
Diagonalization Games

Noga Alon1,5, Olivier Bousquet6, Kasper Green Larsen4,
Shay Moran2,3,6, and Shlomo Moran2

1Departments of Mathematics and Computer Science, Tel Aviv University
2Department of Computer Science, Technion, Israel

3Department of Mathematics, Technion, Israel
4Department of Computer Science, Aarhus University
5Department of Mathematics, Princeton University

6Google Research

January 5, 2023

Abstract

We study several variants of a combinatorial game which is based on Cantor’s diagonal
argument. The game is between two players called Kronecker and Cantor. The names of the
players are motivated by the known fact that Leopold Kronecker did not appreciate Georg
Cantor’s arguments about the infinite, and even referred to him as a “scientific charlatan”.

In the game Kronecker maintains a list of m binary vectors, each of length n, and Cantor’s
goal is to produce a new binary vector which is different from each of Kronecker’s vectors, or
prove that no such vector exists. Cantor does not see Kronecker’s vectors but he is allowed
to ask queries of the form

“What is bit number j of vector number i?”

What is the minimal number of queries with which Cantor can achieve his goal? How much
better can Cantor do if he is allowed to pick his queries adaptively, based on Kronecker’s
previous replies?

The case when m = n is solved by diagonalization using n (non-adaptive) queries. We
study this game more generally, and prove an optimal bound in the adaptive case and nearly
tight upper and lower bounds in the non-adaptive case.

1 Introduction

The concept of infinity has been fascinating philosophers and scientists for hundreds, perhaps
thousands of years. The work of Georg Cantor (1845 – 1918) played a pivotal role in the
mathematical treatment of the infinite. Cantor’s work is based on a simple notion which asserts
that two (possibly infinite) sets have the same size whenever their elements can be paired
in one-to-one correspondence with each other [Can74]. Despite being simple, this notion has
counter-intuitive implications: for example, a set can have the same size as a proper subset of it1;
this phenomena is nicely illustrated by Hilbert’s paradox of the Grand Hotel, see e.g. [Wik22b].

This simple notion led Cantor to develop his theory of sets, which forms the basis of modern
mathematics. Alas, Cantor’s set theory was controversial at the start, and only later became
widely accepted:

1E.g. the natural numbers and the even numbers, via the correspondence “n 7→ 2n”.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 2 (2023)

Figure 1: Georg Cantor (1845 – 1918) Figure 2: Leopold Kronecker (1823 – 1891)

The objections to Cantor’s work were occasionally fierce: Leopold Kronecker’s public opposition
and personal attacks included describing Cantor as a ”scientific charlatan”, a ”renegade” and a

”corrupter of youth”. Kronecker objected to Cantor’s proofs that the algebraic numbers are
countable, and that the transcendental numbers are uncountable, results now included in a

standard mathematics curriculum. [Wik22a]

1.1 Diagonalization

One of the most basic and compelling results in set theory is that not all infinite sets have the same
size. To prove this result, Cantor came up with a beautiful argument, called diagonalization.
This argument is routinely taught in introductory classes to mathematics, and is typically
presented as follows. Let N denote the set of natural numbers and let {0, 1}N denote the set of
all infinite binary vectors. Clearly both sets are infinite, but it turns out that they do not have
the same size: assume towards contradiction that there is a one-to-one correspondence j 7→ vj ,
where vj = (vj(1), vj(2), . . .) is the infinite binary vector corresponding to j ∈ N. Define a vector

u = (1− v1(1), 1− v2(2), . . .).

That is, u is formed by letting its j’th entry be equal to the negation of the j’th entry of vj .
Notice that this way the resulting vector u disagrees with vj on the j’th entry, and hence

u 6= vj for all j. Thus, we obtain a binary vector which does not correspond to any of the natural
numbers via the assumed correspondence – a contradiction.

Rather than reaching a contradiction, it is instructive to take a positivist perspective according
to which diagonalization can be seen as a constructive procedure that does the following:

Given binary vectors v1, v2, . . ., find a binary vector u such that u 6= vj for all j.

Moreover, notice that Cantor’s diagonal argument involves querying only a single entry per
each of the input vectors vj (i.e. the “diagonal” entries vj(j)). Thus, it is possible to construct u
while using only a little information about the input vectors vi’s (a single bit per vector).

In this manuscript we study a finite variant of the problem in which m binary vectors
v1, . . . , vm of length n are given and the goal is to produce a vector u which is different from all
of the vi’s, or to report that no such vector exists, while querying as few as possible entries of
the vi’s. We first study the case when m < 2n whence such a u is guaranteed to exist, and the
goal boils down to finding one, and later the case when m ≥ 2n.

2

v1 = 0, 1, 1, 0, 1, 0

v2 = 1, 0, 0, 1, 1, 1

v3 = 1, 1, 1, 0, 0, 0

v4 = 0, 1, 0, 1, 1, 0

v5 = 1, 1, 0, 1, 0, 1

v6 = 0, 1, 1, 1, 1, 1

u = 1, 1, 0, 0, 1, 0

Figure 3: An illustration of Cantor’s diagonalization: the vector u at the bottom is not equal to
any of the vi’s at the top.

2 The Cantor-Kronecker Game

Consider a game between two players called Kronecker and Cantor. In the game there are
two parameters m and n, where m, n are positive integers. Kronecker maintains a set V =
{v1, v2, . . . , vm} of m binary vectors, each of length n. Cantor’s goal is to produce a binary
vector u, also of length n, which differs from each vi, or to report that no such vector exists. To
do so, he is allowed to ask queries, where each query is of the form

“What is bit number j of vector number i?”,

where 1 ≤ j ≤ n, 1 ≤ i ≤ m. Kronecker is answering each query being asked. The objective
of Cantor is to minimize the number of queries enabling him to produce u, whereas Kronecker
tries to maximize the number of queries. We distinguish between two versions of the game:

• In the adaptive version Cantor presents his queries to Kronecker in a sequential manner,
and may decide on the next query as a function of Kronecker’s answers to the previous
ones.

• In the oblivious version Cantor must declare all of his queries in advance, before getting
answers to any of them.

For m ≤ n the smallest number of queries, both in the adaptive and oblivious versions, is m.
Indeed, Cantor can query bit number i of vi for all 1 ≤ i ≤ m and return a vector u whose i’th
bit differs from the i’th bit of vi, for all i. The lower bound is even simpler: if Cantor asks less
than m queries then there is some vector vi about which he has no information at the end of the
game. In this case he cannot ensure that his vector u will not be equal to this vi.

Organization. We begin with the case where m < 2n: in the next section (Section 3) we
derive nearly tight bounds both in the adaptive and oblivious cases. We do so by exhibiting and
analyzing near optimal strategies for Cantor. Then, in Section 4 we consider the case where
m ≥ 2n and derive an optimal bound of m ·n in this case (for both the oblivious and the adaptive
versions). We do so by exhibiting and analyzing an optimal strategy for Kronecker. Finally, in
Section 5 we discuss some algorithmic aspects, and conclude with some suggestions to future
research.

3

3 The Cantor-Kronecker Game with m < 2n

3.1 Adaptive Version

Theorem 3.1. Let g(n,m) denote the smallest number of queries that suffices for Cantor when
he is allowed to use adaptive strategies. Then,

g(n,m) =

{
m m ≤ n,

2m− n n < m < 2n.

The case 1 ≤ m ≤ n is proved in the previous section so we assume n ≤ m < 2n.

Upper Bound. We present a strategy for Cantor which combines diagonalization with another
simple idea. To illustrate this idea let us first consider the case m = n + 1. This special case
appeared as a question in the 2022 Grossman Math Olympiad for high-school students, and so
perhaps the reader might enjoy trying to solve it before continuing reading.

Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first bit of v1, v2, and
of v3. Getting the answers, there is a bit ε so that at least two vectors among v1, v2, v3 have
their first bit equals to ε. Cantor now defines the first bit of u to be u(1) = 1− ε and can remove
the two vectors among v1, v2, v3 whose first bit equals ε. Now Cantor is left with at most n− 1
vectors and can therefore set the last n− 1 coordinates of u according to the diagonalization
construction.

The general case is handled similarly by induction on n: for n = 1 since n ≤ m < 2n, also m
must be 1 and the result is trivial.

Assuming the result for n− 1, let v1, . . . , vm be the m vectors of Kronecker. First, note that
there is an integer x satisfying 1 ≤ x ≤ dm/2e so that n− 1 ≤ m− x < 2n−1: indeed, for x = 1
we have m− x ≥ n− 1 and for x = dm/2e we have m− x ≤ m/2 < 2n−1. Starting from x = 1
keep increasing it in steps, where in each step it is increased by 1, until it reaches dm/2e. As
m− x changes by 1 in each step we can take the smallest x ≥ 1 that satisfies m− x < 2n−1, and
it will clearly be at most dm/2e and satisfy m− x ≥ n− 1 as well.

Having x as above, Cantor first queries the first bit of each of the vectors v1, v2, . . . , v2x−1.
(Note that 2x− 1 ≤ m hence this is possible). Getting the answers, there is a bit ε ∈ {0, 1} so
that at least x of the vectors have their first bit equal to ε. Cantor now defines the first bit of
his vector u to be 1 − ε, removes from the set V exactly x of the vectors whose first bit is ε,
and defines as V ′ the set of all restrictions of the remaining m− x vectors to their last n− 1
coordinates. Note that n− 1 ≤ m− x < 2n−1.

By the induction hypothesis, Cantor can now play the game for the set V ′ producing an
appropriate vector u′ by asking at most 2(m− x)− (n− 1) additional queries. The total number
of queries is thus (2x− 1) + 2(m− x)− (n− 1) = 2m− n, as needed. The vector u obtained
by concatenating the 1-bit vector 1− ε and the vector u′ is clearly different from each member
of V . This completes the induction step argument and finishes the proof of the upper bound.

Lower Bound. For the lower bound, we present a strategy for Kronecker which essentially
mirrors Cantor’s strategy from the upper bound. Suppose Cantor manages to produce the
required vector u after making exactly bj queries in coordinate number j of some of the vectors vi.
Kronecker chooses his answers ensuring that for each such j, the answers for bits in the j’th
location are balanced, that is, at most dbj/2e of the answers are 0 and at most dbj/2e of the
answers are 1.

Consider the vector u produced by Cantor. For every 1 ≤ j ≤ n, there are at most dbj/2e
vectors vi known to be different than u in coordinate number j. Thus altogether there are at

4

most
n∑

j=1

⌈bj
2

⌉
≤

n∑
j=1

bj + 1

2
.

vectors vi that are known to Cantor to be different than u. In order to ensure u is indeed
different from each vi this number has to be at least m and hence

m ≤
n∑

j=1

bj + 1

2
.

By rearranging, this implies that the total number of queries
∑n

j=1 bj must be at least 2m− n,
as stated.

3.2 Oblivious Version

Theorem 3.2. Let f(n,m) denote the smallest number of queries that suffices for Cantor when
he is restricted to use oblivious strategies. Then,

f(n,m) =

{
m m ≤ n

m
(

log
⌈
m
n

⌉
+ o
(
log
⌈
m
n

⌉))
n < m < 2n.

Quantitatively, for all n < m < 2n

m ·
(

log
(m

n− logm + 1

)
− 1
)
≤ f(n,m) ≤ m

⌈
log
(2m

n

)
+ 2 log

(
log
(2m

n

))
+ 1
⌉
,

The case 1 ≤ m ≤ n is proved above so we assume n < m < 2n.

Upper Bound. Like in the adaptive case, we present a strategy for Cantor which combines
diagonalization with another simple idea. We first illustrate this idea by handling the case m =
n + 1, and again, we encourage the reader to try and handle this case before continuing reading.

Let v1, . . . , vn+1 be the input vectors. Cantor begins with querying the first two bits of each
of v1, v2, and v3 (for a total of 6 queries). Notice that there are 22 = 4 possible combinations of
0/1 patterns on the first two bits, but at most three of them are realized by v1, v2, v3. Hence,
there must be a pair of bits ε1, ε2 which is not realized by v1, v2, nor v3:

(ε1, ε2) /∈
{(

v1(1), v1(2)
)
,
(
v2(1), v2(2)

)
,
(
v3(1), v3(2)

)}
.

Thus, by setting u(1) = ε1 and u(2) = ε2, Cantor rules out v1, v2, v3 and is left with n−2 vectors
v3, . . . , vn+1 which can be obliviously ruled out with the last n− 2 using diagonalization.

For the general case, let d be an integer (to be determined later). Pick mutually disjoint
subsets of coordinates J1, . . . , Jbn/dc ⊆ [n], each of size d, and pick a partition of the m vectors to
bn/dc subsets V1, . . . , Vbn/dc such that the partition is as balanced as possible (i.e. the difference
between each pair of sizes is ≤ 1). Thus, each set has size

|Vi| ≤
⌈ m

bn/dc

⌉
≤ 2md

n
.

Cantor queries (obliviously) as follows.

For each i and each vector in Vi query all the coordinates in Ji.

5

Thus, the total number of queries is exactly m · d. Now, notice that if d satisfies

2d >
2md

n
, (1)

then there must exist an assignment fi : Ji → {0, 1} such that fi disagrees with each of the
vectors in Vi on at least one coordinate in Ji. Hence Cantor can output the vector u, which
agrees with each of the fi on Ji. Note that Equation 1 is satisfied iff 2d

d > 2m
n ; since m > n,

it can be verified that this inequality holds when d ≥ log(2mn) + 2 log(log(2mn)) + 1. Thus for

d =
⌈
log
(
2m
n

)
+ 2 log

(
log
(
2m
n

))
+ 1
⌉
, the total number of queries is at most

m · d = m
⌈
log
(2m

n

)
+ 2 log

(
log
(2m

n

))
+ 1
⌉
.

Lower Bound. The lower bound proof is based on the following simple idea. Let Ji denote
the set of coordinates of vi which Cantor queries. Thus, the total number of queries Cantor uses
is |J1|+ . . . + |Jm|. Now, let fi : Ji → {0, 1} denote Kronecker’s answers for the queries on vi.
The crucial observation is that the vector u that Cantor outputs must satisfy

(∀i) : u|Ji 6= fi.

Indeed, if u|Ji = fi for some i then Kronecker can fail Cantor by picking his i’th vector vi to be
equal to Cantor’s output u (which would be consistent with Kronecker’s answers).

We summarize the above consideration with a definition that characterizes the winning (or
losing) strategies of Cantor in the oblivious case.

Definition 3.3 (Covering Assignments). We say that a sequence of sets J1, . . . , Jm ⊆ [n]
has a covering assignment if there are m functions fi : Ji → {0, 1} such that every binary
vector v ∈ {0, 1}n agrees with one of the fi on Ji (i.e. v|Ji = fi).

Thus, Kronecker has a winning strategy if and only if the sequence of sets J1, . . . , Jm that
Cantor queries has a covering assignment. The following lemma establishes the lower bound.

Lemma 3.4. Let J1, . . . , Jm ⊆ [n] such that

|J1|+ . . . + |Jm| < m ·
(

log
(m

n− logm + 1

)
− 1
)
. (2)

Then, J1, . . . , Jm has a covering assignment.
Equivalently, if for each vector vi Cantor queries its entries in Ji and Equation 2 holds, then

Kronecker has a winning strategy.

Proof. Let ti = |Ji| and let t =
∑

i ti. Assume, without loss of generality, that t1 ≤ t2 ≤ . . . ≤ tm.
To prove a lower bound of the form md for t, where d will be specified later, we show that if t is
smaller than md then there are m functions fi : Ji → {0, 1} so that for every possible vector
v ∈ {0, 1}n there is i ≤ m so that v|Ji = fi.

We do so by explicitly constructing the fi’s (which corresponds to describing a winning
strategy for Kronecker). Starting with the set V = {0, 1}n of all possible potential vectors z,
go over the vectors vi in order. In step i we choose the function fi : Ji → {0, 1} such that
|{v ∈ V : v|Ji = fi}| is maximized. Since there are 2ti possible choices for fi, the maximizing
choice satisfies ∣∣∣{v ∈ V : v|Ji = fi}

∣∣∣ ≥ |V |
2ti

.

6

After picking fi, we remove all the vectors of V that agree with fi and proceed to the next step.
Therefore, after the first i steps, the size of the set V of the remaining vectors is at most

2n
i∏

j=1

(1− 1/2tj).

We can continue with this analysis until the size of the set V becomes smaller than 1, namely
the set becomes empty. It is a bit better, however, to apply a simpler reasoning once the size
of V becomes smaller than 2d, and only argue that at least one vector from V is eliminated
in each step. (Continuing the same analysis as before would only guarantee that V shrinks by
a factor of (1 − 1/2ti) which by the choice of d would be roughly 1 − 1/2d < 1). To simplify
the computation it is not too wasteful to apply the simpler analysis already when the size of
V becomes smaller than m/2. If this happens in the first m/2 steps then by removing a single
vector in each of the remaining steps we will eliminate all of the vectors. This means that if

2n
m/2∏
j=1

(
1− 1/2tj

)
≤ m

2

then the sequence J1. . . . , Jm has a covering assignment. Since d is such that the total number of

queries is m · d, the above amounts to
∑m/2

j=1 tj ≤ md/2; that is, the average tj for 1 ≤ j ≤ m/2
is at most d. This implies that

2n

m
2∏

j=1

(
1− 1

2tj

)
≤ 2n

m
2∏

j=1

exp
(
− 1

2tj

)
(1 + x ≤ exp(x) for all x ∈ R)

= 2n exp
(
−

m
2∑

j=1

1

2tj

)
≤ 2n exp

(
− m

2d+1

)
,

where the last inequality follows because exp(−x) is decreasing and because

m
2∑

j=1

1

2tj
≥ m

2
· 1

2
1

m/2

∑m/2
j=1 tj

≥ m

2
· 1

2d
,

which follows by convexity of the function f(x) = 2x and because t1 ≤ t2 ≤ . . . ≤ tm.
We have thus shown that if |J1|+ . . . + |Jm| = m · d such that

2n exp
(
− m

2d+1

)
≤ m

2

then the sequence J1, . . . , Jm has a covering assignment. The last inequality surely holds provided

m

2d+1
≥ n + 1− logm.

That is, provided

2d+1 ≤ m

n + 1− logm
,

or
d ≤ log

(m

n + 1− logm

)
− 1

completing the proof.

7

4 The Cantor-Kronecker Game with m ≥ 2n

Assume now that Kronecker’s list V consists of m ≥ 2n binary vectors of length n. In this case
V may contain all the binary vectors of length n and there is no vector Cantor can output that
is different from each vector on Kronecker’s list. In this regime it is more natural to first focus
on the decision problem in which Cantor’s goal is to decide whether V contains {0, 1}n, and if
this is not the case, to provide a vector which is not in V .2 Clearly Cantor can achieve this if he
queries all mn possible queries. Can he do better?

We first observe that mn queries are in fact needed in the oblivious case: assume that Cantor
submits only mn− 1 queries, and leaves the j’th bit of vi unqueried. Then Kronecker may set vi
to be the unique occurrence of the all ones vector 1n, and set the remaining m− 1 vectors in V
to include all 2n − 1 vectors that are different from the all ones vector. Clearly, it is necessary
for Cantor to query also the last bit of vi in order to see whether vi is the all ones vector or not.
Consequently, Cantor must query all mn queries in the oblivious case.

How about the adaptive case? A similar argument shows that for m = 2n, Kronecker can
force mn = 2nn queries also in the adaptive case, by using a list which contains each binary
vector of length n exactly once: indeed, if only mn − 1 bits are queried, then the last, yet
unqueried bit, belongs to a vector which occurs only once in V . Hence it is necessary to get the
value of this bit in order to verify that V contains all 2n vectors.

The case when m > 2n turns out to be more subtle. Nevertheless, we prove that mn queries
are necessary even in this case. We start with introducing some notation.

Notation. Each step of the game consists of a query by Cantor followed by a response by
Kronecker. The status of the game after each such step is given by an m× n matrix L, where
L(i, j) denotes the status of the j’th bit of vi, that is: L(i, j) ∈ {0, 1, ?}, where L(i, j) = ? means
that the j’th bit of vi was not queried yet, and otherwise L(i, j) equals the value of this bit as
answered by Kronecker.

Definition 4.1. FIXED(L) =
{
v ∈ L : v ∈ {0, 1}n

}
. That is, FIXED(L) is the set of all vectors

in L that were fully queried by Cantor.

Definition 4.2. L is complete if FIXED(L) = {0, 1}n.

Definition 4.3. A subset S of 2n rows of L is useful if it either contains all the 2n binary vectors
of length n, or it can be converted to this set by replacing each ?-entry in S by 0 or 1.

Definition 4.4. A matrix L is unblocked if it can be completed; that is, if L has a useful subset.
Otherwise L is called blocked.

Notice that for m ≥ 2n, the m by n matrix all whose entries are ? is unblocked.
As a warmup, and to get used to the definitions, let us assume first that Cantor’s queries

the vectors one by one according to their order; i.e. he first queries all the bits of v1 from left
to right, then all the bits of v2 from left to right, and so on. We use the following strategy for
Kronecker: when Cantor queries the j’th bit of vi (i.e. the value of L(i, j)), Kronecker replies
according to the following “0 first” strategy:

modified value of L(i, j) =

{
1 If setting L(i, j) to 0 blocks L

0 otherwise
(3)

It is not hard to verify that since Cantor queries the vectors one by one, and from left (most
significant bit) to right, the following matrix is produced: each of the first m− 2n + 1 rows will

2Later we will see that the decision and search variants are in fact equivalent.

8

be set to the all-zeros vector, and the last 2n − 1 rows will be set to the 2n − 1 non zero vectors
in increasing lexicographical order: starting with 0n−11 and ending with 1n. Hence Cantor is
forced to query all mn entries as in the oblivious case.

Interestingly, it turns out that, for any strategy of Cantor, the above “0 first” strategy of
Kronecker forces Cantor to make mn queries.

Theorem 4.5. Let m > 2n. Then for any strategy of Cantor, the “0 first” strategy of Kronecker
forces Cantor to make mn queries in order to determine if L contains {0, 1}n.

In the following we consider an arbitrary execution of the game, where Kronecker follows the
“0 first” strategy (and Cantor’s strategy is arbitrary). We denote by Lt the m×n matrix L after
t steps of the game; thus L0 is the initial matrix which is filled only with ?’s.

By the fact that if L is unblocked and L(i, j) = ?, then it is possible to set L(i, j) to 0 or
to 1 without blocking L, we get:

Observation 4.6. If Lt is unblocked, so is Lt+1. Hence Lmn is complete; i.e. it contains {0, 1}n.

Definition 4.7. We say that a row L(i) is essential for an unblocked matrix L if every useful
subset of L’s rows contains L(i).

Note that if Lt(i) is essential for Lt, then Ls(i) is essential for Ls for all s ≥ t. Also, if Lmn(i)
is essential for Lmn, then Lmn(i) is equal to a unique vector in {0, 1}n which is different from all
other rows of Lmn.

Lemma 4.8. Assume that Lt(i) is not essential for Lt and Lt(i, j) = ?. If Lt(i, j) is queried at
time t + 1, then it is set to 0, i.e. Lt+1(i, j) = 0.

Proof. By the “0 first” strategy, and the fact that if L(i) is not essential for an unblocked
matrix L, then setting L(i, j) to 0 does not block L.

By a straightforwards induction Lemma 4.8 implies:

Corollary 4.9. If Lt(i) is not essential for Lt, then Lt(i) contains no 1’s (only 0’s or ?’s).
Specifically, if Lmn(i) is not essential for Lmn, then Lmn(i) is the zero vector 0n. Hence, every
row of Lmn which is not the zero vector is essential, and thus it is different from all other rows
of Lmn.

Lemma 4.10. Let Lmn−1(i, j) be the last bit queried in the game. Then Lmn−1(i) is an essential
row of Lmn−1.

Proof. To simplify notation, we assume without loss of generality that j = 1. Assume towards
contradiction that Lmn−1(i) is not essential for Lmn−1. By Corollary 4.9, this implies that
Lmn−1(i) = ?0n−1 and Lmn(i) = 0n. (i.e. Kronecker sets Lmn−1(i, 1) to 0 at Cantor’s mn’th
query). Since Lmn is complete (Observation 4.6), this implies that Lmn−1 contains a distinct
occurrence of each of the 2n − 1 nonzero vectors of {0, 1}n, and in particular for some k 6= i,
Lmn−1(k) is the unique row of Lmn−1 which equals 10n−1. Then, any subset S of Lmn−1 which
contains

• the row Lmn−1(i),

• the 2n − 2 non zero rows of Lmn−1 excluding Lmn−1(k), and

• some zero row of Lmn−1 (by Corollary 4.9 there are m− 2n > 0 such rows in Lmn−1),

9

is a useful subset of Lmn−1 which does not contain Lmn−1(k). Hence Lmn−1(k) is not essential
for Lmn−1, and by Lemma 4.8 Lmn−1(1) = 0 6= 1, which stands in contradiction with Lmn−1(1) =
10n−1.

Proof of Theorem 4.5. Let Lmn−1(i, j) be the last query in the game. By Lemma 4.10, Lmn−1(i),
and hence also Lmn(i), is essential, meaning that Lmn(i) is different from all other rows of Lmn.
Thus Cantor must get the value of Lmn−1(i, j) in order to reach a decision.

A remark on computational complexity. A naive implementation of the “0 first” strategy
might take exponential time: indeed, it requires checking whether setting the queried bit to 0
blocks the current matrix, which involves checking a potentially exponential list of constraints.
Nevertheless, we next show that this strategy in fact admits a polynomial time implementation.
Firstly, notice that the first m− 2n steps are trivially efficient, because setting L(i, j) to any
value cannot block L (since at least 2n rows of L are not queried yet).

Thus it suffices to show that in each later step, deciding whether setting L(i, j) to 0 blocks
the matrix, can be performed in time which is polynomial in mn, the size of L. Let Lt be the
matrix L after t steps of the game, t > m− 2n. Consider the bipartite graph Gt = (At, B,Et),
where At = {Lt(i) : 1 ≤ i ≤ m} is the set of rows of Lt, B = {0, 1}n, and (Lt(i), u) ∈ Et if
and only if Lt(i) can be converted to the binary vector u by replacing the ?’s in Lt(i) (if any)
by binary digits. Then, a subset S of Lt is useful for Lt if and only if Gt contains a perfect
matching between the vertices in At which correspond to S and B.

Assume now that we are given the graph Gt, and the corresponding matching, and let Lt(i, j)
be the entry queried by Cantor at step t+1. To check if setting Lt(i, j) to 0 blocks Lt, we remove
from Gt all the edges (Lt(i), u) in which u(j) = 0, and check if the resulted graph contains a
perfect matching. Since we are given a perfect matching Mt for Gt, and removing these edges
eliminates at most one edge from Mt, this checking can be done by executing one phase in some
classical algorithm for bipartite matching, which can be done in O(|Et|) = O(m2n) = O(m2)
time (see e.g. [Eve11]).

5 Concluding Remarks and Future Research

We studied the Cantor-Kronecker game for different values of m and n: when m ≤ n the trivial
lower bound of m is tight (a lower bound of m follows because Cantor must query at least one
bit in each vector); when m ≥ 2n, the trivial upper bound of mn is tight (an upper bound of
mn follows because querying all the bits is clearly sufficient); when n < m < 2n the landscape
is more interesting, and in particular the bounds depend on whether Cantor is adaptive or
oblivious.

Further Research. We conclude with suggestions for possible future research:

1. Study the Cantor-Kronecker game when there are r rounds of adaptivity: i.e. there are
r rounds in which Cantor can submit queries, and in each round the submitted queries
may depend on Kronecker’s answers to queries from previous rounds. How does the query
complexity change as a function of r? Note that r = 1 is the oblivious case and r =∞ is
the adaptive case. (In fact r = n is already equivalent to r =∞.)

2. Consider the following generalization of the game. Let k ≤ m, ` ≤ n be positive integers.
Kronecker maintains an m×n binary matrix, and Cantor queries the entries of Kronecker’s
matrix. Cantor’s goal is to find a k × ` matrix which does not appear as a submatrix of
Kronecker’s m × n matrix, or to decide that one does not exist. So, the original game

10

is when k = 1, ` = n. What is the query complexity as a function of k, `,m, n in the
adaptive/oblivious case? For which values does Cantor have a strategy that uses strictly
less than m · n queries?

3. Find tighter bounds for the oblivious case. Specifically, notice that Cantor’s original
diagonalization provides tight bound on the number of queries needed for the oblivious
case when m ≤ n. It will be interesting to derive tight bounds and optimal strategies in
the remaining cases. As we exemplify below, this question has connections with natural
combinatorial problems.

Consider the case when m is at the other end of the scale, namely 2n−1 ≤ m < 2n. Then,
Cantor can win the game by querying nm − d bits, where d = 2n −m − 1. In fact, it
suffices that Cantor chooses his queries such that each of the d unqueried entries belongs
to a different vector: in this case any assignments of values to the unqueried entries covers
(in the sense of Definition 3.3) the m− d fully queried vectors, and at most two additional
vectors per each of the remaining d vectors (each of which contains one unqueried entry):
altogether at most (m− d) + 2d = m + d vectors. Hence, Cantor is guaranteed to win the
game provided that m + d < 2n (equivalently d ≤ 2n −m− 1).

Is the above strategy optimal? i.e., can Kronecker win the game when Cantor queries only
mn− (2n −m) bits? Informally, Kronecker has a winning strategy if, for any distribution
of the 2n −m unqueried entries, there is an assignment which covers sufficiently many
vectors. This is formalized below.

Definition 5.1 (cube(v), J-cube). Let v be a vector with possibly some unqueried entries.
cube(v) is the set of binary vectors which can be obtained by replacing the unqueried
entries in v by zeros or ones. In particular, cube(v) = {v} if v is fully queried. The cube
cube(v) is called a J-cube if J = {j : the j′th bit of v is not queried}. For j ∈ [n], a
{j}-cube is denoted by j-edge.

Assume that Cantor distributes the (2n −m) unqueried entries among vectors v1, . . . , vq.
Then Kronecker answers to the queried entries define a cube C(vi) for each vector vi.
Kronecker wins if and only if those cubes cover {0, 1}n. Hence Kronecker has a winning
strategy when Cantor uses mn− (2n −m) queries (2n−1 + 1 ≤ m < 2n) if and only if the
following holds:

Conjecture 5.2. Let d = 2n −m < 2n−1. For any collection J1, J2, . . . , Jq of nonempty
subsets of [n] satisfying

∑q
i=1 |Ji| = d, there are cubes C1, . . . , Cq s.t. Ci is a Ji-cube, and

|
⋃q

i=1Ci| ≥ d + q.

The following result of [FHK93] proves Conjecture 5.2 for the case that each Ji-cube is a
ji-edge.

Theorem 5.3 ([FHK93]). Let d < 2n−1. For any multiset D = {j1, j2, . . . , jd} of elements
of [n], {0, 1}n contains a matching {e1, . . . , ed} s.t. for i = 1, . . . , d, ei is a ji-edge.

It is also shown in [FHK93] that Conjcture 5.2 does not hold when d = 2n−1: in this case
a corresponding matching exists if and only if each element in [n] occurs an even number
of times in D. This implies that when m = 2n−1 Cantor has a winning strategy with only
mn− (2n −m) = mn− 2n−1 queries: he may query n− 1 entries per each vector, so that
at least one dimension is left unqueried in an odd number of vectors.

11

References

[Can74] Georg Cantor. Ueber eine Eigenschaft des inbegriffs aller reellen algebraischen Zahlen.
Journal für die reine und angewandte Mathematik (Crelles Journal), 1(77):258–262,
1874.

[Eve11] Shimon Even. Graph Algorithms. Cambridge University Press, New York, NY, USA,
2nd edition, 2011.

[FHK93] Alexander Felzenbaum, Ron Holzman, and Daniel J. Kleitman. Packing lines in a
hypercube. Discrete Mathematics, 117(1):107–112, 1993.

[Wik22a] Wikipedia contributors. Georg Cantor — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Georg_Cantor, 2022. [Online; accessed 20-November-
2022].

[Wik22b] Wikipedia contributors. Hilbert’s paradox of the Grand Hotel — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/wiki/Hilbert’s_paradox_of_the_
Grand_Hotel, 2022. [Online; accessed 20-November-2022].

12

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

