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Abstract

A fundamental fact about bounded-degree graph expanders is that three notions of expansion—
vertex expansion, edge expansion, and spectral expansion—are all equivalent. In this paper, we
study to what extent such a statement is true for linear-algebraic notions of expansion.

There are two well-studied notions of linear-algebraic expansion, namely dimension expansion
(defined in analogy to graph vertex expansion) and quantum expansion (defined in analogy to
graph spectral expansion). Lubotzky and Zelmanov proved that the latter implies the former.
We prove that the converse is false: there are dimension expanders which are not quantum
expanders.

Moreover, this asymmetry is explained by the fact that there are two distinct linear-algebraic
analogues of graph edge expansion. The first of these is quantum edge expansion, which was
introduced by Hastings, and which he proved to be equivalent to quantum expansion. We
introduce a new notion, termed dimension edge expansion, which we prove is equivalent to
dimension expansion and which is implied by quantum edge expansion. Thus, the separation
above is implied by a finer one: dimension edge expansion is strictly weaker than quantum edge
expansion. This new notion also leads to a new, more modular proof of the Lubotzky–Zelmanov
result that quantum expanders are dimension expanders.

Yinan Li would like to dedicate this paper to the memory of Keding Ma, a beloved grandfather
who passed away at 88.

1 Introduction

1.1 Graph-theoretic and linear-algebraic notions of expansion

Expansion is a fundamental graph-theoretic notion, with applications in and connections to com-
binatorics, geometry, group theory, number theory, probability, theoretical computer science, and
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many other fields. For an in-depth introduction to expanders and their applications, we refer the
reader to the monograph [HLW06].

One of the reasons why expanders are so ubiquitous is that there are three different notions
of expansion in graphs, which are all equivalent. These equivalences naturally yield connections
between different perspectives on expansion, and allow expanders to be utilized and studied in
many different contexts. We briefly recall the three notions of expansion.

Let G = ([n], E) be a d-regular graph. The edge expansion of G, h(G), is defined as1

h(G) := min
W⊆[n]

1≤|W |≤n
2

|∂W |
d|W |

, (1.1)

where ∂W := {{i, j} ∈ E : i ∈ W, j ∈ [n] \W}. The vertex expansion of G, µ(G), is defined as

µ(G) := min
W⊆[n]

1≤|W |≤n
2

|∂out(W )|
|W |

, (1.2)

where ∂out(W ) := {j ∈ [n] \W : ∃ i ∈ W, s.t. {i, j} ∈ E}. The spectral expansion2 of G, λ(G), is
defined as

λ(G) := the second-smallest eigenvalue of L (1.3)

where L is the normalized Laplacian matrix of G, which is the matrix with Li,i = 1, Li,j = −1/d if
{i, j} ∈ E and Li,j = 0 otherwise. Equivalently, L = In −A, where In is the n× n identity matrix
and A is the normalized adjacency matrix of G, defined by Ai,j = 1/d if {i, j} ∈ E and Ai,j = 0
otherwise.

Note that for any d-regular graph G, all three quantities h(G), µ(G), λ(G) are non-negative.
We say that a sequence of d-regular graphs (Gn)n∈N is an edge expander (resp. vertex expander,
spectral expander) if the relevant parameter is uniformly bounded away from zero for the whole
family, namely if infn h(Gn) > 0 (resp. infn µ(Gn) > 0, infn λ(Gn) > 0). As discussed above, these
three notions are equivalent; the precise quantitative relationships between them are given in the
following proposition. Note that in this proposition, the size of the graph is irrelevant and does not
affect any of the bounds.

Proposition 1.1. Let G be a d-regular graph. Then we have

(1) µ(G)
d ≤ h(G) ≤ µ(G);

(2) λ(G)
2 ≤ h(G) ≤

√
2λ(G).

The proof of Proposition 1.1(1) is straightforward. Proposition 1.1(2) is a discrete analogue
of the celebrated Cheeger’s inequality [Che70], proved by Dodziuk [Dod84], and independently by
Alon–Milman [AM85] and Alon [Alo86]. Note that we think of the degree d as a constant, so that
we only lose a constant factor when moving between the notions of vertex and edge expansion, and
only lose a quadratic factor when moving between these and the notion of spectral expansion.

In this paper, we are interested in studying linear-algebraic notions of expansion and their
relationships. There are several well-studied notions of linear-algebraic expansion, including di-
mension expanders (introduced by Barak, Impagliazzo, Shpilka, and Wigderson [BISW04]), quan-
tum expanders (introduced independently by Hastings [Has07] and by Ben-Aroya and Ta-Shma

1Some authors define edge expansion without the factor of d, but we use this normalization to match the definition
of quantum edge expansion introduced by [Has07].

2This notion is also sometimes called the spectral gap of G.
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Figure 1: A schematic depiction of the relationships between different notions of expansion.

[BATS07]), and quantum edge expanders (introduced by Hastings [Has07]). We will not discuss
here the motivations for these definitions (besides being very natural extensions of the related
graph-theoretic parameters), but note that they have led to much further exploration. For di-
mension expansion see e.g. [DS11, Bou09, BY13, DW10, FG15, LZ08] and for quantum expansion
see e.g. [Har08, BASTS10, HH09, Sen18, FM20, KLR21]. Many of these papers and others deal
with the important problem of explicitly constructing quantum and dimension expanders; some
make use of connections between different notions of expansion, and have led to the introduction
of new notions of expansion3. The linear-algebraic notions of expansion will be formally defined
momentarily, but first we wish to make some high-level remarks about them.

Dimension expansion is defined in natural analogy to the graph-theoretic definition of vertex
expansion, quantum expansion is defined in natural analogy to spectral expansion, and quantum
edge expansion is defined in natural analogy to edge expansion. Because of these analogies, it is
natural to wonder whether the three notions are equivalent. Hastings [Has07] proved an analogue of
Proposition 1.1(2), showing that quantum expansion and quantum edge expansion are equivalent.
Additionally, it is implicit in work of Lubotzky and Zelmanov [LZ08] that (under mild assumptions)
quantum expansion implies dimension expansion. However, no reverse implication was known, nor
any analogue of Proposition 1.1(1) relating dimension expansion and quantum edge expansion.

Our first result is that such statements, showing that dimension expansion implies quantum
expansion or quantum edge expansion, are false. Indeed, we show the existence of dimension ex-
panders that are arbitrarily poor quantum expanders (and thus arbitrarily poor quantum edge
expanders). Moreover, we are able to explain “why” no such equivalence holds: it is because there
is a “missing” fourth notion of linear-algebraic expansion, which we term dimension edge expan-
sion. This is yet another natural linear-algebraic analogue of edge expansion, which had not been
previously defined. For this notion, it is straightforward to show an analogue of Proposition 1.1(1),
proving that dimension expansion and dimension edge expansion are equivalent. Additionally, we
prove that quantum edge expansion implies dimension edge expansion.

To understand what all these implications mean, consider Figure 1 above, which clarifies the
conceptual value of the new definition. We stress, as the figure suggests, that both linear-algebraic
notions of edge expansion specialize to the same graph-theoretic one. Additionally, the figure shows
the two equivalences discussed above, namely that both “quantum” notions are equivalent, and both
“dimension” notions are equivalent. Moreover, it depicts the fact that quantum edge expansion
implies dimension edge expansion. This connection yields a new proof of the Lubotzky–Zelmanov

3e.g. monotone expanders [DS11, BY13, DW10].
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result discussed above; moreover, our new proof is more modular, and gives a result that is both
qualitatively and quantitatively stronger.

Finally, as depicted in the figure, our negative result shows that there is no reverse implication,
as there exist dimension expanders which are not quantum expanders. Said differently, in the linear-
algebraic setting, the “quantum” notions of expansion are strictly stronger than the “dimension”
notions. We stress again the surprising consequence: although both linear-algebraic notions of edge
expansion generalize the same graph-theoretic notion, they are not equivalent.

We now turn to the formal definitions of these linear-algebraic notions. Once the definitions
are in place, we can state our main theorems.

1.2 Definitions of linear-algebraic expansion

Throughout, our main object of study will a matrix tuple B = (B1, . . . , Bd) ∈ M(n,F)d, where
F is some field and M(n,F) denotes the space of n × n matrices over F. The above notions of
linear-algebraic expansion will all be properties of such matrix tuples B. The analogies to graphs
will be apparent when considering B as a tuple of permutation matrices, which naturally define a
d-regular graph4.

1.2.1 Quantum expansion and quantum edge expansion

When working with quantum expanders and quantum edge expanders, we work with the field
F = C. Additionally, rather than working with arbitrary matrix tuples, we work with doubly
stochastic matrix tuples, which are those tuples B = (B1, . . . , Bd) ∈ M(n,C)d with

∑d
i=1BiB

∗
i =∑d

i=1B
∗
i Bi = dIn, where In is the n × n identity matrix. An important special case is that of

unitary matrix tuples, where each Bi is a unitary matrix.

Definition 1.2. Given a doubly stochastic matrix tuple B = (B1, . . . , Bd) ∈ M(n,C)d, the associ-
ated quantum operator is the linear map ΦB : M(n,C) → M(n,C) defined by

ΦB(X) =
1

d

d∑
i=1

BiXB∗
i .

The quantum operator ΦB should be thought of as an analogue of the normalized adjacency
matrix A of a graph G. Indeed, it is straightforward to check that if each Bi is a permutation
matrix, and if X is a diagonal matrix, then ΦB(X) is also diagonal, and the diagonal entries are
precisely the entries of Ax, where x is the vector of diagonal entries of X. Similarly, it is easy to
verify that the largest eigenvalue of ΦB is 1, with eigenvector In. Continuing the analogy, we define
the Laplacian operator by ΛB := I − ΦB, where I is the identity map M(n,C) → M(n,C).

Based on this analogy between quantum operators and adjacency matrices, the following def-
inition5 from [Has07, BATS07] is a natural analogue of the definition of spectral expansion of a
graph.

4For it to define an undirected graph, it must be a symmetric set of permutations, but this is essentially without
loss of generality. Additionally, it is well-known [Gro77] that any d-regular graph can be decomposed as a union of d
permutations (at least when d is even), so we may always view a d-regular graph as a tuple of permutation matrices.

5We remark that often, quantum expansion is defined for a quantum operator, rather than for a tuple of matrices,
where a quantum operator is defined abstractly as a linear map M(n,C) → M(n,C) satisfying certain properties.
However, it is well-known [NC00, Theorem 8.2] that any quantum operator arises in an essentially unique way from
a doubly stochastic matrix tuple, so the two perspectives are equivalent.

4



Definition 1.3. Given a doubly stochastic matrix tuple B = (B1, . . . , Bd) ∈ M(n,C)d, its quantum
expansion, λ(B), is defined to be the second-smallest singular value6 of ΛB.

For fixed d and λ > 0, we say that a family of doubly stochastic matrix tuples {Bn =
(B1, . . . , Bd) ∈ M(n,C)d | n ∈ N} is an (n, d, λ)-quantum expander if λ(Bn) ≥ λ for all n ∈ N.

Similarly, the following definition from [Has07] is a linear-algebraic analogue of the edge expan-
sion of a graph.

Definition 1.4. Given a doubly stochastic matrix tuple B = (B1, . . . , Bd) ∈ M(n,C)d, its quantum
edge expansion is defined as

hQ(B) := min
V≤Cn

1≤dim(V )≤n
2

⟨In − PV ,ΦB(PV )⟩
dim(V )

, (1.4)

where PV is the orthogonal projection onto the subspace V ≤ Cn, and where ⟨·, ·⟩ denotes the
standard inner product on M(n,C).

For fixed d and h > 0, we say that a family of doubly stochastic matrix tuples {Bn =
(B1, . . . , Bd) ∈ M(n,C)d | n ∈ N} is an (n, d, h)-quantum edge expander if hQ(Bn) ≥ h for all
n ∈ N.

Suppose again that each Bi is a permutation matrix. Let W ⊆ [n], and suppose that V =
⟨ej⟩j∈W is a coordinate subspace, spanned by a subset of the standard basis {e1, . . . , en} of Cn. Then
PV is simply a diagonal matrix with a 1 in positions indexed by W and a 0 elsewhere. Similarly,
as discussed above, ΦB(PV ) is another diagonal matrix, whose diagonal entries are precisely the
entries of A1W , where A is the normalized adjacency matrix of G and 1W is the indicator vector
of W . Therefore, ⟨In − PV ,ΦB(PV )⟩ is equal to 1[n]\WA1W , which in turn equals 1

d |∂W |. Thus,
whenB comprises permutation matrices and when we restrict the minimum to coordinate subspaces
V ≤ Cn, the definition of quantum edge expansion precisely recovers the definition of edge expansion
of a graph.

1.2.2 Dimension expanders and dimension edge expanders

Dimension expansion and dimension edge expansion are well-defined over any field, but for sim-
plicity, we continue working with F = C for the moment.

Given a tuple of matrices B = (B1, . . . , Bd) ∈ M(n,C)d, the image of V ≤ Cn under B is
B(V ) := ⟨∪i∈[d]Bi(V )⟩, where Bi(V ) := {Biv : v ∈ V } and ⟨·⟩ denotes linear span over C.

Definition 1.5. The dimension expansion of a matrix tuple B = (B1, . . . , Bd) ∈ M(n,C)d is
defined as

µ(B) := min
V≤Cn

1≤dim(V )≤n
2

dim(V +B(V ))− dim(V )

dim(V )
. (1.5)

For fixed d and µ > 0, we say that a family of matrix tuples {Bn = (B1, . . . , Bd) ∈ M(n,C)d | n ∈ N}
is an (n, d, µ)-dimension expander if µ(Bn) ≥ µ for all n ∈ N.

6In general, ΦB (and thus also ΛB) may not be a self-adjoint operator on M(n,C), and hence its eigenvalues may
not be real; this is why we restrict our attention to singular values. In many special cases (e.g. if all the matrices Bi

are Hermitian, or if the tuple B is a symmetric set of permutation matrices), ΦB and ΛB are self-adjoint, and then
we may equivalently define λ(B) as the second-smallest eigenvalue of ΛB.
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To see the analogy to vertex expansion in graphs, suppose that each Bi is a permutation
matrix, let W ⊆ [n], and suppose that V = ⟨ej⟩j∈W is a coordinate subspace. Then Bi(V ) is
another coordinate subspace, spanned by the images of W under the permutation Bi. Therefore,
dim(V +B(V ))− dim(V ) precisely counts how many elements in the complement of W are in the
image of some Bi. In other words, if we restrict the definition of dimension expansion to tuples
of permutation matrices, and restrict the minimum to coordinate subspaces V ≤ Cn, we precisely
recover the definition of vertex expansion in graphs.

The same perspective motivates our new definition of dimension edge expanders. To define
them, we first need to define the restriction of a matrix to a subspace. Let V ≤ Cn be a subspace
of dimension r, and let T ∈ M(n × r,C) be a matrix whose columns form an orthonormal basis
of V . Similarly, let R ∈ M((n − r) × n,C) be a matrix whose rows form an orthonormal basis of
V ⊥, the orthogonal complement of V . Given B ∈ M(n,C), its restriction to (V ⊥, V ) is defined by
B|V ⊥,V := RBT . Note that while T and R are not unique, a different choice of T and R would give
rise to a matrix that is equivalent to B|V ⊥,V up to multiplication by unitary matrices (and thus in
particular has the same rank).

With this setup, we can define dimension edge expansion.

Definition 1.6. For a matrix tuple B = (B1, . . . , Bd) ∈ M(n,C)d, the dimension edge expansion
of B is defined as

hD(B) = min
V≤Cn

1≤dim(V )≤n
2

∑d
i=1 rank(Bi|V ⊥,V )

d · dim(V )
. (1.6)

For fixed d and h > 0, we say that a family of matrix tuples {Bn = (B1, . . . , Bd) ∈ M(n,C)d | n ∈ N}
is an (n, d, h)-dimension edge expander if hD(Bn) ≥ h for all n ∈ N.

Again suppose that V = ⟨ei⟩i∈W is a coordinate subspace corresponding to some W ⊆ [n].
Then Bi|V ⊥,V is simply the submatrix of Bi with columns indexed by W and rows indexed by
[n] \ W . In case Bi is a permutation matrix, the rank of this submatrix is precisely the number
of non-zero entries in it, which is equal to the number of elements of W mapped to [n] \ W by
the permutation Bi. In other words, if we restrict our attention to permutation matrices and to
coordinate subspaces, we again recover the definition of edge expansion of graphs.

Remark 1.7. To extend the definition of dimension edge expansion to any field F, we denote
by V ⊥ the annihilator of V ≤ Fn with respect to the standard dot product, namely V ⊥ :={
u ∈ Fn | utv = 0 ∀v ∈ V

}
. Then let T ∈ M(n × r,F) be a matrix whose columns form a basis of

V , and R ∈ M((n − r) × n,F) whose rows form a basis of V ⊥. Given B ∈ M(n,F), its restriction
to (V ⊥, V ) is defined by B|V ⊥,V := RBT . Dimension edge expansion is now defined identically to
Definition 1.6.

1.3 Main results

As discussed in Section 1.1, our results demonstrate that in the linear-algebraic setting, the rela-
tionship between the various notions of expansion is substantially subtler than it is in the graph-
theoretic setting. Our first main result is negative: it says that in general, a matrix tuple can be a
good dimension expander while having arbitrarily poor quantum expansion.

Theorem 1.8. A dimension expander may be an arbitrarily poor quantum expander. More pre-
cisely, there are constants µ > 0 and d ∈ N so that for all ε > 0 and all sufficiently large n, there
exists a unitary matrix tuple B = (B1, . . . , Bd) ∈ M(n,C)d such that µ(B) ≥ µ but λ(B) < ε.
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In fact, we prove something stronger: given any unitary matrix tupleB0 ∈ M(n,C)d, we can find
another unitary matrix tuple B ∈ M(n,C)d so that µ(B) ≥ µ(B0)/d and λ(B) < ε. Moreover B is
obtained from B0 in a very simple way: each matrix in B is simply a very small fractional power
of the corresponding matrix in B0. Perhaps surprisingly, our proof uses a number of compactness
arguments, and thus gives no quantitative information on how small this fractional power must be.

In the other direction, we have a number of relationships between the various notions of linear-
algebraic expansion, in analogy to Proposition 1.1.

Theorem 1.9. Let B = (B1, . . . , Bd) ∈ M(n,C)d be a doubly stochastic matrix tuple. Then we
have

(1) µ(B)
d ≤ hD(B) ≤ µ(B);

(2) λ(B)
2 ≤ hQ(B) ≤

√
2λ(B);

(3) hQ(B) ≤ d · hD(B).

In case B is a unitary matrix tuple, we may replace (3) by the stronger bound

(4) hQ(B) ≤ hD(B).

In fact, Theorem 1.9(1) holds for any matrix tuple over any field; the assumptions that we
are working over C and have a doubly stochastic matrix tuple are only necessary so that λ(B)
and hQ(B) are well-defined. As mentioned above, Theorem 1.9(2) is not new, and was proved by
Hastings [Has07, Appendix A]. So we do not prove Theorem 1.9(2) in this paper, but we include
it in the statement of Theorem 1.9 in order to make the analogy to Proposition 1.1 as transparent
as possible.

Speaking of Proposition 1.1, the key thing to stress about the difference between the graph-
theoretic and linear-algebraic settings is that the single graph-theoretic notion of edge expansion,
which appears in both Propositions 1.1(1) and 1.1(2), corresponds to two distinct linear-algebraic
notions, namely dimension edge expansion and quantum edge expansion. That these two quantities
are not equivalent is implied by Theorem 1.8, which gives a separation between µ and λ. However,
the fact that there is an inequality relating them—Theorem 1.9(3)—shows that quantum expansion
implies dimension expansion, as stated in the next corollary.

Corollary 1.10. Every quantum expander is a dimension expander. More precisely, if B ∈
M(n,C)d is a doubly stochastic matrix tuple, then

µ(B) ≥ λ(B)

2d
.

In case B is a unitary matrix tuple, we have the stronger bound

µ(B) ≥ λ(B)

2
.

Proof. We have that

µ(B) ≥ hD(B) ≥
hQ(B)

d
≥ λ(B)

2d
,

where the three inequalities follow from the first three parts of Theorem 1.9. In case B is unitary,
we may replace the second inequality above by hD(B) ≥ hQ(B), thanks to Theorem 1.9(4).
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As discussed above, a similar result was proved by Lubotzky and Zelmanov [LZ08]7.

Theorem 1.11 ([LZ08, Proposition 2.1]). Let B = (B1, . . . , Bd) ∈ M(n,C)d be a unitary matrix
tuple. Then

µ(B) ≥ λ(B)

6
.

Lubotzky and Zelmanov only stated this result for matrix tuples arising from irreducible unitary
representations of finite groups, but their proof actually works in the generality of arbitrary unitary
matrix tuples.

Note that our result (Corollary 1.10) is both quantitatively stronger (in that we obtain a better
constant factor) and qualitatively stronger (as we obtain a result for all doubly stochastic matrix
tuples, not only unitary tuples). Additionally, we believe that our proof is conceptually simpler
than that of [LZ08], since the implication from quantum to dimension expansion naturally breaks
into three simpler implications (quantum implies quantum edge, which implies dimension edge,
which implies dimension).

Lubotzky and Zelmanov [LZ08] proved Theorem 1.11 in order to explicitly construct dimension
expanders over C. Indeed, this motivation is a natural reason to study the relationships between
linear-algebraic notions of expansion: Corollary 1.10 implies that any construction of a quantum
expander also yields a construction of a dimension expander, whereas Theorem 1.8 shows that the
converse does not hold. We remark that explicit constructions of quantum and dimension expanders
is an important and highly active area of research, which we do not discuss further, except to stress
that this is a very natural reason to study connections between different notions of expansion.

1.4 Connections between graphs and matrix spaces

There is a natural way of associating a matrix tuple to a graph. Namely, given a d-regular graph
G = ([n], E), we define the graphical matrix tuple to be the matrix tuple8 BG = (

√
nEi,j : {i, j} ∈

E), where Ei,j is the elementary matrix with a 1 in position (i, j) and zeros in all other entries. Note
that BG is a tuple of 2 |E| = dn matrices, and thus is not particularly natural from the perspective
of expansion: we are usually interested in families of matrix tuples where the length of the tuple
stays constant as the dimension of the matrices grows. Here, even if the degree d of G is fixed, the
number of matrices in BG tends to infinity with n.

Nonetheless, the construction of BG is very natural from other perspectives. Indeed, the ma-
trices in BG form the standard basis for the graphical matrix space associated to G. In [LQW+22],
we proved that many important graph-theoretic properties of G are equivalent to linear-algebraic
properties of BG. In particular, we proved a number of results that we term inherited correspon-
dences, which say that the value of a certain optimum associated to G is equal to a related optimum
associated to BG, even though the feasible region in the latter optimum is generally much larger;
for example, an optimum over all subgraphs of G may equal an optimum over all subspaces of
⟨BG⟩, even though there are many more subspaces than subgraphs.

As it turns out, the various expansion parameters give us a number of other results of this type.
The first of these is due to Bannink, Briët, Labib, and Maassen [BBLM20], who proved that the
quantum expansion of BG equals the spectral expansion of G.

7Lubotzky and Zelmanov were unaware of the notion of quantum expansion, and thus did not state this result in
this language. Harrow [Har08] was the first to observe that their approach passes through quantum expansion as an
intermediate step.

8Note that we scale Ei,j by a factor of
√
n in order to ensure that BG is a doubly stochastic matrix tuple, as∑

{i,j}∈E(
√
nEi,j)(

√
nEi,j)

∗ =
∑

{i,j}∈E(
√
nEi,j)

∗(
√
nEi,j) = dnIn.
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Theorem 1.12 ([BBLM20, Proposition 3.7]). For every d-regular graph G, λ(G) = λ(BG).

We prove analogous results for dimension expansion and dimension edge expansion.

Theorem 1.13. For every d-regular graph G, µ(G) = µ(BG) and h(G) = hD(BG).

In contrast, no such equality holds for quantum edge expansion. In fact, it fails already for the
simplest possible graph, consisting of two vertices and a single edge.

Proposition 1.14. h(K2) = 1, but hQ(BK2) ≤ 1
2 .

Using the same proof technique, one can check that hQ(BKn) < h(Kn) for all n ≥ 2. The
fact that h(G) and hQ(BG) are different in general may shed further light on our main results in
Theorems 1.8 and 1.9, that dimension edge expansion and quantum edge expansion are different.
However, we stress that these simple examples have no direct bearing on Theorems 1.8 and 1.9, as
BG is not a matrix tuple of constant length, which is the setting in which Theorems 1.8 and 1.9
are interesting.

Remark 1.15. We include the
√
n normalization in the definition of BG in order to obtain a

doubly stochastic tuple. When working with a non-d-regular graph or over a field other than C,
one should omit this normalization; with this definition, Theorem 1.13 holds for any graph G and
over any field.

1.5 Notation and basic definitions

For n ∈ N, [n] := {1, . . . , n}. Throughout, we work with finite-dimensional vector spaces over a
field F. The elements of Fn are length-n column vectors over F. The linear space of n′×n matrices
over F is denoted M(n′ × n,F). For simplicity we shall write M(n,F) for M(n × n,F). We use
Ei,j ∈ M(n′ × n,F) to denote the n′ × n elementary matrix where the (i, j)th entry is 1, and other
entries are 0.

We use ⟨x, y⟩ to denote inner products. In particular, for x = (x1, . . . , xn)
t, y = (y1, . . . , yn)

t ∈
Cn, their inner product is ⟨x, y⟩ :=

∑n
i=1 xiyi. For every p ∈ [1,∞), the Lp-norm of x ∈ Cn is

defined as

∥x∥Lp
:=

(
n∑

i=1

|xi|p
) 1

p

.

Define ∥x∥L∞ := maxi |xi|.
We use Tr(·) to denote the usual trace function on M(n,F). For X,Y ∈ M(n,C), their inner

product is ⟨X,Y ⟩ := Tr(X∗Y ). For every p ∈ [1,∞), the Schatten-p norm of X ∈ M(n,C) is defined
as

∥X∥Sp
:=
(
Tr
[
(X∗X)

p
2

]) 1
p
.

Define ∥X∥S∞ := sup{|⟨x,Xy⟩| : ∥x∥L2 , ∥y∥L2 ≤ 1}, which is the operator norm of X.

1.6 Organization

In Section 2, we prove Theorem 1.8, showing that a small fractional power of a dimension expander
yields another dimension expander which is an arbitrarily poor quantum expander. In Section 3, we
prove Theorem 1.9, showing that dimension and dimension edge expansion are equivalent, and that
quantum edge expansion implies dimension edge expansion. In Section 4, we prove Theorem 1.13
and Proposition 1.14, relating graph expansion and linear-algebraic expansion of the associated
graphical matrix tuple. We conclude in Section 5 with some open problems and concluding remarks.
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2 Dimension expanders that are not quantum expanders

In this section, we prove Theorem 1.8. Our main technical result is the following, which says that
given an arbitrary unitary matrix tuple, any sufficiently small fractional power of it has equal or
greater dimension expansion. As it is easy to show that a small fractional power of any unitary
matrix tuple has poor quantum expansion, it becomes straightforward to deduce Theorem 1.8, as
we show below.

Recall that given a unitary matrix U , there exists a Hermitian matrix H such that U = eiH .
Using this, we can define arbitrary powers of U : for any s > 0, we define U s := eisH . Note that
this notion depends on the choice of H, and a different choice of H may yield a different outcome,
but this will not matter for us. So for any unitary matrix U , we fix a choice of Hermitian H such
that U = eiH , and then define powers of U with respect to this choice.

Theorem 2.1. Let U = (U1, . . . , Ud) ∈ U(n)d be a unitary tuple of matrices. There exists some
s0 > 0 such that for all s ∈ (0, s0), the unitary matrix tuple Us = (U s

1 , . . . , U
s
d) ∈ U(n)d satisfies

µ(Us) ≥ µ(U)/d.

Assuming Theorem 2.1, we can prove Theorem 1.8.

Proof of Theorem 1.8. We recall the variational definition of quantum expansion: for any doubly
stochastic matrix tuple B, we have that

λ(B) = 1− max
0̸=X∈M(n,C)

Tr(X)=0

∥ΦB(X)∥S2

∥X∥S2

. (2.1)

Indeed, we first note that the second-smallest singular value of ΛB equals one minus the second-
largest singular value of ΦB. Since the largest eigenvalue of ΦB is 1, with In as both a left and
a right eigenvector, we know that the second-largest singular value of ΦB is simply the operator
norm of ΦB when restricted to the orthogonal complement of In. The orthogonal complement of
In is the set of matrices X with Tr(X) = 0, and thus the maximum in (2.1) precisely defines the
second-largest singular value of ΦB. In particular, by the triangle inequality, we see that

λ(B) = max
0̸=X∈M(n,C)

Tr(X)=0

∥X∥S2 − ∥ΦB(X)∥S2

∥X∥S2

≤ max
0̸=X∈M(n,C)

Tr(X)=0

∥X − ΦB(X)∥S2

∥X∥S2

. (2.2)

It is well-known that for constant d ∈ N and µ > 0, there exist unitary (n, d, dµ)-dimension
expanders for all sufficiently large n (e.g. by taking 100 random n × n unitary matrices). So fix
some U = (U1, . . . , Ud) ∈ U(n)d with µ(U) ≥ dµ. By Theorem 2.1, we know that Us is still an
(n, d, µ)-dimension expander for any sufficiently small s. Given ε > 0, we claim that λ(Us) < ε for
sufficiently small s.

Note that as s tends to 0, Us approaches the identity tuple (In, . . . , In). More precisely, for any
ε > 0 and any i ∈ [d], there exists a sufficiently small s such that

∥In − U s
i ∥S2 <

ε

2
and ∥In − (U s

i )
∗∥S2 <

ε

2
. (2.3)

Note that the two conditions are actually equivalent, as the Schatten norm is invariant under taking
conjugate transpose. Now fix s sufficiently small so that (2.3) holds for all i ∈ [d], and so that
µ(Us) ≥ µ(U)/d ≥ µ. It remains to prove that for this choice of s, we have λ(Us) < ε.
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Fix some 0 ̸= X ∈ M(n,C) with Tr(X) ̸= 0. By our choice of s, we have that

∥X − ΦUs(X)∥S2

∥X∥S2

=
∥
∑d

i=1(X − U s
i X(U s

i )
∗)∥S2

d∥X∥S2

≤
d∑

i=1

∥X(In − (U s
i )

∗) + (In − U s
i )X(U s

i )
∗∥S2

d∥X∥S2

(2.4)

≤
d∑

i=1

∥X(In − (U s
i )

∗)∥S2 + ∥(In − U s
i )X(U s

i )
∗∥S2

d∥X∥S2

(2.5)

=

d∑
i=1

∥X(In − (U s
i )

∗)∥S2 + ∥(In − U s
i )X∥S2

d∥X∥S2

(2.6)

≤
d∑

i=1

∥In − (U s
i )

∗∥S2 + ∥In − U s
i ∥S2

d
(2.7)

< ε, (2.8)

where (2.4) and (2.5) use the triangle inequality, (2.6) uses the fact that Schatten norms are
invariant under unitary multiplications, (2.7) uses the submultiplicativity of the Schatten norm,
and (2.8) uses our assumption that (2.3) holds for all i ∈ [d]. By taking the maximum over all such
X, we conclude that for sufficiently small s, the tuple Us is an (n, d, µ)-dimension expander, but
λ(ΦUs) < ε.

In order to prove Theorem 2.1, we will need the following lemma. It says that for a fixed
subspace W ≤ Cn, taking a small power of a matrix U does not “ruin the dimension expansion”.
Namely, if there is a subspace V ≤ W so that UV ∩ W = {0}, then U sV ∩ W = {0} for all
sufficiently small s. This almost suffices to prove Theorem 2.1, except that the “sufficiently small”
condition depends on V and W ; in order to obtain an absolute bound that is independent of these
choices, we will use a compactness argument.

Lemma 2.2. Let U be a unitary matrix and let V ≤ W ≤ Cn be subspaces. Suppose that Uv /∈ W
for all non-zero v ∈ V . There exists some δ > 0 so that U sv /∈ W for all 0 < s < δ.

Here, as before, the matrix power U s is defined by fixing a Hermitian matrix H so that U = eiH ,
and then defining U s := eisH . At a high level, Lemma 2.2 is proved as follows. For a fixed non-zero
v ∈ V , we know that Uv /∈ W . Consider the “trajectory” U sv, viewed as a function of s. We
know that this trajectory eventually leaves W (as Uv /∈ W ); let us assume for the moment that in
fact, the first derivative of the trajectory has a non-zero component in W⊥. This means that for
sufficiently small s, the trajectory U sv is well-approximated by a line which does not lie in W , and
thus for some small but positive amount of time, this trajectory stays outside W . By bounding the
second derivative of the trajectory, this argument can be made rigorous.

Unfortunately, it need not be the case that the first derivative of the trajectory lies outside W ,
so one cannot just apply the argument as sketched above. However, since Uv /∈ W for all v ∈ V ,
we see that for each v ∈ V , some derivative of the trajectory lies outside W . By performing a
backwards induction on the order of the first derivative which lies outside W (and at each step
repeating the argument above), one can prove Lemma 2.2. Here are the details.

Proof of Lemma 2.2. Fix a non-zero vector v ∈ V . For s ≥ 0, we write U sv in terms of the Taylor
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expansion of eisH , i.e.

U sv = eisHv =
∞∑
j=0

1

j!
(isH)jv =

∞∑
j=0

(is)j

j!
Hjv.

Note that if Hkv ∈ W for all k ≥ 0, then U sv ∈ W for all s ≥ 0, and in particular Uv ∈ W , which
contradicts our assumption. Therefore, we see that for every v ∈ V , there is some integer k ≥ 0 so
that Hjv ∈ W for all 0 ≤ j ≤ k, but Hk+1v /∈ W .

For k ≥ 0, let Vk ≤ V be the set of v ∈ V so that Hjv ∈ W for all 0 ≤ j ≤ k. Note that Vk is a
subspace of V , and they are nested as V = V0 ≥ V1 ≥ V2 ≥ · · · . By the discussion above, we know
that

⋂
k≥0 Vk = {0}. Additionally, since V is finite-dimensional, we see that this chain eventually

stabilizes at 0, i.e., there is some K so that VK−1 ̸= {0} but VK = {0}. We will now prove the
following claim by induction on k, starting at k = K and working down to k = 1.

Claim 2.3. For every 1 ≤ k ≤ K, there exists some δk > 0 so that the following holds. For every
v ∈ Vk−1 with ∥v∥L2 = 1, we have that U sv /∈ W for all s ∈ (0, δk).

Note that the k = 1 case of this claim is simply the desired lemma statement, since V0 = V and
since we lose nothing by restricting to vectors of norm 1.

Proof of Claim 2.3. We prove the claim by (reverse) induction on k. For the base case of k = K,
let v ∈ VK−1 be a vector of norm 1. Let P ∈ M(n,C) denote the orthogonal projection onto the
orthogonal complement of W . Observe that for any s > 0, we have

PU sv =
∞∑
j=0

(is)j

j!
PHjv =

∞∑
j=K

(is)j

j!
PHjv,

since Hjv ∈ W for all j < K, and thus PHjv = 0 for all j < K. For any s ∈ (0, 1), we have that∥∥∥∥ (is)K+1

(K + 1)!
PHK+1v

∥∥∥∥
L2

=
sK+1

(K + 1)!
∥PHK+1v∥L2 ≤ 1

(K + 1)!
∥HK+1v∥L2 ≤

∥H∥K+1
S∞

(K + 1)!
=: CK ,

where we use that s ≤ 1 and that P is a contraction in the first inequality, and the definition of the
Schatten-∞ norm and the assumption ∥v∥L2 = 1 in the second inequality. Therefore, by Taylor’s
theorem, we find that for all s ∈ (0, 1) and all v ∈ VK−1 with ∥v∥L2 = 1, we have that

∥PU sv∥L2 ≥
∥∥∥∥(is)KK!

PHKv

∥∥∥∥
L2

− CKsK+1 =
sK

K!
∥PHKv∥L2 − CKsK+1.

Note that the function v 7→ ∥PHKv∥L2 is a continuous real-valued function on the unit sphere
in VK−1, which is compact. Moreover, since VK = {0}, we know that HKv /∈ W for all non-zero
v ∈ VK−1, and thus ∥PHKv∥L2 is strictly positive for all v ∈ VK−1 with ∥v∥L2 = 1. Therefore,
there exists some cK > 0 so that ∥PHKv∥L2 ≥ K!cK for all v ∈ VK−1 with ∥v∥L2 = 1. Continuing
our computation above, we conclude that

∥PU sv∥L2 ≥ cKsK − CKsK+1

for all s ∈ (0, 1) and all v ∈ VK−1 with ∥v∥L2 = 1. If we let δK = min{cK/CK , 1}, then this implies
that ∥PU sv∥L2 > 0 for all s ∈ (0, δK). This is equivalent to saying that U sv /∈ W for all s ∈ (0, δK),
which proves the claim for k = K.
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We now move to the inductive step. There is nothing to prove if Vk−1 = Vk, so we may assume
that Vk is a proper subspace of Vk−1. Inductively, suppose we know the claim holds for k + 1,
namely that there exists some δk+1 > 0 so that U sv /∈ W for all v ∈ Vk with ∥v∥L2 = 1 and all
s ∈ (0, δk+1). As v 7→ U sv is a continuous map, and as W is closed, we conclude that U sv /∈ W
for all s ∈ (0, δk+1) and all v which is in a sufficiently small open neighborhood of the unit sphere
in Vk. More precisely, there exists some εk > 0 so that the following holds for all v ∈ Vk−1 with
∥v∥L2 = 1: Suppose we write v = u+ w where u ∈ V ⊥

k and w ∈ Vk, and suppose that ∥u∥L2 < εk.
Then U sv /∈ W for all s ∈ (0, δk+1).

So it suffices to now only consider such v with ∥u∥L2 ≥ εk. Note that for any such v, we have
that

∥PHkv∥L2 = ∥PHk(u+ w)∥L2 = ∥PHku∥L2 ,

since Hkw ∈ W , as w ∈ Vk. Now, the set of unit vectors v ∈ Vk−1 for which ∥u∥L2 ≥ εk is compact,
and the function v 7→ ∥PHkv∥L2 is continuous and strictly positive on it. So there exists some
ck > 0 so that ∥PHkv∥L2 ≥ k!ck for all such v. The rest of the proof is very similar to the base
case. For any s > 0, we have that

PU sv =

∞∑
j=0

(is)j

j!
PHjv =

∞∑
j=k

(is)j

j!
PHjv.

For any s ∈ (0, 1), we have that∥∥∥∥ (is)k+1

(k + 1)!
PHk+1v

∥∥∥∥
L2

=
sk+1

(k + 1)!
∥PHk+1v∥L2 ≤ 1

(k + 1)!
∥Hk+1v∥L2 ≤

∥H∥k+1
S∞

(k + 1)!
=: Ck.

By Taylor’s theorem, we conclude that if v = u+w is such that ∥u∥L2 ≥ εk, then for any s ∈ (0, 1),

∥PU sv∥L2 ≥
∥∥∥∥(is)kk!

PHkv

∥∥∥∥
L2

− Cks
k+1 =

sk

k!
∥PHkv∥L2 − Cks

k+1 ≥ cks
k − Cks

k+1.

Thus, for such v, we see that U sv /∈ W for all s ∈ (0, ck/Ck). On the other hand, for those v with
∥u∥ < εk, we know that U sv /∈ W for all s ∈ (0, δk+1). Thus, we get the desired result by setting
δk = min{ck/Ck, δk+1, 1}.

As discussed above, the k = 1 case of the claim is equivalent to the lemma statement, so this
concludes the proof.

For 1 ≤ r ≤ n, let Gr(n, r) denote the Grassmannian of r-dimensional subspaces of Cn. We
make the following definition, which will be useful in the proof of Theorem 2.1.

Definition 2.4. Let U = (U1, . . . , Ud) ∈ U(n)d be a tuple of n× n unitary matrices. Given a real
number µ > 0 and a subspace W ∈ Gr(n, r), let us say that a tuple (V, i, δ) is µ-expansive for W
if it satisfies the following conditions.

(i) V is a subspace of W , i ∈ [d] is an integer, and δ > 0 is a strictly positive real number.

(ii) We have dimV ≥ µr/d.

(iii) For every s ∈ (0, δ), we have that U s
i V ∩W = {0}.
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Our next simple lemma shows that if U is a (n, d, µ)-dimension expander, then every subspace
has an expansive tuple. The implication is a straightforward consequence of Lemma 2.2, but the
language of expansive tuples will be more convenient for the compactness argument we use in the
proof of Theorem 2.1.

Lemma 2.5. Let U = (U1, . . . , Ud) ∈ U(n)d be a unitary matrix tuple, and let µ > 0 be a real
number. If U is a (n, d, µ)-dimension expander, then for all 1 ≤ r ≤ n/2 and all W ∈ Gr(n, r),
there is a µ-expansive tuple for W .

Proof. By the definition of dimension expansion, we know that dim(W + U1W + · · · + UdW ) −
dim(W ) ≥ µr. Therefore, there exists some i so that dim(W + UiW ) − dim(W ) ≥ µr/d. Let V
be a maximum-dimensional subspace of W with the property that UiV ∩W = {0}; then the above
implies that dim(V ) ≥ µr/d. Finally, by Lemma 2.2, we see that there exists some δ > 0 so that
U sV ∩W = {0} for all 0 < s < δ, implying that (V, i, δ) is µ-expansive for W .

Now suppose we are given a unitary matrix U ∈ U(n) and a subspace V ≤ W with U sV ∩W =
{0} for all 0 < s < δ. Intuitively, the continuity of the map V 7→ U sV implies that if we perturb
W to a “nearby” subspace W ′, we can similarly perturb V to V ′ ≤ W ′ with the property that
U sV ′ ∩W ′ = {0} for all 0 < s < δ. The following lemma makes this precise, for which it is best
to use the language of fiber bundles. Let Gr(n,≤ r) denote the disjoint union of Gr(n, ℓ) over
0 ≤ ℓ ≤ r. There is a fiber bundle π over Gr(n, r) whose fibers are Gr(r,≤ r), namely above
W ∈ Gr(n, r) we simply put all possible subspaces of W . More precisely, the total space of the
bundle is

E = {(W,V ) ∈ Gr(n, r)×Gr(n,≤ r) : V is a subspace of W} ,

and the bundle map π : E → Gr(n, r) is given by π(W,V ) = W .

Lemma 2.6. Let W ∈ Gr(n, r), and let U be an n × n unitary matrix. Suppose that there exist
δ > 0 and a subspace V ≤ W so that U sV ∩W = {0} for all 0 < s < δ. Then there exists an open
set O ⊆ Gr(n, r) with W ∈ O and a continuous section σ : O → E of the fiber bundle π so that
σ(W ) = V and for all W ′ ∈ O, we have that U sσ(W ′) ∩W ′ = {0}.

Proof. Let ℓ = dimV . For X ∈ Gr(n, r), let V(X) be the collection of ℓ-dimensional subspaces Y of
X with the property that U sY ∩X = {0} for all 0 < s < δ. As (s, Y ) 7→ U sY is continuous in both
variables, we see that V(X) is open for all X. Again by continuity, V(X) also varies continuously
as we vary X ∈ Gr(n, r). Since V ∈ V(W ), these properties imply that we can find an open
neighborhood O of W and a section σ as claimed.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let U = (U1, . . . , Ud) ∈ U(n)d be a (n, d, µ)-dimension expander. By
Lemma 2.5, for every 1 ≤ r ≤ n/2 and every W ∈ Gr(n, r), we may find an expansive tuple
(V, i, δ) for W . By Lemma 2.6, there exists an open neighborhood OW of W as well as a section
σ : OW → E of the bundle π so that U s

i σi(W
′) ∩W ′ = {0} for all W ′ ∈ OW and all 0 < s < δ.

Now, the collection {OW }W∈Gr(n,r) forms an open cover of Gr(n, r), so by compactness, we can
find a finite subcover, say O1, . . . , OT . By the way we constructed these OW , we see that there
are δ1, . . . , δT > 0 so that for each W ∈ Nj , there is an expansive tuple for W with δ = δj . By
letting s0 = minj δj we conclude that for every W ∈ Gr(n, r), there is an expansive tuple for W
with δ ≥ s0. In other words, for every W , there exist i ∈ [d] and V ≤ W with dimV ≥ µr/d so
that U s

i V ∩W = {0} for all 0 < s < s0. This implies that dim(W +Us(W ))− dim(W ) ≥ µr/d for
all W . In other words, we see that µ(Us) ≥ µ/d for all 0 < s < s0, as claimed.
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To summarize, we have proven that given any dimension expander U = (U1, . . . , Ud) ∈ U(n)d,
two things are simultaneously true. On the one hand, all sufficiently small powers Us remain
dimension expanders. On the other hand, as s → 0, the tuple Us converges to the identity tuple,
and thus a sufficiently small power is an arbitrarily bad quantum expander. It is natural to hope
that one can “reverse” this process; namely, that by taking a large power s, we can convert any
dimension expander into one that is also a quantum expander. Sadly, this is also not true, as shown
by the following simple counterexample.

Proposition 2.7. There exists some dimension expander U ∈ U(n)d such that for any s > 0, Us

is not a quantum expander.
More precisely, there exists an absolute constant µ > 0 such that the following holds for all ε > 0

and all sufficiently large n. There exists a (n, 100, µ)-dimension expander U = (U1, . . . , U100) ∈
U(n)100 such that for all s > 0, we have λ(Us) < ε.

Proof sketch. Fix some ε > 0. Let e1, . . . , en be the standard basis of Cn. Let Eε ⊆ U(n) denote
the set of n×n unitary matrices M with the property that for all j ∈ [n], we have |⟨mj , ej⟩| > 1−ε,
where mj is the jth column of M . Then Eε is a non-empty open subset of U(n), which means
that we can sample according to the induced Haar measure on Eε. Let M1, . . . ,M100 be 100
independently random samples from this measure. Additionally, let D1, . . . , D100 be independent
random diagonal matrices whose diagonal entries are drawn uniformly at random from the unit
circle. Finally, let Ui = MiDiM

∗
i , so that each Ui is a random unitary matrix whose eigenvectors

are the columns of Mi and whose eigenvalues are the diagonal entries of Di. Note that for any
s > 0, we have U s

i = MiD
s
iM

∗
i , and Ds

i is a diagonal matrix whose diagonal entries are the sth
powers of the diagonal entries of Di.

It is well-known that 100 random unitary matrices form a (n, 100, µ)-dimension expander for
some fixed µ > 0 when n is large [DS11]. For the same reason, it is straightforward to check that
U = (U1, . . . , U100) forms an (n, 100, µ)-dimension expander for some fixed µ > 0. The point is that
while U1, . . . , Ud are not uniformly random unitary matrices, they are “generic” in an appropriate
sense, which suffices for them to form a dimension expander. However, we claim that for any s > 0,
we have λ(Us) ≤ 10ε. Since ε was arbitrary, this yields an example of a dimension expander none
of whose powers is a quantum expander.

To see this, we first observe that by the definition of Eε, the (1, 1) entry of Mi has absolute value
at least 1−ε, and the first row of Mi is a unit vector. Since Ds

i is a diagonal matrix whose diagonal
entries have absolute value 1, this implies that both M∗

i e1 and Ds
iM

∗
i e1 are unit vectors whose

first coordinate has norm at least 1 − ε. Let v, w ∈ Cn−1 be the last n − 1 coordinates of M∗
i e1

and Ds
iM

∗
i e1, respectively, so that ∥v∥L2 , ∥w∥L2 ≤

√
1− (1− ε)2 ≤

√
2ε. The Cauchy–Schwarz

inequality then gives |⟨v, w⟩| ≤ 2ε, which implies implies

|⟨e1, U s
i e1⟩| = |⟨e1,MiD

s
iM

∗
i e1⟩| = |⟨M∗

i e1, D
s
iM

∗
i e1⟩| ≥ (1− ε)2 − |⟨v, w⟩| ≥ 1− 4ε.

Let P = e1e
∗
1 be the projection on to the subspace spanned by e1. Then the entry of U s

i P (U s
i )

∗ in
the (1, 1) position is

e∗1 (U
s
i P (U s

i )
∗) e1 = (e∗1U

s
i e1)(e

∗
1(U

s
i )

∗e1) = |⟨e1, U s
i e1⟩|

2 ≥ 1− 8ε.

Let X = P − 1
nIn, so that X is a traceless matrix with S2-norm 1 − O( 1n). The computation

above implies that the (1, 1) entry of U s
i X(U s

i )
∗ is at least 1 − 8ε − 1

n . As this holds for all i, we
conclude that it also holds for ΦUs(X), which in turn implies that ∥ΦUs(X)∥S2 ≥ 1− 8ε− 1

n . As
∥X∥S2 ≥ 1−O( 1n), we conclude that λ(Us) ≤ 10ε for all sufficiently large n.
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3 Relations between linear-algebraic notions of expansion

In this section, we prove Theorem 1.9. Theorem 1.9(2) was proved by Hastings [Has07, Appendix
A], so it remains to prove Theorems 1.9(1) and 1.9(3).

We begin with Theorem 1.9(1). As remarked in the introduction, the result actually holds for
arbitrary matrix tuples over arbitrary fields, as stated in the following result.

Proposition 3.1. For B := (B1, . . . , Bd) ∈ M(n,F)d, it holds that µ(B)
d ≤ hD(B) ≤ µ(B).

Proof. We first show that an µ(B) ≤ d · hD(B). For any B ∈ M(n,F)d, let B′ = (B, In) ∈
M(n,F)d+1. From the definitions, it is clear that µ(B′) = µ(B) and hD(B

′) = d
d+1hD(B). We shall

prove that µ(B′) ≤ (d+ 1)hD(B
′).

Fix some V ≤ Fn of dimension 1 ≤ r ≤ n/2 and let T ∈ M(n× r,F) be a matrix whose columns
form a basis of V . Let R ∈ M((n − r) × n,F) be a matrix whose rows form a basis of V ⊥, as
defined in Remark 1.7. Let Bi|V ⊥,V = RBiT ∈ M((n − r) × r,F) for each i ∈ [d]. Note that we
have rank(T ) = r and rank(R) = n− r.

Let t = dim(V + B′(V )), and notice that t = dim(B′(V )) since Bd+1 = In. We have that
t ≥ (1 + µ(B′)) · dim(V ) = (1 + µ(B′)) · r. Let W ∈ M(n× t,F) be a matrix whose columns form a
basis of B′(V ). Then we have rank(RW ) = dim(B′(V ))− dim(ker(R) ∩B′(V )) ≥ t− r ≥ µ(B′) · r
and

d+1∑
i=1

rank(Bi|V ⊥,V ) =

d+1∑
i=1

dim(colspan(Bi|V ⊥,V ))

≥ dim(⟨∪i∈[d+1] colspan(RBiT )⟩)
= dim(R⟨∪i∈[d+1] colspan(BiT )⟩) (3.1)

= rank(RW ) (3.2)

≥ µ(B′) · r,

where (3.1) holds since R has full row rank and (3.2) holds since ⟨∪i∈[d+1] colspan(BiT )⟩ = B′(V ).
Ranging over all subspaces V ≤ Fn of dimension at most n/2, we find that µ(B′) ≤ (d+1)hD(B

′),
and µ(B) ≤ d · hD(B) follows.

Now we show that hD(B) ≤ µ(B). Fix some V ≤ Fn of dimension 1 ≤ r ≤ n/2, let T,R be
as above, and note that V = ker(R). Let W be a matrix whose columns are a basis of B(V ). We
have that

d · hD(B) · dim(V ) ≤
d∑

i=1

rank(Bi|V ⊥,V )

=
d∑

i=1

dim(colspan(RBiT ))

≤ d · dim(∪i∈[d] colspan(RBiT )) [since
∑

i∈[d] dim(Wi) ≤ d · dim(∪i∈[d]Wi)]

= d · dim(R(∪i∈[d] colspan(BiT ))) [since R has full row rank]

= d · rank(RW ) [since ∪i∈[d] colspan(BiT ) = B(V )]

= d · (dim(B(V ))− dim(B(V ) ∩ ker(R)) [since B(V ) = colspan(W )]

= d · (dim(B(V ))− dim(V ∩B(V ))) [since V = ker(R)]

= d · (dim(V +B(V ))− dim(V )).
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This implies that dim(V +B(V ))− dim(V ) ≥ hD(B) · dim(V ). Ranging over all subspace V ≤ Fn

of dimension at most n/2, we conclude that hD(B) ≤ µ(B).

We now turn to Theorems 1.9(3) and 1.9(4), which lower-bound the dimension edge expansion
in terms of the quantum edge expansion. As explained in the introduction, it is this inequality
which allows us to prove that quantum expanders are dimension expanders.

In order to prove Theorems 1.9(3) and 1.9(4), we will use the following equivalent formulation
of quantum edge expansion.

Lemma 3.2. For any doubly stochastic matrix tuple B = (B1, . . . , Bd) ∈ M(n,C)d, we have

hQ(B) = min
V≤Cn

1≤dim(V )≤n
2

∑d
i=1∥Bi|V ⊥,V ∥2S2

d · dim(V )
. (3.3)

Proof. Fix some subspace V ≤ Cn of dimension 1 ≤ r ≤ n/2. Let TV be an n × r matrix whose
columns form an orthonormal basis of V . Then PV = TV T

∗
V . Let V

⊥ be the orthogonal complement
of V , and TV ⊥ be an n × (n − r) matrix whose columns form an orthonormal basis of V ⊥. Then
PV ⊥ = In − PV = TV ⊥T ∗

V ⊥ .
We then have

⟨In − PV ,Φ(PV )⟩ = Tr((In − PV )
∗Φ(PV ))

=
1

d

d∑
i=1

Tr
(
TV ⊥T ∗

V ⊥BiTV T
∗
V B

∗
i

)
=

1

d

d∑
i=1

Tr
(
T ∗
V ⊥BiTV T

∗
V B

∗
i TV ⊥

)
=

1

d

d∑
i=1

∥T ∗
V ⊥BiTV ∥2S2

=
1

d

d∑
i=1

∥Bi|V ⊥,V ∥2S2
.

This implies that the objective functions in (3.3) and (1.4) are identical. The feasible regions are
also the same, which concludes the proof.

We are now ready to prove Theorems 1.9(3) and 1.9(4).

Proof of Theorems 1.9(3) and 1.9(4). Fix a doubly stochastic matrix tuple B = (B1, . . . , Bd) ∈
M(n,C)d. By (3.3) and (1.6), we wish to prove that

min
V≤Cn

1≤dim(V )≤n
2

∑d
i=1∥Bi|V ⊥,V ∥2S2

d · dim(V )
≤ d · min

V≤Cn

1≤dim(V )≤n
2

∑d
i=1 rank(Bi|V ⊥,V )

d · dim(V )
.

So it suffices to prove that ∥Bi|V ⊥,V ∥2S2
≤ d ·rank(Bi|V ⊥,V ) for any subspace V ≤ Cn and all i ∈ [d].

We first claim that the operator norm of Bi|V ⊥,V = T ∗
V ⊥BiTV is at most

√
d. Indeed, recall that∑d

i=1B
∗
i Bi = dIn, so dIn − B∗

i Bi is positive semidefinite for any i ∈ [d]. Thus, the operator norm
of Bi is upper bounded by

√
d for each i ∈ [d]. Moreover, the operator norm of any isometry is at
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most 1, thus ∥TV ⊥∥S∞ , ∥TV ∥S∞ ≤ 1. Using the submultiplicativity of the operator norm, we have
∥T ∗

V ⊥BiTV ∥S∞ ≤
√
d.

Recall that ∥Bi|V ⊥,V ∥2S2
= ∥T ∗

V ⊥BiTV ∥2S2
is the sum of the squares of the singular values of

T ∗
V ⊥BiTV . As there are precisely rank(T ∗

V ⊥BiTV ) non-zero singular values, and each one is upper-

bounded by ∥T ∗
V ⊥BiTV ∥S∞ ≤

√
d, we conclude that

∥Bi|V ⊥,V ∥2S2
≤ rank(T ∗

V ⊥BiTV )∥T ∗
V ⊥BiTV ∥2S∞ ≤ d · rank(Bi|V ⊥,V ),

as claimed. This proves Theorem 1.9(3).
In order to prove Theorem 1.9(4), note that if Bi is a unitary matrix, then ∥Bi∥S∞ = 1. This

implies that ∥T ∗
V ⊥BiTV ∥2S∞

≤ 1, so the argument above shows that ∥Bi|V ⊥,V ∥2S2
≤ rank(Bi|V ⊥,V ),

which yields Theorem 1.9(4).

4 Connections between graphs and matrix spaces

In this section, we study the graphical matrix tuple BG associated to a d-regular graph G. We
begin by proving that h(BG) is in general different from h(G), as stated in Proposition 1.14.

Proof of Proposition 1.14. We certainly have that h(K2) = 1. Note that BK2 =
([

0
√
2

0 0

]
,
[

0 0√
2 0

])
.

Consider the subspace V ≤ C2 spanned by the vector ( 1√
2
, 1√

2
). The orthogonal projection onto

V is given by the matrix PV = 1
2 [

1 1
1 1 ], and

ΦBK2
(PV ) =

1

2

([
0

√
2

0 0

] [
1
2

1
2

1
2

1
2

] [
0

√
2

0 0

]∗
+

[
0 0√
2 0

] [
1
2

1
2

1
2

1
2

] [
0 0√
2 0

]∗)
=

[
1
2 0
0 1

2

]
.

Therefore,

⟨I2 − PV ,ΦBK2
(PV )⟩ = Tr

([
1
2 −1

2
−1

2
1
2

]∗ [1
2 0
0 1

2

])
=

1

2
.

Hence, as hQ(BK2) is defined as a minimum over all one-dimensional subspaces, we find that
hQ(BK2) ≤ ⟨I2 − PV ,ΦBK2

(PV )⟩ = 1
2 , as claimed.

Remark 4.1. It is not hard to show that in fact, hQ(BK2) = 1
2 . More generally, one can show

that hQ(BKn) ≤ 1
n , which is smaller than h(Kn) for all n ≥ 2.

We now turn to the proof of Theorem 1.13. As the proofs that hD(BG) = h(G) and µ(BG) =
µ(G) are disjoint, we separate the Theorem 1.13 into two statements, Propositions 4.2 and 4.4.
Note that Theorem 1.13 holds over any field, so we will work with F instead of C in the rest of this
section.

Proposition 4.2. For any d-regular graph G = ([n], E), we have hD(BG) = h(G).

Proof. For v ∈ Fn, denote by supp(v) ⊆ [n] the set of indices of the non-zero coordinates of v. For
V ≤ Fn, we let supp(V ) = ∪v∈V supp(v). Define V ⊥ as in Remark 1.7. Now we claim the following.

Claim 4.3. We have that

rank(Ei,j |V ⊥,V ) =

{
1 if i ∈ supp(V ⊥) and j ∈ supp(V )

0 otherwise.
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Proof. Suppose dim(V ) = r and dim(V ⊥) = n−r. Let TV (resp. TV ⊥) be an n×r (resp. n×(n−r))
matrix whose columns form a basis of V (resp. V ⊥). Denote by v1, . . . , vn ∈ Fr and v′1, . . . , v

′
n ∈ Fn−r

the vectors corresponding to the rows of TV and TV ⊥ , respectively. Then for any i, j ∈ [n],

Ei,j |V ⊥,V = T t
V ⊥Ei,jTV = v′iv

t
j .

Note that rank(Ei,j |V ⊥,V ) = 1 if and only if Ei,j |V ⊥,V ̸= 0 (and otherwise rank(Ei,j |V ⊥,V ) = 0).

This, in turn, happens if and only if v′i ̸= 0 and vj ̸= 0, which is equivalent to i ∈ supp(V ⊥) and
j ∈ supp(V ).

For any fixed V ≤ Fn of dimension 1 ≤ r ≤ n/2, we shall construct a vertex subset W ⊆ [n] of
size r such that ∑

{i,j}∈E

rank(Ei,j |V ⊥,V ) ≥ |∂W |,

where here and throughout the sum is over all ordered pairs of vertices which are adjacent in G.
We use the same notation of TV and TV ⊥ as in Claim 4.3. Let T =

[
TV TV ⊥

]
∈ M(n,F). Since

TV is an n × r matrix of rank r, we can find a permutation matrix P ∈ GL(n,F) such that the
first r rows and columns of PTV form an invertible matrix. We can extend any basis of P (V ) with
(n− r) linearly independent vectors to span Fn. Specifically, the full basis can be represented as an
invertible matrix M ∈ GL(n,F) of which the first r columns form PTV . Now break M into blocks:

M =

[
A B
C D

]
,

where A ∈ M(r,F), B ∈ M(r × (n− r),F), C ∈ M((n− r)× r,F) and D ∈ M(n− r,F). Note that
PTV =

[
A
C

]
. It follows that A is invertible. Similarly, break M−1 into blocks:

M−1 =

[
A′ B′

C ′ D′

]
,

where A′ ∈ M(r,F), B′ ∈ M(r× (n− r),F), C ′ ∈ M((n− r)× r,F) and D′ ∈ M(n− r,F). Since D′

is the Schur complement of A, D′ is also invertible. Note that[
C ′ D′]PTV =

[
C ′ D′] [A

C

]
= 0.

Since rank(
[
C ′ D′]P ) = n− r, it follows that the rows of

[
C ′ D′]P form a basis of V ⊥. So we

let TV ⊥ = (
[
C ′ D′]P )t = P−1

[
C′t

D′t

]
and thus,

T =
[
TV TV ⊥

]
= P−1

[
A C ′t

C D′t

]
.

Let W = {P−1(i) : i ∈ [r]}. Then W ⊆ supp(V ) and [n]\W = {P−1(i) : i ∈ [n]\ [r]} ⊆ supp(V ⊥).
By Claim 4.3, rank(Ei,j |V ⊥,V ) = 1 if and only if i ∈ supp(V ⊥) and j ∈ supp(V ). On the other
hand, ∂W = {{i, j} ∈ E : i ∈ W, j ∈ [n] \W}. Thus

∑
{i,j}∈E rank(Ei,j |V ⊥,V ) ≥ |∂W |.

In short, for every subspace V ≤ Fn of dimension 1 ≤ r ≤ n/2, we can find a set W of r vertices
such that ∑

{i,j}∈E rank(Ei,j |V ⊥,V )

d · dim(V )
≥ |∂W |

d|W |
. (4.1)

Ranging over all subspace V of dimension at most n/2 implies that hD(BG) ≥ h(G). The reverse
inequality h(BG) ≤ h(G) follows by simply choosing V to be the coordinate subspace ⟨ei⟩i∈W , for
which it is clear that

∑
{i,j}∈E rank(Ei,j |V ⊥,V ) = |∂W |.
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We now turn to vertex and dimension expansion. The following proof is based on the ideas of
[DS11, DW10]:

Proposition 4.4. For any d-regular graph G = ([n], E), we have µ(BG) = µ(G).

Proof. For a non-zero vector v ∈ Fn, denote by π(v) ∈ [n] the largest index of a non-zero coordinate
of v. Similarly, let π(V ) = {π(v) | v ∈ V \ {0}}. For a set S ⊆ [n] and i, j ∈ [n], we define
fi,j(S) = {i} if j ∈ S and fi,j(S) = ∅ otherwise. For any V ≤ Fn, we claim that

π(Ei,j(V )) ⊇ fi,j(π(V )), (4.2)

where equality holds if V is a coordinate subspace. To see this, it suffices to consider the following
two cases:

• If there exists v ∈ V such that the jth coordinate of v is non-zero, then Ei,j(V ) = ⟨ei⟩, which
implies π(Ei,j(V )) = {i} ⊇ fi,j(π(V )). Moreover, if V is a coordinate subspace, we can also
conclude that ej ∈ V and thus j ∈ π(V ), which implies that π(Ei,j(V )) = {i} = fi,j(π(V )).

• If there doesn’t exist v ∈ V such that the jth coordinate of v is non-zero, then Ei,j(V ) = {0}
and j /∈ π(V ), which implies π(Ei,j(V )) = ∅ and fi,j(π(V )) = ∅.

Furthermore, for any V1, V2 ≤ Fn, we have that

π(V1 + V2) ⊇ π(V1) ∪ π(V2), (4.3)

where equality holds if V1 and V2 are coordinate subspaces or if one of them only consists of the
zero vector. Thus, for any subspace V ≤ Fn of dimension ≤ n/2, we see that

|π(V +BG(V ))| ≥ |π(V ) ∪ π(BG(V ))| [by (4.3)]

=

∣∣∣∣∣∣π(V ) ∪ π

 ∑
{i,j}∈E

Ei,j(V )

∣∣∣∣∣∣
=

∣∣∣∣∣∣π(V ) ∪

 ⋃
{i,j}∈E

π(Ei,j(V ))

∣∣∣∣∣∣ [by (4.3) and Ei,j(V ) = ⟨ei⟩ or {0}]

≥

∣∣∣∣∣∣π(V ) ∪

 ⋃
{i,j}∈E

fi,j(π(V ))

∣∣∣∣∣∣ [by (4.2)].

Observe that |π(V )| = dim(V ) ≤ n/2, as we can always find a basis of V with distinct last non-
zero coordinates. Additionally, for each vertex j ∈ π(V ), we have that ∪{i,j}∈Efi,j(j) is the set of
neighbors of j in G. It follows that

π(V ) ∪

 ⋃
{i,j}∈E

fi,j(π(V ))

 = π(V ) ∪ (∂out(π(V ))) .

Therefore, by the definition of vertex expansion,

|π(V +BG(V ))| ≥

∣∣∣∣∣∣π(V ) ∪

 ⋃
{i,j}∈E

fi,j(π(V ))

∣∣∣∣∣∣ = |π(V ) ∪ (∂out(π(V )))| ≥ (1 + µ(G)) · |π(V )|.
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Therefore, we conclude that

µ(BG) = min
V≤Fn

1≤dim(V )≤n/2

dim(V +BG(V ))− dim(V )

dim(V )
≥ µ(G).

The reverse inequality follows by picking V to be a coordinate subspace, which turns all the in-
equalities above into equalities.

Remark 4.5. The proof of Proposition 4.4 actually works for any graph, and Proposition 4.2 also
holds for any graph after removing the d-normalization from the definitions of edge expansion and
dimension edge expansion.

5 Conclusion and open problems

Recall (3.3), which gives an equivalent definition of the quantum edge expansion of a doubly
stochastic matrix tuple in terms of the Schatten-2 norm, namely

hQ(B) = min
V≤Cn

1≤dim(V )≤n
2

∑d
i=1∥Bi|V ⊥,V ∥2S2

d · dim(V )
.

Given this formulation, the following definition is natural.

Definition 5.1. Given p ∈ [1,∞) and a doubly stochastic matrix tuple B = (B1, . . . , Bd) ∈
M(n,C)d, the Schatten-p edge expansion of B is defined as

hSp(B) := min
V≤Cn

1≤dim(V )≤n
2

∑d
i=1∥Bi|V ⊥,V ∥

p
Sp

d · dim(V )
.

The proof of Theorem 1.9(3) immediately shows that for any doubly stochastic matrix tuple
B ∈ M(n,C)d and for any p ∈ [1,∞), we have

hSp(B) ≤ d
p
2 · hD(B).

In case B is a unitary matrix tuple, we have the stronger inequality

hSp(B) ≤ hD(B).

Indeed, to prove both of these, we simply recall that ∥Bi|V ⊥,V ∥
p
Sp

is the sum of the pth powers of

the singular values of Bi|V ⊥,V . There are rank(Bi|V ⊥,V ) non-zero singular values, and each of them
is upper-bounded by the operator norm of Bi|V ⊥,V . This operator norm, in turn, is upper-bounded

by
√
d, and by 1 in case Bi is unitary.

Therefore, for any p ∈ [1,∞), Schatten-p edge expansion implies dimension edge expansion, and
thus dimension expansion. On the other hand, one can modify the proof of Theorem 1.8 to show
that the converse does not hold for any p ∈ [1,∞). Indeed, if U ∈ U(n)d is a unitary matrix tuple,
then it is easy to see that hSp(U

s) → 0 as s → 0, since the tuple Us converges to the identity tuple
(In, . . . , In) as s → 0. However, Theorem 2.1 states that µ(Us) ≥ µ(U)/d for all sufficiently small
s, and thus hD(U

s) stays bounded away from zero as s → 0.
Given this, it is very natural to ask whether the notions of Schatten-p edge expansion are all

equivalent.
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Open Question 5.2. Fix p, q ∈ [1,∞) and d ∈ N. Do there exist increasing functions f, g : R≥0 →
R≥0 such that

f(hSp(B)) ≤ hSq(B) ≤ g(hSp(B))

holds for all doubly stochastic matrix tuples B ∈ M(n,C)d?

If the answer is positive, this could be viewed as a linear-algebraic analogue of a theorem of
Matoušek [Mat97], who proved that a certain Lp notion of graph expansion is equivalent to spectral
expansion (i.e. the L2 notion) for all p ∈ [1,∞).
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