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Abstract

Rossman [In Proc. 34th Comput. Complexity Conf., 2019] introduced the notion of criticality.
The criticality of a Boolean function f : {0, 1}n → {0, 1} is the minimum λ ≥ 1 such that for all
positive integers t,

Pr
ρ∼Rp

[
DTdepth( f |ρ) ≥ t

]
≤ (pλ)t.

Håstad’s celebrated switching lemma shows that the criticality of any k-DNF is at most O(k).
Subsequent improvements to correlation bounds of AC0-circuits against parity showed that
the criticality of any AC0-circuit of size S and depth d + 1 is at most O(log S)d and any regular
AC0-formula of size S and depth d + 1 is at most O( 1

d · log S)d. We strengthen these results by
showing that the criticality of any AC0-formula (not necessarily regular) of size S and depth
d + 1 is at most O(

log S
d )d, resolving a conjecture due to Rossman.

This result also implies Rossman’s optimal lower bound on the size of any depth-d AC0-
formula computing parity [Comput. Complexity, 27(2):209–223, 2018.]. Our result implies tight
correlation bounds against parity, tight Fourier concentration results and improved #SAT algo-
rithm for AC0-formulae.

1 Introduction

Understanding the power of various models of computation is the central goal of complexity
theory. With respect to small-depth AND-OR circuits, the early works of Furst, Saxe and Sipser
[FSS84], Sipser [Sip83], Ajtai [Ajt83], Yao [Yao85] and Håstad [Hås89] using random restrictions
and Razborov [Raz87] and Smolensky [Smo87] using the polynomial method laid out a promising
direction.

Furst, Saxe and Sipser [FSS84] and Ajtai [Ajt83] independently proved that the parity function
requires super-polynomial sized constant depth AND-OR circuits to compute it. This was then
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later improved by Yao [Yao85] and Håstad [Hås89] who proved that any depth-(d + 1), AND-OR
circuit computing parity on n bits requires size 2nΘ(1/d)

. The pièce de résistance of these results is the
switching lemma method introduced by Furst, Saxe and Sipser [FSS84]. Informally stated, it states
that any k-DNF1 reduces (aka switches) to a low-width CNF with high probability, when acted
upon by a p-random restriction. Very soon (in Håstad’s paper itself [Hås89]), it was discovered
that it was more convenient and useful to state the switching lemma in terms of the depth of
decision trees. This leads us to Håstad’s switching lemma, one of the most celebrated theorems
in theoretical computer science. Let f be a k-DNF and Rp denote the distribution of p-random
restrictions (p ∈ [0, 1]) where each variable independently is left unrestricted with probability p
and otherwise set uniformly to 0 or 1. Then,

Pr
ρ∼Rp

[
DTdepth( f |ρ) ≥ s

]
≤ (5pk)s .

Despite the immense success of these methods in proving optimal lower bounds for small-
depth AND-OR circuits and related models, they did not help in understanding limits of consider-
ably stronger computational models. It was soon discovered that "other techniques" are needed to
tackle these stronger models and this was made formal in the natural proof approach by Razborov
and Rudich [RR97]. About a decade ago, interest in an improved switching lemma was revived
while trying to understand optimal correlation bounds of small depth AND-OR circuits with the
parity function. While the early results of Ajtai [Ajt83] were only able to show a correlation bound
of exp(−Ω(n1−ε)), Beame, Impagliazzo and Srinivasan [BIS12] proved a considerably smaller cor-
relation bound of exp(−Ω(n/22d(log S)4/5

)) for depth-d AND-OR circuits of size S with the parity
function over n bits. This was then improved by Impagliazzo, Matthews and Paturi [IMP12] and
Håstad [Hås14] who proved the optimal correlation bound of exp(−Ω(n/(log S)d)) for depth-
(d + 1) AND-OR circuits of size S with the n-bit parity function. Håstad proved this optimal
correlation bound by proving the multi-switching lemma, a significant strengthening of his earlier
switching lemma. The multi-switching lemma is best described in terms of criticality, a notion
introduced subsequently by Rossman [Ros19].

The criticality of a Boolean function f : {0, 1}n → {0, 1} is the minimum λ ≥ 1 such that

Pr
ρ∼Rp

[
DTdepth( f |ρ) ≥ s

]
≤ (pλ)s.

Thus, Håstad’s switching lemma in terms of criticality states that k-DNFs (and k-CNFs) have criti-
cality O(k). The Multi-switching lemma (in Rossman’s reformulation in terms of criticality) states
that a depth-(d+ 1) AND-OR circuit of size S has criticality O(log S)d. In the same paper, Rossman
[Ros19] showed a stronger result that depth (d + 1) regular AND-OR formulae of size S have criti-

1A k-DNF is a Boolean formula in disjunctive normal form (DNF) in which each term has at most k literals. A k-CNF
is defined similarly.

2



cality O
(

log S
d

)d
, where regular means that all gates at the same height have equal fan-in. Parallel

and independent of this line of work involving correlation bounds with parity, Rossman [Ros18]
showed that any depth-(d+ 1) AND-OR formula (not necessarily regular) that computes the n-bit
parity requires size at least 2Ω(d(n1/d−1)). Our main result is a common strengthening (and unifica-
tion) of all the above mentioned results, where we prove that any (not necessarily regular) depth

(d + 1) AND-OR formula of size S has criticality O
(

log S
d

)d
. More precisely,

Theorem 1.1. Let F be an AND-OR formula of depth d + 1 and size at most S, then for any p ∈ [0, 1]

Pr
ρ∼Rp

[
DTdepth(F|ρ) ≥ s

]
≤
(

p ·O
(

32d
(

log S
d

+ 1
)d
))s

.

As an immediate corollary of the above criticality result and [Ros19, Theorem 14], we get the
following results for general AND-OR formulae of depth (d + 1). Rossman had proved similar
results for regular AND-OR formulae of depth (d + 1) [Ros19].

Corollary 1.2. Let f : {0, 1}n → {0, 1} be computable by an AND-OR formula of depth d + 1 and size at
most S. Then

1. Decision tree size bounds: DTsize( f ) ≤ O
(

2
(

1−1/O( 1
d log S)

d
)

n
)

,

2. Correlation bound with parity: Cor( f ,⊕n) ≤ O
(

2−n/O( 1
d log S)

d
)

,

3. Degree bounds: Prρ∼Rp

[
deg(F|ρ) ≥ s

]
≤
(

p ·O
(

32d ( 1
d log S + 1

)d
))s

.

4. ℓ2-Fourier concentration (Linial-Mansour-Nisan [LMN93]): ∑S⊆[n] : |S|≥k f̂ (S)2 ≤ 2e · e−k/O( 1
d log S)

d

,

5. ℓ1-Fourier concentration (Tal [Tal17]): ∑S⊆[n] : |S|=k

∣∣∣ f̂ (S)∣∣∣ ≤ O
( 1

d log S
)dk.

As indicated before, Theorem 1.1 unifies (and arguably simplifies) all previous results for AC0

circuits and formulae in this context. It also yields satisfiability results for AC0-formulae along the
lines of the Impagliazzo, Matthews and Paturi result [IMP12] (see Section 6 for more details).

1.1 Proof Overview

The proof of Theorem 1.1 is an adaptation of the proof of the multi-switching lemma due to Håstad
[Hås14] and Rossman’s proof in the regular case [Ros19]. As is typical in all proofs of the switching
lemma, we construct a canonical decision tree (CDT) for the depth-d formula. This CDT under a
restriction is constructed in an inductive fashion by progressively refining the restriction. The
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main theorem is proved via the following statement (see Lemma 5.6 for the exact statement),
which we prove inductively. For any s-length bitstring a ∈ {0, 1}s,

Pr
ρ
[ There exists a path in CDT(F, ρ) labelled by the instruction-set a | ρ ∈ T ] ≤ (p · λ(F))s,

where T is any family of downward-closed set of restrictions and λ(F) is the desired criticality
bound that we wish to prove. The crucial difference from Rossman’s proof in the regular setting
is we prove the above statement subject to ρ belonging to any downward-closed set. As in Ross-
man’s proof, the event "There exists a path ...." is broken into several subevents, Et for t ranging
over a polynomially large set and each of the events Et is typically a conjunction of 3 events At,Bt

and Ct. The required probability can then bounded by an expression as follows:

∑
t

Pr [At ∩ Bt ∩ Ct | T ] = ∑
t

Pr [At | T ] · Pr [Bt | At ∩ T ] · Pr [Ct | At ∩ Bt ∩ T ] .

The advantage of using conditioning is that some of these intermediate probabilites (c.f., Pr [Ct | At ∩ Bt ∩ T ])
can be bound using the inductive assumption provided the conditioned events are themselves
downward-closed. The events At and Bt are chosen such that this is indeed the case. The sum
over t is then handled via convexity. The use of downward-closed sets to prove the inductive
claim is inspired from Håstad’s use of downward-closed sets in his proof of the multi-switching
lemma [Hås14]. However, the situation for depth-d formulae is considerably more involved than
the DNF/CNF setting and both the choice of the events as well as bounding these conditional
probabilities require considerable care and subtlety (see Section 4 and Claim 5.15). The use of
downward-closed sets considerably simplifies the proof and yields an arguably simpler proof of
the criticality bound, even in the regular setting [Ros19].

Organization

The rest of the paper is organized as follows. We begin with some preliminaries in Section 2, where
we recall the standard notions of restrictions, decision trees and introduce variants of these notions
such as restriction trees etc, which will be of use later. We then define canonical decision trees for
depth-d formulae in Section 3, identical to the corresponding notion in the regular setting due
to Rossman [Ros19]. We then demonstrate the downward-closedness of some properties related
to CDTs in Section 4 and finally prove the main theorem in Section 5. In Section 6, we use the
main lemma to give a randomized #SAT algorithm for arbitrary AC0 formulae generalizing the
corresponding algorithm due to Rossman in the regular setting [Ros19].
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2 Preliminaries

For a positive integer n ∈ N, [n] refers to the set {1, 2, . . . , n}. All logarithms in this paper are to
base 2.

While studying distributions D over some finite set Σ, we will use bold letters (i.e., σ) to dis-
tinguish a random sample according to D from a fixed element σ ∈ Σ. Given any distribution
D on a finite set Σ, we let µD : S → [0, 1] denote the corresponding probability distibution (i.e.,
µD(σ) = Prσ∼D [σ = σ]). We will drop the subscript D from µD typically.

We begin by recalling the definition of an AC0-formula.

Definition 2.1 (AC0-formulae). Let d be a non-negative integer. Let V be a set of variable indices. An
AC0-formula F of depth-d over variables V is (inductively) defined as follows: A depth-0 formula is the
constant 0 or 1 or a literal xv or ¬xv where v is a variable index. For d ≥ 1, a depth-d AC0-formula
is either an OR-formula or an AND-formula which are defined below. A depth-d OR-forumula is of the
form F1 ∨ F2 ∨ · · · ∨ Fm where the Fi’s are either depth-d′ AND-formulae for some 1 ≤ d′ < d or depth-0
formulae. A depth-d AND-formula F = F1 ∧ F2 · · · ∧ Fm is defined similarly.

Depth-1 AND-formulae and OR-formulae are usually referred to as terms and clauses respectively,
while depth-2 AND-formulae and OR-formulae are called DNFs and CNFs respectively.

The size of a formula is given by the number of depth-1 subformulae2. More precisely, size(F) is
inductively defined as

size(F) :=


0 if depth(F) = 0

1 if depth(F) = 1

∑m
i=1 size(Fi) if F = F1 ∨ F2 ∨ · · · ∨ Fm or F1 ∧ F2 · · · ∧ Fm.

The variable index set V of a given formula F unless otherwise specified is always assumed to be [n].
We will sometimes identify a formula F with the Boolean function it computes. We say "F ≡ 1" if this

Boolean function is a tautology and "F ≡ 0" if it is a contradiction. ⌟

2.1 Restictions, Decision Trees and Restriction Trees

We will be chiefly concerned with restrictions.

Definition 2.2 (restriction). Given a variable index set V, a restriction ρ is a function ρ : V → {0, 1, ∗}
or equivalently a partial function from V to {0, 1}. We refer to the domain of this partial function as
dom(ρ) and the remaining set of unrestricted variables, namely V \ dom(ρ), as stars(ρ).

We say that two restrictions ρ1 and ρ2 are consistent if for every v ∈ dom(ρ1) ∩ dom(ρ2), we have
ρ(v1) = ρ(v2).

2Traditionally, the size is defined by the number of leaves or depth-0 formulas but for this paper, it would be more
convenient to work with this definition.
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We can define a partial ordering among restrictions as follows: we say ρ1 ≼ ρ2 if (1) stars(ρ1) ⊆
stars(ρ2) and (2) ρ1 and ρ2 are consistent. In words, ρ1 only “sets more variables” than ρ2. Sometimes, we
will only be interested in this order with respect to a particular subset T of the variable index set V. In this
case, we say

ρ1 ≼T ρ2 if (1) stars(ρ1) ∩ T ⊂ stars(ρ2) ∩ T and (2) ρ1 and ρ2 are consistent.

Given a formula F and a restriction ρ, the restricted formula F|ρ refers to the formula obtained by
relabeling literals involving variables indices in dom(ρ) according to ρ (we make no further simplification
to the formula). Given two consistent restrictions ρ1, ρ2, F|ρ1,ρ2 refers to the formula (F|ρ1)|ρ2 (which is
identical to (F|ρ2)|ρ1). ⌟

It will sometimes be convenient to consider an ordering among the variables in the domain of
a restriction, especially when studying restrictions arising from decision trees.

Definition 2.3 (ordered restriction). An ordered restriction on a variable set V is a sequence of the form
α = (xv1 → b1, . . . , xvt → bt) where t ∈ N, bi ∈ {0, 1}, and v1, . . . , vt are distinct elements of V. We
will use dom(α) to refer to the set {v1, . . . , vt}. (We will typically use α or β for ordered restrictions.)

Any ordered restriction can be interpreted as a restriction ρ with dom(ρ) = {v1, . . . , vt}. Similarly,
given a restriction ρ on V, and an ordering on dom(ρ), we have a natural representation of ρ as an ordered
restriction on V. ⌟

The following is the standard definition of a decision tree except that we allow the internal
nodes of the tree to have (out-)degree either 1 or 2.

Definition 2.4 (decision tree). A decision tree is a a finite rooted binary tree where

• each internal node is labelled by a variable, has one or two children and the edges to its children have
distinct labels from the set {0, 1},

• the leaves are labelled by 0 or 1, and

• the variables appearing in any root-to-leaf path are distinct.

For each node v (including leaf node), the root-to-node path in the decision tree naturally corresponds to an
ordered restriction, which we denote by αΓ

v (this restriction is non-trivial for every non-root node).
The depth of a decision tree T, denoted by depth(T), is defined as the maximum number of degree-2

nodes along any root-to leaf path in T. Note that this may be shorter than the length of the corresponding
ordered restriction, which includes the degree-1 nodes also.

A decision tree is said to compute a Boolean function F : {0, 1}V → {0, 1} under a restriction ρ if the
following conditions hold

• any internal vertex labelled by a variable index, say v, that is in dom(ρ) has degree one, with the
edge to the only child labelled with ρ(v),
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• any internal vertex labelled by a variable index in stars(ρ) has degree two and

• for every leaf v, we have F|ρ,αv ≡ label(v). ⌟

An "honest-to-god" decision tree (with all internal nodes having degree two) can be obtained
from the above decision tree by contracting the degree-1 edges. However, we will find it conve-
nient to keep this information about degree-1 nodes while constructing decision trees for functions
under a restriction. Note that if a decision tree T computes a function F under the restriction ρ,
then the contracted decision tree T′ computes the function F|ρ.

To prove the criticality bound for a given formula F, we construct a canonical decision tree
(CDT) for F under a (random) restriction ρ. This CDT is constructed in an inductive fashion by
constructing the CDT’s for F’s subformulae first and then using these CDT’s to construct F’s CDT.
While doing so, we progressively refine the restriction so that the final restriction under which the
CDT is constructed is the target restriction ρ. This naturally leads us to the notion of restriction
trees, which is essentially a family of restrictions, one for each subformula of a given formula, such
that the restrictions get refined as we move from child to parent in the formula tree.

Definition 2.5 (restriction tree). Let F be a formula on the variable index set V and TF the set of all
subformulae of F. The elements of TF have a natural bijection with the underlying formula tree of F.
A restriction tree for F, denoted by ρ̃, associates a restriction with each node in TF, formally ρ̃ : TF →
{0, 1, ∗}V , such that for G, H ∈ TF where G is a subformula of H, we have ρ̃(H) ≼ ρ̃(G). In other words,
the sequence of restrictions on any leaf-to-root path sets increasingly more variables as we approach the root.

For any subformula G of F, we let ρ̃|G denote the restriction of ρ̃ to the set TG of subformulae of G. ⌟

We will use the "tilde" notation to distinguish between restrictions ρ and restriction trees ρ̃.
Observe that, by definition, every restriction ρ in a restriction tree ρ̃ corresponding to a formula F
satisfies ρ ≼ ρ̃(F) and are hence consistent with each other.

2.2 Representation of restrictions and restriction trees

Recall that a restriction ρ is a partial function from the set V of variables to {0, 1}. Sometimes
(especially when dealing with random restrictions), it will be convenient to work with a (redundant)
representation of ρ given by the pair (σ, S) where σ : V → {0, 1} is a global assignment consistent
with ρ and S = stars(ρ). Note this is representation is redundant as we only need σ|S to specify ρ.
When sampling restrictions, it will be easier to sample the pair (σ, S) from some distribution and
set ρ := ρ(σ,S) to be the restriction given by

ρ(σ,S)(v) =

σ(v) if v /∈ S,

∗ if v ∈ S.

This representation naturally extends to restriction trees ρ̃ : TF → {0, 1, ∗} which are given by
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a pair (σ, S̃) where σ : V → {0, 1} is a global assignment consistent with all the restrictions in the
restriction tree and S̃ : TF → 2V is defined as S̃(G) := stars(ρ̃(G)). Notice that any S̃ satisfies
the monotonocity property that if G is a subformula of H in TF, we have S̃(H) ⊆ S̃(G). Given
any such S̃ that satisfies the monotonicity property and a global assignment σ : V → {0, 1}, the
corresponding restriction tree ρ̃(σ,S̃) is given by ρ̃(σ,S̃)(G) := ρ(σ,S̃(G)) for all G ∈ TF.

3 Canonical decision tree

In this section, we construct a canonical decision tree (CDT) for a formula F. This definition is
identical to Rossman’s definition [Ros19, Definition 19] (except that Rossman defines it completely
in terms of ordered restrictions while we define it using decision trees which have both degree-1
and degree-2 internal nodes).

Let us first recall the CDT construction for DNFs in the proof of Håstad’s classical switching
lemma [Bea94, Raz95, Hås14]. Let F = T1 ∨ · · · ∨ Tm be a DNF and ρ a restriction on the variables
of F. To construct CDT(F, ρ) we do the following:

1. Find the first term T (from left to right), not forced to 0 by ρ. If there is no such term, return
the tree comprising of a single leaf node labelled 0.

2. If T|ρ ≡ 1, return the tree comprising of a single leaf node labelled 1.

3. Let Y be the set of ρ-unrestricted variables in T. Let Γ be the CDT(T, ρ) constructed from the
complete balanced binary tree of depth |Y| indexed by the variables of Y and labelling the
2|Y| appropriately.

4. For each leaf v of Γ, inductively replace v with CDT(F|αv , ρ) where αv is the (ordered) restric-
tion corresponding to leaf v.

The construction of CDTs for depth-d formulae will be inspired by the above CDT construction
for DNFs. Note that in Step 3, we used a complete binary tree instead of the best decision tree
for the term T (see Fig. 1). The rationale for doing this is because while proving the switching
lemma, we wanted to attribute a 0-leaf in Γ to a 1-leaf which shares the same set of variables. We
will need a similar property in our construction. To this end, we perform a balancing operation
which ensures that every 0-leaf has a corresponding 1-leaf such that the two associated ordered
restrictions share the same set of variables (this is the 0-balancing operation defined below. The
1-balancing operation is similar with the roles of 0 and 1 reversed).

3.1 0-Balancing and 1-Balancing

Given a decision tree Γ for a Boolean function F, the 0-balanced version Γ′ is constructed as follows.
We first pull-up the zeros, in other words, if there is any subtree all of whose leaves are labelled 0,
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x1

0 x2

0 x3

0 1

(a) Optimal DT for x1 ∧ x2 ∧ x3

x1

x2 x2

x3 x3 x3 x3

0 0 0 0 0 0 0 1

(b) Completed balanced DT for x1 ∧ x2 ∧ x3

Figure 1: Illustration of DT(x1 ∧ x2 ∧ x3) used in the CDT construction in the proof of Håstad’s
Switching Lemma.

we contract the entire subtree to a single leaf node labelled 0. The construction then proceeds in
d rounds where d is the length of the longest root-to-leaf path in Γ (note this is not necessarily the
depth of Γ due to the presence of degree-1 nodes). This process leaves the 1-leaves in Γ unaltered.
As we proceed, we also construct a map assoc which associates each leaf (both 0 and 1 leaves) in
Γ′ with a 1-leaf in Γ′. To begin with, this map assoc associates each 1-leaf to itself (i.e, if u is a 1-leaf,
then assoc(u) = u).

In the ith round, we consider all 0-leaves in Γ at distance (d − i) from the root. Let u be one
such 0-leaf and Tu the subtree rooted at the sibling of u. Observe that Tu necessarily has some
leaf labelled 1, else the entire subtree rooted at the parent of u would have been contracted to a
single leaf node labelled 0. We then mirror the entire subtree Tu at the leaf node u and relabel
all the leaves of this mirrored subtree with 0. These are the 0-leaves of Γ′. For each such newly
created 0-leaf w (in the mirrored subtree Tu), let w′ be the corresponding leaf in the tree Tu. Set
assoc(w)← assoc(w′).

See Fig. 2 for an illustration of the 0-balancing process. Observe that if we 0-balance the best
decision tree for a term, we obtain the complete balanced tree (see Fig. 1).

At the end of this process, observe that Γ is transformed into another decision tree Γ′ such that
the following hold.

• If Γ computes a function F under some restriction ρ, so does Γ′.

• The 1-leaves in Γ′ are in 1-1 correspondence with the 1-leaves in Γ. Furthermore, the two
1-leaves (the one in Γ and its associated 1-leaf in Γ′) correspond to identical ordered restric-
tions.

• Every 0-leaf w in Γ′ has an associated 1-leaf in Γ′ given by assoc(w). Furthermore, the cor-
responding ordered restrictions (namely αΓ′

w and αΓ′
assoc(w)) share the same set of variables

which are queried in the same order along both these root-to-leaf paths.

Let us now try to understand what are the 0-leaves constructed in the 0-balancing process.
Let w be any 0-leaf in Γ′ and w′ = assoc(w) be the corresponding 1-leaf. Furthermore, let α :=
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x1

0 x5

x2

0 1

0

(a) initial

x1

0 x5

x2

0 1

0

w1 w2

(b) first round
assoc(w1) ←
w2

x1

0 x5

x2

0 1

x2

0 0
w3

(c) second
round
assoc(w3) ←
assoc(w1) ←
w2

x1

x5 x5

x2

0 1

x2

0 0

x2 x2

0 0 0 0
w7

(d) third round
assoc(w7) ← assoc(w3) ←
assoc(w1)← w2

Figure 2: Illustration of 0-balancing process

αΓ′
w = (v1 7→ c1, . . . , vt 7→ ct) and β := αΓ′

w′ = (v1 7→ d1, . . . , vt 7→ dt). First, we must have that
dom(α) = dom(β) and that the variables in this common domain must be queried in the same
order. Furthermore, whenever α differs from β, the ordered restriction formed by following β up
to the step prior to this particular point of disagreement and then taking a step according to α must
cause the formula F|ρ to evaluate to 0. This occurs as the mirroring operation is performed only
at such nodes. More precisely, let αi denote the ordered restriction (v1 7→ d1, v2 7→ d2, . . . , vi−1 7→
di−1, vi 7→ ci). Note, αi is the ordered restriction of length i which is identical to β in the first i− 1
variables and then is similar to α on the ith variable. The ordered restrictions α and β satisfy the
following:

∀i ∈ [t], ci ̸= di =⇒ F|ρ,αi ≡ 0.

Furthermore, the converse also holds. That is, let β corresponds to an ordered restriction of some
1-leaf in Γ′, then the ordered restriction α (with the same domain and same order of querying)
corresponds to a 0-node in Γ′ only if the above condition holds.

Since this is an important point, we summarize the above discussion in the following definition
and claim.

Definition 3.1. Let F be a Boolean function, ρ a restriction and α = (v1 7→ c1, . . . , vt 7→ ct), β =

(v1 7→ d1, . . . , vt 7→ dt) be two ordered restrictions (on the same domain and order of querying). We say
α ∈ ASSOC0(F, ρ, β) iff

∀i ∈ [t], ci ̸= di =⇒ F|ρ,αi ≡ 0

where αi refers to the ordered restriction (v1 7→ d1, v2 7→ d2, . . . , vi−1 7→ di−1, vi 7→ ci). ⌟
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Claim 3.2. Let Γ compute the formula F under the restriction ρ and Γ′ be the 0-balanced version of Γ. Let
w be a 1-leaf in Γ (and hence also Γ′) and β be the corresponding ordered restriction. Then α is an ordered
restriction corresponding to a 0-leaf w′ with assoc(w′) = w iff α ∈ ASSOC0(F, ρ, β).

1-balancing is defined similarly with the roles of 0 and 1 reversed

3.2 CDT Definition

We are now ready to define the canonical decision tree (CDT). As indicated before, this definition
is identical to [Ros19, Definition 19].

Definition 3.3. Given a formula F on variable set V and associated restriction tree ρ̃ : TF → {0, 1, ∗}V , we
define the canonical decision tree, denoted by CDT(F, ρ̃), inductively (on depth and the number of variables)
as follows:

1. If F is a constant 0 or 1, then CDT(F, ρ̃) is the unique tree with a single leaf node labelled by the
appropriate constant.

2. If F is a literal x or ¬x, then

• if x is set by ρ̃(F) to a constant, then CDT(F, ρ̃) is the unique tree with a single node labelled
by the appropriate constant.

• Otherwise if x is unset by ρ̃(F), then CDT(F, ρ̃) is the tree with 3 nodes where the root is
labelled by x and the two children are labelled appropriately by 0 or 1.

3. If F = F1 ∨ · · · ∨ Fm, then

• If F1|ρ̃(F) ≡ F2|ρ̃(F) ≡ · · · ≡ Fm|ρ̃(F) ≡ 0, then CDT(F, ρ̃) is the unique tree with a single leaf
node labelled 0.

• Else, there is some 1 ≤ ℓ ≤ m such that F1|ρ̃(F) ≡ · · · ≡ Fℓ−1|ρ̃(F) ≡ 0 and Fℓ|ρ̃(F) ̸≡ 0.

• If Fℓ|ρ̃(F) ≡ 1, then CDT(F, ρ̃) is the unique tree node with a single leaf node labelled 1.

• If Fℓ|ρ̃(F) ̸≡ constant, then do the following steps to construct CDT(F, ρ̃)

(a) Let Γ be CDT(Fℓ, ρ̃|Fℓ) constructed inductively (since depth(Fℓ) < depth(F)).

(b) Apply the restriction ρ̃(F) to Γ to get Γ′ and remove all the sub-trees which are inconsistent
with ρ̃(F)3.

(c) 0-balance Γ′ to get Γ”.

(d) For each 0-leaf u of Γ”, replace u by CDT(F|αu , ρ̃) where αu is the ordered restriction
corresponding to u in Γ”.

The case when F = F1 ∧ · · · ∧ Fm is a conjunction of sub-formulas is handled similarly (with the
roles of 0 and 1 reversed). ⌟
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(a) original DT
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0 0

x2 x2
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(c) 0-balancing

Figure 3: Illustration of Items 3a to 3c in CDT construction

Given any s-long bitstring a = (a1, a2, . . . , as), we can walk along the CDT using a as an "in-
struction set". In other words, we walk from the root to a node of the tree by using a to make
choices at the degree-2 nodes and otherwise following the degree one-edges. If this walks ends
at a node w (possibly leaf node) of the CDT, we denote the corresponding ordered restriction αw

by CDT(a)(F, ρ̃), else CDT(a)(F, ρ̃) is undefined. When this node is a leaf node, then it is labelled
either 0 or 1. In this case, we further enhance this definition as follows.

Definition 3.4. Let F be a formula and ρ̃ an associated restriction tree. For any bitstring a = (a1, . . . , as)

and z ∈ {0, 1}, define

CDT(a)
z (F, ρ̃) =

αw if the walk according to instruction set "a" ends on a leaf w labelled b,

⊥ otherwise. ⌟

3.3 Unpacking the CDT

Fix a formula F on n variables and an associated restriction tree ρ̃ : TF → {0, 1, ∗}n. Let a =

(a1, . . . , as) be an s-bitstring with s ≥ 1. Let us assume F = F1 ∨ F2 ∨ · · · ∨ Fm is a disjunction. In
this section, we try to understand when CDT(a)

0 (F, ρ̃) exists.

Suppose CDT(a)
0 (F, ρ̃) exists and is the ordered restriction α. Then, the following must be true.

• There exists a unique ℓ ∈ [m] such that for all ℓ′ < ℓ, we have Fℓ′ |ρ̃(F) ≡ 0 and Fℓ|ρ̃(F) ̸≡
constant.

• Let Γ be CDT(Fℓ, ρ̃|Fℓ). Let Γ′ be the tree obtained by restricting Γ by ρ̃(F) and Γ′′ be the
0-balancing of Γ′. There must be some 1 ≤ r ≤ s such that, a walk to a leaf of Γ′′ using
instruction set a≤r leads us to a leaf in Γ′′. Let α′ be the corresponding ordered restriction
(which ought to be a prefix of α).

3This step introduces degree 1 nodes in the decision tree.
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• CDT(a>r)
0 (F|α′ , ρ̃) exists, and is α′′ say. In that case, α = (α′, α′′).

Let us peer deeper into the balancing operation. Since Γ′′ is the 0-balancing of Γ′, we must
have that assoc(α′) = β for some 1-leaf β of Γ′′ and this β is a 1-leaf of Γ = CDT(Fℓ, ρ̃|Fℓ) as well.
In fact, β must be consistent with ρ̃(F) as this path in CDT(Fℓ, ρ̃|Fℓ) = Γ survived in Γ′ as well.
Thus, there is some instruction set b ∈ {0, 1}t, for some t ≥ r, such that CDT(b)

1 (Fℓ, ρ̃|Fℓ) = β.
Let us focus on the differences between the ordered restriction α′ and β. We know there were t

degree-2 nodes on the path to β in CDT(Fℓ, ρ̃ℓ), and there were r degree-2 nodes on the path to α′

in Γ′′. Thus, among the t degree-2 nodes on the path to β, we must have that t− r of them belong
to dom(ρ̃(F)) (with β being consistent with ρ̃(F)) and the path to α′ uses a≤r as instructions for
the other r nodes (instead of whatever route was taken by the path to β).

We summarize this discussion in the following lemma. We will be using this lemma for a
random restriction tree ρ̃ (chosen according to a suitable distribution). To distinguish the quantites
that depend on this random variable from the rest, we use bold font to indicate all the quantities
(including ρ̃ itself) that are functions of ρ̃.

Lemma 3.5 (Unpacking CDT(a)
0 (F, ρ̃)). Let F = F1 ∨ · · · ∨ Fm be a formula and ρ̃ : TF → {0, 1, ∗}n an

associated restriction tree. Let s ≥ 1 and a ∈ {0, 1}s.
Then CDT(a)

0 (F, ρ̃) exists if and only if there exist

• ℓ ∈ [m]

• non-negative integer r ∈ [s],

• non-negative integer t ≥ r

• a bitstring b ∈ {0, 1}t and

• Q ∈ ([t]r )

such that the following three conditions A,B, C are met.

A(ℓ, t, b): (i). Fℓ′ |ρ̃(F) ≡ 0 for all ℓ′ < ℓ,

(ii). CDT(b)
1 (Fℓ, ρ̃|Fℓ) exists (and is β say).

(iii). β is consistent with ρ̃(F),

B(ℓ, t, b, r, Q, a≤r): (i). Q identifies stars(ρ̃(F)) within dom(β) ∩ stars(ρ̃(Fℓ)).

(ii). Let α′ is the ordered restriction obtained by modifying β by replacing the assignment of the
r variables in dom(β) ∩ stars(ρ̃(Fℓ)) identified by Q by a≤r. We denote this process as

"α′ stars ρ̃(Fℓ)←−−−−−
Q←a≤r

β". Then α′ ∈ ASSOC0(Fℓ, ρ̃(F), β)

13



C(ℓ, t, b, r, Q, a): CDT(a>r)
0 (F|α′ , ρ̃) exists (is α′′ say).

Furthermore, when CDT(a)
0 (F, ρ̃) exists, we have CDT(a)

0 (F, ρ̃) = (α′, α′′).

When clear from context, we will drop the arguments ℓ, t, b, r, Q, a from the properties A,B
and C.

4 Downward closure property

Let ρ, ρ′ be two restrictions on the variable set V and let T ⊆ V any subset of the variables. Recall
that we say that ρ′ ≼T ρ if (1) stars(ρ′) ∩ T ⊆ stars(ρ) ∩ T and (2) ρ1 and ρ2 are consistent. We
say that a set F of restrictions is downward-closed with respect to the set of variables T if the
following holds for any pair of restrictions ρ, ρ′

ρ ∈ F and ρ′ ≼T ρ =⇒ ρ′ ∈ F .

We now extend this defintion of downward-closed sets to restriction trees.

Definition 4.1 (downward-closed set of restriction trees). Let F be a formula on the variable set V and
ρ̃, ρ̃′ : TF → {0, 1, ∗}V be two associated restriction trees. Let S ⊆ V. We say ρ̃′ ≼S ρ̃ iff for all G ∈ TF,
we have ρ̃′(G) ≼S ρ̃(G).

We call a set T of restriction trees downward-closed with respect to the variable set T if the
following holds for any pair of restriction trees

ρ̃ ∈ T and ρ̃′ ≼T ρ̃ =⇒ ρ̃′ ∈ T .

If T = V (the full set of variables), then we drop the subscript T in the above definitions. ⌟

It is evident that if T and T ′ are two downward-closed set of restriction trees with respect to a
variable set, so is their intersection. The key property that enables our proof of the main lemma is
the following downward-closure property.

Lemma 4.2. Let F = F1 ∨ F2 ∨ · · · ∨ Fm be a formula on variable set V and ρ̃ : TF → {0, 1, ∗}|V| be an
associated restriction tree. Let s ∈ Z>0, a ∈ {0, 1}s and α be an ordered restriction such that

CDT(a)
0 (F, ρ̃) = α.

Suppose ρ̃′ : TF → {0, 1, ∗}|V| is another restriction tree satisfying

• ρ̃′ ≼ ρ̃ and

• ρ̃′(G)|dom(α) = ρ̃(G)|dom(α) for all G ∈ TF,

14



then CDT(a)
0 (F, ρ̃′) = α.

Similarly, when F = F1 ∧ F2 ∧ · · · ∧ Fm, the same holds for “CDT(a)
1 (F, ρ̃) = α”.

Note that the lemma implies that the set TF,a,α := {ρ̃ : CDT(a)
0 (F, ρ̃) = α} is downward-closed with

respect to the variable set V \ dom(α).

Proof. We are given that ρ̃′ and ρ̃′ behave identically on dom(α), and ρ̃′ only sets more variables
(all of them outside of dom(α)) than ρ̃. The proof is by induction on the depth and number of
variables in the formula.

Base case: The base case is when F|ρ̃(F) is a literal or a constant. The lemma is clearly true in this
case as ρ̃′ only sets more variables than ρ̃ and does not change the variables in dom(α).

Induction step: Let F be a formula of depth d on the variable set [n]. Assume the lemma is true
for all formulae of either depth less than d or involving less than n variables.

By the Unpacking lemma (Lemma 3.5), we have that CDT(a)
0 (F, ρ̃) = α if and only if there exist

ℓ, r, t, b, Q and ordered restrictions α′, α′′, β such that the following are true.

(i). Fℓ′ |ρ̃(F) ≡ 0 for all ℓ′ < ℓ,

(ii). CDT(b)
1 (Fℓ, ρ̃|Fℓ) = β,

(iii). β is consistent with ρ̃(F),

(iv). Q identifies stars(ρ̃(F)) within dom(β) ∩ stars(ρ̃(Fℓ)).

(v). α′ ∈ ASSOC0(Fℓ, ρ̃(F), β) where α′
stars ρ̃(Fℓ)←−−−−−

Q←a≤r
β (i.e., α′ is the ordered restriction obtained by

modifying β by replacing the assignment of the r variables in dom(β) ∩ stars(ρ̃(Fℓ)) iden-
tified by Q by a≤r). Note that α′ ∈ ASSOC0(Fℓ, ρ̃(F), β) ensures that α′ is a 0-path in the
decision tree Γ′′ where Γ′′ is defined as follows:

Γ = CDT(Fℓ, ρ̃Fℓ)
Apply ρ̃(F)

; Γ′ 0-balance
; Γ′′.

(vi). CDT(a>r)
0 (F|α′ , ρ̃) = α′′.

(vii). α = (α′, α′′).

We will demonstrate that for the same ℓ, r, t, b, Q and ordered restrictions α′, α′′, β all the above
conditions continue to hold good when ρ̃ is replaced by ρ̃′. This will prove that CDT(a)

0 (F, ρ̃′) = α.
Item (vii) is trivially true as this is independent of ρ̃ or ρ̃′. The other conditions are met for

the following reasons. We first observe that since α′ ∈ ASSOC0(Fℓ, ρ̃(F), β), we have dom(β) =

dom(α′) ⊆ dom(α).
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• Items (i) and (iii) continue to hold good when when more variables are set from ρ̃ to ρ̃′.

• Items (ii) and (vi) are true when ρ̃ is replaced by ρ̃′ due to the inductive assumption (since Fℓ
is a formula of smaller depth, F|α′ is a formula on fewer variables and ρ̃′ does not alter the
variables in dom(β) = dom(α′) or dom(α′′)).

• Since the variables in dom(β) = dom(α′) ⊆ dom(α) are unaltered by ρ̃′, we have

stars(ρ̃(F)) ∩ dom(β) = stars(ρ̃′(F)) ∩ dom(β),

stars(ρ̃(Fℓ)) ∩ dom(β) = stars(ρ̃′(Fℓ)) ∩ dom(β).

Hence, if Q identifies stars(ρ̃(F)) within dom(β)∩ stars(ρ̃(Fℓ)), it also identifies stars(ρ̃′(F))
within dom(β) ∩ stars(ρ̃′(Fℓ)). Thus, Item (iv) holds.

• As for Item (v), since dom(β) ∩ stars(ρ̃(Fℓ)) = dom(β) ∩ stars(ρ̃′(Fℓ)) and α′
stars ρ̃(Fℓ)←−−−−−

Q←a≤r
β,

we also have α′
stars ρ̃′(Fℓ)←−−−−−

Q←a≤r
β. It is now easy to verify from the definition of ASSOC0 (Defini-

tion 3.1), if α′ ∈ ASSOC0(Fℓ, ρ̃(F), β), then we also have α′ ∈ ASSOC0(Fℓ, ρ̃′(F), β) since we
are only setting more variables. Thus Item (v) also holds.

Thus, we have proved the claim.

All of the above works even when dealing with the representation of restrictions given by pairs
(σ, S) (see Section 2.2). In this case, the notion of downward closure is the standard definition of
downward closure of sets. Lemma 4.2 merely re-stated in this language is the following

Lemma 4.3. Let F = F1 ∨ F2 ∨ · · · ∨ Fm be a formula on variable set V and (σ, S̃) be a representation of
associated restriction tree ρ̃ : TF → {0, 1, ∗}|V| (i.e, ρ = ρ(σ,S̃)). Let s ∈ Z>0, a ∈ {0, 1}s and α be an
ordered restriction such that

CDT(a)
0 (F, ρ̃) = α.

Suppose (σ, S̃′) is a representation of another restriction tree ρ̃′ : TF → {0, 1, ∗}|V| satisfying

• S̃′(G) ⊆ S̃(G) for all G ∈ TF and

• S̃′(G) ∩ dom(α) = S̃(G) ∩ dom(α) for all G ∈ TF,

then CDT(a)
0 (F, ρ̃′) = α.

Similarly, when F = F1 ∧ F2 ∧ · · · ∧ Fm, the same holds for “CDT(a)
1 (F, ρ̃) = α”.

We will complete this discussion by extending the definition of downward-close to this repre-
sentation of restrictions.
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Definition 4.4. Let T be any subset of the variable set V. For any pair of sets S, S′ ⊆ V, we say that
S′ ⊆T S if S′ ∩ T ⊆ S ∩ T and S′ \ T = S \ T. Similarly, for any pair S̃, S̃′ : TF → 2V , we say that
S̃′ ⊆T S̃ if for ∀G ∈ TF, S̃′(G) ⊆T S̃(G).

A set of restrictionsF ⊆ {0, 1}V × 2V (given by their representations) is downward closed with respect
to variable set T if the following holds for every pair of representations (σ, S) and (σ′, S′):

(σ, S) ∈ F and S′ ⊆T S and σ|S ≡ σ′|S =⇒ (σ′, S′) ∈ F .

Similarly, a set of restriction trees T (given by their representations) is downward closed with respect
to the variable set T if the following holds for any pair of restriction trees (σ, S̃) and (σ′, S̃′)

(σ, S̃) ∈ T and S̃′ ⊆T S̃ and σ|S̃(F) ≡ σ′|S̃(F) =⇒ (σ′, S̃′) ∈ T .

⌟

Thus, Lemma 4.3 implies that the set TF,a,α := {(σ, S̃) : CDT(a)
0 (F, ρ̃(σ,S̃)) = α} is downward-

closed with respect to the variable set V \ dom(α).

5 Bounds on criticality

In this section, we prove Theorem 1.1 (the criticality result for AC0 formulae). To this end, we first
define λ(F), the bound on criticality that we eventually prove. We then define a sampling proce-
dure to sample random restriction trees ρ̃ for a given formula F such that the marginal distribution
ρ̃(F) (i.e, the distribution of the restriction corresponding to the entire formula) is the standard p-
random restriction. Finally, we state and prove the main inductive lemma (Lemma 5.6) that proves
Theorem 1.1.

We begin by defining λ(F) for any AC0-formula.

Definition 5.1 (lambda). For a positive integer S ∈ Z>0 and non-negative integer d ∈ Z≥0, define

λS,d := 32d+1
(

log S
d

+ 1
)d

= 32d+1
(

log(2d · S)
d

)d

.

Given an AC0 formula F of depth d + 1 and size S, define λ(F) := λS,d+1. ⌟

Note, that the above expression simplifies to 32 for depth-1 formulae (i.e., terms and clauses),
where we have used the convention that 0

0 = 1.

Claim 5.2. 8λS,d ≤ λS,d+1

Proof. 8λS,d ≤ 8 · 32d+1
(

log 2d+1S
d

)d
=

λS,d+1
4·log 2d+1S

(d+1)d+1

dd ≤ λS,d+1
4

e(d+1)
d+1+log S ≤ λS,d+1.
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5.1 Sampling restriction trees

We begin by recalling the definition of the classical p-biased distribution and the p-random restric-
tionRp distribution over restrictions.

Definition 5.3 (p-biased distribution). For p ∈ [0, 1] and variable set V, the p-biased distribution µp(V)

is the distribution on the power set 2V where a set S ∈ 2V is sampled as follows:
For each v ∈ V, independently set "v ∈ S" with probability p.
We will express this succinctly as "S←p 2V". ⌟

Definition 5.4 (p-random restriction). For p ∈ [0, 1] and a variable set V,Rp([n]) is the distribution on
representations of restrictions obtained by independently sampling a uniformly random string σ ← {0, 1}V

and a set S ←p 2V and outputting the pair (σ, S). The corresponding random restriction ρ is given by
ρ← ρ(σ,S).

⌟

We now extend this definition to distribution over restriction trees. Given a formula F, we
say that p̃ : TF → [0, 1] is a valid set of probabilities if whenever G is a subformula of H, we have
p̃(G) ≥ p̃(H).

Definition 5.5 (R̃p-distribution). Let F be a formula on the variable set V and p̃ : TF → [0, 1] be a valid
set of probabilities. The distribution R̃ p̃(F) on representations of restriction trees is the the one obtained
from the following sampling algorithm.

1. Choose a uniformly random string σ ← {0, 1}V .

2. For each G ∈ TF, choose independently a random SG ←qG 2V where

qG :=
p̃(G)− p̃(parent(G))

1− p̃(parent(G))
.

(Here, we follow the convention that p̃(parent(F)) = 0).

Note v /∈ SG with probability (1− p̃(G))/(1− p̃(parent(G))).

3. For each G ∈ TF, let G0 := G, G1, . . . , Gk := F be the sequence of formulae from G to the root F in
the formula tree TF. Set S̃(G)← SG0 ∪ SG1 ∪ · · · ∪ SGk .

4. Output the pair (σ, S̃).

The corresponding random restriction tree ρ̃ is given by ρ̃← ρ̃(σ,S̃).
For any p ∈ [0, 1/λ(F)], let R̃p(F) denote the distribution R̃ p̃(F) where p̃ is defined as follows p̃(F) = p

and for all G ∈ TF other than F, we have p̃(G) = 1/8λ(G).4 ⌟

It follows from the definition of R̃ p̃(F) that the marginal distribution ρ̃(G) on any subformula
G ∈ TF is distributed exactly according to the distributionR p̃(G).

4For this to be well-defined, we need λ(F) ≥ 8λ(G) for any subformula G of F. This follows from Claim 5.2

18



5.2 Main Lemma

We are now ready to state the main lemma of the paper.

Lemma 5.6. Let d ≥ 0 and F = F1 ∨ F2 ∨ · · · ∨ Fm be an AC0 formula of size S and depth d + 1 on n
variables. Let T be any set of downward-closed set of representations of restriction trees with respect to the
variables of the formula F, then for all integers s ≥ 1 and a ∈ {0, 1}s,

Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]
≤ (p · λ(F))s.

The statement for conjunctions F = F1 ∧ F2 ∧ · · · ∧ Fm is identical with CDT(a)
0 replaced by CDT(a)

1 .

Theorem 1.1 stated in the introduction clearly follows from the above lemma. The above
lemma is stronger than what is needed for Theorem 1.1 as it proves the statement even when con-
ditioned under any downward-closed set of restriction trees. This stronger statement is needed
for the inductive proof to go through.

Proof. The proof is by induction on the depth d of the formula and the number of variables in the
formula F.

Let us begin with the base case (depth-1 AC0-formulae). The proof of this is similar to the proof
of [Hås14, Lemma 3.4]. The proof of the base case is written in a slightly more complicated fashion
than it needs to be as it then serves as a warmup to one of the key claims (Claim 5.15) in the proof
of the induction step (the base ).

Base case: The base case is when F is a depth-1 formula and we need to bound the probability
by (32p)s since in this case λ(F) = 32. A depth-1 formula is a term or a clause. Without loss
of generality let’s assume that F is a clause of the form x1 ∨ · · · ∨ xm, where the xi’s are distinct
variables.

For a given a ∈ {0, 1}s, let (σ, S̃) be such that "CDT(a)
0 (F, ρ̃(σ,S̃)) exists" and (σ, S̃) ∈ T . Then

there exists a unique subset of variables Q(a)
(σ,S̃) ⊂ [m] of size s such that S̃(F) ∩ [m] = Q(a)

(σ,S̃)

and for all variables i ∈ [m] \ Q(a)
(σ,S̃), we have σ(xi) = 0. For any b ∈ {0, 1}s, define σ(b) to

be the global assignment that agrees with σ outside Q(a)
(σ,S̃) and is equal to b within Q(a)

(σ,S̃). Since

Q(a)
(σ,S̃) ⊆ S̃(F) and T is downward-closed, we have that these 2s different representations (σ(b), S̃)

are also in T . Furthermore, since ρ̃(σ,S̃) = ρ̃(σ(b),S̃), we have that all these 2s representations also

satisfy "CDT(a)
0 (F, ρ̃(σ(b),S̃)) exists". We can hence conclude that

Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]

≤ 2s · Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists and ∀i ∈ Q(a)
(σ,S̃)

, σ(xi) = 1 | (σ, S̃) ∈ T
]

. (5.7)
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Let Ea =
{
(σ, S̃) : CDT(a)

0 (F, ρ̃(σ,S̃)) exists and ∀i ∈ Q(a)
(σ,S̃)

, σ(xi) = 1
}

. We need to bound the

quantity µ(Ea ∩ T )/µ(T ). For every (σ, S̃) ∈ Ea ∩ T , define the set N(σ, S̃) as outlined below.

N(σ, S̃) :=
{
(σ, S̃′) : S̃′ ⊆

Q(a)
(σ,S̃)

S̃
}

. (5.8)

(Recall the definition of the notation "S̃′ ⊆T S̃" from Definition 4.4).
It follows from the definition of N(σ, S̃) and the distribution R̃p(F), that

µ(σ, S̃) = ps · µ(N(σ, S̃)). (5.9)

We now make the following observations about N(σ, S̃).

• Since T is downward closed and (σ, S̃) ∈ T , we have N(σ, S̃) ⊆ T .

• Exactly one element of N(σ, S̃), namely (σ, S̃), satisfies Ea.

• For distinct (σ, S̃), the corresponding N(σ, S̃) are disjoint.

We can now bound Pr [Ea | T ] using the above observations as follows:

Pr [Ea | T ] =
µ(Ea ∩ T )

µ(T ) =
∑(σ,S̃)∈Ea∩T µ(σ, S̃)

∑(σ,S̃)∈Ea∩T µ(N(σ, S̃)) + µ
(
T \⋃(σ,S̃)∈Ea∩T N(σ, S̃)

)
≤

∑(σ,S̃)∈Ea∩T µ(σ, S̃)

∑(σ,S̃)∈Ea∩T µ(N(σ, S̃))
= ps.

Combining the above bound with (5.7), we thus have

Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]
≤ (2p)s,

concluding the base case of the induction.
Induction step: Let us assume without loss of generality that F = F1 ∨ · · · ∨ Fm and the main

lemma holds for all formulae of smaller depth (in particular the Fi’s) and all formulae with smaller
number of variables (in particular F|β for any non-trivial restriction β). By the Unpacking Lemma
(Lemma 3.5) and a union bound we have that

Pr
(σ,S̃)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]
≤ ∑

r∈[s]
∑

ℓ∈[m]
∑

t : t≥r
∑

Q∈([t]r )
∑

b∈{0,1}t

Pr
(σ,S̃)

[A∩ B ∩ C | T ] ,

(5.10)

where A,B and C are as defined in Lemma 3.5.
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For each fixing of ℓ, r, t, b, Q and a, we will bound the summand Pr [A∩ B ∩ C | T ] in the above
expression. Consider a (σ, S̃) ∈ A ∩ B ∩ C ∩ T . Let β = CDT(b)

1 (Fℓ, ρ̃(σ,S̃)|Fℓ) which is guaranteed
to exist as (σ, S̃) ∈ A. By property B, we have that there exist exactly r variables in dom(β) ∩
stars(ρ̃(σ,S̃)|Fℓ) = dom(β) ∩ S̃(Fℓ) which belong to stars(ρ̃(σ,S̃)) = S̃(F). Let us refer to this set of
variables as Q(σ,S̃). This part of the proof is similar to the base case. For any b ∈ {0, 1}s, define σ(b)

to be the global assignment that agrees with σ outside Q(σ,S̃) and is equal to b within Q(σ,S̃). Since
Q(σ,S̃) ⊆ S̃(F) and T is downward-closed, we have that these 2r different representations (σ(b), S̃)
are also in T . Furthermore, since ρ̃(σ,S̃) = ρ̃(σ(b),S̃), we have that all these 2r representations also
satisfy A∩ B ∩ C. We can hence conclude that

Pr
(σ,S̃)

[A∩ B ∩ C | T ] ≤ 2r · Pr
(σ,S̃)

[
A′ ∩ B ∩ C | T

]
, (5.11)

where A′(ℓ, t, b) is a modification of A (with respect to Item (iii)) as follows:

A′(ℓ, t, b): (i). Fℓ′ |ρ̃(F) ≡ 0 for all ℓ′ < ℓ,

(ii). CDT(b)
1 (Fℓ, ρ̃|Fℓ) exists (and is β say).

(iii). β is consistent with σ,

We thus, have

Pr
[
CDT(a)

0 (F, ρ̃) exists | (σ, S̃) ∈ T
]
≤ ∑

r∈[s]
∑

ℓ∈[m]
∑

t : t≥r
∑

Q∈([t]r )
∑

b∈{0,1}t

2r · Pr
(σ,S̃)

[
A′ ∩ B ∩ C | T

]
. (5.12)

For each fixed choice r, ℓ, t, b, Q, the summand in the above expression can be factorized as

Pr
[
A′ | T

]
· Pr

[
B | A′ ∩ T

]
· Pr

[
C | A′ ∩ B ∩ T

]
. (5.13)

The following three claims bound each of the terms in the above product.

Claim 5.14. For a fixed a, ℓ, r, t, b and Q, we have

Pr
(σ,S̃)∼R̃p(F)

[
CDT(a>r)

0 (F|α′ , ρ̃(σ,S̃)) exists | A′(ℓ, t, b) ∩ B(ℓ, t, b, r, Q, a≤r) ∩ T
]
≤ (p · λ(F))s−r.

Proof. We first note that the formula being considered in the above expression, namely F|α′ , is
itself random since the ordered restriction α′ is random. To deal with this, we prove the above
bound for each fixing of α′. More precisely, we rewrite the above expression as follows (here we
not only fix α′, but also β).

Eα′,β

Pr
ρ̃

[
CDT(a>r)

0 (F|α′ , ρ̃) exists | A′ ∩ B ∩ T ∩ Eα′,β

]
︸ ︷︷ ︸

 ,
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where the expectation over α′ and β is over the appropriate marginal distribution and Eα′,β is the
set of representations of restriction trees (σ, S̃) that satisfy α′ = α′ and β = β. We will prove that
for any fixing of α and β, the indicated quantity in the above expression is at most (p · λ(F))s−r,
which would imply the claim.

Consider any fixing (α′, β) of (α′, β). We first observe that since α′ is a non-trivial ordered
restriction (which is true since r ≥ 1), the variable set of the formula F|α′ is less than that of F and
hence we can apply the inductive assumption provided the set A′ ∩ B ∩ T ∩ Eα′,β is downward
closed with respect to the variables of F|α′ . Below, we verify that this is indeed the case.

A′(ℓ, t, b) ∩ Eα′,β: We will show that each of the 3 items of A′ ∩ Eα′,β are downward-closed.

(i). A′(i) and A′(iii) are clearly downward-closed.

(ii). A′(ii) ∩ Eα′,β is the event that “CDT(b)
1 (Fℓ, ρ̃(σ,S̃)|Fℓ) = β”. This is downward-closed on

the variable set [n] \ dom(β) = [n] \ dom(α′) by Lemma 4.3.

B(ℓ, t, b, r, Q.a≤r) ∩ Eα′,β: B(i) and B(ii): Both these conditions continue to hold good as long as the
variables in dom(β) = dom(α′) are unaltered. Since we care only about downward-closure
on the variable set [n] \ dom(α′), we are fine (note this is not necessarily downward-closed
on the entire set of variables).

Combined with the fact that T is downward-closed, we have A′ ∩ B ∩ T ∩ Eα′,β is downward-
closed on [n] \ dom(α′) and hence by the inductive assumption, we have the required bound.

Claim 5.15. For fixed a, ℓ, r, t, b and Q, we have Pr [B | A′ ∩ T ] ≤ (8 · p · λ(Fℓ))r.

As indicated earlier, the proof of this claim is similar in spirit to the proof of the base case,
which in turn is similar to the proof of [Hås14, Lemma 3.4]. Things are however considerably
more involved here and one has to do a careful conditioning argument to obtain the bound.

Proof. It suffices if for each fixed choice of a, ℓ, r, t, b and Q, we prove

Pr
(σ,S̃)∼R̃p(F)

[
Q identifies S̃(F) within dom(β) ∩ S̃(Fℓ) | A′(ℓ, t, b) ∩ T

]
≤ qr,

where q := (p/(1/8λ(Fℓ))) = (8 · p · λ(Fℓ)).
Consider any (σ, S̃) that satisfies the three properties (1) "Q identifies S̃(F) within dom(β) ∩

S̃(Fℓ)", (2)A′(ℓ, t, b) and (3) T . As before let Q(σ,S̃) be the set of r variables in S̃(Fℓ)∩dom(β) which
belong to S̃(F). For every such (σ, S̃), we define the set N(σ, S̃) of representations of restrictions
trees as follows.

N(σ, S̃) :=
{
(σ, S̃′) : S̃′(G) ⊆Q(σ,S̃)

S̃(G) for every G ∈ TF \ TFℓ and S̃′(H) = S̃(H) for every H ∈ TFℓ

}
.

(5.16)
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It follows from the definition of N(σ, S̃) and the distribution R̃p(F), that

µ(σ, S̃) = qr · µ(N(σ, S̃)). (5.17)

We now make the following observations about N(σ, S̃).

• Exactly one element of N(σ, S̃), namely (σ, S̃), satisfies property (1).

• For distinct (σ, S̃), the corresponding N(σ, S̃) are disjoint.

• Since T is downward closed and (σ, S̃) ∈ A′ ∩ T , we have N(σ, S̃) ⊆ A′ ∩ T .

Putting these facts together, we have the following bound on the probability that we wish to
bound.

Pr
(σ,S̃)

[
Q identifies S̃(F) within dom(β) ∩ S̃(Fℓ) | A′(ℓ, t, b) ∩ T

]
≤

∑(σ,S̃) µ(σ, S̃)

∑(σ,S̃) µ(N(σ, S̃))
= qr,

where the summation (in both the numerator and denominator) in the second step above is over
all (σ, S̃) that satisfy all three properties. This completes the proof of the claim.

Claim 5.18. For fixed a, ℓ, t and b, we have

η(ℓ, t, b) := Pr
[
A′(ℓ, t, b) | T

]
≤
(

1
8

)t

.

Proof.

η(ℓ, t, b) = Pr
(σ,S̃)∼R̃p(F)

[
A′(ℓ, t, b) | T

]
≤ Pr

(σ,S̃)∼R̃p(F)

[
CDT(b)

1 (Fℓ, ρ̃(σ,S̃)|Fℓ) exists | T
]

= Pr
(σ,S̃ℓ)∼R̃ p̃(Fℓ)

(Fℓ)

[
CDT(b)

1 (Fℓ, ρ̃(σ,S̃ℓ)
) exists | T

]
≤ ( p̃(Fℓ) · λ(Fℓ))

t =

(
1

8λ(Fℓ)
· λ(Fℓ)

)t

=

(
1
8

)t

.

The last inequality follows from the induction assumption since Fℓ has depth strictly smaller than
that of F.

Plugging the results of these claims back into the the expression in (5.13), we have

η(ℓ, t, b) · (16 · p · λ(Fℓ))r · (p · λ(F))s−r ≤
(

1
8

)t

· (8 · p · λ(Fℓ))
r · (p · λ(F))s−r
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We need to bound the sum of this expression when summed over all r, ℓ, t, b, Q as given by
(5.12). However, even if we just over all possible ℓ the sum turns out to be prohibitively expensive.
To keep this sum over ℓ (and also r, t, b, Q) under control, we further observe that the events
A′(ℓ, t, b) are mutually disjoint over disjoint ℓ, t, b. This lets us conclude the following claim.

Claim 5.19.

∑
ℓ,t,b

η(ℓ, t, b) = ∑
ℓ,t,b

Pr
(σ,S̃)∼R̃p(F)

[
A′(ℓ, t, b) | T

]
≤ 1.

Proof. We observe that given a (σ, S̃), there is at most one ℓ such that Fℓ′ |ρ̃(F) ≡ 0 and Fℓ|ρ̃(F) ̸≡ 0.
Fix such an ℓ (if one exists). Given this ℓ, there is exactly one root-to-leaf path in CDT(Fℓ, ρ̃|Fℓ) that
is consistent with σ. Let this be β (if one exists). Let t := |dom(β) ∩ stars(ρ̃(Fℓ))| and b ∈ {0, 1}t

the assignment to the t degree-2 variables along the ordered restriction β. Thus, (σ, S̃) uniquely
determines (ℓ, t, b) such that A′(ℓ, t, b) hold. Hence, η(ℓ, t, b) is a sub-distribution.

We now have all the ingredients to bound the quantity of concern. The rest of the proof is a
roller-coaster ride along the Jensen highway. We now bound the quantity in (5.12) as follows:

Pr
(σ,S̃)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]
≤ ∑

r,ℓ,t,b,Q
2r · η(ℓ, t, b) · (8 · p · λ(Fℓ))

r · (p · λ(F))s−r

≤ ∑
r,ℓ,t,b

η(ℓ, t, b) · (16 · p · λ(Fℓ))
r · (p · λ(F))s−r · tr

= (p · λ(F))s ·∑
r,ℓ

(16 · λ(Fℓ)
λ(F)

)r

· ν(ℓ) ·∑
t,b

η(ℓ, t, b)
ν(ℓ)

· tr

︸ ︷︷ ︸


(5.20)

where ν(ℓ) := ∑t,b η(ℓ, t, b). We only sum over those ℓ that satisfy ν(ℓ) > 0. Observe that

∑ℓ ν(ℓ) = ∑ℓ,t,b η(ℓ, t, b) ≤ 1. We first bound the quantity indicated (using underbraces) in the
above expression using Jensen’s inequality and Claim 5.18 as follows.

Subclaim 5.21.

∑
t,b

η(ℓ, t, b)
ν(ℓ)

· tr ≤
(

log
(

1
ν(ℓ)

))r

.

Proof. Rewriting tr as (log 2t)r, the lefthand side can be written as ∑t,b
η(ℓ,t,b)

ν(ℓ)
· (log 2t)r. Since
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∑t,b
η(ℓ,t,b)

ν(ℓ)
= 1, we can apply Jensen’s inequality to the concave function x 7→ (log x)r to obtain

∑
t,b

η(ℓ, t, b)
ν(ℓ)

·
[
log 2t]r ≤

[
log

(
∑
t,b

η(ℓ, t, b)
ν(ℓ)

· 2t

)]r

≤
[

log

(
∑
t,b

1
ν(ℓ) · 4t

)]r

[Since η(ℓ, t, b) ≤ 8−t from Claim 5.18]

≤
[

log

(
1

ν(ℓ) ∑
t

1
2t

)]r

[Since there are at most 2t b’s]

≤
[

log
1

ν(ℓ)

]r

Substituting this bound back into the expression (5.20) above, we obtain

Pr
[
CDT(a)

0 (F, ρ̃) exists | ρ̃ ∈ T
]
≤ (p · λ(F))s ·∑

r

( 16
λ(F)

)r

·∑
ℓ

ν(ℓ) ·

λ(Fℓ) · log
(

1
ν(ℓ)

)
︸ ︷︷ ︸

r
We now apply AM-GM inequality and the definition of λ(Fℓ) to bound the indicated quantity.

Subclaim 5.22. Let Sℓ := size(Fℓ). Then,

λ(Fℓ) · log
(

1
ν(ℓ)

)
≤ 32d

[
log
(

2d−1·Sℓ/ν(ℓ)
)

d

]d

.

Proof. If d = 1, then Sℓ = 1 (recall the ‘size’ defined in Definition 2.1), λ(Fℓ) = 32 (recall Defini-
tion 5.1). Thus, both sides of the above claim simplify to 32 · log(1/ν(ℓ)).

For larger d,

λ(Fℓ) · log
(

1
ν(ℓ)

)
= 32d

(
log 2d−1 · Sℓ

d− 1

)d−1

· log
(

1
ν(ℓ)

)
[Since Fℓ ∈ AC0[Sℓ, d]]

≤ 32d

 log(2d−1 · Sℓ) + log
(

1
ν(ℓ)

)
d

d

[Applying AM-GM inequality]

= 32d

[
log
(

2d−1·Sℓ/ν(ℓ)
)

d

]d

.
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Plugging this bound back into our expression, we have

Pr
[
CDT(a)

0 (F, ρ̃) exists | ρ̃ ∈ T
]
≤ (p · λ(F))s ·∑

r

(16 · 32d

λ(F)

)r

·∑
ℓ

ν(ℓ) ·

 log
(

2d−1·Sℓ
ν(ℓ)

)
d

dr

︸ ︷︷ ︸


We bound the indicated quantity using yet another application of Jensen’s inequality using the
fact that ∑ℓ ν(ℓ) ≤ 1 as follows.

Subclaim 5.23.

∑
ℓ

ν(ℓ) ·

 log
(

2d−1·Sℓ
ν(ℓ)

)
d

dr

≤
[

log
(
2d · S

)
d

]dr

.

Proof. Recall that ∑ℓ ν(ℓ) ≤ 1. Consider the random variable Y defined as follows:

Y ←


2d−1·Sℓ

ν(ℓ)
with probability ν(ℓ) for each ℓ such that ν(ℓ) ̸= 0,

1 with probability 1−∑ℓ ν(ℓ).

and the concave function x
f7−→
(

log x
d

)dr
. Applying Jensen’s inequality, we obtain

E[ f (Y)] ≤ f (E Y) =

[
log
(
(∑ℓ 2d−1 · Sℓ) + (1−∑ℓ ν(ℓ))

)
d

]dr

≤
[

log
(
2d−1 · S + 1

)
d

]dr

[Since S = ∑
ℓ

Sℓ]

≤
[

log
(
2d · S

)
d

]dr

[Since S ≥ 1]

Plugging this bound back into our expression and recalling that λ(F) = 32d+1 ·
(

log 2d·S
d

)d
, we

obtain

Pr
[
CDT(a)

0 (F, ρ̃) exists | ρ̃ ∈ T
]
≤ (p · λ(F))s ·∑

r

1
2r ≤ (p · λ(F))s,

which completes the proof of our main lemma.
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6 Satisfiablity algorithms

In this section, we a give a randomized #SAT algorithm for general AC0 formulae, matching the
Impagliazzo-Matthews-Paturi result for AC0 circuits. Rossman [Ros19] had obtained a similar
result for regular formulae. The proof below is a verbatim adaptation of Rossman’s corresponding
result [Ros19, Theorem 30] for regular formulae to the general setting.

Theorem 6.1. There is a randomized, zero-error algorithm which, given an AC0 formula F of depth d + 1
and size S on n variables, outputs a decision tree for F of size O

(
Sn · 2(1−ε)n

)
where ε = 1/O

(( 1
d log S

)d
)

.
This algorithm also solves the #SAT problem, that is, it counts the number of satisfying assignments for F.

Proof. Given any depth d formula, and restriction tree ρ̃, the decision tree algorithm from Defi-
nition 3.3 computes CDT(F, ρ̃) in time O (n) · ∑G∈TF

size(CDT(G, ρ̃|G)). Given an AC0 formula,
consider the following tree of subsets D̃ : TF → [n] such that for each G, H ∈ TF, such that G is
a parent of H, D̃(H) ⊆ D̃(G). For each such D̃, we get a decision tree for F as follows: We first
construct a decision tree Γ by querying all the variables in D̃(F) and labelling each leaf with the
corresponding restriction on D̃(F). For each such leaf σ (i.e, for each choice σ : D̃(F) → {0, 1}),
we get a corresponding restriction tree ρ̃D̃,σ in the natural manner. For each such σ, construct
CDT(F, ρ̃D̃,σ) and plug it in instead of the leaf corresponding to σ in the complete binary tree Γ.
Clearly, this resultant tree ΓD̃ is a decision tree for F.

We construct a (random) ΓD̃ by sampling a D̃ as follows: randomly choose a τ ∈R [0, 1]n and set
D̃(G) := {i : τi ≤ 1− 1/8λ(G)} for each G ∈ TF. Therefore the expected running time of the algo-
rithm which computes the decision tree for F is O(n) ·∑G∈TF

Eτ

[
∑σ : D̃(F)→{0,1} size(CDT(G, ρ̃D̃,σ|G))

]
while the expected size of the decision tree is Eτ

[
∑σ : D̃(F)→{0,1} size(CDT(F, ρ̃D̃,σ))

]
.

We bound these expression as follows. For each G ∈ TF, size of the decision tree CDT(G, ρ̃) is
given by the expression,

Eτ

 ∑
σ : {0,1}D̃(F)

size(CDT(F, ρ̃D̃,σ))

 = Eτ

[
2|D̃(F)| ·Eσ

[
size(CDT(F, ρ̃D̃,σ))

]]
≤ 2n(1−1/16λ(F)) ·Eτ,σ

[
size(CDT(F, ρ̃D̃,σ))

]
︸ ︷︷ ︸+2n · e−(

1
2 )

2· 12 ·
n

8λ(G)

where in the last expression, we have used the Chernoff Bound Pr[∑ Xi ≤ (1− δ)µ] ≤ e−δ2µ/2 to
bound the probability Pr[|[n] \ D̃(F)| ≤ (1− 1/2)µ] where µ = E[|[n] \ D̃(F)|] = n/8λ(F). We can
now further simplify the expression indicated in the underbraces as follows:

Eτ,σ

[
size(CDT(F, ρ̃D̃,σ))

]
= ∑

t≥0
∑

a∈{0,1}t
∑

b∈{0,1}
Pr

ρ̃D̃,σ

[
CDT(a)

b (F, ρ̃D̃,σ) exists
]

≤ 1 +
∞

∑
t=1

2t
(

1
8

)t

=
4
3

.
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We thus conclude that the expected size of the decision tree is at most 2n(1− 1
Cλ ) for a suitably

large constant C.
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