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Abstract

In this paper, we obtain several new results on lower bounds and derandomization for
ACC0 circuits (constant-depth circuits consisting of AND/OR/MODm gates for a fixed constant
m, a frontier class in circuit complexity):

1. We prove that any polynomial-time Merlin-Arthur proof system with an ACC0 verifier
(denoted by MAACC0 ) can be simulated by a nondeterministic proof system with quasi-
polynomial running time and polynomial proof length, on infinitely many input lengths.
This improves the previous simulation by [Chen, Lyu, and Williams, FOCS 2020], which
requires both quasi-polynomial running time and proof length.

2. We show that MAACC0 cannot be computed by fixed-polynomial-size ACC0 circuits, and
our hard languages are hard on a sufficiently dense set of input lengths.

3. We show that NEXP (nondeterministic exponential-time) does not have ACC0 circuits of
sub-half-exponential size, improving the previous sub-third-exponential size lower bound
for NEXP against ACC0 by [Williams, J. ACM 2014].

Combining our first and second results gives a conceptually simpler and derandomization-
centric proof of the recent breakthrough result NQP := NTIME[2polylog(n)] ̸⊂ ACC0 by [Murray
and Williams, SICOMP 2020]: Instead of going through an easy witness lemma as they did, we
first prove an ACC0 lower bound for a subclass of MA, and then derandomize that subclass into
NQP, while retaining its hardness against ACC0.

Moreover, since our derandomization of MAACC0 achieves a polynomial proof length, we
indeed prove that nondeterministic quasi-polynomial-time with nω(1) nondeterminism bits
(denoted as NTIMEGUESS[2polylog(n), nω(1)]) has no poly(n)-size ACC0 circuits, giving a new
proof of a result by Vyas. Combining with a win-win argument based on randomized encodings
from [Chen and Ren, STOC 2020], we also prove that NTIMEGUESS[2polylog(n), nω(1)] cannot be
1/2 + 1/poly(n)-approximated by poly(n)-size ACC0 circuits, improving the recent strongly
average-case lower bounds for NQP against ACC0 by [Chen and Ren, STOC 2020].

One interesting technical ingredient behind our second result is the construction of a PSPACE-
complete language that is paddable, downward self-reducible, same-length checkable, and
weakly error correctable. Moreover, all its reducibility properties have corresponding AC0[2]
non-adaptive oracle circuits. Our construction builds and improves upon similar constructions
from [Trevisan and Vadhan, Complexity 2007] and [Chen, FOCS 2019], which all require at least
TC0 oracle circuits for implementing these properties.
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1 Introduction

Background. Proving unconditional circuit lower bounds for explicit functions (with the flag-
ship problem of NP ̸⊂ P/poly) is one of the holy grails in complexity theory and theoretical com-
puter science. As the first step toward lower bounds for general circuits, constant-depth circuits re-
ceived a lot of attention in the 1980s, with classical works culminating in exponential lower bounds
against AC0 [Ajt83, FSS84, Yao85, Hås89] (constant-depth circuits consisting of unbounded fan-in
AND/OR gates) and AC0[q] (AC0 circuits with MODq gates) for prime power q [Raz87, Smo87].

Unfortunately, after the 1980s, the initial successes met an obstacle: lower bounds for AC0[m]
have been extremely difficult to establish for composite m, despite the conjecture that AC0[m] can-
not compute the majority function. In fact, it had been a notorious open question whether NEXP
(nondeterministic exponential time) has polynomial-size ACC0 circuits (ACC0 denotes the union
of AC0[m] for all constants m), until a decade ago Williams [Wil11, Wil14] finally proved such a
lower bound, via an algorithmic approach to circuit lower bounds [Wil10, Wil13a]. Combining
many classical results from complexity theory, such as the nondeterministic time hierarchy theo-
rem [SFM78, Žák83], hardness vs. randomness [NW94], and the PCP theorem [ALM+98, AS98],
Williams’ work shows how non-trivial circuit-analysis algorithms can be generically applied to
prove circuit lower bounds.

In 2018, Murray and Williams [MW18] significantly improved Williams’ lower bound by show-
ing NQP := NTIME[2polylog(n)] is not contained in ACC0. A line of recent work [COS18, CW19,
Che19, CR20] generalized the algorithmic approach to the average-case setting, culminating in the
result that NQP cannot be (1/2+ 1/poly(n))-approximated by poly(n)-size ACC0 circuits [CR20].1

Motivation: making the algorithmic method direct. Most of the proofs following the algorith-
mic method are indirect and make heavy use of proof by contradiction or win-win analysis.2 These
proofs are considered by some to be conceptually hard to understand. A natural question is
whether we can give a more direct (i.e., no win-win analysis or proof by contradiction) proof
of the separation NQP ̸⊂ ACC0 [MW20], which might be (hopefully) easier to understand.

Inspired by [Wil13b, Wil16] and motivated by the goal of proving average-case lower bounds
for NQP against ACC0, Chen [Che19] proposed a derandomization-centric perspective of the algo-
rithmic method, which consists of the following two steps:

1. Assuming that the desired lower bound is false (e.g., NQP ⊆ ACC0 or NQP is average-case
easy for ACC0), [Che19] gave a derandomization of a certain sub-class of MA into NQP.

2. [Che19] then proved that this sub-class of MA contains a language that is hard against ACC0,
and its hardness is retained after the aforementioned derandomization into NQP, from which
the desired lower bound for NQP against ACC0 follows immediately.

Following this perspective from [Che19], [CR21] managed to refine both of the two steps
above to prove the strongly average-case lower bounds for NQP against ACC0. Still, the proofs
from [Che19] and [CR21] are not direct, since the first step involves a proof by contradiction.3

Later, [CLW20] managed to give a derandomization of the sub-class of MA with ACC0 verifier (i.e.,
MAACC0 ; see Definition 3.4 for a formal definition.)

1The journal versions of [MW18] and [CR20] are [MW20] and [CR21], respectively.
2A win-win analysis often goes as follows: for some classes A and B, if A ⊆ B, then our desired lower bound

follows in one way, and if A ̸⊆ B, then our desired lower bound follows in another way.
3It can be interpreted as a “conditional derandomization”, since we can derandomize MA assuming the lower bound

is false.
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One may hope that we can replace the derandomization in the first step of [Che19] by a direct
application of the new derandomization by [CLW20], but this does not work for the following
technical reason: The specific sub-class of MA considered in [Che19] is MANC, meaning that the
verifier of the Merlin-Arthur protocol has polylog(n)-depth circuits. This is (much) stronger than
the class MAACC0 that [CLW20] can derandomize. So to make [Che19]’s derandomization-centric
perspective completely direct, we will need a lower bound for MAACC0 against ACC0, so that the
derandomization of [CLW20] can be applied to the corresponding hard language.

1.1 Our Results

Let C be a circuit class. We use MAC to denote the sub-class of MA whose verifier can be imple-
mented by C circuits. More formally, we say that L ∈ MA if there is a polynomial-time algorithm
V(x, y, z) with |x| = n and |y|, |z| ≤ poly(n) such that (1) x ∈ L implies that there exists y satisfy-
ing Prz[V(x, y, z) = 1] = 1 and (2) x /∈ L implies that for all y it holds that Prz[V(x, y, z) = 1] ≤ 1/3.
And we say that L ∈ MAC if V can be computed by polynomial-size C circuits.4

1.1.1 A direct proof of NQP ̸⊂ ACC0

Our first result is an affirmative answer to the question above by proving the following results.

Theorem 1.1 (Informal). For every k, d⋆, m⋆ ∈ N, there is a language L ∈ MAACC0 and a constant
c ∈ N such that for every sufficiently large n ∈ N, there exists an input m ∈ [n, nc] such that Lm (the
restriction of L on m-bit inputs) does not have mk-size AC0

d⋆ [m⋆] circuits.5

Intuitively speaking, our hard language L is not only hard against mk-size AC0
d⋆ [m⋆] circuits,

but its hard input lengths are not sparse in the sense that every interval [n, nc] contains a hard
input length.6 This stronger hardness condition is crucial for the hard language to remain hard
after the infinitely often derandomization from [CLW20]. Combining Theorem 1.1 and the deran-
domization from [CLW20], we then have an alternative proof of NQP ̸⊂ ACC0.7

A subtle caveat. Interestingly, the direct derandomization proof above indeed only proves

(L1) : NQP ̸⊂ AC0
d⋆ [m⋆] for every d⋆, m⋆ ∈N,

which is different from
(L2) : NQP ̸⊂ ACC0.8

This issue occurs in [MW20] as well, as a direct application of their easy witness lemma (which is
the core technical result of [MW20]) also only proves (L1). Nonetheless, [MW20] resolved this issue

4Our formal definition of MAC is slightly more technical and contains more languages (see Definition 3.4), but for
the sake of the introduction, it might be easier to think of this simpler definition.

5The hard language also needs one bit of advice per input length, we omit this technical issue in the introduction.
We also indeed prove a weakly average-case lower bound against AC0

d⋆ [m⋆]; see Section 6 for more detail.
6This is weaker than the “almost almost-everywhere” hardness notion in [MW20].
7We remark that there are previous papers [JMV15, BV14] that simplifies some parts of Williams’ original

proof [Wil11]. However, these works do not change the high-level structure of Williams’ proof: they still argue by
a proof of contradiction using an easy witness lemma. Our goal here is to eliminate the proof by contradiction com-
pletely.

8(L2) implies that there is fixed language L ∈ NQP such that L /∈ AC0
d⋆ [m⋆] for every d⋆, m⋆ ∈N, which a priori looks

stronger than (L1).
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by proving that (L1) implies (L2) via a simple win-win analysis.9 Unfortunately, we do not know
how to get rid of this particular win-win analysis and leave this as an intriguing open question.
Still, we believe that a direct proof of (L1) is already sufficiently interesting.

In Section 2, we give a detailed overview of new derandomization-centric alternative proofs for
the main results of both [MW20] and [CR21].

1.1.2 An improved derandomization of MAACC0

Our next result is an improvement of the derandomization of MAACC0 from [CLW20]. Below,
NTIMEGUESS[T(n), G(n)] denotes the class of languages computable by nondeterministic algo-
rithms with T(n) time and G(n) bits of nondeterminism; see Definition 3.2 for a formal definition.

Theorem 1.2.
MAACC0 ⊂ i.o.-NTIMEGUESS[2polylog(n), poly(n)].

Theorem 1.2 is most interesting when viewed as a derandomization of randomized proof sys-
tems. It says that we can derandomize Merlin Arthur proof systems with ACC0 verifier into a
nondeterministic proof system with roughly the same proof length, albeit the running time goes
up to a quasi-polynomial of the original running time. We hope such derandomization might
have some applications in the derandomization of some recently purposed algebraic proof sys-
tems whose verifiers are randomized (i.e., they are MA proof systems), for example [GP18].

As a consequence of Theorem 1.2, we give another proof of a result by [Vya19].

Corollary 1.3 ([Vya19]). For every α(n) ≥ ω(1),

NTIMEGUESS[2polylog(n), nα(n)] ̸⊂ ACC0.

Combining the win-win argument from [CR21], we also strengthen Corollary 1.3 to the average-
case, thus improving on [CR21].

Theorem 1.4. There is a β ∈ N such that for every α(n) ≥ ω(1), NTIMEGUESS[2logβ n, nα(n)] cannot
be 1/2 + 1/poly(n)-approximated by ACC0.

Indeed, similar to all previous works following the algorithmic method, we prove a generic
connection between circuit analysis algorithm and NTIMEGUESS[2polylog(n), nω(1)] lower bounds;
see Section 5 for formal statements.

1.1.3 An improved lower bound for NEXP against ACC0

Our third result is an improvement over the original lower bound for NEXP against ACC0 in [Wil14].
Roughly speaking, we say that a reasonable time-bound10 function g(n) is sub-half-exponential if
for every k ∈ N, g(g(n)k)k ≤ 2no(1)

, and we say call g sub-third-exponential if g(g(g(n)k)k)k ≤ 2no(1)

for every k ∈ N. In [Wil14], it was proved that NEXP has no sub-third-exponential-size ACC0

circuits. We improve that size bound to be sub-half-exponential.

Theorem 1.5. For every sub-half-exponential reasonable time-bound function g(n), NE has no g(n)-size
ACC0 circuits.11

9If P ̸⊂ ACC0, clearly (L2) is true. If P ⊂ ACC0, then P/poly collapsed to AC0
d⋆ [m⋆] for some fixed d⋆, m⋆ ∈ N≥1,

hence (L1) implies NQP ̸⊂ P/poly.
10see Section 3 for a formal definition.
11Here NE := NTIME[2O(n)].
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Although our proof of Theorem 1.5 is still an indirect argument via a win-win analysis that
is similar to and inspired by [Wil16], we managed to nicely abstract out the indirect part by the
following lemma. Recall that E := TIME[2O(n)] denotes the class of languages computable by
single exponential-time deterministic algorithms.

Lemma 1.6 (Informal). Let g(n) be a sub-half-exponential reasonable time-bound function. Assume that
E has g(n)-size ACC0 circuits. Then

MATIMEACC0

[
2no(1)

]
̸⊂ i.o.-SIZE[g(n)].

Theorem 1.5 then follows immediately by the following win-win argument: If E has no g(n)-
size ACC0, then we are done; otherwise, we apply our quasi-polynomial-time derandomization to
show

MATIMEACC0 [2no(1)
] ⊆ i.o.-NTIME[2n],

which immediately implies that NTIME[2n] ̸⊂ SIZE[g(n)].

1.1.4 An improved construction of PSPACE-complete language

Finally, as a key technical ingredient behind the proof of Theorem 1.1, we construct a PSPACE-
complete language with several nice reducibility properties that can all be implemented by non-
adaptive AC0[2] circuits; see Section 3.5 for formal definitions of these properties.

Theorem 1.7. There is a PSPACE-complete language LPSPACE that is paddable, non-adaptive AC0[2]
downward self-reducible, non-adaptive AC0[2] same-length checkable and non-adaptive AC0[2] weakly error
correctable.

Theorem 1.7 improved upon a similar construction from [Che19, CR21] (following [TV07,
San09]), which gave a PSPACE-complete language that is paddable, non-adaptive TC0 downward
self-reducible, non-adaptive TC0 same-length checkable and non-adaptive TC0 weakly error cor-
rectable.

1.2 Intuition

Let us briefly discuss the intuition behind our results.

Lower bounds for MAACC0 and construction of PSPACE-complete languages. We will first dis-
cuss the intuition and technical challenges behind the proof of Theorem 1.1 and Theorem 1.7. Our
proof of Theorem 1.1 follows the proof of a similar statement from [Che19].12 In the following, we
will ignore all minor details and only focus on the part relevant to us. In the framework of [Che19],
to prove a lower bound against C circuits, the verifier of the constructed hard MA language first
guesses a C circuit C of a certain size and then runs the instance-checker of the PSPACE-complete
language from [Che19]. Thus, because the PSPACE-complete language from [Che19] only admits
a TC0 instance checker, the complexity of the verifier above is at least TC0, even if we only aim to
prove lower bounds against weaker classes such as ACC0.

Since our new Theorem 1.7 improves the instance-checker complexity of the PSPACE-complete
language to AC0[2], we managed to prove Theorem 1.1 by plugging this new ingredient into the
old framework of [Che19]. Along the way, we need several clever technical manipulations.13

12Roughly speaking, [Che19] proved that MATIMENC[2polylog(n)] has no logd n-depth circuits for any fixed d.
13 e.g., Lemma 6.2 and the choice of working with a specific sub-class of ACC0 called ÃC

0
d[m]
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Next, we explain the ideas and technical challenges behind our proof of Theorem 1.7. It is
instructive to recap some relevant details from the construction of the PSPACE-complete lan-
guage LChe19 from [Che19]. Roughly speaking, on input length n, LChe19 computes a polynomial
Pn : F

m(n)
n → Fn, where Fn = GF(2r(n)) for some r(n) ∈N≥1. Omitting many details,14 the compu-

tational bottleneck in implementing these reducibility properties (say, instance-checkability) is in-
deed polynomial interpolation on a single variable. That is, for example, for some fixed x2, . . . , xm(n) ∈
Fn, we wish to interpolate a polynomial p : Fn → Fn such that p(x) = Pn(x, x2, . . . , xn) for every
x ∈ Fn, given oracle access to Pn.

A direct algorithm for the task above first queries Pn to obtain Pn(zℓ, x2, . . . , xn) for ℓ ∈ [d + 1],
where zℓ is the ℓ-th element in Fn and d is the degree of Pn, and then uses Lagrange interpolation
to obtain the description of p. Unfortunately, the Lagrange interpolation (as well as other interpo-
lation methods) requires multiplying at least d elements from Fn together. Since d ≥ n in [Che19],
we will need a TC0 circuit [HAB02, HV06] to compute the interpolated polynomial p.

To improve the complexity of computing p to AC0[2], we observe that for the argument above
to work, d only has to be greater than the maximum individual degree of Pn as opposed to the to-
tal degree.15 Moreover, interpolation over Fn for a constant-degree polynomial can be done in
AC0[2] (see Corollary 7.2, which supports up to log n degree). Hence, we made several careful
non-trivial modifications to the language LChe19 so that the corresponding polynomials always
have a constant maximum individual degree while preserving the required AC0[2] downward self-
reducibility. These modifications allow us to implement the instance checker in AC0[2]; see Sec-
tion 7 for more detail.

Improved derandomization of MAACC0 . Next we discuss the intuition behind the proof of Theo-
rem 1.2. Fix d⋆, m⋆ ∈N≥1, our goal is to derandomize MAAC0

d⋆ [m⋆]
into NTIMEGUESS[2polylog(n), poly(n)].

Let C = AC0
d⋆ [m⋆].

For the sake of gaining intuition, let us assume that we have a magical PRG construction G,
such that when given a function f : {0, 1}n → {0, 1} that is worst-case hard against S(n)-size C
circuits, G f takes O(n) bits of seeds and fools all S(n)-size C circuits.16 Then we can start from
the worst-case witness lower bound against C from [Wil16]. Roughly speaking, [Wil16] proved
that there exists ε ∈ (0, 1) and a linear time algorithm Vtt : {0, 1}∗ → {0, 1}, such that for infinitely
many n ∈N, Vtt(tt( f )) = 1 for some f : {0, 1}n → {0, 1},17 and for every f : {0, 1}n → {0, 1} such
that Vtt(tt( f )) = 1, we know that f has no 2nε

-size C circuits. Again, for the sake of intuition, we
assume that the condition above holds for all n ∈N, instead of only for infinitely many n ∈N.

Making these two unrealistic assumptions, we can easily derandomize MATIMEC [n]. Let L ∈
MATIMEC [n] and V(x, y, z) be its verifier, such that x ∈ L implies that there exists y ∈ {0, 1}n such
that Prz[V(x, y, z) = 1] ≥ 2/3, and x /∈ L implies that for all y ∈ {0, 1}n we have Prz[V(x, y, z) =
1] ≤ 1/3. We can construct the following new verifier V ′(x, (y, f )), where 2logε | f | = n (i.e., | f | =
2log1/ε n.) V ′ first verifies that Vtt( f ) = 1, and then verifies that Prs∈O(log | f |)[V(x, y, G f (s)) = 1] ≥
1/2. We can see that V ′ runs in quasi-polynomial time, and indeed V ′ puts L ∈ NQP.

However, the derandomization above requires that the whole truth-table f is given as the

14These polynomials are derived from the proof of IP = PSPACE [LFKN92, Sha92], following [TV07].
15The individual degree of a polynomial p with respect to a variable xi, is the largest power of xi appearing in a

monomial of p.
16This PRG is too-good-to-be-true for two reasons: it starts from worst-case hardness instead of average-case hard-

ness, and the circuit size it fools has no loss compared to its hardness. But we only use it to highlight the key intuition
behind our proof.

17For a function f : {0, 1}n → {0, 1}, tt( f ) denotes the 2n-length string that represents the truth-table of f .
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witness, which has length | f | = 2polylog(n). To improve this, we consider a thought experiment:
letting ℓ = log | f | = log1/ε n, what if for some f : {0, 1}ℓ → {0, 1} such that Vtt(tt( f )) = 1, f indeed
has a 22·ℓε

-size C circuit? Assuming this is true, then we observe that we do not have to guess the
whole truth-table f in our verifier V ′ anymore, and can instead just guess a 22·logε | f | = poly(n)-
size circuit C : {0, 1}log1/ε n → {0, 1} and use its truth-table as f ! Hence, in this thought experiment,
we dramatically reduce our witness length from 2polylog(n) to poly(n).

Of course, what if the hypothesis in our thought experiment is not true? Namely, what if for
every f : {0, 1}ℓ → {0, 1} such that V(tt( f )) = 1, f has no 22·ℓε

-size C circuits as well? Staring
at this for a moment, one can realize that now V certifies not only 2ℓ

ε
hardness, but indeed 22·ℓε

hardness! This essentially means that we can keep doing this argument and eventually obtain a
quasi-polynomial-time derandomization of MAC with only poly(n) witnesses.

Of course, the above is just an idealized setting that captures our key ideas; see Section 4 for
detailed proofs of how we managed to get rid of the “magic PRG assumption” using machinery
developed in [CLW20]. In a sense, Case (1) in the proof of Theorem 4.1 is an implementation of
what we described above.

2 Overview of the Derandomization-centric Perspective on the Algo-
rithmic Method

This section aims to give a detailed overview of the derandomization-centric perspective on the
algorithmic method.

In Section 2.1, we will first provide an overview of the original proofs from [Wil14] and [MW20].
We will give a somewhat different presentation from that of [Wil14, MW20]. Our presentation is
centered around the concept of easy witness lemmas (EWLs), which converts witness lower bounds
into circuit lower bounds for nondeterministic time classes. Thus, we can decompose the proof into
two parts: first, we prove a witness lower bound; second, we apply an easy witness lemma to
convert the obtained witness lower bound into a circuit lower bound for nondeterministic time
classes.

Next, in Section 2.2, we give an overview of our results on circuit lower bounds for nondeter-
ministic time classes, which follows a derandomization-centric perspective. Roughly speaking, our
proofs are centered around derandomization of Merlin-Arthur classes. Our proofs for lower bounds
for nondeterministic time classes can also be naturally decomposed into two parts: first, we prove
a circuit lower bound for a certain subclass of Merlin-Arthur protocols; second, we derandomize
the same subclass into a nondeterministic time class. To obtain average-case circuit lower bounds
for nondeterministic time classes, it amounts to start from average-case lower bounds for Merlin-
Arthur classes and apply a careful win-win analysis (adopted from [CR21]).

We first recall the definitions of the following standard derandomization problems.

• CAPP (CIRCUIT ACCEPTANCE PROBABILITY PROBLEM) with error δ (denoted CAPPδ):
Given a circuit C on n inputs, estimate Prx∈R{0,1}n [C(x) = 1] within an additive error of δ.
When not explicitly stated, δ is set to be 1/3 by default.

• CAPP with inverse-circuit-size error (denoted as C̃APP): Given a circuit C of size S on n
input bits, estimate Prx∈{0,1}n [C(x) = 1] within an additive error of 1/S.

Notation. We use N to denote all non-negative integers and N≥1 to denote all positive integers.
We say a circuit class C is concrete if we can talk about the C complexity of a single function
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f : {0, 1}n → {0, 1} (as opposed to a family of functions { fn}n∈N≥1). For example, for fixed d, m ∈
N≥1, AC0

d[m] is a concrete circuit class, but AC0 is not (because the depth can vary). We say a
concrete circuit class C is typical if it is closed under (1) taking the negation of the output, (2)
taking the projections of the input, and (3) flipping input bits; see Section 3.1.1 for more formal
definitions.

2.1 An Overview of Williams’ EWL-centered Proofs

We begin by formally stating the generic connection between non-trivial circuit analysis algo-
rithms and lower bounds from [Wil13a, Wil14, MW20].18

Theorem 2.1 ([Wil13a, Wil14]). Let C be a typical concrete circuit class. If there is a 2n/nω(1)-time
algorithm for CAPP of poly(n)-size n-input AC0

2 ◦ C circuits, then NE ̸⊂ C .

Theorem 2.2 ([MW20]). Let C be a typical concrete circuit class and ε ∈ (0, 1). If CAPP for 2nε
-size

AC0
2 ◦ C can be solved in 2n/nω(1) time, then NQP ̸⊂ C .

Notation. Let s : N→N and C be a concrete circuit class. We say that NE does not admit s(n)-size
C witnesses, if there exists a verifier V(x, y) that takes input |x| = n, |y| = 2n and runs in 2O(n)

time, such that for infinitely many x ∈ {0, 1}∗, the following hold:

1. there exists y ∈ {0, 1}2|x| such that V(x, y) = 1;

2. for every y ∈ {0, 1}2|x| such that V(x, y) = 1, it follows that func(y) has no s(n)-size C
circuit.19

Moreover, we say that unary NE does not admit s(n)-size C witnesses, if for some verifier V and
for infinitely many n ∈N≥1, the above two conditions hold for x = 1n. This is a stronger statement
and implies that NE does not admit s(n)-size C witnesses.

2.1.1 Overview for the proof of Theorem 2.1

The easy witness lemma of [IKW02] says the following:

Lemma 2.3 (EWL for NE [IKW02]). Let C be a typical concrete circuit class. If NE does not admit
poly(n)-size C witnesses20, then NE ̸⊂ C .

Indeed, the original statement says the contrapositive of Lemma 2.3: if NE ⊆ C , then NE admits
polynomial-size C witnesses. Hence the name of easy witness lemma (i.e., NE admits small circuit
implies that NE admits easy witnesses).21 We present it in this way since it is clear that witness
lower bounds imply circuit lower bounds.

Williams then gave a way to prove witness lower bounds from non-trivial derandomization.
The lemma below is from [Wil13b], but the proof ideas are similar to that from [Wil13a, Wil14].

18We remark that in Theorem 2.1 and Theorem 2.2, CAPP can be replaced by Gap-UNSAT: a circuit-analysis problem
that is weaker than both CAPP and SAT (see [MW20] for details). We will work with CAPP for simplicity.

19Here we use func(y) to denote the |x|-bit Boolean function whose truth-table is y; see Section 3 for a formal defini-
tion.

20More precisely, NE does not admit nk-size C witnesses for every k ∈N≥1.
21[IKW02] indeed talks about NEXP instead of NE; we choose to work with NE since it simplifies the discussions.
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Non-trivial derandomization of C

C witness lower bounds
(Lemma 2.4 and Lemma 2.6; see Appendix A)

Easy witness lemmas
(Lemma 2.3 and Lemma 2.5)

NE/NQP lower bounds against C
(Theorem 2.1 and Theorem 2.2)

Figure 1: High-level structure of Williams’ EWL-centered proofs

Lemma 2.4 ([Wil13b]). Let C be a typical concrete circuit class. If CAPP for polynomial-size AC0
2 ◦ C

circuits can be solved in 2n/nω(1) time, then unary NE does not admit poly(n)-size C witnesses.

Combining Lemma 2.3 and Lemma 2.4 immediately proves Theorem 2.1.

2.1.2 Overview for the Proof of Theorem 2.2

To obtain lower bounds for NQP, [MW20] proved the following easy witness lemma. Again, we
state their lemma in the contrapositive.

Lemma 2.5 (EWL for NQP [MW20]). Let C be a typical concrete circuit class. If NE does not admit
2nε

-size C witnesses for some ε ∈ (0, 1), then NQP ̸⊂ C .

We note that the lemma above is weaker than the easy witness lemma for NQP in [MW20],22

but we observe that it still suffices for circuit lower bounds for NQP. To obtain NQP ̸⊂ C , we need
the following adaption of Lemma 2.4.

Lemma 2.6 ([Wil13b]). Let C be a typical concrete circuit class and ε ∈ (0, 1). If CAPP for 2nε
-size

AC0
2 ◦ C can be solved in 2n/nω(1) time, then unary NE does not admit 2nε/2-size C witnesses.

We give a proof of Lemma 2.6 in Appendix A for completeness. Now, combining Lemma 2.5
and Lemma 2.6, Theorem 2.2 follows immediately.

2.2 NQP Lower Bounds via Derandomization of Merlin-Arthur Protocols

In the rest of this section, we give outlines of our alternative proofs of the following two results:
(1) NQP ̸⊂ ACC0 [MW20] and (2) there is a constant β ∈ N≥1 such that NTIME[2logβ n] cannot

22Its contrapositive says that if NQP ⊂ C , then NE admits 2nε
-size C witnesses for every ε ∈ (0, 1); this consequence

is weaker than NQP admits polynomial-size C witnesses.
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Non-trivial derandomization of C

Derandomization of MAC into NQP
(Theorem 2.7)

MAC lower bounds against C
(Section 6)

NQP lower bounds against C
(Section 5)

Figure 2: High-level structure of the new derandomization-centric perspective for proving NTIME
lower bounds

be 1/2 + 1/poly(n)-approximated by poly(n)-size ACC0 circuits [CR21].23 See Theorem 2.12
and Theorem 2.16 for detailed statements. In Section 5, we prove stronger versions of Theo-
rem 2.12 and Theorem 2.16 using our improved NPRG construction from Theorem 4.1, but the
proof outlines are identical.

Derandomization of MAC . Recall that MAC denotes the sub-class of Merlin-Arthur protocols
whose verification can be simulated by C circuits for every possible witness, and NPRG is a
weaker version of PRG that suffices to derandomize Merlin-Arthur protocols; see Section 3.1.3
and Section 3.2 for formal definitions.

The following theorem is from [CLW20].

Theorem 2.7 ([CLW20, Theorem 7.1]). Let C be a typical concrete circuit class and ε ∈ (0, 1). Suppose
that C̃APP of 2nε

-size AND4 ◦ C ◦ AC0
2 circuits can be solved in 2n−nε

time. Then there is a δ ∈ (0, 1) and
an infinity often NPRG for 2nδ

-size C circuits with error 2−nδ
, seed-length poly(n), and 2poly(n) running

time. Consequently, MAC ⊆ i.o.-NTIME[2logβ n] for some β ∈N≥1.

2.2.1 NQP Lower Bounds via Derandomization

In order to apply Theorem 2.7 to get circuit lower bounds for NQP, (roughly speaking) we will
prove an MAC lower bounds against C . In more detail, we will prove the following theorem.

Theorem 2.8. Let C be a typical concrete circuit class. There is a universal constant dv ∈ N≥1 such that
for all a ∈N≥1, it holds that (

MAAC0
dv [2]◦C

)
/1
̸⊂ C -SIZE[na].

23We note that both of [MW20] and [CR21] indeed proved NQP lower bounds against 2loga n-size ACC0 circuits for
every a ∈ N≥1. We only consider lower bounds against all polynomial-size ACC0 circuits in this paper for simplicity,
but our proofs can be straightforwardly modified to prove the same lower bounds from [MW20, CR21].
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It seems that assuming the required C̃APP algorithm for AC0
dv+1[2] ◦C ◦AC0

2 and applying The-

orem 2.7,24 we will be able to derandomize the hard
(
MAAC0

dv [2]◦C

)
/1

language from Theorem 2.8

into NTIME[2logβ n] (we ignore the extra one bit of advice in the hard language for now), which
should imply NQP ̸⊂ C . However, there is a huge caveat that we explain below.

Retaining the hardness after derandomization. The issue is that the MA/1 hard language L
from Theorem 2.8 is only infinitely often hard, meaning that we only know for infinitely many
input lengths n ∈ N≥1, Ln is hard against C circuits. Also, the derandomization of Theorem 2.7
works infinitely often too, in the sense that our new NQP language L′ only agrees with the hard
language L on infinitely many input lengths n. Let Ihard and Iderand be the input lengths that Ln is
hard and L′n = Ln, respectively. We see that it is possible that Ihard ∩ Iderand = ∅, meaning that our
new NQP language L′ does not retain any hardness of L.

Following [MW20], the idea is to make both Ihard and Iderand larger so that they must intersect at
infinitely many input lengths.

In more detail, we first strengthen Theorem 2.7 by showing the following theorem.

Theorem 2.9. Let C be a typical concrete circuit class. Suppose that there is a constant ε ∈ (0, 1) and an
infinity often NPRG for 2nε

-size C circuits with poly(n) seed-length and 2poly(n) running time.
Then, there is a constant β ∈ N≥1 that only depends on ε such that for every L ∈ (MAC )/1 and

c ∈ N≥1, there is an L′ ∈ NTIME[2logβ n]/O(log log n) such that for infinitely many n ∈ N, for every
m ∈ [n, nc], L and L′ agree on all m-bit inputs.

Combining Theorem 2.7 and Theorem 2.9, we immediately have the following strengthening
of Theorem 2.7.

Corollary 2.10. Let C be a typical concrete circuit class and ε ∈ (0, 1). Assuming the hypothesized C̃APP
algorithm from Theorem 2.7, the conclusion of Theorem 2.9 holds.

Roughly speaking, Corollary 2.10 says that by allowing O(log log n) bits of advice, we can
enlarge Iderand from a set of infinitely many integers to a union of infinitely many segments of the
from [n, nc], where c is a constant of our choice.

Next, we have the following strengthening of Theorem 2.8, which fits perfectly with the larger
Iderand above.

Theorem 2.11. Let C be a typical concrete circuit class. There is a universal constant dv ∈N≥1 such that
for all a ∈N≥1, there is a constant c ∈N≥1 and a language L ∈

(
MAAC0

dv [2]◦C

)
/1

such that, for all large

enough n ∈N≥1, there exists m ∈ [n, nc] such that Lm does not have ma-size C circuits.

Essentially, it says that we can enlarge Ihard to be a hitting set for all segment [n, nc]: for every
large enough n ∈N≥1, [n, nc] ∩ Ihard ̸= ∅. This fits perfectly with the Iderand above, which consists
of infinitely many segments of the form [n, nc]. Hence, we have that Ihard ∩ Iderand is an infinite set.

Therefore, combining Corollary 2.10 and Theorem 2.11, we immediately have the following
theorem.25

24We recommend reader to think of C = AC0
d[6] for some large constant d ∈ N≥1, then we only need non-trivial

C̃APP for AC0
d+O(1)[6], which follows from [Wil14, Wil18b].

25A direct application of Corollary 2.10 yields a hard language in NQP/O(log log n) instead of just NQP. Those advice
can nonetheless be removed via a straightforward enumeration trick (from [COS18]); see Section 5.5 for details.
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Theorem 2.12. Let C be a typical concrete circuit class, ε ∈ (0, 1), and dv ∈ N≥1 be the constant
from Theorem 2.11. Suppose that C̃APP of 2nε

-size AC0
dv+1[2] ◦ C ◦ AC0

2 circuits can be solved in 2n−nε
-

time. Then NQP ̸⊂ C .

As a corollary from the theorem above and Williams’ #SAT algorithm for ACC0 [Wil14, Wil18b],
we immediately have that NQP ̸⊂ AC0

d⋆ [m⋆] for every d⋆, m⋆ ∈ N, which implies NQP ̸⊂, as
discussed in Section 1.1.1.

2.2.2 Average-case Lower Bounds for NQP via Randomized Encodings

Finally, we strengthen Theorem 2.12 to give average-case lower bounds as well. Given the discus-
sions above, it seems that we can simply strengthen the MAC lower bounds of Theorem 2.11 to
average-case, and our derandomization from Corollary 2.10 would immediately imply average-
case lower bounds for NQP.

We are indeed able to strengthen Theorem 2.11 to an average-case lower bound, but only with
very weak inapproximability.

Theorem 2.13. Let C be a typical concrete circuit class. There are universal constants dv, τ ∈ N≥1 such
that for all a ∈ N≥1, there is a constant c ∈ N≥1 and a language L ∈

(
MAAC0

dv [2]◦C

)
/1

such that, for

all large enough n ∈ N≥1, there exists m ∈ [n, nc] such that Lm cannot be (1− m−τ)-approximated by
ma-size C circuits.26

Combining with Corollary 2.10, we immediately have the following theorem.

Theorem 2.14. Let C be a typical concrete circuit class, ε ∈ (0, 1), and dv, τ ∈ N≥1 be the constants
from Theorem 2.13. Suppose that C̃APP of 2nε

-size AC0
dv+1[2] ◦ C ◦ AC0

2 circuits can be solved in 2n−nε

time. Then NQP cannot be (1− n−τ)-approximated by poly(n)-size C circuits.

To improve the inapproximability of Theorem 2.14 from 1− n−τ to 1/2 + 1/poly(n), we wish
to perform some mild-to-strong average-case hardness amplification (e.g., an XOR Lemma; see Lemma 5.16).
Unfortunately, we currently do not have such an amplification for weak circuit classes such as ACC0

(and there are barriers against such possibilities, see, e.g., [SV10, GSV18]).
Chen and Ren [CR21] overcame the issue above with a clever win-win argument based on

randomized encodings [IK02, AIK06] and approximate linear sums. Recall that for a Sum◦C circuit L =

∑i∈[m] αi · Ci (where each Ci is a C circuit; see Section 3.1.2 for a formal definition), the complexity
of L is defined as

max

(
∑

i∈[m]

|αi|, ∑
i∈[m]

SIZE(Ci)

)
.

For a function F : {0, 1}n → {0, 1}, we say that F admits a S̃umδ ◦ C circuit of complexity S, if
there exists a Sum ◦ C circuit L with complexity at most S, such that |F(x)− L(x)| ≤ δ for every
x ∈ {0, 1}n.

Using the techniques from randomized encodings, [CR21] proved the following win-win re-
sult.

Lemma 2.15 ([CR21]). Let C be a typical concrete circuit class. There is a language L ∈ P such that one
of the following holds:

26We remark that in Section 5 we will indeed prove a stronger version where the hard language L is in(
(MA∩ coMA)AC0

dv [2]◦C

)
/1

; see Theorem 5.3. We will discuss why this is needed at the end of this subsection.
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1. For every k ∈N≥1, L cannot be (1/2 + n−k)-approximated by nk-size C circuits.

2. There is a constant γ ∈N≥1 such that every S-size formula admits a S̃um0.01 ◦C circuit of complex-
ity Sγ.

In other words, either (Item (1)) we already have strongly average-case lower bounds for P

against C , or (Item (2)) formulas can be simulated by S̃um ◦ C with a polynomial blow-up in
size. The key observation now is that an NPRG that fools C circuits with a small error also fools
functions admitting low-complexity S̃um ◦ C circuits. Hence, now we are able to perform the
following win-win analysis:

• Suppose Item (1) of Lemma 2.15 holds. Then it immediately follows that NQP cannot be
(1/2 + 1/poly(n))-approximated by poly(n)-size C circuits.

• Otherwise, Item (2) of Lemma 2.15 holds. Then under the condition of Theorem 2.7, we
would have i.o. NPRG for formulas (note that the i.o. NPRG from Theorem 2.7 indeed has a
small error). Applying Theorem 2.9, this implies that we can now derandomize MAFormula as
follows:

There is a constant β ∈ N≥1 such that for every L ∈ (MAFormula)/1 and every c ∈ N≥1, there

is an L′ ∈ NTIME[2logβ n]/O(log log n) such that for infinitely many n ∈N, for every m ∈ [n, nc],
L and L′ agree on all m-bit inputs.

Noting that formulas are closed under taking an AC0[2] circuit at the top, we now can use
the derandomization above together with Theorem 2.13 to obtain an NQP language that is
(1 − n−τ)-hard against polynomial-size formulas, which can then be amplified to (1/2 +
1/poly(n))-hardness against formulas, using mild-to-average-case hardness amplification
for formulas.

If we further assume that C can be simulated by Formula, then we also have that NQP cannot
be 1/2 + 1/poly(n)-approximated by poly(n)-size C circuits.

To summarize, we have the following theorem.

Theorem 2.16 (strong average-case lower bound for NQP via an additional win-win argument).
Let C be a typical concrete circuit class that can be simulated by formulas. Suppose that for some η ∈ (0, 1),
C̃APP of 2nη

-size AND4 ◦ C ◦ AC0
2 circuits can be deterministically solved in 2n−nη

time. Then, there is
β ∈N≥1 such that NTIME[2logβ n] cannot be 1/2+ 1/poly(n)-approximated by poly(n)-size C circuits.

Note that applying the theorem above directly only shows that for every d⋆, m⋆ ∈ N≥1,
there is β ∈ N≥1 that depends on d⋆, m⋆ such that NTIME[2logβ n] cannot be 1/2 + 1/poly(n)-
approximated by poly(n)-size AC0

d⋆ [m⋆] circuits. To swap the quantifiers before d⋆, m⋆ and β, we
can apply another win-win analysis from [CR21]; see Section 5.6 for details.

Finally, we give one technical remark.

Mild-to-strong hardness amplification requires (N∩coN)QP lower bounds. Recall that we wish
to apply an XOR Lemma (Lemma 5.16) to the mildly average-case hard NQP language L from The-
orem 2.14. This causes a subtle issue: L⊕2(x, y) := L(x)⊕ L(y) may not be in NQP, since to certify
L⊕2(x, y) = 1, one needs to prove exactly one of L(x) and L(y) is 1 and the other one is 0; we
cannot prove (say) L(y) = 0 since this requires that L ∈ coNQP.
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To resolve this issue, we wish to get a mildly average-case hard language L from (N∩coN)QP
instead of NQP. It is easy to see that the derandomization from Corollary 2.10 also derandomize
(MA ∩ coMA)/1 languages into (N∩coN)QP/O(log log n) languages. Hence, we strengthen Theo-
rem 2.13 so that the hard languages now belong to (MA∩ coMA)/1; see Theorem 5.3 for details.

3 Preliminaries

We use N to denote all non-negative integers and N≥1 to denote all positive integers. We use
GF(pr) to denote the finite field of size pr, where p is a prime and r is an integer. For a set X, we
often use x ∈R X to denote that we pick an element x from X uniformly at random. We also use
Un to denote the uniform distribution over {0, 1}n.

For r, m ∈ N, we use Fr,m to denote the set of all functions from {0, 1}r to {0, 1}m. For a
language L : {0, 1}∗ → {0, 1}, we use Ln to denote its restriction on n-bit inputs. For a function
f : {0, 1}n → {0, 1}, we use tt( f ) to denote the truth-table of f (i.e., tt( f ) is a string of length 2n

such that tt( f )i is the output of f on the i-th string from {0, 1}n in the lexicographical order). For
a string Z ∈ {0, 1}2n

, we use func(Z) to denote the unique function from Fn,1 with the truth-table
being Z.

Let Σ be an alphabet set. For two strings x, y ∈ Σ∗, we use x ◦ y to denote their concatenation.
We sometimes use x⃗ (⃗y, z⃗, etc.) to emphasize that x⃗ is a vector. For x⃗ ∈ Σn for some n ∈N, we use
x⃗<i and x⃗≤i to denote its prefix (x1, . . . , xi−1) and (x1, . . . , xi), respectively. We also define x⃗>i and
x⃗≥i in the same way.

We call f : N → N a reasonable time-bound function, if f is time-constructible and increasing,
and f (cn) ≤ poly( f (n)) for every constant c ∈N≥1.

We assume knowledge of basic complexity theory (see [AB09, Gol08] for excellent references
on this subject).

3.1 Complexity Classes and Basic Definitions

3.1.1 Basic Circuit Families

Unless otherwise specified, all circuits appearing in this paper consist of fan-in 2 AND/OR gates
and fan-in 1 NOT gates.

A circuit family is an infinite sequence of circuits {Cn : {0, 1}n → {0, 1}}n∈N. A circuit class is
a collection of circuit families. The size of a circuit is the number of non-NOT gates in the circuit,27

and the size of a circuit family is a function of the input length that upper bounds the size of
circuits in the family. The depth of a circuit is the maximum number of wires on a path from an
input gate to the output gate.

We will mainly consider classes in which the size of each circuit family is bounded by some
polynomial; however, for a circuit class C , we will sometimes also abuse notation by referring to
C circuits with various other size or depth bounds.

AC0 is the class of circuit families of constant depth and polynomial size, with AND,OR and
NOT gates, where AND and OR gates have unbounded fan-in. For an integer m, the function
MODm : {0, 1}∗ → {0, 1} is one if and only if the number of ones in the input is not divisible by
m. The class AC0[m] is the class of constant-depth polynomial-size circuit families consisting of
unbounded fan-in AND, OR, and MODm gates, along with unary NOT gates. We denote ACC0 =

27We do not count the number of NOT gates here for a technical reason; see our definition of typical concrete circuit
classes below for more explanations.
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∪m≥2AC
0[m]. We also use AC0

d (resp. AC0
d[m]) to denote the subclass of AC0 (resp. AC0[m]) with

depth at most d.
The function majority, denoted as MAJ : {0, 1}∗ → {0, 1}, is the function that outputs 1 if the

number of ones in the input is no less than the number of zeros, and outputs 0 otherwise. TC0

is the class of circuit families of constant depth and polynomial size with unbounded fan-in MAJ

gates. NCk for a constant k is the class of O(logk n)-depth and polynomial-size circuit families
consisting of fan-in two AND and OR gates and unary NOT gates.

For n ∈N and ε ∈ (0, 1/2), we define Approx-MAJn,ε to be the function that outputs 1 (resp. 0)
if at least a (1− ε) fraction of the inputs are 1 (resp. 0), and is undefined otherwise. We also use
Approx-MAJn to denote Approx-MAJn,1/3 for simplicity.

The following standard construction for the approximate-majority in AC0 will be useful for the
proofs in this paper.

Lemma 3.1 ([ABO84, Ajt90, Vio09]). Approx-MAJn can be computed by uniform AC0
3.

We say that a circuit family {Cn}n∈N is uniform, if there is a deterministic algorithm A such
that A(1n) runs in time polynomial of the description length of Cn, and outputs Cn.28

For a circuit class C , we say that a circuit C is a C oracle circuit if C is also allowed to use
a special oracle gate (which can occur multiple times in the circuit, but with the same fan-in), in
addition to the usual gates allowed by C circuits. We say that an oracle circuit is non-adaptive if,
on any path from an input gate to the output gate, there is at most one oracle gate.29

Typical concrete circuit class. We say that a circuit class C is concrete, if we can talk about a
single C circuit C : {0, 1}n → {0, 1} for a fixed input length n ∈ N. For example, AC0 is not a
concrete circuit class while AC0

d for any fixed d ∈ N is. For two concrete circuit classes C and D ,
we say C can be simulated by D , if there exists a constant c ∈ N≥1 such that for every n, s ∈ N≥1
satisfying s ≥ n, an s-size C circuit on n-bit inputs has an equivalent sc-size D circuit. We use
Formula and Circuit to denote the concrete circuit classes of fan-in 2 De-Morgan formulas and fan-
in 2 De-Morgan circuits (i.e., general circuits), respectively.

For a concrete circuit class C and a function f : {0, 1}n → {0, 1}, we define C -SIZE( f ) to be
the minimum size of a C circuit computing f exactly. We say that a circuit C : {0, 1}n → {0, 1}
γ-approximates a function f : {0, 1}n → {0, 1}, if C(x) = f (x) for at least a γ fraction of inputs
from {0, 1}n. For a parameter γ ∈ (1/2, 1], we define heurγ-SIZE( f ) to be the minimum size of a
circuit γ-approximating f . Note that heur1-SIZE( f ) = SIZE( f ).

We say that a concrete circuit class C is typical, if given the description of a circuit C of size s,
for indices i, j ≤ n and a bit b, the following functions

¬C, C(x1, . . . , xi−1, xj ⊕ b, xi+1, . . . , xn), C(x1, . . . , xi−1, b, xi+1, . . . , xn)

all have C circuits of size s,30 and their corresponding circuit descriptions can be constructed in
poly(s) time. We also require that C can be simulated by Circuit. That is, C is typical if it is closed
under both negation and projection, and general circuits can simulate it up to a polynomial blow-up
in size.

For two concrete circuit classes C and D , we use C ◦D to denote the class of circuits consisting
of a top C circuit whose inputs are the output gates of some bottom D circuits. Note that we are

28That is, we use the P uniformity by default.
29Note that the function computed by the oracle circuit C depends on the truth-table of the oracle.
30Note that the straightforward construction of these circuits above can have more NOT gates compared to the orig-

inal circuit C. This is why we do not count NOT gates when defining the size of circuits.
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overloading the notation ◦ (which also denotes the string concatenation). But the meaning of the
symbol ◦ (concatenation of strings or composition of circuit classes) will always be clear from the
context.

3.1.2 Linear Sums of Circuits

We recall the definitions of Sum ◦ C circuits and their variants, which are introduced in [Wil18a]
and [CW19].

Sum ◦ C denotes the following set of circuits: every C ∈ Sum ◦ C can be described as C(x) =
∑i αi · Ci(x) where each αi ∈ R and each Ci(x) : {0, 1}n → {0, 1} is a C circuit. Moreover, if C
satisfies the promise that C(x) ∈ [0, 1] for all x ∈ {0, 1}n, we also say C is a [0, 1]Sum ◦ C circuit.

The size of C is defined as the total size of each Ci: |C| = ∑i |Ci|. The complexity of C is defined
as max(|C|, ∑i |αi|). We use [0, 1]Sum ◦ C [S(n)] to denote the set of functions can be computed by
[0, 1]Sum ◦ C circuits of complexity S(n).

For a function F : {0, 1}n → {0, 1}, we say that F admits a S̃umδ ◦ C circuit of complexity S, if
there exists a Sum ◦ C circuit L with complexity at most S, such that |F(x)− L(x)| ≤ δ for every
x ∈ {0, 1}n.

3.1.3 NTIME and MATIME

We first recall the definitions of NTIME[T(n)] and NTIMEGUESS[T(n), G(n)].

Definition 3.2. Let T, G : N → N be two time-constructible functions. A language L ∈ NTIME[T(n)]
if there is an O(T(n))-time algorithm V(x, y) such that |x| = n and |y| = T(n) and

x ∈ L⇔ ∃y ∈ {0, 1}T(|x|)V(x, y) = 1.

We call V an NTIME[T(n)] verifier for L. Moreover, L ∈ NTIMEGUESS[T(n), G(n)] if V only takes
G(n) bits of witness (i.e., |y| = G(n) instead of |y| = T(n)), and call V an NTIMEGUESS[T(n), G(n)]
verifier for L.

In particular, NP =
⋃

k∈N NTIME[nk], and NQP =
⋃

k∈N NTIME[2logk n]. Also, we will often use
NTG as an abbreviation for NTIMEGUESS for notational convenience.

MA is a randomized version of NP. We now recall the definition of MATIME[T(n)].

Definition 3.3. Let T : N → N be a time-constructible function. A language L ∈ MATIME[T(n)] if
there is an O(T(n))-time algorithm V(x, y, r) such that |x| = n and |y| = |r| = T(n) and

x ∈ L⇒ ∃y ∈ {0, 1}T(|x|) Pr
r∈{0,1}T(|x|)

[V(x, y, r) = 1] = 1,

and
x ∈ L⇒ ∀y ∈ {0, 1}T(|x|) Pr

r∈{0,1}T(|x|)
[V(x, y, r) = 1] ≤ 1/3.

We call V an MATIME[T(n)] verifier for L.

In particular, MA =
⋃

k∈N MATIME[nk].
We will also pay attention to the complexity of the verifiers in MATIME[T(n)]. We define

MATIMEC [T(n)] as follows.
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Definition 3.4. Let T : N→N be a time-constructible function, and C be a concrete circuit class. A lan-
guage L ∈ MATIMEC [T(n)] if there is an MATIME[T(n)] verifier V for L that also satisfies the following
additional condition:

• For every x ∈ {0, 1}n and y ∈ {0, 1}T(n), V(x, y, ·) (the restriction of V to the randomness part)
has a T(n)-size C circuit.

We call V an MATIMEC [T(n)] verifier for L.

In particular, MAC =
⋃

k∈N MATIMEC [nk]. We also define

MATIME[T(n)]AC0 =
⋃

d∈N

MATIME[T(n)]AC0
d

and MATIME[T(n)]ACC0 =
⋃

d,m∈N

MATIME[T(n)]AC0
d[m].

MAAC0 and MAACC0 are defined similarly.
We note that the additional condition in Definition 3.4 is weaker than requiring that V itself

has a T(n)-size C circuit, so it applies to more languages.

3.1.4 MA∩ coMA and NP∩ coNP Algorithms

We also introduce convenient definitions of (MA ∩ coMA)TIME[T(n)] and (N∩coN)TIME[T(n)]
algorithms, which simplifies the presentation.

Definition 3.5. Let T : N→N be a time-constructible function. A language L is in (MA∩ coMA)TIME[T(n)],
if there is a deterministic algorithm V(x, y, z) (V is called the predicate) such that:

• V takes three strings x, y, z such that |x| = n, |y| = |z| = T(n) as inputs (y is the witness and z is
the collection of random bits), runs in O(T(n)) time, and outputs an element from {0, 1,⊥}.

• (Completeness) For every x ∈ {0, 1}∗, there exists a y such that

Pr
z
[V(x, y, z) = L(x)] = 1.

• (Soundness) For every x ∈ {0, 1}∗ and every y,

Pr
z
[V(x, y, z) = 1− L(x)] ≤ 1/3.

Moreover, we say that L ∈ (MA∩ coMA)TIMEC [T(n)], if L further satisfies the following condition:

• For every x ∈ {0, 1}n and y ∈ {0, 1}T(n), V(x, y, ·) (the restriction of V to the randomness part)
has a T(n)-size C circuit.

Remark 3.6. (MA ∩ coMA) (resp. (MA ∩ coMA)C ) languages with advice are defined similarly, with V
being an algorithm with the corresponding advice.

Definition 3.7. Let T, G : N→N be two time-constructible functions. A language L is in (N∩coN)TIME[T(n)]
(resp. (N∩ coN)TG[T(n), G(n)]), if there is an algorithm V(x, y) (which is called the predicate) such that:

• V takes two inputs x, y such that |x| = n, |y| = T(n) (resp. |y| = G(n)), runs in O(T(n)) time,
and outputs an element from {0, 1,⊥}.

• (Completeness) For all x ∈ {0, 1}∗, there exists a y such that

V(x, y) = L(x).
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• (Soundness) For all x ∈ {0, 1}∗ and all y,

V(x, y) ̸= 1− L(x).

Remark 3.8. (N∩coN)TIME[T(n)] or (N∩ coN)TG[T(n), G(n)] languages with advice are defined sim-
ilarly, with V being an algorithm with the corresponding advice.

3.2 Pseudorandom Generators

Throughout the paper, we will deal with different types of pseudorandom generators (PRG). In
the following, we recall their definitions.

3.2.1 PRGs and NPRGs

Let r, m ∈ N and ε ∈ (0, 1), and let H ⊆ Fm,1 be a set of functions. We say G ∈ Fr,m is a PRG for
H with error ε, if for every D ∈ H∣∣∣∣ Pr

z∈R{0,1}r
[D(G(z)) = 1]− Pr

z∈R{0,1}m
[D(z) = 1]

∣∣∣∣ ≤ ε.

We call r the seed length of G.
We also need the notion of nondeterministic PRGs, defined below.
Let w ∈N. We say a pair of function G = (GP, GW) such that GP ∈ {0, 1}w×{0, 1}r → {0, 1}m

and GW ∈ Fw,1 is an NPRG forH with error ε, if the following hold:

1. For every u ∈ {0, 1}w, if GW(u) = 1, then GP(u, ·) is a PRG forH with error ε.

2. There exists u ∈ {0, 1}w such that GW(u) = 1.

Here, we call r the seed length of G and w the witness length of G.
Although an NPRG, in general, does not compute the same PRG for different witnesses u (i.e.,

GP(u1, ·) and GP(u2, ·) can be two different PRGs for H), it is still useful for the derandomization
of MA. We remark that the concept of NPRG is already implicit in [IKW02]. Our definition is from
the journal version of [Che19].31

3.2.2 Family of PRGs and NPRGs

Most of the time, we will be interested in a family of PRGs (NPRGs) G = {Gn} that fools a family of
sets of functions H = {Hn}. In this case, for seed length r : N → N, error ε : N → (0, 1), output
length m : N → N and witness length w : N → N, we say G = {Gn} is a PRG (resp. NPRG)
family for H = {Hn} if for every n ∈ N, (1) Hn ⊆ Fm(n),1 (2) Gn is a PRG (resp. NPRG) for Hn
with error ε(n), seed length r(n) (and witness length w(n) for G being an NPRG).

Let I ⊆ N≥1. We call G a PRG with range I (resp. NPRG with range I) for H if the two
conditions above hold for every n ∈ I . When I is an infinite set, we also say that G is an i.o. PRG
(resp. i.o. NPRG) family forH.

We say that a PRG G = {Gn} is computable in T : N→N time, if there is a uniform algorithm
A : N× {0, 1}∗ → {0, 1} such that An (meaning the first input of A is fixed to n) computes Gn
in T(n) time. Similarly, we say an NPRG G = {Gn} is computable in T : N → N time, if there
are two uniform algorithms AP : N× {0, 1}∗ × {0, 1}∗ → {0, 1} and AW : N× {0, 1}∗ → {0, 1}

31See http://www.mit.edu/~lijieche/Che19-journal-version.pdf for the draft.
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such that AP
n computes GP

n and AW
n computes GW

n , both in T(n) time. Note that a T(n)-time
computable NPRG G also has witness length at most T(n). So if we do not specify the witness
length parameter, it is the running time T by default.

We can similarly define PRG and NPRG computable with α : N→N bits of advice by allowing
algorithm An (resp. AP

n and AW
n ) to use α(n) bits of advice. (Note that in the case of NPRG, the

advice for AP
n and AW

n are the same.)

3.3 Derandomization of MATIMEC [T(n)] from NPRGs for C

Now we show that NPRGs are enough for the derandomization of MAC [T(n)].

Lemma 3.9. Let I ⊆N≥1. Suppose there is an s(n)-seed-length, w(n)-witness-length NPRG G for T(n)-
size C circuits with range I , error 1/10, and running time TG(n). Then, for every L ∈ MATIMEC [T(n)],
there is an L′ ∈ NTIMEGUESS[2s(n) · TG(n) · T(n), T(n) + w(n)] such that L and L′ agree on all n-bit
inputs for every n ∈ I .

Proof. Let L ∈ MATIMEC [T(n)] and V(x, y, r) be the corresponding MATIME[T(n)]C verifier. We
construct a new deterministic verifier V ′ as follows:

• V ′ takes both y ∈ {0, 1}T(n) and u ∈ {0, 1}w(n) as the witness. (i.e., V ′ takes T(n) + w(n) bits
as the witness.)

• Accept if GW(u) = 1 and Prr∈{0,1}s(n) [V(x, y, GP(u, r)) = 1] ≥ 1/2.

It is then easy to verify that V ′ is the desired NTIMEGUESS[2s(n) · TG(n) · T(n), T(n) + w(n)]
verifier for L when the input length n ∈ I , which completes the proof.

There are two useful special cases of Lemma 3.9: (1) when I = N≥1 (i.e., G is an NPRG), then
we have MATIMEC [T(n)] ⊆ NTIMEGUESS[2s(n) · TG(n) · T(n), T(n) + w(n)] and (2) when I is an
infinite set, then we have MATIMEC [T(n)] ⊆ i.o.-NTIMEGUESS[2s(n) · TG(n) · T(n), T(n) + w(n)].

Remark 3.10. If the NPRG mentioned in Lemma 3.9 requires α(n) bits of advice to compute (for Gn). Then
the resulting NTIMEGUESS simulations also need α(n) bits of advice on n-bit inputs.

3.4 Probabilistically Checkable Proofs (PCPs)

We need the following construction of PCPs by Ben-Sasson and Viola [BV14].

Lemma 3.11 ([BV14]). Let M be an algorithm running in time T = T(n) ≥ n on inputs of the form (x, y)
where |x| = n. Given x ∈ {0, 1}n, one can output in poly(n, log T) time circuits Q : {0, 1}r → {0, 1}rt

for t = poly(r) and R : {0, 1}t → {0, 1} such that:

• Proof length. 2r ≤ T · polylogT.

• Completeness. There is a polynomial-time algorithm E such that, for every y ∈ {0, 1}T(n) such
that M(x, y) accepts, E(x, y) outputs the truth-table of a map π : {0, 1}r → {0, 1} such that for all
z ∈ {0, 1}r, R(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Q(z).

• Soundness. If no y ∈ {0, 1}T(n) causes M(x, y) to accept, then for every map π : {0, 1}r → {0, 1},
at most 2r

n10 distinct z ∈ {0, 1}r have R(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Q(z).

• Complexity. Q is a projection, i.e., each output bit of Q is a bit of input, the negation of a bit, or a
constant. R is a 3CNF.

Note that this is an extremely efficient PCP: the 3CNF R and the projection Q collectively form
the verifier for the PCP.
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3.5 A PSPACE-complete Language with AC0[2] Reducibility Properties

We first define the desired reducibility properties below.

Definition 3.12. Let L : {0, 1}∗ → {0, 1} be a language, we define the following properties:

1. L is C downward self-reducible if there is a uniform C oracle circuit family {Cn}n∈N such that
for every large enough n ∈N and for every x ∈ {0, 1}n, ALn−1(x) = Ln(x).

2. L is paddable, if there is a polynomial time computable projection Pad (i.e., each output bit is either
a constant or only depends on 1 input bit), such that for all integers 1 ≤ n < m and x ∈ {0, 1}n, it
holds that x ∈ L if and only if Pad(x, 1m) ∈ L, where Pad(x, 1m) always has length m.

3. L is same-length checkable, if there is a randomized oracle algorithm M with output in {0, 1,⊥}
such that, for every input x ∈ {0, 1}∗,

(a) M asks its oracle queries only of length |x| and runs in poly(|x|) time.

(b) MLn outputs Ln(x) with probability 1.

(c) MO outputs an element in {L(x),⊥}with probability at least 2/3 for every oracle O : {0, 1}n →
{0, 1}.

We call M an instance checker for L. Moreover, we say that L is C same-length checkable if there is
an instance checker M that can be implemented by uniform C oracle circuits.32

4. L is C weakly error correctable, if there is a constant τwc2ac ≥ 1 such that for every large enough
n ∈ N and for every function f̃ : {0, 1}n → {0, 1} such that f̃ (1− n−τwc2ac)-approximates Ln,

there exists an nτwc2ac-size C oracle circuit Cn such that C f̃
n(x) = Ln(x) for every x ∈ {0, 1}n.

Additionally, we say that L is non-adaptive C downward self-reducible, same-length checkable, or
weakly error correctable if the corresponding C oracle circuits are non-adaptive.

The following PSPACE-complete language was given by [San09] (modifying a construction of
Trevisan and Vadhan [TV07]).

Theorem 3.13 ([TV07, San09]). There is a PSPACE-complete language LTV that is paddable, TC0 down-
ward self-reducible, and same-length checkable.33

Later, [Che19] gave a modification of the language LTV that is also non-adaptive TC0 same-
length checkable, which is further modified by [CR21].

Theorem 3.14 ([Che19, CR21]). There is a PSPACE-complete language LChe19 that is paddable, non-
adaptive TC0 downward self-reducible, non-adaptive TC0 same-length checkable, and non-adaptive TC0

weakly error correctable.

In this work, we further improve the complexity of these reducibility properties to AC0[2].
For convenience, we sometimes allow an algorithm A to take some integers α1, . . . , αk as input
parameters, and a Boolean string β with length at most poly(∑i∈[k] αi) as input. For simplicity we

32Formally, suppose M uses at most p(n) ≤ poly(n) bits of randomness on inputs of length n, and let M(x; r)O be
the output of M given input x and randomness r. There is a polynomial-time algorithm A such that, for every n ∈ N,
A(1n) outputs a C oracle circuit Cn such that (1) Cn takes n + p(n) bits as input and (2) Cn(x; r)O = M(x; r)O for every
(x, r) ∈ {0, 1}n × {0, 1}p(n) and oracle O : {0, 1}n → {0, 1}.

33[TV07] does not explicitly state the TC0 downward self-reducible property, but it is evident from their proof.
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require that |β| only depends on α1, . . . , αk. We will use Aα1,...,αk to denote the restriction of A when
its input parameters are set to α1, . . . , αk.

We say that A can be implemented by a uniform C circuit family, if there is an algorithm B such
that for every α1, . . . , αk ∈ N, B(α1, . . . , αk) outputs a poly(∑i∈[k] αi)-size C circuit that computes
Aα1,...,αk .

Theorem 3.15. There is a PSPACE-complete language LPSPACE that is paddable, non-adaptive AC0[2]
downward self-reducible, non-adaptive AC0[2] same-length checkable and non-adaptive AC0[2] weakly error
correctable.34

Moreover, there are two algorithms DSR and Aux satisfying the following35:

1. Aux takes n ∈N≥1 as input parameter and x⃗ ∈ {0, 1}n as input, and outputs a value from {0, 1}.

2. Aux can be implemented by a uniform AC0[2] circuit.

3. DSR takes n ∈ N≥1 as input parameter and x⃗ ∈ {0, 1}n as input, and functions h1 : {0, 1}n−1 →
{0, 1} and h2 : {0, 1}n → {0, 1} as oracles.

4. For every n ∈N≥1, DSR
LPSPACE

n−1 ,Auxn
n computes LPSPACE

n .

5. DSR can be implemented by a uniform non-adaptive XOR ◦ AND3 oracle circuit family. In more
detail, DSR first queries its oracles on some projections of the input x⃗ to obtain some intermediate
values and then applies an XOR ◦AND3 circuit on those intermediate values and the input x⃗ to obtain
the output.

See Section 7 for a proof of Theorem 3.15. The following corollary follows immediately from
the paddable property of LPSPACE in Theorem 3.15.

Corollary 3.16. For any typical concrete circuit class C , C -SIZE(Ln) is non-decreasing.

4 Nondeterministic PRGs with Short Witness Length from Non-trivial
Derandomization

In this section we prove the following theorem.

Theorem 4.1. For a typical concrete circuit class C , if for some η ∈ (0, 1), C̃APP of 2nη
-size AND4 ◦ C ◦

AC0
2 circuits can be deterministically solved in 2n−nη

time, then there is a constant ε ∈ (0, 1), size parameter
S(n) = 2Ω(nε), and an infinity often nondeterministic PRG for S(n)-size C circuits with S(n)−1-error,
2O(nε)-witness-length, poly(n)-seed-length, and 2poly(n) running time.

4.1 Technical Ingredients

We begin by recalling some needed technical ingredients.

34When we say that LPSPACE is non-adaptive AC0[2] weakly error correctable, we mean it is non-adaptive AC0
d[2]

weakly error correctable for a universal constant d ∈N.
35The conditions below are stronger than only being AC0[2] downward self-reducible, and will be useful in our proofs

in Section 6; see Lemma 6.2.
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4.1.1 Two standard PRGs

We will use two standard PRGs from the literature. The first is the famous Nisan-Wigderson(NW)
PRG ([NW94]), which uses a (presumably hard) function f in its design. Recall that Juntak is the
family of k-juntas, i.e., functions that only depend on k input bits. The key property of the NW PRG
is that, given a C circuit that breaks the NW PRG based on some hard function, the complexity of
approximating that hard function is C ◦ Juntaa for some parameter a. Therefore, in order to fool C
circuits, the hard function f used by the NW PRG needs to be hard to approximate by C ◦ Juntaa
circuits.

Lemma 4.2 ([NW94]). Let m, ℓ, a be integers such that a ≤ ℓ and t = O(ℓ2 ·m1/a/a). Let C be a typical
concrete circuit class. There is a function GNW : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that the following hold.
For any function Y : {0, 1}ℓ → {0, 1} represented as a length-2ℓ truth table, if Y cannot be (1/2 + ε/m)-
approximated by any C ◦ Juntaa circuit whose top C circuit has at most size S, then GNW(Y,Ut) 36 ε-fools
every C circuit of size S. That is, for any C circuit C of size S,∣∣∣∣ Pr

s∈R{0,1}t
[C(GNW(Y, s)) = 1]− Pr

x∈R{0,1}m
[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, the function GNW is computable in poly(m, 2t) time.

We also need the following construction of PRG from [Uma03]. Roughly speaking, it shows
that if a function f is hard against general circuits of a certain size, then f can be used to produce
a PRG fooling circuits of roughly the same size.

Lemma 4.3 ([Uma03]). There is a universal constant g ∈N and a function GUmans : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ such that, for every s and Y : {0, 1}ℓ → {0, 1}, if Y cannot be computed by circuits of size sg, then
GUmans(Y,Ugℓ) 1/s-fools circuits of size s. That is, for all circuit C of size at most s, it holds:∣∣∣∣∣ Pr

x∈R{0,1}gℓ

[
C(GUmans(Y, x)) = 1]− Pr

x∈R{0,1}s

[
C(x) = 1

]∣∣∣∣∣ ≤ 1
s

.

Furthermore, GUmans is computable in poly(|Y|) time.

4.1.2 Hardness amplification with linear sums

We will need a technical tool from [CLW20]: an XOR Lemma based on approximate linear sums
(see Section 3.1.2 for formal definitions). Now we are ready to state the needed XOR Lemma.

Definition 4.4. Let f : {0, 1}n → {0, 1} and k ∈ N≥1, define the function f⊕k : {0, 1}kn → {0, 1} to be
f⊕k(x1, . . . , xk) :=

⊕
i∈[k] f (xi), where xi ∈ {0, 1}n for every i ∈ [k].

Lemma 4.5 ([CLW20]). Let f : {0, 1}n → {0, 1} be a Boolean function. Let δ ∈ (0, 1
2 ), for any k ∈N≥1,

let εk = (1− δ)k−1 ( 1
2 − δ

)
. If

E
x∈R{0,1}n

| f (x)− H(x)| > δ

for every [0, 1]Sum ◦ C circuit H of complexity O
(

n·s
(δ·εk)2

)
, then f⊕k cannot be ( 1

2 + εk)-approximated by
C circuits of size s.

For notational convenience, if a function f satisfies the hardness condition in Lemma 4.5, we
say f is δ-far from [0, 1]Sum ◦ C

[
O
(

n·s
(δ·εk)2

)]
.

36Ut denotes uniform distribution over {0, 1}t.
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4.2 Proof of Theorem 4.1

Our starting point is the proof of [CLW20, Theorem 7.1]. We state the following lemma, which is
implicit in their proof.

Lemma 4.6. There is a universal constant δ ∈ (0, 1) such that, for a typical concrete circuit class C , if for
some η ∈ (0, 1), C̃APP of 2nη

-size AND4 ◦ C ◦ AC0
2 circuits can be deterministically solved in 2n−nη

time,
then there exists ε ∈ (0, 1) such that at least one of the following statements hold:

1. There is a polynomial-time algorithm V : {0, 1}∗ × {0, 1}∗ → {0, 1} such that for infinitely many
n ∈N, the following holds:

(a) V(1n, w) = 1 for some w ∈ {0, 1}2n
.

(b) For every w ∈ {0, 1}2n
such that V(1n, w) = 1, it holds that func(w) has no 2nε

-size circuits.

2. There are two polynomial-time algorithms Vckt : {0, 1}∗ × {0, 1}∗ → {0, 1} and H : {0, 1}∗ ×
{0, 1}∗ × {0, 1}∗ → {0, 1} such that for infinitely many n ∈N, the following holds:

(a) Vckt(12n
, C) = 1 for some 2nε

-size circuit C : {0, 1}n → {0, 1}. (Here, Vckt takes the descrip-
tion of the circuit C as an input, which is of length 2O(nε).)

(b) For every 2nε
-size circuit C : {0, 1}n → {0, 1} satisfying Vckt(12n

, C) = 1, it follows that fC ∈
F2n,1, defined by fC(z) := H(1n, C, z) for z ∈ {0, 1}2n, is δ-far from [0, 1]Sum ◦C ◦AC0

2[2
nε
].

Proof Sketch. Item (1) and Item (2) of the lemma correspond to the Case (1) and Case (2) of the
proof of [CLW20, Theorem 7.1] directly. Item (1) follows immediately from the proof of [CLW20,
Theorem 7.1].

To see Item (2), we observe that the lists of functions Ỹ, Z̃ : {0, 1}ℓ → {0, 1} in Case (2) of the
proof of [CLW20, Theorem 7.1] do not have to be guessed, and instead their values on each input
can be computed from the circuit C in poly(|C|) time, using [CLW20, Lemma 3.11].

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let δ, ε ∈ (0, 1) be the constants from Lemma 4.6. We analyze the following
two cases separately.

Item (1) of Lemma 4.6 holds. Note that in this case, we can without loss of generality assume that
ε−1 ∈N simply by changing ε to ⌈ε−1⌉−1.

Let S be the set of n ∈ N such that the conditions in Item (1) of Lemma 4.6 hold, and let V be
the algorithm from Item (1) of Lemma 4.6. For every n ∈ S , we define αn as the minimum integer
s such that there exists an s-size circuit C : {0, 1}n → {0, 1} satisfying Vckt(n, tt(C)) = 1. Note that
from Item (1.a) of Lemma 4.6, αn is well-defined for n ∈ S , and from Item (1.b) of Lemma 4.6,
αn > 2nε

.
Let g ∈ N be the constant in Lemma 4.3. Now we construct the following NPRG family

G = {(GP
n , GW

n )}, as follows:

• Given the parameter n ∈N. Let m be the largest integer such that mε−1 ≤ n and ℓ = n−mε−1
.

• If ℓ /∈ {m, m + 1, . . . , mε−1}, define GP
n and GW

n be trivial functions that always output 0, with
appropriate input lengths. (i.e., we give up this parameter n.)

• GW
n takes the description of a circuit C : {0, 1}ℓ → {0, 1} with size at most 2m+1, and outputs

1 if and only if V(1ℓ, tt(C)) = 1.
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• GP
n takes the description of a circuit C : {0, 1}ℓ → {0, 1}with size at most 2m+1, together with

a seed r of length g · ℓ, and outputs GUmans(tt(C), r).

From the description above, we note that G has seed length O(ℓ) = O(mε−1
) = O(n), witness

length poly(2m+1) ≤ 2O(nε), and running time 2O(ℓ) ≤ 2O(n). Next, we will show G is an i.o. NPRG
for 2Ω(nε)-size circuits (this is stronger than the required i.o. NPRG for C circuits).

For every sufficiently large ℓ ∈ S , let m be the unique integer such that αℓ ∈ [2m, 2m+1). Note
that we have m ∈ [ℓε, ℓ). Let n = mε−1

+ ℓ. We claim that for some S(m) = 2Ω(m), Gn = (GP
n , GW

n ) is
an NPRG for S(m)-size with error S(m)−1, which completes the proof for this case since Ω(m) =
Ω(nε).

To see this claim, on this particular parameter n, we have αℓ ∈ [2m, 2m+1]. In particular, it
means there exists a circuit C : {0, 1}ℓ → {0, 1} of size at most 2m+1 such that V(1ℓ, tt(C)) = 1.
Also, for every such circuit C, we know that C, as a Boolean function, has no (2m− 1)-size circuits.
Hence, by Lemma 4.3, it follows that Gn is an NPRG for S(m)-size circuits with error S(m)−1, for
some S(m) = 2Ω(m).

Item (2) of Lemma 4.6 holds. Let S be the set of n ∈ N such that the conditions in Item (2)
of Lemma 4.6 hold, and let Vckt and H be the algorithms from Item (2) of Lemma 4.6.

In the following, we construct the required NPRG family G = {(GP
n , GW

n )}. For n ∈ N, GW
n

takes as input a 2nε
-size circuit C : {0, 1}n → {0, 1} and outputs Vckt(12n

, C).
Now, fix a sufficiently large n ∈ S . For every 2nε

-size circuit C : {0, 1}n → {0, 1} such that
GW

n (C) = 1, we define fC : {0, 1}2n → {0, 1} as in the Item (2) of Lemma 4.6. By Item (2)
of Lemma 4.6, fC is δ-far from [0, 1]Sum ◦ C ◦ AC0

2[2
nε
].

We set k = Θ(nε) so that εk = (1− δ)k−1 · (1/2− δ) = 2−nε/10. By Lemma 4.5, it follows that
f⊕k
C cannot be (1/2 + εk)-approximated by any C ◦ Juntanε/10 circuits whose top C circuit has size

at most 2nε/10.37 Plugging f⊕k
C into Lemma 4.2, we obtain a PRG fooling S(n)-size C circuits with

error S(n)−1 seed length ℓ(n) ≤ poly(n), for some S(n) = 2Ω(nε).
Finally, we define GP

n so that it takes a 2nε
-size circuit C : {0, 1}n → {0, 1} and a seed r ∈

{0, 1}ℓ(n) as the input, and outputs GNW(tt( f⊕k
C ), r).

By the above discussions, we have that G is an i.o. NPRG for S(n)-size C circuits with error
S(n)−1. Now we analyze the parameters of G. From its description, the witness length and seed
length are bounded by 2O(nε) and poly(n), respectively. The running time is dominated by the
running time of GNW, which can be bounded by 2poly(n). This completes the proof of the whole
theorem.

4.3 Application: Derandomization of MAACC0

We say a function T : N → N is nice for ε ∈ (0, 1), if for every c ∈ (0, 1), for all large enough
ℓ ∈ N, there exists n ∈ N such that T(n) ∈ (2c·(ℓ−1)ε

, 2c·ℓε
]. It is easy to verify that functions

such as nk and 2logk n are nice for every constant ε ∈ (0, 1). Applying the #SAT algorithm for ACC0

from [Wil14, Wil18b], we immediately have the following corollary of Theorem 4.1.

Corollary 4.7. Let d⋆, m⋆ ∈ N≥1. There is a constant ε ∈ (0, 1), a function S(n) = 2Ω(nε), and an
infinity often nondeterministic PRG for S(n)-size AC0

d⋆ [m⋆] circuits with S(n)−1-error, 2O(nε)-witness-
length, poly(n)-seed-length, and 2poly(n) running time. Moreover, for every time-constructible function
T : N→N that is nice for ε, we have

MATIMEAC0
d⋆ [m⋆]

[T(n)] ⊆ i.o.-NTIMEGUESS[2polylog(T(n)), poly(T(n))].
37Here we use the fact that a Juntaa can be simulated by 2a-size AC0

2 circuits.
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Proof. The desired i.o.-NPRG follows directly from the 2n−nη
-time #SAT algorithm for AC0

d⋆ [m⋆]
from [Wil14, Wil18b].

To show the “moreover” part, let L ∈ MATIMEACC0 [T(n)]. By definition, there are d⋆, m⋆ ∈ N

such that L ∈ MATIMEAC0
d⋆ [m⋆]

[T(n)]. Let c0, ε ∈ (0, 1) and G = {Gn} be an i.o. NPRG for 2c0·nε
-size

AC0
d⋆ [m⋆] circuits with 2O(nε)-witness-length, poly(n)-seed-length, and 2poly(n) running time.
We now define another NPRG G̃ = {G̃n}n∈N as follows: for each n ∈ N, we let ℓn ∈ N be

the smallest integer such that 2c0·ℓε
n ≥ T(n), and set G̃n = Gℓn . We claim that G̃ is an i.o.-NPRG

for T(n)-size AC0
d⋆ [m⋆] circuits with poly(T(n))-witness-length, polylog(T(n))-seed-length, and

2polylog(T(n)) running time. The parameters of G̃ follow from its construction and the parameters
of G. To see that G̃n works for infinitely many input length n, note that if Gℓ works and T(n) ∈
(2c0·(ℓn−1)ε

, 2c0·ℓε
n ] then G̃n works as well (here we use the assumption that T(n) is nice for ε).

Finally, L ∈ i.o.-NTIMEGUESS[2polylog(T(n)), poly(T(n))] follows from Lemma 3.9, which com-
pletes the proof.

The following corollary will be useful for our proof of Theorem 1.5.

Corollary 4.8. Let T(n) ≤ 2no(1)
be time-constructible. It holds that

MATIMEACC0 [T(n)] ⊆ i.o.-NE.

Proof. Let L ∈ MATIMEACC0 [T(n)]. That is, there are constants d⋆, m⋆ ∈ N≥1 such that L ∈
MATIMEACd⋆ [m⋆][T(n)]. Let ε ∈ (0, 1) be the constant from Corollary 4.7 corresponding to d⋆, m⋆,

and τ ∈N≥1 be a large enough constant. Note that T̃(n) = 2nε/τ
is nice for ε.

From Corollary 4.7, it follows that

L ∈ MATIMEACd⋆ [m⋆][T̃(n)] ⊆ i.o.-NTIME[2polylog(T̃(n))] ⊆ i.o.-NE,

the last containment follows from the fact that τ is large enough.

5 Circuit Lower Bounds via Derandomization

We say a function α : N→ N is a nice unbounded function if α satisfies the following: (1) α(n) ≥
ω(1); (2) α is non-decreasing; (3) α(n) is computable in O(n) time.38

In this section, we prove the following two theorems.

Theorem 5.1 (Weakly average-case lower bound for NQP via direct derandomization; a stronger
version of Theorem 2.14). Let C be a typical concrete circuit class, and α(n) be a nice unbounded function.
There are two universal constants d, τ ∈ N≥1 such that the following holds. Suppose that for some η ∈
(0, 1), C̃APP of 2nη

-size AC0
d[2] ◦ C ◦ AC0

2 circuits can be deterministically solved in 2n−nη
time. Then,

there is β ∈N≥1 such that neither

NTG[2logβ n, nα(n)] nor (N∩ coN)TG[2logβ n, nα(n)]/1

can be (1− n−τ)-approximated by poly(n)-size C circuits.
38Conditions (2) and (3) may not be necessary; we include them for technical convenience.
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Theorem 5.2 (Strongly average-case lower bound for NQP via an additional win-win argument;
a stronger version of Theorem 2.16). Let C be a typical concrete circuit class that can be simulated by
Formula and α(n) be a nice unbounded function. Suppose that for some η ∈ (0, 1), C̃APP of 2nη

-size
AND4 ◦ C ◦ AC0

2 circuits can be deterministically solved in 2n−nη
time. Then, there is β ∈ N≥1 such that

neither
NTG[2logβ n, nα(n)] nor (N∩ coN)TG[2logβ n, nα(n)]/1

can be 1/2 + 1/poly(n)-approximated by poly(n)-size C circuits.

We remark that while Theorem 5.2 is stronger than Theorem 5.1 in the sense that it requires a
C̃APP algorithm for a weaker circuit class (AND4 ◦C ◦AC0

2 vs. AC0
d[2] ◦C ◦AC0

2) and gives stronger
average-case lower bounds (1/2 + 1/poly(n) vs. 1/2 + n−τ),39 the proof of Theorem 5.2 needs an
additional win-win argument. In contrast, the proof of Theorem 5.1 is a straightforward direct
derandomization, which we believe is easier to understand.

5.1 Technical Ingredients

We will need several technical ingredients, some already discussed in Section 2.

Theorem 5.3 (Weakly average-case lower bounds for MA ∩ coMA; a stronger version of Theo-
rem 2.13). Let C be a typical concrete circuit class. There are universal constants dv, τ ∈ N≥1 such that
for all a ∈N≥1, there is a constant c ∈N≥1 and a language

L ∈
(
(MA∩ coMA)AC0

dv [2]◦C

)
/1

such that, for all large enough n ∈ N≥1, there exists m ∈ [n, nc] such that Lm cannot be (1− m−τ)-
approximated by ma-size C circuits.

Reminder of Lemma 2.15. Let C be a typical concrete circuit class. There is a language L ∈ P such that
one of the following holds:

1. For every k ∈N≥1, L cannot be (1/2 + n−k)-approximated by nk-size C circuits.

2. There is a constant γ ∈N≥1 such that every S-size formula admits a S̃um0.01 ◦C circuit of complex-
ity Sγ.

Theorem 5.4 (A variant of Theorem 2.9). Let C be a typical concrete circuit class. Suppose that there is
a constant ε ∈ (0, 1), size parameter S(n) = 2Ω(nε), and an infinity often NPRG for S(n)-size C circuits
with S(n)−1-error, 2O(nε)-witness-length, poly(n)-seed-length, and 2poly(n) running time.

Then, there are constants β, λ ∈N≥1 that only depends on ε such that for every L ∈ (MA∩ coMAC )/1

and every c ∈N≥1, there is an L′ ∈ (N∩ coN)TG[2logβ n, poly(n)]/λ log log n such that for infinitely many
n ∈N, for every m ∈ [n, nc], L and L′ agree on all m-bit inputs.

39We remark that Theorem 5.2 also requires C to be weaker than Formula, while Theorem 5.1 do not. So, strictly
speaking, they are incomparable.
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5.2 The Derandomization Condition and the MA Lower Bound Condition

To simplify our presentation, we define the following two conditions, capturing the derandom-
ization consequences of Theorem 5.4 and the lower bounds from Theorem 5.3, respectively.

Definition 5.5 (The derandomization condition for C ). Let C be a typical concrete circuit class. We say
that the derandomization condition holds for C , if the following holds:

• There are universal constants β, λ ∈ N≥1 such that for every L ∈ ((MA∩ coMA)C )/1 and every
c ∈N≥1, there is an

L′ ∈ (N∩coN)TIME[2logβ n, poly(n)]/λ log log n

such that for infinitely many n ∈N and for every m ∈ [n, nc], L and L′ agree on all m-bit inputs.

The following is a direct corollary of Theorem 4.1 and Theorem 5.4.

Corollary 5.6. Let C be a typical concrete circuit class. If for some η ∈ (0, 1), C̃APP of 2nη
-size AND4 ◦

C ◦ AC0
2 circuits can be deterministically solved in 2n−nη

time, then the derandomization condition holds
for C .

Definition 5.7 (The MA lower bound condition for C and D). Let C and D be two typical concrete
circuit classes. We say that the MA lower bound condition holds for C and D , if the following holds:

• Let τ ∈N≥1 be a universal constant. For all a ∈N≥1, there is constant c ∈N≥1 and a language

L ∈ ((MA∩ coMA)D )/1

such that for every n ∈N, there exists m ∈ [n, nc] such that heur(1−m−τ)-C -SIZE(Lm) > ma.

For simplicity, when C = D , we simply say that the MA lower bound condition holds for C .

The following is a direct corollary of Theorem 5.3.

Corollary 5.8. Let C be a typical concrete circuit class and dv be the constant from Theorem 5.3. The
MA lower bound condition holds for C and AC0

dv [2] ◦ C .

5.3 Weakly Average-case Lower Bounds for NQP via Direct Derandomization

We will first prove the following weaker version of Theorem 5.1, which allows for O(log log n)
bits of advice. Later, these advice bits will be eliminated or reduced in Section 5.5.

Theorem 5.9. Let C be a typical concrete circuit class and α(n) be a nice unbounded function. There are
two universal constants d, τ ∈N≥1 such that the following holds. Suppose that for some η ∈ (0, 1), C̃APP
of 2nη

-size AC0
d[2] ◦ C ◦ AC0

2 circuits can be deterministically solved in 2n−nη
time.

Then, there are constants β, λ ∈N≥1 such that (N∩coN)TIME[2logβ n]/λ log log n cannot be (1− n−τ)-
approximated by poly(n)-size C circuits.

We will prove a more general result, showing that weakly average-case lower bounds for C
follow from appropriate derandomization condition and MA lower bound condition.

Lemma 5.10. Let C and D be two typical concrete circuit classes and α(n) be a nice unbounded function.
Suppose that the derandomization condition holds for D , and the MA lower bound condition holds for C
and D .

Then, there are constants β, τ, λ ∈ N≥1 such that (N∩ coN)TG[2logβ n, nα(n)]/λ log log n cannot be
(1− n−τ)-approximated by poly(n)-size C circuits.
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Proof. Let a ∈ N≥1. Let c ∈ N≥1 and L ∈ ((MA∩ coMA)D )/1 be the constant and hard language
guaranteed by the MA lower bound condition for C and D . Next, from the derandomization condition
for D , there are universal constants β, λ ∈N≥1 and a language

L′ ∈ (N∩ coN)TG[2logβ n, poly(n)]/λ log log n

such that for infinitely many n and for every m ∈ [n, nc], L and L′ agree on all m-bit inputs.
Now, from the MA lower bound condition for C and D , for every n ∈ N≥1, there exists m ∈

[n, nc] such that heur(1−m−τ)-C -SIZE(Lm) > ma. Putting together with our guarantee on L′, it
follows that for infinitely many m ∈N≥1, heur(1−m−τ)-C -SIZE(L′m) > ma.

Since a is arbitrary and α(n) is a nice unbounded function, it follows that (N∩ coN)TG[2logβ n, nα(n)]/λ log log n
cannot be (1− n−τ)-approximated by na-size C circuits for every a ∈N≥1.

Now, Theorem 5.9 follows directly from Corollary 5.6, Corollary 5.8 and Lemma 5.10.

5.4 Strongly Average-case Lower Bounds for NQP via a Win-win Argument

Next, we move to prove strongly average-case lower bounds. We will first prove the following
weaker version of Theorem 5.2, which again allows for O(log log n) bits of advice.

Theorem 5.11. Let C be a typical concrete circuit class that can be simulated by Formula and α(n) be a
nice unbounded function. Suppose that for some η ∈ (0, 1), C̃APP of 2nη

-size AND4 ◦ C ◦ AC0
2 circuits

can be deterministically solved in 2n−nη
time.

Then, there are constants β, λ ∈ N≥1 such that (N∩ coN)TG[2logβ(n), nα(n)]/λ log log n cannot be
(1/2 + poly(n))-approximated by poly(n)-size C circuits.

We need the following lemma first.

Lemma 5.12 (Approximate linear sums preserve PRGs). Let C be a typical concrete circuit class,
s ∈ N≥1, and δ ∈ (0, 1). Let H ⊆ Fs,1 be the set of all functions that admit S̃umδ ◦ C circuits with
complexity at most

√
s. If G is a PRG for s-size C circuits with error s−1, then G is also a PRG forH with

error 1/
√

s + 2δ.

Proof. Let r ∈N be the seed length of G, and let f ∈ H. From the definition ofH, there are m ≤
√

s
many C circuits {Ci}i∈[m], together with m coefficients {αi}i∈[m] such that for every x ∈ {0, 1}s, we
have ∣∣∣∣∣ f (x)− ∑

i∈[m]

αi · Ci(x)

∣∣∣∣∣ ≤ δ.

We also have |Ci| ≤ s for all i ∈ [m] and ∑i∈[m] |αi| ≤
√

s. We let L(x) = ∑i∈[m] αi · Ci(x) for
notational convenience.
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Then, we show G is also a PRG fooling f with the desired error as follows:∣∣∣∣ E
z∈R{0,1}s

[ f (z)]− E
r∈R{0,1}s

[ f (G(r))]
∣∣∣∣

≤
∣∣∣∣ E
z∈R{0,1}s

[L(z)]− E
r∈R{0,1}s

[L(G(r))]
∣∣∣∣+ 2δ (∥ f − L∥∞ ≤ δ)

≤ ∑
i∈[m]

αi

∣∣∣∣ E
z∈R{0,1}s

[Ci(z)]− E
r∈R{0,1}s

[Ci(G(r))]
∣∣∣∣+ 2δ (the definition of L)

≤ ∑
i∈[m]

|αi| · s−1 + 2δ (Ci has size at most s)

≤1/
√

s + 2δ. (∑i∈[m] |αi| ≤
√

s)

Hence, G is a PRG foolingH with error 1/
√

s + 2δ as well.

The following corollary follows from Lemma 5.12 immediately.

Corollary 5.13. Let C be a typical concrete circuit class, s ∈N≥1 and δ ∈ (0, 1). LetH ⊆ Fs,1 be the set
of all functions that admit S̃umδ ◦ C circuits with complexity at most

√
s. If G = (GP, GW) is an NPRG

for s-size C circuits with error s−1, then G is also an NPRG forH with error 1/
√

s + 2δ.

We need the following lemma, a simple corollary of Lemma 2.15 and Corollary 5.13.

Lemma 5.14. Let C be a typical concrete circuit class that can be simulated by Formula. There is a language
L ∈ P such that one of the following holds:

1. For every k ∈N≥1, L cannot be (1/2 + n−k)-approximated by nk-size C circuits.

2. If for some η ∈ (0, 1), C̃APP of 2nη
-size AND4 ◦ C ◦ AC0

2 circuits can be deterministically solved in
2n−nη

time, then the derandomization condition holds for Formula.

Proof. We first assume that Item (1) does not hold, then by Lemma 2.15, every S-size formula
admits a S̃umδ ◦ C circuit of complexity at most Sγ for some γ ∈N≥1, where δ = 0.01.

From the assumed algorithm for AND4 ◦ C ◦ AC0
2 circuits from Item (2) and Theorem 4.1, it

follows that there is a constant ε ∈ (0, 1), size parameter S(n) = 2Ω(nε), and an infinity often
NPRG for S(n)-size C circuits with S(n)−1-error, 2O(nε)-witness-length, poly(n)-seed-length, and
2poly(n) running time.

Now, combining Corollary 5.13, the i.o. NPRG for C , and the simulation of formulas by S̃umδ ◦
C , it follows that there is another size parameter S0(n) = 2Ω(nε) and an infinitely often NPRG for
S0(n)-size C circuits with 2O(nε)-witness-length, poly(n)-seed-length, and 2poly(n) running time.
The second item then follows from Theorem 5.4.

Since AC0
dv [2] ◦ Formula can be simulated by Formula, we have that the MA lower bound condition

holds for Formula from Corollary 5.8. Hence, the following lemma follows immediately from Lemma 5.14
and Lemma 5.10.

Lemma 5.15. Let C be a typical concrete circuit class that can be simulated by Formula and α(n) be a nice
unbounded function. There is a language L ∈ P such that one of the following holds:

• For every k ∈N≥1, L cannot be (1/2 + n−k)-approximated by nk-size C circuits.
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• If for some η ∈ (0, 1), C̃APP of 2nη
-size AND4 ◦ C ◦ AC0

2 circuits can be deterministically solved
in 2n−nη

time, then there are constants β, λ ∈ N≥1 such that (N∩ coN)TG[2logβ n, nα(n)]/λ log log n
cannot be (1− n−τ)-approximated by poly(n)-size formulas.

Finally, we need to perform some mild-to-strong hardness amplification to prove Theorem 5.11.
The following lemma follows from a careful analysis of Levin’s proof of Yao’s XOR Lemma [Lev87,
GNW11].40

Lemma 5.16. Let C be a typical concrete circuit class. There is a universal constant c ≥ 1 such that, for
every n ∈ N, f ∈ Fn,1, δ ∈ (0, 0.01), k ∈ N, εk = (1− δ)k−1 ( 1

2 − δ
)

and ℓ = c · log δ−1

ε2
k

, if f cannot be

(1− 5δ)-approximated by MAJℓ ◦ C circuits of size s · ℓ+ 1, then f⊕k cannot be ( 1
2 + εk)-approximated

by C circuits of size s.41

Lemma 5.17. Let C be a typical concrete circuit class, τ ∈ N≥1, and α(n) be a nice unbounded function.
For every β ≥ 2 and every language L ∈ (N∩ coN)TG[2logβ n, nα(n)]/O(log log n), there is a language L′ ∈
(N∩ coN)TG[2logβ n, nα(n)]/O(log log n) such that, for two nondecreasing unbounded functions S, ℓ : N →
N such that n ≤ ℓ(n) ≤ 2o(n), the following holds:

• If L cannot be (1− n−τ)-approximated by O(ℓ(n)S(n))-size MAJℓ(n) ◦ C circuits, then L′ cannot
be (1/2 + ℓ(n1/(τ+3))−1/3)-approximated by S(n1/(τ+3))-size C circuits.

Proof. We first define L′ as follows: Given an input x ∈ {0, 1}n for some n ∈ N. Letting m be
the largest integer such that mτ+2 ≤ n, and k = min(n−mτ+2, mτ+1), we set L′(x) = L⊕k

m (x≤km),
where x≤km denotes the first km bits of x. Using the straightforward algorithm for computing L′,
it follows that L′ ∈ (N∩ coN)TG[2logβ n, nα(n)]/O(log log n).42

Now, there are infinitely many n ∈ N≥1 such that Ln cannot be (1− n−τ)-approximated by
ℓ(n)S(n)-size MAJℓ(n) ◦ C circuits. We say that these n are good.

For every sufficiently large good n ∈ N≥1, we set δ = n−τ/5 and k = k(n) be the smallest
integer so that εk = (1− δ)k−1 ( 1

2 − δ
)
≥ ℓ(n)1/3. Let c1 be the universal constant in Lemma 5.16.

Since n is sufficiently large and ℓ(n) ≥ n, ℓ0 = c1
log δ−1

ε2
k

< ℓ(n). Now, by Lemma 5.16 and the fact

that Ln cannot be (1− 5δ)-approximated by ℓ0 · S(n) + 1 ≤ ℓ(n) · S(n)-size MAJℓ0 ◦ C circuits, it
follows that (Ln)⊕k cannot be (1/2 + ℓ(n)−1/3)-approximated (note that εk ≤ ℓ(n)−1/3 from our
choice) by S(n)-size C circuits.

From our definition of L′, it follows that for infinitely many n ∈ N≥1, L′nτ+2+k(n) (from our

choice of k and the assumption that ℓ(n) = 2o(n), we have that k ≤ nτ+2) cannot be (1/2 +
ℓ(n)−1/3)-approximated by S(n)-size C circuits, which completes the proof since both S and ℓ are
nondecreasing.

Now, Theorem 5.11 follows immediately from Lemma 5.15 and Lemma 5.17.

40See Appendix B of the journal version of [Che19] for a proof, which can be found in http://www.mit.edu/

~lijieche/Che19-journal-version.pdf.
41See Definition 4.4 for a formal definition of f⊕k.
42We remark that this step uses the facts that (1) L is in (N∩ coN)TG[2logβ n, nα(n)]/O(log log n) instead of

NTG[2logb n, nα(n)]/O(log log n) and (2) α(n) is non-decreasing.
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5.5 Eliminating or Reducing the Advice

Finally, we apply the following lemma to get rid of or reduce the advice in Theorem 5.9 and The-
orem 5.11. The same trick was used in [COS18] as well.

Lemma 5.18. Let α(n) be a nice unbounded function. For every β ≥ 2 and every language L ∈
(N∩ coN)TG[2logβ n, nα(n)]/O(log log n), there are τ ∈ N≥1 and languages L1 ∈ NTG[2logβ n, nα(n)] and

L2 ∈ (N∩ coN)TG[2logβ n, nα(n)]/1 such that the following holds:

• For every typical circuit class C , S : N → N and ε : N → (0, 1/2) such that S, if L can-
not be 1/2 + ε(n)-approximated by S(n)-size C circuits, then neither L1 nor L2 can be 1/2 +
ε(m(n))-approximated by S(m(n))-size C circuits, where m(n) is the largest integer such that
m · 2τ·log log m ≤ n.

Proof. Let τ ∈N≥1 be the constant such that L ∈ (N∩ coN)TG[2logβ n, nα(n)]/τ log log n.

For every n ∈ N≥1, let ℓn = τ log log n, and {w(n)
i }i∈[2ℓn ] be an enumeration of the set {0, 1}ℓn .

We will prove the lemma for L1 and L2 separately.

NTG lower bounds. We first prove the case for L1 ∈ NTG[2logβ n, nα(n)]. We define L1 ∈ NTG[2logβ n, nα(n)]
by the following algorithm A1: on an input of length n, let m be the largest integer such that
m · 2ℓm ≤ n, and k = n−m · 2ℓm + 1; A1 simulates the nondeterministic algorithm for L′m with the
advice wk on the first m bits of the input. (If k > 2ℓm , A1 simply outputs 0.)

Since L cannot be 1/2 + ε(n)-approximated by S(n)-size C circuits, there are infinitely many
pairs (mi, ai) ∈ N×

[
2ℓmi

]
such that the nondeterministic algorithm for Lmi with advice wai com-

putes a function that cannot be (1/2 + ε(mi))-approximated by S(mi)-size C circuits.
By the construction of L1, for infinitely many (mi, ai) ∈ N×

[
2ℓmi

]
, (L1)ni cannot be (1/2 +

ε(mi))-approximated by S(mi)-size C circuits, where ni = mi · 2ℓmi + ai − 1.

(N∩ coN)TG/1 lower bounds. Now we define L2 ∈ (N∩ coN)TG[2logβ n, nα(n)]/1 by the following
algorithm A2: on an input of length n, let m be the largest integer such that m · 2ℓm ≤ n, and
k = n−m · 2ℓm + 1; we set the advice bit αn = 1 if and only if k ≤ 2ℓm and wk is the correct advice
for input length m of language L; when αn = 1, A2 simulates Lm with the advice wk on the first m
bits of the input; otherwise, A2 simply outputs 0. A similar argument as that of the previous case
completes the proof.

Finally, applying Lemma 5.18, Theorem 5.1 and Theorem 5.2 follow immediately from Theo-
rem 5.9 and Theorem 5.11, respectively.

We also note that the proof above for Theorem 5.2 indeed proves the following.

Remark 5.19. Let C be a typical concrete circuit class that can be simulated by Formula and α(n) be a nice
unbounded function. Suppose that for some η ∈ (0, 1), C̃APP of 2nη

-size AND4 ◦ C ◦ AC0
2 circuits can be

deterministically solved in 2n−nη
time. There is a language L ∈ P such that one of the following holds:

• For every k ∈N≥1, L cannot be (1/2 + n−k)-approximated by nk-size C circuits.

• There is β ∈N≥1 such that neither

NTG[2logβ n, nα(n)] nor (N∩ coN)TG[2logβ n, nα(n)]/1

can be 1/2 + 1/poly(n)-approximated by poly(n)-size formulas.
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5.6 Proof of Theorem 1.4

Finally, we apply our generic connection Theorem 5.2 to prove Theorem 1.4.

Reminder of Theorem 1.4. Let α be a nice unbounded function. There is a β ∈ N such that
NTIMEGUESS[2logβ n, nα(n)] cannot be 1/2 + 1/poly(n)-approximated by poly(n)-size ACC0 circuits.

Recall that [Wil14, Wil18b] proved that for every d, m ∈ N≥1, there is an ε ∈ (0, 1) (that de-
pends on d, m) such that C̃APP for AC0

d[m] circuits can be solved in 2n−nε
time. Combining this

algorithm with Theorem 5.2, we immediately obtain the following weaker version of Theorem 1.4.

Corollary 5.20. Let α be a nice unbounded function. For every d, m ∈ N≥1, there is a β ∈ N such that
NTIMEGUESS[2logβ n, nα(n)] cannot be 1/2 + 1/poly(n)-approximated by poly(n)-size AC0

d[m].

We note that Theorem 1.4 is stronger than the corollary above since it asserts the existence
of a single constant β ∈ N≥1 such that NTIMEGUESS[2logβ n, nα(n)] cannot be 1/2 + 1/poly(n)-
approximated by poly(n)-size AC0

d[m], for every d, m ∈N≥1.
Now we prove Theorem 1.4 by a careful win-win argument, similar to [CR21].

Proof of Theorem 1.4. Let L ∈ P be the language from Lemma 2.15. If L cannot be 1/2+ 1/poly(n)-
approximated by poly(n)-size ACC0 circuits, then we are done. Otherwise, there are constants
d⋆, m⋆, k ∈N≥1 such that L can be (1/2 + n−k)-approximated by nk-size AC0

d⋆ [m⋆] circuits. Apply-

ing Remark 5.19 and the C̃APP algorithm for AC0
d⋆ [m⋆], there is a β ∈N such that NTIMEGUESS[2logβ n, nα(n)]

cannot be 1/2 + 1/poly(n)-approximated by poly(n)-size formulas, which also implies the theo-
rem (since ACC0 can be simulated by Formula).

6 Circuit Lower Bounds for (MA∩ coMA)AC0[2]◦C against C

In this section, we prove Theorem 5.3; see Theorem 6.3 for a formal version.

6.1 Technical Ingredients

We begin with some technical ingredients.

Theorem 6.1. Let s : N → N be a space-constructible function such that s(n) ≤ 2o(n) and s(n) ≥ n
for every n ∈ N≥1. There is a universal constant c ∈ N≥1 and a language L ∈ SPACE[s(n)c] such that
heur0.99-SIZE(Ln) > s(n) for all sufficiently large n.

Proof. In the following, we always assume that n is large enough. Let c1 ∈N≥1 be a large enough
constant and let ℓ = c1 log s(n). There are 22ℓ = 2s(n)c1 many distinct functions in Fℓ,1. Also, there
are at most 2s(n)2

many ℓ-input s(n)-size circuits. We claim that there exists a function f ∈ Fℓ,1
that cannot be 0.99-approximated by s(n)-size circuits.

To see the claim. Fix an ℓ-input s(n)-size circuit C. We draw a random function f ∈ Fℓ,1. By
a Chernoff bound, C 0.99-approximates f with probability at most 2−Ω(2ℓ) ≤ 2−Ω(s(n)c1 ) ≤ 2−s(n)3

,
the last inequality follows from the fact that c1 and n are large enough. Our claim then follows
from a union bound over all 2s(n)2

many ℓ-input s(n)-size circuits.
Now, letting c = 2c1, our algorithm computing L first enumerates all ℓ-bit functions to find the

lexicographically first f0 ∈ Fℓ,1 that cannot be 0.99-approximated by all s(n)-size circuits. Note

31



that by our claim above, such f0 exists for all sufficiently large n. Then our algorithm computes
f0 on the first ℓ bits of the input and ignores the rest. (Note that here we use the fact that ℓ ≤
O(log s(n)) ≤ o(n).) This algorithm can be implemented in s(n)c space in a straightforward way,
and the average-case hardness for L follows from our construction of f0.

The concrete circuit class ÃC
0
d[2]. For d ∈ N≥1, we define ÃC

0
d[2] as a sub-class of AC0

d[2] such
that the top-gate must be an XOR gate and the second layer (counting from the top layer) must all

be AND gates. An S-size ÃC
0
d[2] circuit is by definition also an S-size AC0

d[2] circuit and an S-size

AC0
d[2] circuit has an equivalent O(S)-size ÃC

0
d+2[2] circuit by adding two dummy layers at the

top. (Note that for our proofs, we do not need ÃC
0
d[2] to be typical.)

We work with ÃC
0
d[2] instead of AC0

d[2] because of the following lemma.

Lemma 6.2. Let C be a typical concrete circuit class. There are two universal constants d0, c0 ∈ N such

that the following holds. For every d⋆ ∈N such that d⋆ ≥ d0, letting D = ÃC
0
d⋆ [2] ◦C , for all sufficiently

large n ∈N≥1, we have

D-SIZE(LPSPACE
n ) ≤

(
D-SIZE(LPSPACE

n−1 ) + nc0
)c0

,

where LPSPACE is the PSPACE-complete language from Theorem 3.15.

Proof. Let DSR and Aux be the algorithms from Theorem 3.15. We set d0 ∈ N so that Auxn can

be implemented by poly(n)-size ÃC
0
d0
[2] circuits. The lemma then follows from the properties of

DSR and Aux, and the observation that a size-S (XOR ◦ AND3) ◦ ÃCd0 [m⋆] circuit can be converted
into an ÃCd0 [m⋆] circuit of size poly(S), since an AND3 ◦ XORt circuit can be converted into an
XORO(t3) ◦ AND3 circuit.

6.2 Lower Bounds for (MA∩ coMA)AC0[2]◦C against C Circuits

We will prove the following theorem, from which Theorem 5.3 follows immediately.

Theorem 6.3 (Formal version of Theorem 5.3). Let C be a typical concrete circuit class. There are
universal constants dv, τ ∈ N≥1 such that the following holds. For all a ∈ N≥1, there is a constant
c ∈N≥1 and a language

L ∈
(
(MA∩ coMA)AC0

dv [2]◦C

)
/1

such that the following hold:

1. For all sufficiently large τ ∈N≥1 and n = 2τ, either

• heur(1−n−τ)-C -SIZE(Ln) > na, or

• heur(1−m−τ)-C -SIZE(Lm) > ma, for some m ∈ (nc, 2 · nc) ∩N.

2. For every n ∈N≥1, if the advice for L on n-bit inputs is 0, then Ln is the all-zero function.

Proof of Theorem 6.3. Let LPSPACE be the language from Theorem 3.15 and β ∈N≥1 be the constant
such that for every n, s ∈N≥1 such that s ≥ n, an s-size C circuit on n-bit inputs has an equivalent
sβ-size general fan-in 2 Boolean circuit (such β exists since C is a typical concrete circuit class).
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Applying Theorem 6.1 with size function S(n) = nβ·a, there is a language Ldiag ∈ PSPACE such
that heur0.99-SIZE(Ldiag

n ) > nβ·a for all sufficiently large n ∈ N. Since LPSPACE is PSPACE-complete
and paddable, there is c1 ∈ N such that Ldiag

n can be reduced to LPSPACE on input length nc1 in
O(nc1) time. Let d0, c0 be the constants from Lemma 6.2.

Let dwc2ac be such that LPSPACE is AC0
dwc2ac [2] weakly error correctable, and let τ be the cor-

responding constant τwc2ac. We then set c = c1 and also let dg = d0 + dwc2ac + 2. We then set

D = ÃC
0
dg [2] ◦ C . Let b ∈N≥1 be a sufficiently large constant to be chosen later.

The algorithm. Let τ ∈N≥1 be sufficiently large, n = 2τ, and m = nc. We first provide an informal
description of the (MA∩ coMA)/1 algorithm AL that computes the hard language L. There are two
cases:

1. When D-SIZE(LPSPACE
m ) ≤ nb. That is, when LPSPACE

m is easy. In this case, on inputs of length
n, we guess-and-verify a D circuit for LPSPACE

m of size at most nb, and use that to compute
Ldiag

n .

2. Otherwise, we know that LPSPACE
m is hard. Let ℓ be the largest integer such that

D-SIZE(LPSPACE
ℓ ) ≤ nb.

On inputs of length m1 = m + ℓ, we guess-and-verify a D circuit for LPSPACE
ℓ , and compute

LPSPACE
ℓ on the first ℓ input bits. Note that by Corollary 3.16, we have 0 < ℓ < m and

therefore m + ℓ is not a power of 2.

Intuitively, AL computes a hard function because either it computes the hard language Ldiag
n

on inputs of length n, or it computes the hard language LPSPACE
ℓ on inputs of length m. A formal

description of AL is given in Algorithm 6.1, and the algorithm Aadv for setting the advice bits of
AL is given in Algorithm 6.2. Since m + ℓ at Line 9 is never a power of 2, αn can only be set once
in Algorithm 6.2.

Now we verify that AL computes a language satisfying our requirements.

AL satisfies the MA ∩ coMA promise. We first show that AL satisfies the MA ∩ coMA promise
(see Definition 3.5). The intuition is that it only tries to guess-and-verify a circuit for LPSPACE

when it exists, and the properties of the instance checker (see Definition 3.12) ensure that in this
case AL satisfies the MA∩ coMA promise.

Formally, there are three cases:

1. αn = 0. In this case, AL computes the all-zero function and satisfies the promise.

2. αn = 1 and n is a power of 2. In this case, from Algorithm 6.2, we have D-SIZE(LPSPACE
m ) ≤ nb

for m = nc. Therefore, at least one guess of the circuit C is the correct circuit for LPSPACE
m , and

on that guess, AL outputs LPSPACE
m (z) = Ldiag

n (x) with probability 1, by the property of the
instance checker (see Definition 3.12). Again by the property of the instance checker, on all
guesses of C, AL outputs 1− LPSPACE

m (z) = 1− Ldiag
n (x) with probability at most 1/3.

3. αn = 1 and n is not a power of 2. In this case, from Algorithm 6.2, we have D-SIZE(LPSPACE
ℓ ) ≤

nb
0. Therefore, at least one guess of the circuit C is the correct circuit for LPSPACE

ℓ , and on
that guess, AL outputs LPSPACE

ℓ (z) with probability 1, again by the property of the instance
checker. Similar to the previous case, on all possible guesses of C, AL outputs 1− LPSPACE

ℓ (z)
with probability at most 1/3.
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Algorithm 6.1: The (MA∩ coMA)/1 algorithm AL

Input: x ∈ {0, 1}n

Advice: α = αn ∈ {0, 1}
1 if α = 0 then
2 return 0

3 Let m = nc;
4 Let n0 = n0(n) be the largest integer such that nc

0 ≤ n;
5 Let m0 = nc

0;
6 Let ℓ = n−m0;
7 if n is a power of 2 then

/* We are in the case that D-SIZE(LPSPACE
m ) ≤ nb. */

8 Compute z ∈ {0, 1}m in O(m) time such that Ldiag
n (x) = LPSPACE

m (z);
9 Guess a D circuit C of size at most nb;

10 Compute in poly(m) ≤ poly(n) time a non-adaptive AC0[2] oracle circuit ICm that
implements the instance checker for LPSPACE

m ;
11 Let rndm ≤ poly(m) be the number of random coins used by ICm, draw r ∈R {0, 1}rndm ;
12 return ICC

m(z, r);
13 else

/* We are in the case that D-SIZE(LPSPACE
m0

) > nb
0 and ℓ is the largest

integer such that D-SIZE(LPSPACE
ℓ ) ≤ nb

0. */

14 Let z be the first ℓ bits of x;
15 Guess a D circuit C of size at most nb

0;
16 Compute in poly(ℓ) ≤ poly(n) time a non-adaptive AC0[2] oracle circuit ICℓ that

implements the instance checker for LPSPACE
ℓ ;

17 Let rndℓ ≤ poly(ℓ) be the number of random coins used by ICℓ, draw r ∈R {0, 1}rndℓ ;
18 return ICC

ℓ (z, r);

Algorithm 6.2: The algorithm Aadv for setting advice bits in Algorithm 6.1

1 All the αn are set to 0 by default;
2 for τ = 1→ ∞ do
3 Let n = 2τ;
4 Let m = nc;
5 if D-SIZE(LPSPACE

m ) ≤ nb then
6 Set αn = 1;
7 else
8 Let ℓ = max{ℓ : D-SIZE(LPSPACE

ℓ ) ≤ nb};
9 Set αm+ℓ = 1;
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The following claim summarizes what we have.

Claim 6.4. AL with advice set by Aadv is an (MA ∩ coMA)/1 algorithm for a language L such that, for
every n ∈N≥1, Ln is defined as below:

1. If αn = 0, then Ln is the all-zero function.

2. If αn = 1 and n is a power of 2, then Ln is the same function as Ldiag
n .

3. If αn = 1 and n is not a power of 2, then Ln is the n-bit function that computes LPSPACE
ℓ on the first

ℓ bits and ignores the rest of the input.

Now, Item (2) of the theorem follows directly from Item (1) of Claim 6.4.

The verifier complexity of AL. We also need to show that AL is an
(
(MA∩ coMA)AC0

d⋆+dv [m⋆]

)
/1

algorithm. Let dic ∈ N≥1 be such that the instance checker for LPSPACE can be implemented by

non-adaptive ÃC
0
dic [2] circuits. Then, we can see that for every possible guess C in Algorithm 6.1,

ICC
m(z, ·) (resp. ICC

ℓ (z, ·)) is a polynomial-size ÃC
0
dg+dic [2] ◦ C circuit. We now set dv = dg + dic.

AL computes a hard language. Finally, we show that the algorithm AL indeed computes a hard
language as stated. Let τ be a sufficiently large integer, n = 2τ, and m = nc. There are two cases:

1. D-SIZE(LPSPACE
m ) ≤ nb. In this case, we have αn = 1 by Algorithm 6.2. By Item (2) of

Claim 6.4, we have that Ln is the same function as Ldiag
n , and therefore heur0.99-SIZE(Ln) >

nβ·a, which implies heur0.99-C -SIZE(Ln) > na, by the definition of β.

2. D-SIZE(LPSPACE
m ) > nb. Let ℓ be the largest integer such that D-SIZE(LPSPACE

ℓ ) ≤ nb. By
Corollary 3.16, we have 0 < ℓ < m.

Note that D-SIZE(LPSPACE
ℓ+1 ) ≤ ((ℓ+ 1)c0 +D-SIZE(LPSPACE

ℓ ))c0 from Lemma 6.2. Therefore,

D-SIZE(LPSPACE
ℓ ) ≥

(
D-SIZE(LPSPACE

ℓ+1 )
)1/c0

− (ℓ+ 1)c0 ≥ nb/c0 −mc0 = nb/c0 − nc·c0 .

Furthermore, recall that D = ÃC
0
d0+dwc2ac+2[2] and LPSPACE is AC0

dwc2ac [2] weakly error cor-
rectable with constant τwc2ac = τ.43 We also have

heur(1−ℓ−τ)-C -SIZE(LPSPACE
ℓ ) ≥

[
nb/c0 − nc·c0

]
/O(ℓτ).

Now, on inputs of length m1 = m + ℓ, we have αm1 = 1 by Algorithm 6.2 (note that m1 ∈
(m, 2m) as ℓ ∈ (0, m)). We set b large enough so that[

nb/c0 − nc·c0
]

/O(ℓτ) ≥ (2nc)a+1 = (2m)a+1 ≥ ma+1
1 ,

hence we also have heur(1−ℓ−τ)-C -SIZE(LPSPACE
ℓ ) > ma

1.

Then by Item (3) of Claim 6.4, we have that Lm1 is the m1-input function that computes
LPSPACE
ℓ on the first ℓ bits and ignores the last m input bits. Hence, we have

heur(1−m−τ
1 )-C -SIZE(Lm1) ≥ heur(1−ℓ−τ)-C -SIZE(Lm1) > ma

1,

which completes the proof.

43The +2 in the depth of D corresponds to the fact that AC0
dwc2ac

[2] can be simulated by ÃC
0
dwc2ac+2[2] with a linear

blow-up in size.
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7 A PSPACE-complete Language with AC0[2] Reducibility Properties

In this section, we prove Theorem 3.15, which is restated below.

Reminder of Theorem 3.15. There is a PSPACE-complete language LPSPACE that is paddable, non-
adaptive AC0[2] downward self-reducible, non-adaptive AC0[2] same-length checkable and non-adaptive
AC0[2] weakly error correctable.

Moreover, There are two algorithms DSR and Aux satisfying the following:

1. Aux takes n ∈N≥1 as input parameter and x⃗ ∈ {0, 1}n as input, and outputs a value from {0, 1}.

2. Aux can be implemented by a uniform AC0[2] circuit.

3. DSR takes n ∈ N≥1 as input parameter and x⃗ ∈ {0, 1}n as input, and functions h1 : {0, 1}n−1 →
{0, 1} and h2 : {0, 1}n → {0, 1} as oracles.

4. For every n ∈N≥1, DSR
LPSPACE

n−1 ,Auxn
n computes LPSPACE

n .

5. DSR can be implemented by a uniform non-adaptive XOR ◦ AND3 oracle circuit family. In more
detail, DSR first queries its oracles on some projections of the input x⃗ to obtain some intermediate
values and then applies an XOR ◦AND3 circuit on those intermediate values and the input x⃗ to obtain
the output.

7.1 Preliminaries

To avoid confusion, we often use bold letters (e.g., x and y) to emphasize that they are formal
variables.

7.1.1 Finite Fields

Throughout this section, we will only consider finite fields of the form GF(22·3ℓ) for some ℓ ∈ N,
since they enjoy simple representations that will be useful for us. For every ℓ ∈ N, we set pwℓ =
2 · 3ℓ and use F(ℓ) to denote GF(2pwℓ).

Let ℓ ∈ N. We will always represent F(ℓ) = GF(2pwℓ) as F2[x]/(xpwℓ + xpwℓ/2 + 1).44 That is,
we identify an element of GF(2pwℓ) with an F2[x] polynomial with degree less than pwℓ. To avoid
confusion, given a polynomial P(x) ∈ F2[x] with degree less than pwℓ, we will use (P(x))F(ℓ) to
denote the unique element in F(ℓ) identified with P(x).

Let κ(ℓ) be the natural bijection between {0, 1}pwℓ and F(ℓ) = GF(2pwℓ): for every a ∈ {0, 1}pwℓ ,
κ(ℓ)(a) =

(
∑i∈[pwℓ]

ai · xi−1
)

F(ℓ)
. We always use κ(ℓ) to encode elements from F(ℓ) by Boolean

strings. That is, whenever we say that an algorithm takes an input from F(ℓ), we mean it takes a
string x ∈ {0, 1}pwℓ and interprets it as an element of F(ℓ) via κ(ℓ). Similarly, whenever we say that
an algorithm outputs an element from F(ℓ), we mean it outputs a string {0, 1}pwℓ encoding that el-
ement via κ(ℓ). For simplicity, sometimes we use (a)F(ℓ) to denote κ(ℓ)(a). Also, we order elements
from F(ℓ) by the lexicographical ordering of their corresponding Boolean strings from {0, 1}pwℓ

(i.e., we use i-th element in F(ℓ) to denote the element in F(ℓ) encoded by the i-th lexicographically
smallest Boolean string in {0, 1}pwℓ).

Finally, for each n ∈ N, we set ℓn to be the smallest integer such that pwℓn ≥ n. We also let
szn = pwℓn = 2 · 3ℓn , Fn = F(ℓn) = GF(2szn), and κn = κ(ℓn). Note that 2n ≤ |Fn| ≤ 23n.

44x2·3ℓ + x3ℓ + 1 ∈ F2[x] is irreducible, see [VL99, Theorem 1.1.28].
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7.1.2 Uniform AC0[2] Circuits for Arithmetic Operations over Fn

We will need the following uniform AC0[2] circuits for arithmetic operations over Fn in [HAB02,
HV06].

Lemma 7.1 ([HAB02, HV06]). Let n, t ∈ N be input parameters. There are uniform AC0[2] circuits for
the following two tasks:

1. Iterated addition: given a list a1, . . . , at ∈ Fn, compute ∑i∈[t] ai.

2. Iterated multiplication: given a list a1, . . . , at ∈ Fn such that t ≤ log n, compute ∏i∈[t] ai.

Applying Lemma 7.1, we will give two algorithms for polynomial interpolation. Let α1, . . . , αt
be the first t non-zero elements from Fn and β1, . . . , βt ∈ Fn be the input. Let p be the unique
degree-(t− 1) polynomial such that p(αi) = βi for every i ∈ [t]. The first algorithm allows us to
compute p(x) for any x ∈ Fn (given as an additional input) in uniform AC0[2], but only works for
t ≤ log n. The second algorithm only allows us to compute p(0) in uniform AC0[2], but works for
any t. Jumping ahead, the first algorithm will be useful in our construction of instance checkers,
and the second algorithm will be useful for establishing weakly error correctability.

Corollary 7.2 (Interpolation in AC0[2]). There are two algorithms Dintp and Dintp0 satisfying the follow-
ing:

1. (Input) Dintp and Dintp0 both take n, t ∈N as input parameters, a list β1, . . . , βt ∈ Fn as input, and
outputs an element from Fn. For Dintp, we also require that t ≤ log n (i.e., Dintp aborts immediately
if t > log n) and it takes an additional x ∈ Fn as input.

2. (Output) Let p(x) : Fn → Fn be the unique polynomial with degree at most t− 1 such that p(αi) =
βi for every i ∈ [t], where αi is the i-th non-zero element in Fn. Dintp outputs p(x) and Dintp0

outputs p(0).

3. (Complexity) Both of Dintp and Dintp0 can be implemented by uniform AC0[2] circuit families.

Proof. For every i ∈ [t], we define a polynomial ei(x) : Fn → Fn as follows:

ei(x) = ∏
j∈[t]\{i}

x− αj

αi − αj
.

We have that p(x) = ∑i∈[t] ei(x) · βi. Applying Lemma 7.1, p(x) can be computed by a uniform
AC0[2] circuit given x and {βi}i∈[t] as input (note that the αi are constants) when t ≤ log n. Also,
p(0) can be computed by a uniform AC0[2] circuit given {βi}i∈[t] as input (since all of the ei(0) can
be precomputed in polynomial time).

7.2 An Adaption of the Construction from [TV07]

We need the following lemma, which builds on the proof of IP = PSPACE theorem [LFKN92,
Sha92]. The proof follows similar ideas from the proof of [TV07, Lemma 4.1] but requires several
modifications.

Lemma 7.3. There is a collection of polynomials FTV = { fn,i : Fn
n → Fn}n∈N≥1, i∈[n] with the following

properties:
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1. (Term polynomial) There is an algorithm Term satisfying the following:

(a) Term takes n, i ∈N≥1 such that i ∈ [n] as input parameters, and x⃗ ∈ Fn as input, and output
an element from Fn.

(b) Term can be implemented by a uniform AC0[2] circuit family.

2. (Self-reducibility) There is an algorithm Red satisfying the following:

(a) Red takes n, i ∈N≥1 such that i < n as input parameters, and x⃗ ∈ Fn
n as input, and functions

h1, h2 : Fn
n → Fn as oracles.

(b) Red
fn,i+1,Termn,i
n,i computes fn,i.

(c) Red can be implemented by a uniform non-adaptive XOR ◦AND2 oracle circuit family. In more
detail, Red first queries its oracle on some projections of the input x⃗ to obtain some intermediate
values and then applies an XOR ◦AND2 circuit on those intermediate values and the input x⃗ to
obtain the output.

3. (Base case) For every n ∈N≥1, fn,n is the constant-one polynomial.

4. (PSPACE-hardness) For every L ∈ PSPACE, there is a pair of algorithm (Alen
L , Ared

L ) satisfying the
following:

(a) Alen
L takes n ∈ N≥1 as input and outputs an integer in poly(n) time; Ared

L takes x ∈ {0, 1}∗
as input, and outputs a vector z⃗ ∈ Fm

m for m = Alen
L (|x|).

(b) For every n ∈ N≥1, Alen
L (n) ≤ cL · ncL for some constant cL ∈ N≥1 that depends on L, and

for every x ∈ {0, 1}n, it holds that L(x) = fm,1(⃗z), where m = Alen
L (|x|) and z⃗ = Ared

L (x).45

5. (Low degree) For every n ∈ N≥1 and i ∈ [n], fn,i has individual degree at most cdeg, where cdeg is
a universal constant.

6. (Instance checker) There is a randomized algorithm IC that takes n, i ∈ N≥1 such that i ∈ [n]
as input parameters, and x⃗ ∈ Fn as input, and n − i + 1 functions f̃i, f̃i+1, . . . , f̃n : Fn

n → Fn as
oracles, and outputs an element in Fn ∪ {⊥}. The following properties hold for IC:

(a) If f̃ j = fn,j for every j ∈ {i, . . . , n}, then IC
f̃i ,..., f̃n
n,i (x⃗) outputs fn,i(x⃗) with probability 1 for

every x⃗ ∈ Fn
n.

(b) For every f̃i, f̃i+1, . . . , f̃n : Fn
n → Fn and every x⃗ ∈ Fn

n, IC f̃i ,..., f̃n
n,i (x⃗) ∈ { fn,i(x⃗),⊥} with

probability 1− 1/2n, over the internal randomness of IC.

(c) IC can be implemented by a randomized uniform non-adaptive AC0[2] circuit family.

We prove Lemma 7.3 together with some additional properties of FTV below.

7.3 A PSPACE-complete Problem TQBFu

We first introduce a variant of the standard PSPACE-complete problem TQBF (True Quantified
Boolean Formula), which we call TQBFu. For n ∈ N≥1, we let ϕcl-idx

n be a bijection from [8 · (n
3)] to

([n]3 )× {0, 1}3. Here, for a set S and an integer m ∈ N, we use (S
m) to denote the set of all size-m

subsets of S.
45i.e., fm,1 (⃗z) = (L(x))Fm .
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Definition 7.4. The TQBFu problem46 takes a vector y⃗ ∈ {0, 1}8·(n
3) as input, and the goal is to decide

whether the following quantified Boolean formula holds:

Q1x1Q2x2 · · ·Qnxn
∧

u∈[8·(n
3)]

[¬yu ∨Φu(x⃗)] . (1)

where Qi equals ∃ for odd i, ∀ for even i, and x⃗ = (x1, . . . , xn).
For u ∈ [8 · (n

3)], letting (S, τ⃗) = ϕcl-idx
n (u), where S = {s1, s2, s3} for s1 < s2 < s3, Φu(x⃗) is defined

as
Φu(x⃗) =

∨
i∈[3]

[(xsi ∧ τi) ∨ (¬xsi ∧ ¬τi)] .

We use TQBFun to denote the TQBFu problem with parameter n (and input length 8 · (n
3)).

We first show that TQBFu is still PSPACE-complete.

Lemma 7.5. TQBFu is PSPACE-complete.

Proof. Recall that the standard TQBF problem is defined as follows: given an n-variable m-clause
3-CNF ϕ(x⃗) as input, the goal is to decide whether Q1x1Q2 · · ·Qnxn ϕ(x⃗) holds, where Qi equals ∃
for odd i, and ∀ for even i. By adding dummy variables or dummy clauses, we can assume n = m.

Let y⃗ = 08·(n
3) initially. For every j ∈ [n], letting Cj(x⃗) be the j-th clause in ϕ(x⃗), there exists an

index u ∈ [8 · (n
3)] such that Cj(x⃗) ≡ Φu(x⃗) and we set yu = 1.

Now we can verify that TQBFu(⃗y) = TQBF(ϕ) from (1). This proves the PSPACE-hardness of
TQBFu as TQBF is PSPACE-complete [SM73] (see also [AB09, Theorem 4.13]). From its definition,
it is also clear that TQBFu is in PSPACE, which completes the proof.

7.3.1 Construction of FTV

Next, we will formally define the collection of polynomials FTV = { fn,i : Fn
n → Fn}n∈N≥1, i∈[n].

We begin with some notation. For a vector x⃗ ∈ Fn
n, i ∈ [n], and z ∈ Fn, we use x⃗i←z to denote

the vector obtained from x⃗ by changing xi to z. For a polynomial p(x⃗) : Fn → F and i ∈ [n], we
use degxi

(p) to denote the maximum degree of xi in p.
We also state the following lemma, which details how the self-reduction Red in Item (2) of Lemma 7.3

is implemented.

Lemma 7.6 (Self-reduction for FTV). Let FTV = { fn,i : Fn
n → Fn}n∈N≥1, i∈[n] and Term be as in

Lemma 7.3. For every n, i ∈ N≥1 such that i < n, one can compute an index J = Jn,i ∈ [n] and a type
Q = Qn,i ∈ {∃, ∀, LIN,MUL} in poly(n) time such that the following hold for every vector x⃗ ∈ Fn

n:

1. If Q = ∀, then
fn,i(x⃗) = fn,i+1(x⃗ J←0) · fn,i+1(x⃗ J←1).

2. If Q = ∃, then
fn,i(x⃗) = 1− (1− fn,i+1(x⃗ J←0)) · (1− fn,i+1(x⃗ J←1)).

3. If Q = LIN, then
fn,i(x⃗) = xJ · fn,i+1(x⃗ J←1) + (1− xJ) · fn,i+1(x⃗ J←0).

46u stands for universal, since in (1) we have a universal formula that can simulate every n-variable 3-CNF.
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4. If Q = MUL, then
fn,i(x⃗) = Termn,i(x⃗) · fn,i+1(x⃗).

To simplify our presentation, we further define three polynomials S∃, S∀, SLIN as

1. S∀(x, y0, y1) = y0 · y1.

2. S∃(x, y0, y1) = 1− (1− y0) · (1− y1).

3. SLIN(x, y0, y1) = xy1 + (1− x)y0.

Now the first three cases in Lemma 7.6 can be succinctly written as

fn,i(x⃗) = SQ(xj, fn,i+1(x⃗ J←0), fn,i+1(x⃗ J←1)). (2)

Construction of FTV. Now we are ready to define FTV. Let n ∈N and m be the largest integer
such that 20m6 ≤ n. We will use { fn,i}i∈[n] to encode the problem TQBFum. When n < 20, we set
fn,i to be the constant-zero n-variate polynomial for all i ∈ [n]. So we can assume m ≥ 1. We also
let my = 8 · (m

3 ). (Note that TQBFum has my input bits.)
Recall that for i ∈ [m], Qi = ∃ for odd i and Qi = ∀ for even i.
Letting λ = m + my + 1. For convenience, we first construct two other polynomial families

{g(n)i,j : Fn
n → Fn}i,j∈[λ] and {Term(n)

i : Fn
n → Fn}i as follows:

1. g(n)λ,j are all set to be constant-one polynomials for every j ∈ [λ].

2. For every i from m + my down to 1:

(a) If i ∈ [m], we set
g(n)i,λ (x⃗) = SQi(xi, g(n)i+1,1(x⃗i←0), g(n)i+1,1(x⃗i←1)) (3)

for every x⃗ ∈ Fn
n.

(b) Otherwise i > m. Let u = m + my + 1 − i and (S, τ⃗) = ϕcl-idx
m (u) such that S =

{s1, s2, s3} ⊆ [m] where s1 < s2 < s3. We define

Term
(n)
i (x⃗) = 1− (1− xm+u) · ∏

ℓ∈[3]

[
1− [τℓ · xsℓ + (1− τℓ) · (1− xsℓ)]

]
, (4)

and
g(n)i,λ (x⃗) = g(n)i+1,1(x⃗) · Term(n)

i (x⃗). (5)

(c) For every j from m + my down to 1, we set

g(n)i,j (x⃗) = SLIN(xj, g(n)i,j+1(x⃗j←0), g(n)i,j+1(x⃗j←1)). (6)

Intuitively speaking, in the process above, we start from the base constant-one polynomial
and keep multiplying the last polynomial with the arithmetization of a single term in (1), and
then apply linearization to all variables to reduce the individual degrees of all variables. Then, we
obtain the multi-linear extension of the base formula47∧

u∈[8·(n
3)]

[¬xm+u ∨Φu(x⃗)] . (7)

47Note that here we concatenate x⃗ and y⃗, so yu corresponds to xm+u.
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After that, we apply the ∃ and ∀ quantifiers alternatively, each followed by LIN operators, just
as in [TV07].

We will first prove some properties of the family {g(n)i,j : Fn
n → Fn}i,j∈[λ], and then show how to

construct FTV based on them.

Lemma 7.7. For every i ∈ [λ] the following hold:

1. The individual degree of g(n)i,1 is at most 1.

2. For every j ∈ [λ], the individual degree of g(n)i,j is at most 2.

3. g(n)i,1 agrees with g(n)i,λ on all points from {0, 1}n.

Proof. First, we observe that for every i, j ∈ [λ], g(n)i,j does not depend on any variable xk with

k > m + my (i.e., degxk
(g(n)i,j ) = 0). Next, by the definition of SLIN together with (6), we can see that

for every i, j ∈ [λ− 1], we have (1) degxj
(g(n)i,j ) ≤ 1, (2) degxℓ

(g(n)i,j ) ≤ degxℓ
(g(n)i,j+1) for ℓ ∈ [n] \ {j},

and (3) g(n)i,j and g(n)i,j+1 agree on all points from {0, 1}n.
From the discussions above, Item (1) and (3) follow immediately (the case of i = λ follows

from our definition). To see Item (2), again by the above discussions, it suffices to verify that the
individual degree of g(n)i,λ for every i ∈ [λ− 1] are bounded by 2. When i ∈ [m], this follows from

the definition (3) and the fact that g(n)i+1,1 has individual degree at most 1. When i > m it follows

from the fact that Term(n)
i has individual degree at most 1 and the definition (5).

Lemma 7.8. g(n)m+1,1 is the linear extension of (7).48

Proof. We first note that for every i ∈ [m + my] \ [m], letting µi = m + my + 1− i, from (4), Term(n)
i

is the linear extension of the clause

Ci := ¬xm+µi ∨Φµi(x⃗).

We will use a simple induction to prove the following claim, which easily implies this lemma
(by setting i = m + 1).

Claim 7.9. For every i ∈ [m + my] \ [m], g(n)i,1 is the linear extension of

Ψi :=
∧

u∈[µi ]

[¬xm+u ∨Φu(x⃗)] .

The base case i = m + my can be established by the fact that g(n)i,λ = g(n)i+1,1 · Term
(n)
i = Term

(n)
i

and Item (3) of Lemma 7.7. Now, assuming that the claim holds for i + 1 ∈ {m + 2, . . . , m + my},
we show it holds for i as well. Since g(n)i+1,1 is the linear extension of Ψi+1, Ψi = Ψi+1 ∧ Ci, and

Term
(n)
i is the linear extension of Ci, we know that g(n)i,λ = g(n)i+1,1 · Term

(n)
i agrees with Ψi on all

points from {0, 1}n. Now, from Item (1) and Item (3) of Lemma 7.7, we know that g(n)i,1 is both

multi-linear and agrees with Ψi on all points from {0, 1}n. Therefore, g(n)i,1 is the linear extension of
Ψi.

48We treat (7) as a Boolean function on n bits by adding n− (m + my) dummy variables at the end.
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Finally, we show that g(n)1,1 correctly encodes TQBFum.

Lemma 7.10. For every x⃗ ∈ {0, 1}m, z⃗ ∈ {0, 1}n−m−my , and y⃗ ∈ {0, 1}my , g(n)1,1 (x⃗, y⃗, z⃗) = TQBFum (⃗y).

Proof. For every i ∈ [m + 1], we define the following quantified formula

Λi(x⃗, y⃗) := QixiQi+1xi+1 · · ·Qmxm
∧

u∈[8·(m
3 )]

[¬yu ∨Φu(x⃗)] ,

where x⃗ ∈ {0, 1}i−1 and y⃗ ∈ {0, 1}my .
In particular, Λm+1(x⃗, y⃗) =

∧
u∈[8·(m

3 )]
[¬yu ∨Φu(x⃗)] and Λ1(⃗y) = TQBFum (⃗y).

We will again use a simple induction to prove the following claim, which easily implies this
lemma (by setting i = 1).

Claim 7.11. For every i ∈ [m + 1], x⃗ ∈ {0, 1}i−1, w⃗ ∈ {0, 1}m−(i−1), z⃗ ∈ {0, 1}n−m−my , and y⃗ ∈
{0, 1}my , g(n)i,1 (x⃗, w⃗, y⃗, z⃗) = Λi(x⃗, y⃗).

The base case i = m + 1 is exactly Lemma 7.8. Now, assuming that the claim holds for i + 1 ∈
{2, . . . , m + 1}, we show it holds for i as well. Note that Λi(x⃗, y⃗) = Qixi+1 Λi+1(x⃗, xi+1, y⃗), the
claim then follows from the definition of gi,λ (see (3)) and Item (3) of Lemma 7.7.

Now, recall that my = 8 · (m
3 ) ≤ 2m3 and 20m6 ≤ n. We have λ2 = (m+my + 1)2 ≤ 16 ·m6 < n.

We are now ready to define FTV = { fn,i}n∈N≥1, i∈[n] as follows: for every (i, j) ∈ [λ], we set

fn,(i−1)·λ+j = g(n)i,j and for every ℓ ∈ [n] \ [λ2], we set fn,ℓ to be the constant-one polynomial.
Now we are ready to set Qn,ℓ, Jn,ℓ, and Termn,ℓ for every ℓ ∈ [n] accordingly to prove Lemma 7.6.

Proof of Lemma 7.6. For every ℓ ∈ [n − 1] \ [λ2], we set Qn,ℓ = LIN and Jn,ℓ = 1. We note that
when fn,ℓ+1 is the constant-one polynomial, from (2), fn,ℓ is also the constant-one polynomial.
Hence, Lemma 7.6 holds for ℓ ∈ [n− 1] \ [λ2].

Next, for every i, j ∈ [λ]:

1. Let ℓ = (i− 1) · λ + j.

2. If j < λ, we set Qn,ℓ = LIN and Jn,ℓ = j.

3. Otherwise,

(a) If i > m, we set Qn,ℓ = MUL, Jn,ℓ = 1, and Termn,ℓ = Term
(n)
i .

(b) Otherwise i ∈ [m], we set Qn,ℓ = Qi and Jn,ℓ = i.

For every ℓ that Termn,ℓ is not defined above, we set Termn,ℓ to be the constant-zero func-
tion. Lemma 7.6 then follows from the definition of g(n)i,j and Term

(n)
i .

7.3.2 Proof of Lemma 7.3

Now we are ready to prove Lemma 7.3. We first prove every item except for Item (6).
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Proof of Lemma 7.3, except for Item (6). First, Item (1) follows immediately from the definition of
Term

(n)
i in (4), and Item (3) of Lemma 7.3 follows immediately from the definition of fn,n.

Item (2.b) follows immediately from Lemma 7.6. To see Item (2.c), we note that according
to Lemma 7.6, (1) fn,i(x⃗) can be computed by a degree-2 polynomial over x⃗ and the outputs re-
turned by queries to fn,i+1 and Termn,i, and (2) the queries to fn,i+1 or Termn,i are projections on x⃗.
Item (2.c) then follows from the observation that degree-2 polynomials over Fn can be computed
by XOR ◦ AND2 circuits.

Item (4) follows from the fact that fn,1 = g(n)1,1 , Lemma 7.10, and the PSPACE-completeness of
TQBFu (Lemma 7.5); Item (5) follows immediately from the definition of fn,i and Lemma 7.7.

Finally, to prove Item (6) of Lemma 7.3, we give a detailed implementation of the instance
checker IC in Algorithm 7.1 and show that it can indeed be implemented by a randomized uniform
non-adaptive AC0[2] circuit family.

Proof of Item (6) of Lemma 7.3. Fix n, i ∈ N≥1 such that i ∈ [n]. Let x⃗ ∈ Fn
n be the input and

f̃i, f̃i+1, . . . , f̃n : Fn
n → Fn be the n − i + 1 oracle functions. We first note that throughout Algo-

rithm 7.1, we have rj = f̃ j (⃗αj) for every j ∈ {i, . . . , n}.

Completeness. We first establish Item (6.a) (i.e., the completeness). Assuming that f̃ j = fn,j for
every j ∈ {i, . . . , n}, it follows that in Algorithm 7.1, Dintp

n,t (L, α) always equals to fn,j+1((⃗αj)
J←α)

for every α ∈ Fn.49 Since we also have rj = f̃ j (⃗αj), by Lemma 7.6, we know that Algorithm 7.1
always passes the check on Line 11, Line 14, and Line 18. Finally, since rn = f̃n (⃗αn) = fn,n (⃗αn) = 1
(by Item (3) of Lemma 7.3), we know that IC outputs ri = f̃i (⃗αi) = fn,i(x⃗) with probability 1.

Soundness. Next we establish Item (6.b) (i.e., the soundness). We will do so by establishing the
following claim.

Claim 7.12. For every j ∈ {i, . . . , n}, if rj ̸= fn,j(α⃗j), then for every fixed randomness zi, . . . , zj−1, with

probability at least 1− (n − j) · cdeg/2n over the random choice of zj, . . . , zn−1, we have IC
f̃i ,..., f̃n
n,i (x⃗) ∈

{ fn,i(x⃗),⊥}.

Proof. We will prove the claim by induction. For the base case j = n, the claim immediately
follows from the final check (Line 20) of Algorithm 7.1 since IC would always output ⊥.

Now, assuming that the claim holds for j + 1 ∈ {i + 1, . . . , n}, we will show it holds for j as
well. The case for Q = MUL follows straightforwardly from the definition of fn,j and fn,j+1, so in
the following we assume Q ∈ {∃, ∀, LIN}.

Let p : Fn → Fn be the degree-cdeg polynomial such that p(α) = Dintp
n,t (L, α) for every α ∈ Fn

(see Item (2) of Corollary 7.2), and q : Fn → Fn be the restriction of fn,j+1 defined by q(α) =

fn,j+1((⃗αj)
J←α). Note that q has degree at most cdeg by Item (5) of Lemma 7.3. We consider two

cases separately, p = q and p ̸= q.
First, suppose p = q. In this case, we have

SQ((⃗αj)J , Dintp
n,t (L, 0), Dintp

n,t (L, 1)) = SQ((⃗αj)J , q(0), q(1))

= SQ((⃗αj)J , fn,j+1((⃗αj)
J←0), fn,j+1((⃗αj)

J←1)) = fn,j (⃗αj).

49Here we crucially used the fact that the individual degree of fn,i is bounded by the constant cdeg, so that Corol-
lary 7.2 can be applied.
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Algorithm 7.1: The instance checker IC from Item (6) of Lemma 7.3

1 Given n, i ∈N≥1 such that i ∈ [n] as input parameters, and x⃗ ∈ Fn as the input;
2 Given n− i + 1 functions f̃i, f̃i+1, . . . , f̃n : Fn

n → Fn as the oracles;
3 Let α⃗i = x⃗ and ri = f̃i(x⃗) ; // The initial goal is to verify the claim fn,i(x⃗) = ri
4 for j ∈ {i, i + 1, . . . , n− 1} do

/* The goal at the j-th stage is to verify the claim fn,j (⃗αj) = rj */

5 Compute J = Jn,j and Q = Qn,j from Lemma 7.6;
6 Draw zj ∈R Fn;
7 if Q ∈ {∃, ∀, LIN} then
8 Let t = cdeg + 1 and w1, . . . , wt be the first t non-zero elements in Fn; // cdeg is

the constant from Item (5) of Lemma 7.3

9 Set βℓ = f̃ j+1((⃗αj)
J←wℓ) for every ℓ ∈ [t];

10 Let L = {βℓ}ℓ∈[t];
11 if rj ̸= SQ((⃗αj)J , Dintp

n,t (L, 0), Dintp
n,t (L, 1)) then

12 return ⊥;

/* Reduce the verification of fn,j (⃗αj) = rj to the verification of

fn,j (⃗αj+1) = rj+1 */

13 Set α⃗j+1 = (⃗αj)
J←zj and rj+1 = f̃ j+1(⃗αj+1);

14 if rj+1 ̸= Dintp
n,t (L, zj) then

15 return ⊥;

16 else
17 Set α⃗j+1 = α⃗j and rj+1 = f̃ j+1(⃗αj+1);
18 if rj ̸= rj+1 · Termn,j (⃗αj) then
19 return ⊥;

/* Finally, check the final claim to see if it is correct. It should equal

to 1 according to Item (3) of Lemma 7.3 */

20 if rn = 1 then
21 return ri;
22 else
23 return ⊥;
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Hence, it follows that rj ̸= SQ((⃗αj)J , Dintp
n,t (L, 0), Dintp

n,t (L, 1)) and IC does not pass the test on Line 11,
and outputs ⊥ immediately.

Next, suppose p ̸= q. Since both polynomials have degree at most cdeg and note that zj is
independent of p and q (they both only depend on zi, . . . , zj−1, which are fixed by the assumption),
it follows that p(zj) = q(zj) with probability at most cdeg/|Fn| ≤ cdeg/2n. Conditioning on the
event that p(zj) ̸= q(zj), we have that rj+1 = p(zj) (otherwise the check on Line 14 fails and IC
outputs ⊥ immediately) and fn,j+1(⃗αj+1) = q(zj) ̸= rj+1. Hence, by the induction hypothesis, it

follows that IC f̃i ,..., f̃n
n,i (x⃗) ∈ { fn,i(x⃗),⊥} happens with probability at least 1− (n− j) · cdeg/2n over

the random choice of zj, . . . , zn−1.

Applying the claim above with j = i, we have that IC f̃i ,..., f̃n
n,i (x⃗) ∈ { fn,i(x⃗),⊥} with probability

at least 1− n · cdeg/2n. This error probability can be further amplified to at most 1/2n (the stated
error probability in Item (6) of Lemma 7.3) as follows: run the IC t = O(1) times to obtain outputs
α1, . . . , αt; output ⊥ if any of the αi equals ⊥ or they are not all identical (i.e., there are i < j such
that αi ̸= αj), and output α1 otherwise. The amplification procedure can be implemented in AC0,
so it does not affect the complexity of IC, which is discussed below.

Complexity. Finally, we show that IC can be implemented by a randomized uniform non-adaptive
AC0[2] circuit family.

The crucial observation here is that we can first draw zi, . . . , zn−1 ∈R Fn beforehand and run
each iteration of the for loop in Algorithm 7.1 in parallel (and return ⊥ if any of the checks on
Line 11, Line 14, or Line 18 fails). Note that for each j ∈ {i, . . . , n} and ℓ ∈ [n], we have

(⃗αj)ℓ =

{
xℓ there is no j′ < j such that Jn,j′ = ℓ and Qn,j′ ̸= MUL

zjmax
otherwise,

(8)

where jmax is the maximum j′ < j such that Jn,j′ = ℓ and Qn,j′ ̸= MUL.
Using (8), for every j ∈ {i, . . . , n}, we can compute α⃗j by a uniform projection given x⃗, zi, . . . , zn−1.

It then follows from Algorithm 7.1, Corollary 7.2, and Lemma 7.1 that IC can be implemented by
a randomized uniform non-adaptive AC0

2 circuit family.

7.4 Construction of the PSPACE-complete Language

In this section, we prove Theorem 3.15. We will first construct a PSPACE-complete language
LWH-TV, and then prove it satisfies all the desired properties stated in Theorem 3.15 except for
the paddability. Then we modify LWH-TV into another PSPACE-complete language LPSPACE that
also satisfies the paddability.

7.4.1 The Language LWH-TV

To construct our PSPACE-complete language LWH-TV, we apply Walsh-Hadamard codes to turn
the polynomials from Lemma 7.3 into Boolean functions. (Indeed, WH-TV stands for “Walsh-
Hadamard version of FTV”.)

Let FTV = { fn,i : Fn
n → Fn}n∈N≥1, i∈[n] be as in Lemma 7.3. First, we list all polynomials in

FTV in the following order

f1,1, f2,2, . . . , f2,1, f3,3, . . . , f3,1, . . . , fn,n, . . . , fn,1, . . . . (9)
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For every k ∈N, we let gk be the k-th polynomial in (9). We also set nk and ik so that gk = fnk ,ik .
When their meanings are clear from the context, we may write n and i instead of nk and ik. Recall
that κn is the bijection from {0, 1}szn to Fn described in Section 7.1.

Construction of the interpolated polynomial Gk. We now define the following polynomial Gk : Fn
n×

Fn
n → Fn:

Gk(x⃗, y⃗) :=
nk

∑
j=ik

fnk ,j(x) · yj, (10)

where x⃗ ∈ Fn
n and y⃗ ∈ Fn

n.
We define Fk : F2n

n × {0, 1}szn → {0, 1} as

Fk (⃗z, r⃗) := ⟨κ−1
n (Gk (⃗z)), r⃗⟩, (11)

where ⟨κ−1
n (Gk (⃗z)), r⃗⟩ denotes the inner product between the two vectors over GF(2).

Fk can be interpreted as a function from {0, 1}ek to {0, 1}, where ek = (2 · nk + 1) · sznk . The
following claim follows immediately from the definition of ek.

Claim 7.13. For every k ∈N≥1, it holds that ek < ek+1.

The language LWH-TV. Now we are ready to define LWH-TV via the following algorithm.

Algorithm 7.2: Algorithm AWH-TV for LWH-TV

1 Given an input x ∈ {0, 1}m for some m ∈N;
2 if m < e1 then
3 return 0

4 Let k be the largest integer such that ek ≤ m;
5 return Fk(x≤ek);

From Claim 7.13 and Algorithm 7.2, the following claim is immediate.

Claim 7.14. For every k ∈N≥1, LWH-TV
ek

equals Fk.

7.4.2 Verifying Properties of LWH-TV

Next, we verify that LWH-TV has all the desired properties stated in Theorem 3.15. First, we show
LWH-TV is non-adaptive AC0[2] same-length checkable.

Lemma 7.15. LWH-TV is non-adaptive AC0[2] same-length checkable.

Proof. Let m ∈ N be an input length, and we can assume m ≥ e1 since otherwise, AWH-TV
m com-

putes the constant-zero function. Let k be the largest integer such that ek ≤ m. Note that it suffices
to establish the instance checkability of Fk. In the following, we use n to denote nk and i to denote
ik.

Instance checker for Gk. We first show how to establish an instance checker G-IC for Gk.
Recall that

Gk(x⃗, y⃗) :=
n

∑
j=i

fn,j(x) · yj, (12)
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for every x⃗, y⃗ ∈ Fn
n.

Note that for every j ∈ {i, i + 1, . . . , n}, letting r⃗j be the vector from Fn
n with every entry being

0 except for the j-th entry being 1, we have

fn,j(x⃗) = Gk(x⃗, r⃗j) for every x⃗ ∈ Fn
n, (13)

meaning that the oracle access to fn,j can be simulated by the oracle access to Gk via fixing part of
the input. G-IC works as follows:

1. Given x⃗ ∈ Fn
n and y⃗ ∈ Fn

n as input, and access to an oracle G̃ : F2n
n → Fn that is supposed to

compute Gk.

2. For every j ∈ {i, i + 1, . . . , n}, G-IC runs ICn,j (from Item (6) of Lemma 7.3) on input x⃗ with
oracle access to f̃ j+1, . . . , f̃n simulated by G̃ via (13) to obtain an output uj ∈ Fn ∪ {⊥}.50

3. If any of the uj equals ⊥, we output ⊥. Otherwise, we output ∑n
j=i uj · yj.

Since ICn,i can be implemented by a randomized uniform non-adaptive AC0[2] oracle circuit, so
does G-IC. (Applying Lemma 7.1, we can use a uniform AC0[2] circuit to implement the algorithm
above.)

Now we show that when G̃ = Gk, G-IC outputs Gk(x⃗, y⃗) with probability 1. Note that for every
j ∈ {i, i + 1, . . . , n}, since G̃ = Gk, we have f̃ℓ = fn,ℓ for every ℓ ∈ {j + 1, . . . , n} from (13). Apply-
ing Item (6) of Lemma 7.3, it holds that with probability 1, uj = fn,j(x⃗) for every j ∈ {i, i+ 1, . . . , n}.
Therefore, with probability 1, G-IC outputs ∑n

j=i uj · yj, which equals Gk(x⃗, y⃗) by definition.

Next we show that for every oracle G̃, with probability at least 2/3, G-ICG̃ outputs either
Gk(x⃗, y⃗) or ⊥. We first note that by Item (6) of Lemma 7.3 and a union bound, with probability at
least 2/3, uj ∈ { fn,j(x⃗),⊥} for every j ∈ {i, i + 1, . . . , n}, which implies that G-IC outputs either
Gk(x⃗, y⃗) (when no uj equals ⊥) or ⊥ (when some uj equals ⊥). This completes the construction of
the instance checker G-IC for Gk.

Instance checker for Fk. Next we show how to construct the desired instance checker F-IC for Fk:

1. Given x⃗ ∈ F2n
n and z⃗ ∈ {0, 1}szn as input, and access to an oracle F̃ : F2n

n × {0, 1}szn → {0, 1}
that is supposed to compute Fk.

2. F-IC simulates G-IC on input x⃗ given oracle access to the function51

x⃗ 7→ F̃(x⃗, e⃗1) ◦ F̃(x⃗, e⃗2) ◦ · · · ◦ F̃(x⃗, e⃗szn),

to obtain an output u ∈ Fn ∪ {⊥}.

3. F-IC outputs⊥ if u equals⊥ and outputs ⟨κ−1
n (u), z⃗⟩ (inner product is over GF(2)) otherwise.

Since we encode an element of Fn via κn, when F̃ = Fk, G-IC above indeed gets access to Gk, and
hence Fk outputs ⟨κ−1

n (Gk(x⃗)), z⃗⟩ = Fk(x⃗, z⃗). Also, for every oracle F̃, from the promise of G-IC, we
know that G-IC outputs an element in {Gk(x⃗),⊥} with probability at least 2/3. This implies that
F-IC outputs an element in {Fk(x⃗, z⃗),⊥} with probability at least 2/3 as well. Therefore, F-IC is an
instance checker for Fk. Since G-IC can be implemented by a randomized uniform non-adaptive
AC0[2] oracle circuit, so does F-IC.

50That is, f̃ℓ(x⃗) = G̃(x⃗, r⃗ℓ) for every ℓ ∈ {j + 1, . . . , n}.
51Below e⃗ℓ denotes the szn-bit vector with every entry being 0 except for the ℓ-th entry being 1
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To prove that LWH-TV is non-adaptive AC0[2] weakly error correctable, we need the following
standard decoder for Reed-Muller codes. While the decoding algorithm is a standard interpo-
lation, we analyze its complexity carefully using Lemma 7.1 and show that the decoder can be
implemented by an AC0[2] circuit.

Lemma 7.16 (AC0[2] decoder for Reed-Muller code, [AB09, Section 19.3, 19.4]). Let n, m ∈N≥1 and
F = Fn. Suppose there is a (hidden) degree-d m-variate polynomial P over F, and δ ∈

(
0, 1

3(d+1)

)
. For

any oracle O : Fm → F such that

Pr
x⃗∈RFm

[O(x⃗) = P(x⃗)] > 1− δ,

there is a non-adaptive AC0[2] oracle circuit C of size poly(m, n), such that for every x⃗ ∈ Fm, CO(x⃗) =
P(x⃗).

Proof. Let x⃗ ∈ Fm be the input. We will show a randomized non-adaptive AC0[2] oracle circuit CO

(with the oracle set to O) of size poly(m, n) that computes P(x⃗) with probability at least 2/3. Then
by Adleman’s argument, we can obtain a deterministic oracle AC0[2] circuit of size poly(m, n)
that correctly computes P by drawing poly(m, n) independent samples from CO and applying
approximate majorities to the output (which can be done in AC0; see Lemma 3.1).

We choose a random vector v⃗ ∈R Fm, and for every α ∈ F we define Q(α) = P(x⃗ + α · v⃗) (note
that Q : F→ F has degree at most d). Let α1, . . . , αd+1 be the first d + 1 non-zero elements from F.
We then query O to obtain βi = O(x⃗ + αi · v⃗) for every i ∈ [d + 1], and output Dintp0

n,d+1({βi}i∈[t+1]).
This algorithm can be implemented in AC0[2] by Corollary 7.2.

To show the correctness of the algorithm above. Let z denote the number of i’s from [d + 1]
such that O(x⃗ + αi · v⃗) ̸= Q(αi), then E[z] ≤ δ(d + 1), and by Markov bound Pr[z = 0] ≥ 2/3. If
z = 0, we know that Dintp0

n,d+1({βi}i∈[t+1]) = Q(0) = P(x⃗), which completes the proof.

Lemma 7.17. LWH-TV is non-adaptive AC0[2] weakly error correctable.

Proof. Let m ∈N be an input length, and we can assume m ≥ e1 since otherwise LWH-TV
m computes

the constant-zero function. Let k be the largest integer such that ek ≤ m. Note that it suffices to
establish the weakly error correctability of Fk. Again, in the following, we will also use n to denote
nk and i to denote ik. Without loss of generality we can assume m = ek = (2 · n + 1) · szn. Let µ > 1
be a sufficiently large universal constant.

Let f̃ : {0, 1}m → {0, 1} be a function that (1− 1/mµ)-approximates LWH-TV
m . By Markov bound

and recall that the definition of Fk from (11), for at least a (1− 1/mµ−1) fraction of inputs z⃗ ∈ F2n,
we have

Pr
r⃗∈R{0,1}szn

[ f̃ (⃗z, r⃗) = ⟨κ−1
n (Gk (⃗z)), r⃗⟩] ≥ 1− 1/m. (14)

We say that an input z⃗ is good if (14) holds. If some z⃗ ∈ F2n is good, then for every i ∈ [szn], we can
compute the i-th bit of κ−1

n (Gk (⃗z)) with probability at least 1− 2−4n·szn by the following algorithm:

1. We pick r⃗ ∈R {0, 1}szn and output f̃ (⃗z, r⃗)⊕ f̃ (⃗z, r⃗⊕ e⃗i), where e⃗i is the szn-bit string with 1 on
the i-th bit and 0 everywhere else.

2. We repeat this procedure poly(n, szn) times and take an approximate majority of the results
(this can be done in AC0, by Lemma 3.1).
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By a union bound, we can fix the randomness used by the above algorithm and obtain a polynomial-
size non-adaptive AC0[2] oracle circuit C with f̃ oracle gates that correctly computes κ−1

n (Gk (⃗z))
for every good z⃗. In other words, C f̃ computes κ−1

n (Gk (⃗z)) on an (1− 1/mµ−1) fraction of inputs z⃗.
Since Gk : F2n → F is a degree-O(m) polynomial and µ is sufficiently large, we can use Lemma 7.16
to compute Gk in the worst-case by a polynomial-size non-adaptive AC0[2] oracle circuit D with
f̃ oracle gates. From the definition of Fk in (11), we can convert D f̃ into another polynomial-size
non-adaptive AC0[2] oracle circuit E f̃ that computes Fk. This completes the proof.

Next, we prove the “Moreover part” in Theorem 3.15, which also implies that LWH-TV is non-
adaptive AC0[2] downward self-reducible.

Lemma 7.18. There are two algorithms DSR and Aux satisfying the following:

1. Aux takes m ∈N≥1 as input parameter and x⃗ ∈ {0, 1}m as input, and outputs a value from {0, 1}.

2. Aux can be implemented by a uniform AC0[2] circuit.

3. DSR takes m ∈ N≥1 as input parameter and x⃗ ∈ {0, 1}m as input, and functions h1 : {0, 1}m−1 →
{0, 1} and h2 : {0, 1}m → {0, 1} as oracles.

4. For every m ∈N, DSR
LWH-TV

m−1 ,Auxm
m computes LWH-TV

m .

5. DSR can be implemented by a uniform non-adaptive XOR ◦ AND3 oracle circuit family. In more
detail, DSR first queries its oracle on some projections of the input x⃗ to obtain some intermediate
values and then applies an XOR ◦ AND3 circuit on those intermediate values and the input x⃗ to
obtain the output.

Proof. Let m ∈ N be the input length. We note that when AWH-TV
m and AWH-TV

m−1 (we use AWH-TV
m to

denote the restriction of AWH-TV on m-bit inputs; AWH-TV is described in Algorithm 7.2) computes
the same function on their prefixes, DSRm and Auxm can be constructed trivially.

Hence, from now on, we can assume that for some k ∈N, AWH-TV
m−1 computes Fk−1 and AWH-TV

m
computes Fk (i.e., m = ek).52 Let nk and ik be such that gk = fnk ,ik . There are two different cases:

1. ik = nk. In this case we have nk−1 = nk − 1 and ik−1 = 1.

2. ik < nk. In this case we have nk−1 = nk, and ik−1 = ik + 1.

For simplicity, in the following, we will use n to denote nk and i to denote ik. And our goal is
to compute Fk given oracle access to Fk−1 and Auxm (we will define Auxm later).

Case I: ik = nk. In this case, we know that gk = fn,n, and from (10), we have Gk(x⃗, y⃗) =
yn · fn,n(x⃗) = yn for every x⃗, y⃗ ∈ Fn

n (note that fn,n is the constant-one polynomial by Item (3)
of Lemma 7.3). Hence, Fk(x⃗, z⃗) = ⟨κ−1

n (Gk(x⃗)), z⃗⟩ can be computed by an XOR ◦ AND2 circuit
without querying Auxm or Fk−1, from which we can construct the desired DSRm. (Auxm does not
matter here. For concreteness, we set it to be the constant-zero function.)

52For convenience, we will simply say that AWH-TV
m computes Fk when it computes Fk on its prefix of length ek.
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Case II: ik < nk. We first note that by the definition of Gk−1 and Gk in (10)

Gk(x⃗, y⃗) = Gk−1(x⃗, y⃗) + fn,i(x⃗) · yi. (15)

for every x⃗, y⃗ ∈ Fn
n.

We first show how to compute Gk with oracle access to Gk−1. From (15), it suffices to compute
fn,i(x⃗) with oracle access to Gk−1. Let r⃗i+1 be the vector from Fn

n with all entries being 0 except for
the (i + 1)-th entry being 1, we have

fn,i+1(x⃗) = Gk−1(x⃗, r⃗i+1).

Hence, oracle access to fn,i+1(x⃗) can be simulated by oracle access to Gk+1 via the projection x⃗ 7→
(x⃗, r⃗i+1). Now we can compute fn,i(x⃗) by running the algorithm Redn,i with oracle access to fn,i+1
simulated by oracle access to Gk−1, and we define Auxm to be a Boolean version53 of Termn,i and
simulate oracle access to Termn,i by oracle access to Auxm. This gives us a non-adaptive XOR ◦
AND2 circuit computing fn,i(x⃗) given oracle access to Gk−1 and Auxm.

Now, we note that fn,i(x⃗) · yi can now be computed by a non-adaptive XOR ◦ AND3 circuit
given oracle access to Gk and Auxm, and so does Gk (via (15)).54 Finally, note that a single query to
Gk−1 can be simulated by log |Fn| queries to Fk−1 and recall the definition of Fk in (11), we obtain
the desired non-adaptive XOR ◦ AND3 oracle computing Fk given oracle access to Fk−1 and Auxm,
which completes the proof.

Finally, we show the PSPACE-completeness of LWH-TV.

Lemma 7.19. LWH-TV is PSPACE-complete.

Proof. We first note that LWH-TV ∈ PSPACE since every downward self-reducible language is in
PSPACE (see, e.g., [AB09, Exercise 8.9]).

Let L ∈ PSPACE, and let (Alen
L , Ared

L ) be the pair of algorithms in Lemma 7.3. The following is
a polynomial-time reduction RL from L to LWH-TV:

1. Given an input x ∈ {0, 1}n for n ∈N, let m = Alen
L (n).

2. Compute z⃗ = Ared
L (x) and let k ∈N be such that gk = fm,1.

3. Let y⃗ be the vector from Fm
m with all entries being 0 except for the first entry being 1, and

u⃗ ∈ {0, 1}szn be the vector that u1 = 1 and uj = 0 for j > 1.

4. Output LWH-TV
ek

(⃗z, y⃗, u⃗).

By Lemma 7.3, we have fm,1(⃗z) = (L(x))Fm . Since L(x) ∈ {0, 1} and we encode Fm as a
Boolean string in {0, 1}szm via κm. One can see that(

κ−1
m ( fm,1(⃗z))

)
1
= L(x). (16)

Now, by the definition of Gk in (10), we have that Gk (⃗z, y⃗) = gk (⃗z) = fm,1(⃗z). Then by the
definition of Fk, Claim 7.14 and (16), we have

LWH-TV
ek

(⃗z, y⃗, u⃗) = Fk (⃗z, y⃗, u⃗) =
(

κ−1
m ( fm,1(⃗z))

)
1
= L(x).

Therefore, LWH-TV is PSPACE-complete.

53For example, we can apply the Hadamard-Walsh encoding to turn Termn,i into a Boolean function, similar to (11).
54Here we use the observation that degree-3 polynomials over Fn can be computed by XOR ◦ AND3 circuits.
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7.4.3 The Final Language LPSPACE

Finally, we modify LWH-TV into a new language LPSPACE that is also paddable via Algorithm 7.3.

Algorithm 7.3: Algorithm APSPACE for LPSPACE

1 Given an input x ∈ {0, 1}m for some m ∈N;
2 Let icur = 1 and at = 1;
3 Let res = 0;
4 while at+ icur − 1 ≤ m do
5 res = res⊕ LWH-TV

icur (x[at,at+icur)) ; // ⊕ denotes XOR, and x[at,at+icur) denotes

(xat, xat+1, . . . , xat+icur−1)
6 at = at+ icur;
7 icur = icur + 1;

8 return res;

In other words, APSPACE partitions the input x ∈ {0, 1}m into consecutive blocks x[1], x[2], . . . , x[t]

of length 1, 2, 3, . . . until running out of the input bits, and output
⊕

i∈[t] LWH-TV
i (x[i]).

Now we are ready to prove Theorem 3.15.

Proof of Theorem 3.15. The PSPACE-completeness of LPSPACE follows from the PSPACE-completeness
of LWH-TV. Given an input length m ∈ N≥1. We aim to establish the paddability from LPSPACE

m−1
to LPSPACE

m , the downward self-reducibility from LPSPACE
m to LPSPACE

m−1 , the instance checkability of
LPSPACE

m , and the weak error correctability of LPSPACE
m .

Let t be the largest integer such that (t+1
2 ) ≤ m. We first note that if (t+1

2 ) < m, then indeed
APSPACE

m and APSPACE
m−1 compute the same function on their first (t+1

2 ) input bits, and downward
self-reducibility and paddability are trivial. So it suffices to consider m = (t+1

2 ) for paddability
and downward self-reducibility. We can also observe that only considering m = (t+1

2 ) suffices
for establishing instance checkability and weak error correctability as well. So from now on, we
assume m = (t+1

2 ) without loss of generality. For an input x ∈ {0, 1}∗, we use x[i] to denote
x[( i

2)+1,(i+1
2 )+1).

From the definition of Fk in (11) and Algorithm 7.2, we can see that LWH-TV
ℓ (0ℓ) = 0 for every

ℓ ∈N. Hence, we have

LPSPACE
m−1 (x) =

t−1⊕
i=1

LWH-TV
i (x[i]) = LPSPACE

m

(
x≤(t

2)
◦ 0t
)

,

which establishes the paddability.
To see the downward self-reducibility, we note that

LPSPACE
m (x) =

t⊕
i=1

LWH-TV
i (x[i]) = LPSPACE

m−1 (x≤(t
2)
◦ 0t−1)⊕ LWH-TV

t (x[t]).

It is easy to see that oracle access to LWH-TV
t−1 can be simulated via oracle access to LPSPACE

m−1 by a
projection, so the required algorithms DSR and Aux can be established using the corresponding
algorithms from Lemma 7.18.

Now, to see the instance-checkability, we note that for every i ∈ [t], LWH-TV
i can be simulated

via oracle access to LPSPACE
m by a projection, hence we can first run the instance checker for LWH-TV
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on each of x[i] with the simulated oracle, returns ⊥ if any of them returns ⊥, and output the XOR
of all the outputs otherwise. And it is straightforward to see that the instance-checker above for
LPSPACE can also be implemented by uniform AC0[2] circuits.

Finally, we will prove that the non-adaptive AC0[2] weakly error correctability follows from
that of LWH-TV. Let µ be the constant from the weakly error correctability of LWH-TV (Lemma 7.17)
and f̃ : {0, 1}m → {0, 1} be a function that (1−m−µ)-approximates LPSPACE

m . Now we fix an i ∈ [t],
by an averaging principle, there exists x̃[1], . . . , x̃[i−1], x̃[i+1], . . . , x̃[t] such that

Pr
x[i]∈R{0,1}i

[
f̃ (x̃[1], . . . , x̃[i−1], x[i], x̃[i+1], . . . , x̃[t]) = LPSPACE

m (x̃[1], . . . , x̃[i−1], x[i], x̃[i+1], . . . , x̃[t])
]
≥ 1−m−µ.

For notational convenience, we use x̃[−i] to denote x̃[1], . . . , x̃[i−1], x̃[i+1], . . . , x̃[t], and x̃[−i] ◦ x[i]

to denote x̃[1], . . . , x̃[i−1], x[i], x̃[i+1], . . . , x̃[t]. From the definition of LPSPACE
m , the above simplifies to

Pr
x[i]∈R{0,1}i

 f̃ (x̃[−i] ◦ x[i]) = LWH-TV
i (x[i])⊕

⊕
ℓ∈[t]\{i}

LWH-TV
ℓ (x̃[ℓ])

 ≥ 1−m−µ ≥ 1− i−µ.

Now we define g̃(x[i]) = f̃ (x̃[−i] ◦ x[i]) ⊕⊕ℓ∈[t]\{i} LWH-TV
ℓ (x̃[ℓ]). By Lemma 7.17, there is an

iµ-size non-adaptive AC0[2] circuit C[i] such that Cg̃
[i] computes LWH-TV

i . Since x̃[−i] is fixed, oracle

access to g̃ can be simulated via oracle access to f̃ by a projection, and there is an O(iµ · m)-size

non-adaptive AC0[2] circuit D[i] such that D f̃
[i] computes LWH-TV

i .

Finally, we define a non-adaptive AC0[2] oracle circuit E f̃ (x[1], . . . , x[t]) =
⊕

i∈[t] D f̃
[i](x[i]). From

the discussions above we know that E f̃ computes LPSPACE
m , and it has size at most mµ+2. Setting

τwc2ac = µ + 2 completes the proof.

8 Sub-half-exponential Lower Bounds against ACC0

Reminder of Theorem 1.5. For every sub-half-exponential reasonable time-bound function g(n), NE
has no g(n)-size ACC0 circuits.

To prove Theorem 1.5, we will need the following lemma.

Lemma 8.1. Let g(n) be a reasonable time-bound function. Assuming that E has g(n)-size ACC0 circuits,
we have

E ⊆ MATIMEACC0 [poly(g(n))].

Proof. Fix L ∈ E, we will show that L ∈ MATIMEAC0
d[m][poly(g(n))] for some constants d, m ∈N≥1.

Let T(n) = 2cn for some constant c ∈ N≥1 be such that L ∈ TIME[T(n)]. We define a machine
M such that M(x, y) always outputs L(x) regardless of the second input y. Note that M runs
in T(n) time for x ∈ {0, 1}n. Let r(n) ≤ 2 log T(n) be the randomness parameter obtained by
applying Lemma 3.11 to M. For simplicity, we can assume that r(n) = 2 log T(n) = 2c · n by
ignoring the unused random bits.

Now we define a new language L′ as follows: for every n ∈ N and x ∈ {0, 1}n, for every
w ∈ {0, 1}r(n), L′(x, w) = 1 if and only (1) x ∈ L and (2) E(x, 1T(n)) outputs a map π : {0, 1}r(n)

such that π(w) = 1.
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Since E is computable in poly(T(n)) time, L′ ∈ E as well. From our assumption, we know that
L′ has g(n)-size AC0

d[m] circuits for some d, m ∈ N. In particular, it means that for every n ∈ N

and x ∈ {0, 1}n, if x ∈ L, E(x, 1T(n)) outputs a map π : {0, 1}r(n) → {0, 1} that is computable by
g((2c + 1) · n)-size AC0

d[m] circuits.
Now, let S(n) = g((2c + 1) · n) ≤ poly(g(n)) (since g is a reasonable time-bound function).

We define the following MA algorithm AL for L:

1. Given an input x ∈ {0, 1}n for some n ∈N.

2. AL first applies Lemma 3.11 to compute an AC0 oracle circuit Vx, such that:

(a) If x ∈ L, then E(x, 1T(n)) outputs a map π : {0, 1}r(n) → {0, 1} such that

Pr
w∈R{0,1}r(n)

[Vπ
x (w) = 1] = 1.

(b) If x /∈ L, then for all oracles π : {0, 1}r(n) → {0, 1}, it holds that

Pr
w∈R{0,1}r(n)

[Vπ
x (w) = 1] ≤ 1/3.

3. AL guesses an S(n)-size AC0
d[m] circuit C : {0, 1}2r(n) → {0, 1}, draws w ∈ {0, 1}r(n), and

outputs VC
x (w).

Now we verify that the algorithm above is an MATIMEAC0
d+O(1)[m][poly(g(n))] algorithm for L.

First, for each guess C, we can see that the verifier’s restriction on random inputs, VC
x (w), is an

AC0
d+O(1)[m] circuits of size at most S(n) + poly(n) ≤ poly(g(n)), since Vx is an AC0 oracle circuit

and C is an AC0
d[m] circuit. Next, for x ∈ L, by Condition (2.a) above and previous discussions,

there exists an S(n) size AC0
d[m] circuit C such that VC

x (w) = 1 for all w. When x /∈ L, by Condi-
tion (2.b), Prw[VC

x (w) = 1] ≤ 1/3. Therefore, AL is an MATIMEAC0
d+O(1)[m][poly(g(n))] algorithm

computing L, which completes the proof.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let g(n) be a sub-half-exponential reasonable time-bound function. If E has
no g(n)-size ACC0 circuits, then clearly NE also has no g(n)-size ACC0 circuits. Hence, we can
assume that E has g(n)-size ACC0 circuits from now on.

By Lemma 8.1, we know have

E ⊆ MATIMEACC0 [poly(g(n))]. (17)

By a standard diagonalization, there is language L ∈ TIME
[
2g(n)2

]
such that

L /∈ i.o.-SIZE[g(n)].

Now we use a padding argument to show L ∈ MATIMEACC0 [2no(1)
]. Formally, we define an-

other language L′ so that x ∈ L if and only

x ◦ 0g(|x|)2−|x| ∈ L′.

We can see that L′ ∈ E, and therefore L′ ∈ MATIMEACC0 [poly(g(n))] by (17). This further implies
that

L ∈ MATIMEACC0 [poly(g(g(n)2))].

From the assumption that g(n) is sub-half exponential, it follows that L ∈ MATIMEACC0 [2no(1)
].

Applying Corollary 4.8 completes the proof.
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A Witness Lower Bounds from Non-trivial Derandomization

Now we are ready to prove Lemma 2.6. The proof idea will be to use the assumed non-trivial
CAPP algorithm to contradict a certain NTIME hierarchy theorem. For this purpose, we will need
to construct a slightly faster nondeterministic algorithm for a language L ∈ NTIME[T], which is
described in Algorithm A.1.

We summarize the important properties of Algorithm A.1 below.

Lemma A.1. Let T, L, ℓ, K, S,VPCPx be stated as in Algorithm A.1. Under the assumption from Algo-
rithm A.1, the following holds:

1. APCP runs in poly(n, log T) + T/(log T)ω(1) time and guesses poly(S(ℓ)) bits.

2. For every x ∈ {0, 1}∗ such that L(x) = 0, it holds that APCP(x) = 0.55

3. For every x ∈ {0, 1}∗ such that L(x) = 1 and APCP(x) = 0, it holds that

55Since APCP is a nondeterministic algorithm, we use APCP(x) = 0 to denote that APCP reject all guesses on the
input x, and APCP(x) = 1 to denote that APCP accepts some guesses on the input x.
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Algorithm A.1: The algorithm APCP attempting to speed up L
Setting: Let T(n) be a time-constructive function, and L ∈ NTIME[T(n)]. Let

ℓ(n) = log T + O(log log T) be the number of random bits from Lemma 3.11

when the running time is set to T(n). Let K ∈N≥1 be a sufficiently large

universal constant.

Parameters: Let S(n) be a size parameter.

Assumption: CAPP for nK · S(n)-size AC0
2 ◦ C circuits can be solved in 2n/nω(1) time.

Input: x ∈ {0, 1}n

1 Apply Lemma 3.11 to L to obtain a poly(ℓ)-size AC0
2 oracle circuit VPCPx : {0, 1}ℓ → {0, 1}

that queries an oracle O : {0, 1}ℓ → {0, 1};
2 Guess an S(ℓ)-size ℓ-input C circuit C, and run the assumed algorithm for CAPP on

VPCPC
x to obtain an estimate p ∈ [0, 1];

// Note that VPCPC
x is an ℓK · S(ℓ)-size AC0

2 ◦ C from the complexity part

of Lemma 3.11

3 if p > 1/2 then accept;

4 else reject;

(a) There exists O : {0, 1}ℓ → {0, 1} such that

Pr
r∈R{0,1}ℓ

[VPCPOx (r) = 1] = 1.

(b) For every O : {0, 1}ℓ → {0, 1} satisfying the above, O does not have S(ℓ)-size C circuits.

Before proving Lemma A.1, we show it immediately imply Lemma 2.6. In fact, we will prove
a more general version of it.

Theorem A.2 (General version of Lemma 2.4 and Lemma 2.6). Let C be a typical concrete circuit
class, K ∈ N≥1 be a sufficiently large constant, and S(n) be a size parameter. If CAPP for nK · S(n)-size
AC0

2 ◦ C circuits can be solved in 2n/nω(1) time, then unary NE does not admit S(n)-size C witnesses.

Proof. Let T(n) = 2n and L be a unary language such that L ∈ NTIME[T(n)] \ NTIME[T(n)/n],
whose existence is guaranteed by the nondeterministic time hierarchy theorem [Žák83]. Now we
consider APCP with T, L, and size parameter S, and set K to be the constant K in Algorithm A.1.
Note that the assumption of Algorithm A.1 is satisfied with our choice of S(n) and K.

By Item (1) of Lemma A.1, APCP runs in poly(n) + 2n/nω(1) < T(n)/n time, meaning that
APCP cannot solve L. Hence, from the fact that L is a unary language and Item (2) of Lemma A.1,
it follows that for infinitely many n ∈ N≥1, we have L(1n) = 1 and yet APCP(1n) = 0. We say
these n are good.

Now we are ready to define our verifier V(x, y). Without loss of generality, we can assume that
ℓ(n) = n + O(log n) is an increasing function. For every α ∈ N≥1, V(1α, y) rejects immediately if
there is no n ∈ N≥1 such that ℓ(n) = α. Otherwise, there is a unique n ∈ N≥1 such that ℓ(n) = α,
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and V(1α, y) accepts if and only if

Pr
r∈R{0,1}ℓ(n)

[VPCP
func(y)
1n (r) = 1] = 1.

Note that V(x, y) runs in 2O(|x|) time. Also, by Item (3) of Lemma A.1, for every good n,
V(1ℓ(n), y) accepts some y, and all the accepted y have no S(ℓ(n))-size C circuits. This implies that
unary NE does not admit S(n)-size witnesses.

Finally, we are ready to prove Lemma A.1.

Proof of Lemma A.1. Item (1) follows from the fact that the running time is dominated by the com-
plexity of applying Lemma 3.11 (which is poly(n, log T)) and running the assumed CAPP algo-
rithm (which is 2ℓ/ℓω(1) = T/(log T)ω(1)).

Let x ∈ {0, 1}n. To prove Item (2) and Item (3), note that from the completeness and soundness
part of Lemma 3.11, we have:

(Completeness) If L(x) = 1, then there is an oracle O : {0, 1}ℓ → {0, 1} such that

Pr
r∈R{0,1}ℓ

[VPCPOx (r) = 1] = 1.

(Soundness) If L(x) = 0, then for all oracle O : {0, 1}ℓ → {0, 1}, it holds that

Pr
r∈R{0,1}ℓ

[VPCPOn (r) = 1] ≤ 1/n10.

To see Item (2), from the soundness condition above, we know that when L(x) = 0, for all
guessed circuits C, the estimate of Prr∈R{0,1}ℓ [VPCP

C
x (r) = 1] is at most 1/n10 + 1/3 < 1/2 (recall

that the error parameter of CAPP is set to 1/3 by default). Hence APCP(x) = 0 as well.
Now we turn to establish Item (3). Item (3.a) follows immediately from the completeness

condition above. To see Item (3.b), suppose for the sake of contradiction that there exists an S(ℓ)-
size C circuit C such that Prr∈R{0,1}ℓ [VPCP

C
x (r) = 1] = 1. Then such C would be guessed by APCP

on the input x and its estimate of Prr∈R{0,1}ℓ [VPCP
C
x (r) = 1] is at least 1− 1/3 > 1/2, meaning that

APCP(x) = 1. This contradicts the assumption of Item (3).
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