while if he

receives a symbol different from ⊥, he is certain that the symbol must be what Alice sent in

that round. In turn, this means that Bob knows exactly the amount of erasures introduced

by the channel and also means that Bob can (recall that he is trying to determine Alice’s

input) remove from consideration any candidate input that is “inconsistent” and would make

Alice send a different symbol in any such round.

The general format of a protocol. The above observation implies that protocols for

the erasure channel with r rounds of feedback (and therefore r+1 messages from Alice) have

the following format: Alice starts with an input x ∈ Γ0 = {0, 1}n. For her first message,

she takes a code6 C0 : Γ0 → {0, 1}∗ and sends C0(x) to Bob. Some of the bits of C0(x) are

received correctly by Bob, while the remaining bits are erased and replaced with ⊥. Using

the bits he received correctly, Bob can calculate the number of erasures N1 introduced by

the channel in this round and can identify a subset Γ1 ⊆ Γ0 of inputs for Alice that are

consistent with the message he received. Note that Alice’s input x must be in Γ1.

Then, a feedback round takes place, and as Alice learns all the received symbols, she can

also compute N1 and Γ1. As both parties now know these values, they can now “forget” this

round and “reduce”7 to a smaller problem where Alice wants to transmit an element x ∈ Γ1

to Bob using a protocol with r− 1 rounds of feedback and the maximum number of erasures

the channel can insert is N1 lower than what it was before. Continuing this way, the goal of

the parties is to reduce to a problem with 0 rounds of feedback, and set of inputs Γr such

that there exists a (standard) error correcting code for elements in Γr resilient to the number

of erasures that the channel can insert in the last round.

6At this point, it may be helpful to view this as a function instead of a code. We explain why we are
calling it a code later. Also, a more precise way to state this would be to say that there exists an L > 0 such
that C0 : Γ0 → {0, 1}L, as all codewords need to be of the same length to avoid the parties from signaling
through the length of the codeword. Nonetheless, we stick with statements like C0 : Γ0 → {0, 1}∗ throughout
this sketch for simplicity.

7We elaborate what this means exactly in the paragraph on adaptive feedback rounds below.

8

List-decodable small codes. It is readily seen that the protocol format described above

does not care about the exact strings in the sets Γ0, . . . ,Γr, as long as their sizes stay the

same. Thus, the question of whether or not the above protocol format can be instantiated

to get a protocol that is resilient to θ fraction of adversarial erasures, for some θ ∈ [0, 1],

reduces to determining when to schedule the feedback rounds, and given two feedback rounds,

determining the codes Ci to be used by Alice between these rounds. The codes Ci should

be such that, given an initial set size m = |Γi| and a target set size8 k = |Γi+1|, the number

of erasures required to reduce the set size from m to k is the highest. Using such codes,

Alice ensures that unless the adversary invests many erasures, the set of candidates shrinks

substantially between feedback rounds. We first focus on designing such codes.

Codes like the above are known as list decodable codes, and have been well studied

in the asymptotic regime, where m tends to infinity, and exact answers are known (see,

e.g., [Eli57, Woz58, Bli86, Gur03, Bli09, ABP19, Sha09] and Lemma 4.5). However, for our

purposes, we need the exact answer for smaller values of m as well. Codes with small m,

i.e., “small codes” or codes with few codewords, have recently received a lot of attention and

have proven to be useful in designing binary protocols with high error resilience in several

contexts [EKS20, EKSZ22, GKZ22, GZ22b, GZ22c]. In the current paper, we provide a

complete analysis of the list-decodability of these codes for the erasure channel, giving a

function d(m, k) that characterizes exactly the minimum amount of erasure noise needed

such that for any code C : [m] → {0, 1}∗, one can erase d(m, k) fraction of the bits and

ensure that Bob gets a list of candidates of length strictly smaller than k.

The formula for d(m, k) is given in Eq. (7). Proving that this formula is correct re-

quires showing both a construction (of codes with resilience approaching d(m, k)) and an

impossibility result. Our construction has the nice property that the same code is tight

simultaneously for all values of k. Roughly speaking, our code achieves this optimal erasure

noise resilience by ensuring that every coordinate is as differentiating as possible, i.e., we

ensure that for all coordinates j, exactly
⌊
m
2

⌋
(uniformly chosen) codewords have 0 in that

coordinate, while the remaining
⌈
m
2

⌉
codewords have 1 (see Lemmas 4.3 and 4.4). This is as

opposed to randomly sampled codes where, e.g., a 1
2m

fraction (which is large for small m)

of the coordinates are expected to be 0 for all the codewords, and therefore not differentiate

between any pair of codewords.

Scheduling the feedback rounds. Even with an exact formula for d(m, k) in hand, it

still remains to schedule the feedback round correctly in order to maximize the overall noise

resilience of the obtained protocol. The fact that our constructed code is tight simultaneously

for all values of k is of great help for this part, as the actual value of k is determined by the

erasures inserted by the channel and not in our control. This means that in order to schedule

the feedback rounds optimally, one needs to go over all possible values of k (across all rounds)

8Note that k is not known to the parties in advance, and thus it will be ideal if the code used is optimal
for all k simultaneously.

9

that may happen over the channel and maximize the corresponding error resilience. This

requires a careful analysis of the obtained formula for d(m, k) and is presented partly in the

main body of this paper and partly in Appendix A.3.

Adaptive feedback rounds. We finish this section by briefly discussing the extension of

our result to adaptive feedback rounds, as hinted in Section 1.3. Recall our reduction above

from r to r− 1 feedback rounds, and note that this reduction is not perfect in the following

sense: the erasures inserted by the adversary in Alice’s first message in the r-round protocol

dictate the set Γ1 of candidates and the budget of the (r− 1)-round protocol. Observe that

the (r− 1)-round protocol with maximal noise resilience for transmitting a message depends

on the size of the set of candidates and on the erasure budget. Now, since our r-round

protocol is non-adaptive, meaning that the timing of all feedback rounds is fixed in advance

and cannot be recalculated given the erasures in the first round, our r-round protocol may

reduce to a sub-optimal (r − 1)-round protocol. Therefore, when scheduling the feedback

rounds for our r-round protocol, one needs to consider the values of k that are possible across

all rounds in order to get the optimal schedule.

On the other hand, if the feedback rounds can be scheduled adaptively, the reduction is

indeed perfect. In this case, one just needs to schedule the first feedback round beforehand

based on the possible values of k = |Γ1| for this round alone, and then, upon seeing the N1

and Γ1 values, one can take the (r − 1)-feedback round protocol with the maximum error

resilience (when Alice’s input is from Γ1 and the number of erasures is N1 lower) and schedule

the remaining feedback rounds according to this protocol. Thus, our techniques also lead to

a tight recursive formula for the maximum error resilience in the case of adaptive feedback

rounds, but converting it to a “clean” closed form formula (if at all possible) is left open.

2.2 Result for the Corruption Channel – Theorem 1.4

Compared to the erasure channel, where Bob knows exactly the amount of noise inserted and

can safely eliminate many candidate inputs for Alice, the corruption channel is much harder.

Here, upon receiving a message from Alice, all Bob can compute is, given a candidate input y

for Alice, what is the number N(y) of corruptions the channel inserted assuming Alice’s input

was indeed y. Crucially, this value of N(y) may be very different for different y, and unless

it exceeds the maximum possible number of corruptions in the channel (which can only

happen when the protocol is quite far advanced), it can never have Bob eliminate y from

consideration entirely.

Consider now a protocol over the corruption channel with one round of feedback (and

therefore, two messages from Alice). Suppose that Alice’s input x comes from the set {0, 1}n.
As explained above, after receiving the first message from Alice, Bob knows N(y) for all

y ∈ {0, 1}n. By subtracting N(y) from the maximum possible number of corruptions, Bob

can compute, for all y ∈ {0, 1}n, a number dc(y) which is the leftover corruptions, or,

equivalently, the degree to which the second message of Alice can be corrupted, assuming

10

her input is y. As Alice receives feedback from Bob, she can also compute the values dc(y)

for all y ∈ {0, 1}n. In the remainder of this sketch, we normalize dc(y) by dividing it by the

length of Alice’s second message. This will result in a value in [0, 1].

dc-codes. Using this feedback, Alice’s goal in her second message is to allow Bob to

uniquely identify her input. If C : {0, 1}n → {0, 1}∗ is the code used by Alice in her second

message, the only way Bob can uniquely decode Alice’s input is if for all y ̸= y′ ∈ {0, 1}n,
the codewords C(y) and C(y′) are at least (relative) Hamming distance dc(y)+dc(y′) apart.

The reason is that if y is Alice’s input, then the adversary has fractional budget dc(y) that

it can use to corrupt C(y), and thus the codeword received by Bob can be any string of

(relative) Hamming distance at most dc(y) from C(y). Similarly, if y′ is Alice’s input, then

the codeword received by Bob can be any string of Hamming distance at most dc(y′) from

C(y′). Note that the adversary cannot arrange for the received encodings to be the same if

and only if C(y) and C(y′) are at least (relative) Hamming distance dc(y)+dc(y′) apart. We

call a code that satisfies this (relative) Hamming distance property a dc-code and mention

that the values dc(y) can equivalently be seen as the “distance contributed” by y in such a

code.

We note that unlike traditional error correcting codes that have only one distance guaran-

tee for all pairs of codewords (i.e., the minimum distance), for dc-codes, the distance between

a pair of codewords may be different depending on the “compatibility” of the messages they

encode. Specifically, we think of each codeword as having a different “radius” and the code

needs to “pack” all the induced balls of different radii. We point out that dc-codes are an

example of non-equally spaced codes defined in [EKSZ22].

We also observe that the small code used in our protocol for erasures can be viewed as a

dc-code where dc(y) = 0 for all inputs y that Bob has ruled out (and therefore, do not need

any distance guarantees), and dc(y) = c for all inputs y that he has not ruled out, where c

is the best possible constant (c is determined by the d(m, k) function). We mention that for

the erasure channel, our protocol also needed list-decoding guarantees that are not needed

here as we are only attempting to get a one feedback round protocol.

The discussion so far shows that the existence of a protocol with a given error resilience

amounts to determining whether or not it holds that for all functions dc(·) that can be

induced by the corruptions inserted in Alice’s first message, there exists a dc-code that Alice

can use to compute her second message. Curiously, we show in the next subsection that this

question is equivalent to our seemingly unrelated combinatorial conjecture (Conjecture 1.3)

about the existence of large cuts in graphs.

Towards multiple rounds of feedback. The above approach of designing dc-codes (that

have no rounds of feedback) to construct protocols with one round of feedback can be gen-

eralized. One can similarly argue that, for any r ≥ 0, dc-codes with r rounds of feedback

can be used to construct protocols with r+1 rounds of feedback. Analogously to the above,

the “extra” round is the first round, and dictates which dc-code is used in the rest of the

11

protocol. Moreover, questions about constructing dc-codes with r rounds of feedback can be

translated to questions about graphs. The r = 0 case is explained next, but similar ideas

may be used for general r, with appropriate changes in the definitions of the set P and Q

(see below).

2.2.1 Conjecture 1.3 Implies a Tight Protocol

We first show why Conjecture 1.3 implies the existence of a tight protocol. In fact, we

shall show the existence of a protocol where Alice’s message in the first round is simply the

encoding of her input x using a randomly sampled code. Let m = 2n. A distance function is

a function dist :
(
[m]
2

)
→ R, where

(
[m]
2

)
is the set of all subsets of [m] of size 2. For a code C :

[m]→ {0, 1}∗, we denote by distC the distance function induced by C, i.e., distC(i, i
′) is the

(relative) Hamming distance between C(i) and C(i′). For a distance contribution function

dc, we denote by distdc the distance function induced by dc, i.e., distdc(i, i
′) = dc(i) + dc(i′).

For simplicity, throughout this overview we assume that dc(y) = 1− N(y) (recall that dc(y)

is actually the normalized leftover corruption count, but in this sketch we will ignore the

exact multiplicative and additive constants in this function).

Recasting as a geometric problem. We denote by P the set of all distance functions

distC that are induced by codes C : [m] → {0, 1}∗. We denote by Q the set of all distance

functions distdc induced by dc functions that can be obtained by the corruptions inserted

in Alice’s first message (recall that dc depends on N, which is a function of the corruptions

inserted in Alice’s first message). In other words, P is the set of distance functions that can

be realized and Q is the set of distance functions required by our protocol. We wish to prove

Q ⊆ P .

We view distance functions dist as
(
m
2

)
-dimensional vectors. We observe that both P and

Q are closed and convex and that the set P is “downwards-closed”, meaning that if dist ∈ P

then any dist′ that is coordinate wise at most dist is also in P . This means that showing

Q ⊆ P is equivalent to showing that for all
(
m
2

)
-dimensional non-negative hyperplanes z, it

holds that:

max
dist∈P

⟨z, dist⟩ ≥ max
dist∈Q

⟨z, dist⟩, (2)

Recasting as a combinatorial problem. By scaling, we can assume that the entries

of z sum to 1 and view them as the weights on the edges of an m-vertex graph Gz as in

Conjecture 1.3. As both P and Q are closed and convex, both the maximums are attained

at one of their vertices.

To reason about Eq. (2), it will be useful to represent a code C : [m] → {0, 1}L as a

sequence of L one-bit functions b : [m] → {0, 1} (the first one-bit function corresponds to

the first coordinate of C(i), etc.). Observe that for the code b : [m] → {0, 1} (i.e., L = 1),

it holds that distb is a boolean function with distb(i, i
′) = 1 if and only if b(i) ̸= b(i′).

12

The LHS of Eq. (2). Since a general code C is a sequence of one-bit functions, it can

be shown that the function distC is a convex combination of the functions distb that are

induced by one-bit functions b. In particular, this means that the vertices of P are distance

functions induced by one-bit functions. Using the expression above for distb for one-bit

function b : [m] → {0, 1}, the value of ⟨z, distb⟩ is the value of the cut in the graph Gz

indicated by b:

⟨z, distb⟩ =
∑
(i,i′)

zi,i′ · distb(i, i′) =
∑

(i,i′): b(i)̸=b(i′)

zi,i′ . (3)

Thus, the left hand side of Eq. (2) is the maximum cut in Gz, as in Conjecture 1.3.

The RHS of Eq. (2). We view the code used by Alice in her first message as a sequence

of one-bit functions. Since in our protocol this code is randomly sampled, each of the 2m

one-bit functions is expected to appear equally often in Alice’s message9. As the channel

can corrupt each of these one-bit functions independently of all the others, we get that a

distance function dist can be induced by the corruptions inserted in Alice’s first message (i.e.,

dist ∈ Q) if and only if it is the expectation (under the uniform distribution over one-bit

functions) of the distance functions that can be induced by corrupting one-bit functions.

Now, if Alice is sending a one-bit function b : [m]→ {0, 1}, there are only two possibilities

for Bob: either he receives a 0 or he receives a 1. Let dcb be the distance contribution

function dictated by Bob’s received bit. We next show that in the former case, where

Bob receives 0, the value of ⟨z, distdcb⟩ is the value of the cut in Gz indicated by b plus

twice the weight of all edges such that b(·) = 0 on both its endpoints. To see that, recall

that distdcb(i, i
′) = dcb(i) + dcb(i

′) and that we assume dcb(y) = 1 − N(y). In our case,

dcb(i) = 1 − 0 = 1 if b(i) = 0 (Alice’s bit was not corrupted) and dcb(i) = 0 if b(i) = 1

(Alice’s bit was corrupted). This implies that distdcb(i, i
′) = 0 if b(i) = b(i′) = 1, and that

distdcb(i, i
′) = 1 if b(i) ̸= b(i′), and that distdcb(i, i

′) = 2 if b(i) = b(i′) = 0. Therefore,

max
dist∈Q

⟨z, distdcb⟩ =
∑
(i,i′)

zi,i′ · distdcb(i, i′) =
∑

(i,i′): b(i) ̸=b(i′)

zi,i′ +
∑

(i,i′): b(i)=b(i′)=0

2 · zi,i′ . (4)

Similarly, it can be shown that in the latter case, where Bob gets 1, the value of ⟨z, distdcb⟩ is
the value of the cut in Gz indicated by b plus twice the weight of all edges such that b(·) = 1

on both its endpoints.

Recall that the bit function b is a uniformly random bit-function. Taking an expectation

over one bit functions b, the value of the cut in Gz indicated by b is exactly the constant 1
2

and the other terms on the right hand side of Eq. (3) and Eq. (4) are exactly as on the

right hand side of Conjecture 1.3, where the maximum becomes minimum because of the

constants involved. Eq. (2) now directly follows from Conjecture 1.3.

9We mention that this is only in expectation and the length of Alice’s message need not depend expo-
nentially on m.

13

2.2.2 A Tight Protocol Implies Conjecture 1.3

We now finish this sketch by arguing why a tight protocol implies Conjecture 1.3. For this,

we note that all the arguments in Section 2.2.1 were actually equivalences, except two, one

of which was explicitly stated and one was not. The explicit one was our assumption that

Alice’s first message is simply the encoding of her input using a randomly sampled code.

The second one was that Alice gets feedback from Bob at round 8T
23
, where T is the total

number of rounds of the protocol. The constant 8
23

may seem arbitrary, but it is the constant

one gets when one tries to match the constants obtained in the analysis in Section 2.2.1 with

the constants in Conjecture 1.3.

Both these assumptions are actually without loss of generality. We start by arguing this

for the second one, again ignoring the actual constants and only stating the high level idea.

Roughly speaking, the second assumption is without loss of generality as Conjecture 1.3 is

tight for cliques of size 3 and 5, and if the constant is anything other than 8
23
, Eq. (2) will

fail to hold for z corresponding to one of these cliques. For a formal proof, see Claim 10.4.

It remains to show why the first assumption is without loss of generality. For this, our

approach is to take an arbitrary code C : [m] → {0, 1}∗ that Alice may use for her first

message, and in several steps, convert it to a code that looks more and more like a random

code, at the cost of a smaller m. In each step k, we convert C to a code that is k-random,

in the sense that any set of k codewords of the new code looks like k codewords from a

randomly sampled code. The exact definition also requires an error parameter ϵ and is given

in Definition 9.2.

For k = 1, this means that we have to show that each codeword has an equal number of 0s

and 1s, and this can be easily achieved by concatenating all codewords with their negations

(which preserves the distance properties). We now show how to get a 2-random code from

a 1-random code, noting that similar (but technically more involved) ideas allow us to get a

(k+1)-random code from a k-random code, for any k ≥ 1. To show that a code is 2-random,

we need to show that it is 1-random and that the fractional distance between any pair of

codewords is (roughly) 1
2
.

For this, let ϵ > 0 be an error parameter and construct a complete graph with the m

codewords as the vertices, and color the edge between codewords i and i′ as (1) red, if the

fractional distance between them is smaller than 1
2
− ϵ, (2) blue, if the fractional distance

between them is between 1
2
−ϵ and 1

2
+ϵ, (3) green, if the fractional distance between them is

larger than 1
2
+ ϵ. As m gets larger and larger, Ramsey theory tells us that there must exist

a large (going to infinity with m) monochromatic clique in this graph. This clique cannot

be red, as we show that a large number of pairwise close codewords can be used to break

the protocol. It also cannot be green, as that would violate known distance bounds for error

correcting codes. Thus, it must be blue, implying that restricting attention to this clique

gives us our desired 2-random code.

14

3 Model and Preliminaries

3.1 Notation and Preliminaries

For x ∈ R, let −→x be the vector (of appropriate dimension inferred from context) with all

its coordinates being x. Throughtout, all inequalities between vectors are coordinate-wise.

For k ≥ 0, ∆k = {(x0, . . . , xk) ∈ Rk+1 |
∑k

i=0 xi = 1 and xi ≥ 0 for all i ∈ [0, k]} denotes

the k-dimensional standard simplex. For x ∈ R and k ≥ 0, we write xk as a shorthand

for falling factorial
∏k−1

i=0 (x − i).10 For a set S and k ≥ 0, let
(
S
k

)
be the collection of all

subsets of S of size k. For a function f : X → Y and subset X ′ ⊆ X, f |X′ denotes the

restriction of f onto X ′. For x, y ≥ 1, R(x, y) is the (two-color) Ramsey number for x, y,

which is well-known to be finite. For k ≥ 1 and two bit strings x, y ∈ {0, 1}k, their Hamming

distance is ∆(x, y) =
∑k

i=1 1[xi ̸= yi].

3.2 Our Model: Round-Restricted Binary Feedback Channels

We now define (deterministic, binary) protocols with (non-adaptive) round-restricted feed-

back for the message transfer task, where Alice has an input and Bob’s goal is to learn this

input. Such a protocol is defined by a tuple:

Π =
(
n, r, {Li}i∈[r+1], {fi}i∈[r+1], out

)
, (5)

where (1) {0, 1}n is the set of all possible inputs for Alice. (2) r is the number of feedback

rounds. Equivalently, we can say that Alice speaks in r + 1 rounds. (3) For all i ∈ [r + 1],

Li is the length of Alice’s message in the i-th round. Throughout, we use L =
∑r+1

i=1 Li.

(4) For all i ∈ [r+1], fi : {0, 1}n×{0, 1,⊥}L1 × · · ·× {0, 1,⊥}Li−1 → {0, 1}Li is the message

function Alice uses in the i-th round. (5) out : {0, 1,⊥}L1 × · · · × {0, 1,⊥}Lr+1 → {0, 1}n is

the function Bob uses to compute the output.

Execution of a protocol. Let Π be a protocol as above. An adversary for Π is defined by a

function Adv : {0, 1}n → {0, 1,⊥}L1×· · ·×{0, 1,⊥}Lr+1 . For i ∈ [r+1], we will use Advi(·) to
denote the function that outputs the i-th coordinate of Adv(·). We next define an execution

of Π in the presence of an adversary Adv for Π: At the beginning of the execution, Alice starts

with an input x ∈ {0, 1}n. The execution consists of r+1 rounds and before the i-th round,

for i ∈ [r+1], Alice and Bob have the (same) transcript τ<i ∈ {0, 1,⊥}L1×· · ·×{0, 1,⊥}Li−1 .

In round i, Alice computes the message fi(x, τ<i) ∈ {0, 1,⊥}Li and sends it to Bob bit by

bit, while Bob receives the string τi = Advi(x). As we assume a feedback channel, if i ≤ r,

Alice also receives the string τi and both the parties add τi to τ<i and continue executing

the protocol.

10See also Falling factorials (Wikipedia) for the notation.

15

https://en.wikipedia.org/wiki/Falling_and_rising_factorials

If i = r+1, the execution of the protocol terminates and Bob outputs out(τ≤r+1). Observe

that this execution is completely determined by x, Π, and Adv. We denote the output of Π

on input x in the presence of adversary Adv by outΠ,Adv(x).

Counting the noise. Let Π be a protocol as above and Adv be an adversary for Π. For

x ∈ {0, 1}n, the amount of noise added by Adv in Π on input x is the number of times Bobs’

received bit is different from the bit Alice sent. Formally, we have:

noiseΠ,Adv(x) =
r+1∑
i=1

∆(Advi(x), fi(x,Adv<i(x))). (6)

For θ ∈ [0, 1], we say that an adversary Adv has budget θ if we have

max
x∈{0,1}n

noiseΠ,Adv(x) ≤ θL.

Types of Adversaries. Let Π be a protocol as above and Adv be an adversary for Π.

We say that Adv is a corruption adversary if it never outputs the symbol ⊥, i.e., for all

x ∈ {0, 1}n and all i ∈ [r + 1], we have Advi(x) ∈ {0, 1}Li . We say that Adv is an erasure

adversary if it only “erases” the symbols sent by Alice. More precisely, we say that Adv is

an erasure adversary if for all x ∈ {0, 1}n, all i ∈ [r + 1], and all j ∈ [Li], if (Advi(x))j ̸= ⊥,
then we have (Advi(x))j = (fi(x,Adv<i(x)))j.

Resilience of a protocol. Let Π be a protocol as above and θ ∈ [0, 1]. We say that Π has

resilience θ over the binary erasure channel if for all erasure adversaries with budget θ and

all x ∈ {0, 1}n, it holds that outΠ,Adv(x) = x. Resilience over the binary corruption channel

is defined analogously.

4 Optimal List-Decodable Small Codes

In this section, we construct the codes used by our protocol.

4.1 Definitions of List Decodability

Codes for erasures. We start by defining list decodability for erasures.

Definition 4.1. Let m, k, L ≥ 1 and d ∈ [0, 1]. We say that a code C : [m] → {0, 1}L is

less-than-k-list decodable for erasures up to radius d if for all subsets Γ ∈
(
[m]
k

)
, we have

nsC(Γ) > d, where:

nsC(Γ) = 1− 1

L
·

L∑
j=1

1[∃b ∈ {0, 1} ∀i ∈ Γ : Cj(i) = b].

16

To get the intuition behind the definition of ns, observe that nsC(Γ) is the minimum

fraction e of erasures for which there exists τ ∈ {0, 1,⊥}L such that for all i ∈ Γ, it is

possible to erase e ·L symbols from C(i) and get τ . Observe that this is equal to the fraction

of coordinates where the encodings {C(i)}i∈Γ are not all the same (ns = not same).

For m, k ≥ 1, we define derase(m, k) to be the supremum of all values d ∈ [0, 1] for which

there exists L ≥ 1 and a code C : [m]→ {0, 1}L that is less-than-k-list decodable for erasures

up to radius d.

Codes for corruptions. Next, we define list decodability for corruptions:

Definition 4.2. Let m, k, L ≥ 1 and d ∈ [0, 1]. We say that a code C : [m] → {0, 1}L is

less-than-k-list decodable for corruptions up to radius d if for all x̃ ∈ {0, 1}L, we have

|{i ∈ [m] : ∆(C(i), x̃) < dL}| < k.

Analogous to derase, for m, k ≥ 1, we define dcorr(m, k) to be the supremum of all values

d ∈ [0, 1] for which there exists L ≥ 1 and a code C : [m] → {0, 1}L that is less-than-k-list

decodable for corruptions up to radius d.

4.2 Lemmas about derase and dcorr

In this section, we show the results we need about derase and dcorr. First, we define a helper

function d(·, ·):

d(m, k) = 1−
(⌊m/2⌋

k

)
+
(⌈m/2⌉

k

)(
m
k

) . (7)

In Appendix A, we show useful properties about the function d(·, ·).

4.2.1 Lemmas about derase

We now show that the functions derase and d are the exact same. Owing to this lemma, we

omit writing erase in the subscript in the rest of this text.

Lemma 4.3. For all m, k ≥ 1, we have:

derase(m, k) = d(m, k).

Proof. We first show that derase(m, k) ≤ d(m, k). For this it suffices to show that for all

L ≥ 1 codes C : [m] → {0, 1}L, there exists a subset Γ ∈
(
[m]
k

)
such that nsC(Γ) ≤ d(m, k).

We show such a subset Γ exists using probabilistic method. For j ∈ [L], denote zj,b = |{i ∈
[m] | Cj(i) = b}| for b ∈ {0, 1}, i.e., the number of codewords with its j-th bit of encoding

17

being b. Note that zj,0 + zj,1 = m holds for all j ∈ [L]. By linearity of expectation, we have

E
Γ∈([m]

k)
[nsC(Γ)] = 1− 1

L

L∑
j=1

Pr
Γ∈([m]

k)
(∃b ∈ {0, 1}∀i ∈ Γ : Cj(i) = b)

= 1− 1

L

L∑
j=1

(
zj,0
k

)
+
(
zj,1
k

)(
m
k

)
≤ 1− 1

L

L∑
j=1

(⌊m/2⌋
k

)
+
(⌈m/2⌉

k

)(
m
k

)
= d(m, k),

where in the second-to-last step we use the fact that
(
x
k

)
+
(
m−x
k

)
is decreasing in x when

x ≤ m
2
and is increasing in x when x ≥ m

2
, for all fixed m, k. The lemma follows by picking

the subset Γ ∈
(
[m]
k

)
that minimizes the value of nsC(Γ).

It remains to show that derase(m, k) ≥ d(m, k). We show this by showing the stronger

lemma Lemma 4.4 below. It is stronger as it shows the existence of codes that are constant

rate and are tight for all values of k simultaneously.

Lemma 4.4. For all ϵ > 0, there exists a constant K such that for all K ′ ≥ K and for all

m ≥ 1, there exists a code C : [m] → {0, 1}K
′ logm such that for all k ∈ [m], the code C is

less-than-k-list decodable up to radius d(m, k)− ϵ.

Proof. Set K = 10
ϵ3
. Let L = K ′ logm and k0 = log 1

ϵ
+ 1. We first show by the probabilistic

method the existence of such a code C satisfying the distance requirement for all subsets

Γ ⊆ [m] of size no larger than k0.

For each j ∈ [L] independently, we sample the j-th bits of all encodings, Cj(1), . . . , Cj(m),

uniformly at random conditioned on the event that exactly ⌊m
2
⌋ of them are 0 while the

remaining ⌈m
2
⌉ of them are 1. Consider each fixed k ≤ k0 and subset Γ ∈

(
[m]
k

)
, we have

E[nsC(Γ)] = 1− 1

L
·

L∑
j=1

Pr(∃b ∈ {0, 1}∀i ∈ Γ : Cj(i) = b)

= 1−

(
m−k

⌊m/2⌋−k

)
+
(

m−k
⌈m/2⌉−k

)(
m

⌊m/2⌋

)
= 1−

(
m
k

)
·
(

m−k
⌊m/2⌋−k

)
+
(
m
k

)
·
(

m−k
⌈m/2⌉−k

)(
m
k

)
·
(

m
⌊m/2⌋

)
= 1−

(
m

⌊m/2⌋

)
·
(⌊m/2⌋

k

)
+
(

m
⌈m/2⌉

)
·
(⌈m/2⌉

k

)(
m
k

)
·
(

m
⌊m/2⌋

)
= d(m, k). (as

(
m

⌊m/2⌋

)
=
(

m
⌈m/2⌉

)
)

18

By Chernoff bound (Lemma A.1), the distance requirement is not satisfied by any fixed

k ≤ k0 and subset Γ ∈
(
[m]
k

)
with probability at most 2 · exp(−2ϵ2L) < m− 10

ϵ . As there are

at most k0 ·mk0 non-empty subsets of size no larger than k0, by a union bound, there exists

some subset of size no larger than k0 violating the distance requirement with probability

upper bounded by k0 · mk0 · m− 10
ϵ < 1. This implies the existence of a code C with the

desired property.

Finally, we show how to make the distance requirement hold also for all subsets Γ ⊆ [m]

of size larger than k0. In fact, observe that for all subsets Γ ⊆ [m] of size larger than k0, it

holds that for all subsets Γ′ ⊆ Γ of size exactly k0, we have

nsC(Γ) ≥ nsC(Γ
′)

≥ d(m, k0)− ϵ

≥ 1− 1

2k0−1
− ϵ (by Item 2 of Claim A.3)

= 1− 2ϵ

≥ d(m, |Γ|)− 2ϵ.

As a result, simply replacing ϵ with ϵ
2
in the above construction concludes the proof.

4.2.2 Lemmas about dcorr

Using the results of Section 4.2.1, we show the following lemma:

Lemma 4.5. For all m, k ≥ 2, we have:

dcorr(m, 2) =
d(m, 2)

2
and lim

m→∞
dcorr(m, k) =

1

2
−

(
k−1

⌈k/2⌉−1

)
2k

.

Proof. We use Lemma 4.3 and show that dcorr(m, 2) = derase(m, 2)/2. For this, it suffices to

pick an arbitrary code C : [m]→ {0, 1}L and an arbitrary d ∈ [0, 1] and show that C is less-

than-2-list decodable for erasures up to radius d if and only if it is less-than-2-list decodable

for corruptions up to radius d/2. Fix such a C : [m]→ {0, 1}L and d ∈ [0, 1]. Observe that

C is less-than-2-list decodable for erasures up to radius d if and only if ∆(C(i), C(j)) ≥ d

for all i, j ∈ [m]. Also, observe that C is less-than-2-list decodable for corruptions up to

radius d if and only if ∆(C(i), C(j)) ≥ 2d for all i, j ∈ [m]. The result (and therefore, the

first equation) follows.

The second equation is a known result first proved in [Bli86]; see also [ABP19].

5 Protocols Against Erasures

In this section, we show one direction of Theorem 1.1, as formalized below. Later, in Sec-

tion 5, we prove the other direction.

19

Theorem 5.1. For all ϵ > 0 and r, n ∈ N, there exists a constant-rate (polynomial in ϵ)

protocol for message transfer with r rounds of feedback, input length n, and the following

resilience over the binary erasure channel:{
5
7
− ϵ, if r = 1

1− 7
12(r+1)

− ϵ, if r > 1
.

We prove Theorem 5.1 in the rest of this section. Throughout, we fix ϵ > 0 and r, n ∈ N.
We assume r < 10

ϵ
. This is without loss of generality as a protocol for large r follows from a

protocol for smaller r.

5.1 Our Protocol

Let K be the constant from Lemma 4.4 for ϵ. For all K ′ ≥ K and all m ≥ 1, let Cm,K′ :

[m] → {0, 1}K
′ logm be as promised by Lemma 4.4. We will omit K ′ when it is clear from

context. For a set Γ of size m, we will also view Cm as a code CΓ : Γ → {0, 1}K
′ logm. Our

protocol is given in Algorithm 1, where the lengths of the rounds are given as follows:

Li =

{
4
3
·Kn, if i = r = 1

Kn, otherwise
. (8)

Algorithm 1Message transfer protocol over the erasure channel with r ≥ 1 feedback rounds.

Input: Alice has input x ∈ Γ0 = {0, 1}n.
Output: Bob outputs y ∈ {0, 1}n.
1: for i = 1, . . . , r + 1 do
2: Alice sends CΓi−1

(x) ∈ {0, 1}Li bit by bit.
3: Bob receives τi ∈ {0, 1,⊥}Li and sends τi via the noiseless feedback channel.
4: Bob computes

Γi = {x′ ∈ Γi−1 | ∀j ∈ [Li] : τi,j ∈ {CΓi−1,j(x
′),⊥}}.

5: If i ≤ r, Alice receives τi as feedback and also computes Γi as above.
6: end for
7: Bob outputs the lexicographically first element in Γr+1, aborting if Γr+1 = ∅.

5.2 Analysis

We now analyze Algorithm 1 and finish proving Theorem 5.1. That the protocol is constant

rate is clear from Algorithm 1. It remains to show that it has the claimed noise resilience.

For this, we fix an input x for Alice and an erasure adversary Adv for the protocol with

20

desired budget as in Theorem 5.1. Observe that fixing x and Adv fixes the value of all the

variables in the execution of Algorithm 1. For the analysis, we first show that:

Lemma 5.2. For all i ∈ [0, r + 1], we have x ∈ Γi.

Proof. The base case of i = 0 holds trivially. For i ≥ 1, we know x ∈ Γi−1 by induction.

Since Alice sends CΓi−1
(x) in the i-th round and the adversary is only capable of erasing

some of the symbols Alice sends, what Bob receives, namely τi, must still be compatible

with CΓi−1
(x). Therefore, with the help of the noiseless feedback channel, Alice and Bob

always agree on a subset Γi ⊆ Γi−1 that still contains x, at the end of the i-th round.

Lemma 5.3. For all m ≥ k′ ≥ k ≥ 2 such that (k′, k) ̸= (3, 2), it holds that

d(m, k′) + d(k′, k) ≥ 1 + d(m, k).

The proof of Lemma 5.3 is deferred to Appendix A.3. At a high level, Lemma 5.3 will be

applied as follows: Consider an adversary that shrinks the set Γ from size m to size k′ in a

given round and from size k′ to size k in the next round. Lemma 5.3 shows that, if the two

rounds are of equal length (recall from Eq. (8) that the round lengths are always the same

except when i = r = 1), then it is always better for the adversary to erase one of the rounds

completely and shrink from size m to size k directly in the other round.

We now divide the proof into two cases based on whether or not r = 1.

5.2.1 Proof of Theorem 5.1 When r = 1

Let ki = |Γi| for i ∈ [0, 2]. We prove the theorem by showing that k2 ≤ 1. Together

with Lemma 5.2 and Line 7, this shows the correctness of Algorithm 1.

Observe that at the beginning of the i-th round, Alice and Bob agree on Γi−1, the subset of

all remaining possibilities for x from the perspective of Bob, that are still consistent with the

partial transcript τ1, . . . , τi−1 so far. In order to keep Bob confused among Γi, the adversary

has to erase at least a d(ki−1, ki)− ϵ fraction of Alice’s i-th message, due to Lemma 4.4. As

this holds for all rounds, the overall fraction of erasures is lower bounded by

4

7
(d(k0, k1)− ϵ) +

3

7
(d(k1, k2)− ϵ) =

4d(k0, k1) + 3d(k1, k2)

7
− ϵ.

Now suppose k2 ≥ 2. It is sufficient to show 4d(k0, k1) + 3d(k1, k2) ≥ 5 for a contradiction.

Without loss of generality, we assume k2 = 2 since d(k1, k2) only decrease as k2 becomes

smaller by Item 3 of Claim A.3. If k1 = 3, we have

4d(k0, k1) + 3d(k1, k2) = 4d(k0, 3) + 3d(3, 2) ≥ 4 · 3
4
+ 3 · 2

3
= 5

by Item 2 of Claim A.3. Otherwise, by Lemma 5.3, we also get

4d(k0, k1) + 3d(k1, k2) = 4(d(k0, k1) + d(k1, 2))− d(k1, 2)

21

≥ 4(1 + d(k0, 2))− d(k1, 2)

≥ 3 + 4d(k0, 2) (as d(·, ·) is always upper bounded by 1)

≥ 3 + 4 · 1
2

(by Item 2 of Claim A.3)

= 5.

5.2.2 Proof of Theorem 5.1 When r > 1

Let ki = |Γi| for i ∈ [0, r+1]. Similarly to the proof in Section 5.2.1, we show that kr+1 ≤ 1.

This ensures Bob outputs the correct y = x because of Lemma 5.2 and Line 7. Using a similar

argument to Section 5.2.1, we have that the overall fraction of erasures is lower bounded by

1

r + 1
·
r+1∑
i=1

d(ki−1, ki)− ϵ.

Now for the purpose of contradiction, suppose that kr+1 ≥ 2. It is sufficient to show

1

r + 1
·
r+1∑
i=1

d(ki−1, ki) ≥ 1− 7

12(r + 1)
.

In the following, we again assume without loss of generality that kr+1 = 2 since d(kr, kr+1)

decreases as kr+1 becomes smaller by Item 3 of Claim A.3. Let j = min{t ∈ [r+1] | kt ≤ 3}.
By repeatedly applying Lemma 5.3, we have

1

r + 1
·
r+1∑
i=1

d(ki−1, ki)

≥ 1

r + 1
·

(
1 + d(k0, k2) +

r+1∑
i=3

d(ki−1, ki)

)
...

≥ 1

r + 1
·

(
j − 1 + d(k0, kj) +

r+1∑
i=j+1

d(ki−1, ki)

)
.

Since k0 ≥ · · · ≥ kr+1 = 2 by definition of Γi, either kj = 2 or kj = 3.

In the former case where kj = 2, we also have kj+1 = · · · = kr+1 = 2 and thus

1

r + 1
·
r+1∑
i=1

d(ki−1, ki)

≥ 1

r + 1
·

(
j − 1 + d(k0, kj) +

r+1∑
i=j+1

d(ki−1, ki)

)

22

=
1

r + 1
· (j − 1 + d(k0, 2) + (r + 1− j) · d(2, 2))

≥ 1

r + 1
·
(
j − 1 +

1

2
+ r + 1− j

)
(by Item 2 of Claim A.3)

= 1− 1

2(r + 1)

≥ 1− 7

12(r + 1)
.

In the latter case where kj = 3, let j′ = min{t ∈ [r + 1] | kt = 2}. Then we have

1

r + 1
·
r+1∑
i=1

d(ki−1, ki)

≥ 1

r + 1
·

(
j − 1 + d(k0, kj) +

r+1∑
i=j+1

d(ki−1, ki)

)

=
1

r + 1
·
(
j − 1 + d(k0, 3) + (j′ − 1− j) · d(3, 3) + d(3, 2) + (r + 1− j′) · d(2, 2)

)
≥ 1

r + 1
·
(
j − 1 +

3

4
+ j′ − 1− j +

2

3
+ r + 1− j′

)
(by Item 2 of Claim A.3)

= 1− 7

12(r + 1)
.

This concludes the proof.

6 Impossibility Result for Erasures

In this section, we show the other direction of Theorem 1.1, as formalized below.

Theorem 6.1. For all r ∈ N, there exists an n ∈ N such that the resilience of any protocol

for message transfer with r rounds of feedback and input length n over the binary erasure

channel is at most: {
5
7
, if r = 1

1− 7
12(r+1)

, if r > 1
.

We prove Theorem 6.1 in the rest of this section. Throughout, we work with a fixed

r ∈ N and define n to be large enough for asymptotic inequalities to hold. We now divide

the proof into two cases based on whether or not r = 1.

6.1 Proof of Theorem 6.1 When r = 1

Fix a protocol Π with input length n and one round of feedback. Recall Eq. (5) and let L1, L2

be the lengths of Alice’s messages sent in the two rounds, and f1 : {0, 1}n → {0, 1}L1 , f2 :

23

{0, 1}n × {0, 1,⊥}L1 → {0, 1}L2 be the two message functions Alice uses in the two rounds.

First suppose that L1 ≥ 4
7
(L1 +L2). By Lemma 4.3, there exists a subset Γ = {x1, x2} ∈({0,1}n

2

)
such that nsf1(Γ) ≤ d(2n, 2). This implies the adversary is able to erase a d(2n, 2)

fraction of Alice’s first message so that Bob’s view when Alice’s input is x1 is identical to

Bob’s view when Alice’s input is x2, and therefore Bob is forced to send the same feedback

τ1 ∈ {0, 1,⊥}L1 in both cases. Now the adversary simply erases Alice’s second message

entirely implying that Bob can never output the correct answer. By Item 2 of Claim A.3,

the overall fraction of erasures is upper bounded as

d(2n, 2) · L1

L1 + L2

+ 1 · L2

L1 + L2

≤ 4 · d(2n, 2) + 3

7

n→∞−−−−−−−→ 5

7
.

Now consider the other case where L1 ≤ 4
7
(L1 + L2). Again by Lemma 4.3, there exists

a subset Γ = {x1, x2, x3} ∈
({0,1}n

3

)
such that nsf1(Γ) ≤ d(2n, 3). In this case, the adversary

erases a d(2n, 3) fraction of Alice’s first message so that Bob’s view is the same when Alice’s

input is any of x1, x2, x3. Bob must send the same feedback τ1 ∈ {0, 1}L1 in all three cases.

Note that f2(·, τ1) can also be viewed as a valid code and thus Lemma 4.3 still applies. In

particular, it is always possible to erase a d(3, 2) = 2
3
fraction of Alice’s second message so

that for at least two of x1, x2, x3, Bob’s view remains the same at the end of the protocol.

This concludes the proof as the overall fraction of erasures is at most

d(2n, 3) · L1

L1 + L2

+
2

3
· L2

L1 + L2

≤
4 · d(2n, 3) + 3 · 2

3

7

n→∞−−−−−−−→ 5

7
.

6.2 Proof of Theorem 6.1 When r > 1

Fix a protocol Π with input length n and r rounds of feedback. Recall Eq. (5) and for

t ∈ [r + 1], let Lt be the length of Alice’s message sent in the t-th round. Let L =
∑r+1

t=1 Lt.

We prove the theorem using an approach similar to Section 6.2, i.e., the adversary is

always able to erase Alice’s messages in such a way that Bob has the same view at the

end of the protocol for at least two different inputs. In particular, the adversary erases

the entire messages of all rounds except for i = argmaxt∈[r+1] Lt, the longest round, and

j = argmaxt∈[r+1]\{i} Lt, the second longest round. Then we have

Li ≥
L

r + 1
, (9)

Lj ≥
L− Li

r
. (10)

First consider the case where i < j. Since the first i − 1 rounds are completely erased,

Bob obviously has the same view for all possible inputs at the beginning of the i-th round.

By Lemma 4.3, the adversary can erase a d(2n, 3) fraction of Alice’s i-th message so that

Bob’s view is the same when Alice’s input is any of some subset Γ = {x1, x2, x3} ⊆ {0, 1}n.

24

This remains true at the beginning of the j-th round as all intermediate rounds are completely

erased. Now again by Lemma 4.3, the adversary is able to erase a d(3, 2) = 2
3
fraction of

Alice’s j-th message so that Bob still has the same view at the end of the j-th round, for

at least two of x1, x2, x3. As all remaining rounds are also completely erased, Bob can never

output the correct answer at the end of the protocol. By Item 2 of Claim A.3, the overall

fraction of erasures is upper bounded as

d(2n, 3) · Li

L
+

2

3
· Lj

L
+ 1 · L− Li − Lj

L

= 1−
(
1− d(2n, 3)

)
· Li

L
− 1

3
· Lj

L

≤ 1−
(
1− d(2n, 3)

)
· Li

L
− 1

3r
· L− Li

L
(by Eq. (10))

= 1− 1

3r
−
(
1− d(2n, 3)− 1

3r

)
· Li

L

≤ 1− 1

3r
−
(
1− d(2n, 3)− 1

3r

)
· 1

r + 1

(as 1− d(2n, 3)
n→∞−−−→ 1

4
> 1

3r
for r ≥ 2, and by Eq. (9))

n→∞−−−−−−−→ 1− 7

12(r + 1)
.

Now suppose that i > j. In this case, a similar argument shows the adversary must

be able to confuse Bob by erasing a d(2n, 3) fraction of Alice’s j-th message as well as

a d(3, 2) = 2
3
fraction of Alice’s i-th message (in addition to completely erasing all other

rounds of messages). Observe that Li ≥ Lj by definition and that d(2n, 3)
n→∞−−−→ 3

4
≥ 2

3
. So

the overall fraction of erasures is at most

d(2n, 3) · Lj

L
+

2

3
· Li

L
+ 1 · L− Li − Lj

L
≤ d(2n, 3) · Li

L
+

2

3
· Lj

L
+

L− Li − Lj

L
,

which has the desired upper bound as already shown above.

7 Impossibility Result for Corruptions

We now explore the setting with corruptions. As discussed in Section 1, we will focus on the

case of a single feedback round. In this section, we present a simple proof of Theorem 1.2.

Apart from deriving an upper bound (conjectured to be tight) on the maximum possible

noise resilience, the proof also helps shape our protocol to the extent that it gives insights

into when the feedback has to occur. Specifically, we get that the ratio between the lengths

of the two rounds has to be around 8
15

if the protocol aims to achieve a matching lower bound

of 7
23

on the noise resilience.

Proof of Theorem 1.2. Fix Π to be any protocol with a fixed order of speaking for message

25

transfer over a binary corruption channel with a single round of noiseless feedback. Let n

be the length of input and L1, L2 the length of communication before and after feedback,

respectively. Also let C1 : {0, 1}n → {0, 1}L1 and C2 : {0, 1}n → {0, 1}L2 be the two codes

Alices uses in the two rounds, respectively.

First suppose L1 ≥ 8
23
(L1+L2). There exist three codewords x1, x2, x3 ∈ {0, 1}n and some

corruption τ1 ∈ {0, 1}L1 such that ∆(C1(xi), τ1) ≤ dcorr(2
n, 3) · L1 for all i ∈ [3]. Suppose τ1

is what Bob receives in the first round. Alice can learn nothing but τ1 from the feedback.

In the second round, it is always possible to corrupt Alice message to some τ2 ∈ {0, 1}L2

such that ∆(C2(xi), τ2) ≤ dcorr(3, 2) · L2 =
1
3
L2 in at least two of the three cases. Therefore,

by Lemma 4.5, the adversary is capable of confusing Bob between at least two possibilities

with the total fraction of corruptions upper bounded by

dcorr(2
n, 3) · L1

L1 + L2

+
1

3
· L2

L1 + L2

n→∞−−−−−−−→ 1

4
· L1

L1 + L2

+
1

3
· L2

L1 + L2

≤ 7

23
.

In the other case of L1 ≤ 8
23
(L1 + L2), a similar strategy is used with the only differ-

ence that the adversary seeks five remaining possibilities after the first round. As a result,

dcorr(2
n, 5) · L1 and dcorr(5, 2) · L2 = 3

10
L2 are the corruptions required in the two rounds,

respectively. Again by Lemma 4.5, the total fraction of corruptions then becomes

dcorr(2
n, 5) · L1

L1 + L2

+
3

10
· L2

L1 + L2

n→∞−−−−−−−→ 5

16
· L1

L1 + L2

+
3

10
· L2

L1 + L2

≤ 7

23
,

as desired, concluding the proof.

8 An Equivalent Form of Conjecture 1.3

In this section, we recast Conjecture 1.3 in a form that allows it to be used for protocols.

This is done in Lemma 8.1 which will be useful in both directions of Theorem 1.4. For this,

we first show how both the messages sent by Alice and the adversary’s corruptions can be

viewed as vectors.

8.1 The Vectors Interpretation

Letm,L ∈ N and consider a code C : [m]→ {0, 1}L. Observe that the distance guarantees of

C do not depend on the order in which its coordinates are written, namely, we can take any

permutation π over [L] and permute C(i) for all i by π and preserve the distance guarantees.

This means that the “essence” of C is simply, for all b : [m] → {0, 1} what is the fraction

of coordinates j of C that “match” b, i.e., what is the fraction of coordinates j such that it

holds for all i ∈ [m] that Cj(i) = b(i).

To make this formal, we view such a code C as a distribution h ∈ ∆2m−1 over functions

b : [m] → {0, 1} where probability of sampling a function b : [m] → {0, 1} is exactly the

26

fraction of coordinates j of C that match b. The Hamming distance between two distinct

codewords i and i′ is then equal to

D(h){i,i′} =
∑

b:[m]→{0,1}

1(b(i) ̸= b(i′)) · hb. (11)

We will denote by D(h) the vector D(h) =
(
D(h){i,i′}

)
{i,i′}∈(m2)

.

Similarly, note that when the adversary corrupts a message sent by Alice, all that matters

is, for any given m and b : [m] → {0, 1}, what fraction of coordinates that match b were

corrupted by the adversary. Thus, we can capture an adversary by a vector g ∈ [0, 1]2
m
where,

for all b : [m]→ {0, 1}, the value of gb is simply the fraction of coordinates j such that Bob

receives a 1 in coordinate j out of all the coordinates that match b. In this interpretation, if

the code sent by Alice is captured by f ∈ ∆2m−1 and the adversary is captured by g ∈ [0, 1]2
m
,

then the total number of corruptions needed to corrupt two messages, say i, i′ ∈ [m], of Alice

according to g is given by:

D(f, g){i,i′} =
∑

i′′∈{i,i′}

∑
b:[m]→{0,1}

fb ·
(
b(i′′) · (1− gb) + (1− b(i′′)) · gb

)
. (12)

We will denote by D(f, g) the vector D(f, g) =
(
D(f, g){i,i′}

)
{i,i′}∈(m2)

.

8.2 Recasting Conjecture 1.3

We are now ready to write an equivalent form of Conjecture 1.3.

Lemma 8.1. Conjecture 1.3 holds if and only if for all m > 0, all g ∈ [0, 1]2
m
, there exists

h ∈ ∆2m−1 such that:

D(h) ≥
−→
14

15
− 8

15
· D
(−→

1
2m

, g
)
.

Proof. We will actually show a slightly stronger statement that, for all m > 0, Conjecture 1.3

holds for graphs with m vertices if and only if for all g ∈ [0, 1]2
m
, there exists h ∈ ∆2m−1

such that:

D(h) ≥
−→
14

15
− 8

15
· D
(−→

1
2m

, g
)
. (13)

Fix m > 0. Observe that the set P defined as:

P =
{
v ∈ R(

m
2) | ∃h ∈ ∆2m−1 : D(h) ≥ v

}
,

is a closed and convex set. The convexity is because ∆2m−1 is convex, D(·) is linear, and for

all λ ∈ [0, 1], the fact that D(h1) ≥ v1 and D(h2) ≥ v2 implies that D(λh1 + (1− λ)h2) =

λ ·D(h1) + (1− λ) ·D(h2) ≥ λv1 + (1− λ)v2 while the closed-ness is because ∆
2m−1 is closed

27

and D(·) is continuous (in fact, linear).11 Next, define:

Q =

{−→
14

15
− 8

15
· D
(−→

1
2m

, g
)
| g ∈ [0, 1]2

m

}
.

Again, using the fact that [0, 1]2
m
is closed and convex and D

(−→
1
2m

, ·
)
is linear, we get that Q

is closed and convex. Observe that showing Eq. (13) is equivalent to showing Q ⊆ P . Define

the set:

Z =

z ∈ R(
m
2) | z ≥ −→0 ,

∑
i<i′∈[m]

z{i,i′} = 1

. (14)

Namely, Z is the set of all non-negative vectors in R(
m
2) whose entries sum to 1. We claim that

Q ⊆ P if and only if for all z ∈ Z, we have maxv∈P ⟨z, v⟩ ≥ maxv∈Q⟨z, v⟩. Indeed, the “only

if” is straightforward and we focus on the “if” direction and prove it in the contrapositive.

Suppose that Q ̸⊆ P implying that there exists x ∈ Q \ P . By the separating hyperplane

theorem, there exists a vector z ∈ R(
m
2) such that ⟨z, x⟩ > maxv∈P ⟨z, v⟩. Now, observe from

the definition of P that this can only happen if z ≥ −→0 and z is not the all-zeros vector. Thus,

by scaling, we can assume that z ∈ Z. As x ∈ Q, we get that maxv∈Q⟨z, v⟩ > maxv∈P ⟨z, v⟩,
as desired.

Claim 8.2. For all z ∈ Z, we have:

max
v∈P
⟨z, v⟩ = max

b:[m]→{0,1}

∑
i<i′∈[m]
b(i)̸=b(i′)

z{i,i′}.

Claim 8.3. For all z ∈ Z, we have:

max
v∈Q
⟨z, v⟩ = 2

3
− 16

15
· E
S⊆[m]

min

 ∑
i<i′∈S

z{i,i′},
∑

i<i′∈S

z{i,i′}

.
Using Claims 8.2 and 8.3, note that Eq. (13) is equivalent to showing that for all z ∈ R(

m
2)

such that z ≥ −→0 , we have:

max
b:[m]→{0,1}

∑
i<i′∈[m]
b(i)̸=b(i′)

z{i,i′} ≥
2

3
− 16

15
· E
S⊆[m]

min

 ∑
i<i′∈S

z{i,i′},
∑

i<i′∈S

z{i,i′}

.
Considering z as the edge weights on a graph G with m vertices, we get that the is equivalent

11Observe that if a set S ⊆ Rd is closed, then S′ =
{
x′ ∈ Rd | ∃x ∈ S : x ≥ x′} is also closed.

28

to:

Max-Cut(G) ≥ 2

3
− 16

15
· E
S⊆[m]

[
min

(
wt(S),wt(S)

)]
,

which is exactly Conjecture 1.3, as desired.

It remains to show claim Claims 8.2 and 8.3, and we do this next.

Proof of Claim 8.2. Fix z ∈ Z and recall from Eq. (14) that z ≥ −→0 . From this and the

definition of P , conclude that maxv∈P ⟨z, v⟩ is attained at D(h) for some h ∈ ∆2m−1. Fur-

thermore, as both D(·) and the inner product function are linear, we can assume that h is

one of the extrema of ∆2m−1, i.e., one of the 2m dimensional standard basis vectors. From

these, we get:

max
v∈P
⟨z, v⟩ = max

h∈∆2m−1
⟨z,D(h)⟩

= max
h∈∆2m−1

∑
i<i′∈[m]

z{i,i′} · D(h){i,i′}

= max
b:[m]→{0,1}

∑
i<i′∈[m]

z{i,i′} · 1(b(i) ̸= b(i′)) (Eq. (11))

= max
b:[m]→{0,1}

∑
i<i′∈[m]
b(i)̸=b(i′)

z{i,i′}.

Proof of Claim 8.3. Fix z ∈ Z. As both D(·) and the inner product function are linear, we

conclude from the definition of Q that maxv∈Q⟨z, v⟩ is attained at one of the extrema of

[0, 1]2
m
. We get:

max
v∈Q
⟨z, v⟩ = max

g∈{0,1}2m

∑
i<i′∈[m]

z{i,i′} ·
(
14

15
− 8

15
· D
(−→

1
2m

, g
)
{i,i′}

)
=

14

15
− 8

15
min

g∈{0,1}2m

∑
i<i′∈[m]

z{i,i′} · D
(−→

1
2m

, g
)
{i,i′}

(As z ∈ Z and Eq. (14))

=
14

15
− 8

15
min

g∈{0,1}2m

∑
i<i′∈[m]

∑
i′′∈{i,i′}

∑
b:[m]→{0,1}

z{i,i′}
2m
·
(
b(i′′)(1− gb) + (1− b(i′′))gb

)
(Eq. (12))

=
14

15
− 8

15

∑
b:[m]→{0,1}

min
gb∈{0,1}

∑
i<i′∈[m]

∑
i′′∈{i,i′}

z{i,i′}
2m
·
(
b(i′′)(1− gb) + (1− b(i′′))gb

)

29

To continue, we take the 2m and use it to write the sum as an expectation over b. We get:

max
v∈Q
⟨z, v⟩ = 14

15
− 8

15
E
b

 min
gb∈{0,1}

∑
i<i′∈[m]

z{i,i′} ·
(
(b(i) + b(i′))(1− 2gb) + 2gb

)
=

14

15
− 8

15
E
b

 min
gb∈{0,1}

∑
i<i′∈[m]

z{i,i′} ·
(
(b(i) + b(i′))(1− 2gb) + 2gb

)

=
14

15
− 8

15
E
b

 min
gb∈{0,1}

∑
i<i′∈[m]

b(i)+b(i′)=1

z{i,i′} +
∑

i<i′∈[m]
b(i)=b(i′)=0

2gbz{i,i′} +
∑

i<i′∈[m]
b(i)=b(i′)=1

2(1− gb)z{i,i′}



=
14

15
− 8

15
E
b

 ∑
i<i′∈[m]

b(i)+b(i′)=1

z{i,i′} + 2 ·min

 ∑
i<i′∈[m]

b(i)=b(i′)=0

z{i,i′},
∑

i<i′∈[m]
b(i)=b(i′)=1

z{i,i′}




=
2

3
− 16

15
E
b

min

 ∑
i<i′∈[m]

b(i)=b(i′)=0

z{i,i′},
∑

i<i′∈[m]
b(i)=b(i′)=1

z{i,i′}


. (As z ∈ Z and Eq. (14))

Interpreting b as the indicator vector of a uniformly random set S ⊆ [m] finishes the proof

as we get:

max
v∈Q
⟨z, v⟩ = 2

3
− 16

15
· E
S⊆[m]

min

 ∑
i<i′∈S

z{i,i′},
∑

i<i′∈S

z{i,i′}

.

9 Protocols Against Corruptions

We are now ready to prove Theorem 1.4. The “if” direction is shown here while the “only

if” direction is shown in the next section.

9.1 The Protocol

We first show the “if” direction, i.e., we show that Conjecture 1.3 implies that Theorem 1.2

is tight. This direction is formalized as Theorem 9.1 below:

Theorem 9.1. Assume that Conjecture 1.3 holds. For all ϵ > 0 and n ∈ N, there exists

a constant-rate (depending on ϵ) protocol for message transfer with one round of feedback,

input length n, and resilience 7
23
− ϵ over the binary corruption channel.

30

At a high level, the idea for our protocol that proves Theorem 9.1 is to generalize Algo-

rithm 1 when r = 1. More specifically, there are two rounds of communication by Alice. We

are going to keep the first round essentially unchanged as randomly sampled codes are used,

although we will need a stronger guarantee, formalized as (k, ϵ)-random codes below. Re-

garding the second round, we adapt the codes used in the second round of Algorithm 1 (when

r = 1) to the case when not all codewords are treated the same, formalized as dc-codes.

(k, ϵ)-random codes. We now define the notion of a (k, ϵ)-random code.

Definition 9.2. Let m,L, k ≥ 1 and ϵ ≥ 0. A code C : [m]→ {0, 1}L is (k, ϵ)-random if the

following holds for all subsets Γ ⊆ [m] of size at most k and b : Γ→ {0, 1}:∣∣∣∣∣ 1L ·
L∑

j=1

1[∀i ∈ Γ : Cj(i) = b(i)]− 1

2|Γ|

∣∣∣∣∣ ≤ ϵ.

Note that the inequality above is satisfied by a uniformly random code in expectation.

Thus, roughly speaking, a code is (k, ϵ)-random if it satisfies the inequality pointwise when

we look at any collection of at most k codewords. We next show that such codes can be

constructed with constant rate (as needed for our result):

Lemma 9.3. For all k ≥ 1 and ϵ > 0, there exists a constant K such that for all K ′ ≥ K

and all m ≥ 2, there exists a (k, ϵ)-random code C : [m]→ {0, 1}K
′ logm.

Proof. Set K = 10k
ϵ2
. Let L = K ′ logm. We show the existence of a (k, ϵ)-random code C by

the probabilistic method.

For each i ∈ [m] and j ∈ [L] independently, we sample the j-th bit of C(i) uniformly at

random. Consider each fixed subset Γ ⊆ [m] of size at most k and b : Γ→ {0, 1}, we have

E

[
1

L
·

L∑
j=1

1[∀i ∈ Γ : Cj(i) = b(i)]

]
=

1

2|Γ|
.

By Chernoff bound (Lemma A.1), the randomness requirement is not satisfied by any fixed

subset Γ ⊆ [m] of size at most k and b : Γ→ {0, 1} with probability at most 2 ·exp(−2ϵ2L) <
m−10k. As there are at most k ·mk non-empty subsets of size at most k, each of them having

to satisfy at most 2k randomness requirements, by a union bound, there exists some subset

Γ ⊆ [m] of size at most k and b : Γ → {0, 1} violating the randomness requirement with

probability upper bounded by k ·mk · 2k ·m−10k < 1. This concludes the proof.

dc-codes. The (k, ϵ)-random code defined above will be used by Alice in the first round of

our protocol. For the second round, she will use a different set of codes that we call dc-codes:

31

Definition 9.4. For m,L ≥ 1 and dc : [m] → [0, 1], a function C : [m] → {0, 1}L is a

dc-code (over the binary corruption channel) if for all {i, j} ∈
(
[m]
2

)
, it holds that

∆(C(i), C(j)) ≥ (dc(i) + dc(j)) · L.

Definition 9.4 above is closely tied to Definition 4.2 (for k = 2) with the only difference

being that instead of requiring the same distance guarantee for all codewords, Definition 9.4

has a parameter dc(i) for each codeword i and the distance guarantees for this codeword

are determined by dc(i). This is needed in the second round of our protocol as prior to the

second round, Bob already has some information about Alice’s input in the sense that he

knows that certain inputs are closer to the message he received in the first round than others.

Interestingly, this subtlety does not arise in our protocol for erasure noise as there, either an

input is impossible and Bob can rule it out or it is the same distance from the message he

received that all the other codewords.

Unlike (k, ϵ)-random codes, we do not have an unconditional proof that the dc-codes that

we shall use in our protocol exist. This part of the argument is deferred to the analysis and

shall rely on Conjecture 1.3.

Notation. Fix ϵ > 0 and n ≥ 1 as in Theorem 9.1. Let k be a sufficiently large constant

such that
(

k−1
⌈k/2⌉−1

)
· 1
2k
≤ ϵ

10
. Also let K be the constant from Lemma 9.3 for k and ϵ′ =

ϵ
10·2k . Define L1 = 8Kn and L2 = 15Kn and let C be the (k, ϵ′)-random code promised

by Lemma 9.3 for K ′ = 8K and m = 2n, and Cdc : {0, 1}n → {0, 1}L2 be a dc-code (whose

existence we shall prove later).

Algorithm 2 Protocol for message transfer over a corruption channel with a single round
of feedback.
Input: Alice has input x ∈ {0, 1}n.
Output: Bob outputs y ∈ {0, 1}n.
8: Alice sends C(x) ∈ {0, 1}L1 bit by bit.
9: Bob receives τ1 ∈ {0, 1}L1 and sends τ1 via the noiseless feedback channel.
10: Bob computes, for all y ∈ {0, 1}n:

dc(y) =
7

15
− ∆(C(y), τ1)

L2

− ϵ. (15)

11: Alice receives τ1 as feedback and also computes dc(·) as above.
12: Alice sends Cdc(x) ∈ {0, 1}L2 bit by bit.
13: Bob receives τ2 ∈ {0, 1}L2 and outputs (breaking ties arbitrarily):

argmin
y∈{0,1}n

(
∆(C(y), τ1) + ∆(Cdc(y), τ2)

)
.

32

9.2 Proof of Theorem 9.1

We now show that Theorem 9.1 holds. That Algorithm 2 is constant rate is straightforward

and we only need to show that it has noise resilience 7
23
−ϵ. For this, we recall Section 3.2 and

fix an input x ∈ {0, 1}n for Alice and a corruption adversary for Algorithm 2 with budget
7
23
− ϵ. Fixing x and such an adversary fixes the value of all the variables in Algorithm 2 and

all we need to show is that Bob outputs x at the end of Algorithm 2 and that the dc-code

used by Alice in Line 12 exists. Throughout this proof, we will use the variable name to

denote its value, e.g., dc will denote the value of dc that was fixed when we fixed the input

x and the adversary.

We first assume the existence of dc-codes and show that Bob outputs x and later show

that dc-codes exist.

Bob outputs x. We now show that Bob outputs x. Owing to Line 13, it suffices to show

that for all y ̸= x ∈ {0, 1}n, we have:

∆(C(x), τ1) + ∆(Cdc(x), τ2) < ∆(C(y), τ1) + ∆(Cdc(y), τ2). (16)

We first note that, as the budget of our adversary is 7
23
− ϵ, it holds that:

∆(C(x), τ1) + ∆(Cdc(x), τ2) ≤
(

7

23
− ϵ

)
· (L1 + L2) = (7− 23ϵ) ·Kn. (17)

Also, for all y ̸= x ∈ {0, 1}n, we have by the triangle inequality:

∆(C(x), τ1) + ∆(Cdc(x), τ2) + ∆(C(y), τ1) + ∆(Cdc(y), τ2)

≥ ∆(C(x), τ1) + ∆(C(y), τ1) + ∆(Cdc(x), Cdc(y))

≥ ∆(C(x), τ1) + ∆(C(y), τ1) + (dc(x) + dc(y)) · L2

≥ (14− 30ϵ) ·Kn

> 2 · (7− 23ϵ) ·Kn,

(18)

where we use Eq. (15) in the penultimate step and Definition 9.4 in the step before. Com-

bining Eqs. (17) and (18) proves Eq. (16).

Existence of a dc-code. We now show the following lemma, whose proof spans the rest

of this section.

Lemma 9.5. If Conjecture 1.3 holds, there exists a dc-code Cdc : {0, 1}n → {0, 1}L2.

Define m = 2n for the rest of this section. In order to prove Lemma 9.5, we work in the

vectors interpretation from Section 8. Let f ∈ ∆2m−1 be the vector corresponding to the

first message sent by Alice and g ∈ [0, 1]2
m
be correspond to the corruptions inserted by the

adversary in f . Recall that ϵ′ = ϵ
10·2k . We will show that:

33

Lemma 9.6. If Conjecture 1.3 holds, there exists h ∈ ∆2m−1 such that:

D(h) ≥
−→
14

15
− 8

15
· D(f, g)− (2ϵ− ϵ′) · −→1 .

We now show Lemma 9.5 assuming Lemma 9.6, and later show Lemma 9.6.

Proof of Lemma 9.5 assuming Lemma 9.6. Since Conjecture 1.3 is assumed to hold, Lemma 9.6

guarantees the existence of h ∈ ∆2m−1 such that

D(h){i,i′} ≥
14

15
− 8

15
· D(f, g){i,i′} − 2ϵ+ ϵ′

holds for all {i, i′} ∈
(
[m]
2

)
. We show the existence of a dc-code Cdc by the probabilistic

method. For each j ∈ [L2] independently, we sample the j-th bits of all encodings, namely

Cj(1), . . . , Cj(m), such that for b : [m] → {0, 1}, with probability hb, Cj(i) = b(i) holds

simultaneously for all i ∈ [m]. Note that, from Eqs. (12) and (15), we also have that for any

{i, i′} ∈
(
[m]
2

)
:

dc(i) + dc(i′) =
14

15
− 8

15
· D(f, g){i,i′} − 2ϵ ≤ D(h){i,i′} − ϵ′.

Moreover, consider any fixed {i, i′} ∈
(
[m]
2

)
, by Eq. (11), we have

E
[
∆(C(i), C(i′))

L2

]
= D(h){i,i′} ≥ dc(i) + dc(i′) + ϵ′.

By Chernoff bound (Lemma A.1), the distance requirement is not satisfied by {i, i′} with

probability at most 2 · exp(−2 · (ϵ′)2L2) < exp(−2n). By a union bound, there exists some

{i, i′} violating the distance requirement with probability upper bounded by
(
m
2

)
·exp(−2n) <

1. This concludes the proof.

9.3 Proof of Lemma 9.6

Proof of Lemma 9.6. We start by showing the code C less-than-k-list decodable for corrup-

tions up to radius 1
2
− ϵ

4
(see Definition 4.2). For this, we have to show that:

Claim 9.7. For any τ̃ ∈ {0, 1}L1, we have:∣∣∣∣{i ∈ [m] : ∆(C(i), τ̃) <

(
1

2
− ϵ

4

)
· L1

}∣∣∣∣ < k.

Proof. We prove by contradiction. Let τ̃ be a counterexample and assume that the set in

the statement of the claim has at least k elements. Without loss of generality, we assume

that these elements are the element of [k]. Thus, we know that for all i ∈ [k], we have

34

∆(C(i), τ̃) <
(
1
2
− ϵ

4

)
· L1. It follows that:

min
τ ′∈{0,1}L1

∑
i∈[k]

∆(C(i), τ ′) ≤
∑
i∈[k]

∆(C(i), τ̃) <

(
1

2
− ϵ

4

)
· L1k. (19)

However, we also have:

min
τ ′∈{0,1}L1

∑
i∈[k]

∆(C(i), τ ′) =

L1∑
j=1

min
b′∈{0,1}

∑
i∈[k]

1[Cj(i) ̸= b′].

Recall that, for a function b : [m] → {0, 1}, the value of fb is the fraction of coordinates j

such that for all i ∈ [m], we have Cj(i) = b(i). We extend this notation and define, for all

sets Γ ⊆ [m] and functions b∗ : Γ→ {0, 1}, the value fb∗ [Γ] to be the fraction of coordinates

j such that for all i ∈ Γ, we have Cj(i) = b∗(i). When Γ = [k], we simply write fb∗ [k]

instead of fb∗ [[k]]. Also, observe that the j-th term of the summation above depends only

on Cj(1), . . . , Cj(k). Grouping terms with the same values of Cj(1), . . . , Cj(k) together, we

get:

min
τ ′∈{0,1}L1

∑
i∈[k]

∆(C(i), τ ′) =
∑

b∗:[k]→{0,1}

fb∗ [k] · L1 · min
b′∈{0,1}

∑
i∈[k]

1[b∗(i) ̸= b′].

This implies that

min
τ ′∈{0,1}L1

∑
i∈[k]

∆(C(i), τ ′) =
∑

b∗:[k]→{0,1}

fb∗ [k] · L1 ·min

∑
i∈[k]

b∗(i), k −
∑
i∈[k]

b∗(i)


=

k∑
s=0

∑
b∗:[k]→{0,1}∑
i∈[k] b

∗(i)=s

fb∗ [k] · L1 ·min(s, k − s)

≥
k∑

s=0

∑
b∗:[k]→{0,1}∑
i∈[k] b

∗(i)=s

(
1

2k
− ϵ′

)
· L1 ·min(s, k − s)

(C is (k, ϵ′)-random, Definition 9.2)

As each term only depends on s and the number of b∗ corresponding to a given s is
(
k
s

)
, we

get:

min
τ ′∈{0,1}L1

∑
i∈[k]

∆(C(i), τ ′) ≥ 1

2k
· L1 ·

k∑
s=0

(
k

s

)
·min(s, k − s)− 2kkL1ϵ

′

≥ L1k ·
(
1

2
−
(

k − 1

⌈k/2⌉ − 1

)
· 1
2k

)
− 2kkL1ϵ

′ (Lemma A.2)

35

≥ L1k ·
(
1

2
− ϵ

10

)
− 2kkL1ϵ

′ (As
(

k−1
⌈k/2⌉−1

)
· 1
2k
≤ ϵ

10
)

≥ L1k ·
(
1

2
− ϵ

5

)
, (As ϵ′ = ϵ

10·2k)

contradicting Eq. (19).

We now apply Claim 9.7 on τ1. Assume without loss of generality that the set in the

statement of the claim is contained in [k]. Thus, we have for all i ∈ [m] \ [k] that

∆(C(i), τ1) ≥
(
1

2
− ϵ

4

)
· L1. (20)

Our strategy to prove Lemma 9.6 is to use f and g to construct a function g′ ∈ [0, 1]2
m
that

we can apply Lemma 8.1 on (we will have m′ = m). Roughly speaking, for b : [m]→ {0, 1},
coordinate b of g′ only depends on b(1), . . . , b(k) and is the average of all coordinate of g

with the same value of b(1), . . . , b(k). Formally, for all b : [m] → {0, 1}, we define g′b using

the equation:

g′b ·
∑

b:[m]→{0,1}
b|[k]=b∗

fb =
∑

b:[m]→{0,1}
b|[k]=b∗

fbgb. (21)

Observe that g′b is determined by b|[k]. This allows to write, for a function b∗ : [k]→ {0, 1},
the value g′b∗ as the common value of g′b for all b : [m]→ {0, 1} satisfying b|[k] = b∗. Applying

Lemma 8.1 on m and g′ (recall that Lemma 9.6 assumes Conjecture 1.3), we get that there

exists h ∈ ∆2m−1 such that:

D(h) ≥
−→
14

15
− 8

15
· D
(−→

1
2m

, g′
)
.

Thus, in order to show Lemma 9.6, it suffices to show that D
(−→

1
2m

, g′
)
≤ D(f, g) + 2 · −→ϵ . We

show this inequality coordinate-wise. Due to Eq. (12), this follows if we show that for all

i ∈ [m], we have:∑
b:[m]→{0,1}

1

2m
·
(
b(i) · (1−g′b)+(1−b(i)) ·g′b

)
≤ ϵ+

∑
b:[m]→{0,1}

fb ·
(
b(i) · (1−gb)+(1−b(i)) ·gb

)
.

We prove this by considering the following cases:

• When i ∈ [k]: We have:∑
b:[m]→{0,1}

1

2m
·
(
b(i) · (1− g′b) + (1− b(i)) · g′b

)

36

=
∑

b∗:[k]→{0,1}

∑
b:[m]→{0,1}

b|[k]=b∗

1

2m
·
(
b∗(i) · (1− g′b) + (1− b∗(i)) · g′b

)
(As i ∈ [k])

=
∑

b∗:[k]→{0,1}

1

2k
·
(
b∗(i) · (1− g′b∗) + (1− b∗(i)) · g′b∗

)
(As g′b is determined by b|[k])

≤
∑

b∗:[k]→{0,1}

 ∑
b:[m]→{0,1}

b|[k]=b∗

fb + ϵ′

 · (b∗(i) · (1− g′b∗) + (1− b∗(i)) · g′b∗
)

(C is (k, ϵ′)-random, Definition 9.2)

≤ ϵ

10
+

∑
b∗:[k]→{0,1}

 ∑
b:[m]→{0,1}

b|[k]=b∗

fb

 · (b∗(i) · (1− g′b∗) + (1− b∗(i)) · g′b∗
)

(As ϵ′ = ϵ
10·2k)

≤ ϵ

10
+

∑
b∗:[k]→{0,1}

 ∑
b:[m]→{0,1}

b|[k]=b∗

fb ·
(
b∗(i) · (1− gb) + (1− b∗(i)) · gb

)
(Eq. (21))

=
ϵ

10
+

∑
b:[m]→{0,1}

fb ·
(
b(i) · (1− gb) + (1− b(i)) · gb

)
.

• When i ∈ [m] \ [k]: Recall that g′b is determined by b|[k]. As i ∈ [m] \ [k], this means

that for all b : [m]→ {0, 1}, we have g′b = g′
b̃
where b̃ is defined to be the same b except

that the i-th coordinate is flipped. Re-parametrizing the sum writing b̃ for b and using

g′b = g′
b̃
, we get:

∑
b:[m]→{0,1}

1

2m
·
(
b(i)·(1−g′b)+(1−b(i))·g′b

)
=

∑
b:[m]→{0,1}

1

2m
·
(
(1−b(i))·(1−g′b)+b(i)·g′b

)
.

When two quantities are equal, the are both equal to the average. This gives:∑
b:[m]→{0,1}

1

2m
·
(
b(i) · (1− g′b) + (1− b(i)) · g′b

)
=

∑
b:[m]→{0,1}

1

2m
· 1
2
=

1

2
.

Next, as i ∈ [m] \ [k], we have by Eq. (20) that:

∑
b:[m]→{0,1}

1

2m
·
(
b(i) · (1− g′b) + (1− b(i)) · g′b

)
≤ ϵ

4
+

∆(C(i), τ1)

L1

.

37

Recall from our definition of f and g that for all b : [m] → {0, 1}, the value fb · L1 is

the number of coordinates j where Alice’s code satisfies Cj(i
′) = b(i′) for all i′ ∈ [m].

Furthermore, gb is the fraction of these fb ·L1 coordinates where Bob receives 1. Thus,

we get:

∆(C(i), τ1) =
∑

b:[m]→{0,1}

fb · L1 ·
(
b(i) · (1− gb) + (1− b(i)) · gb

)
.

Combining the last two equations finishes the proof.

10 Converse of Theorem 9.1

We now show the “only if” direction of Theorem 1.4. This is formalized as:

Theorem 10.1. Assume that for all ϵ > 0 and n ∈ N, there exists a protocol (not necessarily

constant rate) for message transfer with one round of feedback, input length n, and resilience
7
23
− ϵ over the binary corruption channel. Then, Conjecture 1.3 holds.

We prove Theorem 10.1 in the following equivalent form, whose equivalence is due to

Lemma 8.1:

Theorem 10.2. Assume that for all ϵ > 0 and n ∈ N, there exists a protocol (not necessarily

constant rate) for message transfer with one round of feedback, input length n, and resilience
7
23
− ϵ over the binary corruption channel. Then, for all m > 0, all g ∈ [0, 1]2

m
, there exists

h ∈ ∆2m−1 such that:

D(h) ≥
−→
14

15
− 8

15
· D
(−→

1
2m

, g
)
.

The proof of Theorem 10.2 spans the rest of this section.

10.1 Proving a Weaker Version of Theorem 10.2

In this section, we show a weaker version of Theorem 10.2 that allows for a general f instead

of f =
−→
1
2m

.

Lemma 10.3. Assume that for all ϵ > 0 and n ∈ N, there exists a protocol (not necessarily

constant rate) for message transfer with one round of feedback, input length n, and resilience
7
23
− ϵ over the binary corruption channel. Then, for all m > 0, there exists f ∈ ∆2m−1 such

that for all g ∈ [0, 1]2
m
, there exists h ∈ ∆2m−1 such that:

D(h) ≥
−→
14

15
− 8

15
· D(f, g).

38

Roughly speaking, the f is Alice’s first message in the protocol when viewed as a vector

(see Section 8) and any g corresponds to the action of an adversary on f . Then, the fact that

the protocol works will mean that there exists a message that Alice can send after receiving

feedback from Bob that allows Bob to output correctly. This message will correspond to the

desired h. We formalize this below.

Proof of Lemma 10.3. Fix m > 0. For any ϵ > 0, we pick m′ > m to be large enough such

that dcorr(m
′, 3) ≤ 1

4
+ ϵ and dcorr(m

′, 5) ≤ 5
16

+ ϵ both hold. Such an m′ exists because of

Lemma 4.5. Let Π be the protocol corresponding to ϵ and m′ as promised by the assumption

in Lemma 10.3, and let L1 and L2 be the lengths of the rounds in Π. By increasing the

chosen value of m′, we can assume without loss of generality that L1 ≥ 2m+1

ϵ
. We first claim

that:

Claim 10.4. It holds that:

8

23
− 300ϵ ≤ L1

L1 + L2

≤ 8

23
+ 40ϵ.

Proof. This proof roughly follows the arguments in Section 7. Consider the following attacks

on the protocol for k ∈ {3, 5}: The adversary corrupts Alice’s message in the first round to

a pattern τ such that there exist k inputs for Alice whose encodings are all within distance

(dcorr(m
′, k) + ϵ) · L1 of τ . Note that such a τ exists by definition of dcorr(m

′, k). During

the feedback round, even if Alice and Bob can somehow agree on these k codewords, and

even if the distances are exactly (dcorr(m
′, k) + ϵ) · L1, there will be two inputs out of the

k that the adversary can corrupt to the same message in the second round using at most

(dcorr(k, 2) + ϵ) · L2 corruptions. When this happens, the protocol fails and therefore, we

must have, for k ∈ {3, 5}:(
7
23
− ϵ
)
· (L1 + L2) ≤ (dcorr(m

′, k) + ϵ) · L1 + (dcorr(k, 2) + ϵ) · L2.

Using our choice of m′, this means(
7
23
− ϵ
)
· (L1 + L2) ≤ min

((
1
4
+ 2ϵ

)
· L1 +

(
1
3
+ ϵ
)
· L2,

(
5
16

+ 2ϵ
)
· L1 +

(
3
10

+ ϵ
)
· L2

)
.

From the above inequalities, we get the claim.

Henceforth, we consider Π restricting attention to only the first m inputs for Alice, i.e.

inputs in [m]. Recall the vector interpretation from Section 8 and let f ∈ ∆2m−1 correspond

to the first message sent by Alice in Π. Next, fix an arbitrary g ∈ [0, 1]2
m
. We claim that

there exists an adversary for Π such that, for all i ̸= i′ ∈ [m], its corruptions for the inputs i

and i′ in the first round add up to at most
(
D(f, g){i,i′} + ϵ

)
·L1 and the message received by

Bob is the same for all inputs in [m]. Indeed, for b : [m]→ {0, 1}, the adversary corrupts the

first ⌊fbgbL1⌋ coordinates “matching” b to bit 1 and the remaining fbL1−⌊fbgbL1⌋ coordinates
“matching” b to bit 0 (both regardless of the input). Observe that in Eq. (12), the summand

39

corresponding to each b is offset by at most 2
L1

due to rounding in constructing the adversary

above. Summing over all b : [m] → {0, 1}, we then get that the total corruptions for i, i′ is

at most (
D(f, g){i,i′} + 2m · 2

L1

)
· L1 ≤

(
D(f, g){i,i′} + ϵ

)
· L1

by our assumption that L1 ≥ 2m+1

ϵ
. This holds for all i ̸= i′ ∈ [m]. Now we claim that:

Claim 10.5. There exists h ∈ ∆2m−1 such that the following holds for all i ̸= i′ ∈ [m]:

2 ·
(

7
23
− ϵ
)
· (L1 + L2) ≤

(
D(f, g){i,i′} + ϵ

)
· L1 +

(
D(h){i,i′} + ϵ

)
· L2. (22)

Proof. We prove the claim by contradiction. Let h ∈ ∆2m−1 be the vector corresponding to

the code Alice uses in the second round for the adversary above. Suppose for the purpose

of contradiction that there exists some i ̸= i′ ∈ [m] violating Eq. (22). That is,

2 ·
(

7
23
− ϵ
)
· (L1 + L2) >

(
D(f, g){i,i′} + ϵ

)
· L1 +

(
D(h){i,i′} + ϵ

)
· L2. (23)

Consider the adversary constructed above. By Eq. (12) and the above discussion about

rounding, the number of corruptions for i, i′ are upper bounded by

c =

 ϵ

2
+

∑
b:[m]→{0,1}

fb · (b(i) · (1− gb) + (1− b(i)) · gb)

 · L1

and

c′ =

 ϵ

2
+

∑
b:[m]→{0,1}

fb · (b(i′) · (1− gb) + (1− b(i′)) · gb)

 · L1

respectively. Note that c+ c′ =
(
D(f, g){i,i′} + ϵ

)
· L1. Now there are two cases.

• If c, c′ ≤
(

7
23
− ϵ
)
· (L1 + L2): By Eq. (11), D(h){i,i′} · L2 is exactly the Hamming

distance between the encodings of i, i′ in the second round. Therefore, the adversary

can simply corrupt them to the same message in the second round such that the

number of corruptions is at most
(

7
23
− ϵ
)
· (L1 + L2)− c for i and is at most

(
7
23
− ϵ
)
·

(L1 + L2) − c′ for i′. This is always possible by Eq. (23). As a result, the adversary

is able to confuse Bob between i and i′ after all two rounds of communication with

no more than
(

7
23
− ϵ
)
· (L1 + L2) corruptions for both i and i′. This contradicts the

protocol having resilience 7
23
− ϵ.

• Otherwise: By our argument above, no pair of i, i′ violating Eq. (22) can be of the

first case. In other words, any pair of i, i′ violating Eq. (22) has at least one of them

40

fall into the subset Γ ⊆ [m] containing all i′′ ∈ [m] such that ϵ

2
+

∑
b:[m]→{0,1}

fb · (b(i′′) · (1− gb) + (1− b(i′′)) · gb)

 · L1 >
(

7
23
− ϵ
)
· (L1 + L2).

That is, the number of corruptions by the constructed adversary already exceeds the

budget for i′′ ∈ Γ. In such scenario, our argument for the first case may not work.

Instead, for any fixed i′′ ∈ Γ, we show how to adjust h slightly so that Eq. (22) is

satisfied by all pairs containing i′′, without affecting all other pairs. The claim follows

by repeatedly applying the following argument to all i′′ ∈ Γ.

Fix i′′ ∈ Γ. We construct a new h′ ∈ ∆2m−1 from h as follows. For all b : [m]→ {0, 1},
let

h′
b =

1

2
·

∑
b′:[m]→{0,1}

b′|[m]\{i′′}=b|[m]\{i′′}

hb′ .

At a high level, h′ is just an “averaged” version of h where fixing the encoding bit for

all input other than i′′, the encoding bit of i′′ has an equal probability of being 0 or 1.

As a result, by Eq. (11), D(h′){i,i′′} =
1
2
for all i ̸= i′′ while D(h′){i,i′} = D(h){i,i′} for all

pairs of i, i′ not containing i′′. Overall, since

(
7
23
− ϵ
)
· (L1 + L2) ≤

L2

2
,

we then have that Eq. (22) is satisfied by all pairs containing i′′, with h replaced by h′,

while all other pairs are unaffected. This concludes the proof.

Now from Claims 10.4 and 10.5, we get an h such that, for all i ̸= i′ ∈ [m]:

(14− 69ϵ) ≤ D(f, g){i,i′} · (8 + 1000ϵ) + D(h){i,i′} · (15 + 7000ϵ)

This implies:

min
{i,i′}∈([m]

2)
8 · D(f, g){i,i′} + 15 · D(h){i,i′} ≥ 14− 104 · ϵ.

Since ϵ > 0 was arbitrary, this means that:

sup
f∈∆2m−1

inf
g∈[0,1]2m

sup
h∈∆2m−1

min
{i,i′}∈([m]

2)
8 · D(f, g){i,i′} + 15 · D(h){i,i′} ≥ 14.

Note that for any fixed f ∈ ∆2m−1 and g ∈ [0, 1]2
m
, min{i,i′}∈([m]

2)
8 ·D(f, g){i,i′}+15 ·D(h){i,i′}

is a continuous real function in h over ∆2m−1, which is compact. By the extreme value

theorem, its supremum over ∆2m−1 is always attained. Applying similar arguments to g and

41

f as well, we get:

max
f∈∆2m−1

min
g∈[0,1]2m

max
h∈∆2m−1

min
{i,i′}∈([m]

2)
8 · D(f, g){i,i′} + 15 · D(h){i,i′} ≥ 14,

which proves Lemma 10.3.

10.2 Proof of Theorem 10.2

Note that the only difference between Lemma 10.3 and Theorem 10.2 is that the former only

promises that there exists a suitable f while the latter guarantees that f =
−→
1
2m

. The high

level plan to show this stronger guarantee is to take an arbitrary f from Lemma 10.3 and

progressively convert it to look more and more like f =
−→
1
2m

. Specifically, noting that f =
−→
1
2m

corresponds (in expectation) to a uniformly random code in the vectors interpretation of

Section 8, we will in each step convert f from a (k, ϵ′)-random code to a (k + 1, ϵ) random

code (for some k and ϵ′ < ϵ), and when k becomes large enough, show that it can be replaced

by a prefect random code (corresponding to f =
−→
1
2m

).

We start by recasting Definition 9.2 in terms of f . Let m > 0 and f ∈ ∆2m−1. For all

sets Γ ⊆ [m] and functions b∗ : Γ→ {0, 1}, we define fb∗ [Γ] =
∑

b:[m]→{0,1},b|Γ=b∗ fb.

Definition 10.6 (Definition 9.2 in the vectors interpretation). Let m, k ≥ 1 and ϵ ≥ 0. We

say that f ∈ ∆2m−1 is (k, ϵ)-random if for all subsets Γ ⊆ [m] of size at most k and all

b∗ : Γ→ {0, 1}, we have: ∣∣∣∣fb∗ [Γ]− 1

2|Γ|

∣∣∣∣ ≤ ϵ.

Lemma 10.7. Assume that for all ϵ > 0 and n ∈ N, there exists a protocol (not necessarily

constant rate) for message transfer with one round of feedback, input length n, and resilience
7
23
− ϵ over the binary corruption channel. Then, for all k ∈ N, ϵ′ > 0, and m ≥ k ∈ N, there

exists f ∈ ∆2m−1 that is (k, ϵ′)-random such that for all g ∈ [0, 1]2
m
, there exists h ∈ ∆2m−1

such that:

D(h) ≥
−→
14

15
− 8

15
· D(f, g).

Before showing Lemma 10.7, we show why it implies Theorem 10.2.

Proof of Theorem 10.2. Let m ∈ N and δ > 0 be arbitrary. Applying Lemma 10.7 with

k = m and ϵ′ = δ/2m gives us f ∈ ∆2m−1 that is (m, δ/2m)-random and satisfies the condition

in Lemma 10.7. By Definition 10.6, we have for all b : [m] → {0, 1} that
∣∣fb − 1

2m

∣∣ ≤ δ/2m.

In turn, by Eq. (12), this means that for all g ∈ [0, 1]2
m
, we have D(f, g) ≤ D

(−→
1
2m

, g
)
+2 ·
−→
δ .

Using this and our choice of f , we get that for all g ∈ [0, 1]2
m
, there exists h ∈ ∆2m−1 such

that:

min
{i,i′}∈([m]

2)
8 · D(f, g){i,i′} + 15 · D(h){i,i′} ≥ 14− 2δ.

42

As δ > 0 was arbitrary, it follows that:

inf
g∈[0,1]2m

sup
h∈∆2m−1

min
{i,i′}∈([m]

2)
8 · D(f, g){i,i′} + 15 · D(h){i,i′} ≥ 14.

Note that for any fixed g ∈ [0, 1]2
m
, min{i,i′}∈([m]

2)
8 ·D(f, g){i,i′}+15 ·D(h){i,i′} is a continuous

real function in h over ∆2m−1, which is compact. By the extreme value theorem, its supremum

over ∆2m−1 is always attained. Applying similar arguments to g as well, we get:

min
g∈[0,1]2m

max
h∈∆2m−1

min
{i,i′}∈([m]

2)
8 · D(f, g){i,i′} + 15 · D(h){i,i′} ≥ 14.

Theorem 10.2 follows.

It remains to show Lemma 10.7.

Proof of Lemma 10.7. We prove the lemma by induction on k. First, we show the base case

k = 1.

Base case. In this case, we shall actually show the the lemma holds even when ϵ′ = 0.

Fix m ∈ N and let f ∈ ∆2m−1 be as promised by Lemma 10.3. Define f ′ ∈ ∆2m−1 to be

such that f ′
b = fb for all b : [m] → {0, 1}, where b : [m] → {0, 1} is the function satisfying

b(i) = 1 − b(i) for all i ∈ [m]. We will show that Lemma 10.7 holds with f ∗ = f+f ′

2
, which

is indeed (1, 0)-random. For this, we fix g ∈ [0, 1]2
m
and define g′ ∈ [0, 1]2

m
to be such that

g′b = 1− gb for all b : [m]→ {0, 1}. Then by our choice of f , there exists h, h′ ∈ ∆2m−1 such

that

D(h) ≥
−→
14

15
− 8

15
· D(f, g) and D(h′) ≥

−→
14

15
− 8

15
· D(f, g′).

Since D(f, g) is linear in f and D(h) is linear in h, we now get:

D
(
h+h′

2

)
≥
−→
14

15
− 8

15
· D(f ∗, g′),

as desired.

Inductive case. We now fix k ≥ 1 and show Lemma 10.7 for k + 1 assuming it holds for

k. Fix ϵ′ > 0, and m ≥ k + 1 ∈ N. We apply the induction hypothesis with ϵ′′ = ϵ′/(k + 2)

and m′ = 2(R + 1) ·m2k, where R = R(3, 1
ϵ′′2

+ 1) and R(·) denotes the Ramsey number as

in Section 3. By the induction hypothesis, there exists an f ′ ∈ ∆2m
′−1 that is (k, ϵ′′)-random

and satisfies the induction hypothesis.

We say that a set Γ ∈
(
[m′]
k+1

)
is irregular if there exists b∗ : Γ → {0, 1} such that∣∣f ′

b∗ [Γ]− 1
2k+1

∣∣ > ϵ′, and call it regular otherwise. Consider now the following algorithm

that uses f ′ to construct a (k + 1, ϵ′)-random f ∈ ∆2m−1.

Claim 10.8. Algorithm 3 outputs f ∈ ∆2m−1 that is (k + 1, ϵ′)-random.

43

Algorithm 3 A procedure for finding (k + 1, ϵ′)-random f ∈ ∆2m−1 given f ′.

Input: A (k, ϵ′′)-random f ′ ∈ ∆2m
′−1.

Output: A (k + 1, ϵ′)-random f ∈ ∆2m−1.
1: Let Γ = [k] and Γ̃ = [m′] \ [k].
2: for i ∈ [m− k] do
3: Γ̃←− {x ∈ Γ̃ | ∀X ∈

(
Γ
k

)
: X ∪ {x} is regular}.

4: Γ←− Γ ∪ {min(Γ̃)}, aborting if Γ̃ = ∅.
5: Γ̃←− Γ̃ \ {min(Γ̃)}.
6: end for
7: Output f = f ′[Γ].

We prove Claim 10.8 but assuming it for now, we can finish the proof of Lemma 10.7. As

Claim 10.8 guarantees that f is (k + 1, ϵ′)-random, all that remains to be shown is that for

all g ∈ [0, 1]2
m
, there exists h ∈ ∆2m−1 such that D(h) ≥

−→
14
15
− 8

15
· D(f, g). This essentially

follows from the fact that f = f ′[Γ] for some set Γ ⊆ [m′] (see Line 7). We flesh out the

details next.

Fix an arbitrary g ∈ [0, 1]2
m
. Define g′ ∈ [0, 1]2

m′
to be such that for all b′ : [m′] →

{0, 1}, we have g′b′ = gb′|Γ . By the induction hypothesis, there exists h′ ∈ ∆2m
′−1 such that

D(h′) ≥
−→
14
15
− 8

15
· D(f ′, g′). Define h ∈ ∆2m−1 to be such that for all b ∈ [m] → {0, 1}, we

have hb = h′
b[Γ]. Observe from Eqs. (11) and (12) that, for all i ̸= i′ ∈ Γ, we have:

D(h){i,i′} = D(h′){i,i′} ≥
14

15
− 8

15
· D(f ′, g′){i,i′} =

14

15
− 8

15
· D(f, g){i,i′},

as desired.

Proof of Claim 10.8. Assume for now that the algorithm never aborts in Line 4. Under this

assumption, note that Γ increases by 1 in every iteration of Line 2 and thus, has size m at the

end. This means that the output f satisfies f ∈ ∆2m−1. Suppose for the sake of contradiction

that f is not (k + 1, ϵ′)-random and let Γ∗ ⊆ Γ be a set violating Definition 10.6. Note that

|Γ∗| = k+1, as otherwise f = f ′[Γ] implies that Γ∗ would also violate Definition 10.6 for f ′.

Observe that |Γ∗| = k + 1 and the fact that Γ∗ violates Definition 10.6 implies that Γ∗ is an

irregular (k+1)-sized subset of Γ. We derive a contradiction by showing that all (k+1)-sized

subsets of Γ are regular. Indeed, this holds at the beginning of the algorithm (as there are

no such subsets) and whenever a new element is added Γ, Line 3 ensures that any k+1 sized

subset containing the new element is regular.

It remains to show that the algorithm never aborts. Note that m′ = 2(R + 1) ·m2k >

2R ·m2k +m+ k and at the start of the algorithm, the set Γ̃ has size m′ − k. Moreover, at

most m elements are removed from Γ̃ in Line 5 (one in each iteration). Thus, in order to

show that the algorithm never aborts, it suffices to show that for any iteration i ∈ [m− k],

at most 2R ·mk elements are removed from Γ̃ in Line 3. We fix an i ∈ [m− k] and show this

next.

44

Let Γ̃o,Γo be the “old” values of Γ̃ and Γ respectively before Line 3 is executed in iteration

i and Γ̃n be the “new” value of Γ̃ after Line 3 is executed in iteration i (Line 3 does not

change Γ). Suppose of the sake of contradiction that |Γ̃o\ Γ̃n| > 2R ·mk. By Line 3, for every

x ∈ Γ̃o \ Γ̃n, there exists X ∈
(
Γo

k

)
such that X ∪ {x} is irregular. As |Γo| ≤ m, there are at

most mk such X and thus, for some choice of X, there exist > 2R values x ∈ Γ̃o \ Γ̃n such

that X ∪{x} is irregular. Fix X to be this value. The following claim essentially categorizes

any irregular set into two categories (determined by z in the claim):

Claim 10.9. For all irregular Γ ∈
(
[m′]
k+1

)
, there exists z ∈ {0, 1} such that for all b′ : Γ →

{0, 1}, we have: {
f ′
b′ [Γ]− 1

2k+1 > ϵ′′, if |{i ∈ Γ | b′(i) = 1}|+ z is even

f ′
b′ [Γ]− 1

2k+1 < −ϵ′′, if |{i ∈ Γ | b′(i) = 1}|+ z is odd
.

Proof. Fix Γ. As Γ is irregular, we have b∗ : Γ → {0, 1} such that
∣∣f ′

b∗ [Γ]− 1
2k+1

∣∣ > ϵ′. Pick

the smallest such b∗. If f ′
b∗ [Γ] >

1
2k+1 , define z = |{i ∈ Γ | b∗(i) = 1}| mod 2. Otherwise,

define z = 1 + |{i ∈ Γ | b∗(i) = 1}| mod 2. For b, b′ : Γ → {0, 1}, define ∆(b, b′) to be the

number of coordinates where b and b′ differ. We will actually show the stronger statement

that, for all b′ : Γ→ {0, 1}, we have:{
f ′
b′ [Γ]− 1

2k+1 > (k + 1−∆(b′, b∗)) · ϵ′′, if ∆(b′, b∗) is even

f ′
b′ [Γ]− 1

2k+1 < −(k + 1−∆(b′, b∗)) · ϵ′′, if ∆(b′, b∗) is odd
.

The base case ∆(b′, b∗) = 0 is trivial as it implies b′ = b∗. We now fix d > 0 and show the

result for all b′ satisfying ∆(b′, b∗) = d assuming it holds for all b′ satisfying ∆(b′, b∗) = d−1.

We assume without loss of generality that d is odd and the case when d is even is analogous.

Fix b′ satisfying ∆(b′, b∗) = d and let b′′ be such that ∆(b′′, b∗) = d − 1 and ∆(b′, b′′) = 1

(such a b′′ always exists). Let x ∈ Γ be the unique entry such that b′(x) ̸= b′′(x). By our

induction hypothesis, we have f ′
b′′ [Γ] − 1

2k+1 > (k + 2− d) · ϵ′′. As f ′ is (k, ϵ′′)-random, we

also have
∣∣f ′

b′ [Γ] + f ′
b′′ [Γ]− 1

2k

∣∣ ≤ ϵ′′. This is only possible if f ′
b′ [Γ]− 1

2k+1 < −(k + 1− d) · ϵ′′,
as desired.

From Claim 10.9, we conclude that there exists z ∈ {0, 1} such that for > R values

x ∈ Γ̃o \ Γ̃n, we have that X ∪ {x} is irregular and satisfies Claim 10.9 with z. Fix this z

and let x1, . . . , xR be the R smallest values of x. Define a graph over x1, . . . , xR where, for

all i ̸= i′ ∈ [R], the vertices xi and xi′ are connected if and only if D(f ′){xi,xi′} < 1
2
. By

definition of R the graph either has a triangle, or a large independent set of size at least
1
ϵ′′2

+ 1. We derive a contradiction in both cases:

• When the graph has a triangle: Without loss of generality, assume the triangle

consists of the vertices x1, x2, x3. Define g
′ ∈ [0, 1]2

m′
to be such that for all b′ : [m′]→

{0, 1}, we have g′b′ = Maj(b′(x1), b
′(x2), b

′(x3)), where Maj denote the majority function

45

over 3 bits. With this definition, we have g′b′ ∈ {0, 1} and therefore, Eq. (12) says that,

for all i ̸= i′ ∈ [3], we have:

D(f ′, g′){xi,xi′}
=

∑
x′∈{xi,xi′}

∑
b′:[m′]→{0,1}

f ′
b′ · 1(b′(x′) ̸= g′b′)

=
∑

b′:[m′]→{0,1}

∑
x′∈{xi,xi′}

1(b′(xi) ̸= b′(xi′))f
′
b′ · 1(b′(x′) ̸= g′b′)

(As b′(xi) = b′(xi′) =⇒ b′(xi) = g′b′)

=
∑

b′:[m′]→{0,1}

1(b′(xi) ̸= b′(xi′))f
′
b′

>
1

2
. (Eq. (11) and D(f ′){xi,xi′} <

1
2
)

By the induction hypothesis, there exists h′ ∈ ∆2m
′−1 such that, for all i ̸= i′ ∈ [3], we

have:

D(h′){xi,xi′} ≥
14

15
− 8

15
· D(f ′, g′){xi,xi′}

>
2

3
.

However, using the same concentration arguments as in the proof of Lemma 9.5, this

means that h′ can be used to sample a code C : [3] → {0, 1}L (for some large enough

L) such that is less-than-2-list decodable for corruptions up to radius that is strictly

larger than 1
3
. This contradicts Lemma 4.5.

• When the graph has a large independent set: Define t = 1
ϵ′′2

+1 for convenience

and assume without loss of generality that the independent sets consists of the vertices

x1, . . . , xt. Define X ′ = {x1, . . . , xt} for convenience. As the vertices in X ′ form an

independent set, we have by Eq. (11) that:(
t
2

)
2
≤
∑

i<i′∈[t]

D(f ′){xi,xi′} =
∑

i<i′∈[t]

∑
b′:[m′]→{0,1}

1(b′(xi) ̸= b′(xi′)) · f ′
b′ .

For b∗ : X ′ → {0, 1}, we define αb∗ =
1
t
·
∑

i∈[t] 1(b
∗(xi) = 0) and we get:

t− 1

4t
≤

∑
b′:[m′]→{0,1}

f ′
b′ · αb′|X′ ·

(
1− αb′|X′

)
=

∑
b∗:X′→{0,1}

f ′
b∗ [X

′] · αb∗ · (1− αb∗).

Next, for functions b∗ : X ′ → {0, 1} and b̂ : X → {0, 1}, we will use b̂ ⋄ b∗ to denote the

function mapping X ∪X ′ → {0, 1} that, on input x ∈ X ∪X ′, outputs b∗(x) if x ∈ X ′

and b̂(x) if x ∈ X. We get:

t− 1

4t
≤

∑
b̂:X→{0,1}

∑
b∗:X′→{0,1}

f ′
b̂⋄b∗ [X ∪X ′] · αb∗ · (1− αb∗).

46

Next, for b̂ : X → {0, 1}, define βb̂ =
∑

b∗:X′→{0,1}
f ′
b̂⋄b∗

[X∪X′]·αb∗

f ′
b̂
[X]

. As F (u) = u(1− u) is

concave and t > 1
ϵ′′2

, we get:

1− ϵ′′2

4
<

t− 1

4t
≤

∑
b̂:X→{0,1}

f ′
b̂
[X] · βb̂ · (1− βb̂).

Thus, to derive a contradiction, it suffices to show that for all b̂ : X → {0, 1}, we
either have βb̂ ≤

1−ϵ′′

2
or we have βb̂ ≥

1+ϵ′′

2
. We do this next, fixing an arbitrary

b̂ : X → {0, 1} such that |{i ∈ X | b̂(i) = 1}| = z mod 2. The other case |{i ∈ X |
b̂(i) = 1}| = 1− z mod 2 can be proved similarly. Using our definitions of αb∗ and βb̂,

we have:

βb̂ =
1

t
·
∑
i∈[t]

∑
b∗:X′→{0,1}

f ′
b̂⋄b∗ [X ∪X ′] · 1(b∗(xi) = 0)

f ′
b̂
[X]

For i ∈ [t], we use b̂ ⋄ (xi = 0) to denote the function mapping X ∪ {xi} → {0, 1}
that takes the value 0 on xi and the value given by b̂(·) on inputs in X. The notation

b̂ ⋄ (xi = 1) is defined similarly. We get:

βb̂ =
1

t
·
∑
i∈[t]

f ′
b̂⋄(xi=0)

[X ∪ {xi}]
f ′
b̂⋄(xi=0)

[X ∪ {xi}] + f ′
b̂⋄(xi=1)

[X ∪ {xi}]

≥ 1

t
·
∑
i∈[t]

f ′
b̂⋄(xi=0)

[X ∪ {xi}]
f ′
b̂⋄(xi=0)

[X ∪ {xi}] + 1
2k+1 − ϵ′′

(Claim 10.9 and |{i ∈ X | b̂(i) = 1}| = z mod 2)

≥ 1

t
·
∑
i∈[t]

1
2k+1 + ϵ′′

1
2k

(Claim 10.9 and |{i ∈ X | b̂(i) = 1}| = z mod 2)

≥ 1 + ϵ′′

2
,

as required for a contradiction.

47

11 Discussion on Conjecture 1.3

11.1 Conjecture 1.3 on Cliques

As a warmup, we first consider the case of an (unweighted) n-clique. The expectation term

in Eq. (1) can be computed as follows.

E
S⊆[n]

[
min(wt(S),wt(S))

]
=

n∑
k=0

(
n
k

)
2n ·

(
n
2

) ·min

((
k

2

)
,

(
n− k

2

))

=
n−2∑
k=2

(
n
k

)
2n ·

(
n
2

) ·min

((
k

2

)
,

(
n− k

2

))

=
n−2∑
k=2

(
n
k

)
2n
·
(
min(k,n−k)

2

)(
n
2

) .

Defining z(k) = min(k, n− k) for k ∈ [n] and observing that
(
n
k

)
=
(

n
z(k)

)
, we get:

E
S⊆[n]

[
min(wt(S),wt(S))

]
=

n−2∑
k=2

(
n

z(k)

)
2n
·
(
z(k)
2

)(
n
2

)
=

1

2n
·
n−2∑
k=2

(
n− 2

z(k)− 2

)
(As

(
a
b

)
·
(
b
2

)
=
(
a
2

)
·
(
a−2
b−2

)
)

=
1

2n
·
(
2n−2 −

(
n− 2

⌊(n− 1)/2⌋ − 1

)
−
(

n− 2

⌊(n− 1)/2⌋

))
,

where to get the last equality, note that the only terms of the form
(
n−2
i

)
that are missing

the above sum are the terms for i = ⌊(n − 1)/2⌋ − 1 and i = ⌊(n − 1)/2⌋. Now, using the

identity
(
a
b

)
+
(

a
b+1

)
=
(
a+1
b+1

)
, we get:

E
S⊆[n]

[
min(wt(S),wt(S))

]
=

1

2n
·
(
2n−2 −

(
n− 1

⌊(n− 1)/2⌋

))
=

1

4
−

(
n−1

⌊(n−1)/2⌋

)
2n

.

Observe that the second term above is decreasing in n and is strictly less than 3/32 for

n ≥ 20, which makes the right hand side of Eq. (1) at most 1
2
for n ≥ 20. As there is

always a cut containing at least half the edges, we get that Eq. (1) holds for all cliques of

size n ≥ 20. The case of cliques of size n < 20 can be verified by brute calculation. It will

also show that Conjecture 1.3 is tight for n = 3 and n = 5.

48

11.2 Conjecture 1.3 on Unweighted Graphs

In this section, we show that Conjecture 1.3 is indeed correct for all unweighted graphs (all

edges having the same weight), at least when the graph is sufficiently large. Specifically, we

show:

Theorem 11.1. Conjecture 1.3 holds for all graphs G with at least 109 edges, where all edge

weights are the same.

Proof. Let m be the number of edges in G (so each edge has weight 1/m) and ϵ = 1/100.

We run the following procedure on G.

1. Iteratively, find and remove maximal matchings M1, . . . ,Mk of size larger than m′ =√
ϵm/2 ≥ 2000 whenever possible, each time in the remaining graph excluding all

matching edges previously found.

2. Find a maximal matching M0 in the remaining graph, and let M ′ be the subset of all

remaining edges.

Let V0 be the subset of vertices matched in M0 and V1 the subset of all other vertices. Also

let E0, E
′, E1 be the subsets of edges (in the original graph G) connecting two vertices of V0,

connecting a vertex of V0 and a vertex of V1, and connecting two vertices of V1, respectively.

For a subset A of the edges in G, we let wtA(·) denote the same function as wt(·) except
that only edges in A are considered. Note that, for any two disjoint subsets A,B of edges,

we have:

min
(
wtA(S),wtA(S)

)
+min

(
wtB(S),wtB(S)

)
≤ min

(
wtA∪B(S),wtA∪B(S)

)
. (24)

We next note that, for all i ∈ [k], we have

E
S⊆[n]

[
min

(
wtMi

(S),wtMi
(S)
)]

=
1

2
· E
S⊆[n]

[
wtMi

(S) + wtMi
(S)−

∣∣wtMi
(S)− wtMi

(S)
∣∣]

=
1

2
· E
S⊆[n]

[
wtMi

(S) + wtMi
(S)
]
− 1

2
· E
S⊆[n]

[∣∣wtMi
(S)− wtMi

(S)
∣∣]

=
|Mi|
4m
− 1

2
· E
S⊆[n]

[∣∣wtMi
(S)− wtMi

(S)
∣∣].

(as each edge is cut with probability 1/2)

Furthermore,
∣∣wtMi

(S)− wtMi
(S)
∣∣ is actually equal to 1

2m
times the difference in the number

of matched vertices on the two sides. As a result, we have (using z = |Mi| for convenience):

E
S⊆[n]

[
min

(
wtMi

(S),wtMi
(S)
)]

=
z

4m
− 1

4m
·

2z∑
j=0

(
2z
j

)
22z
· |j − (2z − j)|

(as there are 2z matched vertices)

49

=
z

4m
− 1

4m
·

2z∑
j=0

(
2z
j

)
22z
· (2z − 2 ·min(j, 2z − j))

=
z

4m
− z

2m
·

2z∑
j=0

(
2z
j

)
22z

+
1

2m
·

2z∑
j=0

(
2z
j

)
22z
·min(j, 2z − j)

=
z

4m
− z

2m
+

1

22z+1m
·
[
22z−1 −

(
2z − 1

z − 1

)]
· 2z

(by Lemma A.2)

=
z

4m
− z

22z+1m
·
(
2z

z

)
.

Using Stirling’s approximation and the fact that z = |Mi| ≥ m′ > 1800 , we can lower bound

this as:

E
S⊆[n]

[
min

(
wtMi

(S),wtMi
(S)
)]

=
z

4m
− z

22z+1m
·
(
2z

z

)
≥ z

4m
− z

22z+1m
· (2z/e)2z · e ·

√
2z(

(z/e)z ·
√
2π ·
√
z
)2

≥ z

4m
− z

2m
·
√

1

2z

≥ 29z

120m
.

(25)

We finish the proof of Eq. (1) as follows:

2

3
− 16

15
· E
S⊆[n]

[
min

(
wt(S),wt(S)

)]
≤ 2

3
− 16

15
·

k∑
i=1

E
S⊆[n]

[
min

(
wtMi

(S),wtMi
(S)
)]

(Eq. (24))

≤ 2

3
− 58

225m
·

k∑
i=1

|Mi| (Eq. (25))

=
2

3
− 58

225m
·

∣∣∣∣∣
k⋃

i=1

Mi

∣∣∣∣∣. (As the matchings are disjoint)

We now claim that E1 ⊆
⋃k

i=1Mi. Indeed, any edge in E1 is not in M0 by definition. It also

cannot be in M ′, as then it would contradict the fact that M0 is maximal. We get:

2

3
− 16

15
· E
S⊆[n]

[
min

(
wt(S),wt(S)

)]
≤ 2

3
− 58

225m
· |E1|

=
2

3
·
(
|E0|
m

+
|E ′|
m

+
|E1|
m

)
− 58

225
· |E1|

m

50

≤ 2

3
·
(
|E0|
m

+
|E ′|
m

)
+

41

100
· |E1|

m

≤ 7

10
·
(
|E0|
m

+
|E ′|
m

)
+

21

50
· |E1|

m
− 1

100
.

We now claim that E0 contains at most
(
2m′

2

)
≤ ϵm edges, because of the fact that V0

contains at most 2m′ vertices (as M0 is of size at most m′). This gives:

2

3
− 16

15
· E
S⊆[n]

[
min

(
wt(S),wt(S)

)]
≤ 7ϵ

10
+

7

10
· |E

′|
m

+
21

50
· |E1|

m
− 1

100

≤ 7

10
· |E

′|
m

+
21

50
· |E1|

m

= p · |E
′|

m
+ 2p(1− p) · |E1|

m
. (setting p = 7/10)

We now show that the right hand side can be upper bounded by Max-Cut(G), thereby

finishing the proof of Eq. (1). For this, consider a cut that places all vertices of V0 to the

left side while each vertex of V1 is independently assigned to the right side with probability

p and to the left side otherwise. The maximum cut in G is at least the (expected) value of

this cut, which is just the right hand side above, as desired.

References

[ABP19] Noga Alon, Boris Bukh, and Yury Polyanskiy. List-decodable zero-rate codes.

IEEE Trans. Inf. Theory, 65(3):1657–1667, 2019. 7, 9, 19

[ADL06] Rudolf Ahlswede, Christian Deppe, and Vladimir S. Lebedev. Non-binary error

correcting codes with noiseless feedback, localized errors, or both. In International

Symposium on Information Theory (ISIT), pages 2486–2487, 2006. 1

[Alo02] Noga Alon. Voting paradoxes and digraphs realizations. Adv. Appl. Math.,

29(1):126–135, 2002. 4

[Ber64] Elwyn R. Berlekamp. Block Coding with Noiseless Feedback. PhD thesis, Mas-

sachusetts Institute of Technology (MIT), 1964. 1, 2, 5

[Ber68] Elwyn R Berlekamp. Block coding for the binary symmetric channel with noise-

less, delayless feedback. Error-correcting codes, pages 61–68, 1968. 1, 2, 5

[Bli86] Vladimir Markovich Blinovskii. Bounds for codes in the case of finite-volume list

decoding. Problemy Peredachi Informatsii, 22(1):11–25, 1986. 7, 9, 19

51

[Bli09] Vladimir M Blinovsky. Plotkin bound generalization to the case of multiple pack-

ings. Problems of Information Transmission, 45(1):1–4, 2009. 7, 9

[Bur76] Marat Valievich Burnashev. Data transmission over a discrete channel with feed-

back. random transmission time. Problemy peredachi informatsii, 12(4):10–30,

1976. 5

[EKS20] Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Binary interactive error

resilience beyond 1/8. In Foundations of Computer Science (FOCS), pages 470–

481, 2020. 5, 6, 9

[EKSZ22] Klim Efremenko, Gillat Kol, Raghuvansh Saxena, and Zhijun Zhang. Binary

codes with resilience beyond 1/4 via interaction. In Foundations of Computer

Science (FOCS), 2022. 4, 6, 9, 11

[Eli57] Peter Elias. List decoding for noisy channels. 1957. 7, 9

[ESSG10] Krishnan Eswaran, Anand D. Sarwate, Anant Sahai, and Michael Gastpar. Zero-

rate feedback can achieve the empirical capacity. IEEE Transactions on Informa-

tion Theory, 56(1):25–39, 2010. 5

[For68] David G. Forney. Exponential error bounds for erasure, list, and decision feedback

schemes. IEEE Transactions on Information Theory, 14(2):206–220, 1968. 5

[GGZ23] Meghal Gupta, Venkatesan Guruswami, and Rachel Yun Zhang. Binary error-

correcting codes with minimal noiseless feedback. In Symposium on Theory of

Computing (STOC), 2023. 5

[GKZ22] Meghal Gupta, Yael Tauman Kalai, and Rachel Yun Zhang. Interactive error cor-

recting codes over binary erasure channels resilient to 1/2 adversarial corruption.

In Symposium on Theory of Computing (STOC), 2022. 6, 9

[GS00] Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain

concatenated codes. In Proceedings of the thirty-second annual ACM symposium

on Theory of computing, pages 181–190, 2000. 7

[Gur03] Venkatesan Guruswami. List decoding from erasures: Bounds and code construc-

tions. IEEE Transactions on Information Theory, 2003. 7, 9

[GY21] Gregory Z. Gutin and Anders Yeo. Lower bounds for maximum weighted cut.

CoRR, abs/2104.05536, 2021. 4

[GZ22a] Meghal Gupta and Rachel Yun Zhang. Efficient interactive coding achieving

optimal error resilience over the binary channel. CoRR, abs/2207.01144, 2022. 5,

6

52

[GZ22b] Meghal Gupta and Rachel Yun Zhang. The optimal error resilience of interactive

communication over binary channels. In Symposium on Theory of Computing

(STOC), 2022. 5, 6, 9

[GZ22c] Meghal Gupta and Rachel Yun Zhang. Positive rate binary interactive error

correcting codes resilient to > 1/2 adversarial erasures. CoRR, abs/2201.11929,

2022. 6, 9

[HKV15] Bernhard Haeupler, Pritish Kamath, and Ameya Velingker. Communication with

partial noiseless feedback. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques (APPROX/RANDOM), volume 40 of

LIPIcs, pages 881–897, 2015. 5

[Hor63] Michael Horstein. Sequential transmission using noiseless feedback. IEEE Trans-

actions on Information Theory, 9(3):136–143, 1963. 5

[Plo60] M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on

Information Theory, 6(4):445–450, 1960. 2, 6

[PT86] Svatopluk Poljak and Daniel Turźık. A polynomial time heuristic for certain

subgraph optimization problems with guaranteed worst case bound. Discrete

Mathematics, 58(1):99–104, 1986. 4

[Sah08] Anant Sahai. Why do block length and delay behave differently if feedback is

present? IEEE Transactions on Information Theory, 54(5):1860–1886, 2008. 5

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem for

computation. In Foundations of Computer Science (FOCS), pages 724–733, 1992.

6

[Sch93] Leonard J Schulman. Deterministic coding for interactive communication. In

Symposium on Theory of computing (STOC), pages 747–756, 1993. 6

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions

on Information Theory, 42(6):1745–1756, 1996. 6

[SF11] Ofer Shayevitz and Meir Feder. Optimal feedback communication via posterior

matching. IEEE Transactions on Information Theory, 57(3):1186–1222, 2011. 5

[Sha56] Claude E. Shannon. The zero error capacity of a noisy channel. IRE Transactions

on Information Theory, 2(3):8–19, 1956. 1, 5

[Sha09] Ofer Shayevitz. On error correction with feedback under list decoding. In IEEE

International Symposium on Information Theory, ISIT, pages 1253–1257, 2009.

5, 7, 9

53

[SW13] Ofer Shayevitz and Michèle A. Wigger. On the capacity of the discrete memoryless

broadcast channel with feedback. IEEE Transactions on Information Theory,

59(3):1329–1345, 2013. 5

[SWS92] Joel Spencer, Peter Winkler, and South St. Three thresholds for a liar. Combi-

natorics, Probability and Computing, 1:81–93, 1992. 1

[Wie48] Norbert Wiener. Cybernetics: Or control and communication in the animal and

the machine. 1948. 1

[Woz58] John M Wozencraft. List decoding. Quarterly Progress Report, 48:90–95, 1958.

7, 9

[WQC17] Gang Wang, Yanyuan Qin, and Chengjuan Chang. Communication with partial

noisy feedback. In IEEE Symposium on Computers and Communications (ISCC),

pages 602–607, 2017. 5

[Zig76] K.Sh. Zigangirov. On the number of correctable errors for transmission over a bi-

nary symmetrical channel with feedback. Problems of Information Transmission,

12:85–97, 1976. 1

A Technical Preliminaries

A.1 Concentration Bounds

We use the following version of Chernoff bound.

Lemma A.1 (Chernoff bound). For all n ≥ 1 and independent random variables X1, . . . , Xn ∈
[0, 1], let X = 1

n
·
∑

i∈[n] Xi. For all ϵ > 0, it holds that

Pr(|X − E[X]| ≥ ϵ) ≤ 2 · exp
(
−2ϵ2n

)
.

A.2 Properties of Binomial Coefficients

We use the following folklore identities involving binomial coefficients. Proofs are included

for completeness.

Lemma A.2. For all n ≥ 0, it holds that

n∑
i=0

min(i, n− i) ·
(
n

i

)
=

[
2n−1 −

(
n− 1

⌈n/2⌉ − 1

)]
· n.

54

Proof. Using the properties of binomial coefficients, we have

n∑
i=0

min(i, n− i) ·
(
n

i

)

= 2 ·
⌊n/2⌋∑
i=0

i ·
(
n

i

)
− 1[n is even] · n

2
·
(

n

n/2

)

= 2 ·
⌊n/2⌋∑
i=1

n ·
(
n− 1

i− 1

)
− 1[n is even] · n

2
·
(

n

n/2

)

= 2 ·
⌊n/2⌋−1∑

i=0

n ·
(
n− 1

i

)
− 1[n is even] · n

2
·
(

n

n/2

)

= 2n ·
2n−1 − 1[n− 1 is even] ·

(
n−1

(n−1)/2

)
2

− 1[n is even] · n
2
·
(

n

n/2

)
= 2n−1n− 1[n is odd] · n ·

(
n− 1

(n− 1)/2

)
− 1[n is even] · n ·

(
n− 1

n/2− 1

)
=

[
2n−1 −

(
n− 1

⌈n/2⌉ − 1

)]
· n,

as claimed.

A.3 Properties of the Function d

We now show some useful properties of the function d defined in Eq. (7).

Claim A.3. The following hold:

1. For all m ≥ k ≥ 1, it holds that

d(m, k) = 1− (⌈m/2⌉ − 1)k−1

(2⌈m/2⌉ − 1)k−1
.

2. For all m2 ≥ m1 ≥ k ≥ 1, it holds that d(m2, k) ≤ d(m1, k), and moreover,

lim
m→∞

d(m, k) = 1− 1

2k−1
.

It follows that d(m, k) ≥ 1− 1
2k−1 for all m ≥ k ≥ 1.

3. For all m ≥ k2 ≥ k1 ≥ 1, it holds that d(m, k2) ≥ d(m, k1).

Proof. For Item 1, observe that

1− d(m, k) =
⌊m/2⌋k + ⌈m/2⌉k

mk
. (26)

55

When m is odd, Eq. (26) simplifies to

1− d(m, k) =
⌊m/2⌋ − k + 1 + ⌈m/2⌉

m− k + 1
· ⌊m/2⌋k−1

mk−1
=

(⌈m/2⌉ − 1)k−1

(2⌈m/2⌉ − 1)k−1
,

as ⌊m/2⌋+ ⌈m/2⌉ = m. Similarly, when m is even, Eq. (26) becomes

1− d(m, k) =
⌊m/2⌋+ ⌈m/2⌉

m
· (⌊m/2⌋ − 1)k−1

(m− 1)k−1
=

(⌈m/2⌉ − 1)k−1

(2⌈m/2⌉ − 1)k−1
.

This proves Item 1.

Fix k ≥ 1. In order to show d(m, k) is decreasing inm, it is sufficient to show d(m+1, k) ≤
d(m, k) for any even m ≥ k by Item 1. To this end, observe that

1− d(m+ 1, k) =
(m/2)k−1

(m+ 1)k−1

=
m/2

m/2− k + 1
· (m− k + 2)(m− k + 1)

(m+ 1) ·m
· (m/2− 1)k−1

(m− 1)k−1

=
(m− k + 2)(m− k + 1)

(m− 2k + 2)(m+ 1)
· (1− d(m, k))

≥ 1− d(m, k)

because

(m− k + 2)(m− k + 1)

(m− 2k + 2)(m+ 1)
=

m2 − (2k − 3) ·m+ (k − 2)(k − 1)

m2 − (2k − 3) ·m− (2k − 2)
≥ 1.

Moreover, we also have

lim
m→∞

d(m, k) = 1− lim
m→∞

(⌈m/2⌉ − 1)k−1

(2⌈m/2⌉ − 1)k−1
= 1−

k−1∏
i=1

lim
m→∞

⌈m/2⌉ − i

2⌈m/2⌉ − i
= 1− 1

2k−1
,

as claimed, concluding the proof of Item 2.

Finally, for any m > k ≥ 1, we similarly have

1− d(m, k + 1) =
(⌈m/2⌉ − 1)k

(2⌈m/2⌉ − 1)k
=
⌈m/2⌉ − k

2⌈m/2⌉ − k
· (⌈m/2⌉ − 1)k−1

(2⌈m/2⌉ − 1)k−1
≤ 1− d(m, k).

Item 3 then follows.

We finish by proving Lemma 5.3.

Proof of Lemma 5.3. It is sufficient to prove

1− d(m, k′) + 1− d(k′, k) ≤ 1− d(m, k),

56

or equivalently, by Item 1 of Claim A.3,

(t− 1)k
′−1

(2t− 1)k
′−1

+
(s− 1)k−1

(2s− 1)k−1
≤ (t− 1)k−1

(2t− 1)k−1
, (27)

where t = ⌈m/2⌉ and s = ⌈k′/2⌉. Without loss of generality, we assume t ≥ k′ and s ≥ k,

as otherwise either d(m, k′) = 1 or d(k′, k) = 1 by definition. In both cases, the claim easily

follows from Claim A.3. Rearranging Eq. (27), we also have

(s− 1)k−1(2t− 1)k−1

(2s− 1)k−1(t− 1)k−1
≤ 1− (t− k)k

′−k

(2t− k)k
′−k

.

Observe that
(2t− 1)k−1

(t− 1)k−1
=

k−1∏
u=1

2t− u

t− u
≤

k−1∏
u=1

2k′ − u

k′ − u
=

(2k′ − 1)k−1

(k′ − 1)k−1

as t ≥ k′ while we also have

(t− k)k
′−k

(2t− k)k
′−k

=
k′−1∏
u=k

t− u

2t− u
≤ 1

2k′−k
.

So it is also sufficient to show

(s− 1)k−1(2k′ − 1)k−1

(2s− 1)k−1(k′ − 1)k−1
≤ 1− 1

2k′−k
. (28)

To this end, we have

(s− 1)k−1(2k′ − 1)k−1

(2s− 1)k−1(k′ − 1)k−1
=

k−1∏
u=1

(s− u)(2k′ − u)

(2s− u)(k′ − u)

=
k−1∏
u=1

(
1− (k′ − s) · u

(2s− u)(k′ − u)

)

≤
k−1∏
u=1

(
1− (k′ − s) · u

(2s− 1)(k′ − 1)

)

≤
k−1∏
u=1

exp

(
− (k′ − s) · u
(2s− 1)(k′ − 1)

)
(as 1− x ≤ exp(−x))

= exp

(
−

k−1∑
u=1

(k′ − s) · u
(2s− 1)(k′ − 1)

)

= exp

(
−(k′ − s) · k(k − 1)

(4s− 2)(k′ − 1)

)

57

≤ exp

(
−k(k − 1)

8s− 4

)
(as k′−s

k′−1
≥ 2s−1−s

2s−1−1
= 1

2
due to k′ ≥ 2s− 1)

Now suppose k(k−1)
8s−4

≥ 3
10
. Then we easily have

(s− 1)k−1(2k′ − 1)k−1

(2s− 1)k−1(k′ − 1)k−1
≤ exp(− 3

10
) ≤ 3

4
≤ 1− 1

2k′−k

as k′ − k ≥ 2 by the assumption (k′, k) ̸= (3, 2). So it remains to consider the case where
k(k−1)
8s−4

≤ 3
10
. Since exp(−x) ≤ 1− 5

6
x for x ∈ [0, 3

10
], to prove Eq. (28), it is sufficient to show

in this case that
5

6
· k(k − 1)

8s− 4
≥ 1

22s−1−k

as k′ ≥ 2s− 1. Equivalently, we have

5k(k − 1)

2k
≥ 48s− 24

22s−1
. (29)

For k ≥ 3, as k increases to k + 1, the left hand side of Eq. (29) is multiplied by a factor of
k+1

2(k−1)
, which is always upper bounded by 1. Thus we can get

5k(k − 1)

2k
≥ 5s(s− 1)

2s
≥ 48s− 24

22s−1

as 3 ≤ k ≤ s. The only remaining case is k = 2, where Eq. (29) holds for s ≥ 4. For

s ∈ [2, 3], namely k′ ∈ [4, 6], it turns out not to hold as some steps in the above argument

are not tight. However, plugging k = 2, s = 3, and k′ ∈ [5, 6] into Eq. (28) shows they indeed

satisfy the equation. For the other case where k = s = 2 and k′ = 4, Eq. (27) is equivalent

to
(t− 1)(t− 2)(t− 3)

(2t− 1)(2t− 2)(2t− 3)
+

1

3
− t− 1

2t− 1
= − (t− 2)(t+ 3)

6(2t− 1)(2t− 3)
≤ 0,

which is always true as t ≥ k′ ≥ 4. This finally concludes the proof.

58
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

