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Abstract
We show that polynomial-size constant-rank linear decision trees (LDTs) can be converted to
polynomial-size depth-2 threshold circuits LTF ◦ LTF. An intermediate construct is polynomial-size
decision lists that query a conjunction of a constant number of linear threshold functions (LTFs); we
show that these are equivalent to polynomial-size exact linear decision lists (ELDLs) i.e. decision
lists querying exact threshold functions (ELTFs).
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1 Introduction

Understanding the power of linear threshold functions LTFs as a primitive operation is a
significant question in complexity theory. At the frontier of circuit lower bounds is the
class TC0: polynomial-size constant-depth circuits using LTF gates. Currently we do not
know explicit lower bounds even for polynomial-size depth-2 threshold circuits. We denote
this class LTF ◦ LTF. Restricting this circuit class further to polynomial-weight LTFs (MAJ
gates) at either one or both of the two levels gives the classes MAJ ◦ LTF, LTF ◦MAJ, and
MAJ ◦MAJ. The exact relationship among these classes, and non-trivial lower bounds, are
known — MAJ ◦MAJ equals MAJ ◦ LTF and is strictly weaker than LTF ◦MAJ [5], which is
strictly weaker than LTF ◦ LTF [3]. Another way to use LTFs as a primitive is as a query,
in linear decision lists LDLs and linear decision trees LDTs, see [6, 9]. Here, the usual
complexity measure is query complexity, but one can also consider size, which is a measure
of the space required to store the function in this representation. It is known that the class
LDL of functions with polynomial-size LDLs is contained in LTF ◦ LTF [9], but the same is
not known for the class LDT of functions computable by polynomial-size LDTs. For the
classes LTF ◦ LTF and LDT, a common upper bound is MAJ ◦MAJ ◦MAJ. However, unlike
LTF◦LTF, we do have non-trivial lower bounds against LDTs, obtained in [9] by investigating
the rank of decision trees. This makes LDT rank a very interesting measure from the lower
bounds point of view.

In general, small rank in decision trees of various types points to a certain simplicity of the
function, making it easy to learn in certain settings, see for instance [4, 8]. In the context of
LTF primitives, the use of small rank has been particularly fruitful. It was shown in [9] that
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2 LTFs, decision trees, and depth-2 threshold circuits

LDLs (which are just rank-1 LDTs) and constant-rank LDTs require large depth to compute
the Inner Product function. In fact, a rank-depth tradeoff was established; and this implies
(as observed in [10]) that LDTs of any rank computing the Inner Product function must be
of exponential size1. Also in [9], a simple construction showed that polynomial-size LDLs can
be transformed to polynomial-size depth-2 threshold circuits, and hence LDL ⊆ LTF ◦ LTF.
In [10], this was pushed further a bit: polynomial-size constant-rank LDTs with MAJ queries
were also transformed to polynomial-size depth-2 threshold circuits.

Our main result takes this one step further by removing the polynomial-weight restriction.
We show the following.

I Theorem 1. If a function f : {0, 1}n −→ {0, 1} is computed by an LDT of rank r and size
s, then f can be computed by depth-2 threshold circuits of size O(s · n3r logr n).

In particular, at polynomial size, O(1)-rank-LDT is contained in LTF ◦ LTF.

In proving the above, an intermediate (between the small-rank LDTs and the depth-2
circuits) computation model used is decision lists where each query is a conjunction of LTFs.
The arity of the conjunctions is crucial; in our construction, this is the rank of the LDT
we start out with. Our method also relates such lists, with queries that are constant-arity
conjunctions of LTFs, to a related model studied in [7] of linear decision lists with equality
queries ELDLs; these are decision lists where each query is an exact linear threshold function
ELTF. Namely, we show the following:

I Theorem 2. The following are equivalent:
1. ELDLs of polynomial length.
2. Decision lists of polynomial length, querying functions in ANDr ◦ LTF for some fixed

r ≥ 2.

That r is at least 2 is crucial; at r = 1 the decision lists are LDLs, which, by this theorem,
are contained in the class ELDL of polynomial length ELDLs, but are known to be strictly
weaker (the ORn ◦ EQn function requires size 2Ω(n) in LDLs and super-polynomial size even
in LDTs, but can easily be computed by an ELDL of length n).

Note that ELDL is another frontier class within LTF ◦ LTF for which no lower bounds are
currently known. By Theorem 2, obtaining lower bounds for ELDLs is no easier than, and in
fact equivalent to, showing lower bounds for decision lists with AND2 ◦ LTF queries.

2 Some definitions, notation, and known results

We include here some basic definitions and notation; for more details, we follow standard
notation as, for instance, in [2].

A linear threshold function, denoted LTF, is a Boolean function f : {0, 1}n → {0, 1}
expressible as f(x) = 1 ⇔

∑
i wixi ≥ w0 for some w0, w1, . . . , wn ∈ R. If f is an LTF,

then so is ¬f . An exact linear threshold function, denoted ELTF, is a Boolean function
f : {0, 1}n → {0, 1} expressible as f(x) = 1⇔

∑
i wixi = w0 for some w0, w1, . . . , wn ∈ R.

From a geometric point of view, LTFs are halfspaces, and ELTFs are hyperplanes. The class
of ELTF functions is not closed under negations2. For every ELTF f , there are LTFs g, h

1 It is not hard to see that these lower bounds, presented in [9] for the Inner Product, hold for any function
with no large monochromatic squares; for any such function, the depth-rank tradeoffs and size lower
bounds hold. In particular, the functions MAJ ◦ XOR, OR ◦ EQ, SINK ◦ XOR, are all hard for LDT.

2 It is easy to show that the function that is 1 on precisely the unit vectors is an ELTF, but the negation
is not.
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such that h =⇒ g and f = g ∧ ¬h = g − h. We denote the class of functions that can be
written as an LTF (ELTF) as LTF (ELTF respectively).

For any function classes C1, C2, the function class C1 ◦ C2 is defined as :
C1 ◦C2 = {f(g1, g2, . . . , gm) | f ∈ C1; g1, . . . gm ∈ C2}. That is, these are functions computable
by depth-2 circuits with a C1 gate on top and C2 gates below it. The class C1 ◦ C2 ◦ C3 is
analagous to the above — depth-3 circuits with a C1 gate in top, C2 gates at the middle layer,
and C3 gates at the bottom layer.

Of special interest in this note are the classes LTFs ◦ LTF, ANDr ◦ LTF, ORk ◦ ELTF, and
LTFm ◦ ANDr ◦ LTF, where the subscript denotes the arity/in-degree of the functions/gates.
(We drop the subscript where the arity is not important.)

For function class C, a C-decision tree is a decision tree where each query computes some
function from C on the inputs. The size of such a decision tree is the number of query nodes
(or the number of leaves, which is just one more), the depth of the tree is the maximum
number of query nodes in any root-to-leaf path, and the rank of the tree is the largest d such
that a complete binary tree of depth d can be embedded in it. (Formally, the rank of a leaf is
0, and the rank of an internal node is the maximum rank of its children if they have unequal
rank, and is one more than the rank of its children if they have the same rank.) Of special
interest to us are LTF-decision trees, also referred to as Linear Decision Trees (LDTs).

A C-decision tree of rank one is a C-decision list, and the depth of the tree in this case is
called the length of the list. Thus a C-decision list of length ` has the form
If f1 then b1; elseif f2 then b2; . . .; elseif f` then b`; else ¬b`,
where each fi belongs to the class C, and each bi ∈ {0, 1}. For brevity, we shall often write
such a decision list as simply a tuple ((f1, b1), . . . , (f`, b`)). Of special interest to us are (all
of polynomial size) LTF-decision lists denoted LDL, ELTF-decision lists denoted ELDL, and
(ANDr ◦ LTF)-decision lists for some fixed constant r.

(Throughout this article, we shall use the standard convention, see for example [7], of
denoting the complexity class of functions computable efficiently by some computation model
using bold-face font. For example, the class of functions computable by polynomial size
LDLs is denoted LDL.)

We collect some known facts that will be used in proving our results.

I Proposition 3. 1. Any C-decision list of length s can be converted to a depth-2 circuit of
the form LTFs ◦ C.

2. An LDT of size s and rank r can be converted to an (ANDr ◦ LTF)-decision list of length
s. ([1]; see also Fact 1 in [11].)

3. Any linear threshold function on n variables can be computed as a disjoint OR of
O(n3 log n) exact threshold functions. Thus LTF ⊆ ORO(n3 log n) ◦ ELTF. ([7](Theorem
7)].)

4. AND ◦ ELTF = ELTF; any conjunction of ELTFs is also an ELTF ([7](Proposition 6 item
2)].)

5. An LDT of size s and depth d can be converted to an (ORs ◦ ANDd ◦MAJ) circuit. In
particular, LDT ⊆ MAJ ◦MAJ ◦MAJ.

Proof. Items 2,3,4 are shown in the references cited.
Item 1 is the folklore binary coding technique; ((f1, b1), . . . , (f`, b`)) evaluates to 1 on

input x if and only if
∑`+1

i=1(−1)1−bi2`+1−i[fi(x) = 1?] ≥ 0, where f`+1 is the constant 1
function and b`+1 = 1− b`.

To see item 5, observe that we can check if an input reaches any specific leaf of an LDT
by a conjunction of the queried LTFs, or their negations, that appear on the path from root
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to that leaf. Computing an OR over all leaves labelled 1 gives an ORs ◦ ANDd ◦ LTF circuit.
We know that OR ◦ AND ◦ LTF ⊆ MAJ ◦MAJ ◦ LTF ⊆ MAJ ◦MAJ ◦MAJ by [5]. J

3 Proving Theorem 1

At a high level, the conversion of a small-rank LDT to a depth-2 threshold circuit proceeds
in stages. We first convert the tree to a decision list using Proposition 3(2), then the list
to a depth-3 circuit using Proposition 3(1). The next crucial and new step, which we
describe below, is to replace each sub-circuit feeding into the top gate by a disjoint OR of
ELTFs. This generalisation of Proposition 3(3), that we show below, allows us to obtain an
equivalent LTF ◦ ELTF circuit. Expressing the ELTFs as the difference of LTFs completes the
construction.

We now describe the details of the conversion.
Proposition 3(3) tells us that a function described by a halfspace can also be seen as a

union of disjoint hyperplanes. The lemma below extends this to the intersection of half-spaces
ANDr ◦ LTF:

I Lemma 4. Let f : {0, 1}n → {0, 1} be computed by a circuit of the form ANDr ◦ LTFn.
Then there exists a set Af = {f1, f2, . . . , f `} where ∀i, f i ∈ ELTF and ` ∈ O(n3r logr n) such
that ∀x ∈ {0, 1}n:

If f(x) = 0 then ∀i ∈ [`] we have f i(x) = 0.
If f(x) = 1 then ∃i ∈ [`] such that f i(x) = 1 and ∀j 6= i, f j(x) = 0.

Proof. We first describe the proof for r = 2. Let f = g ∧ h where g, h ∈ LTF. Using
Proposition 3(3) on g, we obtain a set S = {g1, g2, . . . , gs} of ELTF functions with |S| ∈
O(n3 log n) such that g is the disjoint-OR of all the gi. Similarly, we obtain a set T of ELTF
functions with |T | ∈ O(n3 log n) for the function h. Define the following set:

A = {gi ∧ hj | gi ∈ S, hj ∈ T}

Note that since g (h) is a disjoint-OR of the functions in S (T respectively), if (g ∧h)(x) = 1,
then exactly one of the functions in S and exactly one of the functions in T will evaluate
to 1 on x. Hence if f(x) = 1, then exactly one of the functions in A evaluates to 1 on x.
On the other hand if f(x) = 0, then every function in A evaluates to 0. Thus f is the
disjoint-OR of the functions in A. As described above, A consists of AND2 ◦ ELTF functions.
By Proposition 3(4), each such function is in fact an ELTF function, and hence the set A has
all the properties stated in the lemma. Note that |A| ∈ O(n6 log2 n).

In general, for r > 2, we take A to be the cartesian product with operator ∧ of all the r

sets. This will give |A| ∈ O(n3r logr n). J

Using Lemma 4, we can now transform depth-3 circuits

I Theorem 5. For all r, s, we have

LTFs ◦ ANDr ◦ LTFn ⊆ LTFm ◦ LTFn

where m ∈ O(s · n3r logr n).

Proof. Let C be an LTFs ◦ ANDr ◦ LTFn circuit computing a function f . Let the top LTF
gate in C be

∑s
i=1 wigi ≥ t where the gi functions are computed by ANDr ◦ LTFn circuits.

For each gi, we use Lemma 4 to obtain a set Agi = {g1
i , g2

i , . . . , g`i
i } of `i ∈ O(n3r logr n)

hyperplanes.
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In the top gate of C, we replace each gi with
∑`i

j=1 gj
i to obtain a LTFs′ ◦ ELTF circuit

C ′, where s′ =
∑

`i = O(s · n3r logr n). Circuit C ′ computes the same Boolean function as
C since Lemma 4 guarantees that ∀x, gi(x) =

∑
j gj

i (x). Hence f ∈ LTFs′ ◦ ELTFn via C ′.
The top gate of C ′ is

∑s′

j=1 w′jfj ≥ t where the fj are the ELTFs described above. Replace
each fj in this expression with fj,1 − fj,2 where fj,1, fj,2 are LTFs whose difference is fj ,
to get circuit C ′′. Circuit C ′′ also computes f , and has the form LTFm ◦ LTFn, where
m = 2s′ ∈ O(s · n3r logr n). J

Now we can complete the proof of our main result.

Proof. (of Theorem 1.) Let f be an n-variate Boolean function computed by an LDT T

with rank r, size s. By Proposition 3(2), f is computed by a decision tree of length s

with queries in ANDr ◦ LTFn. By Proposition 3(1), f is computed by a circuit of the form
LTFs ◦ ANDr ◦ LTFn. By Theorem 5, f is computed by an LTFm ◦ LTFn circuit, where
m ∈ O(s · n3r logr n). J

4 Proving Theorem 2

We first observe an easy manipulation of decision lists of a particular form.

I Lemma 6. A Boolean function f computable by a (OR` ◦ C)-decision list L of length s can
also be computed by a C-decision list of length s`.

Proof. Let f and L satisfy the premise. Then L is an (OR`◦C)-decision list that has the form:
((f1, b1), (f2, b2), . . . , (fs, bs)). For all i ∈ [s], let fi = g1

i ∨ · · · ∨ g`i
i for some `i ≤ `, where

each gj
i is in C. Replacing each (fi, bi) in L with the sub-list ((g1

i , bi), (g2
i , bi), . . . , (g`i

i , bi)
gives a C-decision list computing f . J

Now the proof of Theorem 2 is straightforward.

Proof. (of Theorem 2) Since an ELTF is expressible as the conjunction of two LTFs, ELDLs
of length s can be expressed as decision lists of length s with queries in ANDr ◦ LTF for any
r ≥ 2.

It remains to prove that for any fixed r, decision lists of length s querying ANDr ◦ LTF
functions can be converted to ELDLs of length polynomial in s.

Let L be an ANDr ◦ LTF-decision list of length s. Using Lemma 4, we can reframe each
query as an OR` ◦ ELTF function, where ` ∈ O(n3r logr n). Using Lemma 6, we can strip
away the outer OR and obtain an ELDL with length O(s`) = O(sn3r logr n). J

Using Proposition 3(2) and Theorem 2, we can convert polynomial-size O(1)-rank LDTs
to polynomial-size ELDLs. Using Theorem 2, Proposition 3(1), and Theorem 5, we can
convert polynomial-size ELDLs to polynomial-size LTF ◦ LTF circuits. Thus we obtain the
following corollary.

I Corollary 7. The class of functions computed by polynomial-size ELDLs contains all
functions computed by O(1)-rank polynomial-size LDTs and is contained in the class of
functions computable by polynomial-size LTF ◦ LTF circuits. i.e., O(1)-rank-LDT ⊆ ELDL ⊆
LTF ◦ LTF.
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