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Abstract

We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-
of-Squares (SoS) proof system. Our main result is that for every Boolean function f :
{0, 1}n → {0, 1}, SoS requires degree Ω(s1−ε) to prove that f does not have circuits of size
s (for any s > poly(n)). As a corollary we obtain that there are no low degree SoS proofs
of the statement NP 6⊆ P/poly.

We also show that for any 0 < α < 1 there are Boolean functions with circuit com-
plexity larger than 2nα

but SoS requires size 22Ω(nα)
to prove this. In addition we prove

analogous results on the minimum monotone circuit size for monotone Boolean slice func-
tions.

Our approach is quite general. Namely, we show that if a proof system Q has strong
enough constraint satisfaction problem lower bounds that only depend on good expansion
of the constraint-variable incidence graph and, furthermore, Q is expressive enough that
variables can be substituted by local Boolean functions, then the MCSP problem is hard
for Q.
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1 Introduction

Even before the dawn of complexity theory, there was an interest in the minimum circuit
size problem (MCSP): given the truth table of a Boolean function f : {0, 1}n → {0, 1} and
a parameter s, the MCSP problem asks whether there is a Boolean circuit of size at most s
computing f . Despite many years of research, we do not know whether this problem is NP-
hard. It clearly is in NP: given a circuit of size at most s (described by O(s log s) bits) we can
easily check in time O(s · 2n) whether this circuit indeed computes f .

Determining the hardness of MCSP itself turns out to be a difficult problem. Kabanets
and Cai [KC00] showed that NP-hardness of the MCSP problem implies breakthrough circuit
lower bounds. These lower bounds are not implausible but well out of reach of current tech-
niques. In a similar vein Murray and Williams [MW15] showed that NP-hardness of MCSP
implies that EXP 6= ZPP and more recently Hirahara [Hir18] proved that NP-hardness of
MCSP implies a worst-case to average-case reduction for problems in NP (for an appropriate
MCSP version).

On the other hand if one could show that MCSP is in P/poly, this would imply even
stronger (though less realistic) results: Kabanets and Cai [KC00] also showed that if MCSP is
in P/poly, then crypto-secure one way functions can be inverted on a considerable fraction of
their range.

To summarize it seems unlikely that MCSP is in P, but showing that it is NP-hard implies
very strong consequences. As these results seem out of reach for current techniques, it might
be a more fruitful avenue to try to at least rule out that certain (families of) algorithms solve
the MCSP problem efficiently.

This can be achieved very elegantly in proof complexity: show that some proof system
capturing your algorithm requires long proofs to refute the claim that a complex function has
a small circuit. This will then rule out that the algorithm in question can efficiently solve the
MCSP problem. This will not only show that this specific algorithm requires long running
time but would also show that any algorithm captured by this proof system requires long
running time to solve the MCSP problem. Hence by this line of reasoning we manage to rule
out entire classes of algorithms to solve the MCSP problem efficiently.

This paper focuses on the Sum of Squares proof system (SoS). This proof system provides
certificates of unsatisfiability of systems of polynomial equations P = {p1 = 0, . . . , pm = 0}
over R. A key complexity measure is the degree of a refutation, which is the maximum degree
of a monomial occurring in the refutation of P . All Boolean system P over n variables have
an SoS refutation of degree n and we are interested in the minimum degree that SoS requires
to refute P . An SoS refutation of degree d has size O(nd) and can be found in nO(d) time
using semidefinite programming and this is often a useful heuristic bound for the complexity
of an SoS refutation. The actual size complexity of SoS can sometimes be significantly smaller
than nd, but it is in general not believed that the shortest refutation can be found efficiently.
Hence it is in general of interest to understand both the degree and the size needed to refute
any given system.

SoS is a very powerful proof system and captures many state of the art algorithms that are
based on spectral methods. A classic algorithm captured by SoS is Goemans and Williamson’s
Max-Cut algorithm [GW95], but also approximate graph coloring algorithms [KMS98], and
algorithms solving constraint satisfaction problems [AOW15, RRS17] are captured by SoS.
On the other hand SoS has real difficulty arguing about integers and in particular parities.
Indeed, Grigoriev [Gri01] showed that SoS requires degree Ω(n) to refute a random xor con-
straint satisfaction problem of the appropriate (constant) density. After this initial lower
bound it took a few years to develop good lower bounds methods for SoS, but in recent years
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there has been a flurry of strong SoS degree lower bounds [MPW15, BHK+16, KMOW17].
In order to rule out that algorithms captured by SoS can solve MCSP efficiently, we need

to encode the claim that a given function has a small circuit as a propositional formula. We
work with the encoding suggested by Razborov [Raz98], which encodes this claim that the
function f : {0, 1}n → {0, 1} has a circuit of size s by a propositional formula Circuits( f ) over
O(s2 + s · 2n) = O(s · 2n) variables as follows. We have Θ(s2) structure variables to encode all
possible size s circuits, and for every assignment α ∈ {0, 1}n we then have an additional Θ(s)
evaluation variables that simulate the evaluation of the circuit on each input, and constraints
forcing the circuit to output the correct value on each input α.

A closely related question to the MCSP problem is the question of how hard it is to actually
prove strong circuit lower bounds. For example, are there efficient refutations of the state-
ment NP ⊆ P/poly, assuming the statement is false? This question, as proposed by Razborov
[Raz98], can also be investigated by studying above formula: consider CircuitnO(1)(SAT),
where SAT is the function that outputs 1 if and only if the input is an encoding of a sat-
isfiable CNF. This is, essentially, a propositional encoding of the claim that SAT has a circuit
in P/poly. Hence proving lower bounds for CircuitnO(1)(SAT) rules out efficient proofs of
NP 6⊆ P/poly in the proof system under consideration.

Experience suggests that studying such meta-mathematical questions is difficult. This
problem is no exception to this rule and, even though the formula has been conjectured to be
hard for strong proof systems such as extended Frege, progress has been slow. The only proof
systems for which we have unconditional, superpolynomial lower bounds on proofs of the
Circuits( f ) formula are Resolution [Raz04a, Raz04b], small width DNF-Resolution [Raz15]
and Polynomial Calculus [Raz98, Raz15]. The resolution size and Polynomial Calculus de-
gree lower bounds follow from a reduction of the pigeonhole principle to Circuits( f ). In fact,
this reduction was a main motivation for a long line of work [RWY02, PR04, Raz04a, Raz04b]
eventually establishing strong resolution lower bounds for the weak pigeonhole principle.
The other size lower bounds follow from a general connection between pseudo-random gen-
erator lower bounds and MCSP lower bounds as outlined by Razborov [Raz15].

As the pigeonhole principle is easy for the SoS proof system [GHP02], we cannot hope to
borrow the hardness from that formula. Neither do we have strong enough pseudorandom
generator lower bounds for SoS to employ that connection. In fact, to date, we have no un-
conditional (degree) lower bounds for any semi-algebraic proof system, that is, proof systems
that manipulate polynomial inequalities such as SoS or Cutting Planes. Furthermore it has
been stated [Raz21, Raz22] as an explicit open problem to prove SoS degree lower bounds for
the formula Circuits( f ).

1.1 Our Results

Our first result gives a lower bound on the degree needed to refute Circuits( f ) in SoS. This
lower bound is very general and in fact applies to every Boolean function f : {0, 1}n → {0, 1}.

Theorem 1.1. For all ε > 0 there is a d = d(ε) such that the following holds. For n ∈ N, all s ≥ nd

and any Boolean function f : {0, 1}n → {0, 1} on n bits, SoS requires degree Ωε(s1−ε) to refute
Circuits( f ).

Furthermore, the lower bound of Ωε(s1−ε) on the degree is essentially tight: if f does not
have a circuit of size s then there exists an SoS refutation of this in degree O(s).

Proposition 1.2. Let s ∈ N and f : {0, 1}n → {0, 1} be a Boolean function on n bits that requires
circuits of size larger than s to be computed. Then there is a degree O(s) SoS refutation of Circuits( f ).
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We also prove a result about the minimum size (number of monomials) required for SoS
to refute Circuits( f ). This result holds for all functions that “almost” have a circuit of size s,
in the sense that they have an errorless heuristic circuit (see the survey [BT06]) of size s/2 and
extremely small error probability with respect to the uniform distribution. Formally, we let
Fn(s, t) denote the class of Boolean functions that consists of all functions f : {0, 1}n → {0, 1}
for which there is a Boolean circuit C f : {0, 1}n → {0, 1,⊥} of size at most s such that

1. if C f (α) 6= ⊥, then C f (α) = f (α), and

2. C f (α) = ⊥ on at most t inputs.

In other words the circuit C f computes f correctly on all except t inputs. Note that technically
the output of the circuit C f is two bits with the first one indicating whether the output is ⊥
or the value of the second bit. We believe that above presentation is more intuitive and hope
that the slight abuse of notation causes no confusion. With the class of functions Fn(s, t) at
hand we can state our main SoS size lower bound.

Theorem 1.3. For all ε > 0 there is a d = d(ε) such that the following holds. Let n ∈ N and s ∈ N

such that s ≥ nd. If t ≥ s and f ∈ Fn(s/2, t), then it holds that SoS requires size exp
(
Ωε(s2−ε/t)

)
to refute Circuits( f ).

This yields non-trivial size lower bounds for t as large as s2−ε/ω(1). Furthermore, note
that once t � s log s there are functions that require such large circuits. For example setting
s = 2n0.99

and t = s1.5, the theorem shows that there are functions f that do not have circuits

of size s, but SoS requires size 22Ω(n0.99)
to prove this.

It is natural to wonder whether SoS fares better in the monotone setting. In other words,
whether SoS can refute the claim that a complex monotone function has a small monotone
circuit. The following two theorems show that this is not the case for the set Mn(`) of
monotone `-slice functions. Recall that Mn(`) consist of all Boolean functions f on n bits
such that f (α) = 0 for all α with Hamming weight less than `, and f (α) = 1 for all α with
Hamming weight greater than ` (note that any such f is monotone).

We define a variant Circuitmon
s ( f ) of the Circuits( f ) formula, which instead encodes the

claim that f has a monotone circuit of size s, and prove the following theorem.

Theorem 1.4. For all ε > 0 there is a d = d(ε) such that the following holds. For all n, ` ∈ N,
all s ≥ nd and any monotone slice function f ∈ Mn(`) SoS requires degree Ωε(s1−ε) to refute
Circuitmon

s ( f ).

As in the non-monotone case, we can also obtain size lower bounds for the monotone-
MCSP. Akin to the general size lower bound we consider monotone Boolean slice functions
that have good monotone errorless heuristic circuits. LetMn(`, s, t) ⊆ Mn(`) be the class of
monotone Boolean `-slice functions f : {0, 1}n → {0, 1} for which there is a (not necessarily
monotone) Boolean circuit Cmon

f : {0, 1}n → {0, 1,⊥} of size s such that

1. for all `-slice inputs α ∈ ([n]` ) it holds that if Cmon
f (α) 6= ⊥, then Cmon

f (α) = f (α), and

2. Cmon
f (α) = ⊥ on at most t inputs α ∈ ([n]` ).

Theorem 1.5. For all ε > 0 there is a d = d(ε) such that the following holds. For n, ` ∈ N, all
s ≥ nd and t ≥ s and monotone function f ∈ Mn(`, s/10, t) SoS requires size exp

(
Ωε(s2−ε/t)

)
to

refute Circuitmon
s ( f ).
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1.2 Overview of Proof Techniques

Degree Lower Bound: The main idea that drives our result is a reduction from an expanding
xor constraint satisfaction problem to the Circuits( f ) formula. The reduction is achieved
through a careful restriction of the Circuits( f ) formula, such that each input α ∈ {0, 1}n to
the circuit specifies an xor constraint over some new set of variables Y. This will then result in
an XOR-CSP instance with 2n constraints over the variables Y. All that SoS has to prove is that
there is no satisfying assignment to this XOR-CSP instance. By ensuring that the constraint-
variable incidence graph is sufficiently expanding, SoS requires large degree to refute the
restricted formula (see Theorem 2.6). At the same time, we need the constraint graph to be
very explicit so that it can be encoded into a small circuit. For this we utilize a construction of
unbalanced expanders by Guruswami et al. [GUV09] (see Theorem 2.2). This reduction then
immediately yields Theorem 1.1.

This lower bound may also be viewed as implementing the general program sketched
by Razborov [Raz15] relating pseudorandom generators in proof complexity to the MCSP
problem. However, we prefer to describe it as a direct reduction to the MCSP problem.

It is worthwhile to point out that this reduction is not specific to the SoS proof system. In
fact we just outline a very general reduction that shows that if one has a CSP lower bound
of the form of Theorem 2.6 that only requires good expansion of the underlying constraint-
variable incidence graph and the proof system is expressive enough so that one can replace
variables by local Boolean functions, then one obtains strong lower bounds for the Circuits( f )
formula.

Size Lower Bound: In order to obtain size lower bounds, we would like to apply the degree-
size tradeoff due to Atserias and Hakoniemi [AH19] to Theorem 1.1. Unfortunately the for-
mula is over too many variables to be able to conclude a meaningful size lower bound: it is
defined over roughly Ω(2n · s) variables.

Instead of applying Theorem 1.1, we restrict our attention to functions with all except
the at most t ⊥-outputs computed by the corresponding errorrless heuristic circuit. If we
choose t small enough, then we are able to heavily restrict Circuits( f ) and significantly reduce
the number of variables to the point where the Atserias-Hakoniemi degree-size tradeoff is
applicable.

Monotone Circuits: We prove these theorems by adapting the proofs for the non-monotone
setting. The idea is to work over the `th slice and disregard all other inputs. The key feature
that makes this work is the fact that the monotone circuit complexity of a slice function is
essentially the same as the (ordinary) circuit complexity (see Lemma 2.4). This lets us convert
all subcircuits used in the reduction to small monotone circuits (if we only work on the slice).

The size lower bound goes along the same lines as the proof of Theorem 1.3.

1.3 Organization

In Section 2, we provide the necessary background material. In Section 3 we set up the
general framework for our lower bounds with some preliminary definitions and lemmas.
Then in Section 4 we prove the main degree Theorem 1.1 and size Theorem 1.3 lower bounds.
We prove the monotone lower bounds Theorem 1.4 and Theorem 1.5 in Section 5. In Section 6
we explain how SoS of degree O(s) can refute Circuits( f ) (provided f does not have a circuit
of size s). Finally in Section 7 we give some concluding remarks.
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2 Preliminaries

All logarithms are in base 2. For integers n ≥ 1 we write [n] = {1, 2, . . . , n} and for a set U
we denote the power set of U by 2U . Further, for a set V ⊆ U we let V be the complement of
V with respect to U, that is, V = U \ V. We write ([n]` ) ⊆ {0, 1}n for the set of binary strings
with Hamming weight `. For a string α ∈ {0, 1}n we let |α| = ∑i∈[n] αi.

We sometimes want to supress dependencies on constants and write f (n, ε) ∈ Oε

(
g(n, ε)

)
,

respectively f (n, ε) ∈ Ωε

(
g(n, ε)

)
, to mean that there exists a function c(ε) > 0 such that

there is an n0 and for all n ≥ n0 it holds that f (n, ε) ≤ c(ε) · g(n, ε), respectively f (n, ε) ≥
c(ε) · g(n, ε).

Definition 2.1. A sequence of bipartite graphs {Gn = (Un, Vn, En)}n∈N with deg(u) = d for all
u ∈ Un is explicit if there is an algorithm that given (n, u, j), where n ∈ N, u ∈ Un and j ∈ [d],
computes the jth neighbor of vertex u in the graph Gn in time poly(log n + log |U|+ log d).

From now on it is understood that whenever we talk about an explicit graph we actually
mean to say that there is a sequence of explicit graphs with above properties.

A bipartite graph G = (U, V, E) is an (r, d, c)-expander if every vertex u ∈ U has degree
deg(u) = d and every set W ⊆ U of size |W| ≤ r satisfies |N(W)| ≥ c · |W|. A key ingredient
in our proofs is the following result on the existence of strong explicit expanders.

Theorem 2.2 ([GUV09]). For all constants γ > 0, every M ∈ N, r ≤ M, and ε > 0, there is an
N ≤ d2 · r1+γ and an explicit (r, d, (1− ε)d)-expander G = (U, V, E), with |U| = M, |V| = N, and
d = O

(
((log M)(log r)/ε)1+1/γ

)
.

For our purposes it is more relevant to compute the neighbor relation Neigh(u, v) indi-
cating whether (u, v) ∈ E rather than the neighbor function as in Definition 2.1, but this is an
immediate consequence of being able to compute the neighbor function.

Claim 2.3. If G = (U, V, E) is explicit then the neighbor relation Neigh : U × V → {0, 1} is
computable by a circuit of size d ·

(
poly(log n + log |U|+ log d) + 2 log |V|+ 1

)
.

A slice function is a Boolean function f such that there is a ` ∈ [n] with f (α) = 0 whenever
|α| < `, and f (α) = 1 whenever |α| > `. Note that all slice functions are monotone.

The circuit complexity C( f ) of a Boolean function f is the size of the smallest circuit over
the basis ∨,∧, and ¬ (with fan-in 2). Similarly the monotone circuit complexity Cmon( f ) of a
monotone Boolean function f is the size of the smallest circuit over the basis ∨, and ∧. We
have the following useful inequality between these measures.

Lemma 2.4 ([Ber82]). If g is any slice function on n bits, then Cmon(g) ≤ 2 C(g) + O(n2 log n).

Finally we also rely on the following simple claim.

Claim 2.5. Let p : Rn → R be a degree d polynomial such that p(x) = 0 for all x ∈ {0, 1}n. Then p
can be written as

p(x) = ∑
i∈[n]

qi(x) · (x2
i − xi)

where each term in the sum has degree at most d.

Proof sketch. We take the polynomial p and multilinearize it, using the appropriate polynomial
x2

i − xi. Eventually we are left with a sum of polynomials of the form qi(x) · (x2
i − xi) and a

multilinear polynomial p̃(x) which is 0 on all Boolean inputs. As multilinear polynomials are
a basis for Boolean functions this implies that p̃(x) is equal to the 0 polynomial and hence the
claim follows.
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2.1 Sum of Squares

Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations over the set of variables
X = {x1, . . . , xn, x̄1, . . . , x̄n}. Each pi is called an axiom, and throughout the paper we always
assume that P includes all axioms x2

i − xi and x̄2
i − x̄i, ensuring that the variables are Boolean,

as well as the axioms 1− xi − x̄i, making sure that the “bar” variables are in fact the negation
of the “non-bar” variables.

Sum-of-Squares (SoS) is a static semi-algebraic proof system. An SoS proof of f ≥ 0 from
P is a sequence of polynomials π = (t1, . . . , tm; s1, . . . , sa) such that

∑
i∈[m]

ti pi + ∑
i∈[a]

s2
i = f . (1)

The degree of a proof π is

Deg(π) = max{max
i∈[m]

deg(ti) + deg(pi), max
i∈[a]

2 deg(si)} . (2)

An SoS refutation of P is an SoS proof of −1 ≥ 0 from P , and the SoS degree to refute P is the
minimum degree of any SoS refutation of P : if we let π range over all SoS refutations of P ,
we can write Deg(P `SoS⊥) = minπ Deg(π).

The size of an SoS refutation π, Size(π), is the sum of the number of monomials in
each polynomial in π and the size of refuting P is the minimum size over all refutations
Size(P `SoS⊥) = minπ Size(π).

Let us recall some well-known results about SoS. Given a bipartite graph G = (U, V, E),
and b ∈ {0, 1}|U| we denote by Φ(G, b) the following XOR-CSP instance defined over G: for
each v ∈ V there is a Boolean variable xv, and for every vertex u ∈ U there is a constraint
⊕v∈N(u)xv = bu. We encode this in the obvious way as a system of polynomial equations:{

∏
v∈N(u)

(1− 2 · xv) = 1− 2 · bu | u ∈ U
}

,

along with the Boolean axioms and the negation axioms for the x variables. The first theorem
we need to recall is the classic lower bounds for XOR-CSPs by Grigoriev.

Theorem 2.6 ([Gri01]). For n ∈ N, all k = k(n) and r = r(n) the following holds. Let G =
(U, V, E) be an (r, k, 2)-expander with |V| = n. Then for every b ∈ {0, 1}|U| SoS requires degree
Ω(r) to refute the claim that there is a satisfying assignment to Φ(G, b).

We also need to recall the size-degree tradeoff by Atserias and Hakoniemi.

Theorem 2.7 ([AH19]). Let P be a system of polynomial equations over n Boolean variables and
degree at most k. If d is the minimum degree SoS requires to refute P , then the minimum size of an
SoS refutation of P is at least exp(Ω((d− k)2/n)).

2.2 Restrictions

Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations over the set of Boolean
variables X = {x1, . . . , xn, x̄1, . . . , x̄n}. For a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n}
denote by P

∣∣
ρ

the system of polynomial equations P restricted by ρ, i.e.,

P
∣∣
ρ
= {p1(ρ(x1), . . . , ρ(xn)) = 0,

p2(ρ(x1), . . . , ρ(xn)) = 0,
...
pm(ρ(x1), . . . , ρ(xn)) = 0} ,
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where it is understood that ρ(x̄i) = ρ(xi), with the convention ¯̄xi = xi, 0̄ = 1 and vice versa.
Throughout the paper all our restrictions set the bar variables to the negation of the non-bar
variables. As such it makes sense to treat the pair of variables (xi, x̄i) as one variable and we
say that P has n unset variables.

We say that a system of polynomial equations P ′ is an affine restriction of P if there is
a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n} such that P ′ = P

∣∣
ρ
, where we ignore

polynomial equations of the form 0 = 0. The following well-known lemma states that a
system of polynomial equations P is at least as hard as any of its affine restrictions.

Lemma 2.8. Let P ,P ′ be systems of polynomial equations such that P ′ is an affine restriction of P .
Then,

(i) Deg(P `SoS⊥) ≥ Deg(P ′ `SoS⊥), and

(ii) Size(P `SoS⊥) ≥ Size(P ′ `SoS⊥).

The lemma is easy to verify by considering an SoS refutation of P and hitting it with the
appropriate affine restriction. The restricted proof is now a refutation of P ′ and it can be
seen that the degree/size of the restricted refutation is at most the degree/size of the original
refutation.

We also consider more general restrictions: restrictions ρ : {x1, . . . , xn} → R[x]≤k that
map variables to polynomials of degree at most k. We call such restrictions “polynomial
substitutions” to differentiate them from affine restrictions.

For such polynomial substitutions we have the following well-known lemma.

Lemma 2.9. Let P be a system of polynomial equations and let ρ be a polynomial substitution mapping
variables to polynomials of degree at most k. Then, Deg(P `SoS⊥) ≥ Deg(P

∣∣
ρ
`SoS⊥)/k.

This lemma can again be verified by considering a refutation of P . Substitute each variable
xi in the proof by ρ(xi). This results in a refutation of P

∣∣
ρ
, whose degree is at most a factor k

larger than the degree of the refutation of P .

2.3 The Circuit Size Formula

The formula Circuits( f ) encodes the claim that the function f , given as a truthtable f ∈
{0, 1}2n

, can be computed by a circuit of size s over n Boolean inputs x1, . . . , xn. The encoding
is not essential but for concreteness let us fix one encoding of this claim. We deviate from the
encoding used by Razborov [Raz98, Raz04b] and do not present the formula as a propositional
formula but rather as a system of polynomial equations. In order to encode below constraints
as a constant width CNF formula, as done by Razborov, one needs to introduce extension
variables. Despite this difference it is not difficult to see that our lower bound also works
against the CNF encoding. In Appendix A we directly show that a low degree SoS refutation
of the CNF encoding gives rise to a low degree SoS refutation of the encoding used in this
paper (see Proposition A.1). Thus a lower bound for our encoding implies a lower bound for
the CNF encoding. As the presentation is simpler in the polynomial encoding, we present it
as follows.

We also need to define the monotone version of Circuits( f ) denoted by Circuitmon
s ( f ). The

later is a restriction of the former with the IsNeg(v) (see below) variable, for all v ∈ [s], set to
0. This forces the circuit to only contain ∧ and ∨ gates, i.e., the circuit is monotone.

All variables introduced in the following are Boolean variables and we implicitly add the
Boolean axiom y(1 − y) = 0 for each variable y and further implicitly introduce the “bar
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variable” ȳ along with the negation axiom y = 1− ȳ (and the corresponding Boolean axiom)
ensuring that ȳ is always the negation of y.

Let us first describe the structure variables which are used to describe the circuit that sup-
posedly computes the function f .

We view the s gates as being indexed from 1 to s in topological order with gate s being the
output. For each gate v ∈ [s] there are three variables IsNeg(v), IsOr(v), IsAnd(v) indicating the
operation computed at v. Similarly for a gate v ∈ [s] and a wire a ∈ {1, 2} we have variables
IsFromConst(v, a), IsFromInput(v, a), IsFromGate(v, a) indicating whether the input wire a of v
is connected to a constant, a variable or a gate.

Further, we have the variables ConstantValue(v, a), IsInput(v, a, i) and IsGate(v, a, u), for
a ∈ {1, 2}, i ∈ [n] and u < v, specifying the constant value, input xi or gate u, the input wire
a of v is connected to (assuming a is connected to the corresponding kind).

The second set of variables are the evaluation variables, which describe what value is com-
puted at each v on input α = α1, . . . , αn (i.e., we have xi = αi).

For each gate v ∈ [s] and assignment α ∈ {0, 1}n we have a Boolean variable Outα(v)
indicating the value computed at gate v on input α. The Boolean variable Inα(v, a) indicates
the value brought to the vertex v ∈ [s] on wire a ∈ {1, 2} on input α.

Note that there is a total of 3s + 6s + 2s + 2sn + 2(s
2) = Θ(s2 + sn) structure variables, and

a total of 3s2n evaluation variables, for a total of Θ(s2 + s2n) variables in Circuits( f ).
The formula consists of the following axioms. Let us first describe the axioms on the

structure of the circuit. In the following section we refer to this set of axioms as the structure
axioms. The first axioms ensure that every wire is connected to a single kind

IsFromConst(v, a) + IsFromInput(v, a) + IsFromGate(v, a) = 1 ∀ v ∈ [s] , (3)

and similarly the next axioms make sure that each gate is of precisely one kind

IsNeg(v) + IsOr(v) + IsAnd(v) = 1 ∀ v ∈ [s] . (4)

The final structure axioms ensure that the variables, which indicate to what input or gate a
fixed wire is connected to, always sum to one (except for gate 1 which cannot have any inputs
from other gates)

n

∑
i=1

IsInput(v, a, i) = 1 ∀v ∈ [s], and (5)

v−1

∑
u=1

IsGate(v, a, u) = 1 ∀v ∈ [s] \ {1} . (6)

We further strengthen our encoding by adding the axioms

IsInput(v, a, i) IsInput(v, a, j) = 0 ∀v ∈ [s], i < j ∈ [n], and (7)
IsGate(v, a, u) IsGate(v, a, u′) = 0 ∀v ∈ [s] \ {1}, u < u′ < v . (8)

Note that Axioms 7 and 8 are implied by Axioms 5 and 6. We add these axioms in order to
argue that a short refutation of the CNF encoding of this principle leads to a short refutation
of the present encoding.

The second group of axioms are the evaluation axioms and they ensure that the evaluation
variables indeed compute the intended values. We start by making sure that the wires carry
the value intended by the structure axioms. If a wire is connected to a constant, then the
evaluation variable associated with that wire should always be equal to the constant

IsFromConst(v, a) ·
(
Inα(v, a)− ConstantValue(v, a)

)
= 0 , (9)
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and similarly in case if a wire is connected to an input or a gate

IsFromInput(v, a) · IsInput(v, a, i) ·
(
Inα(v, a)− αi

)
= 0 , (10)

IsFromGate(v, a) · IsGate(v, a, u) ·
(
Inα(v, a)−Outα(u)

)
= 0 . (11)

The final set of evaluation axioms makes sure that the output evaluation variable of a gate is
correctly related to the input evaluation variables:

IsNeg(v) ·Outα(v) = IsNeg(v) · Inα(v, 1) , (12)

IsOr(v) ·Outα(v) = IsOr(v) ·
(
1− Inα(v, 1) · Inα(v, 2)

)
, (13)

IsAnd(v) ·Outα(v) = IsAnd(v) · Inα(v, 1) · Inα(v, 2) . (14)

Last but not least we have the axioms that ensure that the circuit outputs the function
specified by the truthtable

Outα(s) = f (α) . (15)

3 On Circuits and Restrictions

Let G = (U, V, E) be a bipartite graph with U = {0, 1}n and V = [m]. As in the XOR-CSP
setup (Section 2.1) we think of vertices in U as constraints and vertices in V as variables.
More specifically, we think of each vertex α ∈ U as an xor constraint over the variables in
the neighborhood ⊕i∈N(α)vi = bα, for a constraint vector b ∈ {0, 1}U . Given an assignment
β ∈ {0, 1}m to the variables V, we let fG,β : U → {0, 1} be the function defined by fG,β(α) =

⊕i∈N(α)vi. In other words, viewing fG,β as a vector in {0, 1}U , it is the unique constraint
vector such that the XOR-CSP instance, defined over G, is satisfied by the assignment β. Let
us denote the set of all such constraint vectors that give rise to a satisfiable XOR-CSP instance
by

FG = { fG,β | β ∈ {0, 1}m} .

In order for SoS to refute an XOR-CSP instance defined over G, it must prove that the given
constraint vector is not in the set FG.

On the other hand in order for SoS to refute the formula Circuits( f ) it needs to show that
there is no circuit of size at most s computing f . That is, SoS needs to show that f is not in
the set

C∅ = {T : {0, 1}n → {0, 1} such that Circuits(T) is satisfiable} .

More generally, if we restrict Circuits( f ) by a restriction ρ, then the proof system must prove
that f is not a member of the family of truthtables

Cρ = {T : {0, 1}n → {0, 1} such that Circuits(T)
∣∣
ρ

is satisfiable} .

In the following we show that there is a well-behaved restriction ρ such that Cρ = FG for
some explicit graphs G. In other words, once we consider the restricted formula Circuits( f )

∣∣
ρ
,

SoS needs to rule out that f is a valid right hand side of an XOR-CSP instance. But we know
that if G is a moderate expander, then low degree SoS cannot determine wheter the XOR-CSP
instance is satisfiable and hence we obtain our lower bound.

Let us first formalize the properties we require from ρ. We start off by restricting our
attention to a certain natural class of affine restrictions. Namely, we do not want that the
structure of the circuit depends on evaluation variables.
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Definition 3.1 (natural affine restrictions). An affine restriction ρ to the variables of Circuits( f )
is natural if there is no structure variable y such that ρ(y) is an evaluation variable.

In order to motivate the next definition, let us informally describe the natural restriction
ρ and explain the properties of ρ we require.

For now we can think of ρ as a restriction to the structure variables (though for the size
lower bounds we also need to restrict some of the evaluation variables). Some set of m
structure variables remains undetermined. Let us denote these variables by y1, . . . , ym. We
intend to choose ρ such that on a given input α ∈ {0, 1}n to the circuit, it is forced to compute
⊕i∈N(α)yi. In other words, given such a restriction ρ, we are essentially left with an XOR-CSP
problem over G, with right hand side f . There is however a difference in that the encoding
is non-standard: the evaluation variables act like extension variables that correspond to the
functions computed at each gate of the circuit. In order to argue that the known degree lower
bound for the XOR-CSP problem implies a degree lower bound for the problem at hand, we
need to get rid of these extension variables. This can be done if the functions computed at
the gates are of low degree in the y variables.

Recall from Section 2.2 that a system of polynomial equations P has n unset variables if
there are n tuples of variables (x, x̄) such that at least one variable of each tuple occurs in P
and all variables in these tuples are unset, i.e., they are not fixed to a constant.

Definition 3.2 (k-determined). Let ρ be an affine restriction to the variables of Circuits( f ) and
suppose that ρ leaves m structural variables Y = {y1, . . . , ym} unset. Then ρ is k-determined if
for every v ∈ [s] and α ∈ {0, 1}n there are multilinear polynomials

gout
v,α , gin1

v,α, gin2
v,α : {0, 1}m → {0, 1}

depending on at most k variables such that the following holds. For all T ∈ Cρ and all total
assignments σ that satisfy Circuits(T)

∣∣
ρ

it holds that

Outα(v)
∣∣
ρ∪σ

= gout
v,α (β) , Inα(v, 1)

∣∣
ρ∪σ

= gin1
v,α(β) , and Inα(v, 2)

∣∣
ρ∪σ

= gin2
v,α(β) , (16)

where β ⊆ σ is the assignment to Y.

However, Definition 3.2 is not quite sufficient. For example, there is no guarantee that
Cρ is non-empty, i.e., that the restriction ρ describes a valid (partial) circuit. More generally,
we need the additional guarantee that there are still many viable circuits that the restricted
formula can describe: if there is just a single setting of the Y variables such that all structural
axioms are satisfied, then the formula may be refuted in constant degree. Hence we need
to ensure that there are many viable assignments to the Y variables that satisfy all structure
axioms. This leads us to the following definition.

Definition 3.3 (m-independent). An affine restriction ρ to the variables of the formula Circuits( f )
is m-independent if ρ leaves exactly m structural variables Y = {y1, . . . , ym} unset, and for every
assignment β ∈ {0, 1}Y it holds that |Cρ∪β| = 1.

With these definitions at hand we can state the lemma that drives all our lower bounds.

Lemma 3.4. Let ρ be a natural m-independent k-determined affine restriction of Circuits( f ), and let
Y and gout

u,α be as in Definition 3.2. If there is an SoS refutation of Circuits( f )
∣∣
ρ

of degree d, then there
is a degree d · k SoS refutation of the system of polynomial equations

{gout
s,α (Y) = f (α) | α ∈ {0, 1}n} ∪ {y2

i = yi | i ∈ [m]} . (17)
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For proving this lemma, we consider the natural extension of ρ which substitutes all
evaluation variables by appropriate degree-k polynomials as indicated by Definition 3.2.

Definition 3.5. For a k-determined restriction ρ (with associated polynomials gout
v,α , gin1

v,α, gin2
v,α)

of Circuits( f ), we denote by ρ̂ the polynomial substitution that extends ρ by first substituting
any bar variable x̄ by 1− x and then substituting all evaluation variables as follows:

ρ̂(Outα(v)) = gout
v,α (Y) , ρ̂(Inα(v, 1)) = gin1

v,α(Y) , and ρ̂(Inα(v, 2)) = gin2
v,α(Y) .

Note that the formula Circuits( f )
∣∣
ρ̂

is defined only over Y. Let us stress that there are
no “bar” variables left in the formula. The main observation used to prove Lemma 3.4 is
the following claim, which establishes that the formula (17) is in fact essentially the same as
Circuits( f )

∣∣
ρ̂
.

Claim 3.6. Let ρ be a natural m-independent k-determined affine restriction of Circuits( f ). Then
Circuits( f )

∣∣
ρ̂

can be written as

Circuits( f )
∣∣
ρ̂
= P ∪Q ,

where P is the formula (17) and Q only consists of axioms that are satisfied for all assignments
β ∈ {0, 1}Y.

Proof. Note that the set of output axioms (15) of Circuits( f ) under ρ̂ equals the first part of
(17), and that the Boolean axioms on the Y variables in Circuits( f )

∣∣
ρ̂

are exactly the second
part of (17).

The remaining axioms of Circuits( f )
∣∣
ρ̂
, which are not present in (17), are the Boolean

axioms on the variables outside Y, the negation axioms, as well as Axioms 3 to 14.
The Boolean axioms may turn into polynomials of degree at most 2k. Because the poly-

nomials we substitute the variables with are Boolean valued, we see that these substituted
axioms are satisfied for all assignments β ∈ {0, 1}Y and we can thus put them into the set Q.

The negation axioms all become “0 = 0” under ρ̂ since ρ̂(x̄) = 1− ρ̂(x).
Finally we need to argue that the Axioms 3 to 14 are also of the form p(Y) = 0 for a

polynomial p which is identically 0 on all of {0, 1}m. This in turn follows immediately from
the assumption that ρ is m-independent: for every β ∈ {0, 1}Y, there exists some T such
that the complete assignment ρ̂(β) ∪ β satisfies Circuits(T). But since none of the remaining
Axioms 3 to 14 depends on T, they must then all be satisfied for every β ∈ {0, 1}Y.

Using this claim we can easily prove Lemma 3.4.

Proof of Lemma 3.4. Suppose Circuits( f )
∣∣
ρ

has a refutation in degree d. By Lemma 2.9, there

then exists a degree d · k refutation of Circuits( f )
∣∣
ρ̂
.

By Claim 3.6, this new refutation is almost a refutation of (17), except that Circuits( f )
∣∣
ρ̂

has
an additional set Q of axioms that the refutation may use. However, each of these additional
axioms is of the form p(Y) = 0 for a polynomial which is identically 0 on the entire Boolean
cube. By Claim 2.5, such an axiom can be rewritten as a linear combination of the Boolean
axioms. Since the Boolean axioms are present in (17), this yields a refutation of that formula
in degree d · k.
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4 Lower Bounds for General Circuits

We state the following lemma general enough so that we can apply it for the degree as well as
the size lower bound. As explained previously, for the size lower bounds we rely on functions
that almost have circuits of size s. Recall that we consider the class of functions Fn(s, t) that
consists of all Boolean functions f : {0, 1}n → {0, 1} for which there is a Boolean circuit
C f : {0, 1}n → {0, 1,⊥} of size at most s such that

1. if C f (α) 6= ⊥, then C f (α) = f (α), and

2. C f (α) = ⊥ on at most t inputs.

The following lemma establishes the existence of m-independent k-determined affine restric-
tions that result in XOR-CSP instances over explicit graphs.

Lemma 4.1. For all k, m, n, t ∈N satisfying m ≤ 2n, and any explicit bipartite graph G = (U, V, E)
such that |U| = 2n, |V| = m and all u ∈ U are of degree deg(u) ≤ k, the following holds. There
is a constant C > 0, depending on the explicitness of G, such that for all s ≥ C ·m · nC · kC and any
Boolean function f ∈ Fn(s/2, t) there is a natural m-independent k-determined affine restriction ρ for
the formula Circuits( f ) such that

gout
s,α (Y) =

{
f (α), if C f (α) 6= ⊥,
⊕i∈N(α)yi, otherwise

for all α ∈ {0, 1}n and gout
s,α and Y as in Definition 3.2. Furthermore, the formula Circuits( f )

∣∣
ρ

is

over O
(
t · k + m

)
variables.

For the degree lower bound (Theorem 1.1) we will set t = 2n and use the trivial C f which
always outputs ⊥, so the reader who wishes a simplified version of the lemma can focus on
this special case.

Proof. We consider the formula Circuits( f ) and let the first m gates of the formula be denoted
by Y. We restrict the formula such that each gate in Y computes an or of two constants. The
first wire to the gate is fixed to the constant 0, whereas the second wire is only restricted to
carry either the constant 0 or 1. In the end these will be the only structural variables that are
not restricted to a constant. In the following we think of the gates Y as Boolean variables; as
m additional input bits to our circuit.

Further, we restrict another part of the formula such that one part of the circuit described
by the formula computes the circuit C f . Recall that we pretend that the output of C f is
in {0, 1,⊥}, but it actually outputs two bits C1

f and C2
f , where C1

f (α) = 1 if and only if
C2

f (α) = f (α).
Finally we also want to hard code the bipartite graph G({0, 1}n, Y, E) into our circuit. Since

G is very large this requires G to be explicit. That is, we require small circuits Sel1, . . . ,Selm,
where given any α ∈ {0, 1}n, Seli(α) is 1 if and only if the vertex yi ∈ Y is a neighbor of the
vertex α. By Claim 2.3 these circuits Seli are each of size

k · (poly(n + log k) + 2 log m + 1) ≤ poly(n, k) .

The restriction ρ restricts some structural variables such that a part of the circuit computes
Sel1, . . . ,Selm. We connect each output of the Seli circuit by an and gate to the negation of
C1

f . Denote the resulting circuits by Sel′1, . . . ,Sel′m. Observe that the circuits Sel′i output 0
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y1Sel′1

∧

y2Sel′2

∧

ymSel′m

∧

· · ·
α α α

⊕

Cf

∧

∨

α

Figure 1: A schematic depiction of the formula after hitting it with the described restriction.

whenever C2
f (α) = f (α) and otherwise output Seli. We think of these circuits as “selector

circuits” which indicate whether on input α ∈ {0, 1}n (to the original variables x1, . . . , xn over
which the circuit is defined) the variable yi ∈ Y appears in the constraint for α.

The output of these selector circuits Sel′i is connected to the gate yi by an and gate. All
these m and gates are in turn connected to a circuit computing the xor of these gates. Finally,
to ensure that the circuit computes f (α) on inputs α such that C f (α) 6= ⊥, we connect C1

f

with C2
f by an and gate which is then connceted by a or gate to the output of the xor circuit.

This completes the description of the restriction on the structure variables. A depiction of the
resulting circuit can be found in Figure 1.

Note that this implements the intended semantics: for each input α ∈ {0, 1}n the selector
circuits output 1 on some variables yi which are then xor’ed, and the restricted circuit outputs⊕

i∈N(α)

yi , (18)

unless C f (α) 6= ⊥, in which case the output of the circuit is f (α) and all selector circuits
output 0. We require that s is larger than the size of the described circuit which is of size
O
(
m · poly(n, k)

)
+ s/2.

We have the intended semantics of the circuit and need to ensure the furthermore prop-
erty: that the restricted formula is over few variables. First, since the selector circuits Sel′i are
fixed, all evaluation variables for these subcircuits can be fixed to constants. The same holds
for the circuit C f . Similarly, since the yi gate always carries the value of the yi variable, all
2n ·m wire variables corresponding to the Y variables can be substituted by the corresponding
yi variable and are thus restricted away.

After these restrictions the only evaluation variables left are those for the evaluation of the
⊕ circuit. For α such that C f (α) 6= ⊥, the selector circuits are hard-wired to 0 and in particular
the inputs to the ⊕ circuit is hard-wired to 0, meaning that these evalation variables can be
restricted away.

There remains then only the O(t ·m) evaluation variables corresponding to the evaluation
of the ⊕ circuit for inputs α such that C f (α) = ⊥. Let us, without loss of generality, use
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an xor-circuit which iteratively xors each variable. Concretely, let it have subcircuits χi where
χ1 = Sel′1 ∧y1 and χi = χi−1⊕ (Sel′i ∧yi) for i > 1, and χm is the overall output of the ⊕ circuit.

The only observation required is that if the circuit Sel′i(α) = 0, then χi gets a 0 as input
from index i, independent of the value of yi. Hence the output wire variable of the circuit χi
indexed by the input α can be substituted by the output of the circuit χi−1. Hence for each α
such that C f (α) = ⊥, we can reduce the number of free wire variables indexed by α to O(k),
as each ⊕-constraint is over at most k variables. As C f outputs ⊥ on at most t inputs, we end
up with a restriction leaving only a total of O(t · k + m) remaining variables in the restricted
formula.

This completes the description of the restriction ρ. The only part that remains is to verify
that ρ is natural, k-determined, and m-independent. That ρ is natural is immediate – it does
not substitute any structural variable by an evaluation variable. For k-determinedness, note
that for a fixed input α at most k selector circuits output 1, and thus for every gate u the
value of Outα(u) as a function of Y can be computed by a function over those k variables.
Finally, each assignment to the remaining structure variables Y gives a valid circuit and thus
ρ is m-independent.

We are ready to prove the degree lower bound, restated here for convenience.

Theorem 1.1. For all ε > 0 there is a d = d(ε) such that the following holds. For n ∈ N, all s ≥ nd

and any Boolean function f : {0, 1}n → {0, 1} on n bits, SoS requires degree Ωε(s1−ε) to refute
Circuits( f ).

Proof. Let G = (U, V, E) be an explicit bipartite graph as in Theorem 2.2, with U = {0, 1}n,
k = Oγ

(
(n log r)1+1/γ

)
, and |V| ≤ k2r1+γ for parameters γ > 0 and r ≤ 2n to be fixed later.

Apply Lemma 4.1 with t = 2n along with C f = ⊥ to obtain, for s ≥ m · poly(n, k), a natural
m-independent k-determined affine restriction ρ for Circuits( f ) such that gout

s,α (Y) = ⊕i∈N(α)yi.
In words, the circuit of the restricted formula on input α computes an xor of the neighborhood
of the vertex α of G.

Apply Lemma 3.4 to ρ to conclude that if there is an SoS refutation of Circuits( f )
∣∣
ρ

of
degree d, then there is a degree d · k SoS refutation of the system of polynomial equations
computing

PG =
{ ⊕

i∈N(α)

yi = f (α) : α ∈ {0, 1}n
}
∪ {y2

i = yi | i ∈ [m]} .

As the graph G is a strong expander, we can apply Theorem 2.6 to get an SoS degree lower
bound of Ω(r) for the XOR-CSP instance PG defined over G, which in turn gives us an Ω(r/k)
degree lower bound for the Circuits( f )

∣∣
ρ

formula and hence also for the unrestricted formula.
Let us fix the parameters. We want to choose r as large as possible. However, the larger

we choose r, the larger m may become, since Theorem 2.2 only guarantees that m ≤ k2r1+γ.
Let us analyze how large r can be chosen in terms of n and s.

Note that k = polyγ(n), where we use that r ≤ 2n, and we write polyγ(n) to denote some
polynomial in n whose degree and coefficients may depend on γ. Hence we may choose

m =
s

polyγ(n)
, (19)

according to the requirement on s in Lemma 4.1. From the guarantees of Theorem 2.2 we
know that r ≥ (m/k2)1/(1+γ). Substituting m according to the previous equation we get that

r ≥
(

s
k2polyγ(n)

) 1
1+γ

=
s1/(1+γ)

polyγ(n)
. (20)
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Hence if we choose γ small enough so that 1
1+γ > 1− ε/2 and then require s to be large

enough such that the final polyγ(n) is at most sε/2, we obtain the claimed lower bound.

In the following we prove the claimed size lower bound.

Theorem 1.3. For all ε > 0 there is a d = d(ε) such that the following holds. Let n ∈ N and s ∈ N

such that s ≥ nd. If t ≥ s and f ∈ Fn(s/2, t), then it holds that SoS requires size exp
(
Ωε(s2−ε/t)

)
to refute Circuits( f ).

Proof. Apply Lemma 4.1 with the graphs from Theorem 2.2 as in the proof of Theorem 1.1. We
get a natural m-independent k-determined affine restriction ρ and the formula Circuits( f )

∣∣
ρ

over O(t · k + m) variables. To this formula we then apply Lemma 3.4 to obtain a degree
lower bound of Ω(r/k), akin to the proof of Theorem 1.1. By setting the parameters as in
the aforementioned proof we get the same degree lower bound of Ωε(s1−ε/3) for the formula
Circuits( f )

∣∣
ρ
. As this formula is over few variables we can apply Theorem 2.7 to obtain an

SoS size lower bound of exp
(

Ωε

(
(s1−ε/3 − 3k)2/(t · k + m)

))
for the restricted formula. As

affine restrictions may only decrease the size of a refutation, the same lower bound also holds
for the unrestricted formula. We obtain the desired lower bound by choosing s large enough
such that sε/3 ≥ k = polyε(n) and by recalling that t ≥ s ≥ m.

5 Lower Bounds for Monotone Circuits

Recall that Mn(`) denotes all Boolean monotone `-slice functions on n bits: all Boolean
functions f : {0, 1}n → {0, 1} that output 0 on all inputs of Hamming weight less than ` and 1
on all inputs of Hamming weight larger than `. There is no restriction on the output for inputs
of Hamming weight ` and we have |Mn(`)| = 2(

n
`). Further, recall that Mn(`, s, t) ⊆ Mn(`)

is the class of monotone Boolean `-slice functions f : {0, 1}n → {0, 1} for which there is a (not
necessarily monotone) Boolean circuit Cmon

f : {0, 1}n → {0, 1,⊥} of size s such that

1. for all `-slice inputs α ∈ ([n]` ) it holds that if Cmon
f (α) 6= ⊥, then Cmon

f (α) = f (α), and

2. Cmon
f (α) = ⊥ on at most t inputs α ∈ ([n]` ).

It is very convenient to work with slice functions as we have a handle on their monotone
circuit complexity: by Lemma 2.4 their monotone circuit size is the same as their ordinary
circuit size up to a polynomial size increase. Hence we do not need to worry whether the
functions needed for the reduction have small monotone circuits, as long as we are working
on a slice only.

The proof of the monotone lower bound is an adaption of the argument used to prove
Lemma 4.1. The idea is to work over the `th slice and disregard all other inputs. By Lemma 2.4
we can implement our selector circuits by small monotone circuits. We then also need to take
care of the negations in the ⊕-circuit. We push the negations down until they either hit a gate
in Y or a selector circuit. We create a set Y gates, which we can think of as the negation of
the gates in Y and also create negated selector circuits (on the `th slice). By doing so we can
now get rid of the last negations by appropriately connecting the appropriate circuits. The
following corollary of Lemma 2.4 will be useful to us.

Claim 5.1. Let C be a Boolean circuit on n input bits of size s. Then, for ` ∈ [n], there is a monotone
Boolean circuit Cmon of size 2s + poly(n) computing the `-slice function that is equal to C on the
`-slice.
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Proof. Let T≥` be the threshold function that outputs 1 if and only if the Hamming weight
of an input α ∈ {0, 1}n is at least `. Connect the output of C by an and gate to a circuit
computing T≥`. The output of this circuit is then connected by an or gate to the output of a
circuit computing T>`. Let us denote this new circuit by C′.

The circuit C′ clearly outputs 1 whenever the input is of Hamming weight larger than `.
Furthermore, on the `-slice it is equal to C because T≥` outputs 1 while T>` outputs 0. Finally
the output is 0 if the Hamming weight is less than ` because the output of both threshold
functions is 0.

Clearly the size of the circuits computing the threshold functions is poly(n). We apply
Lemma 2.4 to conclude that there is a monotone circuit Cmon computing the same function as
C′ of size 2s + poly(n).

Before stating the following lemma we need to adapt some terminology to the mono-
tone setting. Observe that Circuitmon

s ( f ) is a restriction of Circuits( f ). Let τ be such that
Circuits( f )

∣∣
τ
= Circuitmon

s ( f ). This allows us to naturally extend k-determined restrictions
to the monotone setting: a restriction ρ is a k-determined restriction for Circuitmon

s ( f ) if
the restriction ρτ is a k-determined restriction for Circuits( f ). Similarly we can extend m-
independence to the monotone setting. This will later allow us to use Lemma 3.4 even though
we are working with the monotone formula.

Lemma 5.2. For all k, `, m, n, t ∈ N satisfying m ≤ 2n, and any explicit bipartite graph G =
(U, V, E) such that |U| = 2n, |V| = m and all u ∈ U are of degree deg(u) ≤ k, the following holds.
There is a constant C > 0, depending on the explicitness of G, such that for all s ≥ C · m · nC · kC

and any f ∈ Mn(`, s/10, t) there is a natural m-independent k-determined affine restriction ρ for the
formula Circuitmon

s ( f ) such that

gout
s,α (Y) =


1, if |α| > `,
0, if |α| < `,
f (α), if |α| = ` and Cmon

f (α) 6= ⊥,

⊕i∈N(α)yi, otherwise,

for gout
s,α and Y as in Definition 3.2.

Furthermore, the formula Circuitmon
s ( f )

∣∣
ρ

is over O(t · k + m) variables.

Proof. This proof is an adaptation of the argument of the proof Lemma 4.1. Let us describe
the natural m-independent k-determined restriction ρ for the formula Circuitmon

s ( f ).
As in the proof of Lemma 4.1 we have gates that act as Boolean variables. But instead of

having a single set Y of variables we now have two sets Y and Y, each of size m. We think
of the variables in Y as the negations of the variables in Y and ensure this by applying the
appropriate affine restriction for all α ∈ {0, 1}n and i ∈ [m].

According to Claim 5.1 we may assume that the circuit Cmon
f computes a monotone `-slice

function in both outputs Cmon
f ,1 , Cmon

f ,2 for a mild increase in size; |Cmon
f | ≤ s/5 + poly(n) ≤ s/4

for s large enough. Recall that the first output of Cmon
f indicates whether the second output

bit is equal to f on the `-slice. Let Cmon
f ,1 be the negation of Cmon

f ,1 on the `-slice. In other words,

Cmon
f ,1 (α) = ¬Cmon

f ,1 (α) if α has Hamming weight `, and Cmon
f ,1 (α) = Cmon

f ,1 (α) otherwise.
The monotone circuit Cmon

f is of size at most s/4 and hence according to Lemma 2.4 there

is a monotone circuit of size s/2 + poly(n) ≤ 5s/8 computing Cmon
f ,1 (α).

We restrict the formula such that a part of the circuit is equivalent to Cmon
f and another part

is equal to Cmon
f ,1 . Note that the size of these two circuits is at most 7s/8 by above discussion.
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Recall that because G({0, 1}n, Y, E) is explicit, there are circuits Sel1, Sel2, . . . ,Selm, each
of size poly(n, k), where each Seli computes, given an input α ∈ {0, 1}n, whether the vertex
yi ∈ Y is a neighbor of the vertex α. Let Seli = ¬ Seli and denote by Selmon

i (respectively Sel
mon
i )

the circuit obtained by applying Claim 5.1 to Seli (to Seli respectively). By the guarantees of
Claim 5.1 all these 2m circuits are of size poly(n, k).

We restrict the formula such that a part of the circuit computes the functions

Selmon
1 , . . . ,Selmon

m , Selmon
1 , . . . ,Selmon

m . (21)

From these `-slice selector circuits we can then define selector circuits that take Cmon
f into

account. Namely, we connect Selmon
i by an and gate to the output of Cmon

f ,1 to obtain the circuit

Sel′mon
i and similarly connect Selmon

i by an or gate to Cmon
f ,1 to obtain the circuit Sel′mon

i .
Finally, we also put each variable yi and ȳi onto the slice by the same construction used

in the proof of Claim 5.1: connect the variable yi (respectively ȳi) by an and to the threshold
circuit T≥` and connect this circuit in turn by an or gate to a T>` threshold circuit to obtain
ymon

i (respectively ȳmon
i ). It is well-known [Val84, BW06, Gol20] that threshold circuits have

montone circuits of size poly(n) and we can thus restrict the formula such that a part of the
circuit computes ymon

i and ȳmon
i .

Finally we connect ymon
i by an and gate to the selector circuit Sel′mon

i . Note that this circuit
is equal to an `-slice function. As we will see later this ensures that the whole circuit outputs
an `-slice function. We connect the circuits ȳmon

i similarly: connect ȳmon
i by an or gate to the

negated selector circuit Sel′mon
i . Again, the output of this circuit is equal to an `-slice function.

Equally inportant is that these circuits behave well on the `-slice. Indeed it can be checked
that the positive circuit, on input α ∈ {0, 1}n, outputs Sel′mon

i (α)∧ yi while the negative circuit
outputs Sel

′mon
i (α)∨ ȳi. On the `-slice these functions are the negation of eachother, which we

are going to use in the following.
We need to construct a monotone circuit for the xor of Sel′mon

i (α) ∧ yi for i from 1 to m,
on `-slice inputs α. We take a standard O(m)-size ⊕-circuit and monotonize it by pushing
all negations in it down using De Morgan’s law until they reach one of the ⊕-circuit’s inputs
Sel′mon

i ∧yi. Whenever the negation of Sel′mon
i (α) ∧ yi is needed, we do one last step of De

Morgan and replace it by Sel
′mon
i (α) ∨ ȳi.

To ensure that the circuit outputs f (α) whenever Cmon
f (α) 6= ⊥, we connect the two outputs

of Cmon
f by an and gate and connect this gate by an or gate to the output of the xor circuit.

This completes the description of the restriction on the structure variables. A depiction of
the resulting circuit can be found in Figure 2. We ensure that s is large enough so that above
circuit can be described by the formula.

Note that the constructed circuit always outputs a monotone `-slice function: as the mono-
tonized ⊕-circuit is non-constant, we see that if all inputs to the circuit are 0, it outputs 0 and
if all inputs are 1, it outputs 1. This, in particular, implies that the circuit outputs 0 (re-
spectively 1) if the input is below (respectively, above) the `-slice and hence the entire circuit
computes a monotone `-slice function.

It can be easily checked that the described restriction is m-independent and k-determined.
In order to prove the furthermore part, we need to reduce the number of evaluation variables.
This can be achieved analogous to the proof of Lemma 4.1 and we thus omit it here.

Let us prove our degree lower bound for monotone circuits, restated here for convenience.

Theorem 1.4. For all ε > 0 there is a d = d(ε) such that the following holds. For all n, ` ∈ N,
all s ≥ nd and any monotone slice function f ∈ Mn(`) SoS requires degree Ωε(s1−ε) to refute
Circuitmon

s ( f ).
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Figure 2: A depiction of the monotone circuit, where ⊕̃ is the ⊕ circuit with the negations
pushed down.

Proof of Theorem 1.4. As in the proof of Theorem 1.1, we use the graphs from Theorem 2.2,
with U = {0, 1}n, k = Oγ

(
(n log r)1+1/γ

)
, and |V| ≤ k2r1+γ for parameters γ > 0 and r ≤ 2n.

We apply Lemma 5.2 with above graph and t = 2n along with Cmon
f = ⊥ to obtain, for

s ≥ m · poly(n, k), an appropriate natural m-independent k-determined affine restriction ρ for
Circuitmon

s ( f ). In particular ρ satisfies

gout
s,α (Y) =


1, if |α| > `,
0, if |α| < `,
⊕i∈N(α)yi, otherwise,

for gout
s,α and Y as in definition Definition 3.2.

Recall that there is a restriction τ such that Circuitmon
s ( f ) = Circuits( f )

∣∣
τ

and we can thus
apply Lemma 3.4 with τρ to conclude that if there is an SoS refutation of Circuitmon

s ( f )
∣∣
ρ

in
degree d, then there is a degree d · k SoS refutation of the system of polynomial equations
computing

{
⊕

i∈N(α)

yi = f (α) | α ∈
(
[n]
`

)
} . (22)

As the graph G is a strong expander, we can apply Theorem 2.6 to get an SoS degree lower
bound of Ω(r) for above system of equations. By above connection this gives an Ω(r/k) de-
gree lower bound for the Circuitmon

s ( f )
∣∣
ρ

formula and hence also for the unrestricted formula.
Regarding the parameters, as in the proof of Theorem 1.1 we choose m = s/polyγ(n). Re-

peating the calculations from the aforementioned proof we obtain that r ≥ s1/(1+γ)/polyγ(n).
Thus by choosing γ small enough such that 1

1+γ > 1− ε/2 and s large enough such that the
final polyγ(n) ≤ sε/2 we obtain the claimed degree lower bound of Ωε(s1−ε).

As in the non-monotone case, we can also obtain size lower bounds for functions that
almost have a circuit of size s.
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Theorem 1.5. For all ε > 0 there is a d = d(ε) such that the following holds. For n, ` ∈ N, all
s ≥ nd and t ≥ s and monotone function f ∈ Mn(`, s/10, t) SoS requires size exp

(
Ωε(s2−ε/t)

)
to

refute Circuitmon
s ( f ).

Proof. Analogous to the proof of Theorem 1.3.

6 Degree Upper Bound

In this section we give a simple upper bound on the SoS refutation degree for Circuits( f ).
Specifically, for functions f that have no circuit of size s, we show that there is an SoS refuta-
tion of Circuits( f ) of degree O(s), essentially matching our Ω(s1−ε) lower bound.

At a high level, the logic behind the refutation is as follows: first, we show that SoS
in degree O(s) can derive that the Θ(s2) structure variables of Circuits( f ) must uniquely
describe a circuit of size s. Then, we also show that for any fixed circuit, SoS can in degree
O(s) derive that the circuit does not compute f by “evaluating” the circuit on some (non-
deterministically chosen) input where the output differs from f .

To make this precise, we first define a set of monomials, which correspond to circuits of
size s. A multilinear monomial m is a circuit monomial if for every gate v ∈ [s] it holds that

1. exactly one of the variables IsNeg(v), IsOr(v) or IsAnd(v) occurs in m,

2. for a ∈ {1, 2} exactly one of the variables IsFromConst(v, a), IsFromInput(v, a) or IsFromGate(v, a)
occurs in m,

3. for a ∈ {1, 2} exactly one of the variables ConstantValue(v, a) or ConstantValue(v, a)
occurs in m,

4. for a ∈ {1, 2} exactly one of the variables {IsInput(v, a, i) | i ∈ [n]} occurs in m, and

5. for a ∈ {1, 2} and v > 1, exactly one of the variables {IsGate(v, a, u) | u < v} occurs in
m, and

6. no other variables occur in m than the ones described above.

We denote by Ms the set of circuit monomials. We first show that SoS can derive in degree
O(s) the polynomial ∑m∈Ms

m− 1; this corresponds to SoS proving that the structure variables
uniquely describe a circuit and does not use anything about f . Then in a second step we show
that for every m ∈ Ms, SoS can derive −m in degree O(s); this corresponds to SoS proving
that the circuit described by m does not compute f correctly. Summing these two parts up
yields an SoS derivation of −1, i.e., a refutation of the Circuits( f ) formula.

Deriving ∑∑∑m∈Ms
m− 1. We proceed by induction on s. Note thatM0 = {1} and hence the

base case is trivial. Suppose we have an SoS derivation of ∑m∈Ms
m− 1. For every monomial

m ∈ Ms we add the polynomial

m ·
(
IsNeg(v) + IsOr(v) + IsAnd(v)− 1

)
(23)

to the derivation (note that the second term is Axiom 4). This gives us an SoS derivation of
∑m∈M′

s
m− 1, where

M′
s =

⋃
m∈Ms

{m · IsNeg(v), m · IsOr(v), m · IsAnd(v)} .

We can continue in the same manner with Axiom 3 and Axiom 5 to finally obtain an SoS
derivation of ∑m∈Ms+1

m− 1. Clearly this derivation requires degree at most O(s), as for each
gate there are at most 7 variables in every monomial fromMs.
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Deriving −m for m ∈ Ms. Let C be the circuit that corresponds to the monomial m and let
α ∈ {0, 1}n be such that f (α) 6= C(α) (by the assumption that f does not have a circuit of size
s, such an α exists). Suppose C(α) = b but f (α) = 1− b.

We construct a degree O(s) SoS proof of the fact that C(α) = b. That is, we are going to
show that the polynomial ps = m · (Outα(s)− b) can be written as

ps =
t

∑
i=1

ri · qi , (24)

for some parameter t, axioms q1, . . . , qt and some polynomials r1, . . . , rt, such that deg(ri · qi) =
O(s) for all i. Note that given this, we can then easily derive−m by subtracting the polynomial
m · (Outα(s)− f (α)) = m · (Outα(s)− 1 + b) (this is m multiplied by Axiom 15), yielding a
derivation of m · (1− 2b) which is either m or −m depending on b; in the former case it can
be multiplied by −1 to yield −m. Note that here it is important that the derivation (24) is a
Nullstellensatz derivation, not using any Sum-of-Squares part, since otherwise it would not
be possible to multiply it by −1.

Let us thus see how to derive m · (Outα(s)− b). We do this by structural induction over
the circuit: for every gate v we are going to construct an SoS proof of the fact that the circuit
rooted at v outputs the bit bv on input α. In other words, an SoS derivation of the polynomial
m · (Outα(v)− bv).

Let us explain how to construct an SoS proof pv. Consider a gate v in the circuit. De-
pending on the function computed at v and how the wires of v are connected we construct
pv slightly differently. As a first step let us construct SoS proofs q1 and q2 of the fact that on
input α the bit ca, a ∈ {1, 2}, is carried on wire a to the gate v. That is, the polynomial qa
should simplify to m ·

(
Inα(v, a)− ca

)
. In the following we explain how to precisely define qa

depending on what the wire is connected to. Note that not a lot is going on – we are mostly
just multilinearizing using the Boolean axioms.

If m is of the form m = m′ · IsFromConst(v, a) · ConstantValue(v, a) for some monomial m′,
i.e., wire a is connected to the constant ca = 1 in the circuit described by m, then we can
derive qa = m ·

(
Inα(v, a)− 1

)
by the identity

qa = m′ · ConstantValue(v, a) · IsFromConst(v, a) ·
(
Inα(v, a)− ConstantValue(v, a)

)
+

m′ · IsFromConst(v, a) ·
(
ConstantValue(v, a)2 − ConstantValue(v, a)

)
, (25)

a linear combination of Axiom 9 and the Boolean axiom on ConstantValue(v, a). Similarly if
m = m′ · IsFromConst(v, a) · ConstantValue(v, a) (i.e., ca = 0) we can derive qa = m · Inα(v, a) by

qa = m′ · ConstantValue(v, a) · IsFromConst(v, a) ·
(
Inα(v, a)− ConstantValue(v, a)

)
+

m′ · IsFromConst(v, a) · ConstantValue(v, a)·(
1− ConstantValue(v, a)− ConstantValue(v, a)

)
+

m′ · IsFromConst(v, a) · (ConstantValue(v, a)2 − ConstantValue(v, a)) , (26)

where we additionally use the negation axiom on ConstantValue(v, a).
Next, if a is connected to an input i and m is of the form m = m′ · IsFromInput(v, a) ·

IsInput(v, a, i) (so that ca = αi), then

qa = m · (Inα(v, a)− αi) = m′ · IsFromInput(v, a) · IsInput(v, a, i) ·
(
Inα(v, a)− αi

)
, (27)
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which is a multiple of Axiom 10. Lastly, if a is connected to a gate u and m is of the form
m = m′ · IsFromGate(v, a) · IsGate(v, a, u) (i.e., ca = bu), then

qa = m · (Inα(v, a)− bu) = m′ · IsFromGate(v, a) · IsGate(v, a, u) ·
(
Inα(v, a)−Outα(u)

)
+ m · (Outα(u)− bu) , (28)

where the first term is a multiple of Axiom 11, and the second term is the polynomial pu
which, by induction, we assume has already been derived in degree O(s).

Given the two SoS proofs q1 and q2 we are ready to construct the SoS proof pv = m ·
(Outα(v)− bv). As mentioned earlier we do a case distinction over the funtion computed at
v.

1. v is a not gate (m = m′ · IsNeg(v) and bv = 1− c1). We have the derivation

pv = m′ · IsNeg(v) ·
(
Outα(v)− Inα(v, 1)

)
+ m ·

(
Inα(v, 1)− 1 + Inα(v, 1)

)
− q1 , (29)

where the first line uses Axiom 12 and the second line uses the negation axiom for
Inα(v, 1).

2. v is an or gate (m = m′ · IsOr(v), and bv = 1− (1− c1)(1− c2). We have the derivation

pv =m′ · IsOr(v) ·
(
Outα(v)−

(
1− Inα(v, 1) · Inα(v, 2)

))
−m · Inα(v, 1) ·

(
Inα(v, 2)− 1 + Inα(v, 2)

)
+ m ·

(
Inα(v, 2)− 1

)
·
(
Inα(v, 1)− 1 + Inα(v, 1)

)
+
(
1− Inα(v, 1)

)
· q2

+
(
1− c2

)
· q1 , (30)

where the first line uses Axiom 13, and the following two lines uses negation axioms.

3. v is an and gate (m = m′ · IsAnd(v), and bv = c1 · c2. We have

pv =m′ · IsAnd(v) ·
(
Outα(v)− Inα(v, 1) · Inα(v, 2)

)
+ Inα(v, 1) · q2

+ c2 · q1 , (31)

where the first line uses Axiom 14.

This completes the description of the SoS derivation of Outα(s) = b. Observe that the final
proof ps is of degree O(s): in every inductive step we increase the degree of the proof by at
most a constant.

7 Concluding Remarks

We have shown degree and size lower bounds in the Sum-of-Squares proof system for the
minimum circuit size problem. There are a number of interesting questions left open for
further study. Let us name a few.
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Better Size Lower Bounds Whereas our degree lower bounds apply for all Boolean func-
tions f , the corresponding size lower bounds only apply to an albeit rich but still restricted
class of functions.

Monotone Circuit Lower Bounds For monotone circuits, we were only able to obtain lower
bounds for slice functions (essentially because they behave in many ways like non-monotone
functions). An intriguing question is whether this limitation can be overcome, or whether it
is inherent and there exist some monotone circuit lower bounds that SoS is able to prove.
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A On Encodings of the Circuits( f ) Tautology

Let us introduce a possible constant width CNF encoding of Circuits( f ) as proposed by
Razborov [Raz98].

The formula is defined over the same variables as introduced in Section 2.3, but in order
to keep the fan-in bounded, we further introduce the extension variables IsInput≤(v, a, i) and
IsGate≤(v, a, u) that indicate whether the wire a of v is connected to a variable in x1, . . . , xi, a
gate 1, . . . , u respectively.

Let us group the axioms in the same manner as we did in Section 2.3. First we have the
structure axioms. The first axioms encode that each wire is connected to a single kind(

IsFromConst(v, a) ∨ IsFromInput(v, a) ∨ IsFromGate(v, a)
)
∧

¬
(
IsFromConst(v, a) ∧ IsFromInput(v, a)

)
∧

¬
(
IsFromInput(v, a) ∧ IsFromGate(v, a)

)
∧

¬
(
IsFromConst(v, a) ∧ IsFromGate(v, a)

)
. (32)

The next set of axioms similarly ensures that each gate computes precisely one function(
IsNeg(v) ∨ IsOr(v) ∨ IsAnd(v)

)
∧

¬
(
IsNeg(v) ∧ IsOr(v)

)
∧ ¬

(
IsOr(v) ∧ IsAnd(v)

)
∧ ¬

(
IsNeg(v) ∧ IsAnd(v)

)
. (33)

Last, we need to make sure that each wire is connected to a single input or a gate.

IsInput≤(v, a, n) ∧
∧
i 6=j

¬
(
IsInput(v, a, i) ∧ IsInput(v, a, j)

)
∧

∧
i∈[n]

(
IsInput≤(v, a, i) ≡

(
IsInput≤(v, a, i− 1) ∨ IsInput(v, a, i)

))
,

where IsInput≤(v, a, 0) def
= 0 , (34)

and similarly for v ∈ [s] \ {1} we have that

IsGate≤(v, a, v− 1) ∧
∧

u<u′<v

¬
(
IsGate(v, a, u) ∧ IsGate(v, a, u′)

)
∧

∧
u∈[v−1]

(
IsGate≤(v, a, u) ≡

(
IsGate≤(v, a, u− 1) ∨ IsGate(v, a, u)

))
,

where IsGate≤(v, a, 0) def
= 0 . (35)

Let us take a look at the evaluation axioms. Again, we have axioms that ensure that the
wires carry the values intended by the structure variables. If a wire is connected to a constant,
then the evaluation variable associated with that wire should be equal to the constant

IsFromConst(v, a)→
(
Inα(v, a) ≡ ConstantValue(v, a)

)
, (36)

and similarly if a wire is connected to an input or a gate

IsFromInput(v, a) ∧ IsInput(v, a, i)→ Inα(v, a) ≡ αi , (37)
IsFromGate(v, a) ∧ IsGate(v, a, u)→ Inα(v, a) ≡ Outα(u) . (38)
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Last we need to make sure that the gates propagate the value they are supposed to compute.

IsNeg(v)→
(
Outα(v) ≡ ¬ Inα(v, 1)

)
(39)

IsOr(v)→
(
Outα(v) ≡ Inα(v, 1) ∨ Inα(v, 2)

)
(40)

IsAnd(v)→
(
Outα(v) ≡ Inα(v, 1) ∧ Inα(v, 2)

)
. (41)

The final axioms ensure that the correct function is computed

Outα(s) ≡ f (α) . (42)

This formula can be rewritten in the usual manner into a 4-CNF. Let us denote this formula
by CircuitCNF

s ( f ).

Proposition A.1. If there is an SoS refutation of degree d of the CNF formula CircuitCNF
s ( f ), then

there is an SoS refutation of degree O(d) of the system of polynomials Circuits( f ) as introduced in
Section 2.3.

The rest of this section is devoted to the proof of Proposition A.1.
Observe that for each axiom p from the polynomial encoding Circuits( f ), there is a CNF

Fp ⊆ CircuitCNF
s ( f ) over the same variables as p (ignoring the added extension variables

IsInput≤(v, a, i) and IsGate≤(v, a, u)) such that p(α) = 0 is satisfied by a Boolean assignment α
if and only if Fp is satisfied by α (where we extend the assignment to the extension variables
in the natural manner).

Recall that SoS operates on polynomials and we thus need to translate the CNF into a
system of polynomials. We translate a clause ∨i∈[w]zi into the polynomial ∏i∈[w](1− zi) = 0.

Observe that almost all axioms p of Circuits( f ) depend only on a constant number of
variables. From such p, using the appropriate Boolean axioms and negation axioms, we can
in constant degree derive Fp.

Let us define a polynomial substitution ρ that gets rid of the extension variables in the
natural manner: the substitution ρ first replace each occurrence of a “bar” extension vari-
able IsInput≤(v, a, i) or IsGate≤(v, a, u) by the polynomial 1 − IsInput≤(v, a, i) and the poly-
nomial 1 − IsGate≤(v, a, u) respectively. Then, ρ replaces each occurrence of the variable
IsInput≤(v, a, i) by ∑j≤i IsInput(v, a, j) and similarly IsGate≤(v, a, u) by ∑w≤u IsGate(v, a, w).

Suppose we have a degree d refutation π of CircuitCNF
s ( f ). Let us consider π

∣∣
ρ

and

CircuitCNF( f )
∣∣∣
ρ
. Note that π

∣∣
ρ

is a degree d SoS refutation of CircuitCNF
s ( f )

∣∣∣
ρ
.

We claim that in constant degree the axioms of CircuitCNF
s ( f )

∣∣∣
ρ

can be derived from the

polynomial encoding Circuits( f ). As previously noted, this holds for all axioms but the ones
that are over a non-constant number of variables. In other words it just remains to show that
we can derive the substituted Axioms 34 and 35 from Axioms 5 to 8.

Let us consider Axiom 34. With the extension variables substituted and translated into a
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system of polynomials the axiom consists of the following polynomial equations.

1− ∑
j∈[n]

IsInput(v, a, j) = 0 (43)

IsInput(v, a, i) · IsInput(v, a, j) = 0, for i 6= j (44)(
∑
j≤i

IsInput(v, a, j)

)(
1−∑

j<i
IsInput(v, a, j)

)
·

IsInput(v, a, i) = 0, for i ∈ [n] (45)(
1−∑

j≤i
IsInput(v, a, j)

)(
∑
j<i

IsInput(v, a, j)

)
= 0, for i ∈ [n] (46)(

1−∑
j≤i

IsInput(v, a, j)

)
IsInput(v, a, i) = 0, for i ∈ [n] . (47)

Axiom 43 is equal to Axiom 5 and similarly Axiom 44 is equal to Axiom 7. In the following
we show that Axioms 45 to 47 can be derived from Axiom 7, the Boolean axioms and the
negation axioms in constant degree.

Consider Axiom 45. Expand and rewrite modulo the Boolean axioms and the negation
axiom to obtain

IsInput(v, a, i)

(
∑
j<i

IsInput(v, a, j)

)2

−

2 ∑
j<j′<i

IsInput(v, a, j) · IsInput(v, a, j′) −

IsInput(v, a, i)∑
j<i

IsInput(v, a, j) = 0 . (48)

Observe that every term t left in this polynomial is of the form t = t′ · IsInput(v, a, j) ·
IsInput(v, a, j′), for some j 6= j′ ∈ [i] and a term t′ of degree at most 1. But this means
that every term is equal to 0 modulo Axiom 7 and we thus see that Axiom 45 can be derived
in constant degree from Circuits( f ).

Let us consider Axiom 46. Rewrite modulo the Boolean axiom to obtain

IsInput(v, a, i)∑
j<i

IsInput(v, a, j)+

2 ∑
j<j′<i

IsInput(v, a, j) · IsInput(v, a, j′) = 0 . (49)

All terms are of the form of Axiom 7 and we can thus derive Axiom 46 from Circuits( f ) in
constant degree.

Last, we need to consider Axiom 47. Note that modulo the Boolean axiom we obtain the
polynomial equation

− IsInput(v, a, i)∑
j<i

IsInput(v, a, j) = 0 . (50)

Also in this polynomial every term is of the form of Axiom 7 and thus also Axiom 47 can be
derived in constant degree.

What remains is to show that Axiom 35 can be derived from Circuits( f ) in constant degree.
This can be checked analogous to Axiom 34 and we thus omit it here.
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We conclude that all axioms of CircuitCNF
s ( f )

∣∣∣
ρ

can be derived from Circuits( f ) in constant

degree and thus a degree d SoS refutation of CircuitCNF
s ( f ) gives rise to a degree O(d) SoS

refutation of Circuits( f ). Equivalently, a degree d lower bound for Circuits( f ) implies a degree
Ω(d) lower bound for CircuitCNF

s ( f ) as claimed.
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