
Power of Decision Trees with Monotone Queries

Prashanth Amireddy∗ Sai Jayasurya† Jayalal Sarma‡

December 31, 2022

Abstract

In this paper, we initiate study of the computational power of adaptive and non-adaptive

monotone decision trees – decision trees where each query is a monotone function on the input

bits. In the most general setting, the monotone decision tree height (or size) can be viewed as

a measure of non-monotonicity of a given Boolean function. We also study the restriction of

the model by restricting (in terms of circuit complexity) the monotone functions that can be

queried at each node. This naturally leads to complexity classes of the form DT(mon-C) for any
circuit complexity class C, where the height of the tree is O(log n), and the query functions can

be computed by monotone circuits in the class C. In the above context, we prove the following

characterizations and bounds.

• For any Boolean function f , we show that the minimum monotone decision tree height can

be exactly characterized (both in the adaptive and non-adaptive versions of the model)

in terms of its alternation (alt(f) is defined as the maximum number of times that the

function value changes, in any chain in the Boolean lattice). We also characterize the

non-adaptive decision tree height with a natural generalization of certification complexity

of a function. Similarly, we determine the complexity of non-deterministic and randomized

variants of monotone decision trees in terms of alt(f).

• We show that DT(mon-C) = C when C contains monotone circuits for the threshold func-

tions (for e.g., if C = TC0). For C = AC0, we are able to show that any function in AC0 can

be computed by a sub-linear height monotone decision tree with queries having monotone

AC0 circuits.

• To understand the logarithmic height case in case of AC0 i.e., DT(mon-AC0), we show that

for any f (on n bits) in DT(mon-AC0), and for any positive constant ϵ ≤ 1, there is an

AC0 circuit for f with O(nϵ) negation gates.

En route our main proofs, we study the monotone variant of the decision list model, and

prove corresponding characterizations in terms of alt(f) and also derive as a consequence that

DT(mon-C) = DL(mon-C) if C has appropriate closure properties (where DL(mon-C) is defined
similar to DT(mon-C) but for decision lists).

∗Harvard University. This work was done while the author was an undergraduate student at IIT Madras.
†This work was done while the author was an undergraduate student at IIT Madras.
‡Indian Institute of Technology Madras.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 186 (2022)

Contents

1 Introduction 2

2 Preliminaries 6

2.1 A Normal Form for MDLs . 7

3 Our Tool: Monotone Decomposition of Boolean Functions 8

3.1 Uniqueness of Alternation Decomposition in a Special Case 10

3.2 Constraints on Monotone Components for TC0 and beyond 10

4 Deterministic Adaptive Monotone Decision Trees 13

4.1 Monotone Decision Trees and Monotone Decision Lists 13

4.2 Characterizing Adaptive Decision Tree Height . 16

4.3 Constructing Adaptive MDTs from Negation Limited Circuits 16

5 Deterministic Non-Adaptive Monotone Decision Trees 17

5.1 Monotone Certificate Complexity . 18

6 Non-deterministic Monotone Decision Trees 19

6.1 Two equivalent definitions . 19

6.2 Characterization using Alternation . 21

7 Randomized Monotone Decision Trees 21

8 Monotone Decision Trees with Query Restrictions 24

8.1 Height Constraints on DT(mon-C) . 24

8.2 Deterministic MDTs with Query Restrictions: DT(mon-C) vs C 25

8.3 Monotone Decision Trees and AC0 . 26

8.4 Randomized MDTs with Query Restrictions . 29

9 Discussion and Open Problems 32

A Appendix 34

A.1 Proof of Monotone Decomposition Lemma (Lemma 3.1) 34

A.2 AC0 Inverter Construction for Sorted Inputs - Adaptation from [18] 35

1 Introduction

The decision tree model is a fundamental abstraction that captures computation appearing in

various scenarios, ranging from query based decision making procedures to learning algorithms for

2

Boolean functions. The model represents the algorithmic steps in order to compute a Boolean

function f : {0, 1}n → {0, 1}, as a sequence of branching operations based on queries to the input

bits and the branching depends on the result of the query. It is quite natural to view the branching

as a rooted binary tree where the leaves of the tree are labeled with 0 or 1 to represent value of the

function if the computation reaches that leaf.

The simplest form studied is when the queries are directly to bits of the input [9,15] – and hence

the nodes of a decision tree (except for leaves) are labeled with input variables which it queries.

For a Boolean function f , the deterministic decision tree complexity, DT(f), is the minimum height

of any decision tree computing f . By height, we always refer to the maximum number of internal

nodes in a path from root to a leaf. The size of the decision tree, which is defined as the number

of leaves in the tree is an independently interesting measure of complexity of f , and indeed, since

the tree is binary, the size cannot be more than exponential in DT(f). Generalization of the model

of decision trees in the algorithmic setting has been studied – namely randomized and quantum

decision trees (see [9]). Decision trees can be adaptive and non-adaptive depending on whether, in

the algorithm, the next query depends on the Boolean result of the previous queries or not. In the

interpretation of the tree, this translates to whether the tree queries the same variable at all nodes

in the same level.

The (adaptive) decision tree height, DT(f) is related to many fundamental complexity measures

of Boolean functions. It is known to be polynomially related to degree of f over R, block sensitivity,

certificate complexity (see survey [9]) and with the recent resolution of sensitivity conjecture [14],

even to sensitivity of the Boolean function f . Non-adaptive decision trees are not as powerful.

An important way of generalizing the decision tree model is by allowing stronger queries than

the individual bit queries. One of the well-studied models in this direction is that of parity decision

trees where each query is a parity of a subset of input bits [16]. Each node in the tree is associated

with a subset S ⊆ [n] 1 and the query to the input at the node is the function ⊕i∈Sxi, where xi

stands for the ith bit of x. The model of parity decision trees received a lot of attention due to its

connection to a special case of log-rank conjecture known as the XOR-log-rank conjecture [24]. The

conjecture, in particular, implies that the non-adaptive (DTna
⊕ (f)) and adaptive (DT⊕(f)) parity

decision complexity measures of functions are not polynomially related in general2.

Other well-studied generalizations of the standard decision tree model include linear decision

trees [10, 21, 23] (where each node queries a linear function of the form
∑

i αixi + β > 0) and

algebraic decision trees [4, 5, 22] (where each node queries the sign of a polynomial evaluation of

degree at most d in terms of the input variable). Polynomial size linear decision trees can compute

knapsack problem which is NP-complete and the above studies prove exponential size lower bounds

for explicit languages. Ben-Asher and Newman [3], studied the decision trees when conjunction

1We denote the set {1, 2, . . . , n} by [n].
2If supp(f) = {S ⊆ [n] | f̂(S) ̸= 0}, sps(f) = |supp(f)| and fdim(f) = dim(supp(f)), then by [24], log sps(f)/2 ≤

DT⊕(f) ≤ fdim(f) = DTna
⊕(f) [12, 19]. The XOR-logrank conjecture [24] states that DT⊕(f) ≤ poly (log sps(f)), and

∃f for which fdim(f) and log(sps(f)) are exponentially far apart.

3

and disjunction of variables are allowed as queries on the internal nodes and showed lower bounds

for the height of such decision trees required to compute the threshold functions.

Our results:

We initiate the study of a new generalization of the decision tree model based on allowing more

general queries. The most general version of our model allows the algorithm to query arbitrary

monotone functions on the input3. We define the deterministic monotone decision tree complexity

of a function f , denoted by DTm(f) to be the minimum height of any decision tree with monotone

queries at each node, that computes f . When the decision tree is non-adaptive (i.e., when query

functions do not depend on the result of previous queries) we denote it by DTna
m (f).

DTm and DTna
m as measures of non-monotonicity: Monotone decision tree complexity mea-

sures can also be interpreted as a measure of non-monotonicity of the function f . Our first result

is an exact characterization of this measure in terms of a well-studied measure of non-monotonicity

called alternation. Our first main result is the following connection between the monotone decision

tree height and the alternation of the function in the case of adaptive and non-adaptive setting.

They are exponentially far apart similar to what is conjectured in the case of parity decision trees.

Theorem 1.1. For any Boolean function f , DTm(f) = ⌈log(alt(f) + 1)⌉, and DTna
m (f) = alt(f).

En route to proving the above theorem, we also relate a similar generalization of a well-studied

computational model called decision lists (see Section 2 for a definition). If DLm(f) stands for

the minimum length of any monotone decision list computing a Boolean function f , then we show

that, DLm(f) = alt(f) + 1. We also provide a natural generalization of certificate complexity of a

Boolean function, denoted by Cm (and its non-adaptive version denoted by Cna
m) and show that for

every function f , Cna
m (f) = DTna

m (f) (Proposition 5.2).

Non-deterministic and randomized monotone decision trees: We study non-deterministic

and randomized monotone decision trees (see Sections 6 and 7) and consider variants of the defi-

nitions, and show equivalences and bounds. In particular, we show constant upper bounds for the

height of non-deterministic monotone decision trees (Theorem 6.1) and show characterizations for

the height of the randomized version in terms of deterministic monotone decision tree complexity,

and thus alternation (Theorem 7.1).

Decision trees with restricted (monotone) queries: While the above models provide a mea-

sure of non-monotonicity, one of the main drawbacks of the above decision tree model is that, the

computational model is not succinctly representable. It is natural to see if we can restrict the

query functions to circuit complexity classes which allow succinct representation for functions. An

immediate direction is to understand the power of the model if the query functions are restricted

to circuit complexity classes; studied in Section 8. More formally, we define DT(mon-C) to be the

3Indeed, this generalized model is still universal since in normal decision trees, the queries are monotone functions.

4

class of functions that can be computed by monotone decision trees of height O(log n) where each

query function has a monotone circuit in C, or equivalently all the queries belong to mon-C.
To justify the bound of O(log n) on the height of monotone decision trees, we show that if we

allow the upper bound on height to be asymptotically different from Θ(log n), then the class of

functions computed by the model will be different from C 4. More precisely, if DTd(n) denotes the

class of functions computed by monotone decision trees of height at most d(n) (thus DT(mon-C) ≡
DTO(logn)(mon-C)), we show that, for any g(n) = o(log n), and h(n) = ω(log n), DTg(n)(mon-C) ⊊ C
and DTh(n)(mon-C) ⊈ C. This justifies the question of DTO(logn)(mon-C) vs C, which we answer

(in some cases) in the following theorem.

Theorem 1.2. For any circuit complexity class C such that mon-TC0 ⊆ mon-C, DT(mon-C) = C.

Hence, in particular, DT(mon-TC0) = TC0. The situation when C does not contain TC0 is

less understood. We start by arguing that all functions in AC0 can be computed by monotone

decision trees in sub-linear height. More specifically, for any constant r, AC0 ⊆ DTd(n)(mon-AC0)

when d(n) = Ω
(

n
logr n

)
(Theorem 8.1). It is natural to ask whether the sub-linear height can be

improved further. In particular, whether DT(mon-AC0) is equal to AC0 or not. Towards this, by

using a technique from [18], we first show a negation limited circuit for functions in DT(mon-AC0):

Theorem 1.3. If a Boolean function f on n variables is in DT(mon-AC0), then for any positive

constant ϵ ≤ 1, there is an AC0 circuit for f with O(nϵ) negation gates.

Remark 1.1. By Theorem 4.3 of [18], we know that the negation function Neg : {0, 1}n → {0, 1}n

defined as Neg(x) = x⊕ 1n cannot be computed by circuits of constant depth and O(
√
n) negations.

We note that this does not immediately show that DT(mon-AC0) ̸= AC0 as the output of Neg is not

single-bit.

In a tight contrast to Theorem 1.3, it can be derived using [18] that if f ∈ AC0 with alt(f) =

Ω(n), then any AC0 circuit computing it must have at least Ω(nϵ) negations for some constant

ϵ > 0 (see Theorem 8.2). Thus, an asymptotic improvement to this, with respect to the number of

negations, would imply DT(mon-AC0) ̸= AC0.

En route these main results, we also note that the analogously defined class of functions

DL(mon-C) for decision lists (defined in Section 2) is exactly equal to DT(mon-C). Defining

RDT(mon-C) similar to DT(mon-C) but for randomized decision trees, we show RDT(mon-C) =

DT(mon-C) = DL(mon-C) = C if mon-TC0 ⊆ mon-C, and DL(mon-AC0) = DT(mon-AC0) ⊆
RDT(mon-AC0) ⊆ AC0.

4We assume that inC, all the circuits are polynomial sized, and that there is at least one function with Ω(n)
alternation. This is true for the complexity classes AC0,TC0,NC1 etc.

5

2 Preliminaries

In this section, we define basic terms and notations along with the main monotone decision tree

complexity measures. The definitions of non-deterministic, randomized MDTs, and other modifi-

cations are deferred to the corresponding sections. Unless mentioned otherwise, Boolean functions

discussed in this paper are from {0, 1}n to {0, 1}. For standard definitions of Boolean circuits and

related complexity classes, we refer the reader to [15].

Monotonicity and alternation: For x ̸= y ∈ {0, 1}n, we say x ≺ y if ∀i ∈ [n], xi ≤ yi. A

chain X on {0, 1}n is a sequence ⟨x(1), x(2), . . . , x(ℓ−1), x(ℓ)⟩ such that ∀i ∈ [ℓ], x(i) ∈ {0, 1}n and

x(1) ≺ x(2) ≺ . . . ≺ x(ℓ). The alternation of a function f for a chain X , denoted as alt(f,X) is

the number of bit flips (or alternations) in the sequence ⟨f(x(1)), f(x(2)), . . . f(x(ℓ))⟩. We define the

alternation of f as, alt(f) := max chain X alt(f,X).

We say that a Boolean function is monotone if for all x, y ∈ {0, 1}n, x ≺ y ⇒ f(x) ≤ f(y). We

say that a Boolean circuit is monotone if all the gates in it compute monotone functions over the

respective inputs. For any circuit complexity class C, we define mon-C ⊆ C as the class of functions

which can be computed by using monotone circuits in C.

Threshold functions: For x ∈ {0, 1}n, we denote the number of 1’s in x by wt(x). We define the

(k-th) threshold function as, Thk(x) = 1 if wt(x) ≥ k and Thk(x) = 0 otherwise.

Monotone decision trees and lists: We now present our generalizations of the decision tree

(and list) model. Further into the paper, we introduce and study more variants by allowing non-

adaptivity, randomness, restricted queries etc.

Definition 2.1 (Monotone Decision Tree). A monotone decision tree T is a rooted directed

binary tree. Each internal node v is labeled by a monotone function fv : {0, 1}n → {0, 1}, and each

leaf is labeled by a 0 or 1, e. Each internal node has two outgoing edges, one labeled by 0 and

another by 1. A computation of T on input x ∈ {0, 1}n is the path from the root to one of the

leaves L that in each of the internal vertices v follows the edge that has label equal to the value

of fv(x). The label of the leaf that is reached by the path is the output of the computation. A

monotone decision tree T computes a function f : {0, 1}n → {0, 1} if and only if on each input

x ∈ {0, 1}n the output of T is equal to f(x).

The monotone decision tree complexity of f is the minimum height5 of such a tree computing

f . We denote this value by DTm(f).

Definition 2.2 (Monotone Decision List). The monotone decision list model, denoted by

L = (f1, c1)(f2, c2) . . . (fk, ck) is a series of tuples (fi, ci) where each fi is a monotone function on n

variables, and each ci is a Boolean constant 0 or 1. Here, each (fi, ci) is called as a node; fi the query

5Height always refers to the max. no. of internal nodes in path from root to any leaf.

6

function of that node and ci the value of the node. The last query fk may be often assumed to be the

constant function 1 w.l.o.g. An input x ∈ {0, 1}n is said to activate6 the node (fi, ci) if fi(x) = 1

and ∀j < i, fj(x) = 0. Here L is said to represent/compute the following Boolean function fL

defined as: fL(x) = ci, where i ∈ [k] is the unique index such that x activates the ith node of L.

The monotone decision list complexity of a Boolean function f , denote by DLm(f), is the

minimum size (i.e, number of nodes) of a monotone decision list computing it.

A version of decision list that has been considered in the literature is when we allow the query

functions to be a simple AND of variables; called monotone term decision lists [13]. When the

query functions are allowed to be general (not necessarily monotone) terms, then they are called

term decision lists [8] and the class of functions computed by TDLs of size at most poly(n) is

denoted by TDL.

2.1 A Normal Form for MDLs

We show, by standard arguments, that monotone decision lists can be assumed to have certain

properties when the queries are allowed from any reasonably rich class of Boolean functions – in

particular, the set of functions from mon-AC0, mon-TC0, mon-NC1 etc.

Property 1 - Alternating constants: We can convert any decision list L = (f1, c1)(f2, c2) . . . (fk, ck)

computing a Boolean function f on n variables to an L̃ = (f̃1, c̃1)(f̃2, c̃2) . . . (f̃k, c̃k) computing the

same function where the constants c̃i’s are alternating between 0 and 1.

The idea is to simply club the contiguous nodes with same ci into a single node using an OR

operation over the corresponding queries (observed in e.g. Theorem 3.1 in [2]).

Suppose a maximal series of nodes (fi, ci), (fi+1, ci+1), . . . (fj , cj) have the same constant value

(i.e, ci = ci+1 . . . cj). We can substitute a node (fi ∨ fi+1 · · · ∨ fj , ci) in place of this entire series

of nodes. On application of this simplification to all the maximal contiguous nodes with identical

constants, we finally get an equivalent monotone decision list with alternating constants.

To observe that this transformation does not affect the output, we argue that the following

simplification holds. If (f1, c)(f2, c) are two consecutive nodes in a decision list, the both of them

can be replaced with the single node (f1 ∨ f2, c) to get an equivalent decision list. For this, we

note that if on an input x, both f1 and f2 fail (evaluate to 0), then since neither of the original

two nodes would have been activated and neither does the new node (f1 ∨ f2, c) the replacement

does not alter the output returned by the decision list. On the other hand, say the node (f1, c) is

the activated node. This means all the queries before f1 would have evaluated to 0. Since these

nodes remain unaltered, and f1 ∨ f2 would pass on x, the node (f1 ∨ f2, c) is the activated one,

and therefore returns c, which is the same value returned by the original decision list. The same

6Any input activates exactly one node by this definition.

7

argument holds when (f2, c) is the node that x activates in the original decision list.

Property 2 - Forward firing: By forward firing, we mean that on any input x ∈ {0, 1}n, if certain
query of a decision list passes (i.e., evaluates to 1), then so do all the queries that follow it.

We claim that the decision list L̃ = (g1, c1)(g2, c2) . . . (gk, ck), where gi =
∨i

j=1 fj , represents f

and has the forward firing property. First, note that since gi+1 ≡ gi ∨ fi+1, we immediately have

that gi ⇒ gi+1 holds true. Now to show that L̃ is equivalent to L, suppose that on an input x, the

tth node is activated in L. Then note that gt(x) =
∨t

j=1 fj(x) = 1, since ft(x) = 1 by the definition

of t. For i < t, we have gi(x) =
∨i

j=1 fj(x) = 0, since each fj is failed for j < t as x failed all the

first t − 1 queries of L. Therefore, x indeed activates the tth node of L̃ too, hence L̃ on input x

outputs ct = f(x).

It is easy to note that the procedure for ensuring Property 2 does not disturb Property 1 if the

decision list already has it. That is, there exists a decision list with both the properties. The above

normal forms are invoked in a context that if the fi’s are from a circuit complexity class that is

closed under taking OR of polynomially many bits, and when k is polynomial in n, then the new

query functions also belong to that class (they admit monotone circuits in that class).

Recalling the definition of alternation of a function from Section 2, we state the following

characterization of Boolean functions originally proved in [6].

Lemma 2.1 (Characterization of Alternation [6]). For any f : {0, 1}n → {0, 1} there exists

k = alt(f) monotone functions f1, . . . , fk each from {0, 1}n to {0, 1} such that

f(x) =

⊕k
i=1fi(x) , if f(0n) = 0

¬ ⊕k
i=1 fi(x) , if f(0n) = 1.

3 Our Tool: Monotone Decomposition of Boolean Functions

Motivated by the characterization stated in previous section we define a monotone decomposition

of a Boolean function as follows. This notion will be helpful while analyzing the monotone decision

tree complexity measures.

Definition 3.1 (Monotone Decomposition of a Boolean function). For any Boolean function

f : {0, 1}n → {0, 1}, a monotone decomposition of f is a minimal set of monotone functions

M = {f1, f2, . . . fk} such that f = ⊕i∈[k]fi – here k is said to be the length of the decomposition.

We call each fi to be a monotone component in the decomposition.

We consider two variants of monotone decompositions obtained by imposing additional con-

straints:

Implication property: There exists an ordering of M such that ∀i ∈ [k− 1], fi ⇒ fi+1 holds. In this

8

case, the functions are called boundary functions of the decomposition of f . We call monotone

decompositions that satisfy this property as boundary decompositions of f .

Optimality Property: If the set M is also of minimum size monotone decomposition of f . That is,

there does not exist fewer set of monotone functions whose parity is the given function f . We

call monotone decompositions that satisfy this property as alternation decompositions of the

function f .

The proof of decomposition of Boolean functions into parity of monotone functions in [6] actually

implies a monotone decomposition of length alt(f) (or alt(f) + 1 if f(0n) = 1) which has the

optimality and implication properties. Their proof also implies that if optimality property holds

for a monotone decomposition, then the length of the decomposition must necessarily be equal to

alt(f) or alt(f) + 1. Because of this reason, we call decompositions with optimality property as an

alternation decomposition. We now state the following lemma (already proved in [6]) bringing out

the details to substantiate the extra properties that we need – we present its proof in Appendix A.1.

Lemma 3.1 (Monotone Decomposition Lemma). For any Boolean function f : {0, 1}n →
{0, 1} there is a monotone decomposition with implication and optimality properties of length alt(f)

(if f(0n) = 0) and length alt(f) + 1 (if f(0n) = 1).

We will often use the fact that monotone decomposition with implication property corresponds

to a monotone decision list:

Proposition 3.1. Let k be an even number7 and f1 ⇒ · · · ⇒ fk be Boolean functions. The

following functions are equivalent to one another:

• f1 ⊕ f2 ⊕ · · · ⊕ fk,

• (f1, 0)(f2, 1) . . . (fk, 1)(1, 0),

• f1f2 ∨ f3f4 ∨ · · · ∨ fk−1fk,

• (0 ∨ f1) ∧ (f2 ∨ f3) · · · ∧ (fk−2 ∨ fk−1) ∧ (fk ∨ 1).

Proof. Because of the implication property of fi’s, for any input x, the sequence of bits s :=

⟨f1(x), f2(x), . . . , fk(x)⟩ is sorted (from 0 to 1). All the above four functions compute whether the

number of 1’s in the sequence s is odd. To see this, first check that all the functions evaluate to 0

if s = 1k. As we keep flipping the last 1-bit of s to 0, the function value (of each of the above four

functions) alternates between 0 and 1.

7This is a minor constraint as we can prepend or append constant functions to a monotone decomposition or an
MDL.

9

3.1 Uniqueness of Alternation Decomposition in a Special Case

For a given function, there could be multiple monotone decompositions with implication and opti-

mality properties. For example, consider the function f = (x = 0n/21n/2) for any even n > 2. The

function value is 1 if and only if the input is 0n/21n/2. Clearly, the alternation of this function is 2.

We will give two different decompositions for this function. One is f(x) = Thn/2(x)⊕ (Thn/2(x) ∧
(x ̸= 0n/21n/2)). Another decomposition is f(x) = Thn/2+1(x)⊕ (Thn/2+1(x) ∨ (x = 0n/21n/2)). It

is easy to verify that these two monotone decompositions satisfy the additional properties. How-

ever, we do have a unique monotone decomposition with implication and optimality properties in

a special case:

Proposition 3.2. If a Boolean function f exhibits uniform alternation for all chains of maximal

length in the Boolean hypercube, then f has a unique alternation decomposition with implication

property.

Proof. Suppose that there are two alternation decompositions for f , both having implication prop-

erty. Denote them by {f1, f2, . . . fk} and {f ′
1, f

′
2, . . . f

′
k} such that f1 ⇒ f2 ⇒ . . . fk−1 ⇒ fk and

f ′
1 ⇒ f ′

2 ⇒ . . . f ′
k−1 ⇒ f ′

k and k = alt(f) (assuming f(0n) = 0). We will argue by contradiction

that the set of functions must be the same i.e., fi = f ′
i for all i. Consider the largest i for which

there exists x ∈ {0, 1}n such that fi(x) ̸= f ′
i(x). Without loss of generality, suppose fi(x) = 1 and

f ′
i(x) = 0. Fix such an x and a chain 0n = x(0) ≺ x(1) ≺ x(2) ≺ · · · ≺ x(n) = 1n containing x such

that all the inputs y before x in the above chain satisfy fi(y) = 0 (so that fi−1(y) = 0 as well). By

using the optimality property, we have f = f1 ⊕ f2 · · · ⊕ fk = f ′
1 ⊕ f ′

2 · · · ⊕ f ′
k.

If i = 1, then the two decompositions do not agree on the input x as fi = f ′
i for i > 1, which is

a contradiction.

If i > 1, we must necessarily have that fi−1(x) = 1, as otherwise 1 = f1⊕· · ·⊕fi = f ′
1⊕· · ·⊕f ′

i = 0

(as i is the largest index such that fi ̸= f ′
i and due to implication property). Therefore, fi and fi−1

both change their evaluation from 0 to 1 on changing the input to x from the input that is just

before x in the chain we considered. This contradicts the fact that this chain has k alternations.

3.2 Constraints on Monotone Components for TC0 and beyond

We continue the study in this section by imposing complexity constraints on the function f . A

natural question to ask is if the monotone components of f in its monotone decomposition are

necessarily harder than f in terms of circuit complexity classes. We first answer this question for

classes that contain monotone circuits for the threshold functions. In this case, we show that we

can always find a monotone decomposition where the component functions are in mon-C.

Lemma 3.2. If mon-TC0 ⊆ mon-C, then for any f computed by a circuit in the class C, there is

a monotone decomposition f1 ⊕ f2 ⊕ . . . ⊕ f2n+1 with implication property such that each fi is in

mon-C.

10

Proof. Recall that Thk denotes the function Thk(x) = 1 iff the number of 1’s in x (denoted by

wt(x)) is at least k. We directly write the decomposition. For each 1 ≤ i ≤ 2n + 1, fi(x) =

Thk+1(x) ∨ (Thk(x) ∧ f(x)) when i is 2k + 1 else fi(x) = Thk(x) when i is 2k.

Correctness: Let w = wt(x). For any x ∈ {0, 1}n:

For i < w: we have Thi(x) = 1 and Thi+1(x) ∨ (Thi(x) ∧ f(x)) = 1.

For i > w: we have Thi(x) = 0 and Thi+1(x) ∨ (Thi(x) ∧ f(x)) = 0.

For i = w: we have Thi(x) = 1 and Thi+1(x) ∨ (Thi(x) ∧ f(x)) = f(x)

Using this we can compute the boundary functions as follows:

∀i, 1 ≤ i ≤ 2w : fi(x) = 1 and ∀i, 2w + 2 ≤ i ≤ 2n+ 1 : fi(x) = 0

f2w+1(x) = Thw+1(x) ∨ (Thw(x) ∧ f(x)) = f(x)

Observing the above evaluations, note that the implication property holds for fi’s as f2n+1 ⇒ f2n ⇒
· · · ⇒ f2 ⇒ f1. The expression f1(x)⊕ f2(x) · · · ⊕ f2n+1(x) evaluates to 1⊕ 1 . . . 1⊕ f(x)⊕ 0 · · · ⊕ 0

where number of 1’s before f(x) in the above expression is 2w (which is even). Thus, on a given

input x, the decomposition evaluates to f(x).

Complexity bound for fi: Now we will prove that the query functions actually are in mon-C.
The fi’s for even i, being threshold functions, satisfy this property. We now show that f2k+1 =

Thk+1 ∨ (Thk ∧ f) has a monotone circuit in C circuit for 0 ≤ k ≤ n.

Let C be a circuit in C computing f . We first push down all the negation gates to the input

variables in C, by using the fact that ¬(Thℓ(a1, a2, . . . am)) = Thm−ℓ+1(¬a1,¬a2, . . .¬am). This can

be done with only polynomial increase in size of C, and same depth. In the resulting circuit, further

remove the negations at the variables as follows: if xj appears, replace it with Thk({x1, x2, . . . xn}\
{xj}). Call the final circuit C ′. Note that C ′ does not have any negation gates, and therefore is a

monotone circuit in C. We shall argue that the circuit C ′′ = Thk+1 ∨ (Thk ∧C ′) computes f2k+1. It

can be seen that C ′′ outputs 0 for inputs of weight less than k and outputs 1 for inputs of weight

more than k, which is exactly what f2k+1 evaluates to on these inputs. Therefore, it suffices to

show that C ′′ correctly outputs f2k+1(x) = f(x) on inputs of weight exactly equal to k. To see this,

note that the final transformation of xj = Thk({x1, x2, , . . . xn} \ {xj}) holds when wt(x) = k.

By the above lemma, for any f ∈ TC0 we have given a decomposition into 2n+1 monotone TC0

functions. However, the monotone decomposition can be far from having the optimality property.

If the function has uniform alternation among all chains of length n+1, then this can be improved

to alt(f) keeping the complexity of the monotone components to be within TC0, as show below.

Monotone decomposition for ‘special’ functions in TC0:

11

Proposition 3.3. If f ∈ TC0 has uniform alternation across all chains of length n + 1, say

alt(f) = k, then there is a monotone decomposition of f of length k or k+1 where all the components

are in TC0.

Proof. It is worthwhile to recall that the decomposition is unique when all the chains of length

n + 1 have same alternation (Proposition 3.2). We will give the proof only when f(0n) = 0

(decomposition into k monotone TC0 components). In the other case, we may just take the negation

of the decomposition of the complement function (which would still be in TC0 and have uniform

alternation).

Let f ≡ f1 ⊕ f2 ⊕ · · · ⊕ fk where we have k = alt(f) and ∀i ∈ [k − 1] : fi ⇒ fi+1. We exploit

the following structure of fi to obtain a TC0 circuit computing it. This observation comes from the

uniform alternation feature of f .

Observation 3.1. For any 1 ≤ i ≤ k, fi(x) = 1 iff there is a chain from 0n to x with at least

k − i+ 1 alternations.

Since all chains of length wt(x)+1 from 0n to x have same alternations, we can take any arbitrary

such chain to decide the value of fi(x). We will be considering the chain of inputs obtained by

repeatedly making the leftmost 1 to 0.

For input x ∈ {0, 1}n, we define n new strings y(i) for 1 ≤ i ≤ n inductively. The string y(1) is

obtained by making the leftmost 1 of x into a 0; and similarly for any other i > 1, we obtain y(i) by

making the leftmost 1 of y(i−1) into a 0. If the number of 1’s in x happens to be lesser than i then

we define y(i) to be 0n. We will now argue that y(i)’s can be computed in TC0. Since Bitcount

∈ TC0, we can obtain all the prefix sums p(i) ∈ {0, 1}logn =
∑j=i

j=1 xj in TC0. Then, the jth bit of

y(i), namely y
(i)
j := x

(i)
j ∧ (p(j) > i). This works because for the first i 1’s of x, the prefix sum p(i)

is at most i, and it is greater than i for all other bits. Also, this can be implemented in TC0 as we

know that the relation > is in AC0.

Once we have obtained y(i)’s, we construct the Boolean sequence s of length n + 1, s :=

f(x).f(y1).f(y2). . . . f(yn). This also can be done in TC0 as we know f ∈ TC0 and each of y(i)’s

can be parallelly evaluated in TC0. Notice that the sequence ⟨y(n), y(n−1), . . . y(1), x⟩ represents the
same input 0n till a point and represents a chain from 0n to x from the next point. Hence by our

observation and the fact that f(0n) = 0, we note that fi(x) = 1 iff alternations(s) ≥ i. Now to

count the number of alternations in the sequence s, we compare every two successive bits of s and

check whether the number of times it changes is at least i. That is, fi ≡ Thk−i+1(s1 ⊕ s2, s2 ⊕
s3, . . . , sn ⊕ sn+1). Clearly this can also be done in TC0 as bit-parity and threshold gates are in

TC0.

It has to be noted that we only gave a decomposition with monotone functions in TC0. We do

not know whether these functions have monotone TC0 circuits. The other limitation of course, is

that it only works for functions with uniform alternation.

12

4 Deterministic Adaptive Monotone Decision Trees

The model that we study first is the deterministic adaptive monotone decision trees and the asso-

ciated complexity measures like DTm and DLm defined in Introduction.

4.1 Monotone Decision Trees and Monotone Decision Lists

In this section, we relate complexity of monotone decision trees and monotone decision lists. In

particular, we prove the following theorem:

Theorem 4.1. For any Boolean function f , DTm(f) = ⌈logDLm(f)⌉ 8.

Proof. (≥): To show DLm(f) ≤ 2DTm(f), note that it suffices to show that, from a monotone

decision tree we can construct a monotone decision list of the same size. As the number of leaves in

the optimal tree is upper bounded by 2DTm(f), the inequality then follows. Now, going to proving

this relation itself, it follows from a known construction given by Blum [7]. Since we need it to work

in the context of monotone queries as well, we provide a self-contained argument in the following

lemma.

Lemma 4.1. Let T be a monotone decision tree of size k computing a function f on n variables.

Then there is a monotone decision list of size k computing f .

Proof. For each leaf ℓ in T , denote the path from source/root to ℓ as a string sℓ ∈ {0, 1}∗ defined

as sℓ[i] = 1 iff the ith edge in the path is positive labeled.

Let S = s1, s2, . . . , sk be the ordering of all such strings lexicographically, from larger to smaller.

This is equivalent to ordering the leaves of the tree from right to left (under the convention that

the left-edges correspond to 0 and the right-edges to 1 at each query in the decision tree).

We claim that the following monotone decision list L computes f :

L = (t1, label(ℓ1))(t2, label(ℓ2)) . . . (tk, label(ℓk)),

where label(ℓi) ∈ {0, 1} denotes the label of the leaf ℓi and ti is the function obtained by the

conjunction of all passed queries along the path from root of T to ℓi (see Figure 2).

To show this, let an input x activate the ith node of L. We have ti(x) = 1. Now it suffices

to prove that the computation by T on x reaches the leaf ℓi and hence outputs the same value

label(ℓi).

To prove this by contradiction, suppose not; that is, let the leaf reached in the decision tree on

input x be ℓj ̸= ℓi. Let the first position in which corresponding paths (strings) sj and si differ be

at the k-th index. Such a position exists as otherwise one string is a prefix of the other, which is

impossible as these binary strings ‘encode’ the paths from root to leaves in the tree.

8Using the same proof, we also get for any circuit complexity class C with appropriate closure properties that
DT(mon-C) = DL(mon-C) – this will be used in Section 8.

13

Case(1) - sj [k] = 0 and si[k] = 1: Since the strings are same till the (k − 1)th position, so are the

corresponding paths in the decision tree. Let the least-common-ancestor node of ℓi and ℓj be

labeled by a (monotone) query f1 (w.l.o.g). Notice that since si[k] = 1 it makes f1 a passed

query along the path to ℓi and so f1 ∈ ti (i.e., ti is an AND of f1 and other functions, by the

definition of ti). Since we have that ti(x) = 1, it implies f1(x) = 1 which means sj [k] = 1, a

contradiction.

Case(2) - sj [k] = 1 and si[k] = 0: This means sj > si. Note that since the computation in the

decision tree reaches ℓj on x and tj is a conjunction of passed queries in the path to ℓj , we

must have tj(x) = 1. And since sj > si, it will happen that the query tj appears before ti in

L. Hence, the node (ti, label(ℓi)) would not be activated on x, contradicting the definition of

i itself.

Hence, the proof of the lemma follows.

(≤): To now show that DTm(f) is at most ⌈logDLm(f)⌉, we construct a monotone decision tree of

height ⌈log k⌉ given an equivalent monotone decision list of length k. This is proved in the following

lemma.

Lemma 4.2. Let L = (f1, c1)(f2, c2) . . . (fk−1, ck−1)(1, ck) be a monotone decision list for the

Boolean function f on n variables. Then there is a monotone decision tree T of height ⌈log k⌉
computing f .

Proof. Without loss of generality, we assume that the decision list L is in the normal form (Sub-

section 2.1). On an input x ∈ {0, 1}n, there exists exactly one node where the corresponding query

and all the queries to its right pass, and all the queries to its left fail. A natural approach to search

for this switch point (the activated node) algorithmically by querying the corresponding functions,

is to do a binary search and return the ci corresponding to the index resulting from the search. We

shall use this idea to construct a decision tree T for f .

At the root of T , we query f⌈(1+k)/2⌉. If it is zero (go left in the tree), it means the activated

node is to the right of it, otherwise (go right in the tree) to its left (or itself). This way we can

give a recursive construction for T (Use the right half of L on the left branch and the left half of L

on the right branch). To obtain the labels for the leaves of T , we write down c1, c2 . . . ck from the

right to left.

As an example, if L = (f1, c1)(f2, c2)(f3, c3)(f4, c4)(f5, c5)(f6, c6)(f7, c7)(1, c8) , the constructed

tree T would be as shown in Figure 1. It can be seen that the height of T would be ⌈log k⌉, since
at each query the nodes of the residual decision list are nearly distributed equally onto left and

right sides. Finally, we note that the queries in T are identical to the queries in L, and hence are

monotone.

14

f4

f6

f7

c8 c7

f5

c6 c5

f2

f3

c4 c3

f1

c2 c1

Figure 1: MDT corresponding to the MDL (f1, c1)(f2, c2) . . . (f7, c7)(1, c8)

f1

f2

f4

c1 c2

f5

c3 c4

f3

f6

c5 c6

f7

c7 c8

Figure 2: MDL corresponding to the above MDT is (f1.f3.f7, c8)(f1.f3, c7)(f1.f6, c6)(f1, c5) . . . (1, c1)

15

This completes the proof of the relation between monotone decision list complexity and mono-

tone decision tree complexity.

4.2 Characterizing Adaptive Decision Tree Height

We will now prove the main theorem of this section which characterizes DTm(f) (and en route

DLm(f) too) in terms of alt(f).

Theorem 4.2. For any Boolean function f , DTm(f) = ⌈log(alt(f) + 1)⌉.

Proof. It suffices to show that DLm(f) = alt(f) + 1 because of Theorem 4.1.

DLm(f) ≤ alt(f) + 1: First, suppose f(0n) = 0. Then by Lemma 3.1 there are k = alt(f)

many monotone functions such that f = f1 ⊕ f2 ⊕ · · · ⊕ fk, and ∀i, fi ⇒ fi+1. It can

be shown easily that the monotone decision list (f1, 0)(f2, 1)(f3, 0)(f4, 1) . . . (fk, 1)(1, 0) or

(f1, 1)(f2, 0)(f3, 1)(f4, 0) . . . (fk, 1)(1, 0) computes f , when k is even or odd respectively. On

the other hand, if f(0n) = 1, we have f = f1⊕f2⊕· · ·⊕fk⊕1, which gives the monotone de-

cision lists (f1, 1)(f2, 0) . . . (1, 1) or (f1, 0)(f2, 1) . . . (1, 1) computing f depending on whether

k is even or odd respectively.

DLm(f) ≥ alt(f) + 1: We claim that if a Boolean function f on n variables can be computed by

a monotone decision list L = (f1, c1)(f2, c2) . . . (fℓ, cℓ) of length ℓ, we have alt(f) ≤ ℓ − 1.

To show this, it suffices to argue that for any chain x(1) ≺ x(2) ≺ . . . ≺ x(s) in the Boolean

hypercube, where 1 ≤ s ≤ n+1; the number of alternations of the function f along the chain

is at most ℓ− 1.

Consider the sequence S of length s where for 1 ≤ i ≤ s, the integer S[i] is the index of the

node activated on inputting x(i) to L. Hence, 1 ≤ S[i] ≤ ℓ for every i. By definition of the

activated node, observe that for any 1 ≤ i < s, fS[i](x
(i)) = 1, which implies fS[i](x

(i+1)) = 1

too, since x(i) ≺ x(i+1). This implies that the node that x(i+1) activates cannot be after fS[i].

That is, S[i + 1] ≤ S[i] for all 1 ≤ i < s. If two consecutive elements in chain activate the

same node, L outputs the same value on these assignments and hence there is no alternation

at that point of the chain. Thus, the number of alternations of the function f along this

chain is upper bounded by the number pairs (S[i], S[i + 1]) such that S[i] ̸= S[i + 1]. Since

1 ≤ S[i] ≤ ℓ and S[i] ≥ S[i+ 1] for all i, we get alt(f) ≤ ℓ− 1.

4.3 Constructing Adaptive MDTs from Negation Limited Circuits

The above theorem provides a characterization for decision tree height in terms of alternation alt(f)

of the Boolean function. A classical result by Markov [17], implies that any Boolean function can

16

be computed by Boolean circuits that use at most ⌈log(alt(f) + 1)⌉ many negation gates. Since

the number of negation gates in the circuit can be logarithmically smaller, the following result is

interesting.

Theorem 4.3. Let f be a Boolean function computed by a circuit C using k negations. Then there

is a monotone decision tree of height k + 1 computing f .

Proof. Call the bottom-most negation gate in C as g. The input to g would be computed by a

monotone circuit (call it C+). The first query in our MDT shall be the function computed by C+.

Let C0 and C1 be the circuits obtained upon replacing9 g by the constants 0 and 1 respectively.

Note that these circuits have k − 1 negation gates. On the C+(x) = 0 branch of the decision tree,

we will use C1 and on the other side we use C0 instead of C to obtain the queries at the second

level of the decision tree. We keep applying the same principle as we did to C until there are no

negations left, when we can directly query the entire function to obtain the return value. In any

branch of the tree, at each query, the height of the tree increases by 1 while the number of negations

in the residual circuit decreases by 1. Therefore, the height of the constructed monotone decision

tree is k + 1.

5 Deterministic Non-Adaptive Monotone Decision Trees

We establish a relation between the non-adaptive monotone decision tree and alternation:

Theorem 5.1. For any Boolean function, alt(f) = k if and only if f can be computed by a non-

adaptive monotone decision tree of height k.

Proof. To outline the idea used here – for the forward implication we use Lemma 3.1 to design

the decision tree. For the reverse implication, since the tree is non-adaptive, the query function at

each level of the decision tree will be the same. Using this fact, we argue that any chain must have

alternation at most k with respect to f . To be more detailed,

(⇒): Suppose alt(f) = k. Applying Lemma 3.1, we describe the non-adaptive monotone decision

tree of height k is as follows. At level i (root being level 1), all nodes will query the function value

fi. For labeling the leaves, simply label each leaf by the parity of the results of the queries along

the path from root of the tree to that leaf. This way, it is non-adaptive by definition and in each

path, the values of all fi(x)’s are known and can compute the value of f(x) as described above.

(⇐): Let f be computed by decision tree T of height k. Since T is non-adaptive, the function

queried at a certain height is independent of the earlier queries, let the function queried at height

i be fi. As T is non-adaptive it is also a complete binary tree. Represent each leaf of the binary

tree by a string s = s1 . . . sk ∈ {0, 1}k. The string s can be thought of as the results of the queries

9using 0 and 1 (respectively) whenever the output of g is required

17

to fi. That is, to reach a given leaf (represented by s) of T , the query functions f1, f2, . . . fk must

evaluate to s1, s2, . . . sk respectively.

Consider any chain of inputs X = x(1) ≺ x(2) ≺ . . . x(ℓ) to f and let the corresponding binary

respectively. We will argue that the alternation along this chain is bounded by k. Consider what

happens when we move along the chain (say x(j) to x(j+1)). Suppose that on inputs x(j) and x(j+1),

T evaluates to the leaves represented by the k bit strings s(j) and s(j+1) respectively. Since fi’s are

monotone functions and x(j) ≺ x(j+1), we have fi(x
(j)) ≤ fi(x

(j+1)) for all i. Thus, s(j) ≺ s(j+1)

or s(j) = s(j+1). As the value of f is completely determined by the values of fi’s, if s
(j) = s(j+1)

then f(x(j)) = f(x(j+1)). Hence, the number of alternations of f along X is at most the number of

strings s(1) ≺ s(2) ≺ . . . , which is at most the length of each string i.e., k.

The above theorem along with Theorem 4.2 finishes the proof of Theorem 1.1 from the intro-

duction.

Theorem 1.1. For any Boolean function f , DTm(f) = ⌈log(alt(f) + 1)⌉, and DTna
m (f) = alt(f).

5.1 Monotone Certificate Complexity

We now discuss a characterization of non-adaptive monotone decision tree complexity through a

generalization of certificate complexity of the function.

Definition 5.1 (Monotone certificate complexity). For an input x ∈ {0, 1}n of a Boolean

function f , we call a set Sx = {f1, f2 . . . fk} of monotone Boolean functions on n variables as a

monotone certificate (set) if for any input y ∈ {0, 1}n, we have that [∀ki=1 fi(y) = fi(x)] ⇒ [f(y) =

f(x)]. The monotone certificate complexity of x, denoted Cm(f, x) is defined as the minimum size

|Sx| of a monotone certificate Sx of x. The monotone certificate complexity of the function f itself

is defined as Cm(f) := maxx{Cm(f, x)}.

Interestingly, there is a constant upper bound of the size monotone certificate set for any function

f . We show that, Cm(f) is at most 2.

Proposition 5.1. Cm(f) ≤ 2.

Proof. For any input x, let Ix be the set of all variables set to 1 in x, and Jx be the set of remaining

indices. The set Sx = {f1 :=
∧
Ix, f2 :=

∨
Jx} is a valid monotone certificate for an input x. To

show that this is indeed a certificate, we argue that [(f1(y) = f1(x)) ∧ (f2(y) = f2(x))] ⇒ [f(y) =

f(x)]. First, note that f1(x) = 1 and f2(x) = 0 by definition of fi’s. Now suppose the LHS of

the above targeted implication is true. That is, f1(y) = 1 and f2(y) = 0. Hence,
∧
Ix(y) = 1 and∨

Jx(y) = 0, which means that Iy ⊆ Ix and Jy ⊆ Jx. But note that (Iy, Jy) (and (Ix, Jx)) is a

partition of the total set of variables. Therefore, it must be the case that Ix = Iy and Jx = Jy,

meaning x = y. Then the RHS of the desired implication follows trivially.

18

If the monotone certificate sets are constrained to be the same for all inputs, we call such a

measure as the non-adaptive monotone certificate complexity of the function f , denoted by Cna
m (f).

By a simple argument, we have:

Proposition 5.2. Cna
m (f) = DTna

m (f) = alt(f).

Proof. (≤) Let h = DTna
m (f) denote the minimum height of a non-adaptive monotone decision

tree (call it T) computing the Boolean function f on n variables. Let the query functions from

root to any leaf be f1, f2 . . . fh in order, where each fi is a monotone function on n variables.

We claim that S := {f1, f2, . . . fh} is a monotone certificate for any input. Then immediately,

Cna
m (f) ≤ |S| = h = DTna

m (f). To observe that S indeed is a certificate set, consider two inputs x and

y for which all the functions in S evaluate identically. Then in the tree T , both these inputs reach

the same leaf, and hence return the same value. We obtain [∀hi=1 fi(y) = fi(x)] ⇒ [f(y) = f(x)],

and therefore S is a monotone certificate for any input.

(≥) Given that S = {f1, f2 . . . fk} is a monotone certificate set, our goal is to design a non-

adaptive monotone decision tree T for f of height k. The idea is to use the same functions that are

in S as queries in T . We fix an arbitrary ordering of S and query the functions in the same order

in all the paths. To get the labels of the leaves of T , we fix the label of a leaf ℓ as f(xℓ), where

xℓ is any arbitrary input that reaches ℓ in its computation by T . If no such xℓ exists, then ℓ may

be labeled arbitrarily. Let some input x reach a leaf ℓ in T . As xℓ also reaches ℓ, both x and xℓ

must evaluate identically on all the functions in S. By the certificate property of S, this implies

that f(x) = f(xℓ), which is exactly what is returned by T on input x.

6 Non-deterministic Monotone Decision Trees

Inspired by the definitions of a non-deterministic decision tree and certificate complexity of a

Boolean function, we study a non-deterministic variants of monotone decision trees as well. We

define a non-deterministic monotone decision tree as a tree where there can be single or multiple

outgoing edges at each internal node, and each edge in the tree is labeled by a monotone function

or the negation of a monotone function, and the leaves are labeled 0 or 1. An input is said to be

accepted if there is at least one path from the root to a leaf labeled 1 along which all the functions

appearing as labels on the edges evaluate to 1.

6.1 Two equivalent definitions

We define two variants of a non-deterministic monotone decision tree. The first variant is the one

that we will use in the later part of this section.

• Model1: A tree where there can be any number of outgoing edges at each internal node,

and each edge is labeled by a monotone or negation of a monotone function. The leaves are

labeled with 0’s and 1’s.

19

An input x to the tree is said to be accepted (same as outputting 1 on x) iff there exists a

path from the root of the tree to any leaf labeled 1 along which all the edges are active. Here

we say an edge labeled fi is active on x when fi(x) = 1.

• Model2: A tree where there can be any number of outgoing edges at each internal node, and

each edge is labeled 0 or 1. The leaves are labeled with 0’s and 1’s as usual. In addition to

these labels, the internal nodes are also labeled, with monotone functions.

An input x to the tree is said to be accepted (same as outputting 1 on x) iff there exists a

path from root of the tree to any leaf labeled 1 along which all the edges are active. Here,

for an edge e outgoing from a node labeled fi, we say e is active on input x, if the label of e

is equal to the value fi(x).

We say a tree T (could be of type Model1 or Model2) is said to compute a Boolean function

f : {0, 1}n → {0, 1} iff for all x ∈ {0, 1}n, T outputs f(x) on x.

The above defined models can be shown to equivalent. That is, we show that if a Boolean

function f : {0, 1}n → {0, 1} can be computed by a tree of type Model2, then there is also a tree of

type Model1 of same height (upto a constant factor) computing f ; and vice-versa.

To prove the first part, let T be a Model2 tree computing f . We simply re-label T as follows,

to obtain a Model1 tree still computing f . At each internal node labeled fi; if an outgoing edge

is labeled 0, replace the label with fi, if an outgoing edge is labeled 1, replace the label with fi.

Finally, remove all the labelings at the internal nodes. Retain the labels of the leaves. Thus, we get

a tree T ′. Note that an edge in T is active if and only if the corresponding edge in T ′ is active for

the same input. Therefore, any path that is active in T remains active in T ′, meaning T ≡ T ′ ≡ f .

The other direction is proved as the following lemma.

Lemma 6.1. If a Boolean function f : {0, 1}n → {0, 1} is computed by a tree T of type Model1,

there is also a tree T ′ of type Model2 of height twice that of T , computing f .

Proof. To construct T ′, we perform the following operation over all the edges of T from the top to

bottom. Let e be an outgoing edge in T , from node i labeled fi (could be a monotone or negation

of a monotone function) to a node/leaf called j. A new node called k is introduced in T ′ between

the nodes i and j, and the edges i → k and k → j are added. The label at the node i is changed

to the constant function 1 from fi, the i → k edge is labeled 1, and k is labeled with the function

fi. If fi is monotone, k → j edge is labeled 1, Otherwise, k → j edge is labeled 0. By this labeling

principle, notice that for any input x, the edge i → k is always active and the edge k → j is active

if and only if x activates the edge e in T . Therefore, after the complete construction of T ′, there is

an active path to a leaf if and only if there is an active path to that same (corresponding) leaf in

T . Since, the existence of active path to a leaf with label 1 is the criterion of acceptance in either

tree, both trees output the same value for the same input, and hence T ′ computes f . Finally, we

20

notice that the height of T ′ is twice the height of T , as each edge in T produces two edges in T ′ by

our design.

6.2 Characterization using Alternation

Analogous to the normal monotone decision trees, we prove a bound on the height and the size

as the complexity measures of the non-deterministic monotone decision tree (height denoted by

DTn
m(f)) in the following Theorem.

Theorem 6.1. For any Boolean function f , DTn
m(f) ≤ 2 and size of the optimal non-deterministic

monotone decision tree is ⌈alt(f)2 ⌉.

Proof. We know that any Boolean function f has a monotone decomposition of length at most

k := alt(f) + 1 (Lemma 3.1), so let f = f1 ⊕ f2 ⊕ · · · ⊕ fk. Due to the implication property

of fi’s, we have the following equivalent evaluation for f , that is f = f1f2 ∨ f3f4 ∨ . . . fk−1fk
10

(Proposition 3.1). We now construct the non-deterministic monotone decision tree T of height 2

size as much as the number of “terms” in the above representation of f , which is s := ⌈k/2⌉. The
root of T would contain s edges with labels f1, f3, . . . , fk−1, each for one edge. Then for each of

these children of root, we give one child with edge label fi+1, corresponding to fi. Finally we attach

a leaf labeled 1 to all the leaves of the tree. There is an active path from root to a leaf if and only

if f evaluates to 1 on that input, thereby showing that of T computes f .

7 Randomized Monotone Decision Trees

We also study randomized monotone decision trees. In this model, monotone query nodes in the

decision tree, random bit choices are also allowed at the internal nodes of the tree and each of

the random choice nodes also has two outgoing edges to children one with labeled 0 and the other

labeled 1. We say the tree computes a Boolean function f if for any input x, the probability (over

the choice of the settings for the random bit choices in the tree) of the computation reaching a leaf

with label f(x) is at least 2/3. By DTr
m(f), we denote the minimum height of a RMDT computing

a Boolean function f . The following theorem implies that randomization does not help when the

monotone queries are unrestricted.

Theorem 7.1. For any Boolean function f , DTr
m(f) = DTm(f) = ⌈log(alt(f) + 1)⌉.

Proof. Since any monotone decision tree is trivially also a RMDT, we directly have DTr
m(f) ≤

DTm(f). To prove the reverse inequality, we will construct a circuit for f with at most DTr
m(f)−1

negation gates. Then by using Theorem 4.3, we get a (deterministic) MDT of height DTr
m(f)

computing f .

10If k is odd, we can just make f1 as the constant function 0.

21

Let T be a RMDT of minimum height h = DTr
m(f), computing f . Let the number of leaves in

T labeled with 1 and 0 be k and k′ correspondingly. We have k+ k′ = (total no. of leaves in T) ≤
2h. We will give the proof only when k ≤ k′. Otherwise, we can consider the RMDT obtained

by flipping all the leaf labels of T , which would then compute f . As DTm(f) = DTm(f) and

DTr
m(f) = DTr

m(f)11, the required result follows. So, we may assume k ≤ k′.

We will first derive a characterization for the function f , which will be helpful in other proofs

too.

Consider a fixed input x to T . By the definition of RMDT, f(x) = 1 iff the probability of

the computation of T (on x) reaching a 1-labeled leaf is at least half 12. Let us now express this

probability in terms of the structure of T .

Let ℓ1, ℓ2, . . . ℓk be all the 1-labeled leaves, r1, r2, . . . rk be the number of random nodes from

root to the corresponding leaf; and let ci := (
∧
fpi) ∧ (

∧
fqi) denote the characteristic function

corresponding to ℓi, where the fpi’s are the monotone queries to be passed and fqi’s to be failed

in the root to ℓi path. First we calculate the probability that a specific leaf ℓi is reached upon the

computation. Once we get this value, since in any given circumstance, the computation reaches a

unique leaf, the above events for various i’s are mutually exclusive, meaning the desired probability

is simply the sum of probabilities that the computation reaches a particular ℓi.

Now, coming to the probability of reaching a particular ℓi, it is zero when ci(x) = 0. Indeed

when ci(x) = 0, by its definition, we can observe that it means at least of the monotone functions

that is supposed to pass has failed or at least one that is supposed to fail has passed, either of

which is a contradiction. Now for the case ci(x) = 1, the probability solely depends on ri: As all

the intermediate monotone queries support the computation to reach ℓi (i.e, ci(x) = 1), for any of

the random nodes in the path, there is exactly one result that will keep the computation in the

right path to ℓi. Hence the probability then is equal to (1/2)ri . The probabilities in both these

cases can be compacted as (1/2)rici(x). We can see that it is 0 when ci(x) = 0, and (1/2)ri when

it is equal to 1.

Going back to the overall probability, it is equal to the sum
∑

i(1/2)
rici(x). We thus have the

characterization:

f(x) = 1 iff

k∑
i=1

2h−rici(x) ≥ 2h−1. (1)

Notice that to compute any ci, at most one negation is needed, since ci = (
∧
fpi) ∧ (¬(

∨
fqi)).

Now, to construct a circuit for f with h− 1 negations as stated in the beginning, we observe that:

since the threshold function is monotone, if we can obtain all the ci’s using a (multi-output) circuit

using at most h − 1 negations, we are done. We make use of Fischer’s construction [11] for this,

where a multi-output circuit using ⌈log(m + 1)⌉ negations is designed to compute the inverting

11On flipping the leaf labels in a MDT or RMDT, it computes the complement function.
12Although a stronger bound of 2/3 is implied, the bound of 1/2 will be simpler to work with.

22

function I(z1, z2, . . . , zm) = (z1, z2 . . . , zm). Taking m = k and zi =
∨
fqi; the number of negations

used in the circuit would be neg := ⌈log(m+ 1)⌉ = ⌈log(k + 1)⌉.
If k < k′, then neg = ⌈log(k + 1)⌉ ≤ ⌈log(2h−1 − 1 + 1)⌉ = h− 1.

Otherwise, k = k′ = 2h−1. Suppose the right-most leaf in T is labeled 1. Then note that there

is no negation in ck and so, we do not have to negate zk; making the number of inputs used in the

Fischer’s construction only k − 1 = 2h−1 − 1. Hence, neg = ⌈log(2h−1 − 1 + 1)⌉ = h − 1. Now, if

the right-most leaf in T is instead labeled 0, then we flip all the leaf labels in T to obtain a RMDT

for f , which then falls into the above case (of the right-most label being 1).

By Theorem 4.3, we can now using this circuit, obtain an MDT of height h−1+1 = h = DTr
m(f)

computing f . Hence, DTr
m(f) = DTm(f).

A variant of Randomized Monotone Decision Tree Model: We also study a more powerful

variant of the randomized model where each node is allowed to have a multi-set of w monotone

functions associated with it (which we call the query set) and on an input x to the decision tree, at

each node, one of the query functions is chosen uniformly at random from the corresponding query

set. Again, we say that the tree computes a Boolean function f if for any input x, the probability

of the computation reaching a leaf with label f(x) is at least 2/3. We denote by DTR,w
m (f), the

minimum height of such a randomized decision tree that computes f . It can be observed that any

RMDT can be implemented in this model as well (query sets are of size w): a monotone query

fi can be replaced with the query set {fi, . . . , fi(w times)}, and a node with a random bit choice

by the query set {0, . . . ,0(w/2 times),1, . . . ,1(w/2 times)}. This gives DTR,w
m (f) ≤ DTr

m(f) for

any even w ≥ 2. Even if w is odd, the relation still holds up to a constant factor. For the other

direction, we show the following:

Theorem 7.2. For any Boolean function f , DTr
m(f) ≤ (1+ k).DTR,w

m (f), if w = 2k for an integer

k.

Proof. Let T be the tree corresponding to the stronger model with query sets of size w = 2k of mini-

mum height computing f . To transform T into an RMDT, we perform the following transformation

at each internal node from bottom to top.

Let u be an internal node of T with left branch going to the sub-tree uL, right branch to uR,

and with possible query function at u being from {q1, q2, . . . qw}. Consider a complete binary tree

B with nodes in the first k levels making random queries to 0 or 1, and the 2k = w nodes in the

bottom-most level making corresponding queries to the qi’s.

We replace the subtree of T rooted at u with the following tree: B is introduced at the top (in

place of u) and each of the bottom-most nodes of B are branched into (copies of) the sub-trees

uL on left and uR on right. Clearly, upon applying this procedure for all the internal nodes of T

bottom-up, we get an RMDT.

To justify that this transformation still computes f , it is sufficient to argue that for an input

x, due to the transformation corresponding to a node u, the probabilities that uL and uR are

23

taken by the computation remain the same after the transformation. This is indeed true as these

quantities are equal to |{qi | qi(x) = 0}|/w and |{qi | qi(x) = 1}|/w respectively, before and after

the transformation.

Since each original node is replaced with a complete binary tree B, the height increases by

a factor equal to the height of B (including bottom-most level), i.e, 1 + k. Hence, DTr
m(f) ≤

(1 + k).DTR,w
m (f).

8 Monotone Decision Trees with Query Restrictions

In this section, we study the power of monotone decision trees under restricted monotone query

functions. We define DT(mon-C) as the set of Boolean functions (rather Boolean function families)

that admit decision trees of height O(log n), where n is the number of variables and all the query

functions are from mon-C. We could instead consider polynomial size decision trees, but both

formulations turn out to be equivalent for interesting classes C. Similarly, we define DL(mon-C) as
the set functions computed by MDLs of polynomial size where the queries are in mon-C.

We first justify our reason to consider the height bound as O(log n). We show that for any h =

ω(log n), there is a function f on n variables that has a decision tree of height h with query functions

computed by monotone polynomial sized circuits, but f cannot be computed by a polynomial size

circuit. In contrast, for any h = o(log n), if a function f ∈ C on n variables has alternation Ω(n),

then f does not have a decision tree of height h, with query functions computable by monotone

circuits in C. Hence, the question of whether DT(mon-C) is equal to C is well-motivated only when

the height is O(log n). With this background, we will then study DT(mon-C) as defined above.

8.1 Height Constraints on DT(mon-C)

Proposition 8.1. For any h = ω(log n), there is a Boolean function f on n variables that has a

decision tree of height h with query functions computed by monotone polynomial sized circuits, but

f cannot be computed by polynomial size circuits.

Proof. We will actually show the existence of a function that has a ‘simple decision tree’ (all queries

are to input variables) of height h = ω(log n) but not any polynomial sized circuit. By Shannon’s

counting argument (see [15]) we know that there exists a function on h variables which requires

a circuit of size Ω(2h/h) to compute it. Our function f would be the same function but with an

additional (n − h) many dummy variables. Since f depends on only h variables, we can obtain a

(non-adaptive) decision tree where the queries are the bits that the function depends on. Its height

clearly is h. By definition, any circuit computing f has size Ω(2h/h) ≥ c1.(2
h/h). 13

For the sake of contradiction, suppose that f does have a polynomial sized circuit. It means

c1.(2
h/h) ≤ nc2 . Taking logarithm, we get c3 + h− log h ≤ c2 log n, so we have, h ≤ 2h− 2 log h ≤

13c1, c2, c3 are some fixed positive constants and the inequalities are asymptotic i.e, for sufficiently large n.

24

2.(c3 + h − log h) ≤ 2c2 log n = O(log n), which contradicts h = ω(log n). Therefore, f cannot be

computed by a polynomial size circuit family.

Proposition 8.2. Let C be any circuit complexity class which contains a function f with alt(f) =

Ω(n). For any h = o(log n), there is a function f ∈ C on n variables that does not have a decision

tree of height h, with query functions computable by monotone circuits in C.

Proof. Let f ∈ C be a function such that alt(f) = Ω(n). For the sake of contradiction, assume that

f does have a monotone decision tree of height h = o(log n). We know that alt(f) ≤ 2h where h is

the height of the decision tree (recall Theorem 4.2). Then, alt(f) ≤ 2o(logn) = o(n), contradicting

alt(f) = Ω(n).

8.2 Deterministic MDTs with Query Restrictions: DT(mon-C) vs C

As mentioned in the introduction, we ask: How much can monotone decision tree computation,

with query functions computable by monotone circuits in the class C, simulate general computation

in the class C. In this direction, we first show that DT(mon-C) ⊆ C when C has reasonable closure

properties.

Lemma 8.1. For a circuit complexity class C closed under polynomially many ¬,∧,∨ operations,

DT(mon-C) ⊆ C.

Proof. The proof of Theorem 4.1 also establishes that DT(mon-C) = DL(mon-C) as log-height

MDTs and poly-size MDLs are inter-convertible, it suffices to show that DL(mon-C) ⊆ C. Let a

Boolean function f belong to DL(mon-C) via the decision list L = (f1, c1)(f2, c2) . . . (fk, ck) where

k = poly(n); and each query function fi has a (monotone) circuit Ci from the class C. Using the

normal form for the decision lists for circuit classes with the above property, we will assume that

the ci’s are alternating; and the query functions fi are forward firing, i.e f1 ⇒ f2 ⇒ · · · ⇒ fk. As

we can always prepend a (0, 0) node at the beginning or append a (1, 1) node at the end of L while

still maintaining the normal form; w.l.o.g we may assume that c1 = 0 and ck = 1 (hence k is even).

Due to the alternating constants property, this means c2i = 1 and c2i−1 = 0.

We know from Proposition 3.1 that the Boolean function g := f1f2∨f3f4 · · ·∨fk−1fk is equivalent

to f . Finally, we note that because of the closure properties of C and k = poly(n), the expression

g can be used to obtain a circuit in C computing f .

If the class C is rich enough to include monotone circuits for the threshold functions, for example

say the class TC0 itself, then we can actually prove equality: Note that the Monotone Decomposition

given in Lemma 3.2 can be easily transformed into a MDL with the same functions being queries

using Proposition 3.1. Thus, we get C ⊆ DL(mon-C), which when combined with the fact that

DT(mon-C) = DL(mon-C) and Lemma 8.1 completes the proof of Theorem 1.2.

25

Theorem 1.2. For any circuit complexity class C such that mon-TC0 ⊆ mon-C, DT(mon-C) = C.

8.3 Monotone Decision Trees and AC0

We attempt to address the question DT(mon-AC0) vs AC0. We know that DT(mon-AC0) =

DL(mon-AC0) is contained in AC0 by Lemma 8.1. An interesting challenge is to prove or dis-

prove the reverse containment. As a warm-up, we show that DT(mon-AC0) is more powerful than

polynomial sized term decision lists (which is a strict subset of AC0).

Proposition 8.3. DT(mon-AC0) ⊈ TDL.

Proof. We show that DL(mon-AC0) ⊈ TDL. Using the construction in Lemma 8.1 we know that

all functions in TDL have polynomial sized circuits of depth 4 since the query functions are depth

2 monotone circuits. So, if we can show the existence of a function f that is in DL(mon-AC0) but

has no polynomial sized circuit of depth 4, we are done. It is known for any depth d, there is

a monotone function f which can be computed by a monotone circuit of depth d but cannot be

computed by any polynomial size (even non-monotone) circuits of depth d − 1 (See [20]). As the

decision list L = (f, 1)(1, 0) computes f and the query function f has a monotone AC0 circuit, we

have f ∈ DL(mon-AC0). And f /∈ TDL, because all functions in TDL have AC0 circuits of depth 4

and f by definition has none.

Moving towards comparing the class with AC0, we first apply Propositions 8.214 and 8.1 to AC0,

and conclude that: For any g(n) = o(log n), and h(n) = ω(log n), DTg(n)(mon-AC0) ⊊ AC0 and

DTh(n)(mon-AC0) ⊈ AC0. In contrast to this, we show that the whole of AC0 can be computed by

monotone decision trees with some sub-linear height. By using a theorem from due to Santha and

Wilson (See Theorem 4.1 of [18]), which reduces the number of negations in the circuit to n
logr n ,

and then applying Theorem 4.3, we show:

Theorem 8.1. For any constant r, AC0 ⊆ DTd(n)(mon-AC0) where d(n) = Ω
(

n
logr n

)
.

Proof. We use the following theorem from due to Santha and Wilson (See Theorem 4.1 of [18]):

For any constant r, every AC0 circuit family can be translated to a constant depth polynomial size

circuit that uses at most O
(

n
logr n

)
negations. We can directly combine this with Theorem 4.3 to

get a decision tree of height at most O
(

n
logr n

)
by observing that since the queries used in the proof

of Theorem 4.3 are monotone sub-circuits15 of the original circuit, in this case, they are computable

in monotone AC0.

14To apply Prop. 8.2, take f(x) = x1x2 ∨ x3x4 · · · ∨ xn−1xn.
15By sub-circuit, we mean the circuit obtained by fixing the values of some intermediate gates to 0 or 1.

26

A negation-limited computation of DT(mon-AC0): We show that the functions in DT(mon-AC0)

have AC0 circuits with ‘limited’ negation gates.

Theorem 1.3. If a Boolean function f on n variables is in DT(mon-AC0), then for any positive

constant ϵ ≤ 1, there is an AC0 circuit for f with O(nϵ) negation gates.

Proof. As f ∈ DL(mon-AC0), by assuming that the MDL is in normal form and applying Propo-

sition 3.1, we can write f = f1f2 ∨ f3f4 ∨ . . . fℓ−1fℓ, where ℓ = O(nk) for some constant k. In

addition, all the fi’s have monotone AC0 circuits and ∀i ∈ [ℓ − 1], fi ⇒ fi+1. Thus, it suffices to

produce fi for every i ∈ [ℓ] which is odd, from f1, . . . fn, using a constant depth polynomial size

circuit that uses O(nϵ) negations. Indeed, the trivial circuit uses ℓ = O(nk) negations.

The main observation is that the bits (the outputs of fi where i is odd) we need to invert are

already in sorted order, since ∀i, fi ⇒ fi+1. Let this bit-string be s = 0j1m−j , where m := ⌈ℓ/2⌉.
We need to output s = 1j0m−j .

As proved in [18] (Theorem 3.6 in [18]), this can be implemented using an iterative construction

which uses only O(nϵ) negations. In the proof of Theorem 3.6 in [18], the authors also observe,

this part of their construction uses only polynomially many ¬, and (unbounded) ∧ and ∨ gates.

Hence the final circuit is within AC0. We present the construction in our context in Appendix A.2

for reference.

In contrast, we note that certain AC0 circuits require a lot of negations.

Theorem 8.2 (Theorem 3.2 of [18]). For every f ∈ AC0 with alt(f) = Ω(n), and for every ϵ > 0,

any AC0 circuit computing f will have at least Ω(nϵ) negation gates for some positive constant ϵ

(that can depend on the circuit).

Proof. This follows directly from [18] where the authors show that16, if any Boolean function f of

alternation k is computed by a circuit C of depth d, then the number of negations in C is at least

d(k + 1)1/d − d. This is Ω(nϵ) as d is constant and k = Ω(n).

Thus, if Theorem 8.2 can be improved asymptotically for some f ∈ AC0 and fixed ϵ, then we

can show that DT(mon-AC0) is strictly contained in AC0.

A candidate function for DT(mon-AC0) vs AC0 question: We now show that there is a simple

function that can be computed by depth two AC0 circuits, which if shown to be in DT(mon-AC0)

will imply that DT(mon-AC0) = AC0. This in particular gives a potential candidate function for

the separation of the two classes.

Theorem 8.3. If the family of functions fn(x) = x1x2 ∨ x3x4 ∨ . . . xn−1xn is in DT(mon-AC0),

then DT(mon-AC0) = AC0.

16Although this was stated for multi-output functions in [18], it holds for single-output functions as well.

27

Proof. Suppose that the function fn is in DT(mon-AC0) = DL(mon-AC0). Assuming the MDL is

in normal form, by Proposition 3.1, fn can be expressed in various forms as follows:

fn = (fn
1 , 0)(f

n
2 , 1) . . . (f

n
p(n), 1)(f

n
p(n)+1, 0)

= fn
1 ⊕ · · · ⊕ fn

p(n)+1

= fn
1 f

n
2 ∨ fn

3 f
n
4 ∨ · · · ∨ fn

p(n)−1f
n
p(n)

= (fn
2 ∨ fn

3) ∧ (fn
4 ∨ fn

5) ∧ · · · ∧ (fn
p(n) ∨ fn

p(n)+1), (2)

where for all i, fn
i ∈ mon-AC0, and fn

i ⇒ fn
i+1, and p(n) is even and some polynomial in n.

Suppose p(n) = nc1 and each fn
i has a monotone AC0 circuit of depth d and size at most nc1 for

some constants d ≥ 1, c1 ≥ 2.

Now we will show that AC0 ⊆ DT(mon-AC0). Consider an arbitrary function g ∈ AC0 computed

by a De-Morgan formula17 G of depth at most e and size at most nc2 for some constants e and

c2 ≥ 2. We will show that g has a MDL Lg of size (in its normal form) at most n(c1c2)2e in which

all the queries have monotone circuits of depth at most de and size at most n(c1c2)2e . Then, since

e, c1, c2 are constants, the size of the monotone circuits and the number of queries are polynomial

in n, so g ∈ DL(mon-AC0).

We show the existence of Lg by induction on e.

Base case: e = 1. Depth-1 formulas are just OR or AND of literals. If g = (
∨

i xi) ∨ (
∨

j xj)

where xi’s and xj ’s are variables, then Lg = (
∨

i xi, 1)(
∧

j xj , 0)(1, 1) works. The case of OR gate is

similarly handled. The depth, size, and number of queries in Lg are therefore bounded as expected

(assuming n is not too small).

Induction step: e ≥ 2. Again, we assume that the root gate is an OR gate: g =
∨s

i=1 hi,

where each hi has an AC0 formula of depth at most e − 1 and size at most nc2 , which means

by the induction hypothesis, that it has an MDL Lhi
of size at most n(c1c2)2e−2

such that all its

queries have monotone circuits of depth at most d(e − 1) and size at most t := n(c1c2)2e−2
– let

us say that Lhi
= fi,1fi,2 ∨ fi,3fi,4 ∨ · · · ∨ fi,t−1fi,t. Then, we have g =

∨s
i=1 hi =

∨s
i=1(fi,1fi,2 ∨

fi,3fi,4 ∨ · · · ∨ fi,t−1fi,t). The trick now is to notice that this expression for g looks exactly like

the Boolean function fn, except the variables are replaced by some monotone functions fi,j ’s,

each of which has monotone circuits of depth at most d(e − 1) and size at most t. That is,

g = fst(f1,1, . . . , f1,t, f2,1, . . . , f2,t, . . . , fs,1, . . . , fs,t). Now, using the MDL (family) we have for

f from Equation (2), we get an MDL Lg for g by substituting the variables xi’s with functions

fi,j ’s. The number of queries is p(st) = (st)c1 , each query has a monotone formula of depth

at most d + d(e − 1) = de and size at most (st)c1 + st.t ≤ (st)c1+2 ≤ (nc2n(c1c2)2e−2
)c1+2 ≤

n(c2+(c1c2)2e−2)(c1+2) ≤ n(c1c2)2e (using e, c1, c2 ≥ 2).

17AC0 is equivalent to polynomial size constant depth De-Morgan formulas i.e., Boolean formulas in which the
negations are only at input variables. W.l.o.g., we also assume that the AND and OR gates are in alternate levels of
the formula.

28

A similar construction works if the root gate is an AND gate, in which case we can make use

of the “CNF form” for f instead of the “DNF form”.

8.4 Randomized MDTs with Query Restrictions

Similar to the deterministic case, when the height is restricted toO(log n), we can define RDT(mon-C)
for a circuit complexity class C. By using threshold gates to compute the probability bounds, we

show that RDT(mon-C) = C if mon-TC0 ⊆ mon-C. By using a carefully constructed normal form

for randomized monotone decision trees we then show that RDT(mon-AC0) ⊆ AC0.

Theorem 8.4. For any circuit complexity class C such that mon-TC0 ⊆ mon-C and closed under

polynomial ∨,∧,¬, we have RDT(mon-C) = C.

Proof. To show RDT(mon-C) ⊆ C, let f : {0, 1}n → {0, 1} be any function in RDT(mon-C). By

definition, there is an RMDT called T with height h = O(log n). Let ℓ1, ℓ2, . . . ℓk be all the 1-

labeled leaves; r1, r2, . . . rk be the number of random nodes from root to the corresponding leaf;

and let ci :=
∧
fpi

∧
fqi denote the characteristic function corresponding to ℓi, where the fpi’s are

the monotone queries to be passed and fqi’s to be failed in the root-ℓi path. Notice that since the

queries have circuits in C, so do the ci functions. By the characterization in the proof of Theorem 7.1

(Equation (1)), we have f(x) = 1 iff
∑

i 2
h−rici(x) ≥ 2h−1.

The RHS may be written as
∑

i Pi(n)ci(x) ≥ Q(n), where the coefficients Pi’s and Q are

polynomial in n, since h = O(log n).

We have f(x) = 1 ⇐⇒
∑

i Pi(n)ci(x) ≥ Q(n). As polynomial weighted threshold can be done

in TC0 (and hence has a circuit in C) and so can be the ci’s, we can construct a circuit in class C
for the task on the RHS, which clearly is the function f on the LHS.

We therefore have RDT(mon-C) ⊆ C. Since DT(mon-C) ⊆ RDT(mon-C), and we already proved

that DT(mon-C) = C (Theorem 1.2), we get RDT(mon-C) = DT(mon-C) = C.

We have a partial result for query restricted randomized MDTs in case of AC0:

Theorem 8.5. RDT(mon-AC0) ⊆ AC0.

Before describing the proof, we will first obtain normal forms for Randomized Monotone Deci-

sion Tree model. Let any Boolean function f on n variables be computed by a RMDT called T .

We will modify T into an RMDT T ′ so that T ′ also computes f , and additionally the following

properties hold for T ′.

• The number of random nodes is the same in all the paths from root of T ′ to the

leaves. To achieve this, let r be the maximum number of random nodes along any root to

leaf path in T , and let ℓ be a leaf whose path to the root of T contains d(< r) many random

29

nodes. Then we replace the leaf ℓ with a random node and make both its children leaves

with label same as ℓ. Now, both the newly added leaves can be seen to be at a distance of

d+ 1 from the root of T . It is important to note that this modification does not change the

probability of reaching a correct leaf. If the original leaf ℓ was reached in a computation with

some probability, it is with the same probability that some child of ℓ will be reached (it does

not matter which as both are labeled same as label of ℓ). We perform this operation for all

the leaves of T that are at distance less than h from the root of T , until no such leaves exist.

Thus, in the final tree T ′, all the paths contain the same number of random nodes (namely

r).

• T ′ is a complete binary tree. If T already satisfies this property, we are done. Otherwise,

suppose ℓ is some leaf of T whose distance (i.e., number of queries) from the root is d < h,

where h is the height of T . Now consider the following transformation of T . We replace ℓ

with the monotone query 1, and label its left leaf arbitrarily and the right leaf with the label

of ℓ. The two newly introduced leaves can be seen to be at a distance of d+ 1 from the root

of T . Also, T still computes the same function as in any event that the leaf ℓ is reached upon

computation on an input in the original T , the computation in the new T ends at the newly

introduced right leaf, whose label is the same as ℓ. We keep performing this transformation

for all the leaves that are at distance less than h from the root, until finally all leaves are at

a distance of h from the root.

Note that the above properties can both be made satisfied by T ′ by making the same trans-

formations; but first make the number of random nodes same in all paths, and only then

make all paths the same length.

• All the random nodes are at the top levels of T ′. By this, we mean that in any path

from root to a leaf, the first few nodes are random, and the remaining are monotone nodes.

For this, we first perform the above two transformations on T , after which say there are r

random nodes in every path and each path length is same as the height h of T .

The idea to achieve this is: instead of making random queries in the process of computation

by the monotone queries, we first fix a “randomness” and then proceed with the computation

by the monotone queries.

We define 2r many deterministic versions of T as the set {Ts | s is a binary sequence of length r}.
A tree Ts has the same structure as T in terms of monotone nodes, leaves and their labels.

A random node v is replaced with the monotone function 0 if the ith bit of s is 0, and with

1 otherwise, where i is the number of random nodes in the path from v to the root of T .

The new tree T ′, whose height will be r + h is constructed as follows: The top of T ′ shall be

a complete binary MRDT of height r with all the nodes making random queries. This results

in 2r “dangling ends”. For all binary sequences s, the dangling end addressed by the binary

30

sequence s shall lead to the root of Ts. This completes the construction of T ′. Immediately

observe that T ′ satisfies the desired property of all the random nodes being on the top. Now, to

show that T ′ is equivalent to T , we will argue that for any input x, the probability of reaching

1 in T is equal to that of reaching 1 in T ′. The former is equal to
∑

i(1/2)
r.ci(x), where i

runs over all the 1-labeled leaves ℓ1, ℓ2, . . . of T and ci’s are their respective characteristic

functions defined in Theorem 17. As there are 2r leaves in T ′ corresponding to each leaf ℓi

in T , the latter probability is equal to
∑

i

∑
s(1/2)

r.csi (x). Here csi denotes the characteristic

function of the leaf corresponding to ℓi in the tree Ts. To show the equality of these two

probabilities, we will show that for any i, ci(x) =
∑

s c
s
i (x). As the trees Ts’s are same as T

with random nodes changed to 0 or 1, observe that for any s, csi (x) ⇒ ci(x). Now, suppose

csi (x) = 1 for some s. In addition to ci(x) = 1, this also means that the characteristic product

corresponding only to the originally random nodes in the root to ℓi path of Ts is 1. This

means that each of the literals in the product is 1, which translates to the fact that we can

determine whether each of the originally random nodes of Ts were 0 or 1 (since we know the

root to ℓi path). But this uniquely determines an s due to the definition of Ts. Thus at most

one of csi (x) would be 1. Using this along with ∀s, csi (x) ⇒ ci(x), we get the desired equation

ci(x) =
∑

s c
s
i (x). Hence T ′ computes f too.

Proof of Theorem 8.5. Let a Boolean function f on n variables have an RMDT called T of height

h = O(log n) with all its monotone queries having monotone AC0 circuits. From the three normal

forms proved above, we may assume that the first r levels of T are random nodes, and the below

queries all have monotone AC0 circuits. This is justified, since those normal forms do not increase

the tree height beyond O(log n), and the query functions still have monotone AC0 circuits.

As there are no random queries beyond height r, each sub-tree rooted at a node just below a

random node in T , resembles a (deterministic) MDT. Since we have established DT(mon-AC0) ⊆
AC0 (Lemma 8.1), each of these sub-trees computes an AC0 function, say f1, f2, . . . f2r . For an input

x, recall that it means that probability of reaching a leaf with label f(x) in T is at least 2/3, which in

other words means that at least 2/3rd of all leaves that are reachable with non-zero probability are

labeled f(x). Since the sub-trees are deterministic, there is a unique leaf reached in a sub-tree for a

given x. Hence, at least 2/3rd of the sub-trees reach f(x) labeled leaf (correspondingly fi(x) = f(x))

on input x. Therefore, f is essentially a majority function over fi’s, with the added advantage that

the majority bits are at least 2/3rd of total. Ajtai and Ben-Or [1] proved the existence of an AC0

circuit that computes majority in such cases. As all the 2r = poly(n) many functions fi’s are also

in AC0, we can obtain an AC0 circuit for f . Thus, f ∈ AC0 and RDT(mon-AC0) ⊆ AC0.

31

9 Discussion and Open Problems

We explore the power of deterministic MDTs (adaptive and non-adaptive) and MDLs with most

general monotone queries, and establish the relations between the corresponding complexity mea-

sures and alternation (Sections 4 and 5). We also introduce NMDTs and RMDTs and understand

their power (Sections 6 and 7). Exploring the case of restricted queries, we show containments

between various circuit complexity classes and the corresponding deterministic and randomized

MDT classes (Section 8). By using a construction due to [18], we prove an upper bound on the

number of negations in AC0 circuits, and justify its role in potentially solving DT(mon-AC0) =? AC
0

(Sub-section 8.3).

The question of DT(mon-AC0) =? AC
0 is one of the main problems left unanswered by us. It is

not even known whether the simple function like f = x1x2∨x3x4∨· · ·∨xn−1xn is in DT(mon-AC0),

or even in RDT(mon-AC0). In this direction, we first note that the number of negations used in

Theorem 1.3 cannot be improved asymptotically, for if we can, then we can show that any function

in TC0 can be computed by a TC0 circuit with o(nϵ) negations (for any 0 < ϵ < 1), which contradicts

Corollary 3.3(2) of [18]. We note that if the negations bound in Theorem 8.2 can be improved for

some function, that shows the separation. If it cannot be improved, that means every function in

AC0 can be computed using an AC0 circuit with O(nϵ) negation gates for arbitrarily small constant

ϵ > 0, which would result in an improvement of Theorem 8.1.

We also comment here about an alternative way to define the classes DT(mon-C),RDT(mon-C)
and DL(mon-C), where we can restrict the queries by imposing that they be monotone but have pos-

sibly non-monotone circuits in C, rather than monotone circuits. This version results in potentially

more powerful classes. With very similar proofs, we would still get DT(mon-C) = RDT(mon-C) = C
when C ⊇ TC0. Further, Proposition 3.3 implies that for any function f ∈ TC0 with uniform

alternation, we get f ∈ DT⌈log(alt(f)+1)⌉(mon-TC0). The effect on our other results is unclear.

References

[1] Miklos Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations. In

Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, page 471–474,

1984. 31

[2] Martin Anthony. Decision lists. Technical report, 2002. CDAM Research Report LSE-CDAM-

2005-23. 7

[3] Y. Ben-Asher and I. Newman. Decision trees with and, or queries. In Proceedings of 10th

Annual Conference on Structure in Complexity Theory., pages 74–81, 1995. 3

[4] Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the 15th

ACM Symposium on Theory of Computing, pages 80–86, 1983. 3

32

[5] Anders Björner, László Lovász, and Andrew C. C. Yao. Linear decision trees: Volume estimates

and topological bounds. In Proceedings of the 24th ACM Symposium on Theory of Computing,

pages 170–177, 1992. 3

[6] Eric Blais, Clément L. Canonne, Igor C. Oliveira, Rocco A. Servedio, and Li-Yang Tan. Learn-

ing Circuits with few Negations. In Approximation, Randomization, and Combinatorial Opti-

mization, volume 40, pages 512–527, 2015. 8, 9, 34

[7] Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing

Letters, 42(4):183 – 185, 1992. 13

[8] Nader H. Bshouty. A subexponential exact learning algorithm for dnf using equivalence queries.

In Information Processing Letters, pages 37–39, 1996. 7

[9] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: A

survey. Theor. Comput. Sci., 288(1):21–43, 2002. 3

[10] David Dobkin and Richard J. Lipton. A lower bound of n on linear search programs for the

knapsack problem. J. Comput. Syst. Sci, pages 413–417, 1978. 3

[11] Michael J Fischer. The complexity of negation-limited networks—a brief survey. In Automata

Theory and Formal Languages, 2nd GI Conference Kaiserslautern, pages 71–82, 1975. 22

[12] Parikshit. Gopalan, Ryan. O’Donnell, Rocco A. Servedio, Amir. Shpilka, and Karl. Wimmer.

Testing fourier dimensionality and sparsity. SIAM Journal on Computing, 40(4):1075–1100,

2011. 3

[13] David Guijarro, Victor Lavin, and Vijay Raghavan. Monotone term decision lists. Theoretical

Computer Science, 259(1):549 – 575, 2001. 7

[14] Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. Annals

of Mathematics, 190(3):949–955, 2019. 3

[15] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2012. 3, 6, 24

[16] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.

SIAM J. Comput., 22(6):1331–1348, 1993. 3

[17] A. A. Markov. On the inversion complexity of a system of functions. J. ACM, 5(4):331–334,

October 1958. 16

[18] M. Santha and C. Wilson. Limiting negations in constant depth circuits. SIAM Journal on

Computing, 22(2):294–302, 1993. 2, 5, 26, 27, 32, 35

33

[19] Swagato Sanyal. Fourier sparsity and dimension. Theory of Computing, 15(11):1–13, 2019. 3

[20] Michael Sipser. Borel sets and circuit complexity. In Proceedings of the Fifteenth Annual ACM

Symposium on Theory of Computing, STOC 83, pages 61–69, 1983. 26

[21] Marc Snir. Proving lower bounds for linear decision trees. In International Conference on

Automata, Languages and Programming, pages 305–315, 1981. 3

[22] J Michael Steele and Andrew C Yao. Lower bounds for algebraic decision trees. Technical

report, Department of Computer Science, Stanford University, 1980. 3

[23] Andrew C. Yao and Ronald L. Rivest. On the polyhedral decision problem. SIAM Journal on

Computing, 9(2):343–347, 1980. 3

[24] Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of boolean functions.

Theoretical Computer Science, 411(26):2612 – 2618, 2010. 3

A Appendix

A.1 Proof of Monotone Decomposition Lemma (Lemma 3.1)

Proof. We reproduce the proof of Lemma 1 in [6] bringing out the details to substantiate the extra

properties that we need. Recall that number of alternations of a chain X w.r.t. a function f ,

alt(f,X) is the number of times the value of f changes as we move along X .

For an input x ∈ {0, 1}n, we define as af (x) := max{alt(f,X)}, where X is any chain starting

at x. Note that alt(f) = maxx{af (x)} = af (0
n). We use induction on k = alt(f) to prove the

lemma.

The base case alt(f) = 0 means f is either 0 or 1 for all inputs. When f(0n) = 0, we have

f(x) = 0 and when f(0n) = 1, we have f(x) = 1 = ¬(0). We thus can trivially decompose f into

k = 0 many monotone functions.

Now we assume that the claim is true for all functions on n variables with alternation less than

k and prove it for the function f with alt(f) = k. For 1 ≤ i ≤ k, we define the following Boolean

function on n variables:

gi(x) = 1 ⇐⇒ af (x) < i.

We shall show that these gi’s are actually the desired monotone components fi’s. Firstly note that

all gi’s are monotone as for any pair of inputs x ≺ y, we have af (y) ≤ af (x) and hence gi(x) ≤ gi(y).

Also, the implication property holds because gi(x) = 1 ⇒ af (x) < i < i+ 1 ⇒ gi+1(x) = 1.

We will argue that f is indeed equal to g1 ⊕ g2 ⊕ · · · ⊕ gk when f(0n) = 0. A similar derivation

can be done for f(0n) = 1 case. Consider the function f ′ := f ∨ gk. We will prove the following

properties of f ′.

34

• f ′(0n) = 1: As alt(f) = k, there would be at least one chain (call X ∗) whose alternation

w.r.t. f is k. Hence, af (0
n) = a(f,X ∗) = k and gk(0

n) = 0, which implies f ′(0n) = f(0n) ∨
gk(0n) = 1.

• alt(f ′) = k − 1: We will argue that for any chain X ∗ ≡ ⟨x(1), x(2), . . . x(l)⟩, if alt(f,X ∗) = k,

then alt(f ′,X ∗) = k − 1. Note that as f(0n) = 0, there exists a first index p such that

f(x(p)) = 1 (as k > 0). By definition of gk, each of x(1), . . . , x(p−1) does not satisfy gk (for

any 1 ≤ i ≤ p− 1, the suffix-chain Ci of X ∗ starting at x(i) has alt(f, Ci) = k, thereby making

gk(x
(i)) = 0).

Thus the values of f ′ = f ∨ gk become 1 for the first p− 1 inputs. Since we know f(x(p)) = 1

and alt(f,X ∗) = k, we get that alt(f ′,X ∗) = k − 1. We can also argue that there is no chain

with alternations more than k − 1 w.r.t. f ′. Therefore, alt(f ′) = k − 1.

As alt(f ′) < k, by induction hypothesis we obtain the functions g′1, g
′
2, . . . , g

′
k−1 with implica-

tion property and f ′ = ¬(g′1 ⊕ g′2 ⊕ · · · ⊕ g′k−1).

• ∀i ∈ [k−1], g′i ≡ gi: If an input x satisfies gk(x) = 0, it means af (x) = k, and hence gi(x) = 0

for i ∈ [k− 1]. In the above part notice that we showed alt(f ′,X) = k− 1 when alt(f,X) = k.

This means g′i(x) = 0 too for all i ∈ [k − 1].

On the other hand, for inputs x such that gk(x) = 1, observe that f ′(x) = f(x). As af (x) and

af ′(x) depend on the values of the corresponding functions only “above” x and the functions

gi and g′i are defined based on these values, they must be equal.

Hence for all x, we have g′i(x) = gi(x). By our definition of gk, it can be shown that f ⇒ gk

is a tautology. This fact along with f ′ = f ∨gk implies that f ≡ f ′⊕gk = g′1⊕ . . . g′k−1⊕gk =

g1 ⊕ · · · ⊕ gk.

A.2 AC0 Inverter Construction for Sorted Inputs - Adaptation from [18]

Proof. We elaborate on the construction used in the proof of Theorem 1.3. We present the con-

struction due to [18] in our simpler notation and setting. Divide s into t = nϵ contiguous blocks

B1, B2, . . . , Bt each of length p := m/nϵ = O(nk−ϵ). Observe that the negation of block Bi is of

the form 1p or 0p or 1j0p−j for some 0 ≤ j ≤ p, based on whether Bi witnesses switching from 0s

to 1s in s. Our objective is to construct an AC0 circuit using only O(nϵ) negations.

Let Br denote the block which contains this index where the switch happens. Call such a

block special for a given s. Note that there is at most one such block. For each block Bi, define

bi = Bi[1] ⊕ Bi[p] – i.e., the parity of the first and last bits of the block Bi. Notice that the

bit bi indicates whether Bi is special or not. Thus, we can obtain the special block as follows

Br = ∨t
i=1 ((bi)

p ∧Bi) where ∧ and ∨ are bit-wise, and (bi)
p is the bit bi repeated p times.

35

Once we have the bits of the special block Br, we naively invert all its individual bits carried

in the wires produced above to get Bneg := Br. What remains is to identify which type each block

Bi is, and appropriately wire to produce 1p or 0p or Bneg as their inversions.

This is done as follows: the inversion of Bi is ((bi)
p∧Bneg)∨(

(
bi
)p∧(ci)p) where ci is the first bit

of Bi. To check this, note that the output of the above expression is Bneg if bi = 1; otherwise it is

0p if ci = 1, and is 1p if ci = 0. The number of negations used is O(nϵ)+O(nk−ϵ), the first part for

producing bi’s and ci’s, and the second part to produce Bneg, all of which can be wired commonly

for all the blocks. If ϵ > k
2 , we are done. Otherwise, we have reduced the number of negations

to O(nk−ϵ). To reduce the exponent even further, we apply this construction recursively to invert

Br, which again, by definition sorted. This reduces the exponent additively by ϵ by suffering an

increase of only constant depth at each level. Thus, in ⌈k/ϵ⌉ levels we would get an inverter with

only O(nϵ) negations. The size of the circuit is polynomial in n as the number of gates introduced

in each level is only linear in the number of sorted bits.

36

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

