
Half-duplex communication complexity with adversary
can be less than the classical communication complexity

Mikhail Dektiarev∗ Nikolay Vereshchagin∗†‡

Abstract

Half-duplex communication complexity with adversary was defined in [Hoover, K.,
Impagliazzo, R., Mihajlin, I., Smal, A. V. Half-Duplex Communication Complexity,
ISAAC 2018.] Half-duplex communication protocols generalize classical protocols de-
fined by Andrew Yao in [Yao, A. C.-C. Some Complexity Questions Related to Dis-
tributive Computing (Preliminary Report), STOC 1979]. It has been unknown so far
whether the communication complexities defined by these models are different or not.
In the present paper we answer this question: we exhibit a function whose half-duplex
communication complexity with adversary is strictly less than the classical communi-
cation complexity.

1 Introduction

In the classical model of communication complexity introduced by Andrew Yao in [6], we
consider a game between two players, Alice and Bob, who want to compute f(x, y) for a
given function f . Alice knows only x and Bob knows only y. To this end Alice and Bob can
communicate sending to each other messages, one bit per round. An important property of
this communication model is the following: in each round one player sends a bit message
while the other player receives it.

This model was generalized in [1] to a model describing communication over the so called
half-duplex channel. A well-known example of half-duplex communication is talking via
walkie-talkie: one has to hold a “push-to-talk” button to speak to another person, and one
has to release it to listen. If two persons try to speak simultaneously then they do not
hear each other. We consider a communication model where players are allowed to speak
simultaneously. In this case, however, both messages are lost. The communication over a
half-duplex channel is also divided into rounds. To make such a division, we assume that

∗Moscow State University
†National Research University Higher School of Economics, Moscow, Russian Federation
‡This paper was prepared within the framework of the HSE University Basic Research Program. The

results presented in Sections 4 and 5 have been supported by the Interdisciplinary Scientific and Educational
School of Moscow University “Brain, Cognitive Systems, Artificial Intelligence”.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 11 (2023)



the players have synchronized clocks. Every round each player chooses one of three actions:
send 0, send 1, or receive. Thus we distinguish three types of rounds.

• If one players sends a bit and the other one receives, then we call this round normal
or classical, in such a round the receiving player receives the sent bit.

• If both players send bits, then the round is called spent. Both bits are lost (such a
situation occurs if both parties push “push-to-talk” buttons simultaneously).

• If both players receive, then the round is called silent. In such rounds players receive
arbitrary bits that may be different.

On can show that half-duplex communication complexity is sandwiched between the classical
complexity and a half of it [1].

More specifically, the described model is called the communication model with adversary.
In [1] there were considered also two other models: the half-duplex model with silence (in
a silent round both players receive a special symbol silence and hence know that a silent
round occurred) and the half-duplex model with zero (in a silent round both players receive
0). In the present paper these two models are not considered. Thus in the sequel the
half-duplex complexity with adversary is just called the half-duplex complexity.

The original motivation to study these kinds of communication models arose from the
question of the complexity of Karchmer-Wigderson games [5] for multiplexers. A detailed
exposition of this motivation can be found in [1, 5]. Here we will just present a toy example
in which half-duplex complexity arises quite naturally. Assume that for each parameter a
(ranging over a finite set) a function fa : X × Y → {0, 1} is given. Our goal is to prove
that for some a the classical communication complexity of fa is larger that a certain number
c. Assume also that we can prove the same lower bound c for the classical communication
complexity of the multiplexer game defined as follows: Alice gets a pair (x, a), Bob gets a
pair (y, b) and they want to compute fa(x, y), if a = b. Otherwise, if a ̸= b, then their
protocol may return any result. It may seem that from this we can deduce the sought lower
bound for fa for some a. Indeed, by way of contradiction, assume that for every a there is a
classical communication protocol Πa of depth less than c computing fa. Then consider the
following communication protocol of depth less than c for the multiplexer game: if Alice gets
a pair (x, a) and Bob a pair (y, b), then Alice finds the lex first protocol of depth less than
c for fa and Bob the lex first protocol of depth less than c for fb. Then they run the found
protocols. If a = b, then they run the same protocol, which outputs fa(x, y). Otherwise, if
a ̸= b, their protocols can output different results. This problem is easy to overcome: Alice
sends her output to Bob, which costs only one extra bit of communication. However, there
is more complicated problem: protocols Πa and Πb may simultaneously receive or send bits.
Thus actually the constructed protocol is a half-duplex and not classical communication
protocol for multiplexer game. Thus we need a lower bound c for half-duplex communication
complexity of the multiplexer game!

There are many examples of functions whose half-duplex complexity with silence and with
zero is less than the classical communication complexity. However no examples of functions

2



for which half-duplex complexity with adversary is less than the classical complexity were
known so far. Moreover, in [4, page 67] it was conjectured that these two complexities
coincide. In this paper we exhibit a function f with a constant gap between these complexities
(the half-duplex complexity is 5, and the classical complexity is 6), as well as a family of
partial function gn with a linear gap between these complexities: half-duplex complexity is
at most n, and the classical complexity is at least 2n.

Actually, for partial functions is seems more natural to consider a communication model
in which the output of a player may depend not only on the transcript of the conversa-
tion but also on her/his input. Such a model is called local. For total functions the local
communication complexity coincides with the global one, both in the classical and in the
half-duplex models. However for partial functions the local complexity may be less than
the global one. For our function gn from the last paragraph, the local classical complexity
is at least n + log2 n. Thus it provides a logarithmic gap between local classical and local
halph-duplex complexities.

To prove our lower bounds, that is, the bound 6 for the classical complexity of f and
the bound n + log2 n for the local classical complexity of gn, we use some novel techniques.
The first bound cannot be proved via the common techniques that relates communication
complexity to the minimal number of rectangles in every partition of the matrix of f into
monochromatic rectangles. The reason for that is because that matrix can be partitioned
into 30 ⩽ 25 monochromatic rectangles. However, we show that for every horizontal partition
of the matrix into two sub-matrices V,W (some rows belong to V and the remaining rows
belong toW ) one of V,W has a fooling set of size strictly larger than 24. This is done using the
following method: in the matrix of f we distinguish the so called “fooling” rectangles. They
are pairwise disjoint and have the following feature: if we pick from every fooling rectangle
any cell, then the resulting set of cells is a fooling set in the matrix. The number of fooling
rectangles is 25, thus this implies only that the matrix has a fooling set of size 25 ⩽ 25. We
show however that for every horizontal partition of the matrix into two sub-matrices V,W
one of V,W intersects more than 24 fooling rectangles. To show that, we consider the graph
whose vertices are fooling rectangles and edges connect those rectangles R1, R2 that share
a row. Then we prove that that graph has certain expanding property. More specifically,
every subset of 25 − 24 = 9 vertices in the graph has more than 24 neighbors. This implies
the desired property. Indeed, let R stand for the family of all fooling rectangles that share
a row with V . If |R| ⩽ 24, then its complement R has at least 9 rectangles and hence more
than 24 neighbors and all them share a row with W !

Then we prove similar statement for vertical partitions.
To prove the lower bound n + log2 n for local communication complexity of gn, we gen-

eralize the notion of a monochromatic rectangle to partial functions. This time we call a
rectangle A×B monochromatic if f is constant in each row and in each column of sub-matrix
of A×B (in the points were it is defined). Note that if f is not total then it may still be non-
constant in the entire rectangle A×B. However, for total functions this definition coincides
with the classical definition of monochromatic rectangles. The matrix of our function gn can
be covered by 2n monochromatic rectangles. However, we show that every its partition into

3



monochromatic rectangles has at least n2n rectangles.
The next section contains the main definitions. In Section 3 we study partial functions,

and in Sections 4 and 5 we study total functions. Section 4 is a “warming up” section, we
exhibit there an example of a total function with a gap between classical complexity and
half-duplex complexity with the so called “weak” adversary (a weak adversary sends the
same bits to both players in every silent round, those buts may depend on the round). In
Section 5 we present our function f with a gap between classical and half-duplex complexities
(6 vs. 5).

2 Preliminaries

Definition 1 ([6]). A communication protocol to compute a partial function f : X × Y → Z
is a finite rooted tree T each of whose internal nodes has two children. Its leaves are labeled
by elements of Z, and each internal node v is labeled either by letter A and by a function
from X to {0, 1}, or by letter B and by a function from Y to {0, 1}. Besides, one outgoing
edge from v is labeled by 0 and the other one is labeled by 1. The computations for the input
pair (x, y) ∈ X × Y runs as follows. The players, Alice and Bob, place a token on the root
of the tree and then move it along edges by the following rules. If the token is in an internal
vertex u labeled by A, h, then the token moves along the edge labeled by h(x) (Alice sends
h(x) to Bob). If the token is in an internal vertex u labeled by B, h, then the token moves
along the edge labeled by h(y) (Bob sends h(y) to Alice). Finally, if the token comes to a
leaf, then the label of that leaf is the result of the computation. The sequence of the sent
bits (= the leaf to which the token comes) is called the transcript of the communication. A
communication protocol computes a partial function f : X × Y → Z, if for all input pairs
(x, y) from the domain of f the result of the computation is equal to f(x, y). The minimal
depth of a communication protocol to compute f is called the communication complexity of
f .

In the sequel we use the following well known facts (see for example [3]) about commu-
nication protocols to compute total functions:

• Let Π be a communication protocol. For every leaf l of Π the set of the input pairs
(x, y) such that the token comes to l is a (combinatorial) rectangle, that is, it has the
form Al ×Bl.

• If f is constant in a rectangle R, then R is called a monochromatic rectangle for f .

• If a protocol Π computes a total function f , then the rectangle corresponding to any
leaf of the protocol, is monochromatic for f . Hence to each protocol computing f we
can assign a partition of X × Y into monochromatic rectangles. That partition has at
most 2depth of the protocol rectangles. Thus communication complexity is at list the binary
logarithm of the minimal size of the partition of X×Y into monochromatic rectangles.

• A set F ⊂ X × Y is called a fooling set for function f : X × Y → Z, if for all different
pairs (x, y), (u, v) ∈ X × Y not all values f(x, y), f(u, v), f(x, v), f(u, y) are equal. In

4



this case every partition of X × Y into monochromatic rectangles has at least |F |
rectangles.

The definition of half-duplex communication protocols is more complicated.

Definition 2 ([1]). A half-duplex communication protocol to compute a partial function
f : X × Y → Z is a pair of rooted trees TB, TA. Each internal node of both trees has 4
children. Each internal vertex v of TB is labeled by a function from X into 3-element set
consisting of actions, “send 0”, “send 1”, “receive”. Edges outgoing from v are labeled by
events “sent 0”, “sent 1”, “received 0”, “received 1”. Similarly, each internal vertex of TA
is labeled by a function from Y into the set of actions, and outgoing edges are labeled by
events. The leaves of both trees are labeled by elements of Z.

The computation for an input pair (x, y) ∈ X × Y runs as follows. First we calculate
for each internal vertex of both trees the action of the player applying the corresponding
function to her/his input (x or y). Second, each player puts a token on the root of her/his
tree and moves it according to the following rules. If the tokens are in the vertices u, v, and
the actions of the players in those nodes are a, b, respectively, then the tokens are moved as
follows:

Action Action Bob’s token moves Alice’s token moves
of Bob of Alice along the edge labeled by along the edge labeled by

the event the event
send i receive “sent i” “received i”
receive send j “received j” “sent j”
send i send j “sent i” “sent j”
receive receive “received j” “received i”

If both players chose to receive (the last row of the table) then the round is called “silent”.
In this case the received values i, j are chosen by an adversary who decides where the tokens
are moved to.

The computation stops when one of the token reaches a leaf. The result of the computa-
tion is defined as follows. If the other token is not in a leaf then the result is undefined. If
both tokens reach leaves but their labels are different, then the result is undefined as well.
Finally, if those labels coincide, than that label is the result of the computation.

Definition 3. A half-duplex protocol computes a function f , if for all pairs (x, y) in its
domain and for all choices of the received bits in silent rounds (in different silent rounds
different pairs (i, j) can be chosen) the computation ends with the result f(x, y). If f(x, y)
is undefined, then the computation can end with any result or without any result.

Definition 4. There is a natural variation of computation via a half-duplex protocol, in which
the adversary send the same bits to Bob and Alice in each silent round (that bit may depend
on the round). Such an adversary is called weak.

To distinguish normal communication protocols and complexity from half-duplex ones,
we will call the former classical.

5



Remark 1. Classical protocols can be viewed as a particular case of half-duplex protocols.
To convert a classical protocol into a half-duplex one, we first transform its tree T as follows.
For each internal v vertex of T we make two copies of the tree with the root in the left child
of v and two copies of the tree with the root in the right child of v. The edge going in the
first copy of the left child is labeled by the event “sent 0”, and the edge going in the second
copy of the left child is labeled by the event “received 0”, and similarly for the right child.
This transformation should by applied to all internal nodes in any order. The trees TA, TB
are equal to the resulting tree. If an internal node is labeled by A, h in T , then in the Alice’s
tree TA all copies of v are marked by the function that maps x to the action “send h(x)”,
and in Bob’s tree TB — by the constant function “receive”. Similarly, if v is labeled by B, h
in T , then in Bob’s tree all copies of v are labeled by the function mapping y to “send h(y)”,
and in Alice’s tree — by the constant function “receive”. By construction, in the resulting
protocols, there are no silent and spent rounds.

Obviously, half-duplex complexity with the weak adversary is less than or equal to the
half-duplex complexity with (strong) adversary, and the latter is less than or equal to the
classical communication complexity. One can also show that half-duplex complexity with
both adversaries is larger than or equal to the half of the classical complexity [1]1.

3 A separation of half-duplex and classical communi-

cation complexities for partial functions

3.1 An example

Lemma 1. There is a partial function g whose half-duplex complexity is 1 and classical
complexity is at least 2.

Proof. Let X = Y = {0, 1, r}, Z = {0r, 1r, r0, r1} and the partial function f : X × Y → Z
is defined by the following table:

0 1 r

0 0r
1 1r
r r1 r0

The classical complexity of g is at least 2: in any protocol of depth 1 either Alice sends a
bit (and hence Alice outputs the same result for input pairs (r, 0) and (r, 1)), or Bob sends
a bit, and hence Bob outputs the same results for the input pairs (0, r) and (1, r).

The half-duplex complexity of g is 1: Alice on the input 0 sends 0 and outputs 0r, and
on the input 1, she sends 1 and outputs 1r. Finally, on the input r she receives and after
receiving z she outputs rz. Bob acts in a similar way: on the input 0 he sends 0 and outputs
r0, on the input 1 he sends 1 and outputs r1, and on the input r he receives and after
receiving z he outputs zr.

1Actually, in [1] this was shown for half-duplex complexity with zero in place of the half-duplex complexity
with weak adversary. Obviously, the former one is at most the latter one.

6



Consider the following generalization of this function, which provides a linear gap between
half-duplex and classical complexities. Let X = Y = {0, 1, r}n, Z = {0r, 1r, r0, r1}n and
define g as follows: g(x, y) is defined if xi = r ∧ yi ̸= r or xi ̸= r ∧ yi = r for all i. In this
case the i-th symbol of g(x, y) equals ryi in the first case and equals xir in the second case.
That is, if Alice’s and Bobs inputs are “consistent” (in each position one party has r and
the other has 0 or 1), then the function is defined and otherwise it is not.

Theorem 1. (a) The half-duplex complexity of g is at most n. (b) The classical complexity
of g is at least 2n

Proof. (a) In ith round each party receives if her/his ith symbol is r, otherwise she/he sends
ith symbol of the input.

As ith symbol of the output Alice takes xir if in ith round she sent a bit (equal to xi),
and ryi if she received yi. Bob acts in a similar way. If their inputs are consistent, then they
output the same thing, namely the value of the function g.

(b) Note that the function g has 4n possible values hence any classical communication
protocol computing g must have at least 4n leaves. Thus its classical communication com-
plexity is at least log2 4

n = 2n.

3.2 Local communication complexity

There is a way to compute the function g from the previous section by communicating at
most n+ ⌈log2(n+1)⌉ bits. First Alice sends ⌈(log2 n+1)⌉ bits to let Bob know the number
k, which equals the number of symbols r in her input. She then sends (n− k) bits equal to
symbols 0 and 1 in her input keeping their order.

Bob, after receiving the number k, halts with any result if the number of letters r in his
input is different from n− k. Otherwise Bob receives n− k bits and then sends k bits equal
to symbols 0 and 1 in his input, keeping their order.

Alice, after receiving a string z, outputs the string a of length n defined as follows. If
xi ̸= r, then ai = xir. The remaining symbols of a have the form rzj where the bits of z are
inserted into a in the same order in which they are arranged in z. Bob computes his output
string in a similar way.

Why this protocol does not contradict to the lower bound 2n for the communication
complexity of the function g? This is because this protocol is not a communication protocol
according to the above definition. Indeed, Alice and Bob form their outputs based not only
on the transcript of the computation bot also on their inputs. As we will see later, for
total functions, this possibility does not yield anything new. However, for partial functions
this possibility can decrease communication complexity, as our example shows. A simpler
example of this phenomenon will be given later. By this reason for partial functions a more
adequate communication model should allow players to use their inputs when computing the
output.

As far as we know such a communication model appeared quite recently in [2, page 58].
Let us define it more formally.

7



Definition 5 ([2]). A local communication protocol for a function f : X × Y → Z is a
communication protocol in which each leaf is labeled by a pair of functions X → Z and
Y → Z. If a computation on an input pair (x, y) has ended in a leaf labeled by a pair
of functions (p, q), then the result of computation is defined as p(x) provided p(x) = q(y),
and is undefined otherwise. A local communication protocol computes a partial function
f : X × Y → Z if for all input pairs (x, y) from its domain the protocol outputs f(x, y) (the
result can be both defined and undefined for the pairs outside the domain of the function).
Local communication complexity of a function is the minimal depth of a local communication
protocol computing the function.

Local half-duplex communication protocols and and local half-duplex communication
complexity of partial functions are defined in a similar way. When we want to distinguish
local protocols and complexity from normal ones, we call the latter ones global.

3.3 An example

Consider the partial function f : {0, 1}n × {0, 1}n → {0, 1}n defined as follows:

f(x, y) =

{
x, if x = y

undefined if x ̸= y

Since f takes 2n different values, any global (classical) protocol for it has at least 2n leaves
and hence its depth is at least n. Thus the global (classical) complexity of f is at least n. On
the other hand the local (classical) complexity of f is 0: label the root of the tree with pair
(h, h), where h is the identity function h(x) = x (each player just outputs her/his input).

It is important in this example that the function is not total. For total functions there
is no such example both in classical and half-duplex models.

3.4 Local and global complexity of total functions

Lemma 2. For classical communication complexity: the local complexity of any total function
is equal to its global complexity.

Proof. Assume that a local (classical) communication protocol for f is given and let l be
any its leaf. Let Rl = Al × Bl denote the rectangle consisting of all input pairs (x, y) for
which the computation reaches l. Let also pl, ql denote the functions which label that leaf.
Then for all x ∈ Al, y ∈ Bl we have pl(x) = ql(y), which implies that pl, ql are constant
functions (unless Rl is empty). Hence any local protocol to compute any total function can
be converted into a classical protocol of the same depth just by changing the label (pl, ql) to
the constant value of both functions.

A similar fact holds for half-duplex complexity.

Lemma 3. For half-duplex communication complexity: the local complexity of any total
function is equal to its global complexity.

8



Proof. The proof is similar to the proof of the previous lemma. However for half-duplex
protocols the connection between rectangles and leaves in the protocol trees is more compli-
cated. Therefore we will not establish this connection explicitly. Instead we will use a direct
argument.

Again we show that any local protocol to compute a total function is essentially global.
More precisely, all computations ending in a leaf output the same result. Thus we can replace
the function labeling each leaf in TA by the constant it outputs and then we can make the
same thing for TB. In this way we transform a local protocol to the global one.

Consider a local communication protocol (TA, TB) to compute a total function f . Assume
that for an input pair (x, y) the computation can end in the leaves (a, b). Assume also that
for another input pair (x′, y′) the computation of Alice can end in the same leaf a. Let us
show that for the input pair (x′, y) the computation can also end in leaves (a, b).

Let ai and bi denote ith vertices on the paths from the roots to a and b, respectively.
Since Alice’s computation on both inputs (x, y) and (x′, y′) can end in the leaf a, for all i
Alice’s action in the vertex ai for inputs x and x′ is the same. Thus, if the adversary’s action
in the computation on the input pair (x′, y) is identical to that on the input (x, y) when the
computation ends in (a, b), then both players in each round perform the same actions on
inputs (x, y) and (x′, y) and all events are identical as well. Hence the computation on the
input (x′, y) can also end in the same leaves (a, b).

Let the leaf a is labeled by the function p and the leaf b by the function q. Then
p(x) = f(x, y) = q(y) = f(x′, y) = p(x′). (It is important here that f is a total function, as
otherwise f(x′, y) can be undefined and hence q(y) may differ from p(x′).)

Thus each leaf of TA is labeled by a function that is constant on all x’s for which the
computation can end in that leaf for some y.

3.5 Local classical complexity of the function g

The following theorem states that the local classical complexity of the function g is about
n+ log2 n. Recall that its half-duplex complexity is at most n.

Theorem 2. (a) The local classical complexity of g is at most n+ ⌈log2(n+ 1)⌉.
(b) The local classical complexity of g is at least n+ ⌈log2 n⌉ − log2 3 + o(1).

Proof. (a) This statement was proved above. (b) This statement is more difficult to prove.

Lemma 4. If the local classical complexity of a partial function g is at most c, than its matrix
can be partitioned into at most 2c rectangles with the following property: if inputs (x, y) and
(x′, y′) are in the same rectangle, and g is defined on both of them, then g(x, y) = g(x′, y′),
and similarly, if inputs (x, y) and (x, y′) are in the same rectangle, and g is defined on both of
them, then g(x, y) = g(x, y′). (Rectangles with this property will be called monochromatic.)

Proof. Leaves of classical communication protocol define matrix partition into rectangles.
Each of these rectangles has the mentioned property: if a function p is written in Alice’s
leaf, and g is defined on (x, y) and (x, y′), then we necessarily have g(x, y) = p(x) = g(x, y′).
Similarly for Bob.

9



0 . . . 0 . . . 1 . . . 1 r0 . . . 0 . . . r1 . . . 1 rr0 . . . 0 . . . rr1 . . . 1 . . . r . . . r
r . . . r
0r . . . r
1r . . . r
00r . . . r
01r . . . r
10r . . . r
11r . . . r

. . .
0 . . . 0
. . .

1 . . . 1

Figure 1: Part of matrix of function g consisting of simple inputs.

If the depth of the protocol is c, then the number of leaves is at most 2c, and its rectangles
form the required partition.

We will call any input of the form ({0, 1}krn−k, rm{0, 1}n−m) simple. We denote by [x]
the total number of symbols 0 and 1 in x. We color in green all simple inputs (x, y) with
[x] + [y] = n. The function g is defined on such inputs. We color in blue simple inputs (x, y)
such that [x] + [y] < n. The function g is not defined on them (see Fig. 2). The number of
green inputs is (n+ 1) · 2n. The number of blue inputs is

n−1∑
i=0

n−i−1∑
j=0

2i+j =
n−1∑
i=0

2i · (2n−i − 1) = n · 2n − (2n − 1) = (n− 1) · 2n + 1

Assume classical complexity of g is at most c. Apply the above lemma to a half-duplex
protocol of depth c to compute g and consider the corresponfing partition into at most L = 2c

monochromatic rectangles.
Let (x, y) and (u, v) be green inputs with [x] = [u]. Then g is defined on both (x, v) and

(u, y), and, if additionally (x, y) ̸= (u, v) then not all values g(x, y), g(x, v), g(u, y), g(u, v)
are the same. Thus, (x, y) and (u, v) are in different rectangles of the partition.

Note that, if a rectangle contains a green inputs (xi, yi), [x1] < [x2] < . . . < [xa], then

it also contains a·(a−1)
2

blue inputs (xi, yj), i < j. Let ai be the number of green inputs

in the ith rectangle, then ith rectangle also contains at least ai·(ai−1)
2

blue inputs. Then
L∑
i=1

ai = (n+1) ·2n. On the other hand,
L∑
i=1

ai(ai−1)
2

≤ (n−1) ·2n+1 as recatngles are disjoint.

10



Re-writing the second inequality, we get

L∑
i=1

(a2i − ai) ≤ (2n− 2) · 2n + 2

L∑
i=1

a2i ≤ (2n− 2) · 2n + 2 + (n+ 1) · 2n

L∑
i=1

a2i ≤ (3n− 1) · 2n + 2.

By Cauchy–Schwarz inequality,

(
L∑
i=1

ai

)2

≤ L ·
L∑
i=1

a2i . Therefore,

(n+ 1)2 · 22n ≤ L · ((3n− 1) · 2n + 2) ⇒

L ≥ (n+ 1)2 · 22n

(3n− 1) · 2n + 2
⇒

L ≥ n · 2n

3
· (1 + o(1)) ⇒

c = log2 L ≥ n+ log2 n− log2 3 + o(1)

So, function g is an example of a partial function with a linear gap between global
classical and half-duplex complexities, and with logarithmic gap between local classical and
half-duplex complexities. We would also like to find an example of a total function with the
same gap. As we saw, for total functions local and global complexities coincide, so we talk
about a logarithmic gap. Unfortunately, we couldn’t find any such example. In the rest of
the paper we present an example of a total function with a constant gap — our function has
half-duplex complexity 5 and local complexity 6. We will start with a simpler example of a
constant gap between classical complexity and half-duplex complexity with weak adversary.

4 A separation of half-duplex complexity with weak

adversary from classical complexity for total func-

tions

Theorem 3. There is a total function with classical complexity 4 ans half-duplex complexity
with weak adversary at most 3.

Proof. Let X = Y = {r, 00, 01, 10, 11} and Z = {0, 1, 2}. First we design a 3 round half-
duplex protocol, computing a total function f : X × Y → Z (against weak adversary) and
then we prove that its classical complexity is at least 4.

In that protocol only the first round is not classical. In that round both players depending
on their inputs choose one of the three actions. That action is determined by the first symbol

11



of the input: r means “receive”, and 0,1 mean “send 0,1”, respectively. In the second round
Bob sends a bit and Alice receives, and in the third round vice versa. In those two rounds
the players send the bit that was received in the first round provided they chose to receive
in the first round. Otherwise players send the second bits of their inputs.

The result of the protocol is a function of bits sent (and received) in the second and third
rounds (we will call it the 2–3-transcript in the sequel). Since those rounds are classical,
that guarantees that Alice and Bob output the same result, whatever happens in the first
round. Let us see what is the 2–3-transcript equal to. If Bob’s input is r and Alice’s input
is 0, 1, then 2–3-transcript coincides with Alice’s input. Similarly, if Bob’s input is 0,1 and
Alice’s input is r, then 2–3-transcript coincides with Bob’s input reversed. If both Alice’s
and Bob’s inputs are 0, 1, then 2–3-transcript is formed from the second bits of Bob and
Alice. Finally, if both Alice’s and Bob’s inputs are equal to r, then 2–3-transcript consists
of bits chosen by the adversary. Since we assume weak adversary, it is equal either to 00, or
to 11. The 2–3-transcript is shown in the following table where Alice’s input indicates the
row and Bob’s input the column:

r 00 01 10 11
r 00 or 11 00 10 01 11
00 00 00 10 00 10
01 01 01 11 01 11
10 10 00 10 00 10
11 11 01 11 01 11

We can see that if the output function takes the same values on the arguments 00 and 11,
then the protocol computes a total function. We will define the output function as the 2–3-
transcript with identified 00 and 11. Let us represent 2–3-transcripts by natural numbers.
In this way we get the following function:

r 00 01 10 11
r 0 0 2 1 0
00 0 0 2 0 2
01 1 1 0 1 0
10 2 0 2 0 2
11 0 1 0 1 0

The key point is the following: since the adversary is weak, we need to identify only 00
and 11. For a strong adversary, we would need to identify all four 2–3-transcripts and the
function would become constant.

To show that the classical complexity of the defined function is at least 4, we will find a
fooling set of size 23 + 1 = 9. The members of that set are colored magenta in the matrix:

0 0 2 1 0
0 0 2 0 2
1 1 0 1 0
2 0 2 0 2
0 1 0 1 0


12



5 A separation of half-duplex complexity with strong

adversary from classical complexity for total func-

tions

Theorem 4. There is a total function with classical complexity 6 and half-duplex complexity
at most 5.

The proof of this theorem is similar to that of the previous one but is much more com-
plicated. The proof is divided into two sections. In the first section we define a 5 round
half-duplex protocol Π to compute a total function. In the second and second sections we
prove that the classical complexity of the computed function is at least 6.

5.1 The half-duplex protocol

5.1.1 A general protocol

Our general plan is the following. The first round of the protocol Π is not classical and all
the remaining 4 rounds are classical, in those rounds the players send to each other bits in
the following sequence: Bob, Alice, Bob, Alice. The result of the protocol is a function of
bits sent in rounds 2–5 (we will call it 2–5-transcript). The inputs of the players consist of
one or two symbols. The first symbol of player’s input is r, 0 or 1 and has the same meaning
as before: it indicates what to do in the first round. The remaining symbol (if any) indicates
how to act in the remaining 4 rounds.

More specifically, Bob’s input is either r, or has the form 0φ or 1φ where the range of φ
will be defined later. Alice’s input is either rη, or has the form 0ψ or 1ψ where the ranges
of η, ψ will be defined later. The protocol is the following:

1. If Bob’s input is r, then in the first round Bob receives (let m denote the received bit),
then he sends m (the bit he just received), then receives again, then again he sends m
and then again receives.

2. If Alice’s input is rη, then she receives in the first round (let m denote the received
bit), then she receives again (let it be i), then sends m (the bit from the first round),
then again receives (let it be k), then again sends m if i = k and otherwise (if i ̸= k)
in the last round Alice sends a bit that depends on η, i, k (how that bits depends on
them, will be defined later).

3. If Bob’s input is iφ, i = 0, 1, then Bob sends i in the first round, then he sends a bit
that depends on φ, then receives (let it be j), then sends a bit that depends on j, φ,
then again receives a bit.

4. If Alice’s input is jψ, j = 0, 1, then Alice sends j in the first round, then she receives
(let it be i), then sends a bit that depends on i, ψ, then receives (let be k) and finally
sends a bit that depends on i, k, ψ.

13



According to this protocol, on the input pair (rη, r) the events of the players are the
following (assuming that the adversary sends j to Alice and i to Bob):

Round 1 2 3 4 5
Bob’s event “received i” “sent i” “received j” “sent i” “received j”
Alice’s event “received j” “received i” “sent j” “received i” “sent j”

So far this is only a general plan of protocol’s construction. We have yet to define the
ranges of η, φ, ψ and to define the dependencies mentioned above. However we can already
see that, if the first round happens to be silent, then the 2–5-transcript of the protocol is
one of these four sequences: 0000, 0101, 1010 and 1111. We will define Alice’s and Bob’s
output be 0, if the 2–5-transcript of the protocol is one of these four sequences, and to the
2–5-transcript otherwise. Such a definition guarantees that even for a strong adversary the
computed function is total. We have identified only a quarter of 2–5-transcripts thus the
computed function is non-trivial.

5.1.2 The first realization

The simplest realization of this plan is the following: let η ∈ {0, 1} and φ, ψ ∈ {0, 1}2 and
the protocol runs as follows:

1. If Bob’s input is r, then in the first round Bob receives (let m denote the received bit),
then he sends m, then receives again, then again he sends m and then again receives.

2. If Alice’s input is rη, then she receives in the first round (let m denote the received
bit), then she receives again (let it be i), then sends m, then again receives (let it be
k), then again sends m, if i = k, and η otherwise.

3. If Bob’s input is iφ, i = 0, 1, then Bob sends i in the first round, then he sends φ1,
then receives, then sends φ2, then again receives.

4. If Alice’s input is jψ, j = 0, 1, then Alice sends j in the first round, then she receives,
then sends ψ1, then receives and finally sends ψ2.

14



As a result, Alice and Bob produce the following 2–5 transcript (each transcript is represented
by a natural number using its binary expansion):

Bob’s input → r 000 001 010 100 100 101 110 111
Alice’s input ↓

r0 0, 5, 10, 15 0 2 8 10 5 6 12 15
r1 0, 5, 10, 15 0 3 9 10 5 7 13 15
000 0 0 2 8 10 0 2 8 10
001 1 1 3 9 11 1 3 9 11
010 4 4 6 12 14 4 6 12 14
011 5 5 7 13 15 5 7 13 15
100 10 0 2 8 10 0 2 8 10
101 11 1 3 9 11 1 3 9 11
110 14 4 6 12 14 4 6 12 14
111 15 5 7 13 15 5 7 13 15

Thus our protocol computes the function with the following matrix (zeros have colors indi-
cating the respective 2–5 transcripts):

0 0 2 8 0 0 6 12 0
0 0 3 9 0 0 7 13 0
0 0 2 8 0 0 2 8 0
1 1 3 9 11 1 3 9 11
4 4 6 12 14 4 6 12 14
0 0 7 13 0 0 7 13 0
0 0 2 8 0 0 2 8 0
11 1 3 9 11 1 3 9 11
14 4 6 12 14 4 6 12 14
0 0 7 13 0 0 7 13 0

By construction the half-duplex complexity of this function is at most 5. Unfortunately,
its classical complexity is also at most 5. To show this, let us first remove identical rows and
columns (the 3rd row from above coincides with the 7th row, and the 6th row coincides with
the 10th one, the 2nd column coincides with the 6th one and the 5th column with the 9th
one). We get the following matrix:

0 2 8 0 0 6 12
0 3 9 0 0 7 13
1 3 9 11 1 3 9
4 6 12 14 4 6 12
0 2 8 0 0 2 8
11 3 9 11 1 3 9
14 6 12 14 4 6 12
0 7 13 0 0 7 13

15



Each column of this matrix, except the first one, has at most 4 different numbers. Therefore
we can compute this function in 5 rounds using the following protocol. First Bob lets Alice
know his input. If his input is not the first column, then he sends 3 bits, and otherwise he
sends only 2 bits. In the first case Alice in two rounds sends Bob the value of the function.
In the second case she does that in 3 rounds.

5.1.3 The second (and final) realization

To increase the classical complexity of this function, let us use most general dependencies
in our general protocol. Namely, let φ range over all mappings that determine which bits
sends Bob in the second and fourth rounds in all possible situations. In other words, φ is
a function with the domain {Λ, 0, 1} and values 0,1 where φ(Λ) is a bit sent in the second
round and φ(j) is a bit sent in the fourth round after receiving j in the third round. Thus
Bob has 1 + 2× 8 = 17 different inputs.

Similarly, η ranges over all mappings that determine which bits sends Alice in all pos-
sible situations (assuming that she receives in the first round). The domain of η is the set
{j01, j10 | j = 0, 1} where η(mik) is the bit which Alice sends in the fifth round provided
she receives m, i, k in the first, second and fourth rounds, respectively.

The domain of ψ is {0, 1, 00, 01, 10, 11} where ψ(i) is the bit Alice sends in the third
round provided she received i in the second round and ψ(ik) is the bit Alice sends in the
fifth round provided she received i, k in the second and fourth rounds, respectively. Thus
Alice has 2× 26 + 24 = 144 different inputs.

Now our half-duplex protocol is well defined. By construction it computes a total function
and we denote it by U . We can prove that the classical communication complexity of U is 6.
However the matrix of U is very large, its size is 144× 17, and therefore that proof cannot
be visualized. Because of that, we tried to find a moderately small sub-function of U with
the same classical complexity. By a sub-function here we mean a restriction of U on a set of
the form X ′×Y ′ where X ′ ⊂ X, Y ′ ⊂ Y . In terms of the matrix of the function, this means
deleting some rows and columns form the matrix. Note that restricting the function cannot
increase its half-duplex complexity, thus the half-duplex complexity of any sub-function of
U is at most 5.

5.1.4 Sub-functions of U with communication complexity 6: the function S

The smallest sub-function of U with classical complexity 6 we managed to find has the
matrix shown on Fig. 2. We denote this sub-function by S. Communication complexity
of S was found on a computer in 4 minutes using the dynamic programming. Since this
computation cannot be performed by hand, we continued to look for a sub-function of U
with a moderately small domain and for which we can prove by hand the lower bound 6 for
the classical complexity.

5.1.5 Sub-functions of U with communication complexity 6: the function M

The matrix of the resulting function M is shown on Fig. 3. On Fig. 4 we indicated, on the

16



0 0 0 2 9 0 0 0 7 7 12 12 0
0 0 0 3 8 0 0 0 7 7 13 13 0
0 0 0 2 8 0 0 0 6 6 13 13 0
0 0 7 7 13 13 0 0 7 7 13 13 0
0 0 6 6 12 12 14 0 6 6 12 12 14
4 4 6 6 12 12 14 4 6 6 12 12 14
4 4 6 6 9 11 11 4 6 6 9 11 11
1 1 1 3 9 0 0 1 1 3 9 0 0
0 0 0 2 8 0 0 0 0 2 8 0 0
0 0 7 7 13 13 0 0 7 7 13 13 0
14 0 6 6 12 12 14 0 6 6 12 12 14
14 4 6 6 12 12 14 4 6 6 12 12 14
11 4 6 6 9 11 11 4 6 6 9 11 11
0 1 1 3 9 0 0 1 1 3 9 0 0
0 0 0 2 8 0 0 0 0 2 8 0 0

Figure 2: The matrix of the function S. Its classical complexity is 6 and its half-duplex
complexity is at most 5.

left and on the top, Alice’s and Bob’s inputs. Contemplating this matrix, we can imagine
how the matrix of U looks like. The domain of M is the smallest sub-domain of U for which
our method to prove the lower bound 6 works. Later we will explain this in more detail.

Looking at Fig. 4 one can verify that each entry in the matrix is indeed the result of
the above described half-duplex protocol Π on the corresponding input pair. Also one can
verify that matrices on Fig. 3 and Fig. 4 are identical. This implies that the function with
the matrix shown on Fig. 4 is a sub-function of U and hence its half-duplex complexity is at
most 5. However both verifications are quite time consuming and therefore we will explain
in the next section how verify faster that its half-duplex complexity is at most 5.

5.1.6 How to verify faster that the half-duplex complexity of the function with
matrix on Fig. 3 is at most 5?

An easier way is to partition the matrix from Fig. 3 into monochromatic rectangles corre-
sponding to leaves of Alice’s and Bob’s trees (in the protocol Π). Such a partition is shown
on Fig. 5. The double lines partition the matrix according to events happening in the first
round. For example, the bottom right rectangle consists of all input pairs for which both
Alice and Bob send 1, the upper right rectangle consists of all input pairs for which Alice re-
ceives 1 from Bob and the upper left rectangle of all input pairs for which both parties receive
in the first round. These rectangles will be denoted by Prr, Pr0, Pr1, P0r, P00, P01, P1r, P10, P11.

In Fig. 5, we have restored the 2–5-transcripts, that is, 0, 5, 10 and 15 are not yet
identified. The only exception is the rectangle Prr, in which all 2–5-transcripts 0, 5, 10
and 15 can appear. The number in each cell indicates in which part (0-part or 1-part) the

17



0 0 2 0 2 8 8 0 0 6 6 12 0 12 0
0 0 2 0 2 8 8 0 0 6 6 13 0 13 0
0 0 2 0 2 9 9 0 0 7 7 12 0 12 0
0 0 3 0 3 8 8 0 0 7 7 13 0 13 0
0 0 3 0 3 9 9 0 0 6 6 12 0 12 0
0 0 3 0 3 9 9 0 0 7 7 13 0 13 0
0 0 2 0 2 8 8 11 2 0 2 8 8 11 11
0 0 3 0 3 12 14 12 3 0 3 12 14 12 14
1 1 2 1 2 9 9 11 2 1 2 9 9 11 11
1 1 2 1 2 13 14 13 2 1 2 13 14 13 14
1 1 3 1 3 12 14 12 3 1 3 12 14 12 14
1 1 3 1 3 8 8 11 3 1 3 8 8 11 11
4 4 4 6 6 9 9 11 4 6 6 9 9 11 11
4 4 4 7 7 8 8 11 4 7 7 8 8 11 11
4 4 4 6 6 12 14 12 4 6 6 12 14 12 14
4 4 4 7 7 13 14 13 4 7 7 13 14 13 14
0 0 0 7 7 8 8 11 0 7 7 8 8 11 11
11 0 2 0 2 9 9 11 2 0 2 9 9 11 11
14 0 3 0 3 13 14 13 3 0 3 13 14 13 14
11 1 2 1 2 8 8 11 2 1 2 8 8 11 11
14 1 2 1 2 12 14 12 2 1 2 12 14 12 14
11 1 3 1 3 9 9 11 3 1 3 9 9 11 11
14 1 3 1 3 13 14 13 3 1 3 13 14 13 14
11 4 4 6 6 8 8 11 4 6 6 8 8 11 11
14 4 4 6 6 13 14 13 4 6 6 13 14 13 14
11 4 4 7 7 9 9 11 4 7 7 9 9 11 11
0 4 4 7 7 9 9 0 4 7 7 9 9 0 0
0 4 4 6 6 12 0 12 4 6 6 12 0 12 0
14 4 4 7 7 12 14 12 4 7 7 12 14 12 14

Figure 3: The matrix of the function M . Its classical communication complexity is 6, while
its half-duplex complexity is at most 5.

18



Arg. of func. φ ↓ The value of function φ ↓
Λ 0 0 0 0 1 1 1 0 0 0 1 1 1 1
0 0 1 0 1 0 0 1 1 0 1 0 0 1 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0 1

Inp. A → r 0φ 1φ
A.η 001 010 101 110 Inp. B ↓

0 0 0 0 0 0 2 0 2 8 8 0 0 6 6 12 0 12 0
0 0 0 1 0 0 2 0 2 8 8 0 0 6 6 13 0 13 0
0 1 1 0 0 0 2 0 2 9 9 0 0 7 7 12 0 12 0

V.η 1 0 1 1 rη 0 0 3 0 3 8 8 0 0 7 7 13 0 13 0
1 1 0 0 0 0 3 0 3 9 9 0 0 6 6 12 0 12 0
1 1 1 1 0 0 3 0 3 9 9 0 0 7 7 13 0 13 0

A.ψ 0 1 00 01 10 11
0 0 0 0 0 1 0 0 2 0 2 8 8 11 2 0 2 8 8 11 11
0 1 0 1 0 0 0 0 3 0 3 12 14 12 3 0 3 12 14 12 14
0 0 1 0 1 1 1 1 2 1 2 9 9 11 2 1 2 9 9 11 11
0 1 1 0 1 0 1 1 2 1 2 13 14 13 2 1 2 13 14 13 14
0 1 1 1 0 0 1 1 3 1 3 12 14 12 3 1 3 12 14 12 14

V.ψ 0 0 1 1 0 1 0ψ 1 1 3 1 3 8 8 11 3 1 3 8 8 11 11
1 0 0 0 1 1 4 4 4 6 6 9 9 11 4 6 6 9 9 11 11
1 0 0 1 0 1 4 4 4 7 7 8 8 11 4 7 7 8 8 11 11
1 1 0 0 0 0 4 4 4 6 6 12 14 12 4 6 6 12 14 12 14
1 1 0 1 1 0 4 4 4 7 7 13 14 13 4 7 7 13 14 13 14
1 0 1 1 0 1 0 0 0 7 7 8 8 11 0 7 7 8 8 11 11
0 0 0 0 1 1 11 0 2 0 2 9 9 11 2 0 2 9 9 11 11
0 1 0 1 1 0 14 0 3 0 3 13 14 13 3 0 3 13 14 13 14
0 0 1 0 0 1 11 1 2 1 2 8 8 11 2 1 2 8 8 11 11
0 1 1 0 0 0 14 1 2 1 2 12 14 12 2 1 2 12 14 12 14
0 0 1 1 1 1 11 1 3 1 3 9 9 11 3 1 3 9 9 11 11

V.ψ 0 1 1 1 1 0 1ψ 14 1 3 1 3 13 14 13 3 1 3 13 14 13 14
1 0 0 0 0 1 11 4 4 6 6 8 8 11 4 6 6 8 8 11 11
1 1 0 0 1 0 14 4 4 6 6 13 14 13 4 6 6 13 14 13 14
1 0 0 1 1 1 11 4 4 7 7 9 9 11 4 7 7 9 9 11 11
1 0 0 1 1 0 0 4 4 7 7 9 9 0 4 7 7 9 9 0 0
1 1 0 0 0 1 0 4 4 6 6 12 0 12 4 6 6 12 0 12 0
1 1 0 1 0 0 14 4 4 7 7 12 14 12 4 7 7 12 14 12 14

Figure 4: The matrix of function M with an indication of Alice’s and Bob’s inputs. “A.”
means “Argument of”, “V.” means “Value of”, “Inp. A” means “Input of Alice” and “Inp.
B” means “Input of Bob”.

19



respective cell falls in each round. Namely, its first bit is equal to the bit sent by Bob in
the second round, the second bit is equal to the bit sent by Alice in the third round, and so
on. In the second round all numbers are partitioned into small ones (less than 8) and large
ones (larger than or equal to 8). This partition is indicated by vertical lines. In the third
round the numbers are partitioned according to the second bit: red numbers have 0 and blue
ones have 1. In the fourth round the numbers are partitioned according to the third bit,
those with 1 as the third bit are shown in italic. Finally, in the fifth round the numbers are
partitioned into even and odd ones. We have to verify the following.

• Partitions in the second and fourth rounds are vertical (they are made by Bob). Par-
titions in the third and fifth rounds are horizontal (they are made by Alice).

• The union Pr0 ∪ P00 ∪ P10 of rectangles Pr0, P00, P10, which are indistinguishable by
Bob, is (vertically) partioned by Bob as the entire rectangle. The same applies to
vertical partition of the rectangle Pr1 ∪ P01 ∪ P11. Similarly, rectangles P0r ∪ P00 ∪ P01

and P1r ∪ P10 ∪ P11 are horizontally partitioned as entire units.

• Each rectangle obtained after five partitions is monochromatic.

• The rectangle P0r (in the first round Bob received 0 form Alice) in both vertical par-
titions is included in the 0-part (it consists of small upright numbers). The rectangle
P1r (Bob received 1 from Alice in the first round) in both vertical partitions is included
in the 1-part (it consists of large slanted numbers).

• Similarly, the rectangle Pr0 (Alice received 0 from Bob in the first round) in the first
horizontal partition is included into 0-part (it consists of red numbers only), and in
the second horizontal partition, its part consisting of small upright or large slanted
numbers (Alice received the same bits in the second and fourth rounds) has only even
numbers (Alice sends 0 in the fifth round). Similarly, the rectangle Pr1 (Alice received
1 in the first round) consists of blue numbers, and its part consisting of small upright
and large slanted numbers has only odd numbers (Alice sends 1 in the fifth round).

In the last item we have verified that Bob sends identical bits in the second and fourth
rounds provided his input corresponds to the first column. Similarly, Alice sends identical
bits in the third and fifth rounds provided her input corresponds to one of the upper rows of
the matrix and Bob sends identical bits in the second and fourth rounds. Therefore, if the
input pair falls into the rectangle Prr, then depending on the adversary the 2–5-transcript
equals one of the sequences 0000, 0101, 1010, 1111.

5.2 The lower bound of communication complexity of U and M .

It remains to prove that the classical complexity of functions U,M is at least 6. In the proof
for M it will be easier to forget that M is a sub-function of U and insetad define M as the
fucntion whose matrix is shown on Fig. 3.

20



0 0 2 0 2 8 8 10 5 6 6 12 15 12 15
0 0 2 0 2 8 8 10 5 6 6 13 15 13 15
0 0 2 0 2 9 9 10 5 7 7 12 15 12 15
0 0 3 0 3 8 8 10 5 7 7 13 15 13 15
0 0 3 0 3 9 9 10 5 6 6 12 15 12 15
0 0 3 0 3 9 9 10 5 7 7 13 15 13 15

0 0 2 0 2 8 8 11 2 0 2 8 8 11 11
0 0 3 0 3 12 14 12 3 0 3 12 14 12 14
1 1 2 1 2 9 9 11 2 1 2 9 9 11 11
1 1 2 1 2 13 14 13 2 1 2 13 14 13 14
1 1 3 1 3 12 14 12 3 1 3 12 14 12 14
1 1 3 1 3 8 8 11 3 1 3 8 8 11 11
4 4 4 6 6 9 9 11 4 6 6 9 9 11 11
4 4 4 7 7 8 8 11 4 7 7 8 8 11 11
4 4 4 6 6 12 14 12 4 6 6 12 14 12 14
4 4 4 7 7 13 14 13 4 7 7 13 14 13 14
5 5 5 7 7 8 8 11 5 7 7 8 8 11 11

11 0 2 0 2 9 9 11 2 0 2 9 9 11 11
14 0 3 0 3 13 14 13 3 0 3 13 14 13 14
11 1 2 1 2 8 8 11 2 1 2 8 8 11 11
14 1 2 1 2 12 14 12 2 1 2 12 14 12 14
11 1 3 1 3 9 9 11 3 1 3 9 9 11 11
14 1 3 1 3 13 14 13 3 1 3 13 14 13 14
11 4 4 6 6 8 8 11 4 6 6 8 8 11 11
14 4 4 6 6 13 14 13 4 6 6 13 14 13 14
11 4 4 7 7 9 9 11 4 7 7 9 9 11 11
10 4 4 7 7 9 9 10 4 7 7 9 9 10 10
15 4 4 6 6 12 15 12 4 6 6 12 15 12 15
14 4 4 7 7 12 14 12 4 7 7 12 14 12 14

Figure 5: Partition of the matrix of M into monochromatic rectangles by the protocol Π.

21



0 0 0 2 9 0 0 0 7 7 12 12 0
0 0 0 3 8 0 0 0 7 7 13 13 0
0 0 0 2 8 0 0 0 6 6 13 13 0
0 0 7 7 13 13 0 0 7 7 13 13 0
0 0 6 6 12 12 14 0 6 6 12 12 14
4 4 6 6 12 12 14 4 6 6 12 12 14
4 4 6 6 9 11 11 4 6 6 9 11 11
1 1 1 3 9 0 0 1 1 3 9 0 0
0 0 0 2 8 0 0 0 0 2 8 0 0
0 0 7 7 13 13 0 0 7 7 13 13 0
14 0 6 6 12 12 14 0 6 6 12 12 14
14 4 6 6 12 12 14 4 6 6 12 12 14
11 4 6 6 9 11 11 4 6 6 9 11 11
0 1 1 3 9 0 0 1 1 3 9 0 0
0 0 0 2 8 0 0 0 0 2 8 0 0

Figure 6: Partition of 1s and 2s in the matrix of S into two rectangles. Each rectangle has
its own color.

Theorem 5. The classical communication complexity of U,M is at least 6.

Unfortunately, we cannot prove this using partitions into monochromatic rectangles, as
both matrices can be partitioned into 30 ⩽ 25 monochromatic rectangles. These rectangles
correspond to the leaves of classical protocols performed by Alice and Bob in 2–5 rounds.
We have 9 × 16 such leaves (9 events in the first rounds are multiplied by the number of
leaves in a classical protocol of depth 4). However some of these rectangles can be joined
together and after that we obtain 30 monochromatic rectangles. Let us show this partition
for the matrix of the function S (for U,M the partition is similar). For any number i ̸= 0
the part of the matrix consisting of entries i can by partitioned into 2 rectangles. For i = 1
and i = 2 the partition is shown in Fig. 6. And 0s can be partitions into 6 rectangles as
shown in Fig. 7. This number (30) of monochromatic rectangles cannot be decreased, which
can be shown by fooling sets.

The proofs for functions U and M are almost identical. More specifically, some lemmas
that are proved analytically for U can by proved for M using pictures. More specifically, we
will show that for every vertical partition of the matrix into two parts (that is, columns are
divided into two parts) at least one part has a fooling set of size 17 (hence its communication
complexity is at least 5), and the similar statement holds for horizontal partitions.

5.2.1 The proof for horizontal partitions

We distinguish in the matrix 25 rectangles denoted by

R0, R1, . . . , R4, R6, . . . , R9, R11, . . . , R14, S1, . . . , S4, S6, . . . , S9, S11, . . . S14

22



0 0 0 2 9 0 0 0 7 7 12 12 0
0 0 0 3 8 0 0 0 7 7 13 13 0
0 0 0 2 8 0 0 0 6 6 13 13 0
0 0 7 7 13 13 0 0 7 7 13 13 0
0 0 6 6 12 12 14 0 6 6 12 12 14
4 4 6 6 12 12 14 4 6 6 12 12 14
4 4 6 6 9 11 11 4 6 6 9 11 11
1 1 1 3 9 0 0 1 1 3 9 0 0
0 0 0 2 8 0 0 0 0 2 8 0 0
0 0 7 7 13 13 0 0 7 7 13 13 0
14 0 6 6 12 12 14 0 6 6 12 12 14
14 4 6 6 12 12 14 4 6 6 12 12 14
11 4 6 6 9 11 11 4 6 6 9 11 11
0 1 1 3 9 0 0 1 1 3 9 0 0
0 0 0 2 8 0 0 0 0 2 8 0 0

Figure 7: Partition of zeros in the matrix of S into 6 rectangles. Each rectangle has its own
color.

(R5, R10, R15, S0, S5, S10, S15 are skipped). Those rectangles are called fooling rectangles. All
the entries of rectangles Ri, Si are equal to i. Besides, for any two cells u, v from different
rectangles the set {u, v} is a fooling set for the matrix, that is, no monochromatic rectangle
includes {u, v}. In other words, if we pick any one cell from every fooling rectangle, the
resulting set of cells is a fooling set. The existence of such a set of rectangles proves only
that the matrix has a fooling set of size 25. However fooling rectangles have the following
feature: for every division of the columns into two parts, the columns of one of these parts
intersect at least 17 fooling rectangles. That part thus has a fooling set of size 17.

We will define now fooling rectangles. However, for the matrix of M the reader can skip
the definition and look at Fig. 8 instead, where fooling rectangles are indicated by colors.

Definition 6 (fooling rectangles). Recall that the value of the function is essentially equal to
the 4-bit sequence abcd that is a 2–5-transcript of the computation. Therefore it is convenient,
in the definition of Ri, Si, to consider i as a 4-bit sequence. We first define rectangles Ri. If
a ̸= c, then

Rabcd = Rabād = {∗ψ | ψ(a) = b, ψ(aā) = d} × {b̄φ | φ(Λ) = a, φ(b) = ā}.

Here ∗ denotes any bit and b̄ = 1− b. If a = c and b ̸= d, then

Rabcd = Rabab̄ = {āψ | ψ(a) = b, ψ(aa) = b̄} × {∗φ | φ(Λ) = a, φ(b) = a}

Finally, if a = c, b = d, which happens only if a = c = b = d = 0, then

Rabcd = R0000 = R0 = {∗ψ | ψ(0) = 0, ψ(00) = 0} × {∗φ | φ(Λ) = 0, φ(0) = 0}.

23



0 0 2 0 2 8 8 0 0 6 6 12 0 12 0
0 0 2 0 2 8 8 0 0 6 6 13 0 13 0
0 0 2 0 2 9 9 0 0 7 7 12 0 12 0
0 0 3 0 3 8 8 0 0 7 7 13 0 13 0
0 0 3 0 3 9 9 0 0 6 6 12 0 12 0
0 0 3 0 3 9 9 0 0 7 7 13 0 13 0
0 0 2 0 2 8 8 11 2 0 2 8 8 11 11
0 0 3 0 3 12 14 12 3 0 3 12 14 12 14
1 1 2 1 2 9 9 11 2 1 2 9 9 11 11
1 1 2 1 2 13 14 13 2 1 2 13 14 13 14
1 1 3 1 3 12 14 12 3 1 3 12 14 12 14
1 1 3 1 3 8 8 11 3 1 3 8 8 11 11
4 4 4 6 6 9 9 11 4 6 6 9 9 11 11
4 4 4 7 7 8 8 11 4 7 7 8 8 11 11
4 4 4 6 6 12 14 12 4 6 6 12 14 12 14
4 4 4 7 7 13 14 13 4 7 7 13 14 13 11
0 0 0 7 7 8 8 11 0 7 7 8 8 11 11
11 0 2 0 2 9 9 11 2 0 2 9 9 11 11
14 0 3 0 3 13 14 13 3 0 3 13 14 13 14
11 1 2 1 2 8 8 11 2 1 2 8 8 11 11
14 1 2 1 2 12 14 12 2 1 2 12 14 12 14
11 1 3 1 3 9 9 11 3 1 3 9 9 11 11
14 1 3 1 3 13 14 13 3 1 3 13 14 13 14
11 4 4 6 6 8 8 11 4 6 6 8 8 11 11
14 4 4 6 6 13 14 13 4 6 6 13 14 13 14
11 4 4 7 7 9 9 11 4 7 7 9 9 11 11
0 4 4 7 7 9 9 0 4 7 7 9 9 0 0
0 4 4 6 6 12 0 12 4 6 6 12 0 12 0
14 4 4 7 7 12 14 12 4 7 7 12 14 12 14

Figure 8: Fooling rectangles forM . The rectangle Ri consists of red numbers i. The rectangle
Si consists of blue numbers i.

24



We now define rectangles Si. If a ̸= c, then

Sabcd = Sabād = {rη | η(bac) = d} × {bφ | φ(Λ) = a, φ(b) = ā}.

Otherwise, if a = c, then

Sabcd = Sabab̄ = {aψ | ψ(a) = b, ψ(aa) = ā} × {r}.

The first equality holds, since rectangles S0000, S0101, S1010, S1111 are not defined. For reader’s
convenience, explicit definitions of fooling rectangles follow:

R0 = {∗ψ | ψ(0) = 0, ψ(00) = 0} × {1φ | φ(Λ) = 0, φ(0) = 0}
R1 = {1ψ | ψ(0) = 0, ψ(00) = 1} × {∗φ | φ(Λ) = φ(0) = 0}
R4 = {1ψ | ψ(0) = 1, ψ(00) = 0} × {∗φ | φ(Λ) = φ(1) = 0}
R11 = {0ψ | ψ(1) = 0, ψ(11) = 1} × {∗φ | φ(Λ) = φ(0) = 1}
R14 = {0ψ | ψ(1) = 1, ψ(11) = 0} × {∗φ | φ(Λ) = φ(1) = 1}
R2 = {∗ψ | ψ(0) = 0, ψ(01) = 0} × {1φ | φ(Λ) = 0, φ(0) = 1}
R3 = {∗ψ | ψ(0) = 0, ψ(01) = 1} × {1φ | φ(Λ) = 0, φ(0) = 1}
R6 = {∗ψ | ψ(0) = 1, ψ(01) = 0} × {0φ | φ(Λ) = 0, φ(1) = 1}
R7 = {∗ψ | ψ(0) = 1, ψ(01) = 1} × {0φ | φ(Λ) = 0, φ(1) = 1}
R8 = {∗ψ | ψ(1) = 0, ψ(10) = 0} × {1φ | φ(Λ) = 1, φ(0) = 0}
R9 = {∗ψ | ψ(1) = 0, ψ(10) = 1} × {1φ | φ(Λ) = 1, φ(0) = 0}
R12 = {∗ψ | ψ(1) = 1, ψ(11) = 0} × {0φ | φ(Λ) = 1, φ(1) = 0}
R13 = {∗ψ | ψ(1) = 1, ψ(11) = 1} × {0φ | φ(Λ) = 1, φ(1) = 0}
S1 = {0ψ | ψ(0) = 0, ψ(00) = 1} × {r},
S4 = {0ψ | ψ(0) = 1, ψ(00) = 0} × {r},
S11 = {1ψ | ψ(1) = 0, ψ(11) = 1} × {r},
S14 = {1ψ | ψ(1) = 1, ψ(11) = 0} × {r},
S2 = {rη | η(001) = 0} × {0φ | φ(Λ) = 0, φ(0) = 1},
S3 = {rη | η(001) = 1} × {0φ | φ(Λ) = 0, φ(0) = 1},
S6 = {rη | η(011) = 0} × {1φ | φ(Λ) = 0, φ(1) = 1},
S7 = {rη | η(011) = 1} × {1φ | φ(Λ) = 0, φ(1) = 1},
S8 = {rη | η(100) = 0} × {0φ | φ(Λ) = 1, φ(0) = 0},
S9 = {rη | η(100) = 1} × {0φ | φ(Λ) = 1, φ(0) = 0},
S12 = {rη | η(110) = 0} × {1φ | φ(Λ) = 1, φ(1) = 0},
S13 = {rη | η(110) = 1} × {1φ | φ(Λ) = 1, φ(1) = 0},

Lemma 5. (1) All cells of rectangles Ri, Si include the number i.

25



(2) If u, v are any cells from different fooling rectangles, then the set {u, v} cannot be
covered by a monochromatic rectangle (in particular, u ̸= v, that is, fooling rectangles are
pair wise disjoint).

Proof. For the functionM this can be verified directly by examining Fig. 8. For the function
U the proof is in the Appendix.

We call two fooling rectangles horizontally adjacent, if their first projections intersect
(there is a row that intersects both rectangles). Consider the non-oriented graph whose
nodes are fooling rectangles and edges connect horizontally adjacent rectangles. We say that
a vertex u is a neighbor of a vertex v if u, v are adjacent. In particular, each node is its own
neighbor. It turns out that this graph has the following expansion property:

Lemma 6. Every set of 9 vertices of the graph has has at least 17 neighbors.

Let us derive from this lemma the proof for horizontal partitions. Assume that rows
of the matrix are partitioned in sets W and V . Let us denote by R the set of all fooling
rectangles which intersect some row fromW . If there are at least 17 such rectangles, then we
are done. Otherwise there are at least 25−16 = 9 rectangles outside R. For those rectangles
every row intersecting the rectangle belongs to V . Thus every neighbor y of every vertex x
outside R intersects a row in V . (Indeed there is a row s that intersects both x and y. That
row is not in W , as otherwise x would be in R. Hence s ∈ V and y intersects a row in V .)
Since there are at least 9 rectangles outside R, the lemma implies that there are at least 17
fooling rectangles intersecting a string in V .

Proof of Lemma 6. We need an explicit description of edges of the graph.

Lemma 7. The graph of horizontally adjacent fooling rectangles is a union of the following
graphs (see Fig. 9):

1. the complete 4-partite graph whose first part is {S2, S3}, the second part is {S6, S7},
the third part is {S8, S9} and the fourth part is {S12, S13}.

2. the complete bipartite graph whose first part is {R0, R1, S1} and second part is {R2, R3}

3. the complete bipartite graph whose first part is {R4, S4} and second part is {R6, R7}

4. the complete bipartite graph whose first part is {R11, S11} and second part is {R8, R9}

5. the complete bipartite graph whose first part is {R14, S14} and second part is {R12, R13}

6. the complete bipartite graph whose first part is {R0, R1, R2, R3, R4, R6, R7, S1, S4} and
second part is {R8, R9, R11, R12, R13, R14, S11, S14}, except all edges of the complete bi-
partite graph whose first part is {R1, R4, S11, S14} and second part is {R11, R14, S1, S4}.

26



R2 R3

R0R1S1 R4 S4

R6 R7

R11S11

R8 R9 R12R13

R14S14

S2, S3 S6, S7

S12, S13 S8, S9

Figure 9: The graph of horizontally adjacent fooling rectangles. Each oval (circle) encircles
vertices from one part of a bipartite or many-partite graph. Blue lines between ovals represent
edges connecting nodes from different parts of those bipartite graphs. For instance, each blue
line from the right represents 4 edges. Red lines represent edges that are excluded from the
complete bipartite graph.

To prove the lemma, we only need to show that all listed above edges are indeed present
in the graph. For the function M this can be verified by contemplating Fig. 8. For the
function U the lemma is proved in Appendix.

Now we are able to explain how the set Alice’s inputs was reduced when we restricted the
function U to get the function M . Each row in the matrix of U yields a clique in the graph,
the set of edges of the graph is the union of those cliques. We have chosen a minimal set of
cliques whose union covers all the edges of the graph and removed the rows corresponding
to the remaining cliques.

Now we are able to prove Lemma 6 by considering several cases. The following sets of 9
vertices have minimal number of neighbors (17):

• The set of nodes in the top left oval. Only the vertices from both left ovals are their
neighbors, 17 vertices in total.

• The set of nodes from four circles on the right (8 nodes) plus any node from the top
left oval which is incident to a red edge (e.g. R1). The extra node has 9 neighbors thus
we get 17 in total.

Let us show that this are indeed the worst case. Assume that a set A of vertices contains
k vertices from the left component of connectivity and l vertices from the right component,
k + l = 9. Since there are only 8 vertices in the right component, we know that k ⩾ 1. We
distinguish three cases: l = 0, l ⩾ 2 and l = 1.

Case l = 0, k = 9. It is not difficult to verify that any vertex u from the left component
has at least 9 neighbors. So the number of non-neighbors of u in the left component does not

27



exceed 17−9 = 8. Therefore, u is a neighbor of any set of 9 vertices from the left component.
Since this is true for any vertex u, every node from the 17 nodes of the left component is a
neighbor of each set of 9 vertices from the left component, and we are done.

Case l ⩾ 2. Then one left vertex of A has 9 or more neighbors in the left component, and
the two right vertices of A have 8 neighbors from the right component (if these vertices are
from the same circle, then they are neighbors of themselves, otherwise they are neighbors of
each other, and the remaining 6 vertices will be their neighbors, since they belong to another
part comparing to one of these two vertices). In general, we get 17 neighbors.

Case l = 1, k = 8. One A’s vertex on the right has 7 neighbors and it is enough to verify
that any set B of 8 vertices of the left component has at least 10 neighbors. Note that there
are only four vertices in the left component that have 9 neighbors, all the other have at least
ten neighbors. Therefore, B contains a vertex with 10 neighbors.

We have proved Lemma 6 and the case of horizontal partitions is completed.

5.2.2 Proof for vertical partitions

Let us call two fooling rectangles vertically adjacent if their second projections intersect. Un-
fortunately, the analog of Lemma 6 is not true anymore. Indeed, the connected components
of the vertical adjacency graph are the following:

{S1, S4, S11, S14},
{R0, S2, S3, S6, S7, R1, R2, R3, R4, R6, R7},

{S8, S9, S12, S13, R8, R9, R11, R12, R13, R14}.

These components correspond to three sub-matrices into which the matrix M is divided by
ordinary vertical lines in Fig. 5. Let us join the first and the second connected components.
In this way we obtain a vertical partition of the matrix into two sub-matrices, where the
first sub-matrix intersects 15 fooling rectangles, and the second one intersects 10 fooling
rectangles.

This obstacle forces to increase the number of fooling rectangles. This can be done by
adding rectangles with cells containing 0. To do this, we will reduce the rectangle R0 and
add rectangles called R5, R10, R15, S0. Namely, let

Rabab = {∗ψ | ψ(a) = ψ(aa) = b, ψ(ā) ̸= ψ(āā)}
×{b̄φ | φ(Λ) = φ(b) = a, φ(b̄) = ā}, where a, b = 0, 1,

S0 = {rη | η arbitrary } × {iφ | φ(Λ) = φ(i)}

Here are the explicit definitions of rectangles R0, R5, R10, R15:

R0 = {∗ψ | ψ(0) = 0, ψ(00) = 0, ψ(1) ̸= ψ(11)} × {1φ | φ(Λ) = 0, φ(0) = 0, φ(1) = 1}
R5 = {∗ψ | ψ(0) = 1, ψ(00) = 1, ψ(1) ̸= ψ(11)} × {0φ | φ(Λ) = 0, φ(1) = 0, φ(0) = 1},
R10 = {∗ψ | ψ(1) = 0, ψ(11) = 0, ψ(0) ̸= ψ(00)} × {1φ | φ(Λ) = 1, φ(0) = 1, φ(1) = 0}
R15 = {∗ψ | ψ(1) = 1, ψ(11) = 1, ψ(0) ̸= ψ(00)} × {0φ | φ(Λ) = 1, φ(1) = 1, φ(0) = 0}.

28



In fact, for the function M , the new version of the rectangle R0 coincides with the old
one, since the difference between them is due to those rows that were removed from the
matrix of U . The fooling rectangles for the matrix of M are shown in Fig. 10.

We have to prove an analogue of the Lemma 5 for new fooling rectangles:

Lemma 8. (1) All cells of the rectangles R0, R5, R10, R15, S0 contain 0.
(2) Any two cells u, v from different rectangles from the list R0, S0, R5, R10, R15 cannot

be covered by one monochrome rectangle (the cells of old fooling rectangles are marked with
non-zeros, so they can also be added to this list).

For M , this lemma is verified directly by looking at Fig. 10. For U , the lemma is proved
in Appendix.

To complete the proof of the theorem, we need an analog of Lemma 6 for the vertical
adjacency graph. The number of fooling rectangles has increased to 29, so instead of 9
rectangles we now have 29− 16 = 13.

Lemma 9. Any set of 13 vertices of the vertical adjacency graph has at least 17 neighbors.

Proof of Lemma 9. Again, we need a more explicit description of edges of the graph.

Lemma 10. The vertical adjacency graph is equal to the graph shown in Fig. 11 (for both
functions U,M).

This lemma for M is verified directly by looking at the matrix of the function. For U
the proof has been transferred to the Appendix. The graph in Fig. 11 consists of a complete
graph on vertices S1, S11, S4, S14 and two isomorphic graphs on 12 vertices together with the
vertex S0 connecting them. In the sequel, we will call these two parts of the 12 vertices the
components of the graph. The smallest set of neighbors of a set of 13 vertices is attained,
for example, if we take all 12 vertices from the left component and the vertex R0 from the
right component, or any 9 vertices from the left component and vertices S1, S4, S11, S14.

Let’s prove that this is indeed the minimal neighborhood of any set of 13 nodes. To
do this, we need the following auxiliary notion. Let A be an arbitrary set of vertices from
one component of the graph. Denote by Γ(A) the set of all neighbors of A, and by Γ′(A)
the set of all neighbors, not counting the vertex S0, that is, the set of all neighbors inside
that component. By Γ(n) we denote the minimum |Γ(A)| for all n-element sets inside one
component. Γ′(n) is defined in a similar way. The values of these functions are given in
Table 1, they were found by hand. In fact, we will need the values of these functions only
for n = 1, 4, 6, 7, 9.

Lemma 11. (a) Γ′(1) ⩾ 4
(b) Γ′(4) ⩾ 7
(c) Γ′(6) ⩾ 9,
(d) Γ′(7) ⩾ 10,
(e) Γ(9) ⩾ 13.

29



0 0 2 0 2 8 8 0 0 6 6 12 0 12 0
0 0 2 0 2 8 8 0 0 6 6 13 0 13 0
0 0 2 0 2 9 9 0 0 7 7 12 0 12 0
0 0 3 0 3 8 8 0 0 7 7 13 0 13 0
0 0 3 0 3 9 9 0 0 6 6 12 0 12 0
0 0 3 0 3 9 9 0 0 7 7 13 0 13 0
0 0 2 0 2 8 8 11 2 0 2 8 8 11 11
0 0 3 0 3 12 14 12 3 0 3 12 14 12 14
1 1 2 1 2 9 9 11 2 1 2 9 9 11 11
1 1 2 1 2 13 14 13 2 1 2 13 14 13 14
1 1 3 1 3 12 14 12 3 1 3 12 14 12 14
1 1 3 1 3 8 8 11 3 1 3 8 8 11 11
4 4 4 6 6 9 9 11 4 6 6 9 9 11 11
4 4 4 7 7 8 8 11 4 7 7 8 8 11 11
4 4 4 6 6 12 14 12 4 6 6 12 14 12 14
4 4 4 7 7 13 14 13 4 7 7 13 14 13 11
0 0 0 7 7 8 8 11 0 7 7 8 8 11 11
11 0 2 0 2 9 9 11 2 0 2 9 9 11 11
14 0 3 0 3 13 14 13 3 0 3 13 14 13 14
11 1 2 1 2 8 8 11 2 1 2 8 8 11 11
14 1 2 1 2 12 14 12 2 1 2 12 14 12 14
11 1 3 1 3 9 9 11 3 1 3 9 9 11 11
14 1 3 1 3 13 14 13 3 1 3 13 14 13 14
11 4 4 6 6 8 8 11 4 6 6 8 8 11 11
14 4 4 6 6 13 14 13 4 6 6 13 14 13 14
11 4 4 7 7 9 9 11 4 7 7 9 9 11 11
0 4 4 7 7 9 9 0 4 7 7 9 9 0 0
0 4 4 6 6 12 0 12 4 6 6 12 0 12 0
14 4 4 7 7 12 14 12 4 7 7 12 14 12 14

Figure 10: Fooling rectangles for vertical partitions for the matrix of M . The rectangle
Ri for i ̸= 10, 15, 20 consists of red numbers i. The rectangle Si for i ̸= 0 consists of blue
numbers i. The rectangles R5, R10, R15 consist of only one cell each: yellow, cyan and green
zeros. The rectangle S0 consists of magenta zeros.

30



S0

S4

S1 S14

S11

R5

R1

R4

R0

R6 R7

S2 S3 S6 S7

R2 R3

R10

R14

R11

R15

R9R8

S13S12S9S8

R13R12

Figure 11: The graph of vertically adjacent fooling rectangles. Blue lines represent multiple
edges.

Let us finish the proof of Lemma 9 assuming Lemma 11. Let a set A consist of 13 vertices
of the adjacency graph. We need to prove that A has at least 17 neighbors. Let us consider
two cases.

Case 1: the set A contains the vertex S0. First, assume that the set A contains at least one
of the vertices S1, S4, S11, S14. Then there must be at least 13−1−4 = 8 vertices in the left and
right components together. Therefore, one of the components must contain at least 8/2 = 4
vertices. Thus the number of neighbors of A is not less than 5 + Γ′(4) + 6 ⩾ 5 + 7 + 6 = 18
neighbors (vertices S0, S1, S4, S11, S14 plus all neighbors inside the component containing 4
vertices, plus the neighbors of vertex S0 inside the other component).

Otherwise the set A does not contain any of the vertices S1, S4, S11, S14. Then, there
should be at least 13− 1 = 12 vertices in the left and right components in total. If there are
6 vertices in both components, then A has at least 1 + 2Γ′(6) ⩾ 1 + 2 · 9 = 19 neighbors.
Otherwise, one of the components has at least 12 − 5 = 7 vertices, and the number of
neighbors is not less 1+Γ′(7)+6 ⩾ 1+10+6 = 17 (the vertex S0 plus all the neighbors inside
the component containing 7 vertices, plus the neighbors of S0 inside the other component).

Case 2: S0 /∈ A. Assume first that A has at least one of the vertices S1, S4, S11, S14. In
total, both components have at least 13− 4 = 9 vertices from the set A. If all these vertices
are in one component, then the total number of A’s neighbors is at least Γ(9)+4 ⩾ 13+4 = 17
(neighbors of these 9 vertices plus vertices S1, S4, S11, S14). If each component has at least
one vertex from A and one of the components has at least 6 vertices from A, then the number
of A’s neighbors is at least Γ(6) +Γ′(1) + 4 ⩾ Γ′(6) +Γ′(1) + 4 ⩾ 9+ 4+ 4 = 17. Otherwise,
there are 5 vertices in one component, and 4 in the other, and the number of A’s neighbors
is at least Γ(5) + Γ′(4) + 4 ⩾ Γ′(4) + Γ′(4) + 4 ⩾ 7 + 7 + 4 = 18.

It remains to consider the case when S0, S1, S4, S11, S14 /∈ A. Since there are only 12
vertices in each component, each component must have at least one vertex from A. If one
of them has at least 9 vertices from A, then we get at least Γ(9) + Γ′(1) ⩾ 13 + 4 = 17

31



n Γ′(n) Γ(n)
1 4 4
2 5 6
3 6 6
4 7 8
5 7 8
6 9 10
7 10 11
8 11 12
9 12 13
10 12 13
11 12 13
12 12 13

Table 1: The table of values of functions Γ and Γ′ expressing the expansion properties of
components of the vertical adjacency graph.

neighbors. Otherwise, the division of vertices between components is 5+ 8 or 6+ 7. In both
cases the number of neighbors is not less than Γ(5) + Γ′(7) ⩾ Γ′(4) + Γ′(7) ⩾ 7 + 10 = 17.
Lemma 9 is proved (modulo Lemma 11).

Proof of Lemma 11. (a) This can be directly verified by hand.
(b) Assume that there is a set A of 4 vertices of the right component that has less than

7 neighbors inside that component. We want to derive a contradiction.
Let us first assume that A does not contain any vertices from the ovals. Then A =

{R0, R1, R4, R5} and has 12 ⩾ 7 neighbors inside the component. So A must contain a
vertex from one of the ovals and without loss of generality another vertex from the same
oval (indeed, adding this other vertex to A does not increase the number of neighbors, so
it can replace any other vertex in A). Identifying symmetric variants, we can consider only
two cases: R2, R3 ∈ A and S2, S3 ∈ A.

First case: R2, R3 ∈ A. These two vertices together already have 5 neighborsR2, R3, R4, S6, S7.
It is easy to verify that adding to R2, R3 any other vertex increases the number of neighbors
by at least 2.

The second case: S2, S3 ∈ A. These two vertices together already have neighbors
S2, S3, R4, R5, R6, R7. It is easy to see that adding to S2, S3 any vertex, except R5, increases
the number of neighbors. Since we need to add two vertices, we get a contradiction.

(c) To reduce the number of cases, we will consider the complements. Let us state
this technique in general. We claim that the inequality Γ′(m) ⩾ n implies the inequality
Γ′(13 − n) ⩾ 13 −m. Indeed, assume that Γ′(13 − n) < 13 −m. That is, there is a set A
of cardinality 13− n having at most 12−m neighbors. Then consider the set B consisting
of non-neighbors A, |B| ⩾ 12 − (12 − m) = m. Then all the neighbors of B lie in the
complement of A, so |Γ′(B)| ⩽ 12 − (13 − n) = n − 1. By removing |B| −m vertices from

32



B, we get a set of B′ of cardinality exactly m with |Γ′(B′)| ⩽ n− 1.
It is worth to apply this technique when 13 − n is closer to 6 than m, because in this

case the number of (13 − n)-element subsets of a component is less than the number of its
m-element subsets. For example, the statement (c) follows from statement (b), and we do
not have to look over all 6-element subsets of a component.

(d) Using the same technique, it suffices to prove the inequality Γ′(3) ⩾ 6. Assume that
there is a set A of 3 vertices of a component that has less than 6 neighbors inside that
component. We want to derive a contradiction.

First, assume that A does not contain any vertices from the ovals. Identifying symmetric
variants, there are only two such sets: {R0, R1, R4} and {R0, R1, R5}. In the first case, all
vertices of the components are neighbors, and in the second case all vertices except R2, R3.

Now assume that A contains a vertex from an oval. Without loss of generality, we can
assume that the other vertex of the oval also lies in A.

Identifying symmetrical cases, only two cases can be considered: A ∋ R2, R3 and A ∋
S2, S3. In the first case , the verticesR2, R3 already have in total 5 neighborsR2, R3, R4, S6, S7,
so the third vertex of A should be in this list and should not have neighbors out off the list.
Be a simple search we can see that there are no such vertices. In the second case, the vertices
S2, S3 already have 6 neighbors in total.

(e) Using our technique, we can deduce from item (a) that Γ′(9) ⩾ 12. In addition, the
vertex S0 is a neighbor of any set of 12 − 6 + 1 = 7 vertices inside one component, since it
has 6 neighbors inside one component. Therefore, for all n starting from n = 7, we have
Γ′(n) = Γ(n) + 1.

Lemmas 11, 9 and the theorem are proved.

6 Open questions

1. Is there a partial function f on words of length n over a fixed alphabet with a super-
logarithmic gap between the local half-duplex and the local classical complexities?

2. Is there a total function with values 0,1 for which the half-duplex complexity is strictly
less than the classical complexity?

3. Is there a total function f on words of length n over a fixed alphabet with a super-
constant gap between the half-duplex and the classical complexity?

References

[1] Hoover, K., Impagliazzo, R., Mihajlin, I., Smal, A. V. Half-Duplex Communication Com-
plexity // ISAAC 2018. V. 123. — Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. — 10:1—10:12. — (LIPIcs). — https://doi.org/10.4230/LIPIcs.ISAAC.2018.

10.

[2] Alexandre Nolin. Communication complexity : large output functions, partition bounds,
and quantum nonlocality. Computational Complexity [cs.CC]. Université Paris Cité,

33



2020. English. NNT: 2020UNIP7201. tel-03342472. Ph.D. thesis (2021) https://theses.
hal.science/tel-03342472/document

[3] Eyal Kushilevitz, Noam Nisan, Communication Complexity, Cambridge University Press
(2006)

[4] Alexander Vladimirovich Smal. Proofs of lower bounds on the size of formulas for Boolean
functions using communication complexity. Ph.D. thesis (2022).

[5] Mauricio Karchmer and Avi Wigderson. Monotone Circuits for Connectivity Require
Superlogarithmic Depth. In Janos Simon, editor, Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages
539–550. ACM, 1988. doi:10.1145/62212.62265.

[6] Yao, A. C.-C. Some Complexity Questions Related to Distributive Computing (Prelimi-
nary Report) // STOC 1979. — ACM, 1979. — P. 209—213. — http://doi.acm.org/

10.1145/800135.804414.

34



A Appendix: proofs of lemmas for the function U

Proof of Lemma 5 for U . (1) This is verified directly. Let us perform this verification, say,
for the rectangle R6 = R0110: in the first round, both players send bits that are lost and
have no effect on the 2–5-transcript. In the second round Bob sends 0 (because φ(Λ) = 0).
Alice then sends 1 (since ψ(0) = 1). Then Bob sends 1 (since φ(1) = 1). Finally, in the last
round Alice sends 0, since ψ(01) = 0. We get the 2–5-transcript 0110 = 6.

(2) Let u, v belong to different fooling rectangles.
Case 1. These rectangles have different subscripts. Then the cells u, v have different

colors due to item (1).
Case 2. Rectangles containing u, v have the same subscript.
Assume first that u ∈ Rabcd and v ∈ Sabcd where a ̸= c. Then u = (∗ψ, b̄φ), v = (rη, bφ′).

Consider the input pair (rη, b̄φ). First, the 2–5-transcript t′ for this pair is different from
t = abcd. Indeed, since for this input pair in the first round Alice receives b̄ from Bob, she
sends in the third round b̄, and not b. Second, the values of the output function p on t and
t′ are different, since otherwise in both t, t′ the first and third bits coincide, and the second
and fourth bits coincide, which is not the case for t.

Assume now that u ∈ Rabcd and v ∈ Sabcd where a = c and b ̸= d. Then u = (āψ, ∗φ),
v = (aψ′, r). Consider the input pair (āψ, r). First, the transcript t′ on this pair is different
from abcd. Indeed, since in the first round Bob receives ā from Alice, he sends in the second
round ā. Therefore, t′ begins with ā and hence differs from t = abcd. And again the values
of the output function on t and t′ differ because b ̸= d.

Proof of the Lemma 7 for the matrix U . Recall that two rectangles are connected by an edge
if their first projections intersect. We will call the second character of a word from the first
projection of a rectangle its ψ- or η-projection.

In the first item, we listed all the fooling rectangles whose first projections contains words
of the form r∗. Their first projections have the form {rη | η(bac) = d}. Such a set does not
intersect another set {rη | η(b̃ãc̃) = d̃} of this form only if a = ã, b = b̃, c = c̃, but d ̸= d̃.
That is, among the rectangles S2, S3, S6, S7, S8, S9, S12, S13 there are no edges only between
pairs (S0010, S0011), (S0110, S0111), (S1000, S1001), (S1100, S1101).

The first projections of all the other fooling rectangles contain words of the form ∗ψ.
Their first character, except for rectangles R1, R4, R11, R14, S1, S4, S11, S14, can be arbitrary.
For these exceptional rectangles, the first character is 1 for rectangles R1, R4, S11, S14 and is
0 for rectangles R11, R14, S1, S4. This explains the exclusion of edges in the sixth item. It is
not hard to verify that, in items 2–5, no edges are excluded for this reason: in these items,
in one of the parts, there are no rectangles from the list R1, R4, R11, R14, S1, S4, S11, S14. It
remains to verify that in items 2–6 ψ- or η-projections intersect.

The edges in items 2–5 connect the rectangles Rabad and Sabad with rectangles of the
form Rabā∗. We need to prove that ψ-projections of rectangles Rabad and Sabad intersect with
ψ-projections of rectangles of the form Rabā∗. Note that ψ-projections of Rabad and Sabad

coincide and are equal to
A = {ψ | ψ(a) = b, ψ(aa) = d}.

35



On the other hand, the ψ-projection of Rabāe is equal to

C = Ce = {ψ | ψ(a) = b, ψ(aā) = e}.

Therefore the intersection A ∩ C includes all ψ, with ψ(a) = b, ψ(aa) = d, ψ(aā) = e. It is
easy to see that these requirements are compatible.

In the sixth item, the rectangles in the first part have the form R0bcd, S0b0b̄, and in the
second part rectangles have the same form, only 0 and 1 are swapped: R1b′c′d′ , S1b′1b̄′ . Their
ψ-projections are equal, respectively, to

{ψ | ψ(0) = b, ψ(0c) = d},
{ψ | ψ(0) = b, ψ(00) = b̄},

{ψ | ψ(1) = b′, ψ(1c′) = d′},
{ψ | ψ(1) = b′, ψ(11) = b̄′}.

Obviously, the first and second sets intersect with the third and fourth sets.

Proof of the Lemma 8 for the function U . (1) For rectangles Ri, this is verified directly. For
the rectangle S0: let the pair (rη, iφ) belong to S0. Let j denote φ(Λ) = φ(i). In the first
round, Alice receives i from Bob. Therefore, Alice sends in the third round i. Thus, the
transcript in 2–4 rounds looks like this: jij. Finally, in the fifth round, Alice sends i again,
since the bits she received in the second and fourth rounds coincide. We get the transcript
jiji hence U(rη, iφ) = 0.

(2) Let u, v belong to different rectangles. First, let us assume that both rectangles have
the form Rabab. Say the first one has the subscript abab, and the second the subscript a′b′a′b′,
Let u = (∗ψ, b̄φ), v = (∗ψ′, b̄′φ′). Then we know that

ψ(a) = ψ(aa) = b (1)

ψ(ā) ̸= ψ(āā) (2)

φ′(Λ) = φ′(b′) = a′ (3)

φ′(b̄′) ̸= a′. (4)

Consider the input pair (∗ψ, b̄′φ′). We claim that U(∗ψ, b̄′φ′) ̸= 0. For the sake of
contradiction, assume that the 2–5-transcript on this input pair is a multiple of 5, that is, it
has the form αβαβ. Then we additionally know that

ψ(α) = ψ(αα) = β (5)

φ′(Λ) = φ′(β) = α. (6)

We claim that from (1)–(6) it follows that a = a′ = α and b = b′ = β, and therefore the
rectangles Rabab, Ra′b′a′b′ coincide. From (5) and (2) it follows that α ̸= ā, that is, α = a. On
the other hand, it follows from (3) and (6) that α = φ′(Λ) = a′. From (6) it follows that
φ′(β) = α = a. Now from (4) and (6) it follows that φ′(b̄′) ̸= a′ = α = φ′(β), which means
that b̄′ ̸= β, that is, β = b′. Finally, from (5) and (1) we conclude that β = ψ(α) = ψ(a) = b.

36



It remains to consider the case when one rectangle is S0, and the other one has the form
Rabab. In this case we have u = (rη, iφ), v = (a′ψ′, b̄′φ′) and we know the equalities (3)
and (4). We want to prove that U(rη, b̄′φ′) ̸= 0. For the sake of contradiction, assume
that the 2–5-transcript for this input pair has the form αβαβ. Then additionally we know
(6), and besides β = b̄′, since Alice sends the bit b̄′ received from Bob in the third round.
From (6) we derive that α = φ′(β) = φ′(b̄′). And on the other hand, from (3) and (6) it
follows that α = φ′(Λ) = a′. Therefore, a′ = φ′(b̄′), which contradicts (4).

Proof of the Lemma 10 for the function U . Let’s write out the second projections of fooling
rectangles:

pr2Rabād = {b̄φ | φ(Λ) = a, φ(b) = ā}
pr2Rabab̄ = {∗φ | φ(Λ) = a, φ(b) = a}
pr2Rabab = {b̄φ | φ(Λ) = a, φ(b) = a, φ(b̄) = ā}
pr2Sabād = {bφ | φ(Λ) = a, φ(b) = ā}
pr2Sabab̄ = {r}

pr2S0 = {iφ | φ(Λ) = φ(i)}.

To prove the lemma, we will make several simple observations, immediately following from
the definitions:

1. The graph splits into two connected components: {S1, S4, S11, S14} (their second pro-
jection contains only r) and all other vertices. The first component is a complete graph
on vertices {S1, S4, S11, S14}.

2. Rectangle S0 is adjacent to all vertices Ri, except R0, R5, R10, R15.

3. If we remove the rectangle S0, then the second component again splits into two con-
nected components. One of them consists of all rectangles of the form R0bcd, S0bcd, and
the other one of all rectangles of the form R1bcd, S1bcd. We will call these components
the second and the third ones. The second and third components are isomorphic, they
are obtained from each other by swapping zero and one. Therefore, it is sufficient to
describe only the second component.

4. Second projections of rectangles Rabā0, Rabā1 coincide. Therefore these rectangles are
adjacent. Besides, from them the edges lead to the same vertices. The same applies to
pairs of the form Sabā0, Sabā1 In particular, the second component contains the edges
(R0, R1), (R2, R3), (S2, S3), (R4, R5), (R6, R7), (S6, S7).

5. Finally, the second component contains all the edges of the complete bipartite graph
with the first part R0, R1, R2, R3, S2, S3 and the second part R4, R5, R6, R7, S6, S7 with
the exception of the edges (R0, R4), (R0, R5), (R1, R5) and all edges of a complete bipar-
tite graph with the first part R0, R2, R3, S6, S7 and the second part R5, R6, R7, S2, S3.

37



In the first part, we listed all rectangles Rabcd from the second component with a =
b = 0. In the second part, those with a = 0 and b = 1. Let us verify first that φ-
projections of all the listed pairs intersect, that is, the corresponding conditions on φ
are compatible. Let R(S)00cd and R(S)01c′d′ be rectangles from the second component.
Then requirements for φ(Λ) in φ-the projections for both rectangles coincide. And
because the second bits in 00cd and 01c′d′ are different, the conditions on φ(b) are
compatible. Finally, if the first of these rectangles is R0000 or the second rectangle is
R0101 (or both), then there is an additional requirement φ(b̄) = ā. These conditions
may be incompatible for rectangles R(S)00cd and R(S)01c′d′ . It is not difficult to verify
that this happens only for the pairs (R0, R4), (R0, R5), (R1, R5). For this reason, these
edges were excluded.

It remains to verify that the first symbols can also be the same. For rectangles of the
form Rabab̄, the first characters can be arbitrary. For rectangles R0, R2, R3, S6, S7 the
first symbol is equal to 1, and for rectangles R5, R6, R7, S2, S3 the first symbol is equal
to 0. Because of this, edges between rectangles of the first and the second lists were
excluded.

38

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


