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Abstract

We describe a new construction of Boolean functions. A specific instance of our construction
provides a 30-variable Boolean function having min-entropy/influence ratio to be 128/45 ≈ 2.8444
which is presently the highest known value of this ratio that is achieved by any Boolean function.
Correspondingly, 128/45 is also presently the best known lower bound on the universal constant of
the Fourier min-entropy/influence conjecture.
Keywords: Boolean function, Fourier transform, Walsh transform, Fourier entropy/influence con-
jecture, Fourier min-entropy/influence conjecture.

1 Introduction

A longstanding open problem in the field of analysis of Boolean functions is the Fourier Entropy/Influence
(FEI) conjecture made by Friedgut and Kalai in 1996 [8]. The FEI conjecture states that there is a uni-
versal constant C such that H(f) ≤ C · Inf(f) for any Boolean function f , where H(f) and Inf(f) denote
the Fourier entropy and the total influence of f respectively. For a nice discussion on the importance
and applications of the FEI conjecture, we refer to the blog post by Kalai [?]. The conjecture was veri-
fied for various families of Boolean functions (e.g., symmetric functions [16], read-once formulas [15, 6],
decision trees of constant average depth [21], read-k decision trees for constant k [21], functions with
exponentially small influence or with linear entropy [19], random linear threshold functions [5], cryp-
tographic Boolean functions [9], random functions [7]), but is still open for the class of all Boolean
functions. See [?] for the most recent work towards settling the conjecture.

There has also been research in obtaining lower bounds on the constant C in the FEI conjecture. To
show that C is at least some value δ it is sufficient to show the existence of a Boolean function whose
entropy/influence ratio is δ. The first lower bound of 4.615 was obtained by O’Donnell et al. in [16].
Later O’Donnell and Tan [15] provided a recursive construction of Boolean functions which showed
how to construct a function for which the value of the entropy/influence ratio is at least 6.278944 [11].
The presently best known lower bound on C is 6.454784. This bound was shown by Hod [11] using an
extensive asymptotic analysis.

The Fourier min-entropy/influence (FMEI) conjecture was put forward by O’Donnell et al. in
2011 [16]. The FMEI conjecture states that there is a universal constant D such that H∞(f) ≤ D ·Inf(f)
for any Boolean function f , where H∞(f) is the Fourier min-entropy of f . Since H∞(f) ≤ H(f), the
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FMEI conjecture is weaker than the FEI conjecture in the sense that settling the FEI conjecture will
also settle the FMEI conjecture, but the converse is not true. It was observed in [5, 16] that as a
consequence of the Kahn-Kalai-Linial theorem [12] the FMEI conjecture holds for monotone functions
and linear threshold functions. The FMEI conjecture for “regular” read-k DNFs was established by
Shalev [19]. More recently, Arunachalam et al. [1] showed that the FMEI conjecture holds for read-k
DNF for constant k.

To the best of our knowledge, till date there has been no work on obtaining lower bounds on
the universal constant of the FMEI conjecture. Since the FMEI conjecture is weaker than the FEI
conjecture, any upper bound on the universal constant of the FEI conjecture is also an upper bound
on the universal constant of the FMEI conjecture. This, however, does not hold for lower bounds, i.e.
a lower bound on the universal constant of the FEI conjecture is not necessarily a lower bound on the
universal conjecture of the FMEI conjecture.

The purpose of the present paper is to obtain a lower bound on the universal constant D of the
FMEI conjecture. As in the case of the FEI conjecture, to show that D is at least δ, it is sufficient to
show the existence of a Boolean function for which the min-entropy/influence ratio is δ. An exhaustive
search over all n-variable Boolean functions, with 1 ≤ n ≤ 5, shows that the maximum value of min-
entropy/influence ratio that is achieved by functions of at most 5 variables is 16/7 ≈ 2.285714. Since
an exhaustive search becomes infeasible for n ≥ 6, it is required to obtain some method of constructing
Boolean functions for which the min-entropy/influence ratio is greater than 16/7.

For the above mentioned purpose, we first considered the recursive construction of O’Donnell and
Tan [15], since this construction proved to be useful for showing a lower bound on the constant of the
FEI conjecture. To analyse this construction in the context of the FMEI conjecture, we derived an
expression for the min-entropy of the functions obtained using this construction. Since the construction
is recursive, one needs an initial function to start the recursion. We performed an exhaustive search over
all possible 5-variable initial functions. This yielded a 25-variable function having min-entropy/influence
ratio equal to 512/225 ≈ 2.275556. This unfortunately is not useful since 512/225 is less than 16/7,
the maximum value of min-entropy/influence ratio that is obtained by exhaustive search over all 5-
variable functions. The 25-variable function is obtained in the first step of the O’Donnell-Tan recursion.
Considering further steps of the recursion does not result in a higher value of the min-entropy/influence
ratio. Further, we did not find any way to apply the asymptotic constructions given by Hod [11] in the
context of the FEI conjecture for obtaining lower bounds on the constant in the FMEI conjecture.

Our main result is a new construction of Boolean functions. In simple terms, the construction takes
an n-variable function g and constructs an (n+1)-variable palindromic function g0. An n(n+1)-variable
function G0 is then constructed by taking the disjoint composition of g0 and g (see (6) in Section 2 for
the definition of disjoint composition). Under certain conditions on g, the min-entropy/influence ratio
of G0 is greater than that of g. By searching over all appropriate 5-variable functions g, we obtain a
30-variable function G0 having min-entropy/influence ratio to be equal to 128/45 ≈ 2.844444. In fact,
we obtain a total of 384 such functions G0. The value 128/45 is presently the highest achieved value of
min-entropy/influence ratio and correspondingly is presently the best known lower bound on D.

At this point of time, there is no clear evidence of whether the FMEI conjecture is indeed true or
not. Our work provides the first step towards an understanding of this difficult conjecture. Assuming
that the conjecture holds, it is of intrinsic mathematical interest to know the value of the universal
constant in the conjecture. Again, our result provides the first step in this direction. We note that
there has been decades long interest in improving values of constants in mathematical results such as
the Berry-Esseen theorem1.

1See https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem (accessed on 8th November, 2023) for a nice
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In the final section, we provide a brief description of some experiments that we have carried out
for symmetric and rotation-symmetric Boolean functions. Based on these experiments, we put for-
ward a new conjecture on entropy/influence and the min-entropy/influence ratios of symmetric Boolean
functions.

In Section 2, we describe the formal background and the notation. The technique of disjoint com-
position is required for our construction. In Section 3, we derive an expression for the min-entropy of
disjoint composition. The recursive construction of O’Donnell and Tan [15] is analysed in Section 4
and shown to be not useful for the FMEI conjecture. Section 5 presents the main construction of the
paper and the description of the Boolean functions achieving the presently best known value of the min-
entropy/influence ratio. In Section 6 we briefly describe our search experiments with symmetric and
rotation-symmetric Boolean functions and state the new conjecture. Finally, in Section 7 we provide
concluding remarks.

2 Background and notation

Let F2 = {0, 1} denote the finite field consisting of two elements with addition represented by ⊕ and
multiplication by ·; often, for x, y ∈ F2, the product x ·y will be written as xy. The field of real numbers
will be denoted by R and all logarithms are to the base 2.

For a positive integer n, by [n] we will denote the set {1, . . . , n}. For x = (x1, . . . , xn) ∈ Fn
2 ,

the support of x will be denoted by supp(x) which is the set {i : xi = 1}; the weight of x will be
denoted by wt(x) and is equal to #supp(x). For i ∈ [n], ei denotes the vector in Fn

2 whose i-th
component is 1 and all other components are 0. By 1n we will denote the all-one vector of length
n. For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn

2 , the inner product ⟨x,y⟩ of x and y is defined to be
⟨x,y⟩ = x1y1 ⊕ · · · ⊕ xnyn.

For a positive integer n, an n-variable Boolean function f is a map f : Fn
2 → F2. Variables will be

written in upper case and vector of variables in bold upper case. For X = (X1, . . . , Xn), an n-variable
Boolean function f will be written as f(X) to denote the dependence on the variables X1, . . . , Xn.

The support of a Boolean function f will be denoted by supp(f) which is the set {x : f(x) = 1}; the
weight of f will be denoted by wt(f) and is equal to #supp(f). The function f is said to be balanced
if wt(f) = 2n−1.

The Fourier transform of a function ψ : Fn
2 → R is the map ψ̂ : Fn

2 → R, which is defined as follows.
For α ∈ Fn

2 ,

ψ̂(α) =
1

2n

∑
x∈Fn

2

ψ(x)(−1)⟨x,α⟩. (1)

The (normalised) Walsh transform of an n-variable Boolean function f is the map Wf : Fn
2 → R, which

is defined as follows. For α ∈ Fn
2 ,

Wf (α) =
1

2n

∑
x∈Fn

2

(−1)f(x)⊕⟨x,α⟩

In other words, the Walsh transform of f is the Fourier transform of (−1)f .

From Parseval’s theorem, it follows that
∑

α∈Fn
2
W 2

f (α) = 1. So the values
{
W 2

f (α)
}
α∈Fn

2

can be

considered to be a probability distribution on Fn
2 , which assigns to α ∈ Fn

2 , the probability W 2
f (α).

discussion on how the bounds on the constant has improved over the years.
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For an n-variable Boolean function f , its Fourier entropy H(f) and min-entropy H∞(f) are defined as
follows.

H(f) =
∑
α∈Fn

2

W 2
f (α) ̸=0

W 2
f (α) log

1

W 2
f (α)

, H∞(f) = min
α∈Fn

2

W 2
f (α)̸=0

log
1

W 2
f (α)

. (2)

For an n-variable Boolean function f , its influence Inf(f) is defined as follows.

Inf(f) =

n∑
i=1

Pr
x∈Fn

2

[f(x) ̸= f(x⊕ ei)]. (3)

The connection of influence to the Walsh transform is given by the following result [12] (see also
Theorem 2.38 in [14]).

Inf(f) =
∑
α∈Fn

2

wt(α)W 2
f (α). (4)

We next state the two conjectures connecting entropy and influence.

The Fourier entropy/influence (FEI) conjecture [8]. There exists a universal constant C such
that for any integer n ≥ 1 and for any n-variable Boolean function f , H(f) ≤ C · Inf(f).

The Fourier Min-entropy/influence (FMEI) conjecture [16]. There exists a universal constant
D such that for any integer n ≥ 1 and for any n-variable Boolean function f , H∞(f) ≤ D · Inf(f).

Composition. For positive integers n and k, an (n, k) vectorial Boolean function is a map G : Fn
2 →

Fk
2. The function G can be written as G (X) = (g1(X), . . . , gk(X)), where g1, . . . , gk are n-variable

Boolean functions. Given a k-variable Boolean function f and an (n, k) vectorial Boolean function G ,
their composition is the n-variable Boolean function (f ◦ G )(X) = f(g1(X), . . . , gk(X)). The Walsh
transform of f ◦ G is given by the following result.

Theorem 1 [10] Let G be an (n, k) vectorial Boolean function and f be a k-variable Boolean function.
Then for any u ∈ Fn

2 ,

Wf◦G (u) =
∑

v∈Fk
2
Wf (v)W(lv◦G )(u), (5)

where (lv ◦ G )(X) = ⟨v,G (X)⟩.

Let k and l be positive integers and n = kl. For x ∈ Fn
2 and 1 ≤ i ≤ k, by x(i) we denote the vector

(x(i−1)l+1, . . . , xil) ∈ Fl
2. By a slight abuse of notation, we will write x = (x(1), . . . ,x(k)). Let f and g be

Boolean functions on k and l variables respectively and n = kl. Let G be the (n, k) vectorial Boolean
function given by G (X) = (g(X(1)), . . . , g(X(k))). The disjoint composition of f and g, which we will
denote as f ⋄ g, is the n-variable Boolean function f ◦ G , i.e.

(f ⋄ g)(X) = (f ◦ G )(X) = f(g(X(1)), . . . , g(X(k))). (6)

The following result provides the entropy and influence of f ⋄ g.
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Theorem 2 (simplified form of Proposition 2 in [15]) Let f be a Boolean function and g be a
balanced Boolean function. Then,

1. Inf(f ⋄ g) = Inf(g) · Inf(f).

2. H(f ⋄ g) = H(f) +H(g) · Inf(f).

O’Donnell-Tan recursive construction. The following recursive construction of Boolean functions
was introduced by O’Donnell and Tan [15]. Let g be an l-variable Boolean function. Using g, a sequence
of Boolean functions fm, m ≥ 0, is defined in the following manner.

f0 = g,
fm = g ⋄ fm−1 if m ≥ 1.

}
(7)

It is easy to see that for m ≥ 0, fm is a map from Flm+1

2 → F2. For the recursion defined in (7), in the
case where the initial function g is balanced, the following was proved in [15].

H(fm)

Inf(fm)
=

H(g)

Inf(g)
+

H(g)

Inf(g)(Inf(g)− 1)
− H(g)

Inf(g)m+1(Inf(g)− 1)
. (8)

Consequently, limm→∞H(fm)/Inf(fm) = H(g)/(Inf(g) − 1). So for any balanced Boolean function g,
H(g)/(Inf(g)− 1) is a lower bound on the constant in the FEI conjecture.

Remark 1 It was shown in [15] that for the construction in (7) if the initial function g is balanced,
then fm is balanced for all m ≥ 1.

3 Min-Entropy of disjoint composition

We wish to compute the min-entropy of disjoint composition. We start with the following result which
is somewhat more general than what we need.

Theorem 3 Let k and l be positive integers and n = kl. Let G be an (n, k) vectorial Boolean function
such that G (X) = (g1(X

(1)), . . . , gk(X
(k))), where g1, . . . , gk are l-variable balanced Boolean functions.

Then for any k-variable Boolean function f ,

Wf◦G (u) =

{
Wf (0k) if u = 0n,

Wf (wu)
∏

i∈supp(wu)
Wgi

(
u(i)
)

otherwise.
(9)

In (9), for u ∈ Fn
2 written as u = (u(1), . . . ,u(k)), by wu we denote the vector in Fk

2 whose i-th position,
1 ≤ i ≤ k, is 1 if and only if u(i) ̸= 0l, i.e. wu encodes whether the l-bit blocks of u are zero or not.

Proof: The proof follows from an application of Theorem 1.
Note that for v = (v1, . . . , vk) ∈ Fk

2, (lv ◦ G )(X) = v1 · g1(X(1)) ⊕ · · · ⊕ vk · gk(X(k)). So for
u = (u(1), . . . ,u(k)) ∈ Fn

2 ,

W(lv◦G )(u) =
1

2n

∑
x∈Fn

2

(−1)(lv◦G )(x)⊕⟨u,x⟩

=
1

2n

∑
x(1),...,x(k)∈Fl

2

(−1)v1·g1(x
(1))⊕⟨u(1),x(1)⟩⊕···⊕vk·gk(x(k))⊕⟨u(k),x(k)⟩
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=
∏
i∈[k]

1

2l

∑
x(i)∈Fl

2

(−1)vi·gi(x
(i))⊕⟨u(i),x(i)⟩.

For i ∈ [k], let Bi

(
vi,u

(i)
)
= 1

2l

∑
x(i)∈Fl

2
(−1)vi·gi(x

(i))⊕⟨u(i),x(i)⟩. Using (5) we have,

Wf◦G (u) =
∑
v∈Fk

2

Wf (v)W(lv◦G )(u) =
∑
v∈Fk

2

Wf (v)
∏
i∈[k]

Bi

(
vi,u

(i)
)
. (10)

Let us now consider Bi

(
vi,u

(i)
)
. Note that Bi

(
0,u(i)

)
is equal to 1 or 0 according as u(i) is equal

to 0l or not. Further, Bi

(
1,u(i)

)
=Wgi

(
u(i)
)
. Since it is given that gi is balanced, so Bi (1,0l) = 0.

For u ∈ Fn
2 , the i-th bit of wu is 1 if and only if the i-th block of u is non-zero. For v ∈ Fk

2 such that
v ̸= wu, there is a j ∈ [k] such that either vj = 0 and u(j) ̸= 0l, or vj = 1 and u(j) = 0l; in either case,
Bj

(
vj ,u

(j)
)
= 0 and so

∏
i∈[k]Bi

(
vi,u

(i)
)
= 0. On the other hand, for v = wu, if vi = 0 then u(i) = 0l

which implies Bi

(
vi,u

(i)
)
= 1; and if vi = 1 then u(i) ̸= 0l which implies Bi

(
vi,u

(i)
)
= Wgi

(
u(i)
)
; so∏

i∈[k]Bi

(
vi,u

(i)
)
=
∏

i∈supp(v)Wgi

(
u(i)
)
. From this, we get the required result. □

Suppose in Theorem 3, the gi’s are all equal, i.e. g1 = · · · = gk = g. Then f ◦ G = f ⋄ g and
Theorem 3 provides the Walsh transform of disjoint composition in the case where g is balanced. In
this case, the min-entropy is given by the following result.

Theorem 4 Let k and l be positive integers, f be a k-variable Boolean function, and g be an l-variable
balanced Boolean function. For 0 ≤ i ≤ k, let ai = max{w:wt(w)=i}W

2
f (w). Then

H∞(f ⋄ g) = min
i∈{0,...,k},ai>0

(− log(ai) + i ·H∞(g)).

Proof: Let n = kl and G be the (n, k) vectorial Boolean function G (X) = (g(X(1)), . . . , g(X(k))).
Then f ⋄ g = f ◦ G and we can apply Theorem 3 to obtain the Walsh transform of f ⋄ g. We have from
Theorem 3, Wf⋄g(0n) =Wf (0k), and for 0n ̸= u ∈ Fn

2 ,

Wf⋄g(u) =Wf (wu)
∏

j∈supp(wu)

Wg

(
u(j)

)
.

From (2), to obtain the min-entropy of f ⋄ g, it is required to obtain maxu∈Fn
2
(Wf⋄g(u))

2. Let
αi = argmaxwt(w)=iW

2
f (w) for i ∈ [k] and let β = argmaxvW

2
g (v) (breaking ties arbitrarily in both

cases). Note that ai = W 2
f (αi) and H∞(g) = − logW 2

g (β). For wt(wu) = i, the maximum value of∏
j∈supp(wu)

W 2
g

(
u(j)

)
is
(
W 2

g (β)
)i
. So max0n ̸=u∈Fn

2
(Wf⋄g(u))

2 is equal to maxi∈[k]W
2
f (αi)

(
W 2

g (β)
)i

=

maxi∈[k] ai
(
W 2

g (β)
)i
. The result now follows by taking logarithms. □

4 Recursive constructions

We wish to obtain a Boolean function f such that H∞(f)/Inf(f) is as high as possible. One way to
obtain f is to perform an exhaustive search. Since the number of n-variable Boolean functions is 22

n
, it

is difficult to carry out the search for n > 5. For n = 5, we have performed an exhaustive search. This
resulted in 3840 5-variable Boolean functions for which the min-entropy/influence ratio is 16/7. All the
3840 functions turned out to be unbalanced. For the purpose of illustration, we provide one of the 3840
functions that were obtained.
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Example 1 Let h be the following 5-variable Boolean function.

h(X5, X4, X3, X2, X1) = X4X3 ⊕X5X2 ⊕X5X4X1 ⊕X5X4X2 ⊕X5X4X3. (11)

For h defined in (11), H∞(h) = 4, Inf(h) = 7/4 and so H∞(h)/Inf(h) = 16/7.

The question now is whether it is possible to obtain a function whose min-entropy/influence ratio is
greater than 16/7? In this section, we describe the approaches based on recursive constructions which
did not provide such a function. In the next section, we describe a method which yields a function
whose min-entropy/influence ratio is greater than that of h.

4.1 O’Donnell and Tan’s Construction

We first consider the recursive construction of Boolean functions arising from the O’Donnell-Tan con-
struction since this construction proved to be useful for the entropy/influence ratio. Using Theorem 4,
we obtain the following result on the min-entropy of the O’Donnell-Tan recursive construction where
the initial function satisfies the condition that there is a vector of weight 1 for which the corresponding
Walsh transform value is the maximum.

Theorem 5 Let g be an l-variable balanced Boolean function for which there is a β ∈ Fl
2 with wt(β) = 1

such that W 2
g (β) = maxvW

2
g (v). For m ≥ 0, let fm be the Boolean function constructed using (7) with

f0 = g. Then for m ≥ 0,

H∞(fm) = (m+ 1) ·H∞(g). (12)

Consequently,
H∞(fm)

Inf(fm)
=

(
H∞(g)

Inf(g)

)(
m+ 1

Inf(g)m

)
. (13)

Proof: Note thatH∞(g) = − log(W 2
g (β)). As observed in Remark 1, from the fact that g is balanced

it follows that fm is balanced for all m ≥ 1. (This can also be seen from Theorem 3.)
We prove (12) by induction on m. For m = 0, this follows trivially. Suppose (12) holds for some

m ≥ 0. From Theorem 4 and the fact that fm+1 is balanced,

H∞(fm+1) = H∞(g ⋄ fm) = min
i∈[l],ai>0

(− log(ai) + i ·H∞(fm)), (14)

where ai = maxwt(w)=iW
2
g (w) for i = 1, . . . , l. For any i ∈ [l], we have

− log(ai) + i ·H∞(fm) ≥ − log(W 2
g (β)) +H∞(fm) = H∞(g) +H∞(fm) (15)

and since β has weight 1, equality is attained for i = 1. So using the induction hypothesis,

H∞(fm+1) = min
i∈[l],ai>0

(− log(ai) + i ·H∞(fm)) = H∞(g) +H∞(fm) = (m+ 2)H∞(g). (16)

The proof of (13) follows from (12) and Theorem 2. □
To use Theorem 5 as an amplifier of min-entropy/influence ratio it is required to obtain m ≥ 1 such

that H∞(fm)/Inf(fm) > H∞(g)/Inf(g) which holds if and only if Inf(g) < (m + 1)1/m. For m = 1,
this condition becomes Inf(g) < 2 and for higher values of m, the upper bound on Inf(g) is smaller.
Comparing (8) with (13), we see that unlike the case of the entropy/influence ratio, increasing m
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does not necessarily lead to a higher value of the min-entropy/influence ratio. In particular, the nice
asymptotic analyses [15, 11] which has been done for the entropy/influence ratio is not applicable to
the min-entropy/influence ratio.

To apply Theorem 5, we need an appropriate initial function g. We performed an exhaustive search
over all possible 5-variable Boolean functions which satisfy the conditions of Theorem 5. For m = 1, we
obtained 384 functions such that taking f0 to be any of these functions leads to a 25-variable Boolean
function f1 with H∞(f1)/Inf(f1) = 512/225 ≈ 2.275556. Let F5 denote the set of these 384 functions.
We will use the elements of F5 in Section 5.1 to build a set of 30-variable functions having the presently
highest known value of the min-entropy/influence ratio. As an example, we provide one element of F5.

Example 2 Let g be the following 5-variable Boolean function.

g(X5, X4, X3, X2, X1)

= X3X2X1 ⊕X4 ⊕X4X1 ⊕X4X2 ⊕X4X2X1 ⊕X4X3X1 ⊕X4X3X2

⊕X5 ⊕X5X1 ⊕X5X2X1 ⊕X5X3 ⊕X5X3X1 ⊕X5X3X2 ⊕X5X4

⊕X5X4X1 ⊕X5X4X2 ⊕X5X4X3. (17)

The function g defined in (17) is in F5. For g, H∞(g) = 4, Inf(g) = 15/8. Taking f0 = g and
f1 = f0 ⋄ f0, from Theorem 5 we have H∞(f1)/Inf(f1) = 32/15× 2/(15/8) = 512/225.

We note the following points.

1. The 25-variable function f1 obtained using the above method is not useful. The 5-variable function
h given in (11) obtained using exhaustive search has a higher value of the min-entropy/influence
ratio.

2. In our search over all 5-variable Boolean functions, considering m > 1 did not provide a result
better than that obtained for m = 1.

3. In Theorem 5, the condition wt(β) = 1 is required to obtain the expression for fm given by (12).
If wt(β) > 1, then equality will not be attained in (15) and so in turn will also not be attained
in (16). So for wt(β) > 1, we will have H∞(fm) < (m + 1) · H∞(g). Consequently, considering
wt(β) > 1, does not seem to lead to a higher value of the min-entropy/influence ratio. In our
search over all 5-variable functions, compared to wt(β) = 1, allowing wt(β) > 1 did not lead to a
higher value of the min-entropy/influence ratio.

5 Construction from palindromic functions

An n-variable Boolean function g can be represented by a bit string of length 2n in the following manner:
for i ∈ {0, . . . , 2n − 1}, the i-th bit of the string is g(α), where α is the n-bit binary representation of
i. We will denote the bit string representing g also by g. The reverse of the bit string representation of
g is gr, and gr is given by gr(Xn, . . . , X1) = g(1⊕Xn, . . . , 1⊕X1). The following simple result relates
the Walsh transforms of g and gr.

Proposition 1 Let g be an n-variable Boolean function and gr be another n-variable Boolean function
defined as gr(Xn, . . . , X1) = g(1⊕Xn, . . . , 1⊕X1). Then for α ∈ Fn

2 , Wgr(α) = (−1)wt(α)Wg(α).
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Proof:

Wgr(α) =
∑
x∈Fn

2

(−1)⟨α,x⟩⊕g(1n⊕x) =
∑
y∈Fn

2

(−1)⟨α,1n⟩⊕⟨α,y⟩⊕g(y) = (−1)wt(α)Wg(α).

□
Given an n-variable Boolean function g, we may construct an (n+1)-variable Boolean f function in

the following manner. Concatenate the bit string representing g and gr to obtain a bit string of length
2n+1. This string represents the desired (n+1)-variable Boolean function f . The bit string representing
f is a palindrome and we call f to be a palindromic function. The following construction is a little more
general than the method just described. For b ∈ F2, let

gb(Xn+1, Xn, . . . , X1) = (1⊕Xn+1)g(Xn, . . . , X1)⊕Xn+1(b⊕ g(1⊕Xn, . . . , 1⊕X1)). (18)

If b = 0, then g0 is the concatenation of g and gr as described above, and if b = 1, then g1 is the
concatenation of g and the complement of gr. The following result shows the relation between the
relevant properties of g and gb.

Proposition 2 Let g be an n-variable Boolean function and b ∈ F2. Let gb be the (n + 1)-variable
Boolean function constructed from g and b using (18). Then the following holds.

1. For β ∈ Fn+1
2 , where β = (a,α), with a ∈ F2 and α ∈ Fn

2 ,

Wgb(β) =

(
(1 + (−1)b+wt(β))

2

)
Wg(α). (19)

2. H∞(gb) = H∞(g).

3. Inf(gb) = Inf(g) + ϵb(g), where ϵb(g) =
∑
α∈Fn

2
wt(α)̸≡b mod 2

W 2
g (α).

Proof: By definition

Wgb(β) =
1

2n+1

∑
x∈Fn+1

2

(−1)gb(x)⊕⟨β,x⟩. (20)

We simplify the exponent in the sum.

gb(xn+1, xn, . . . , x1)⊕ ⟨(a,α), (xn+1, xn, . . . , x1)⟩
= (1⊕ xn+1)g(xn, . . . , x1)⊕ xn+1(b⊕ g(1⊕ xn, . . . , 1⊕ x1))⊕ ⟨(a,α), (xn+1, xn, . . . , x1)⟩

=

{
g(xn, . . . , x1)⊕ ⟨α, (xn, . . . , x1)⟩ if xn+1 = 0,
b⊕ g(1⊕ xn, . . . , 1⊕ x1)⊕ a⊕ ⟨α, (xn, . . . , x1)⟩ if xn+1 = 1.

(21)

Writing x = (xn+1,y), where xn+1 ∈ F2 and y ∈ Fn
2 , we simplify (20) using (21) as follows.

Wgb(β) =
1

2n+1

∑
y∈Fn

2

(−1)g(y)⊕⟨α,y⟩ + (−1)a⊕b
∑
y∈Fn

2

(−1)g(1n⊕y)⊕⟨α,y⟩


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=
1

2

(
Wg(α) + (−1)a⊕bWgr(α)

)
=

1

2

(
Wg(α) + (−1)a⊕b(−1)wt(α)Wg(α)

)
(using Proposition 1)

=
1

2

(
Wg(α) + (−1)b(−1)wt(a,α)Wg(α)

)
.

This proves the first point. The second point follows directly from the first.
For the third point, we use (4) to compute the influence of gb from its Walsh transform.

Inf(gb) =
∑

a∈F2,α∈Fn
2

wt(a,α)W 2
gb
(a,α)

=
∑

a∈F2,α∈Fn
2

wt(a,α)

(
(1 + (−1)b+wt(a,α))

2

)2

W 2
g (α)

=
∑
α∈Fn

2

wt(α)

(
(1 + (−1)b+wt(α))

2

)2

W 2
g (α)

+
∑
α∈Fn

2

(1 + wt(α))

(
(1− (−1)b+wt(α))

2

)2

W 2
g (α)

=
∑

α∈Fn
2 ,wt(α)≡b mod 2

wt(α)W 2
g (α)

+
∑

α∈Fn
2 ,wt(α) ̸≡b mod 2

(1 + wt(α))W 2
g (α)

= Inf(g) + ϵb(g).

□
We note the following two points.

1. The Walsh transform of gb is banded, i.e. it is zero for all vectors of weights congruent to 1 − b
modulo two.

2. From Parseval’s theorem it follows that 0 ≤ ϵb(g) ≤ 1. Further, also from Parseval’s theorem, we
have ϵ0(g) + ϵ1(g) = 1 and so it is possible to choose b ∈ {0, 1} such that ϵb(g) ≥ 1/2.

We recall two well known classes of Boolean functions. See [3] for an extensive discussion on the
various properties of these classes. Let f be an n-variable Boolean function.

• f is said to be t-resilient, 0 ≤ t < n, if Wf (α) = 0 for all α with wt(α) ≤ t.

• f is said to be plateaued, if Wf (α) takes the values 0,±c, for some c.

From (4), it follows that if f is t-resilient, then Inf(f) ≥ t+ 1.
Next we present the main result of the paper.

Theorem 6 Let g be a balanced n-variable Boolean function, b ∈ F2 and gb be constructed from g and
b as in (18). Let Gb = gb ⋄ g. Then

H∞(Gb)

Inf(Gb)
=

mini∈{0,...,n+1},ai>0(− log(ai) + iH∞(g))

Inf(g)(Inf(g) + ϵb(g))
, (22)
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where ai = max{w:wt(w)=i}W
2
gb
(w), i = 0, . . . , n+ 1.

Further, suppose that there is a t ≥ 0 such that t ≡ b mod 2 and g is a plateaued t-resilient function,
which is not (t+ 1)-resilient. Then

H∞(Gb)

Inf(Gb)
=

H∞(g)

Inf(g)

(
t+ 3

Inf(g) + ϵb(g)

)
. (23)

Proof: Proposition 2 provides the expression for Inf(gb) and Theorem 2 provides the expression for
Inf(Gb). The expression for H∞(Gb) is obtained from Theorem 4. This shows (22).

Now suppose g is a t-resilient plateaued function such that t ≡ b mod 2. Since g is plateaued,
from (19), it follows that gb is also plateaued and for ai > 0, − log(ai) = H∞(g). From the conditions
g is t-resilient and t ≡ b mod 2, it follows that gb is (t + 1)-resilient. To see this, suppose β ∈ Fn+1

2

with wt(β) ≤ t + 1. If wt(β) = t + 1, then since t ≡ b mod 2, we have 1 + (−1)b+wt(β) = 0 and
so Wgb(β) = 0; on the other hand, if wt(β) < t + 1, then writing β = (a,α) with a ∈ F2 and
α ∈ Fn

2 , and using the fact that g is t-resilient, it follows that wt(α) ≤ t and so Wg(α) = 0 which
implies that Wgb(β) = 0. Further, since g is not (t + 1)-resilient, it follows that gb is not (t + 2)-
resilient. Since gb is (t + 1)-resilient, but not (t + 2)-resilient, it follows that the minimum value
of i such that ai > 0 is t + 2. Now using the fact that for ai > 0, − log(ai) = H∞(g), we have
mini∈{0,...,n+1},ai>0(− log(ai) + iH∞(g)) ≥ H∞(g) + (t+ 2)H∞(g) = (t+ 3)H∞(g). This shows (23). □

5.1 Construction of a 30-variable Boolean function

By construction, if g is an n-variable Boolean function, then the function Gb in Theorem 6 is an
n(n + 1)-variable Boolean function. To use Theorem 6 as an amplifier of min-entropy/influence ratio,
it is required to have H∞(Gb)/Inf(Gb) > H∞(g)/Inf(g). If g is a plateaued t-resilient function, then the
last condition holds if and only if t+ 3 ≥ Inf(g) + ϵb(g). Note, however, that Inf(g) ≥ t+ 1 and so the
condition t+3 ≥ Inf(g)+ ϵb(g) offers only a limited scope for amplification of the min-entropy/influence
ratio.

If g is balanced, but not 1-resilient, i.e. t = 0, then the amplification factor in Theorem 6 is 3/(Inf(g)+
ϵb(g)). We compare this condition with the amplification factor for m = 1 arising from the O’Donnell-
Tan construction. From Theorem 5, the amplification factor in the O’Donnell-Tan construction is
2/Inf(g). So if we use the same g in both Theorems 5 and 6, then the amplification provided by
Theorem 6 is greater if and only if Inf(g) > 2ϵb(g). We have computationally verified that the last
condition holds for all g ∈ F5 (for the definition of F5 see the discussion before Example 2). So if we
take any of the functions in F5 as the initial function and apply Theorem 6, we will obtain a function
whose min-entropy/influence ratio is greater than what can be obtained by starting with the same initial
function and using one step of the O’Donnell-Tan construction.

As a concrete example, we consider the 5-variable function g given in Example 2. Using this g and
taking b = 0, from (18), we obtain a 6-variable function g0. The function G0 = g0 ⋄ g is a 30-variable
function. From Theorem 6, we have H∞(G0)/Inf(G0) = 128/45 ≈ 2.8444. Starting with any of the
384 functions in F5 and applying Theorem 6, we obtain a corresponding 30-variable function for which
the min-entropy/influence ratio is also 128/45. This gives us a set of 384 30-variable functions each of
which has min-entropy/influence ratio to be 128/45. Note that 128/45 is greater than 16/7, which is the
maximum min-entropy/influence ratio that is achieved by any 5-variable function (see Example 1 and
the discussion preceeding it). Presently, 128/45 is the highest known value of min-entropy/influence
ratio that has been achieved. Correspondingly, 128/45 is also the best known lower bound on the
universal constant of the min-entropy/influence conjecture.
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6 Some further search results

A Boolean function f is said to be symmetric if it is invariant under any permutation of its input.
The number of n-variable symmetric Boolean functions is 2n+1. O’Donnell et al. [16] established the
FEI conjecture for symmetric Boolean functions which also settles the FMEI conjecture for this class
of functions. Their proof showed that the entropy/influence ratio of any symmetric Boolean function is
at most 12.04. We used exhaustive search to find the actual value of the ratio for symmetric functions
on n variables with n ≤ 16.

For n ≥ 2, let An(X1, . . . , Xn) = X1 · · ·Xn (in terms of Boolean algebra An is the AND function).
It is easy to show (see [11]) that H(An)/Inf(An) < 4. Our search for n ≤ 16 showed that if f is an
n-variable symmetric Boolean function, then H(f)/Inf(f) ≤ H(An)/Inf(An). This suggests that the
ratio 12.04 that was achieved in the proof of [16] is perhaps not the minimum possible value of the
entropy/influence ratio for symmetric functions.

A Boolean function f is said to be bent [17] if all the Walsh transform values of f are equal. Such
functions can exist only if n is even. If f is bent, then H(f) = H∞(f) = n. Further, Inf(f) = n/2
(see [2]). So for a bent function f , H(f)/Inf(f) = H∞(f)/Inf(f) = 2. Symmetric functions can be
bent and the class of symmetric bent functions have been characterised [18, 13]. Our search for n ≤ 16
showed that if n is even, then for any n-variable symmetric Boolean function f , H∞(f)/Inf(f) ≤ 2 and
equality is achieved if and only if f is bent; on the other hand, if n is odd, then for any n-variable
symmetric Boolean function f , H∞(f)/Inf(f) < 2.

Based on our observations, we put forth the following conjecture.

Conjecture 1 Let f be an n-variable symmetric Boolean function. Then

1. H(f)/Inf(f) ≤ H(An)/Inf(An) and equality is achieved if and only if f equals An.

2. If n is even, then H∞(f)/Inf(f) ≤ 2 and equality is achieved if and only if f is bent; if n is odd,
then H∞(f)/Inf(f) < 2

A closed form expression for the Walsh transform of symmetric Boolean function in terms of binomial
coefficients is known [4]. We could not, however, find a way to use this expression to settle the above
conjecture. We also tried to apply the techniques from [16] used for showing that the FEI conjecture
holds for symmetric Boolean functions to settle Conjecture 1, but were not successful. The main problem
is that the various inequalities used in the proof of [16] do not seem to be sufficiently sharp to establish
the bounds stated in the above conjecture. As mentioned above, Conjecture 1 has been verified for
1 ≤ n ≤ 16. It is possible to experimentally verify the conjecture for additional values of n, but this is
unlikely to provide any insight into how to settle the conjecture.

A Boolean function is said to be rotation symmetric if it is invariant under a cyclic shift of its
input. It is not known whether the FEI (or the FMEI) conjecture holds for rotation symmetric Boolean
functions. See [20] for the number of rotation symmetric Boolean functions on n variables. We could
perform an exhaustive search on rotation symmetric Boolean functions for n ≤ 7. For n = 6 and
n = 7, the maximum values of H(f)/Inf(f) are 3.739764 and 3.804357 respectively; and the maximum
values of H∞(f)/Inf(f) are 2.168978 and 2.227449 respectively, where the maximums are over all n-
variable rotation symmetric Boolean function. Compared to symmetric Boolean functions, we see that
the maximum value of the entropy/influence ratio remains below 4, but the maximum value of the
min-entropy/influence ratio is greater than 2. Since we could not run the experiment for higher values
of n, we are unable to put forward any conjecture for rotation symmetric Boolean functions.

12



7 Concluding remarks

Our work has opened the interesting topic of obtaining lower bounds on the universal constant of the
FMEI conjecture. We have provided one method of constructing Boolean functions which provides the
presently best known lower bound. A future challenge is to obtain other construction methods which
yield functions with a higher value of the min-entropy/influence ratio. It is also interesting to look for
sufficiently sharp techniques to settle Conjecture 1. A final open problem resulting from our work is to
settle the FEI conjecture for rotation symmetric Boolean functions.
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