
Superpolynomial Lower Bounds for Learning Monotone Classes

Nader H. Bshouty
Dept. of Computer Science, Technion, Haifa, Israel.∗

bshouty@cs.technion.ac.il

January 20, 2023

Abstract

Koch, Strassle, and Tan [SODA 2023], show that, under the randomized exponential time

hypothesis, there is no distribution-free PAC-learning algorithm that runs in time nÕ(log log s) for
the classes of n-variable size-s DNF, size-s Decision Tree, and log s-Junta by DNF (that returns
a DNF hypothesis). Assuming a natural conjecture on the hardness of set cover, they give the
lower bound nΩ(log s). This matches the best known upper bound for n-variable size-s Decision
Tree, and log s-Junta.

In this paper, we give the same lower bounds for PAC-learning of n-variable size-s Monotone
DNF, size-s Monotone Decision Tree, and Monotone log s-Junta by DNF. This solves the open
problem proposed by Koch, Strassle, and Tan and subsumes the above results.

The lower bound holds, even if the learner knows the distribution, can draw a sample ac-
cording to the distribution in polynomial time, and can compute the target function on all the
points of the support of the distribution in polynomial time.

1 Introduction

In the distribution-free PAC learning model [12], the learning algorithm of a class of functions C
has access to an unknown target function f ∈ C through labeled examples (x, f(x)) where x are
drawn according to an unknown but fixed probability distribution D. For a class of hypothesis
H ⊇ C, we say that the learning algorithm A PAC-learns C by H in time T and error ϵ if for every
target f ∈ C and distribution D, A runs in time T and outputs a hypothesis h ∈ H which, with
probability at least 2/3, is ϵ-close to f with respect to D. That is, satisfies Prx∼D[f(x) ̸= h(x)] ≤ ϵ.

Koch et al., [9], show that, under the randomized exponential time hypothesis (ETH), there is

no PAC-learning algorithm that runs in time nÕ(log log s) for the classes of n-variable size-s DNF,
size-s Decision Tree and log s-Junta by DNF. Assuming a natural conjecture on the hardness of set
cover, they give the lower bound nΩ(log s). Their lower bound holds, even if the learner knows the
distribution, can draw a sample according to the distribution in polynomial time and can compute
the target function on all the points of the support of the distribution in polynomial time.

In this paper, we give the same lower bounds for PAC-learning of the classes n-variable size-s
Monotone DNF, size-s Monotone Decision Tree and Monotone log s-Junta by DNF. This solves the
open problem proposed by Koch, Strassle, and Tan [9].

∗Center for Theoretical Sciences, Guangdong Technion, (GTIIT), China.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 6 (2023)

1.1 Previous Technique

In [9], Koch, Strassle, and Tan show that under the randomized exponential time hypothesis, there

is no PAC-learning algorithm that runs in time nÕ(log logn) for the class of log n-Junta1 by DNF.
The results for the other classes follow immediately from this result, since all other classes contain
log n-Junta. All prior works [1, 5] ruled out only poly(n) time algorithms.

The result in [9] uses the hardness result of (k, k′)-Set-Cover where one needs to distinguish
between instances that have set cover of size at most k from instances that have minimum-size set
cover greater than k′:

1. For some parameters k and k′, assuming randomized ETH, there is a constant λ < 1 such
that (k, k′)-Set-Cover cannot be solved in time nλk.

First, for each set cover instance S, they identify each element in the universe with an assignment
in {0, 1}n and construct in polynomial time a target function ΓS : {0, 1}n → {0, 1} and a distribution
DS that satisfies:

2. The instance S has minimum-size set cover opt(S) if and only if the function ΓS is a con-
junction of opt(S) unnegated variables2 over the distribution DS .3

For a DNF F and x ∈ {0, 1}n, they define widthF (x) to be the size of the smallest term T in F
that satisfies T (x) = 1. They then show that

3. Any DNF F with expected width Ex∼DS [widthF (x)] ≤ opt(S)/2 is (1/(2N))-far from ΓS

with respect to DS where N is the size4 of S. That is, Prx∼DS [F (x) ̸= ΓS(x)] ≥ 1/(2N).

They then use the following gap amplification technique. They define the function ΓS⊕ℓ :

({0, 1}ℓ)n → {0, 1} where for y = (y1, . . . , yn), yi = (yi,1, . . . , yi,ℓ) ∈ {0, 1}ℓ, i ∈ [n], we have
ΓS⊕ℓ(y) = ΓS(⊕y1, . . . ,⊕yn) and ⊕yi = yi,1 + · · ·+ yi,ℓ. They also extend the distribution DS to a

distribution DS⊕ℓ over domain ({0, 1}ℓ)n and prove that

4. ΓS⊕ℓ(y) is a (opt(S)ℓ)-Junta over DS⊕ℓ.
5. Any DNF formula F with expected depth Ey∼DS⊕ℓ

[widthF (y)] ≤ opt(S)ℓ/4 is (1/(4N))-far

from ΓS⊕ℓ with respect to DS⊕ℓ.

Item 4 follows from the definition of ΓS⊕ℓ and item 2. To prove Item 5, they show that if, to the

contrary, there is a DNF F of expected width at most opt(S)ℓ/4 that is 1/(4N)-close to ΓS⊕ℓ with

respect to DS⊕ℓ, then there is j ∈ [ℓ] and a projection of all the variables that are not of the form yi,j
that gives a DNF F ∗ of expected width at most opt(S)/2 that is 1/(2N)-close to ΓS with respect
to DS . Then, by item 3, we get a contradiction.

They then show that

6. Any size-s DNF that is (1/(4N))-close to ΓS⊕ℓ with respect to DS⊕ℓ has average width Ey∼DS⊕ℓ

[widthF (y)] ≤ 4 log s.

1k-Junta are Boolean functions that depend on at most k variables
2Their reduction gives a conjunction of negated variable. So here, we are referring to the dual function.
3That is, there is a term T with opt(S) variables such that for every x in the support of DS , ΓS(x) = T (x).
4N is the number of sets plus the size of the universe in S.

2

If F is (1/(4N))-close to ΓS⊕ℓ with respect to DS⊕ℓ, then, by items 5 and 6, 4 log s ≥ Ey∼DS⊕ℓ

[widthF (y)] ≥ opt(S)ℓ/4 and then s ≥ 2opt(S)ℓ/16. Therefore,

7. Any DNF of size less than 2opt(S)ℓ/16 is (1/(4N))-far from ΓS⊕ℓ with respect to DS⊕ℓ.

Now, let k = Õ(log log n). Suppose, to the contrary, that there is a PAC-learning algorithm

for log n-Junta by DNF with error ϵ = 1/(8N) that runs in time t = nλk/2 = nÕ(log logn), where λ
is the constant in item 1. Given a (k, k′)-Set-Cover instance, we run the learning algorithm for
ΓS⊕ℓ for ℓ = log n/k. If the instance has set cover at most k, then by item 4, ΓS⊕ℓ is log n-Junta.

Then the algorithm learns the target and outputs a hypothesis that is (1/(8N))-close to ΓS⊕ℓ with

respect to DS⊕ℓ.
On the other hand, if the instance has a minimum-size set cover of at least k′, then any learning

algorithm that runs in time t = nλk/2 = nÕ(log logn) cannot output a DNF of size more than t
terms. By item 7, any DNF of size less than 2k

′ logn/(16k) ≤ 2opt(S)ℓ/16 is (1/(4N))-far from ΓS⊕ℓ
with respect to DS⊕ℓ. By choosing the right parameters k and k′, we have 2k

′ logn/(16k) > t, and
therefore, any DNF that the algorithm outputs has error of at least 1/(4N).

Therefore, by estimating the distance of the output of the learning algorithm from ΓS⊕ℓ with

respect to DS⊕ℓ, we can distinguish between instances that have set cover of size less than or equal

to k from instances that have a minimum-size set cover greater than k′ in time t = nλk/2. Thus,
we got an algorithm for (k, k′)-Set-Cover that runs in time nλk/2 < nλk. This contradicts item 1
and finishes the proof of the first lower bound.

Assuming a natural conjecture on the hardness of set cover, they give the lower bound nΩ(log s).
We will discuss this in Section 5.

1.2 Our Technique

In this paper, we also use the hardness result of (k, k′)-Set-Cover . As in [9], we identify each
element in the universe with an assignment in {0, 1}n and use the function ΓS and the distribution
DS that satisfies:

1. The instance S has minimum-size set cover opt(S) if and only if the function ΓS is a con-
junction of opt(S) variables over the distribution DS .

We then build a monotone target function ΓSℓ and use a different approach to show that any
DNF of size less than 2opt(S)ℓ/20 is (1/(8N)− 2−opt(S)ℓ/20)-far from ΓSℓ with respect to DSℓ .

We define, for any odd ℓ, the monotone function ΓSℓ : ({0, 1}ℓ)n → {0, 1} where for y =
(y1, . . . , yn), yi = (yi,1, . . . , yi,ℓ) we have ΓSℓ (y) = ΓS(Majority(y1), . . . ,Majority(yn)) where
Majority is the majority function. A distribution DSℓ is also defined such that

2. Pry∼DSℓ
[ΓSℓ (y) = 0] = Pry∼DSℓ

[ΓSℓ (y) = 1] = 1/2.

It is clear from the definition of ΓSℓ and item 1 that

3. ΓSℓ (y) is a monotone (opt(S)ℓ)-Junta over DSℓ .

We then define the monotone size of a term T to be the number of unnegated variables that appear
in T . We first show that

3

4. For every DNF F : ({0, 1}ℓ)n → {0, 1} of size |F | ≤ 2opt(S)ℓ/5 that is ϵ-far from ΓSℓ with
respect to DSℓ , there is another DNF F ′ of size |F ′| ≤ 2opt(S)ℓ/5 with terms of monotone size
at most opt(S)ℓ/5 that is (ϵ− 2−opt(S)ℓ/20)-far from ΓSℓ with respect to DSℓ .

This is done by simply showing that terms of large monotone size in the DNF F have a small
weight according to the distribution DSℓ and, therefore, can be removed from F with the cost of
−2−opt(S)ℓ/20 in the error.

We then, roughly speaking, show that

5. Let F ′ be a DNF of size |F ′| ≤ 2opt(S)ℓ/5 with terms of monotone size at most opt(S)ℓ/5. For
every y ∈ ({0, 1}ℓ)n in the support of DSℓ that satisfies ΓSℓ (y) = 1, either

• F ′(y) = 0 or
• F ′(y) = 1, and at least 1/(2N) fraction of the points z below y in the lattice ({0, 1}ℓ)n
that are in the support of DSℓ satisfies F ′(z) = 1 and ΓSℓ (z) = 0.

By item 5, either 1/(4N) fraction of the vectors y that satisfy ΓSℓ (y) = 1 satisfy F ′(y) = 0 or
(1 − 1/(4N))/(2N) > 1/(4N) fraction of the points z that satisfy ΓSℓ (z) = 0 satisfy F ′(z) = 1.
Therefore, with item 2, we get that F ′ is 1/(8N)-far from ΓSℓ with respect to DSℓ . This, with item 4,
implies that

6. If F : ({0, 1}ℓ)n → {0, 1} is a DNF of size |F | < 2opt(S)ℓ/20, then F is (1/(8N)− 2−opt(S)ℓ/20)-
far from ΓSℓ with respect to DSℓ .

The rest of the proof is almost the same as in [9]. See the discussion in subsection 1.1 after item 7.

1.3 Upper Bounds

The only known distribution-free algorithm for log s-Junta is the trivial algorithm that, for every
set of m = log s variables S = {xi1 , . . . , xim}, checks if there is a function that depends on S and
is consistent with the examples. This algorithm takes nO(log s) time.

For size-s decision tree and monotone size-s decision tree, the classic result of Ehrenfeucht
and Haussler [4] gives a distribution-free time algorithm that runs in time nO(log s) and outputs a
decision tree of size nO(log s).

The learning algorithm is as follows: Let T be the target decision tree of size s. First, the
algorithm guesses the variable at the root of the tree T and then guesses which subtree of the root
has size at most s/2. Then, it recursively constructs the tree of size s/2. When it succeeds, it
continues to construct the other subtree.

For size-s DNF and monotone size-s DNF, Hellerstein et al. [6] gave a distribution-free proper

learning algorithm that runs in time 2Õ(
√
n).

To the best of our knowledge, all the other results in the literature for learning the above classes
are either restricted to the uniform distribution or use, in addition, a black box queries or returns
hypotheses that are not DNF.

2 Definitions and Preliminaries

In this section, we give the definitions and preliminary results that are needed to prove our results.

4

2.1 Set Cover

Let S = (S,U,E) be a bipartite graph on N = n+ |U | vertices where S = [n], and for every u ∈ U ,
deg(u) > 0. We say that C ⊆ S is a set cover of S if every vertex in U is adjacent to some vertex
in C. The Set-Cover problem is to find a minimum-size set cover. We denote by opt(S) the size
of a minimum-size set cover for S.

We identify each element u ∈ U with the vector (u1, . . . , un) ∈ {0, 1}n where ui = 0 if and only
if (i, u) ∈ E. We will assume that those vectors are distinct. If there are two distinct elements
u, u′ ∈ U that have the same vector, then you can remove one of them from the graph. This is
because every set cover that covers one of them covers the other.

Definition 1. The (k, k′)-Set-Cover problem is the following: Given as input a set cover instance
S = (S,U,E), and parameters k and k′. Output Yes if opt(S) ≤ k and No if opt(S) > k′.

2.2 Hardness of Set-Cover

Our results are conditioned on the following randomized exponential time hypothesis (ETH)
Hypothesis: [2, 3, 7, 8, 11]. There exists a constant c ∈ (0, 1) such that 3-SAT on n variables
cannot be solved by a randomized algorithm in O(2cn) time with success probability at least 2/3.

The following is proved in [10]. See also Theorem 7 in [9]

Lemma 1. [10]. Let k ≤ 1
2

log logN
log log logN and k′ = 1

2

(
logN

log logN

)1/k
be two integers. Assuming ran-

domized ETH, there is a constant λ ∈ (0, 1) such that there is no randomized Nλk time algorithm
that can solve (k, k′)-Set-Cover on N vertices with high probability.

2.3 Concept Classes

For the lattice {0, 1}n, and x, y ∈ {0, 1}n, we define the partial order x ≤ y if xi ≤ yi for every i.
When x ≤ y and x ̸= y, we write x < y. If x < y, we say that x is below y, or y is above x.
A Boolean function f : {0, 1}n → {0, 1} is monotone if, for every x ≤ y, we have f(x) ≤ f(y).
A literal is a variable or negated variable. A term is a conjunction (∧) of literals. A clause is a
disjunction (∨) of literals. A monotone term (resp. clause) is a conjunction (resp. disjunction) of
unnegated variables. The size of a term T , |T |, is the number of literals in the term T . A DNF
(resp. CNF) is a disjunction (resp. conjunction) of terms (resp. clauses). The size |F | of a DNF
(resp. CNF) F is the number of terms (resp. clauses) in F . A monotone DNF (resp. monotone
CNF) is a DNF (resp. CNF) with monotone terms (resp. clauses).

We define the following classes

1. size-s DNF and size-s Monotone DNF are the classes of DNF and monotone DNF, respec-
tively, of size at most s.

2. size s-DT and size-s Monotone DT are the classes of decision trees and monotone decision
trees, respectively, with at most s leaves.

3. k-Junta andMonotone k-Junta are the classes of Boolean functions and monotone Boolean
functions that depend on at most k variables.

It is well known that

Monotone (log s)-Junta⊂ size-s Monotone DT ⊂ size-s Monotone DNF . (1)

5

2.4 Functions and Distributions

For any set R, we define U(R) to be the uniform distribution over R. For a distribution D over
{0, 1}n and two Boolean functions f and g, we define distD(f, g) = Prx∼D[f(x) ̸= g(x)]. Here,
bold letters denote random variables. If distD(f, g) = 0, then we say that f = g over D. For a class
of functions C, we say that f is C over D if there is a function g ∈ C such that f = g over D.

Definition 2. (ΓS and DS) Let S = (S,U,E) be a set cover instance with S = [n]. Recall that
we identify each element u ∈ U with the vector (u1, . . . , un) ∈ {0, 1}n where ui = 0 if and only
if (i, u) ∈ E. We define the partial function ΓS : {0, 1}n → {0, 1} where ΓS(x) = 0 if x ∈ U
and ΓS(1n) = 1. We define the distribution DS over {0, 1}n where DS(x) = 1/2 if x = 1n,
DS(x) = 1/(2|U |) if x ∈ U , and DS(x) = 0 otherwise. We will remove the superscript S when it is
clear from the context and write Γ and D.

Fact 1. We have

1. C ⊆ S is a set cover of S = (S,U,E), if and only if Γ(x) =
∧

i∈C xi over D.

2. In particular, If T is a monotone term of size |T | < opt(S), then there is u ∈ U such
that T (u) = 1.

Proof. Let C be a set cover of S. First, we have Γ(1n) = 1. Now, since C is a set cover, every
vertex u ∈ U is adjacent to some vertex in C. This is equivalent to: for every assignment u ∈ U ,
there is i ∈ C such that ui = 0. Therefore, ∧i∈Cui = 0 for all u ∈ U . Thus, Γ(x) =

∧
i∈C xi over D.

The other direction can be easily seen by tracing backward in the above proof.

For an odd ℓ, define ∆0 = {a ∈ {0, 1}ℓ|wt(a) = ⌊ℓ/2⌋} and ∆1 = {a ∈ {0, 1}ℓ|wt(a) = ⌈ℓ/2⌉},
where wt(a) is the Hamming weight of a. Notice that |∆0| = |∆1| =

(
ℓ
⌊ℓ/2⌋

)
.

Definition 3. (Γℓ, Dℓ, ∆
0
n and ∆1

n) For an odd ℓ, define ∆1
n = (∆1)n and5 ∆0

n := ∪u∈U
∏n

i=1∆
ui =

∪u∈U (∆
u1 × ∆u2 × · · · × ∆un). Define the distribution Dℓ : ({0, 1}ℓ)n → [0, 1] to be Dℓ(y) =

1/(2|∆1
n|) = 1/(2|∆1|n) if y ∈ ∆1

n, Dℓ(y) = 1/(2|∆0
n|) = 1/(2|U | · |∆0|n) if y ∈ ∆0

n, and Dℓ(y) = 0
otherwise. We define the partial function Γℓ over the support ∆0

n ∪∆1
n of Dℓ to be 1 if y ∈ ∆1

n and
0 if y ∈ ∆0

n.

We note here that the distribution Dℓ is well-defined. This is because: First, the sum of
the distribution of the points in ∆1

n is 1/2. Second, for two different u, u′ ∈ U , we have that∏n
i=1∆

ui and
∏n

i=1∆
u′i are disjoint sets. Therefore, |∆0

n| = |U | · |∆0|n, and therefore, the sum of
the distribution of all the points in ∆0

n is half. In particular,

Fact 2. We have Pr
y∼Dℓ

[Γℓ(y) = 1] = Pr
y∼Dℓ

[Γℓ(y) = 0] = Pr
Dℓ

[∆1
n] = Pr

Dℓ

[∆0
n] =

1
2 .

For y ∈ ({0, 1}ℓ)n, we write y = (y1, . . . , yn), where yj = (yj,1, yj,2, . . . , yj,ℓ) ∈ {0, 1}ℓ. Let
(Majority(yi))i∈[n] = (Majority(y1), . . . ,Majority(yn)) whereMajority is the majority func-
tion.

Fact 3. If C ⊆ S is a set cover of S, then Γℓ(y) = Γ((Majority(yi))i∈[n]) =
∧

i∈C Majority(yi)
over D. In particular, Γℓ is Monotone opt(S)ℓ-Junta over D.

5Here ∆ξ = ∆0 if ξ = 0 and ∆1 if ξ = 1.

6

Proof. First notice that Majority(x) = 1 if x ∈ ∆1 and Majority(x) = 0 if x ∈ ∆0. Therefore,
for x ∈ ∆ξ, ξ ∈ {0, 1} we have Majority(x) = ξ.

For y ∈ ∆1
n = (∆1)n, (Majority(yi))i∈[n] = 1n and Γℓ(y) = 1 = Γ(1n).

For y ∈ ∆0
n = ∪u∈U (∆

u1 ×∆u2 × · · · ×∆un), there is u such that y ∈ ∆u1 ×∆u2 × · · · ×∆un .
Then, (Majority(yi))i∈[n] = u and Γℓ(y) = Γ((Majority(yi))i∈[n]) = Γ(u) = 0.

For t ∈ [ℓ], ξ ∈ {0, 1} and u ∈ {0, 1}ℓ, we define ut←ξ ∈ {0, 1}ℓ the vector that satisfies

ut←ξ
i =

{
ui i ̸= t
ξ i = t

.

Let z ∈ ({0, 1}ℓ)n. For j ∈ [ℓ]n and a ∈ {0, 1}n, define zj←a = (zj1←a1
1 , . . . , zjn←an

n). For a set
V ⊆ {0, 1}n, we define zj←V = {zj←v|v ∈ V }.

We define one(z) =
∏n

i=1{mi|zi,mi = 1} = {m1|z1,m1 = 1} × · · · × {mn|zn,mn = 1}.

Fact 4. Let w ∈ ∆1
n, j ∈ one(w), and T be a term that satisfies T (w) = 1. Then

1. wj←U ⊆ ∆0
n.

2. |wj←U | = |U |.
3. If T j(y1,j1 , . . . , yn,jn) is the conjunction of all the variables that appear in T of the form yi,ji,

then T (wj←a) = T j(a).

Proof. We first prove item 1. Let u ∈ U and i be any integer in [n]. Since w ∈ ∆1
n, we have wi ∈ ∆1.

Since j ∈ one(w), we have wi,ji = 1. Therefore, wji←ui
i ∈ ∆ui for all i ∈ [n] and wj←u ∈

∏n
i=1∆

ui .
Thus, wj←u ∈ ∆0

n for all u ∈ U .
To prove item 2, let u, u′ be two distinct elements of U . There is i such that ui ̸= u′i. Therefore

wji←ui
i ̸= w

ji←u′i
i and wj←u ̸= wj←u′ .

We now prove item 3. Let T ′ be the conjunction of all the variables that appear in T that
are not of the form yi,ji . Then T = T ′ ∧ T j . Since T (w) = 1, we have T ′(w) = 1. Since the
entries of wj←a are equal to those in w on all the variables that are not of the form yi,ji , we have

T ′(wj←a) = 1. Therefore, T (wj←a) = T ′(wj←a) ∧ T j(wj←a
1,j1

, . . . , wj←a
n,jn

) = T j(a).

We now give a different way of sampling according to the distribution Dℓ.

Fact 5. Let S be a Set-Cover instance. The following is an equivalent way of sampling from Dℓ.

1. Draw ξ ∈ {0, 1} u.a.r.6

2. Draw w ∈ ∆1
n u.a.r.

3. If ξ = 1 then output y = w.

4. If ξ = 0 then

(a) draw j ∈ one(w) u.a.r.
(b) draw v ∈ wj←U u.a.r.
(c) output y = v.

6Uniformly at random.

7

Proof. Denote the above distribution by D′. By Item 1 in Fact 4, if w ∈ ∆1
n and j ∈ one(w), then

wj←U ⊆ ∆0
n. Therefore, for z ∈ ∆1

n, Pry∼D′ [y = z|ξ = 0] = 0 and then

Pr
y∼D′

[y = z] = Pr
ξ∼U({0,1})

[ξ = 1] · Pr
y∼U(∆1

n)
[y = z] =

1

2|∆1
n|

=
1

2|∆1|n
.

For z ∈ ∆0
n, suppose z ∈ ∆u1 × · · · ×∆un where u ∈ U . In the sampling according to D′ and when

ξ = 0, since for j ∈ one(w), the elements of wj←U are below w, we have Pr
y∼D′

[y = z|w ̸> z] = 0.

Therefore,

Pr
y∼D′

[y = z] = Pr
ξ∼U({0,1})

[ξ = 0] · Pr
w∼U(∆1

n)
[w > z] ·

· Pr
j∼U(one(w))

[z ∈ wj←U |w > z,w ∈ ∆1
n] · Pr

v∼U(wj←U)
[v = z|z ∈ wj←U]. (2)

Now, since, for x ∈ ∆0, the number of elements in ∆1 that are above x is ⌈ℓ/2⌉, we have that
the number of w ∈ ∆1

n = (∆1)n that are above z ∈ ∆u1 × · · · ×∆un is ⌈ℓ/2⌉n−wt(u). Therefore,

Pr
w∼U(∆1

n)
[w > z] =

⌈ℓ/2⌉n−wt(u)

|∆1
n|

. (3)

Now let w > z and w ∈ ∆1
n. Since for two different u, u′ ∈ U , we have

∏n
i=1∆

ui and
∏n

i=1∆
u′i are

disjoint sets, and since z ∈ ∆u1 × · · · ×∆un , we have z ∈ wj←U if and only if z = wj←u. Therefore,
the number of elements j ∈ one(w) that satisfy z ∈ wj←U is the number of elements j ∈ one(w)
that satisfy z = wj←u. This is the number of elements j ∈ one(w) that satisfies for every ui = 0,
zi,ji = 0. For a j u.a.r. and a fixed i where ui = 0, the probability that zi and wi differ only in
entry ji is 1/⌈ℓ/2⌉. Therefore,

Pr
j∼U(one(w))

[z ∈ wj←U |w > z,w ∈ ∆1
n] =

1

⌈ℓ/2⌉n−wt(u)
. (4)

Finally, by item 2 in Fact 4, since |wj←U | = |U |, we have

Pr
v∼U(wj←U)

[v = z|z ∈ wj←U] =
1

|wj←U |
=

1

|U |
. (5)

By (2), (3), (4), and (5), we have

Pr
y∼D′

[y = z] =
1

2
· ⌈ℓ/2⌉

n−wt(u)

|∆1
n|

· 1

⌈ℓ/2⌉n−wt(u)
· 1

|U |
=

1

2|U | · |∆1
n|

=
1

2|U | · |∆0|n
.

3 Main Lemma

In this section, we prove

Lemma 2. Let S = (S,U,E) be a set cover instance. If F : ({0, 1}ℓ)n → {0, 1} is a DNF of size
|F | < 2opt(S)ℓ/20, then distDℓ

(F,Γℓ) ≥ 1/(8|U |)− 2−opt(S)ℓ/20.

8

To prove the lemma, we first establish some results.
For a term T , let TM be the conjunction of all the unnegated variables in T . We define the

monotone size of T to be |TM|.

Claim 1. Let S = (S,U,E) be a set cover instance and ℓ ≥ 5. If F : ({0, 1}ℓ)n → {0, 1} is a DNF
of size |F | < 2opt(S)ℓ/20, then there is a DNF, F ′, of size |F ′| ≤ 2opt(S)ℓ/20 with terms of monotone
size at most opt(S)ℓ/5 such that distDℓ

(Γℓ, F
′) ≤ distDℓ

(Γℓ, F) + 2−opt(S)ℓ/20.

Proof. Let T be a term of monotone size at least opt(S)ℓ/5. Let bi denote the number of unnegated
variables of T of the form yi,j and let Ti be their conjunction. Then TM = ∧n

i=1Ti and
∑n

i=1 bi =
|TM| ≥ opt(S)ℓ/5. If, for some i, bi > ⌈ℓ/2⌉, then the term Ti is zero on all ∆0∪∆1, and therefore,
T is zero on all ∆0

n ∪∆1
n. Thus, it can be just removed from F . So, we may assume that bi ≤ ⌈ℓ/2⌉

for all i. First,

Pr
y∼Dℓ

[T (y) = 1|Γℓ(y) = 1] = Pr
y∼U(∆1

n)
[T (y) = 1] ≤ Pr

y∼U(∆1
n)
[TM(y) = 1]

=
n∏

i=1

Pr
yi∼U(∆1)

[Ti(yi) = 1]

=
n∏

i=1

(
ℓ−bi
⌈ℓ/2⌉−bi

)(
ℓ
⌈ℓ/2⌉

)
=

n∏
i=1

(
1− bi

ℓ

)(
1− bi

ℓ− 1

)
· · ·

(
1− bi

⌈ℓ/2⌉+ 1

)

≤
n∏

i=1

ℓ∏
j=⌈ℓ/2⌉+1

exp(−bi/j) =
n∏

i=1

exp

−bi

ℓ∑
j=⌈ℓ/2⌉+1

1/j

= exp

−|TM|
ℓ∑

j=⌈ℓ/2⌉+1

1/j

 ≤ 2−|TM|/2 ≤ 2−opt(S)ℓ/10. (6)

Let F ′ be the disjunction of all the terms in F of monotone size at most opt(S)ℓ/5. Let T (1), . . . , T (m)

be all the terms of monotone size greater than opt(S)ℓ/5 in F . Then, by (6) and the union bound,

Pr
y∼Dℓ

[F (y) ̸= F ′(y)|Γℓ(y) = 1] ≤ Pr
y∼Dℓ

[∨m
i=1T

(i)(y) = 1|Γℓ(y) = 1]

≤ 2−opt(S)ℓ/10m ≤ 2−opt(S)ℓ/20. (7)

9

and (Here we abbreviate F ′(y), F (y) and Γℓ(y) by F ′, F and Γℓ)

distDℓ
(Γℓ, F

′) = Pr
y∼Dℓ

[F ′ ̸= Γℓ]

=
1

2
Pr
y∼Dℓ

[F ′ ̸= Γℓ|Γℓ = 1] +
1

2
Pr
y∼Dℓ

[F ′ ̸= Γℓ|Γℓ = 0] (8)

=
1

2
Pr
y∼Dℓ

[F ′ ̸= F |Γℓ = 1] +

1

2
Pr
y∼Dℓ

[F ̸= Γℓ|Γℓ = 1] +
1

2
Pr
y∼Dℓ

[F ′ ̸= Γℓ|Γℓ = 0] (9)

≤ 2−opt(S)ℓ/20 +
1

2
Pr
y∼Dℓ

[F ̸= Γℓ|Γℓ = 1] +
1

2
Pr
y∼Dℓ

[F ̸= Γℓ|Γℓ = 0] (10)

= 2−opt(S)ℓ/20 + distDℓ
(Γℓ, F).

In (8), we used Fact 2. In (9), we used the probability triangle inequality. In (10), we used (7) and
the fact that if F ′(y) ̸= 0, then F (y) ̸= 0.

We now prove

Claim 2. Let z ∈ ∆1
n. Let F be a DNF with terms of monotone size at most ⌈ℓ/2⌉(opt(S)− 1)/2

that satisfies F (z) = 1. Then

Pr
j∼U(one(z)),y∼U(zj←U)

[F (y) = 1] ≥ 1

2|U |
.

Proof. Since F (z) = 1, there is a term T in F that satisfies T (z) = 1. Let Y0 = {yi,m|zi,m = 0} and
Y1 = {yi,m|zi,m = 1}. Since T (z) = 1, every variable in Y0 that appears in T must be negated, and
every variable in Y1 that appears in T must be unnegated. For j ∈ one(z), define q(j) to be the
number of variables in {y1,j1 , . . . , yn,jn} that appear in T (y). All those variables appear unnegated
in T because j ∈ one(z). Recall that TM is the conjunction of all unnegated variables in T . Then
|TM| ≤ ⌈ℓ/2⌉(opt(S)− 1)/2. Each variable in TM contributes ⌈ℓ/2⌉n−1 to the sum

∑
j∈one(z) q(j)

and |one(z)| = ⌈ℓ/2⌉n. Therefore,

E
j∼U(one(z))

[q(j)] =
|TM|
⌈ℓ/2⌉

≤ opt(S)− 1

2
.

By Markov’s bound, at least half the elements j ∈ one(z) satisfies q(j) ≤ opt(S) − 1. Let J =
{j ∈ one(z)|q(j) < opt(S)}. Then Prj∈one(z)[j ∈ J] ≥ 1/2. Consider j ∈ J and let T j be the
conjunction of all the variables that appear in T of the form yi,ji . Then |T j | = q(j) ≤ opt(S)− 1.
By Fact 1, there is u ∈ U such that T j(u) = 1. By Fact 4, we have T (zj←u) = T j(u) = 1. Then
F (zj←u) = 1. Since by item 1 in Fact 4, |zj←U | = |U |, we have

Prj∼U(one(z)),y∼U(zj←U)[F (y) = 1|j ∈ J] ≥ 1

|U |
.

Therefore,

Pr
j∼U(one(z)),y∼U(zj←U)

[F (y) = 1] ≥ Pr
j∈U(one(z))

[j ∈ J]· Pr
j∼U(one(z)),y∼U(zj←U)

[F (y) = 1|j ∈ J] ≥ 1

2|U |
.

10

We are now ready to prove

Lemma 2. Let S = (S,U,E) be a set cover instance, and let ℓ ≥ 5. If F : ({0, 1}ℓ)n → {0, 1} is a
DNF of size |F | < 2opt(S)ℓ/20, then distDℓ

(F,Γℓ) ≥ 1/(8|U |)− 2−opt(S)ℓ/20.

Proof. By Claim 1, there is a DNF, F ′, of size |F ′| ≤ 2opt(S)ℓ/20 with terms of monotone size at
most opt(S)ℓ/5 such that distDℓ

(Γℓ, F
′) ≤ distDℓ

(Γℓ, F) + 2−opt(S)ℓ/20. Therefore, it is enough to
prove that distDℓ

(Γℓ, F
′) ≥ 1/(8|U |).

If Pr
y∼U(∆1

n)
[F ′(y) ̸= 1] ≥ 1/(4|U |), then by Fact 2, we have

distDℓ
(Γℓ, F

′) ≥ Pr
y∼Dℓ

[Γℓ(y) ̸= F ′(y)|Γℓ(y) = 1] Pr
y∼Dℓ

[Γℓ(y) = 1] =
1

2
Pr

y∼U(∆1
n)
[F ′(y) ̸= 1] ≥ 1

8|U |
.

If Pr
y∼U(∆1

n)
[F ′(y) ̸= 1] < 1/(4|U |), then by Fact 2 and 5, and Claim 2,

distDℓ
(Γℓ, F

′) ≥ Pr
y∼Dℓ

[Γℓ(y) ̸= F ′(y)|Γℓ(y) = 0] Pr
y∼Dℓ

[Γℓ(y) = 0]

=
1

2
Pr

y∼U(∆0
n)
[F ′(y) = 1]

=
1

2
Pr

z∼U(∆1
n),j∼U(one(z)),y∈U(zj←U)

[F ′(y) = 1]

≥ 1

2
Pr

z∼U(∆1
n),j∼U(one(z)),y∈U(zj←U)

[F ′(y) = 1|F ′(z) = 1] · Pr
z∼U(∆1

n)
[F ′(z) = 1]

≥ 1

2

1

2|U |

(
1− 1

4|U |

)
≥ 1

8|U |
.

4 Superpolynomial Lower Bound

In this section, we prove the first results of the paper. First, we prove the following result for
Monotone (log n)-Junta.

Theorem 4. Assuming randomized ETH, there is a constant c such that any PAC learning algo-
rithm for n-variable Monotone (log n)-Junta by DNF with ϵ = 1/(16n) must take at least

n
c log logn
log log logn

time.
The lower bound holds, even if the learner knows the distribution, can draw a sample according

to the distribution in polynomial time and can compute the target on all the points of the support
of the distribution in polynomial time.

Proof. Consider the constant λ in Lemma 1. Let c = min(1/40, λ/4). Suppose there is a PAC
learning algorithm A for Monotone (log n)-Junta by DNF with ϵ = 1/(16n) that runs in time

n
c log logn
log log logn . We show that there is k such that for

k′ =
1

2

(
logN

log logN

)1/k

,

11

(k, k′)-Set-Cover can be solved in time N4ck ≤ Nλk. By Lemma 1, the result then follows.
Let S = (S,U,E) be an N -vertex (k, k′)-Set-Cover instance where

k =
1

2

log logN

log log logN
and k′ =

1

2

(
logN

log logN

)1/k

.

Let

ℓ =
logN

k

and consider Γℓ and Dℓ.
Consider the following algorithm B

1. Input S = (S,U,E) an instance for (k, k′)-Set-Cover .

2. Construct Γℓ and Dℓ.

3. Run A using Γℓ and Dℓ. If it runs more than N4ck steps, then output No .

4. Let F be the output DNF.

5. Estimate η = distDℓ
(F,Γℓ).

6. If η ≤ 1
16N , output Yes , otherwise output No .

The running time of this algorithm is N4ck ≤ Nλk. Therefore, it is enough to prove the following

Claim 3. Algorithm B solves (k, k′)-Set-Cover .

Proof. Yes case: Let S = (S,U,E) be a (k, k′)-Regular Set-Cover instance and opt(S) ≤ k.
Then, opt(S) · ℓ ≤ kℓ = logN , and by Fact 3, Γℓ is Monotone logN-Junta. Therefore, w.h.p.,
algorithm A learns Γℓ and outputs a DNF that is η = 1/(16N) close to the target with respect to
Dℓ. Since B terminates A after N4ck time, we only need to prove that A runs at most N4ck time.

The running time of A is

N
c log logN
log log logN < N4ck.

No Case: Let S = (S,U,E) be a (k, k′)-Set-Cover instance and opt(S) > k′. By Lemma 2,
any DNF, F , of size |F | < 2k

′ℓ/20 satisfies distDℓ
(F,Γℓ) ≥ 1/(8|U |)− 2−k

′ℓ/20. First, we have

(2k)2k =

(
log logN

log log logN

) log logN
log log logN

<
logN

log logN
.

Therefore, since c ≤ 1/40,

k′ =
1

2

(
logN

log logN

)1/k

>
1

2
(2k)2 > 80ck2.

So k′ℓ/20 > (kℓ)(4ck) and
2k
′ℓ/20 > (2kℓ)4ck = N4ck.

Now since the algorithm runs in time N4ck, it cannot output a DNF F of size more than N4ck <
2k
′ℓ/20, and by Lemma 2,

distDℓ
(F,Γℓ) ≥

1

8|U |
− 1

N4ck
≥ 1

9N
.

So it either runs more than N4ck steps and then outputs No in step 3 or outputs a DNF with an
error greater than 1/(9N) > 1/(16N) and outputs No in step 6.

12

Notice that the learning algorithm knows Γℓ and Dℓ. It is also clear from the definition of Γℓ and
Dℓ that the learning algorithm can draw a sample according to the distribution Dℓ in polynomial
time and can compute the target Γℓ on all the points of the support of the distribution in polynomial
time.

We now prove

Theorem 5. Assuming randomized ETH, there is a constant c such that any PAC learning al-
gorithm for n-variable size-s Monotone DT and size-s Monotone DNF by DNF with ϵ =
1/(16n) must take at least

n
c log log s
log log log s

time.
The lower bound holds, even if the learner knows the distribution, can draw a sample according

to the distribution in polynomial time and can compute the target on all the points of the support
of the distribution in polynomial time.

Proof. By Theorem 4, assuming randomized ETH, there is a constant c such that any PAC learning
algorithm for n-variable Monotone (log n)-Junta by DNF with ϵ = 1/(16n) runs in time

n
c log logn
log log logn .

Now by (1) and since s = n, the result follows.

5 Tight Bound Assuming some Conjecture

A plausible conjecture on the hardness of Set-Cover is the following.

Conjecture 1. [9] There are constants α, β, λ ∈ (0, 1) such that, for k < Nα, there is no random-
ized Nλk time algorithm that can solve (k, (1− β) · k lnN)-Set-Cover on N vertices with high
probability.

We now prove

Theorem 6. Assuming Conjecture 1, there is a constant c such that any PAC learning algorithm
for n-variable Monotone (log s)-Junta, size-s Monotone DT and size-s Monotone DNF by
DNF with ϵ = 1/(16n) must take at least

nc log s

time.
The lower bound holds, even if the learner knows the distribution, can draw a sample according

to the distribution in polynomial time and can compute the target on all the points of the support
of the distribution in polynomial time.

Proof. We give the proof for Monotone (log s)-Junta. As in the proof of Theorem 5, the result
then follows for the other classes.

Consider the constants α, β and λ in Conjecture 1. Let c = min(λ/10, (1 − β)/(20 log e)).
Suppose there is a PAC learning algorithm A for Monotone (log s)-Junta by DNF with ϵ =

13

1/(16n) that runs in time nc log s. We show that there is k < Nα, k = ω(1), such that (k, k′)-Set-
Cover can be solved in time Nλk where k′ = (1 − β)k lnN . By Conjecture 1, the result then
follows.

Consider the following algorithm B

1. Input S = (S,U,E) an instance for (k, k′)-Set-Cover .

2. Construct Γ5 and D5.

3. Run A using Γ5 and D5 with s = 25k. If it runs more than N5ck steps, then output No .

4. Let F be the output DNF.

5. Estimate η = distD5(F,Γ5).

6. If η ≤ 1
16N , output Yes , otherwise output No .

Since c < λ/10, the running time of this algorithm is N5ck < Nλk. Therefore, it is enough to prove
the following

Claim 4. Algorithm B solves (k, k′)-Set-Cover .

Proof. Yes case: Let S = (S,U,E) be a (k, k′)-Regular Set-Cover instance and opt(S) ≤ k.
Then, 5 · opt(S) ≤ 5k = log s, and by Fact 3, Γ5 is Monotone log s-Junta. Therefore, w.h.p.,
algorithm A learns Γ5 and outputs a DNF that is η = 1/(16N) close to the target with respect
to D5. Since B terminates A after N5ck time, we only need to prove that A runs at most N5ck

time.
The running time of A is

nc log s ≤ N5ck.

No Case: Let S = (S,U,E) be a (k, k′)-Set-Cover instance and opt(S) > k′ = (1− β)k lnN .
By Lemma 2, any DNF, F , of size |F | < 2k

′/4 satisfies distD5(F,Γ5) ≥ 1/(8|U |) − 2−k
′/4. Since,

c < (1− β)/(20 log e),

2k
′/4 = 2

(1−β)k lnN
4 = N

(1−β)k
4 log e > N5ck,

any DNF, F , that the learning outputs satisfies

distD5(F,Γ5) ≥
1

8|U |
− 2−k

′/4 ≥ 1

8N
− 1

N5ck
≥ 1

9N
.

Therefore, with high probability the algorithm answer No .

References

[1] Michael Alekhnovich, Mark Braverman, Vitaly Feldman, Adam R. Klivans, and Toniann
Pitassi. The complexity of properly learning simple concept classes. J. Comput. Syst. Sci.,
74(1):16–34, 2008. doi:10.1016/j.jcss.2007.04.011.

[2] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi. The com-
plexity of unique k-sat: An isolation lemma for k-cnfs. J. Comput. Syst. Sci., 74(3):386–393,
2008. doi:10.1016/j.jcss.2007.06.015.

14

https://doi.org/10.1016/j.jcss.2007.04.011
https://doi.org/10.1016/j.jcss.2007.06.015

[3] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponen-
tial time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

[4] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples. Inf.
Comput., 82(3):231–246, 1989. doi:10.1016/0890-5401(89)90001-1.

[5] Thomas R. Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision
lists and trees. Inf. Comput., 126(2):114–122, 1996. doi:10.1006/inco.1996.0040.

[6] Lisa Hellerstein, Devorah Kletenik, Linda Sellie, and Rocco A. Servedio. Tight bounds on
proper equivalence query learning of DNF. In COLT 2012 - The 25th Annual Conference
on Learning Theory, June 25-27, 2012, Edinburgh, Scotland, pages 31.1–31.18, 2012. URL:
http://proceedings.mlr.press/v23/hellerstein12/hellerstein12.pdf.

[7] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

[8] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.

2001.1774.

[9] Caleb Koch, Carmen Strassle, and Li-Yang Tan. Superpolynomial lower bounds for decision
tree learning and testing. CoRR, abs/2210.06375, 2022. arXiv:2210.06375, doi:10.48550/
arXiv.2210.06375.

[10] Bingkai Lin. A simple gap-producing reduction for the parameterized set cover problem. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-
12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 81:1–81:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.81.

[11] Craig A. Tovey. A simplified np-complete satisfiability problem. Discret. Appl. Math., 8(1):85–
89, 1984. doi:10.1016/0166-218X(84)90081-7.

[12] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. doi:

10.1145/1968.1972.

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1145/2635812
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1006/inco.1996.0040
http://proceedings.mlr.press/v23/hellerstein12/hellerstein12.pdf
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
http://arxiv.org/abs/2210.06375
https://doi.org/10.48550/arXiv.2210.06375
https://doi.org/10.48550/arXiv.2210.06375
https://doi.org/10.4230/LIPIcs.ICALP.2019.81
https://doi.org/10.1016/0166-218X(84)90081-7
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972

