
Towards Optimal Depth-Reductions for Algebraic Formulas

Hervé Fournier1, Nutan Limaye2, Guillaume Malod3, Srikanth Srinivasan∗4, and
Sébastien Tavenas5

1,3Université Paris Cité, IMJ-PRG
Emails: herve.fournier@imj-prg.fr, guillaume.malod@imj-prg.fr

2ITU Copenhagen,
Email: nuli@itu.dk
5Aarhus University,

Email: srinivasan.srikanth@gmail.com
3Univ. Savoie Mont Blanc, CNRS, LAMA
Email: sebastien.tavenas@univ-smb.fr

Abstract

Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and
Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of
depth Oplog sq with only a polynomial blow-up in size. In this paper, we consider a fine-
grained version of this result depending on the degree of the polynomial computed by the
algebraic formula.

Given a homogeneous algebraic formula of size s computing a polynomial P of de-
gree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula
of depth Oplog dq and size polypsq. Our proof shows that this result also holds in the highly
restricted setting of monotone, non-commutative algebraic formulas.

This improves on previous results in the regime when d is small (i.e., d “ sop1q). In
particular, for the setting of d “ Oplog sq, along with a result of Raz (STOC 2010, JACM
2013), our result implies the same depth reduction even for inhomogeneous formulas. This
is particularly interesting in light of recent algebraic formula lower bounds, which work
precisely in this “low-degree” and “low-depth” setting.

We also show that these results cannot be improved in the monotone setting, even for
commutative formulas.

∗The author is grateful for a research visit sponsored by the Guest researchers faculty program at Université
Paris Cité in summer 2022.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 9 (2023)

1 Introduction

In this paper, we study a basic question regarding computational tradeoffs between two resources
for the model of algebraic formulas.

An algebraic formula F for a multivariate polynomial P px1, . . . , xnq is simply an algebraic
expression for P made up of nested additions and multiplications. Equivalently, it can be defined
as a rooted directed tree where the leaves are labelled by variables and internal nodes (or gates)
compute either linear combinations or products of their children (a formal definition can be
found in Section 2 below). Unless otherwise stated, we do not bound the number of children of
a gate (in other words, we consider formulas of unbounded fan-in).

The two basic computational resources that describe the complexity of an algebraic formula
F are its size, which is the number of leaves in the underlying tree, and its depth, which naturally
is the depth of the tree. Polynomials1 that have efficient (i.e., polypnq-sized) algebraic formulas
form the algebraic complexity class VF. Like its Boolean counterpart NC1, this is a natural and
important complexity class.

Tradeoffs between size and depth in the setting of formulas and related models of computa-
tion have been the focus of many previous works, starting from the early 1970s [Spi71, BKM73,
Bre74, VSBR83, SS80, Nis91, Raz06, RY08, AV08, Koi12, Tav15, GKKS16, KSS14, CKSV16,
LST21a]. We describe a few such results here.

• In the Boolean setting, Spira [Spi71] and independently Khrapchenko (see [YK68]) showed
that any Boolean formula of size s can be converted to a Boolean formula of depth Oplog sq
while keeping the size bounded by sOp1q. These results were replicated in the algebraic
setting in results of Brent, Kuck and Marayuma [BKM73] and Brent [Bre74]. The con-
stants involved in the bounds for the depth and the size were improved in many follow-up
works [PM75, PM76, Kos86, BCE95, BB94].

• This question has also been studied for the more general model of algebraic circuits, where
the underlying tree is replaced by a directed acyclic graph (DAG). A well-known result
of Valiant, Skyum, Berkowitz and Rackoff [VSBR83] showed that an algebraic circuit of
size s computing a polynomial of degree polypsq can be converted to a circuit of depth2

Oplog sq and size polypsq. These results were also shown to hold for multilinear3 circuits
by Raz and Yehudayoff [RY08].

• The above results are known to be tight in various settings. In the monotone case4,
Shamir and Snir [SS80] showed the existence of an explicit polynomial P with a polypnq-
sized circuit such that any circuit of depth oplog nq for P is of superpolynomial size.
Similar results were obtained in the multilinear case by Raz [Raz06] and Chillara, Limaye
and Srinivasan [CLS18] (for multilinear circuits and formulas, respectively).

• Beginning with the work of Agrawal and Vinay [AV08], a recent line of work [Koi12, Tav15,
GKKS16, KSS14, CKSV16, KdOS19] has shown that algebraic circuits and formulas can
be converted to formulas of constant depth with a sub-exponential blow-up in size. In
contrast, our focus in this paper is primarily on reducing depth as much as possible while
keeping the size bounded by polypsq, as in the results listed previously.

1Strictly speaking, we should refer here to infinite sequences of polynomials, but we ignore this distinction.
2In the bounded fan-in case, this would be depth Oplog2 sq instead.
3A circuit or formula is multilinear if each of its gates computes a multilinear polynomial.
4where the underlying field is R and all constants are non-negative, so cancellations do not occur.

2

The question. In this paper, we ask the question of whether stronger depth-reduction results
can be proved given a bound d on the degree of the polynomial P px1, . . . , xnq computed by the
algebraic formula. In general, an algebraic formula of size s can compute a polynomial of degree
at most s. When d “ s (or d “ sΩp1q), the above results imply that an algebraic formula F for
P can be converted to another formula F 1 of depth Oplog dq without significant blow-up in size.
Does such a result hold for any d (or more specifically, when d “ sop1q)?

Note that this question only makes sense for algebraic formulas of unbounded fan-in. If the
fan-in of each gate is bounded by a constant, then any formula of size s must have depth at
least Ωplog sq (and so, Brent, Kuck, and Marayuma’s result [BKM73] is optimal). However, in
many settings (see e.g. the third motivation below), we want a finer analysis of the formula
depth that can be achieved by formulas of unbounded fan-in.

Motivation. While the question is fairly natural in our opinion, there are also many concrete
reasons that lead to this line of inquiry.

• It is easy to see from the proof of Valiant, Skyum, Berkowitz, and Rackoff [VSBR83] that
any algebraic circuit can be depth-reduced to depth Oplog dq with only a polyps, dq blow-
up in size. So the natural generalization for small degrees is indeed true in the setting of
algebraic circuits.

• It also follows from previous results that the depth bound of Oplog sq can be improved
when the degree is d “ oplog sq. This is due to a result of Raz [Raz13]: any formula F for
a homogeneous polynomial P of degree d can be converted to a homogeneous formula5

F 1 efficiently. Further, it is easy to see that any homogeneous formula computing a
polynomial of degree d has depth Opdq “ oplog sq. So, in this regime for the degree,
standard depth-reduction results can be strengthened.

• Finally, very recent results in algebraic complexity [LST21b] have suggested a way of prov-
ing lower bounds against low-depth algebraic formulas for computing low-degree polyno-
mials, which naturally raises the question of obtaining the best possible depth-reduction
results in this setting.

More specifically, Limaye, Srinivasan, and Tavenas [LST21b] showed how to prove lower
bounds against algebraic formulas (and even circuits) of small depth. Their proof pro-
ceeds by converting an algebraic formula of size s and depth ∆ to a homogeneous algebraic
formula of size polypsq and depth Op∆q, and then proving lower bounds against homoge-
neous algebraic formulas of depth Op∆q. An important point regarding the first step is
that it only works in the “low-degree setting” of d “ Oplog s{ log log sq. The second step
proves lower bounds against homogeneous formulas of depth up to Oplog log dq.

To make this proof idea work for general (unbounded-depth) algebraic formulas, we would
like to be able to homogenize and depth-reduce algebraic formulas as much as possible.
The aforementioned result of Raz [Raz13] already shows that we can homogenize algebraic
formulas efficiently in the low-degree setting. So it is natural to investigate the best
possible depth-reduction for homogeneous algebraic formulas in the low-degree setting.

Results. Our main result is a depth-reduction result for homogeneous formulas that efficiently
reduces the depth to Oplog dq, matching what was already known for algebraic circuits by the
result of [VSBR83].

5A homogeneous formula is one where each gate computes a homogeneous polynomial. This means that the
formula does not compute intermediate polynomials of degree larger than d.

3

Theorem 1 (Main Result). Let F be a homogeneous algebraic formula of size s computing a
polynomial P of degree d ě 2. Then P is also computed by a homogeneous formula F 1 of size
polypsq and depth Oplog dq. Moreover, if F is monotone and/or non-commutative, then so is
F 1.

Here, a monotone algebraic formula is one that does not exploit cancellations in any way,
and a non-commutative formula describes a polynomial expression in a domain where the input
variables do not commute when multiplied with each other (formal definitions are given in
Section 2). These are both settings in which formula upper bounds are harder to prove, and
hence the depth-reduction result in this setting implies the result in the standard setting. It can
also be checked that the depth-reduction procedure above preserves other interesting properties
of the formula, such as multilinearity and set-multilinearity.

Using the aforementioned result of Raz that allows us to homogenize algebraic formulas in
the low-degree setting, we get the following depth-reduction even for inhomogeneous formulas.

Corollary 2. Let d “ Oplog nq. Then a homogeneous polynomial P defined on n variables with
degree d ě 2 has an algebraic formula of size polypnq if and only if it has an algebraic formula
of depth Oplog dq and size polypnq.

In particular, this means that to prove superpolynomial lower bounds against general alge-
braic formulas in the low-degree setting, it suffices to prove such lower bounds against homoge-
neous algebraic formulas of depth Oplog dq. As far as we know, nothing below the trivial Opdq
bound was known before for such an implication. This brings us much closer to the regime of
depths for which we have lower bounds [LST21b].

The statements are even starker in the non-commutative setting, where it is a long-standing
problem to prove separations between Algebraic Branching Programs (ABPs) and formulas. In
recent work [TLS22], it was shown how to prove such a result for depths that are op

?
log dq.

The results of this paper show that it suffices to prove such a result for depth Oplog dq.6

Finally, we also show that our results cannot be improved asymptotically in terms of depth,
unless we use techniques that exploit cancellations in some way.

Theorem 3 (Lower Bound). Let n and d “ dpnq be growing parameters such that dpnq ď
?
n.

Then there is a monotone algebraic formula F of size at most n and depth Oplog dq computing
a polynomial P P Frx1, . . . , xns of degree at most d such that any monotone formula F 1 of depth
oplog dq computing P must have size nωp1q.

It should be noted that a well-known result of Gupta, Kamath, Kayal and Saptharishi [GKKS16]
shows how to exploit cancellations to obtain better depth-reduction results. However, in gen-
eral this does not reduce the depth of a given formula by more than a constant factor without
incurring a significant blow-up in size.7 As a result, we believe that the above result is a strong
indication that our depth reduction result is tight up to a constant factor in the depth.

2 Preliminaries

Basic notation. Throughout, unless otherwise specified, we work with polynomials over
a field F. We will work with the multivariate ring of polynomials Frx1, . . . , xns or its non-
commutative analog Fxx1, . . . , xny.

6We note that Raz’s result, though only stated for the commutative setting, works just as well in the non-
commutative case.

7More precisely, the result of [GKKS16] shows how to convert a low-degree homogeneous depth-4 formula to
an inhomogeneous depth-3 formula efficiently. In general, this can be used to reduce the depth of a small-depth
formula by a multiplicative factor of 2.

4

2.1 Algebraic formulas

We start with some brief definitions and results related to algebraic formulas. For much more
about this model, see the standard references [SY10, Sap15].

The model. An algebraic formula over the multivariate polynomial ring Frx1, . . . , xns is a
rooted, directed tree with edges directed towards the root. Leaves are labelled by variables
x1, . . . , xn or by the constant 1 and edges by non-zero field constants. Internal nodes (i.e., gates)
by ` and ˆ and compute linear combinations (based on the edge weights) or products of their
children. We will assume, with loss of generality, that if a node α has for child a leaf labelled
by 1, then α is a `-gate and that if a `-gate α has only children labelled by 1, then α is the
output of the formula.8 A non-commutative algebraic formula over the multivariate polynomial
ring Fxx1, . . . , xny is defined similarly, with the additional assumption that the children of any
ˆ-gate are linearly ordered, and the corresponding product is computed in this order.

Unless explicitly stated, the algebraic formulas we consider have unbounded fan-in (i.e., a
gate can have any number of inputs). The size of F will denote the number of leaves,9 the depth
of F the longest leaf-to-root path. The product-depth and the sum-depth of F are defined to
be the maximum number of product gates and sum gates encountered on a leaf-to-root path,
respectively.

A parse tree of a formula F is a subformula of F which corresponds to the way a monomial
is built in the evaluation of F . Parse trees of F can be defined inductively as follows:

• If F has a top `-gate, a parse tree of F is obtained by taking a parse tree of one of its
children together with the corresponding edge to the root of F ;

• If F has a top ˆ-gate, a parse tree of F is obtained by a taking a parse tree of each of its
children, together with the incoming edges of the root of F ;

• The only parse tree of a leaf is itself.

The polynomial computed by a parse tree is a single monomial, which is equal to the product of
the variables labelling its leaves, multiplied by the product of the scalars labelling its edges. The
polynomial computed by a formula F is easily seen to be the sum of the monomials computed
by all its parse trees.

A formula F is called monotone if any monomial computed by a parse tree of F has a
non-zero coefficient in the polynomial computed by F .

We now recall some well-known results from the literature regarding algebraic formulas. It
should be noted that these results (specifically Theorems 4, 5 and 10 later on) are usually proved
in the general setting of commutative formulas. However, it is easy to see that the proofs of
these results carry over to the monotone, non-commutative setting without significant change.

Depth-reduction. Classical results [BKM73, Bre74] show that any algebraic formula of small
size can be simulated by one of small depth and not much larger size. Formally,

Theorem 4. Let F be a (non-commutative or commutative) algebraic formula of size s com-
puting a polynomial P . Then there is an algebraic formula F 1 of size at most polypsq and
depth ∆ “ Oplog sq computing P . We may also assume that each gate in F 1 has fan-in 2.
Furthermore, F is homogeneous and/or monotone, then so is F 1.

8This ensures that a formula can compute polynomials with a constant term but forbids using many arithmetic
operations just to compute constants.

9This is within a constant factor of the number of gates, as long as each gate has fan-in at least 2 each (which
is without loss of generality).

5

Homogeneity. Each gate in an algebraic formula has a syntactic degree defined in a natural
way. Leaves labelled by the constant 1 have syntactic degree 0, leaves labelled with a variable
have syntactic degree 1, ˆ-gates have a syntactic degree that is the sum of the syntactic degrees
of their children, and `-gates have a syntactic degree that is equal to the largest of the syntactic
degrees of their children. The syntactic degree of a formula is defined as the syntactic degree of
its output. Notice that in a formula the syntactic degree of any gate is bounded by the syntactic
degree of the formula.

We will further assume that no gate computes the zero polynomial.
A formula is homogeneous if each gate in the formula computes a homogeneous polynomial.

Equivalently, in terms of syntactic degrees, this means that all the children of a sum gate have
the same syntactic degree.

Raz [Raz13] showed how to convert a possibly inhomogeneous formula F to a homogeneous
formula with a relatively small blow-up in size.

Theorem 5. Let F be a (non-commutative or commutative) algebraic formula of size s and
product-depth ∆ computing a polynomial P such that all gates in F have fan-in 2. Then there

is a homogeneous algebraic formula F 1 of size at most O
´

s ¨
`

∆`d`1
d

˘

¯

and product-depth ∆

computing P . In particular, if ∆ “ Oplog sq and d “ Oplog sq, then the formula F 1 has size
polypsq.

3 Main result

Proof Overview. While the proof of the main result is fairly short and (in our opinion) clean,
we add some remarks here to clarify why previous depth-reduction proofs are not applicable in
our setting.

The first attempt in proving Theorem 1 would be to try to use the proof strategy behind
Theorem 4. Here, we start with a formula F of size s and find a subformula G of size roughly
s{2 rooted at some gate α of F . It is not hard to show that the polynomial computed by F can
be written as

F “ GˆH1 `H2

where H1 and H2 are also computed by formulas of size s{2.10 We then apply induction to
these three subformulas to get the result. Unfortunately, this strategy does not use the degree
of the formula at all, and therefore only yields a formula of depth Oplog sq.

In the homogeneous setting, it is sometimes more natural to do induction on the degree
of the underlying formula, in which case G and H1 (in the decomposition above) would be
subformulas of degree roughly d{2. We get the following recursion on the worst-case size of the
depth-reduced version of F , which we denote by T ps, dq

T ps, dq ď T ps1, d{2q ` T ps´ s1, d{2q ` T ps´ s1, dq

where s1 denotes the size of G. Unfortunately, in this case, the formulas H1 and H2 could have
size nearly s, resulting in considerable size blow-up. Indeed, when s1 is much smaller than s
(say s1 “ sop1q), the above recursion only yields T ps, dq “ sOplog dq, which is a superpolynomial
size blow-up.

It may be possible to interleave recursions with respect to size and depth, but we were
unable to make this work.

10Here, for simplicity, we are assuming that F is a commutative formula. In the non-commutative setting, we
would instead get F “ H 1

1GH2
1 `H2.

6

Another possible strategy could be to follow the work of [VSBR83] which produces circuits
of the required depth. Unfortunately, the proof of [VSBR83] is a memoization procedure, which
seems to yield circuits even when applied to a formula F . Turning the resulting circuit of depth
Oplog dq into a formula seems to increase the size to sΩplog dq.

The approach we take is somewhat more global than the recursive strategies outlined above.
Our first motivating example is seemingly the worst-case example for depth-reduction: a comb
of depth greater than d with alternating sums and products. More formally, a comb computes
the following polynomial (up to identifying variables).

Cpxq “ x1 ` px2 ˆ px3 ` px4 ˆ ¨ ¨ ¨ qqq

Note that the above yields a formula of depth greater than d where d is the degree of the
underlying polynomial. However, we observe that such a comb actually computes a polynomial
with only a few monomials, and hence can be written trivially as a depth-2

řś

-formula without
much of a size blow-up.

Building on this observation, the overall strategy is to decompose the formula into a top
part G, which is a (generalized) comb, whose leaves are subformulas of F to which we will apply
the same procedure recursively. We then write G as a

řś

-formula, and replace its leaves with
the depth-reduced versions of the subformulas. This gives the depth-reduced version of F .

The correct definition of G is crucial, and somewhat subtle (at least to us), but with the
proper definitions in place, the proof goes through without much trouble.

3.1 Proof of Theorem 1

In this section we prove our main result (Theorem 1). We start by showing a simple depth-
reduction result for the case of skew formulas. A formula is said to be skew if every multiplication
gate in it has at most 1 non-trivial child (i.e., a non-leaf node).

We will say that a leaf in a skew-formula is a `-leaf if the parent of that leaf is a ` gate and
a ˆ-leaf otherwise. We show that any skew formula can be converted efficiently into a depth-2
formula, i.e., a

řś

-formula.

Lemma 6. Let G be a skew formula with sum-depth δ, wherein all the gates have fan-in 2 and
the leaves are labelled by distinct variables. Then the polynomial computed by G is a multilinear
polynomial with at most 2δ monomials. Moreover any variable labelling in G

• a `-leaf,

• or a ˆ-leaf whose sibling is a leaf

appears in exactly one monomial. We will call them the non-duplicable variables.

Proof. We prove this by induction on the depth of the formula. The base case is when the depth
is 0 or 1. In both cases, the statement trivially holds.

For the induction case, assume that the depth is at least 2. Suppose G “ G1 ` G2. The
sum-depths of G1 and G2 are at most δ´1. Let f1, f2 be the multilinear polynomials computed
by G1, G2, respectively. We know that the leaves of G are labelled with distinct variables.
Hence, G1, G2 have the same property and the variable sets labelling the leaves of G1 and G2

are disjoint. The depths of G1 and G2 are strictly smaller than the depth of G. By the induction
hypothesis we have that f1 and f2 have at most 2δ´1 monomials. Moreover, any non-duplicable
variable in G1 appears in at most one monomial in f1. Similarly, any non-duplicable variable in
G2 appears in at most one monomial in f2. Hence, the polynomial computed by G, i.e., f1`f2,

7

has at most 2δ monomials and each non-duplicable variable appears in at most one monomial
in it.

Suppose the top gate of G is a ˆ gate. As G is a skew formula it is either x ˆ G1 or
G1 ˆ x, where x is a variable. In particular since the depth of G is at least two, the variable x
is duplicable. Let f1 be the multilinear polynomial computed by G1. By our assumption, the
variable x does not appear in f1. The depth of G1 is strictly smaller than G. By the induction
hypothesis we have that f1 has at most 2δ monomials and any non-duplicable variable in G1

appears in at most one monomial. As x can distribute over the monomials of f1, we have that
the polynomial computed by G is multilinear with at most 2δ monomials and any non-duplicable
variable appears in at most one monomial.

(Note that this can also be seen using parse trees, since the polynomial computed is the sum
of the monomials computed by the parse trees. The multilinearity is obvious. Note that parse
trees do not really “branch” at multiplication gates because of the skewness and are therefore
combs. To build a parse tree starting from the root we will have two choices for each addition
gate we encounter on the path, and there are at most δ, so we get at most 2δ parse trees. The
only parse tree containing a given non-duplicable variable is defined by the path from the root
to this leaf.)

If a formula is homogeneous, it implies that for any gate α, the degree of the polynomial
computed by α coincides with the syntactic degree dα of α. Based on this remark, below we
prove a stronger statement than Theorem 1. Specifically, Theorem 1 is stated for homogeneous
formulas. But here, we show a depth-reduction for formulas for which the syntactic degree is
small.

Theorem 7 (Refinement of Theorem 1). Let F be an algebraic formula of size s and of syntactic
degree dF ě 2. Then P is also computed by a formula F 1 of size polypsq and depth Oplog dF q.
Moreover, if F is homogeneous, monotone and/or non-commutative, then so is F 1.

Proof. Let us start with a formula obtained from F after applying Theorem 4. That is, we will
assume that we have a formula of size polypsq such each gate in it has fan-in 2, sum-depth and
product-depth are bounded by Oplog sq. For notational simplicity, from now on, F will refer to
this new formula.

Let δ be a positive integer. For a formula G of syntactic degree dG ě 1 and sum-depth ∆pGq
we define a potential function φδpGq as follows.

#

φδ,1pGq “ rlogpdGqs

φδ,2pGq “ r∆pGq{δs

and let
φδpGq “ φδ,1pGq ` φδ,2pGq.

We will show that the potential function bounds the depth of the depth-reduced formula
that we will construct. We will also use it to bound the size of the resulting formula. Specifically,
we prove the following lemma.

Lemma 8. Let δ be a positive integer. Any formula F of fan-in 2, syntactic degree d ě 1, sum-
depth ∆, and size s can be parallelized into a formula F 1 (of arbitrary fan-in) of product-depth
at most φδpF q and size at most s ¨ 2δ logpdq. Further, if F is homogeneous, monotone and/or
non-commutative, so is F 1.

8

Since we ensured that the sum-depth is bounded by Oplog sq, taking δ “
Q

log s
log d

U

and applying

Lemma 8, we get that the final formula F 1 has size at most polypsq and product-depth at most

φδpF q “ O

ˆ

rlog ds`

R

logpsq
log d

log s

V˙

“ Oplog dq.

By collapsing sum gates that feed into other sum gates, we see that the depth of F 1 can be
assumed to be at most twice its product-depth, which is Oplog dq. This thus finishes the proof
of the theorem.

We now prove Lemma 8.

Proof of Lemma 8. For any gate α in F , let Fα denote the subformula rooted at α and dα be
its syntactic degree. We do the proof by induction on φδpF q.

The base case φδpF q “ 0 trivially holds. Consider the following set of gates of F :

A “

α | α is a not a leaf labelled 1 and φδpFαq ă φδpF q “ φδpFparentpαqq
(

.

For any gate α in A, the induction hypothesis tells us that we can construct a formula F 1α of
product-depth at most φδpF q´ 1 and size at most sα ¨ 2

δ logpdαq computing the same polynomial
as Fα.

Let us consider the formula G obtained by replacing these gates from A in F by leaves (la-
belled with distinct variables). Notice that for a product-gate β in F , at most one of its children
has syntactic degree larger than dβ{2, where dβ is the syntactic degree of β. Consequently, G
is a skew formula. The other child of β is a ˆ-leaf in G. Moreover, G has sum-depth at most δ
(since φδ,2 strictly decreases for gates below).

Hence, we can use Lemma 6 to simplify G: we get that the polynomial computed by G
is a multilinear polynomial in its leaves and has 2δ monomials. We can then write G as a
řś

-formula G1 such that each duplicable gate appears in at most 2δ monomials and each
non-duplicable gate in at most 1.

The new formula F 1 for F is obtained from G1 by replacing each variable leaf, which corre-
sponds to some gate α in F , by its depth-reduced version F 1α constructed using the induction
hypothesis above.

The product-depth of F 1 is bounded by the product-depth of the gates α P A plus the
product-depth of G, which is equal to 1 after rewriting it as a

řś

-formula. That is, the
product-depth is at most pφδpF q´1q`1 “ φδpF q. By construction if G does not contain leaves
labelled by 1, then it is also the case for G1, otherwise, G1 still has at most one such leaf. The
size of the resulting formula is bounded by

ÿ

α non-duplicable

´

sα ¨ 2
δ logpdαq

¯

`

¨

˝2δ ¨
ÿ

α duplicable

´

sα ¨ 2
δ logpdαq

¯

˛

‚` 1G’ has a constant leaf.

Notice that if α is duplicable, it must be a ˆ-leaf with its sibling β not a leaf. This means
that dα ď dβ ď d since the syntactic degree is maximal at the root. Hence dα ď d{2 so the
contribution of duplicable gates is bounded by

ÿ

α duplicable

2δ
´

sα ¨ 2
δplogpdq´1q

¯

ď
ÿ

α duplicable

´

sα ¨ 2
δ logpdq

¯

.

The contribution of non-duplicable gates is bounded by
ÿ

α non-duplicable

sα ¨ 2
δ log d

9

since any gate in F has syntactic degree at most d. By the choice of A, the subformulas Fα are
disjoint so

ř

αPA sα ď s, with strict inequality if G1 has a constant leaf. Hence the size of F 1 is
bounded by s ¨ 2δ logpdq.

Finally, it is straightforward to verify that the construction preserves homogeneity, mono-
tonicity and/or non-commutativity.

Remark 9. It is easy to note that our depth reduction procedure does not increase the syntactic
degree of the formula.

We also observe that putting Theorem 1 together with Theorems 4 and 5 immediately
implies Corollary 2.

Proof of Corollary 2. Given a (possibly inhomogeneous) formula F of size s “ polypnq comput-
ing a polynomial of degree d “ Oplog nq, we first apply standard depth-reduction (Theorem 4)
to get an equivalent formula F1 of size s1 “ polypnq and depth ∆1 “ Oplog nq where each gate
has fan-in 2. Applying Raz’s homogenization theorem (Theorem 5) to F1 yields an equivalent
homogeneous formula F2 of size s2 “ polypnq and depth ∆2 “ Oplog nq. We can now apply The-
orem 1 to F2 to get an equivalent formula F 1 of size s1 “ polypnq and depth ∆1 “ Oplog dq.

3.2 Reducing the size blow-up

We note that the above strategy can be easily adapted to yield a small depth formula of size s1

that is nearly linear in the size s of the original formula, at the expense of increasing the depth
by a large constant.

The proof is nearly identical to the proof of Theorem 1 above. The new ingredient is a
near-linear depth-reduction in the setting where there is no bound assumed on the degree of
the above formula. More precisely, Bshouty, Cleve and Eberly [BCE95] (see also the work of
Bonet and Buss [BB94]) showed the following (we sketch Bonet and Buss’ proof in Appendix A
for completeness).

Theorem 10 (Depth-reduction with near-linear size). The following holds for any ε ą 0. Let
F be a (non-commutative or commutative) algebraic formula of size s computing a polynomial
P . Then there is an algebraic formula F 1 of size at most s1`ε and depth ∆ “ 2Op1{εq ¨ log s
computing P . We may also assume that each gate in F 1 has fan-in 2. Furthermore, if F is
homogeneous and/or monotone, then so is F 1.

Using the above result, we can prove the following improved version of our depth-reduction.

Theorem 11. Assume that F is a (commutative or non-commutative) formula of size s and
syntactic degree d ě 1 computing a polynomial P . Then P is also computed by a formula F 2

of size at most s1`ε and depth ∆ “ 2Op1{εq ¨ log d. Furthermore, if F is a homogeneous and/or
monotone formula, then so is F 2.

Proof. If d4{ε ě s, then the depth-reduction of Theorem 10 already gives a satisfactory solution.
Indeed the size is bounded by s1`ε and the depth is bounded by

2Op1{εq log s ď
4

ε
2Op1{εq log d ď 2Op1{εq log d.

So we assume that s ą d4{ε. By first applying Theorem 10 (with ε{2 instead of ε), we obtain
a formula F 1 of size at most s1`ε{2, depth ∆1 “ 2Op1{εq ¨ log s, and fan-in 2 computing P .

Now, we apply Lemma 8, while setting δ “ tpε log sq{p2 log dqu. Notice that since ε log s ą
4 log d, it ensures that δ ą pε log sq{p4 log dq ą 1.

10

Then the strategy produces a formula F 2 of product-depth at most

φδpF
1q ď φδ,1pF

1q ` φδ,2pF
1q ă rlog ds` 2Op1{εq log s

4 log d

ε log s
“ 2Op1{εq log d

and size at most
s1`ε{2 ¨ 2δ log d ď s1`ε{2sε{2.

This proves the theorem.

3.3 Reducing the product fan-ins to 2

It is natural to ask if Theorem 1 can be proved while ensuring that the fan-in of each gate is
bounded by 2, as in Theorem 1 and Theorem 10. This is not possible, as a formula of fan-in 2
and depth Oplog dq can only compute polynomials on at most polypdq variables, while formulas
of size s may have up to s variables. However, this does not rule out reducing the fan-in of
the product gates to 2. Indeed, the circuit depth-reduction of [VSBR83] does exactly this. We
show now that this can also be done for algebraic formulas with bounded syntactic degree.

Theorem 12. Let F be a (commutative or non-commutative) algebraic formula F of size s,
depth ∆, and syntactic degree d ě 1 computing a polynomial P . Then P can also be computed
by a formula F 1 of size s and depth ∆1 “ Op∆` log dq where each product gate of F 1 has fan-in
2. Furthermore, if F is a homogeneous and/or monotone formula, then so is F 1.

Plugging this in Theorem 7 gives a depth-reduction to formulas of depth Oplog dq and size
polypsq such that all product gates have fan-in at most 2. A similar result can be obtained with
a smaller blow-up in size by combining this statement with Theorem 11.

Proof. It suffices to prove a weaker version of the above theorem where each product gate has
fan-in at most 3. We can then replace each of the products of fan-in 3 by a tree of product
gates of fan-in 2 and size 3. This has the effect of increasing the depth at most by a factor of
2, which does not affect the overall result.

So we will prove this slightly weaker version. In this setting, we will aim for a depth
∆1 “ ∆` log d.

This is done by induction on the depth ∆ of the formula. The case of ∆ “ 0 is trivial. Let
F be a formula of depth ∆ ą 0 and syntactic degree d.

Assume that the output gate of F is a sum gate, and F1, . . . , Ft are the subformulas of F
of depth ∆´ 1. By definition, each Fi has syntactic degree at most d. Applying the induction
hypothesis to each of the Fi yields a formula F 1i with product gates of fan-in at most 3. The
formula F 1 can then be defined as the sum of these formulas.

Now we come to the main case, which is when the output gate of F is a product gate.
Assume that F1, . . . , Ft are the subformulas of F of depth ∆´1 in the order11 that they appear
in F . Let di denote the syntactic degree of Fi. Define

m “ mintj |

j
ÿ

i“1

di ě d{2u.

Let F` be the formula obtained from F by keeping only the subformulas F1, . . . , Fm´1, and
Fr be the formula obtained by keeping only Fm`1, . . . , Ft. We use the induction hypothesis on
F`, Fm, and Fr to get formulas F 1`, F

1
m and F 1r. Finally, we set

F 1 “ F 1` ˆ F
1
m ˆ F

1
r.

The size12 of F 1 is the sum of the sizes of F 1`, F
1
m and F 1r, which is at most s by the induction

11The order is important in the non-commutative setting.
12Recall that the size of a formula is the number of its leaves.

11

hypothesis. Let ∆1
`,∆

1
m and ∆1

r denote the depths of F 1`, F
1
m and F 1r respectively. The depth of

F 1 is

1`maxt∆1
`,∆

1
m,∆

1
ru ď 1`maxt∆` logpd{2q,∆´ 1` log d,∆` logpd{2qu “ ∆` log d

where the second inequality uses the induction hypothesis, and the fact that F` and Fr have
syntactic degree at most d{2 and Fm has depth at most ∆´ 1.

4 Tightness

Given integers k ě 1 and r ě 2, we will define a polynomial Hpk,rq. Intuitively, we want to define
this polynomial as a standard universal polynomial for formulas. It is composed of k-nested
inner products, each one of size r. In the following we will drop the superscript in Hpk,rq and
write simply H instead.

The polynomial H will be defined over the set of p2rqk variables

txσ,τ | σ P r2s
k, τ P rrsku.

Let us define recursively polynomials Hu,v for all pu, vq P r2sďk ˆ rrsďk such that |u| “ |v|:

Hu,v “ xu,v when |u| “ |v| “ k

Hu,v “

r
ÿ

a“1

Hu1,vaHu2,va otherwise.

The polynomial H is defined as the polynomial Hε,ε. Note that H is a polynomial of degree
d “ 2k and has rd´1 monomials.

From its definition, H is computed by a monotone formula M of size p2rqk and depth 2k,
with a `-gate at the top, alternating layers of `-gates and ˆ-gates, with `-gates of fan-in r
and ˆ-gates of fan-in 2, and leaves labelled with distinct variables.

For words u and v over the same alphabet, we write u Ą v if u is a prefix of v. There is
a natural one-to-one correspondance between prefixes of words of prrs ˆ r2sqk and nodes of M ,
which is the following. Let σ “ σ1 . . . σk P r2s

k, and τ “ τ1 . . . τk P rrs
k. The word τ1σ1 . . . τkσk

corresponds to a path from the root of M to the leaf labelled xσ,τ , while proper prefixes of
τ1σ1 . . . τkσk correspond to internal gates in M along this path. For ` ă k, u “ u1 . . . u` P r2s

`

and v “ v1 . . . v` P rrs
`, the node which corresponds to the word v1u1 . . . v`u` is the `-gate of

M computing Hu,v.
The polynomial H is easily seen to be set-multilinear with respect to the sets of variables

tXσ | σ P r2s
ku where Xσ “ txσ,τ | τ P rrs

ku. This means that each monomial has exactly one
variable from each set Xσ.

Remark 13. For |u| “ |v| “ ` ď k, u P r2s` and v P rrs`, the polynomial H
pk,rq
u,v is defined over

the set of variables
Xu,v “ txσ,τ | σ P r2s

k, τ P rrsk, u Ą σ, v Ą τu

and is the polynomial Hpk´`,rq (upto renaming of the variables). In particular, its degree is
d1 “ 2k´`, it has rd

1´1 monomials and it is set-multilinear with respect to tXσ | σ P r2s
k, u Ą σu.

Before proving hardness of H for small-depth monotone formulas, we need to show that
the gates of a monotone formula computing H cannot compute too many monomials. This is
proved in Lemma 15 below.

12

Proposition 14. Consider two variables xσ,τ and xσ1,τ 1. If xσ,τxσ1,τ 1 appears in a monomial
of H, and if σ and σ1 have a common prefix of length ` ă k, then τ and τ 1 have a common
prefix of length `` 1.

Proof. Observe that xσ1,τ1 . . . xσp,τp is a monomial of H if and only if these variables form the
leaves of a parse tree of M . As observed above, the root-to-leaf path leading to the variable
xσi,τi in M is obtained by taking in turn the first letter of τi, the first letter of σi, the second
letter of τi, etc.

If the product xσ,τxσ1,τ 1 appears in a monomial of H, it must be possible to complete the
union of the two paths, from the root to xσ,τ and from the root to xσ1,τ 1 , into a parse tree of
the formula M .

If the longest common prefix of τ and τ 1 were of length at most `, then the lowest common
ancestor of xσ,τ and xσ1,τ 1 in M would be a `-gate, which is not possible in a parse tree where
each `-gate has a single child.

Lemma 15. If F is a monotone formula which computes the polynomial H and if α is a gate
of F of degree dα, then the number of monomials of the polynomial computed at gate α is at
most rdα´1.

Proof. Since H has rd´1 monomials, the result is true when dα “ d by monotonicity. Assume
now that dα ă d.

Let
I “ tσ P r2sk | some variable of Xσ appears in αu.

For u P r2sďk, let Iu “ tσ P r2s
k | u Ą σu. Let tu1, . . . , upu be the set of words w of minimal

length such that Iw Ď I. Then I is the disjoint union
Ť

`Prps Iu` . Since dα ă d, I ‰ r2sk so no
u` is the empty word.

Consider some ` P rps. Let ū` be obtained by switching the last letter of u`. By minimality
of the length of u`, we must have Iū` Ę I. Let σ be a word in Iū`zI. Since F is monotone
and computes a set-multilinear polynomial, it is a set-multilinear formula and therefore the
polynomial computed at α must be multiplied by some variable xσ,τ . Let v` be the prefix of
length |u`| of τ . Consider any variable xσ1,τ 1 appearing in α such that u` Ą σ1. Since the
product xσ,τxσ1,τ 1 must appear in a monomial of H by monotonicity, it must be that v` Ą τ 1 by
Proposition 14.

Any monomial m in the polynomial computed in gate α can be written in a unique way
m “ m1 ¨ ¨ ¨mp with m` set-multilinear with respect to tXσ | u` Ą σu. By the above, m` is a
monomial over the variables Xu`,v` of degree |Iu` |. By monotonicity, it should be possible to
complete leaves of M labelled with variables from m` into a parse tree of M appearing in H,
which proves that m` is a monomial of Hu`,v` . There are at most r|Iu` |´1 such submonomials
m` by Remark 13. It follows that the number of monomials of the polynomial computed in
node α is at most

p
ź

`“1

r|Iu` |´1 ď r|I|´1 “ rdα´1.

We are ready to prove hardness of the polynomial H for monotone computation. We shall
make use of the following “product lemma”, which comes in different forms in e.g. [SY10, HY11,
Sap15].

Lemma 16. A degree-d homogeneous formula F of size s and product-depth ∆ can be written
as a sum of Opsq polynomials, each of which is a product of Ωp∆d1{∆q many polynomials of
positive degree. Moreover, each of these polynomials is computed by some gate in F .

13

Proposition 17. If F is a monotone formula of product-depth ∆ ď log d which computes H,
then its size is at least rΩp∆d1{∆q.

Proof. Let t “ ∆d1{∆. Since F is monotone, it is homogeneous and by Lemma 16 can be written
as

F “
s1
ÿ

i“1

ti
ź

j“1

Fi,j

with s1 “ Opsq and ti “ Ωptq for all i, and Fi,j is of degree at least 1 and computed by some
gate in F .

Let di,j be the degree of Fi,j . By Lemma 15, each Fi,j computes at most rdi,j´1 monomials.

The number of monomials of
śtj
i“1 Fi,j is therefore bounded by

ti
ź

j“1

rdi,j´1 ď r
řti
j“1 di,j´ti ď rd´t

since
řti
j“1 di,j “ d. It follows that the number of monomials computed by F is at most s ¨ rd´t.

Since F computes H which has rd´1 monomials, we get s “ rΩptq.

We can now get Theorem 3 from the introduction, which is restated here for convenience.

Theorem 18. Let n and d “ dpnq be growing parameters such that dpnq ď
?
n. Then there is

a monotone algebraic formula F of size at most n and depth Oplog dq computing a polynomial
P P Frx1, . . . , xns of degree at most d such that any monotone formula F 1 of depth oplog dq
computing P must have size nωp1q.

Proof of Theorem 3. Choose parameters kpnq and rpnq such that P pnq :“ Hpk,rq has Θpnq
variables and degree Θpdq: let k “ log d and r “ 1

2n
1{ log d. Condition dpnq ď

?
n ensures

that r ě 2. The polynomial P has a monotone formula of size Opnq and depth Oplog dq. By
Proposition 17, any monotone formula of product-depth ∆ ď log d computing P has size

rΩp∆d1{∆q “

ˆ

1

2
n1{ log d

˙Ωp∆d1{∆q

“ pn{dq

ˆ

∆d1{∆

log d

˙

which is n
Ω

ˆ

∆d1{∆

log d

˙

using the hypothesis dpnq ď
?
n. Since ∆d1{∆

log d Ñ `8 when ∆ “ o plog dq

this bound is nωp1q.

5 Conclusion and Open questions

In this paper we investigated the possibility of reducing the depth of a formula of size s com-
puting a polynomial of degree d to Oplog dq while keeping the size sOp1q.

We showed (Theorem 1) that we can do such a transformation when F is homogeneous.
More generally, Theorem 7 states that we can achieve it as soon as the syntactic degree of F is
polynomially bounded in d.

Structure inside VF. Let us consider a sequence of polynomials pfnq whose number of
variables and degree are bounded polynomially in n (such a family is usually called a p-family,
see for example [B0̈0]). We can then consider three classes of such families:

• homFrspnqs “ tpfnq | fn is computed by a homogeneous formula of size polypspnqqu,

14

• lowSynDegFrspnqs “ tpfnq | fn is computed by a formula of size polypspnqq and of
syntactic degree polypdegpfnqqu

• lowDepthFrspnqs “ tpfnq | fn is computed by a formula of size polypspnqq and of
depth Oplog degpfnqqu.

Clearly, we have the inclusion homFrspnqs Ď lowSynDegFrspnqs. Also, in this paper, we
have shown the inclusion lowSynDegFrspnqs Ď lowDepthFrspnqs. Consequently,

homFrpolypnqs Ď lowSynDegFrpolypnqs Ď lowDepthFrpolypnqs Ď VF,

and we do not know if these inclusions are strict or not.

The complexity of the Elementary Symmetric Polynomials. A particularly interest-
ing special case of the questions above comes from the example of the Elementary Symmetric
Polynomials. Given parameters d, n with d ď n, recall that the Elementary Symmetric polyno-
mial Sdnpx1, . . . , xnq is the sum of all the multilinear monomials of degree exactly d. A simple
and elegant construction of Ben-Or (see [SW01]) shows that for any d, the polynomial Sdn
has an inhomogeneous formula of depth-3 and size Opn2q. This puts this family of polynomi-
als in the class lowDepthFrpolypnqs. Further, Shpilka and Wigderson [SW01, Theorem 5.3],
showed that Sdn has depth-6 formulas of syntactic degree at most polypdq, putting it in the class
lowSynDegFrpolypnqs.

However, as far as we know, there are no known polypnq-sized homogeneous formulas for
this family of polynomials.13 In fact, under some further restrictions, Hrubeš and Yehudayoff
showed [HY11] a superpolynomial homogeneous formula lower bound when d “ n{2. Removing
these restrictions would show a separation between homFrpolypnqs and lowSynDegFrpolypnqs.
On the other hand, if indeed the elementary symmetric polynomials have polypnq-sized homo-
geneous formulas, then this can be used to argue14 the same for any polynomial computed by a
depth-3 formula of polynomial size, hinting at a possible collapse between homFrpolypnqs and
lowSynDegFrpolypnqs.

Lower bounds for higher-depth formulas. Due to the recent lower bound results of [LST21b],
we know that there is an explicit homogeneous polynomial P pXq of degree d on n variables that
cannot be computed by any formula of size polypnq and depth ε ¨ log log d, for some absolute
constant ε ą 0. It turns out that the polynomial P is computable by an algebraic branching
program and therefore, lies in the complexity class called VBP.

It is known that VF is contained in VBP. However, we do not know whether this contain-
ment is strict or not. Our lower bound result helps us pose a refined version of this question.
Specifically, it shows that if the lower bound from [LST21b] can be improved from Ωplog log dq
to ωplog dq, then we will have separated VF from VBP.

The fact that our depth reduction carries over to the non-commutative setting, makes a com-
pelling case for revisiting the VF vs. VBP question in the non-commutative setting. Specifically,
a recent result of [TLS22] shows that there is an explicit non-commutative polynomial P pXq
of degree d on n variables that cannot be computed by any non-commutative formula of size
polypnq and depth ε ¨

?
log d. So, improving the lower bound in this case from Ωp

?
log dq to

ωplog dq would separate VF from VBP in the non-commutative setting.

13A strong form of this was conjectured by Nisan and Wigderson [NW97], which was subsequently refuted by
Hrubeš and Yehudayoff [HY11]. However, this still does not yield polynomial-sized homogeneous formulas for all
elementary symmetric polynomials.

14see e.g. [LST21b, Section III] for the standard argument

15

References

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In
proceedings of Foundations of Computer Science (FOCS), pages 67–75, 2008.

[B0̈0] Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theoretical Computer Science,
235(1):71–88, 2000.

[BB94] Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean formulae.
Information Processing Letters, 49(3):151 – 155, 1994.

[BCE95] Nader H. Bshouty, Richard Cleve, and Wayne Eberly. Size-depth tradeoffs for alge-
braic formulas. SIAM J. Comput., 24(4):682–705, 1995.

[BKM73] R. Brent, D. Kuck, and K. Maruyama. The parallel evaluation of arithmetic expres-
sions without division. IEEE Transactions on Computers, C-22(5):532–534, 1973.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM, 21(2):201–206, April 1974.

[CKSV16] Suryajith Chillara, Mrinal Kumar, Ramprasad Saptharishi, and V. Vinay. The
chasm at depth four, and tensor rank : Old results, new insights. CoRR,
abs/1606.04200, 2016.

[CLS18] Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilin-
ear formula lower bounds for iterated matrix multiplication, with applications. In
STACS, volume 96 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018.

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arith-
metic circuits: A chasm at depth 3. SIAM Journal of Computing, 45(3):1064–1079,
2016.

[HY11] Pavel Hrubeš and Amir Yehudayoff. Homogeneous formulas and symmetric polyno-
mials. Comput. Complexity, 20(3):559–578, 2011.

[KdOS19] Mrinal Kumar, Rafael Mendes de Oliveira, and Ramprasad Saptharishi. Towards
optimal depth reductions for syntactically multilinear circuits. In Christel Baier,
Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th In-
ternational Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 78:1–78:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor.
Comput. Sci., 448:56–65, 2012.

[Kos86] S Rao Kosaraju. Parallel evaluation of division-free arithmetic equations. In Pro-
ceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pages
231–239, 1986.

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial
lower bound for regular arithmetic formulas. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 146–153. ACM, 2014.

16

[LST21a] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower
bounds against low-depth algebraic circuits. Electron. Colloquium Comput. Com-
plex., TR21-081, 2021.

[LST21b] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower
bounds against low-depth algebraic circuits. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10,
2022, pages 804–814. IEEE, 2021.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of
the twenty-third annual ACM symposium on Theory of computing, pages 410–418,
1991.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6(3):217–234, 1997.

[PM75] Franco P. Preparata and David E. Muller. The time required to evaluate division-free
arithmetic expressions. Inf. Process. Lett., 3(5):144–146, 1975.

[PM76] Franco P. Preparata and David E. Muller. Efficient parallel evaluation of boolean
expression. IEEE Trans. Computers, 25(5):548–549, 1976.

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing,
2(1):121–135, 2006.

[Raz13] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. Journal of the
ACM, 60(6):40:1–40:15, 2013.

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic cir-
cuits. Computational Complexity, 17(4):515–535, 2008.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey, 2015.

[Spi71] Philip M. Spira. On time hardware complexity tradeoffs for Boolean functions.
In Shu Lin, editor, Proceedings of the Fourth Hawaii International Conference on
System Sciences, pages 525–527. Western Periodicals Company, North Hollywood,
California, 1971.

[SS80] Eli Shamir and Marc Snir. On the depth complexity of formulas. Math. Syst. Theory,
13:301–322, 1980.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of charac-
teristic zero. Computational Complexity, 10(1):1–27, 2001.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent re-
sults and open questions. Foundations and Trends in Theoretical Computer Science,
5:207–388, March 2010.

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Infor-
mation and Computation, 240:2–11, 2015.

[TLS22] Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-
commutative formula lower bounds for iterated matrix multiplication. In STOC,
pages 416–425. ACM, 2022.

17

[VSBR83] Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rackoff. Fast Paral-
lel Computation of Polynomials Using Few Processors. SIAM Journal of Computing,
12(4):641–644, 1983.

[YK68] SV Yablonskii and VP Kozyrev. Mathematical problems of cybernetics. Infor-
mation Materials of Scientific Council of Akad. Nauk SSSR on Complex Problem
“Kibernetika, 19:3–15, 1968.

18

A The Bonet-Buss depth-reduction

In this section, we give a proof of Theorem 10. This is essentially the same proof as in the
work of Bonet and Buss [BB94], but since the results in that paper are only stated for Boolean
formulas, we give the proof here for completeness.

We show that for some large enough absolute constant C ą 0, any polynomial P computed
by a formula F of size s can also be computed by a formula F 1 of size at most s1`ε, depth at
most 2Op1{εq ¨ log s, and fan-in 2. Further, if F is homogeneous/monotone/non-commutative,
then so is F 1. This latter claim will follow directly from the construction.

We assume here that each gate in F has fan-in 2 to begin with. We can make this modifi-
cation to F in the beginning at the expense of increasing the depth, and without increasing the
size.

We prove the claim by induction on the size s of the formula. Let T psq and Dpsq denote
the maximum size and depth (respectively) of F 1 thus obtained, assuming that F has size at
most s. Let k “ 2C{ε where C ą 0 is an absolute constant we will choose below. We assume
throughout that ε ă 1, which is without loss of generality.

The base case of the formula is when s ď k, in which case the claim is trivial, as any formula
of size s has depth at most s, which in this case is at most 2C{ε.

Now, assume that s ą k. In this case, we find a gate α such that the size of the subformula
Fα rooted at α has size at least s ´ s{k, while the children β and γ of α do not satisfy this
property. It is easy to observe that there is a unique α with this property. Let ˚ denote the
operation (either ` or ˆ) labelling α.

We replace α by a fresh variable y in F to get a formula Fy. Note that Fy has size at most
s1 “

2s
k . Since Fy has at most one occurrence of y, we can write

Fy “ A ¨ y ¨B ` C

where A is the product of all subformulas that multiply y on the left in F along the path to
the output, B is similarly the product of all subformulas that multiply y on the right, and C is
the polynomial computed by Fy when we set y to 0. Clearly, A, B and C have formulas FA, FB
and FC of size at most s1. Finally, we get the formula F 1 as in Figure 1.

`

ˆ F 1C

ˆ F 1B

F 1A ˚

F 1β F 1γ

Figure 1: Constructing F 1

Here, F 1A, F
1
B, F

1
C , F

1
β, F

1
γ are the formulas obtained by recursively applying the same proce-

dure to FA, FB, FC , Fβ, Fγ .
We can bound the size and depth of the depth-reduced formula by induction. We have

Dpsq ď Dps´ s{kq `Op1q

19

leading easily to an overall depth bound of Opk log sq “ 2Op1{εq ¨ log s for any choice of the
constant C.

For the size, we have the following recursion.

T psq ď max
sβ ,sγ ,s1:

sβ ,sγďsp1´1{kq
s1ď2s{k

sβ`sγ`s1ďs

T psβq ` T psγq ` 3T ps1q

where sβ and sγ are the sizes of Fβ and Fγ respectively. We now use induction to bound T psq
as follows. (We omit the conditions on sβ, sγ and s1 for notational simplicity.)

T psq ď max
sβ ,sγ ,s1

s1`ε
β ` s1`ε

γ ` 3s1`ε
1

ď

ˆ

s

ˆ

1´
1

k

˙˙1`ε

`

´ s

k

¯1`ε
` 3

ˆ

2s

k

˙1`ε

where we used the fact that s1 ď 2s{k and the fact that, using the convexity of the map
x ÞÑ x1`ε, the function s1`ε

β ` s1`ε
γ is maximized when maxtsβ, sγu “ s ´ s{k, meaning that

mintsβ, sγu ď s{k.
Continuing the computation, we get

T psq ď s1`ε

ˆˆ

1´
1

k

˙

`
1

k1`ε
` 3

4

k1`ε

˙

ď s1`ε ¨

ˆ

1´
1

k
`

C 1

k1`ε

˙

for some large enough absolute constant C 1. Setting k “ 2C{ε for a large enough absolute
constant C gives us T psq ď s1`ε, proving the inductive claim.

20

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

