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Abstract

Frequency estimation in data streams is one of the classical problems in streaming
algorithms. Following much research, there are now almost matching upper and
lower bounds for the trade-off needed between the number of samples and the space
complexity of the algorithm, when the data streams are adversarial. However, in the
case where the data stream is given in a random order, or is stochastic, only weaker
lower bounds exist. In this work we close this gap, up to logarithmic factors.

In order to do so we consider the needle problem, which is a natural hard problem
for frequency estimation studied in (Andoni et al. 2008, Crouch et al. 2016). Here,
the goal is to distinguish between two distributions over data streams with t samples.
The first is uniform over a large enough domain. The second is a planted model; a
secret ”needle” is uniformly chosen, and then each element in the stream equals the
needle with probability p, and otherwise is uniformly chosen from the domain. It is
simple to design streaming algorithms that distinguish the distributions using space
s ≈ 1/(p2t). It was unclear if this is tight, as the existing lower bounds are weaker. We
close this gap and show that the trade-off is near optimal, up to a logarithmic factor.

Our proof builds and extends classical connections between streaming algorithms
and communication complexity, concretely multi-party unique set-disjointness. We
introduce two new ingredients that allow us to prove sharp bounds. The first is a lower
bound for an asymmetric version of multi-party unique set-disjointness, where players
receive input sets of different sizes, and where the communication of each player is
normalized relative to their input length. The second is a combinatorial technique that
allows to sample needles in the planted model by first sampling intervals, and then
sampling a uniform needle in each interval.

*Research supported by NSF awards 1953928 and 2006443.
†Research supported by NSF CAREER award 2141536.
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1 Introduction
The needle problem is a basic question studied in the context of streaming algorithms
for stochastic streams [AMS99, AMOP08, GH09, CMVW16, BVWY18]. The goal is to
distinguish, using a space-efficient single-pass streaming algorithm, between streams
sampled from two possible underlying distributions.

Setting notations, we let t denote the number of samples, s the space of the streaming
algorithm, n the domain size, and p ∈ (0, 1) the needle probability. The two underlying
distributions are:

• Uniform: sample t uniform elements from [n].

• Planted: Let x ∈ [n] be uniformly chosen (the “needle”). Sample t elements, where
each one independently with probability p equals x, and otherwise is sampled
uniformly from [n].

We will assume that n = Ω(t2) so that with high probability, all elements in the stream
(except for the needle in the planted model) are unique. The question is what space is
needed to distinguish between the two models with high probability.

Sample-space tradeoffs for the needle problem. We start with describing some basic
streaming algorithms for the needle problem, in order to build intuition. First, note that
we need p = Ω(1/t) as otherwise the two distributions are statistically close, because with
high probability the needle never appears in the planted model.

One possible algorithm is to check if there are two adjacent equal elements in the
stream. This requires t = Θ(1/p2) samples and space s = Θ(log n). Another possible
algorithm is to store the entire stream in memory, and check for a repeated element. This
algorithm requires less samples, t = Θ(1/p), but more space, s = t log n. Note that in both
cases, we get a sample-space tradeoff of st = Θ((log n)/p2). One can interpolate between
these two basic algorithms, but the value of the product st remains the same in all of them.
This motivated the following conjecture, given explicitly in [CMVW16] and implicitly in
[AMOP08].

Conjecture 1.1 (Sample-space tradeoff for the needle problem). Any single-pass streaming
algorithm which can distinguish with high probability between the uniform and planted models,
where p is the needle probability, t the number of samples and s the space, satisfies p2st = Ω(1).

The best result to date towards Conjecture 1.1 is by Andoni et al. [AMOP08] who
showed that p2.5st1.5 = Ω(1) (this bound is indeed weaker since p = Ω(1/t)). Guha et
al. [GH09] claimed to prove Conjecture 1.1 but later a bug was discovered in the proof,
as discussed in [CMVW16]. In this paper we establish Conjecture 1.1 up to logarithmic
factors. We can also handle streaming algorithms which pass over the data stream multiple
times, scaling linearly in the number of passes.
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Theorem 1.2 (Main theorem). Any ℓ-pass streaming algorithm which can distinguish with high
probability between the uniform and planted models, where p is the needle probability, t the number
of samples and s the space, satisfies ℓp2st log(t) = Ω(1).

1.1 Application: lower bound for frequency estimation in stochastic
streams

For many streaming problems, the current state-of-the-art streaming algorithms space
requirements are known to be tight (up to poly-logarithmic terms) in the adversarial
model, where the streams arrive in an adversarial order. Following a sequence of works
on the random-order model [MP80, DLOM02, GM07, CCM08, CJP08, AMOP08, GM09],
Crouch et al. [CMVW16] initiated the study of stochastic streams, where the streams are
sampled from some underlying distribution. The question is if in this model one can attain
better streaming algorithms compared to the adversarial model, utilizing the stochastic
nature of the streams; or whether the existing lower bounds can be strengthened to this
model as well. The needle problem we described is an example of a problem in the
stochastic model.

A basic problem in the streaming literature, starting with the pioneering work of
[AMS99], is that of estimating the frequency moments of a stream. Given a stream x1, . . . , xt

of elements from [n], let fx denote the number of times an element x appears in the stream.
The k-th frequency moment of the stream is

Fk =
∑
x∈[n]

fk
x .

In the adversarial model, there are matching upper and lower bounds of Θ̃(n1−2/k) 1 on
the space needed for a streaming algorithm to approximate Fk [CKS03, IW05]. It was
conjectured by [CMVW16] that the same lower bound also holds in the stochastic model.
They showed that the result of [AMOP08] gives a somewhat weaker lower bound of
Ω̃(n1−2.5/k) space, and that Conjecture 1.1, if true, implies the tight bound of Ω̃(n1−2/k).
Theorem 1.2 thus verifies their conjecture, up to logarithmic terms, which still implies a
lower bound of Ω̃(n1−2/k). We refer to [CMVW16] for further details.

We note another related application, communicated to us by David Woodruff. Mc-
Gregor et al. [MPTW12] studied streaming algorithms based on sub-sampling a data
stream. In particular, one of the problems they studied is that of frequency estimation.
They designed space-efficient streaming algorithms based on sub-sampling, and also gave
matching lower bounds, based on the results of Guha et al. [GH09]. However, as later
a bug was found in this latter work, the journal version of McGregor et al. [MPTW16]
removed the lower bounds. Using Theorem 1.2 the claimed lower bounds hold, up to a
logarithmic factor.

1We use Θ̃, Ω̃ to ignore poly-logarithmic terms.
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1.2 Proof approach
We prove Theorem 1.2 by a reduction to the unique set-disjointness problem in communi-
cation complexity. This is a common technique used to prove lower bounds for streaming
algorithms [CKS03, BYJKS04, AMOP08, GH09, BVWY18, KPW21].

The basic idea is to partition the stream samples into intervals I1, . . . , Ik and consider
the stream distribution where we place a single needle uniformly in each interval, and
sample the other elements in the stream uniformly. It is straightforward to show that any
streaming algorithm which can distinguish this distribution from the uniform distribution
using space s, can be used to construct a communication protocol that solves the k-party
unique set-disjointness problem, where player i gets a set of size |Ii|, and where each player
sends s bits. If for example we take the intervals to be of equal size |I1| = . . . = |Ik| = t/k,
then using existing tight lower bounds for multi-party unique set-disjointness, one can
prove tight sample-space lower bounds in the adversarial model2. This was the approach
taken by many of the previous works in this area [CKS03, BYJKS04, AMOP08, GH09,
BVWY18, KPW21]. Our plan is to extend this approach to the stochastic model. However,
this presents two new challenges.

First, a simple calculation shows that the number of needles is k ≈ pt with high
probability, but the gaps between needles are not uniform; for example, the two closest
needles have a gap of ≈ p2t. This necessitates taking intervals of very different lengths, if
we still plan to place one needle per interval. In turn, this requires proving lower bounds on
multi-party unique set-disjointness when the players receive inputs of different lengths. In
this model, it no longer makes sense to measure the total communication of the protocols.
Instead, we develop a new measure, which normalizes the communication of each player
relative to their input length. We expand on this in Section 1.3.

The second challenge is that using a single partition of the stream by intervals, and then
planting a uniform needle in each interval, cannot induce the planted needle distribution.
Instead, we need to carefully construct a distribution over sets of intervals, such that if
then one places a uniform needle in each interval, the resulting stream distribution mimics
exactly the planted distribution. We expand on this in Section 1.4.

1.3 Multi-party unique set-disjointness with different set sizes
We start by defining the standard multi-party unique set-disjointness problem. Let k ≥ 2
denote the number of players. The players inputs are sets S1, . . . , Sk ⊂ [n]. They are
promised that one of two cases hold:

• Disjoint: the sets S1, . . . , Sk are pairwise disjoint.

• Unique intersection: there is a common element x ∈ S1 ∩ . . . ∩ Sk, and the sets
S1 \ {x}, . . . , Sk \ {x} are pairwise disjoint.

2Concretely, the total communication of the protocol is ks, whereas the lower bound for k-party unique
set-disjointness is Ω(t/k). Thus ks = Ω(t/k). Taking k = pt gives p2st = Ω(1).
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Their goal is to distinguish which case is it, while minimizing the communication3.
Observe that under any of the two promise cases, one of the players’ inputs has size

|Si| ≤ n/k + 1. A simple protocol is that such a player sends their input, which allows the
other players to solve the problem on their own. This simple protocol sends O(n/k · log n)
bits. This can be further improved to O(n/k) bits using the techniques of [HW07]. A line
of research [AMS99, BYJKS04, CKS03, Gro09, Jay09, YZ22] studied lower bounds. A tight
lower bound was first achieved by [Gro09].

Theorem 1.3 ([Gro09, Jay09]). Any randomized communication protocol which solves the k-party
unique set-disjointness problem must send Ω(n/k) bits.

As discussed in Section 1.2, we need a fine-grained variant of the unique set-
disjointness problem, where the set sizes are fixed and can be different between the
players.

Definition 1.4 (Fixed-size multi-party unique set-disjointness). Let s1, . . . , sk ≥ 1. The
[s1, . . . , sk]-size k-party unique set-disjointness problem is a restriction of the k-party unique
set-disjointness problem to input sets of size |Si| = si.

Consider protocols for the [s1, . . . , sk]-size k-party unique set-disjointness problem. For
any i ∈ [k], one option is that the i-th player sends their input to the rest of the players,
which requires sending ci = Ω(si) bits. If the input sizes s1, . . . , sk are very different, it no
longer makes sense to consider the total amount of bits sent by the players. Instead, we
should normalize the number of bits sent by the i-th player ci by its input length si. We
prove that with this normalization, the simple protocols are indeed optimal.

Towards this, we make the following definition: a k-party protocol Π is called
[c1, . . . , ck]-bounded if in any transcript of Π, the i-th player sends at most ci bits.

Theorem 1.5 (Lower bound for fixed-size multi-party unique set-disjointness). Let Π
be a randomized k-party [c1, . . . , ck]-bounded protocol, which solves with high probability the
[s1, . . . , sk]-size k-party unique set-disjointness problem, where

∑
si ≤ n/2. Then∑

i∈[k]

ci
si

= Ω(1).

We conclude this subsection with three comments. First, the condition
∑

si ≤ n/2 is
a technical condition emerging from the proof technique; it suffices for our application,
and we believe that it can be removed in future work.

Next, it is known that the hard case for the standard multi-party unique set-disjointness
problem is when all the sets have about the same size, namely when s1 = . . . = sk =
Θ(n/k). In this case Theorem 1.5 implies

∑
ci = Ω(n/k) which recovers Theorem 1.3.

Last, we prove Theorem 1.5 by constructing a hard distribution over inputs, and
then proving a lower bound for deterministic protocols under this distribution. The

3Formally, we consider randomized multi-party protocols in the blackboard model, where at each turn one
of the players writes a message on a common blackboard seen by all the players.
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hard distribution is a natural one, the uniform distribution over inputs of sizes s1, . . . , sk.
For details see Theorem 2.13. Moreover, we show (Claim 2.15) that Theorem 1.5 and
Theorem 2.13 are in fact equivalent.

1.4 Efficient reduction of the needle problem to multi-party unique
set-disjointness

We establish Theorem 1.2 by reducing lower bounds for the needle problem to lower
bounds for the unique set-disjointness, and then applying Theorem 1.5 (Theorem 2.13
more precisely). To do so, we need a way of mapping inputs to the unique set-disjointness
problem to inputs for a streaming algorithm. A natural way to do so, taken for example by
[AMOP08], is to partition the stream into intervals and assign one to each player. We follow
the same approach but generalize it, so we can use it to simulate the planted distribution
of the needle problem by random inputs to the unique set-disjointness problem.

Recall that n denotes the domain size, t the number of samples and p the needle
probability. Our goal will be to simulate the planted distribution using inputs to multi-
party unique set-disjointness. In order to do so, we define interval systems.

Definition 1.6 (Interval systems). An interval system F is a family of pairwise disjoint non-
empty intervals F = {I1, . . . , Ik} with I1, . . . , Ik ⊂ [t].

Given an interval system F , we define a planted distribution Planted[F ] over streams
X ∈ [n]t as follows:

1. Sample uniform needle x ∈ [n];

2. In each interval I ∈ F sample uniform index i ∈ I and set Xi = x;

3. Sample all other stream elements uniformly from [n].

Using Theorem 1.5, we prove a space lower bound for streaming algorithms that can
distinguish between the uniform distribution and the planted distribution for F . Here is
where we exploit the fact that we can prove lower bounds for unique set-disjointness also
when the set sizes vary between the players. We use the following notation: given an
interval system F , its value is val(F ) =

∑
I∈F

1
|I| .

Lemma 1.7. Let F be an interval system. Any streaming algorithm which with high probability
distinguishes between Planted[F ] and the uniform distribution must use space

s = Ω

(
1

val(F )

)
.

In order to complete the reduction, we need to simulate the planted distribution using
planted distributions for interval systems F . Clearly, this cannot be done using a single
interval system, and hence we need to consider randomized interval systems.
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A randomized interval system F is a distribution over interval systems F . The planted
distribution Planted[F ] forF is defined by first sampling F ∼ F and thenX ∼ Planted[F ].
The value ofF is val(F) = EF∼F [val(F )]. We can extend Lemma 1.7 to randomized interval
systems.

Lemma 1.8. Let F be a randomized interval system. Any streaming algorithm which with high
probability distinguishes between Planted[F ] and the uniform distribution must use space

s = Ω

(
1

val(F)

)
.

To prove the lower bound for the needle problem, we need Planted[F ] to simulate
exactly the planted distribution; we call such randomized interval systems perfect.

Definition 1.9 (Perfect randomized interval systems). A randomized interval system F is
called perfect if Planted[F ] is distributed exactly as the planted distribution.

In light of Lemma 1.8, we need a perfect randomized interval system F with as low a
value as possible. It is relatively simple to show that if F is perfect then val(F) = Ω(p2t).
The following theorem gives a construction nearly matching the lower bound.

Theorem 1.10. There exists a perfect randomized interval system F with val(F) = O (p2t log(t)).

Theorem 1.2 now follows directly by combining Lemma 1.8 and Theorem 1.10.

1.5 Related works
In a seminal work, Miltersen et al. [MNSW95] first observed connections between asym-
metric communication complexity and its applications to data structures in the cell probe
model. Since then, several works [BR00, JKKR03, PT06, BIPW10, CKLM18] proved data
structure lower bounds and streaming lower bounds via connections to asymmetric com-
munication complexity lower bounds. To the best of our knowledge, all these works built
on two-party communication problems. In contrast, we consider multi-party communi-
cation complexity in this work. It is interesting to ask if multi-party communication can
provide more applications to data structure and streaming lower bounds.

Other than connections to data structure lower bounds and streaming lower bounds,
Dinur et al. [DDKS16] studied the needle problem in cryptography. It would be interesting
to explore more connections between our work and cryptography.

Acknowledgements. We thank David Woodruff for helpful discussions about streaming
algorithms, and for insightful comments on an earlier version of this paper.

Paper organization. We prove lower bounds for multi-party unique set-disjointness with
fixed set sizes (Theorem 1.5) in Section 2. We design an efficient reduction using interval
systems (Lemmas 1.7 and 1.8) in Section 3. We combine both to prove our lower bound
for the needle problem (Theorem 1.2) in Section 4. We discuss open problems in Section 5.
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2 Lower bounds for asymmetric unique set-disjointness
We prove Theorem 1.5 in this section. First, we recall some definitions and fix some
notations.

Notations. it will be convenient to identify sets with their indicator vectors; thus, we
identify X ∈ {0, 1}n with the set {i : Xi = 1} ⊂ [n]. Let k ≥ 2 denote the number of
players. The players inputs are X = (X1, . . . , Xk), where Xi = (Xi(1), . . . , Xi(n)) ∈ {0, 1}n.
It will be convenient to also define Xj = (X1(j), . . . , Xk(j)) ∈ {0, 1}k, the j-th coordinate
for all the players for j ∈ [n]. In this section use boldface to denote random variables (such
as X,W ) to help distinguish them from non-random variables.

Protocols. Let Π be a protocol. Given an input X , we denote by Π(X) the transcript of
running Π on X . We assume that every transcript also has an output value which is a bit
determined by the transcript (for example, the last bit sent). A protocol solves a decision
problem under input distribution ν with error δ, if it outputs the correct answer with
probability at least 1−δ when the inputs are sampled from ν. We will prove lower bounds
on protocols that solve unique set-disjointness under a number of input distributions. As
such, we may assume unless otherwise specified that the protocols are deterministic.

Finally, recall that we call k-party protocol Π is called [c1, . . . , ck]-bounded if in any
transcript of Π, the i-th player sends at most ci bits.

multi-party unique set-disjointness. The k-party unique set-disjointness problem is
defined on inputs coming from two promise sets:

• Disjoint: F0 = {X ∈ ({0, 1}n)k : ∀j ∈ [n], |Xj| ≤ 1},

• Unique intersection: F1 = {X ∈ ({0, 1}n)k : ∃j ∈ [n], |Xj| = k,∀j′ ̸= j, |Xj′| ≤ 1}.

Towards proving Theorem 1.5, our first step is to consider unique set-disjointness
under product distribution which assign weight asymmetrically between the players.

2.1 Lower bounds for product asymmetric distributions
Let ν be a distribution over [k]. We denote by νn the distribution over W ∈ [k]n, where
we sample Wj ∼ ν independently for all j ∈ [n]. We define two distributions, µ0

prob[ν]

supported on F0 and µ1
prob[ν] supported on F1.

Definition 2.1 (Disjoint asymmetric distribution). Let X ∈ ({0, 1}n)k be sampled as follows:

1. Sample W ∼ νn.

2. For each j ∈ [n], if Wj = i then we sample Xi(j) ∈ {0, 1} uniformly, and set Xi′(j) = 0
for all i′ ̸= i.
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We denote by µ0
prob[ν] the marginal distribution of X , and note that it is supported on F0.

Definition 2.2 (Unique intersection asymmetric distribution). LetY ∈ ({0, 1}n)k be sampled
as follows:

1. Sample X ∼ µ0
prob[ν].

2. Sample j ∈ [n] uniformly.

3. If j = j then we set Y j = 1k and Y j′ = Xj′ for all j′ ̸= j.

We denote by µ1
prob[ν] the marginal distribution of Y , and note that it is supported on F1.

We denote by µprob[ν] the mixture distribution, where we sample b ∈ {0, 1} uniformly,
and then sample X ∼ µb

prob[ν]. Our main technical result is a communication lower bound
on protocols which solve unique set-disjointness under input distribution µprob[ν]. We will
later reduce the fixed set size case to this model.

Theorem 2.3. Fix n, k ≥ 1. Let ν be a distribution on [k]. Let Π be a [c1, . . . , ck]-bounded k-party
deterministic protocol which solves the unique set-disjointness problem under input distribution
µprob[ν] with error 2%. Then ∑

i∈[k]

ci
ν(i)

= Ω(n).

We note that Theorem 2.3 is a generalization of the lower bound for symmetric case
[Gro09, Jay09], where ν(i) = 1/k for all i ∈ [k]. In this case Theorem 2.3 gives that∑

i ci = Ω(n/k).

2.1.1 Information theory framework

We will use information theory to prove Theorem 2.3. Although we assume that Π has
small error with respect to both µ0

prob[ν] and µ1
prob[ν], we will only study its information

complexity with respect to µ0
prob[ν]. Below we let W ∈ [k]n,X ∈ ({0, 1})n be jointly

samples as in Definition 2.1. The following observation will play an important role.

Observation 2.4. Conditioned on W = W , the random variables (Xi(j) : i ∈ [k], j ∈ [n]) are
independent.

We start by giving a general bound for individual communication based on informa-
tion theory, which assumes only the existence of such W under which X1, . . . ,Xk are
independent.

Lemma 2.5. Let Π be a k-party protocol which is [c1, . . . , ck]-bounded. Assume joint random
variables (W ,X), where X = (X1, . . . ,Xk) are the players inputs, and such that for every value
W for W , the random variables X1|W = W, . . . ,Xk|W = W are independent. Then for each
i ∈ [k] we have

ci ≥ I(Xi : Π(X)|W ).
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Proof. We first set up some notations. We denote by π a possible transcript for Π, and let
π<t = (π1, . . . , πt−1) be a partial transcript. We let π = Π(X) denote the transcript when
the protocol is run on X .

Fix a time step t in the protocol, and a partial transcript π<t. The next player to speak
is determined by the transcript so far, so denote it by next(π<t) ∈ [k]. We also denote by
locs(π, i) = {t : next(π<t) = i} the locations in transcript π where player i sent a bit. By
our assumption |locs(π, i)| ≤ ci for any transcript π.

Consider any value W for W . Observe that conditioned on π<t = π<t, the next bit sent
πt is a function of Xi for i = next(π<t). If i′ ̸= i then since Xi|W = W,Xi′|W = W are
independent we have

I(Xi′ : πt|W = W,π<t = π<t) = 0.

Since πt ∈ {0, 1}, we can also trivially bound

I(Xi : πt|W = W,π<t = π<t) ≤ 1.

Averaging over π<t and W gives

I(Xi : πt|W ,π<t) ≤ Pr[next(π<t) = i].

Summing over t then gives the result:

I(Xi : π|W ) =
∑
t

I(Xi : πt|W ,π<t) = E|locs(π, i)| ≤ ci.

We shorthand π = Π(X) below. Using Lemma 2.5, Observation 2.4 and the data
processing inequality4 give

ci ≥ I(Xi : π|W ) ≥
∑
j∈[n]

I(Xi(j) : π|W ).

Towards proving Theorem 2.3, consider the expression∑
i∈[k]

ci
ν(i)

≥
∑
i∈[k]

1

ν(i)
I(Xi : π|W ) ≥

∑
i∈[k]

1

ν(i)

∑
j∈[n]

I(Xi(j) : π|W )

We define below
L :=

1

n

∑
i∈[k]

1

ν(i)

∑
j∈[n]

I(Xi(j) : π|W )

The following lemma thus proves Theorem 2.3.

Lemma 2.6. L = Ω(1).

We prove Lemma 2.6 in the next subsection, via a reduction to protocols for the k-bit
AND function.

4If x,y, z are random variables, where x,y are independent, then I(xy : z) ≥ I(x : z) + I(y : z).
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2.1.2 Reduction to the information complexity of the AND function

In this section, we consider the k-bit AND function and its information complexity. Let Λ
be a k-party protocol for it: each of the k players receive as input a bit, and their goal is to
compute their AND. Namely, to check if they are all equal to 1.

Let b ∈ {0, 1} be a random bit. For i ∈ [k], let ei[b] ∈ {0, 1}k denote the vector with b
at coordinate i and 0 everywhere else. The following lemma reduces proving Lemma 2.6
to analyzing the information of protocols for k-bit AND which make small error on only
two inputs: the all-zero and all-one inputs.

Lemma 2.7. There is a public-randomness k-party protocol Λ for the k-bit AND function, using
public-randomness R, with the following guarantees:

1. Λ has error at most 8% with respect to the inputs 0k and 1k.

2. L =
∑

i∈[k] I(b,Λ(ei[b],R)|R).

We prove Lemma 2.7 in the remainder of this subsection. First, let d ∈ [k],U ∈ {0, 1}k
be jointly sampled as follows:

1. Sample d ∈ [k] according to ν.

2. Given d = d, sample Ud ∈ {0, 1} uniformly and set Ui = 0 for all i ̸= d.

Let σ = σ(ν) denote the marginal distribution of U , and observe that it is the same as that
of Xj for any j ∈ [n]. In fact, the joint distribution of (d,U) is the same as (Wj,X

j) for
any j. The next claim uses this to extract a protocol Λ for k-bit AND from Π, such that it
has related information complexity measures, and a small error with respect to the inputs
0k and 1k.

Claim 2.8. There is a (public randomness) k-party protocol Λ for the k-bit AND function, using
public randomness R, with the following properties:

1. Λ has error at most 8% with respect to the inputs 0k and 1k.

2. I(Ui : Λ(U ,R)|d,R) = 1
n

∑n
j=1 I(Xi(j) : π|W ) for all i ∈ [k].

Proof. We first define the protocol Λ. Let U ∈ {0, 1}k denote the input for the AND
function. First, using public randomness, sample j ∈ [n] uniformly; then sample W−j =
(Wj′ : j

′ ̸= j) ∼ νn−1. Conditioned on j = j,W−j = W−j , the i-th player then constructs
their input Xi for Π as follows: set Xi(j) = Ui and sample Xi(j

′)|Wj′ = Wj′ using private
randomness. The players then run the protocol Π on their joint inputs X = (X1, . . . ,Xk).
Note that the public randomness used is R = (j,W−j).

To prove the first claim, observe that if the input to the AND function U is distributed
as U ∼ σ, then X ∼ µ0

prob[ν]; and if U = 1k then X ∼ µ1
prob[ν]. Thus Λ has error at most

2% with respect to the uniform mixture of the input distributions σ and 1k. Thus with
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respect to the input 1k, the error is at most 4%. Since σ(0k) = 1/2, the error with respect to
the input 0k is at most 8%.

For the second claim, note that conditioned on R = R = (j,W−j), the joint distribution
of (d,U ,Λ(U , R)) and of (Wj,X

j, π) is identical. Thus

I(Ui : Λ(U , R)|d,R = R) = I(Xi(j) : π|Wj, j = j,W−j = W−j)

Averaging over R gives

I(Ui : Λ(U , R)|d,R) =
1

n

∑
j∈[n]

I(Xi(j) : π|Wj, j = j,W−j = W−j)

=
1

n

∑
j∈[n]

I(Xi(j) : π|W ).

Proof of Lemma 2.7. Let Λ be the protocol given by Claim 2.8. Then

L =
∑
i∈[k]

1

ν(i)
I(Ui : Λ(U ,R)|d,R).

Simplifying the inner terms give

1

ν(i)
I(Ui : Λ(U ,R)|d,R) =

1

ν(i)

∑
j∈[k]

ν(j) · I(Ui : Λ(U ,R)|d = j,R)

= I(Ui : Λ(U ,R)|d = i,R)

Note that conditioned on d = i, the joint distribution of (Ui,U) is the same as (b, ei[b]).
Thus

L =
∑
i∈[k]

I(b : Λ(ei[b],R)|R).

2.1.3 Bounding the information complexity of AND functions

We prove the following lemma in this subsection, which then proves Theorem 2.3 given
Lemma 2.5, Lemma 2.6 and Lemma 2.7.

Lemma 2.9. Let Λ be a (public randomness) protocol for the k-bit AND function, using public
randomness R, such that it has error at most 8% with respect to the inputs 0k and 1k. Then∑

i∈[k]

I(b,Λ(ei[b],R)|R) = Ω(1).

12



Lemma 2.9 is very similar to previous lower bounds in the literature on information
complexity [BYJKS04, CKS03, Gro09]. We need the following setup. Sample jointly
e ∈ [k],V ∈ {0, 1}k as follows:

1. Sample e ∈ [k] uniformly.

2. Given e = e, sample Ve ∈ {0, 1} uniformly and set Vi = 0 for all i ̸= e.

Given a protocol Λ using public randomness R, its conditional information complexity is

CIC(Λ) = I(V : Λ(V ,R)|e,R).

This quantity comes up naturally in the study of unique disjointness using information
complexity, which started with the seminal work of [BYJKS04]. Gronemeier [Gro09] and
Jayram [Jay09] proved a tight lower bound on this quantity.

Theorem 2.10. [[Gro09, Jay09]] CIC(Λ) = Ω(1/k).

In fact, the proof (although not explicitly stated as such) only relies on the assumption
that Λ has error ≤ 30% on both the all-zero and all-one inputs (for a full proof see
Gronemeier’s thesis [Gro10]). As such, it applies to our protocol Λ. The following claim
connects CIC(Λ) to the quantity we aim to bound, and concludes the proof of Lemma 2.9
and hence also of Theorem 2.3.

Claim 2.11.
∑

i∈[k] I(b : Λ(ei(b),R)|R) = k · CIC(Λ).

Proof.

k · CIC(Λ) = k · I(V : Λ(V ,R)|e,R)

=
∑
i∈[k]

I(V : Λ(V ,R)|e = i,R)

=
∑
i∈[k]

I(b : Λ(ei(b),R)|R).

2.2 Extension to sub-distributions
It will be convenient to extend Theorem 2.3 to sub-distributions. A sub-distribution ν
on [k] satisfies ν(i) ≥ 0 and

∑
ν(i) ≤ 1. We extend the definition of µ0

prob[ν], µ1
prob[ν] to

sub-distributions as follows.
We first describe how to sample X ∼ µ0

prob[ν]. For each j ∈ [n], with probability ν(i)

sample Xi(j) ∈ {0, 1} uniformly, and set Xi′(j) = 0 for all i ̸= i′; and with probability
1 −

∑
ν(i) set Xi(j) = 0 for all i. To sample Y ∼ µ1

prob[ν] we follow the same process as
for the distributional case: first sample X ∼ µ0

prob[ν], then sample a uniform j ∈ [n] and
set Y j = 1k and Y j′ = Xj′ for all j′ ̸= j. We denote by µprob[ν] the even mixture of µ0

prob[ν]

and µ1
prob[ν]. The following theorem extends Theorem 2.3 to sub-distributions.
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Theorem 2.12. Fix n, k ≥ 1. Let ν be a sub-distribution on [k]. Let Π be a [c1, . . . , ck]-bounded
protocol which solves the distributional unique set-disjointness under input distribution µprob[ν]

with error 2%. Then ∑
i∈[k]

ci
ν(i)

= Ω(n).

Proof. Extend ν to a distribution ν ′ on [k + 1] by setting ν ′(i) = ν(i) for i ∈ [k] and
ν ′(k+1) = 1−

∑
ν(i). Extend Π to a protocol Π′ for k+1 players where player k+1 does

not participate in the protocol at all. Thus Π′ is a [c1, . . . , ck, 0]-bounded protocol. The
proof follows by applying Theorem 2.3 to Π′ and ν ′.

2.3 Extension for fixed set sizes
We now use the results we proven to deduce Theorem 1.5. Namely, the lower bound for
fixed set sizes. We first set some notations.

Let s = [s1, . . . , sk] denote the set sizes where si ≥ 1 and
∑

si ≤ n. Define

Fsize[s] = {X ∈ ({0, 1}n)k : ∀i ∈ [k], |Xi| = si}.

For b ∈ {0, 1} define F b
size[s] = F b ∩ Fsize[s] and µb

size[s] to be the uniform distribution
over F b

size[s]. Our hard distribution µsize[s] will be an even mixture between µ0
size[s] and

µ1
size[s]. Equivalently, sample b ∈ {0, 1} uniformly and take X ∼ µb

size[s]. We prove
a communication lower bound on protocols which solve unique set-disjointness under
input distribution µsize[s].

Theorem 2.13. Let s = [s1, . . . , sk] with
∑

si ≤ n/2. Let Π be a [c1, . . . , ck]-bounded k-party
protocol which solves the unique set-disjointness problem under input distribution µsize[s] with
error 1%. Then ∑

i∈[k]

ci
si

= Ω(1).

It is clear that Theorem 2.13 implies Theorem 1.5, but in fact they are equivalent. Before
proving it we need the following claim.

Claim 2.14. Let b ∈ {0, 1}, X ∈ F b
size[s]. Let Σ be a random permutation of [n] and let Σ(X)

denote the result of applying Σ to X . Then Σ(X) is uniform in F b
size[s].

Proof. The claim follows as permutations on [n] act transitively on F b
size[s]. Namely, for any

X,X ′ ∈ F b
size[s] there exists a permutation Σ on [n] such that Σ(X) = X ′. This implies that

a uniform permutation maps X to a uniform element in the domain F b
size[s].

Claim 2.15. Theorem 1.5 and Theorem 2.13 are equivalent.

Proof. We are comparing the multi-party unique set-disjointess problem for sizes s =
[s1, . . . , sk] in two settings: worst-case inputs, and uniform inputs. Clearly, a protocol
for worst-case inputs implies one under uniform inputs with the same communication

14



and error guarantees. In the other direction, let X ∈ F b
size[s] be any input for unique

set-disjointness. The players, using public randomness, sample a uniform permutation Σ
on [n], and each applies it to their input. By Claim 2.14 we know that Σ(X) is distributed
as µb

size[s]. They can now apply a protocol that solves unique-set disjointness under input
µsize[s].

We now turn to prove Theorem 2.13.

Proof of Theorem 2.13. First, note that may assume ci ≥ 1 for all i, since we can remove
players with ci = 0 from the game, as they are not allowed to send any bits.

Let Π be a protocol as assumed in Theorem 2.13. Namely, it is [c1, . . . , ck]-bounded
and solves unique set-disjointness under input distribution µsize[s] with error 1%, where
s = [s1, . . . , sk] satisfies

∑
si ≤ n/2. We will use it to design a [c1 + 1, . . . , ck + 1]-bounded

protocol Π′ which solves unique set-disjointness in a specific sub-distributional case with
error 2%, and then appeal to Theorem 2.12.

Next, define a sub-distribution ν on [k] by ν(i) = si
4n

. We consider its corresponding
distributional input µprob[ν] on inputs of size n/2 bits. Let X = (X1, . . . ,Xk) ∼ µprob[ν]

where X ∈ ({0, 1}n/2)k. Each Xi is distributed Binomially Bin(n/2, ν(i)) with expected
size E[|Xi|] = si

2
. Thus by the Hoeffding bound,

Pr[|Xi| > si] ≤ exp(−si/6).

Let E denote the event that |Xi| > si for some i ∈ [k]. Then

Pr[E] ≤
∑
i∈[k]

exp(−si/6).

We first analyze the case that Pr[E] ≥ 1%. In this case, since ci ≥ 1 by assumption, and
since 1

x
≥ C exp(−x/6) for some absolute constant C > 0 for all x ≥ 1, we get∑

i∈[k]

ci
si

≥ C
∑
i∈[k]

exp(−si/6) ≥ C Pr[E] = Ω(1).

From now on we assume Pr[E] < 1%.
We now design the protocol Π′. First, each player checks if their input Xi satisfies

|Xi| > si. If so, the protocol aborts. This requires each player to send one bit, and by
assumption it aborts with probability at most 1%. Otherwise, each player extends their
input Xi to a new input Yi ∈ {0, 1}n of size |Yi| = si as follows.

Before the protocol starts, the players agree ahead of time on pairwise disjoint subsets
T1, . . . , Tk with |Ti| = si, supported in the last n/2 coordinates (so they do not overlap the
inputs X1, . . . , Xk). Now, the i-th player adds arbitrary si − |Xi| elements from Ti to their
set Xi; we denote the new input Yi ∈ {0, 1}n. Note that Y = (Y1, . . . , Yk) satisfies the same
promise as X = (X1, . . . , Xk); namely, either they are pairwise disjoint, or they have a
common element and except for it they are pairwise disjoint.
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We would like to apply Π to Y . However we cannot quite yet; while it is true that
Y ∈ F0

size[s] or Y ∈ F1
size[s], its distribution is not uniform in the sets. However, here we

can apply Claim 2.14 to make the distribution of Y uniform in the respective family. The
players use public randomness to sample a permutation Σ on [n] and apply it to Y . Now
we can apply Π(Σ(Y )) which would give the correct with error 2% by assumption. The
proof now follows from Theorem 2.12.

3 Interval systems
Recall that our plan is to use the lower bounds for multi-party unique set-disjointness in
order to prove lower bounds for streaming algorithms for the needle problem. In order
to effectively embed the inputs for unique set-disjointness inside streams, we introduce a
combinatorial construct that we call interval systems.

Definition 3.1 (Interval). An interval is a non-empty set of the form I = {a, a + 1, . . . , b} for
some a ≤ b.

Definition 3.2 (Interval systems). A [t]-interval system is a set F = {I1, . . . , Ik} of k pairwise
disjoint intervals supported in [t]. If we want to specify the number of intervals, we say F is a
[t, k]-interval system.

Definition 3.3 (Randomized interval systems). A randomized [t]-interval system F is a distri-
bution over [t]-interval systemsF . Similarly, a randomized [t, k]-interval systemF is a distribution
over [t, k]-interval systems F .

Next, we define for an interval system a corresponding distribution over sets T ⊂ [t].

Definition 3.4 (Set distribution for interval systems). LetF be a [t]-interval system. We denote
by Sets(F ) the distribution over sets T ⊂ [t] obtained by choosing uniformly one element from each
interval I ∈ F .

If F is a randomized [t]-interval system, then we define Sets(F) as follows: first sample F ∼ F
and then sample T ∼ Sets(F ).

Observe that if F is a randomized [t, k]-interval system, then Sets(F) is a distribution
over k-sets in [t] (a k-set is a set of size k). Our goal will be to simulate the uniform
distribution over k-sets in [t]. We call such randomized interval systems perfect.

Definition 3.5 (Perfect interval systems). A randomized [t, k]-interval systemF is called perfect
if Sets(F) is the uniform distribution over all k-sets in [t].

There are many ways to construct perfect randomized [t, k]-interval systems. For
example, a naive way is to sample k uniform coordinates i1, . . . , ik ∈ [t], and then take
the distribution over F = {{i1}, . . . , {ik}}. However, for an efficient reduction, we would
need interval systems with as long intervals as possible. Technically, the efficiency of the
reduction will be controlled by the following notion of value of interval systems.
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Definition 3.6 (Value of interval systems). Let F be a [t]-interval system. Its value is

val(F ) =
∑
I∈F

1

|I|
.

If F is a randomized [t]-interval system then its value is
val(F) = EF∼F [val(F )] .

In order to prove strong lower bounds on streaming algorithms, we would need a
perfect distribution over [t, k]-intervals with as low a value as possible. The following
claim gives a lower bound for this.
Claim 3.7. Let F be a [t, k]-interval system. Then

val(F ) ≥ k2

t
.

Proof. Let F = {I1, . . . , Ik} where |Ii| = si. We have
∑

si ≤ t, and val(F ) =
∑

1
si

. This
expression is minimized when all the si are the equal, and hence

val(F ) ≥ k · k∑
si

≥ k2

t
.

Our main technical result in this section is a construction of a perfect randomized
[t, k]-interval system with value close to optimal. We do so by designing a randomized
algorithm that samples [t, k]-interval systems. We will show that its output distribution is
perfect, and of value close to the minimum given by Claim 3.7.

It will be convenient to make the following definition of “shifting” an interval or an
interval system. For an interval I = [a, b] and an integer c, define I + c = [a+ c, b+ c]. For
an interval system F = {I1, . . . , Ik} define F + c = {I1 + c, . . . , Ik + c}.

Algorithm 1: SampleIntervalSystem
Input: t ≥ 1, k ≥ 0 with k ≤ t
Output: [t, k]-interval system F

1 if k = 0 then
2 return F = {}
3 else if k = 1 then
4 return F = {[t]}
5 else
6 Let s = ⌈t/2⌉

7 Sample j ∈ {0, . . . , k} with probability Pr[j = j] =
(sj)(

t−s
k−j)

(tk)
8 Compute F1 = SampleIntervalSystem(s, j)
9 Compute F2 = SampleIntervalSystem(t− s, k − j)

10 return F = F1 ∪ (F2 + s)

11 end
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We denote by F [t, k] the randomized [t, k]-interval system obtained by running
SampleIntervalSystem(t, k).

Claim 3.8. F [t, k] is perfect.

Proof. The proof is by induction on k, t. If k = 0 or k = 1 this is clear from the base cases of
the algorithm. If k ≥ 2, then we sample the number of elements j in the interval [s] with
the same probability as a uniform k-set in [t] would. By induction, the distribution F [s, j]
of F1 is a perfect randomized [s, j] interval system; and the distribution F [t − s, k − j] of
F2 is a perfect randomized [t− s, k − j] interval system. The claim follows.

We next analyze the value of F [t, k]; to simplify the analysis, we restrict to the case t
is a power of two. This suffices for our application, and we expect the bound to extend
to general t with minimal modifications. We assume below that all logarithms are in base
two.

Lemma 3.9. Assume t is a power of two. Then val(F [t, k]) ≤ k2 log(2t)
t

.

In order to prove Lemma 3.9, we will need the following technical claim, computing
first and second moments for the distribution over j in the algorithm.

Claim 3.10. Let t, k ≥ 1, t even, and 0 ≤ j ≤ k. Define p(t, k, j) = (t/2j )(
t/2
k−j)

(tk)
. Then

k∑
j=0

p(t, k, j) · j = k

2

and
k∑

j=0

p(t, k, j) · j2 ≤ k(k + 1)

4
.

Proof. Let s = t/2. LetT be a uniform subset of [t]of size k. Then p(t, k, j) = Pr[|T∩[s]| = j].
Hence

k∑
j=0

p(t, k, j) · j = ET

∑
i∈[s]

1[i ∈ T ]

 =
∑
i∈[s]

Pr[i ∈ T ] = s · k

2s
=

k

2

and
k∑

j=0

p(t, k, j) · j2 = ET

 ∑
i,j∈[s]

1[i ∈ T ] · 1[j ∈ T ]

 =
∑
i,j∈[s]

Pr[i, j ∈ T ]

= s · k

2s
+ s(s− 1)

k(k − 1)

2s(2s− 1)
≤ k

2
+

k(k − 1)

4
=

k(k + 1)

4
.
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Proof of Lemma 3.9. Let f(t, k) = t · val(F [t, k]). We have f(t, 0) = 0, f(t, 1) = 1 and
f(t, k) = 0 if k > t. The definition of f(t, k) for k ≥ 2 is recursive. Let p(t, k, j) = (t/2j )(

t/2
k−j)

(tk)
.

Then

val(F [t, k]) =
k∑

j=0

p(t, k, j) (val(F [t/2, j]) + val(F [t/2, k − j])) .

which implies

f(t, k) = 4
k∑

j=0

p(t, k, j)f(t/2, j).

It will be instructive to compute f(t, 2):

f(t, 2) =
t

t− 1
+

t− 2

t− 1
f(t/2, 2) ≤ 2 + f(t/2, 2) ≤ 2 log(t).

We will prove by induction that

f(t, k) ≤ k2 + k(k − 1) log(t).

We already verified this for k = 0, 1, 2. For k ≥ 3 we have by induction:

f(t, k) ≤ 4
k∑

j=0

p(t, k, j)
(
j2 + j(j − 1) log(t/2)

)
.

Applying Claim 3.10 gives

f(t, k) ≤ k(k + 1) + k(k − 1) log(t/2)

= 2k + k(k − 1) log(t)

≤ k2 + k(k − 1) log(t).

Finally we get

val(F [t, k]) =
f(t, k)

t
≤ k2 + k(k − 1) log(t)

t
≤ k2 log(2t)

t
.

Our application for streaming algorithms for the needle problem has an additional
restriction, that the total length of the intervals in the interval system be bounded away
from t. We refer to such interval systems as valid.

Definition 3.11 (Valid interval systems). A [t]-interval system F is called valid if
∑

I∈F |I| ≤
t/2. A randomized [t]-interval system F is called valid if all [t]-interval systems F in its support
are valid.
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We next show how to refine a an interval system to obtain a valid randomized interval
system, while preserving the sets distribution, and without increasing the value too much.

Lemma 3.12. Assume k ≤ t/6. Let F be a [t, k]-interval system. Then there exists a randomized
[t, k]-interval system F such that:

1. Sets(F) = Sets(F )

2. val(F) ≤ 5 · val(F )

3. F is valid

Proof. Let F = {I1, . . . , Ik}. Given an interval Ii define ℓi = min(3, |Ii|). Partition Ii into ℓi
intervals {Ii,a : a ∈ [ℓi]} of as equal length as possible, and observe that

|Ii|
5

≤ |Ii,a| ≤
|Ii|
3

+ 1 ∀a ∈ [ℓi].

Let pi,a =
|Ii,a|
|Ii| . We define a randomized [t, k]-interval system F , where for each i ∈ [k]

independently, we replace Ii with one of its sub-intervals. Concretely, we choose a ∈ [ℓi]
with probability pi,a and replace Ii with Ii,a. We now prove the claims.

1. Observe that sampling a uniform element x ∈ Ii can equivalently be sampled by first
sampling a ∈ [ℓi] with probability pi,a, and then sampling a uniform element x ∈ Ii,a.
This implies that Sets(F) = Sets(F ).

2. Since |Ii,a| ≥ |Ii|/5 for all i, a, the claim holds for any F ′ in the support of F , and
hence also for F .

3. Since |Ii,a| ≤ (|Ii| + 1)/2 for all i, a, we have for any F ′ = {I1,a1 , . . . , Ik,ak} in the
support of F ′ that ∑

i∈[k]

|Ii,ai | ≤ k +
1

3

∑
i∈[k]

|Ii| ≤ k +
t

3
≤ t

2

where the last inequality follows since we assume k ≤ t/6.

Lemma 3.12 applies also to randomized [t, k]-interval systems, by applying it to any
interval system in their support. The following lemma summarizes all the facts we would
need by applying it to F [t, k].

Lemma 3.13. Let k, t ≥ 1. Assume t is a power of two and k ≤ t/6. Then there exists a valid
perfect randomized [t, k]-interval system F with

val(F) ≤ 10k2 log(t)

t
.
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4 Lower bound for the needle problem
We prove Theorem 1.2 in this section, by combining our lower bound for unique set-
disjointness with fixed set sizes (Theorem 2.13) with the efficient reduction given by
interval systems (Lemma 3.13).

First, we recall the parameters: n denotes the size of the domain, t the number of
samples and p the needle probability. We assume throughout that n = Ω(t2) is large
enough. We would denote by k the number of needles in a stream in the planted model,
where k ∼ Bin(t, p). We denote by Uniform the uniform distribution over [n]t.

First, we show how to prove lower bounds when k is fixed. Given a [t, k]-interval
system F = {I1, . . . , Ik}, we will assume in this section that the intervals are sorted in
order, namely that I1 comes before I2, which comes before I3, and so on. We define its
corresponding sizes as

Sizes(F ) = (|I1|, . . . , |Ik|).

We recall the definition of a planted stream distribution from the introduction, where we
now present it more formally.

Definition 4.1 (Planted distribution for interval systems). Let F be a [t]-interval system. we
define a planted distribution Planted[F ] over streams X ∈ [n]t as follows:

1. Sample uniform needle x ∈ [n];

2. In each interval I ∈ F sample uniform index aI ∈ I and set XaI = x;

3. For all j ∈ [n] \ {aI : I ∈ F}, sample Xj ∈ [n] uniformly.

For F a randomized [t]-interval system, we define its planted distribution Planted[F ] by first
sampling F ∼ F and then X ∼ Planted[F ].

We start by formalizing and proving Lemma 1.7. Given a streaming algorithm ALG
and two distributions D0, D1 over streams, we say that ALG distinguishes between D0, D1

with error δ if, at the end of running the algorithm, the last player can guess if the input
was sampled from D0 or D1 and be correct with probability at least 1 − δ. A streaming
algorithm is an ℓ-pass streaming algorithm if it makes ℓ passes over the data stream.

Lemma 4.2. Let F be a [t, k]-interval system and set s = Sizes(F ). Let ALG be an ℓ-pass
streaming algorithm which distinguishes between Planted[F ] and Uniform with error 0.5% and
uses space s. Then there is a communication protocol Π which solves the unique set-disjointness
problem under input distribution µsize[s], in which each player sends ℓs bits, and has error 1%.

Proof. Let X = (X1, . . . , Xk) ∈ ({0, 1}n)k be the input to the players, where we assume
X ∼ µb

size[s] for some b ∈ {0, 1}. The goal of the players is to figure out b.
Let F = {I1, . . . , Ik}. Let J1, . . . , Jk be a partition of [t], where Ii ⊂ Ji. As a first step,

each player individually constructs a stream Yi ∈ [n]Ji based on their input Xi. The i-th
player generates their stream as follows:
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1. For each j ∈ Ji \ Ii, sample Yi(j) ∈ [n] uniformly.

2. Let Si = {j ∈ [n] : Xi(j) = 1}, where |Si| = si be assumption. Let Li ∈ [n]si be a
random permutation of Si. Set (Yi(j) : j ∈ Ii) = Li.

Let Y = Y1 ◦ · · · ◦ Yk ∈ [n]t be the concatenation of the streams. The players simulate
running ALG on the stream, where each player simulates it on their part of the stream,
and send the internal memory of the streaming algorithm to the next player. At the end
of each pass, the last player sends the internal memory back to the first player. Thus each
player sends at most ℓs bits. To conclude, we need to show that this allows to distinguish
between b = 0 and b = 1.

To conclude, we compute the distribution of Y based on the value of b, and show that
when b = 0 the distribution of Y is close to uniform, and when b = 1 it is close to the
planted distribution Planted[F ]. Thus by assumption the algorithm distinguishes between
these two cases, which is our goal.

First, if b = 0 then X1, . . . , Xk are uniform sets of sizes s1, . . . , sk in [n], conditioned on
being pairwise disjoint. Thus the elements of Y are uniform among all choices of t distinct
elements in n. Since we assume n = Ω(t2), the statistical distance between Y and Uniform
is at most t2/n, which can be made as small as we want, say 0.1%.

Similarly, if b = 1 thenX1, . . . , Xk are uniform conditioned on having a unique intersec-
tion. Similarly, the assumption n = Ω(t2) implies that the the statistical distance between
Y and Planted[F ] can be made as small as we want, say 0.1%.

Overall, as we assume that ALG can distinguish between Uniform and Planted[F ] with
error 0.5%, then it also distinguishes between the distributions of Y for b = 0 and b = 1
with slightly larger error 1%.

Combining Lemma 4.2 with Theorem 2.13, we obtain the following corollary which
formalizes Lemma 1.7.

Lemma 4.3. Let F be a valid [t, k]-interval system. Let ALG be an ℓ-pass streaming algorithm
which distinguishes between Planted[F ] and Uniform with error 0.5% and uses space s. Then

ℓs = Ω

(
1

val(F )

)
.

Proof. Let Π be the protocol obtained by Lemma 4.2, which solves unique set-disjointness
under inputs distribution µsize[s] for s = Sizes(F ) = [s1, . . . , sk], and where each player
sends at most ℓs bits. Since F is valid we have

∑
si ≤ t/2. Theorem 2.13 then gives∑

i∈[k]

ℓs

si
= Ω(1).

Recalling the definition of val(F ) =
∑

i∈[k]
1
si

, we can rephrase this as ℓs·val(F ) = Ω(1).

The following lemma, which formalizes Lemma 1.8, generalizes Lemma 4.3 to ran-
domized interval systems.
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Lemma 4.4. Let F be a valid randomized [t]-interval system. Let ALG be an ℓ-pass streaming
algorithm which distinguishes between Planted[F ] and Uniform with error 0.1% and uses space s.
Then

ℓs = Ω

(
1

val(F)

)
.

Proof. Sample F ∼ F . Since val(F) = E[val(F )], by Markov’s inequality we have

Pr
F
[val(F ) > 2val(F)] ≤ 50%.

Next, let err(F ) denote the error of ALG in distinguishing Planted[F ] from Uniform. Since
Planted[F ] is a mixture of Planted[F ], then the average of err(F ) is the error of ALG in
distinguishing Planted[F ] from Uniform, which we assume is 0.1%. Thus

Pr
F
[err(F ) > 0.5%] ≤ 20%.

Overall, there is some choice of F in the support of F such that val(F ) ≤ 2val(F) and
err(F ) ≤ 0.5%. The lemma follows by applying Lemma 4.3 to F .

We now in place to finally prove Theorem 1.2, giving sample-space lower bounds for
any streaming algorithm that solves the needle problem.

Proof of Theorem 1.2. LetALG be an ℓ-pass streaming algorithm which can distinguish with
high probability between the uniform and planted needle distribution using t samples.
As the inputs are stochastic, we may repeat it a few times to decrease its error. Thus, by
increasing t by a constant multiplicative factor, we may assume that the error is at most
0.1% and that t is a power of two.

For k ≤ t let Fk be the valid perfect randomized [t, k]-interval system given by
Lemma 3.13. We construct a randomized [t]-interval system F by sampling k ∼ Bin(t, p)
and taking Fk. Observe that Planted[F ] is identical to the planted needle distribution. If
ALG uses s bits of space then Lemma 4.4 gives that

ℓs = Ω

(
1

val(F)

)
.

To conclude the proof we just need to compute val(F). For any fixed k we have by
Lemma 3.13 that

val(Fk) ≤
10k2 log(t)

t
.

Since k ∼ Bin(t, p) we have E[k2] = p(1 − p)t + p2t2. Since we assume p = Ω(1/t), the
dominant term is the quadratic term, and hence E[k2] = Θ(p2t2). Thus we get

val(F) = O(p2t log(t)).

Rearranging the terms concludes the proof, since it gives ℓp2st log(t) = Ω(1).
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5 Open problems
We proved in Theorem 1.2 near-tight bound for the sample vs space complexity needed for
the needle problem, which proves similar near-tight bounds for the frequency estimation
in stochastic streams problem. It still remains open to prove sharp bounds, removing the
remaining logarithmic factor. We propose the following natural conjecture.

Conjecture 5.1. Any ℓ-pass streaming algorithm which can distinguish with high probability
between the uniform and planted models, where p is the needle probability, t the number of samples,
s the space and n the domain size, satisfies ℓp2st = Ω(1).

Another natural conjecture is to remove the artificial restriction of
∑

si ≤ n/2 from
Theorem 1.5. We need it because we do not prove the theorem directly, but rather via a
reduction to the asymmetric product distribution case. We speculate that there may be
a direct proof which overcomes this technical barrier (although we don’t really have any
application where the general bound is needed, it will be aesthetically pleasing to have a
more complete result).
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