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Abstract6

The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean7

vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v8

are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are9

central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained10

complexity is that k-OV cannot be solved by a randomised algorithm in nk−ϵpoly(d) time for any11

constant ϵ > 0.12

In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker13

models of computation than the general Turing Machine. In particular, we are interested in circuit14

lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR,15

or equivalently, a disjunction of CNFs.16

We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)k).17

In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use18

Ω(nk) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first19

unconditional Ω(nk) lower bound against k-OV for a computation model that can compute it in size20

O(nk). Our results partially resolve a conjecture by Kane and Williams [16] (page 12, conjecture 10)21

about depth-3 AC0 circuits computing 2-OV.22

As a secondary result, we show an exponential lower bound on the size of AND ◦ OR ◦ AND23

circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially,24

this lower bound works against k-OV as well.25
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2 Depth-3 Circuit Lower Bounds for k-OV

1 Introduction29

The area of fine-grained complexity is a branch of computational complexity that studies30

the complexity of functions with a finer lens than the usual approach that makes a coarse31

distinction between polynomial time and super-polynomial time. The area has been focused32

on functions in P that find uses in a variety of contexts. In the seminal paper by Vassilevska33

Williams and Williams [24], they show eight problems that are subcubic time equivalent to34

one another. Hence a truly subcubic time algorithm for any one of these problems will also35

imply a subcubic algorithm for the others.36

The holy grail of computation complexity is to show unconditional lower bounds to37

resources used in computing an explicit function. Unfortunately, the state of affairs in terms38

of unconditional lower bounds for computation, in its full generality, is rather bleak. The best39

known unconditional lower bounds for the running time of computing an explicit function40

are merely linear. Even for functions such as SAT that do not have any polynomial time41

running algorithms till date, we do not know how to show super-linear lower bounds. We42

do know from the time hierarchy theorem1 that there are languages in DTIME(n2) that are43

not in DTIME(nc) for any c < 2. However the languages constructed in a proof of the time44

hierarchy are not natural, and not as explicit as we would like. Results such as [24] and45

[7] that show equivalences among several important functions help in identifying candidate46

functions that might witness the time hierarchy theorem for their time class. One such47

candidate function for quadratic time2 is the 2-Orthogonal Vectors problem.48

The 2-Orthogonal Vectors problem 2-OVn,d is defined as follows: Given as input two49

tuples A ⊆ {0, 1}d and B ⊆ {0, 1}d of n vectors each, decide if there is a vector a ∈ A50

and a vector b ∈ B such that a and b are orthogonal. To define a generalization of this51

problem, we think of each vector from {0, 1}d as a characteristic vector of a subset from52

[d]. Then a natural generalization of 2-OVn,d is the problem k-OVn,d that takes as input k53

tuples A1, A2, . . . , Ak ⊆ {0, 1}d of n vectors each, and the task is to decide if there exists54

vectors a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak such that a1 ∩ a2 ∩ . . . ∩ ak = ϕ. The problems55

2-OV and k-OV have emerged as central problems in fine-grained complexity. An important56

hypothesis is that no deterministic, or randomized, algorithm computing 2-OVn,d can run in57

time O(n2−ϵ poly(d)) for any ϵ > 0. This is essentially saying that the brute force algorithm58

is also the best. Interestingly, Ryan Williams in [22], shows that under the strong exponential59

time hypothesis (SETH)3, 2-OV (3-OV) requires n2−o(1) time (n3−o(1) time respectively).60

In the absence of techniques that can show unconditional lower bounds, two natural61

directions of research emerge: (i) Conditional lower bounds to help us understand connections62

between various such problems, and “bottlenecks” to better algorithms. (ii) Unconditional63

lower bounds for weaker models of computation.64

The first line of research has seen a tremendous body of results. There are numerous65

fine-grained reductions, and lower bounds, conditioned on SETH, and the hardness of66

functions such as 2-OVn,d, and k-OVn,d. In the 2018 survey [23], Vassilevska Williams aptly67

describes it as “an explosion of hardness results based on OV”, and lists nineteen problems68

whose complexity is connected to that of k-OV. The fact that better algorithms for so many69

problems would imply better algorithms for k-OV, is perhaps not surprising. Intuitively, the70

1 Such hierarchy theorems go through for the unit cost RAM model as well.
2 We are being imprecise here so as to remain informal. The input length of 2-OVn,d is actually nd. So

“quadratic in n” is not the same as DTIME(n2)
3 [14],[6]For every ϵ > 0, ∃k such that k-SAT problem on n variables cannot be solved in O(2(1−ϵ)n) time
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k-OV function looks “canonical” in a certain sense, and has managed to hide itself inside71

several other problems that look quite different at the surface. These include seemingly72

unrelated problems such as Longest Common Subsequence [1], Edit Distance [2], Fréchet73

distance [4, 5], Regular Expressions Matching [3], to name a few. Their survey [23] is an74

excellent source for those looking for a thorough treatment of fine-grained complexity, and in75

particular, this line of research.76

The second direction, of showing lower bounds against weaker models of computation,77

seems to be lacking the same attention. To the best of our knowledge, the only paper78

that addresses this line is that of Kane and Williams [16]. In their paper they show tight79

lower bounds for formulas and branching programs computing 2-OV. We do not know any80

non-trivial lower bounds for computing 2-OV by models stronger than branching programs.81

Note that if a uniform circuit family of bounded fan-in, and size O(s(n, d)) computes82

k-OVn,d, then an algorithm that simply evaluates the circuit, computes k-OVn,d in time83

Õ(s(n, d)). So if the k-OV hypothesis is true, then we can expect any uniform circuit family84

computing k-OVn,d to have size Ω(nk). This begs the question:85

What is the largest class of circuits for which we can show Ω(nk poly(d)) size lower bounds86

against computing k-OVn,d?87

One class of Boolean circuits that has been extensively studied in terms of lower bounds88

is AC0 (gates from {∧,∨,¬}, unbounded fan-in, O(1)-depth). In fact we know exponential89

lower bounds against this class of circuits. So a good target would be to show that k-OVn,d90

requires AC0 circuits of size Ω(nk poly(d)). We note that k-OVn,d can indeed be computed91

by depth-3 AC0 circuits of size nkd, as shown later in equation 2. Can we show matching92

lower bounds?93

The best known lower bound against depth-3 AC0 circuits is 2Ω(
√

n) for computing majority.94

This bound can be obtained by several classic techniques from the 80s including the switching95

lemma by Håstad [12], the polynomial method by Razborov [19] and Smolensky [20], and96

finite-limit vectors by [13]. One of the most important problems in circuit complexity is to97

prove 2ω(n/ log log n) lower bounds to the size of depth-3 AC0 circuits computing an explicit98

function. This would imply superlinear lower bounds against O(log n) depth circuits (of99

bounded fan-in) due to the depth reduction procedure described by Valiant [21] (alternatively,100

see Chapter 11 of Jukna [15]). With the aim of making progress on this front, Goldreich and101

Wigderson proposed a new framework in [10] where they define a new model of arithmetic102

circuits that use multilinear gates, as opposed to allowing gates computing sum or product103

alone, and a new complexity measure on this model. The main motivation being that lower104

bounds to their complexity measure implies lower bounds to a specific class of Boolean105

depth-3 circuits that they call D-canonical. The best lower bounds obtained for this class106

of depth-3 Boolean circuits, using their framework, is Ω(2n3/5) by Goldreich and Tal [9].107

In fact, the brute force depth-3 AC0 circuits computing the negation of k-OV, described108

later in equation 3, bears close resemblance to D-canonical circuits since it is a product of109

set-multilinear functions, but over the Boolean algebra, as opposed to GF(2).110

More recently, the status of depth-3 AC0[⊕] circuits (gates computing xor are allowed in111

addition to the usual ∧, ∨, ¬) got an update. The lower bound for computing majority using112

depth-3 AC0[⊕] circuits was improved from 2Ω(n1/4) to 2Ω(
√

n) by Oliveira, Santhanam and113

Srinivasan [18]. This closed the gap between upper and lower bounds up to a logarithmic114

factor in the exponent.115

While techniques such as the switching lemma and the polynomial method work in116

a “bottom-up” fashion, the techniques in [13] is a “top-down” approach specifically for117
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depth-3 AC0 circuits. To the best of our knowledge, the only top-down strategies for circuit118

lower bounds are the Karchmer-Wigderson game by Karchmer and Wigderson [17], the119

discriminator lemma for depth-2 threshold circuits by Hajnal, Masse, Pudlák, Szegedy, Turán120

[11], and finite-limits by Håstad, Jukna, Pudlak [13]. Our results in this paper can be seen121

as a non-trivial application of the techniques of Håstad, Jukna, Pudlak [13].122

Kane and Williams [16] conjecture that any depth-3 AC0 circuit computing 2-OVn,d123

requires Ω(n2) wires (see page 12, conjecture 10 in [16]). Observe that 2-OVn,d (and k-OVn,d)124

can be computed by OR ◦ AND ◦ OR circuits with 2n2d wires (and knkd wires respectively):125

2-OVn,d(A, B) =
∨

i1,i2∈[n]

∧
j∈[d]

(¬ai1 [j] ∨ ¬bi2 [j]) (1)126

k-OVn,d(A1, . . . , Ak) =
∨

i1,...,ik∈[n]

∧
j∈[d]

(¬ai1 [j] ∨ · · · ∨ ¬aik
[j]) (2)127

128

Hence, informally, their conjecture for 2-OVn,d, and by extension k-OVn,d, is that the129

brute-force circuit is also the best.130

A second important question in [16] is about generalizing lower bounds from 2-OV to131

k-OV. As they have noted, generalizing their lower bounds to k > 2 would beat the state of132

the art in branching program lower bounds. Our results for depth-3 AC0 circuits generalize133

to k > 2, and scale well when the bottom fan-in is bounded.134

Our Results135

In this paper, we show lower bounds against the size of depth-3 AC0 circuit families computing136

k-OVn,d with the gates on the bottom layer restricted to having small fan-in. Our main137

result is the following:138

▶ Theorem 1. For all k ≤ d, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing139

k-OVn,d requires top fan-in Ω
(
( n

t )k
)
.140

Circuit families of the type OR ◦ AND ◦ OR can also be understood as a disjunction of141

CNFs. Therefore Theorem 1 is equivalent to the following statement:142

“Any disjunction of t-CNFs computing k-OVn,d requires size Ω(n/t)k.”143

(Here, by ‘t-CNF ’, we mean a CNF whose clauses have at most t literals, and by ‘size’ we144

mean the number of CNFs being used.)145

The brute-force circuit described earlier in equation 2 for k-OVn,d, is a disjunction of nk
146

many k-CNFs, and the lower bound from Theorem 1 for this model is Ω((n/k)k). Hence147

for all constant k > 1, the complexity of computing k-OVn,d as a disjunction of k-CNFs is148

Θ(nk).149

The proof technique used for Theorem 1 actually goes through for a more general class of150

depth-3 circuits where the bottom gates can have arbitrary fan-in as long as the number of151

negated literals among their inputs is at most t. We describe this in the next subsection.152

The more general theorem is the following. Let C−
t be the set of all unate functions (see153

Definition 7) that are negative unate on at most t variables.154

▶ Theorem 2. For all k ≤ d, any OR ◦ AND ◦ C−
t circuit computing k-OVn,d requires top155

fan-in Ω
(
( n

t )k
)
.156

It is important to note that the usual trick of using random restrictions to get rid of the157

bottom fan-in restriction in Theorem 1 is very unlikely to work as it is known that 2-OV158
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becomes easy to compute by AC0 circuits with high probability under random restrictions159

[16] (section 3).160

As a secondary result, we show an exponential lower bound on the size of AND◦OR◦AND161

circuits computing 2-OVn,d when d is very large:162

▶ Theorem 3. For all ℓ ≤ d, any AND ◦ OR ◦ AND circuit computing 2-OVn,d requires size163

s ∈ Ω(min{2ℓ,
(

d
nℓ

)n}). In particular, for ℓ = d/2n and d ∈ Ω(n2), s ∈ Ω(2n).164

Since 2-OVn,d reduces to k-OVn,d by projections trivially, the above theorem holds for165

k-OVn,d as well.166

Techniques.167

We note that throughout this paper, we work with the function k-Intn,d defined as the168

negation of k-OVn,d. We do this because k-Intn,d is a monotone function, and hence allows169

us several conveniences with regard to notation. Thus our lower bounds to AND ◦OR ◦ AND170

circuits computing k-Intn,d transfer directly to OR ◦ AND ◦ OR circuits computing k-OVn,d.171

More formally, k-Intn,d is defined as172

k-Intn,d(A1, . . . , Ak) =
∧

i1,...,ik∈[n]

∨
j∈[d]

(ai1 [j] ∧ · · · ∧ aik
[j]) (3)173

174

Main result. For our main result, the strategy we use is that of finite limit vectors. This is175

a top-down strategy that was used by Håstad, Jukna, and Pudlák in [13] for proving depth-3176

AC0 circuit lower bounds. We briefly describe the approach.177

Assume an AND ◦ OR ◦ AND circuit C = C1 ∧ · · · ∧ Cs(n) computes a function f . Then178

for any N ⊆ f−1(0), by an averaging argument, there is a Ci that correctly outputs 0 on at179

least 1/s fraction of inputs in N . Hence showing an upper bound to |C−1
i (0) ∩N| implies a180

lower bound to s(n) as s ≥ |N |/|C−1
i (0) ∩N|.181

The technique of finite limits by [13] is used to show that Ci cannot be correct on many182

inputs in N . The idea is to show that if C−1
i (0)∩N is large, then we can construct a 1-input183

y such that for any set of t input positions, it looks identical to some string in C−1
i (0) ∩N .184

Such a string y is called a t-limit for the set C−1
i (0) ∩ N . Then if the bottom gates in Ci185

can each see only t bits of the input, the string y fools all of them into evaluating to 0186

simultaneously, and hence Ci will output 0 on y. This is a contradiction since y ∈ C−1(1) by187

construction, but Ci(y) = 0 implies C(y) = 0. It is not hard to see that if the t-limit string188

y has the additional property that y ≥ x for all x ∈ C−1
i (0) ∩N , and each bottom gate in189

Ci has at most t positive literals among its inputs, the same argument goes through. We190

call such a y an upper t-limit to the set C−1
i (0) ∩N (as opposed to the term ‘lower t-limit’191

used in [13] for the case when y ≤ x). We shall also use the term “bottom positive fan-in” to192

indicate how many of the input literals are allowed to be positive for each bottom gate.193

We remark here that that all t-limit strings that we construct in this paper are also194

upper t-limit strings. Hence all our lower bounds for k-Intn,d go through for the circuit195

class AND ◦ OR ◦ C+
t where C+

t is the set of all unate functions that are positive unate on196

at most t variables. Informally, this means that the bottom gates can compute any unate197

functions, have unbounded fan-in, but at most t of the inputs can be positive literals. (The198

dual statement for k-OVn,d is Theorem 2 stated in the previous section.) As an example,199

lower bounds using this technique will also work against depth-3 circuits where the top and200

middle layers are AND and OR respectively, and the bottom layer consists of homogeneous201

linear threshold functions, each of which is defined by a vector of weights that has at most t202

positive weights.203
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An important observation about the technique described above is that it is impervious204

to the fan-in of the middle OR gates. So we could use a suitable DNF for each bottom205

gate and convert an AND ◦ OR ◦ C+
t circuit to an AND ◦ OR ◦ AND circuit with bottom206

positive fan-in at most t and a possibly larger middle fan-in. Since the technique gives lower207

bounds to top fan-in regardless of middle fan-in, all lower bounds that we can derive against208

AND ◦ OR ◦ AND circuits with bottom positive fan-in t using this technique, transfer to209

AND ◦OR ◦ C+
t without any change. Hence throughout this paper, we focus our attention to210

AND ◦ OR ◦ AND circuits.211

The key idea behind our construction of a t-limit is to first model any subset of maxterms212

of k-Intn,d as a k-partite hypergraph such that the maxterms in the subset and the hyperedges213

are in bijection. Then we construct a t-limit for the case of 2-Intn,d by using König’s theorem214

on this graph. To deal with the general case of k-Intn,d, we first show a sunflower lemma215

on the hypergraph, and then use the sunflower structure to construct a t-limit. We show216

a version of the sunflower lemma on our hypergraph that is very slightly less demanding217

than the standard sunflower lemma [8]. We note that this does not improve the asymptotic218

complexity of our final bound.219

We show in Section 5 a general construction for k-Intn,d that achieves a trade-off between220

top fan-in and bottom fan-in. This shows that in general, for circuits with bottom fan-in t221

computing k-Intn,d, our lower bound for the top fan-in is at least a factor of tk−1/k away222

from the corresponding upper bound.223

Secondary result. The exponential lower bound of [13] for OR ◦ AND ◦ OR circuits224

computing the iterated intersection function Sn,d for d ∈
√

n is of particular interest to us.225

The function Sn,d bears a close resemblance to 2-Intn,d. While Sn,d is the iterated intersection,226

2-Intn,d can be seen as “all-pairs” intersection.227

We show a reduction (via projections) from Sn,d/n to 2-Intn,d. The blow-up in the228

dimension of vectors is rather large, and we can conclude non-trivial lower bounds only for229

d ∈ ω(n).230

2 Preliminaries231

We often interpret a d-dimensional vector u ∈ {0, 1}d as the characteristic vector of a subset232

of [d].233

▶ Definition 4 (k-OVn,d). For tuples A1, A2, . . . , Ak ⊆ {0, 1}d where ∀i ∈ [k], |Ai| = n.234

k-OVn,d(A1, A2, . . . , Ak) = 1 ⇐⇒ ∃a1 ∈ A1,∃a2 ∈ A2, · · · ,∃ak ∈ Ak, such that235

a1 ∩ a2 ∩ · · · ∩ ak = ∅236
237

For notational convenience, we work with the negation of k-OVn,d throughout the paper.238

We use k-Intn,d to denote the negation of k-OVn,d, and is defined as follows:239

▶ Definition 5 (k-Intn,d). For tuples A1, A2, . . . , Ak ⊆ {0, 1}d where ∀i ∈ [k], |Ai| = n.240

k-Intn,d(A1, A2, . . . , Ak) = 1 ⇐⇒ ∀a1 ∈ A1,∀a2 ∈ A2, · · · ,∀ak ∈ Ak, we have241

a1 ∩ a2 ∩ · · · ∩ ak ̸= ∅242
243

An input to the function k-Intn,d has nk vectors, each of dimension d. Hence nkd many244

input bits in total.245

For any x, y ∈ {0, 1}d, we write x ≤ y if ∀i, xi ≤ yi. Similarly, we write x⊕ y to denote246

the string obtained by a point-wise xor between x and y.247
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▶ Definition 6 (Monotone function). We say that a Boolean function f is monotone if248

∀x, y ∈ {0, 1}d such that x ≤ y, we have f(x) ≤ f(y).249

The notion of monotone can be generalized to the notion of being unate:250

▶ Definition 7 (Unate function). A Boolean function f : {0, 1}n → {0, 1} is unate if there251

exists a monotone Boolean function g : {0, 1}n → {0, 1} and a string s ∈ {0, 1}n such that252

for all inputs x, we have f(x) = g(x⊕ s).253

Further, a unate function is positive unate (negative unate) on a variable xi if si = 0254

(si = 1 respectively).255

For monotone functions such as k-Intn,d, we can define maximal 0-inputs:256

▶ Definition 8. (Maximal 0-input) Let f be a monotone Boolean function. An input x is a257

maximal 0-input for f if f(x) = 0 and for all strings y such that x < y, f(y) = 1.258

Throughout this article, we will use the term “maxterm” and “maximal 0-inputs” inter-259

changeably. This deviates from the standard definition of maxterm, but is very convenient in260

our context.261

For a vector u ∈ {0, 1}d, and a set of indices S ⊆ [d], we denote the restriction of u to262

the indices in S as u|S .263

▶ Definition 9 (t-limit). A vector y ∈ {0, 1}m is said to be a t-limit for a set B ⊆ {0, 1}m
264

if and only if ∀S ⊆ [m] with |S| = t, ∃x ∈ B such that y ̸= x but y|S = x|S. Further,265

y ∈ {0, 1}m is said to be an upper t-limit if y ≥ x.266

We will always assume that the depth-3 circuits we consider are layered. i.e., inputs are267

read directly by only the gates at the bottom layer, and every layer reads outputs from the268

layer below it. This assumption does not affect asymptotic complexity. We say a depth-3269

circuit C has bottom positive fan-in (bottom negation fan-in) t if for every gate in the bottom270

layer, at most t of its inputs are positive literals (negated literals respectively).271

We denote the permutation group on k distinct elements with Sk. Let P = (P1, . . . , Pk) be272

an ordered partition of [d] into k parts. For any permutation σ ∈ Sk, we use Pσ to denote the273

ordered partition obtained by permuting the parts of P using σ. i.e., Pσ ≜ (Pσ(1), . . . , Pσ(k))274

3 AND ◦ OR ◦ AND circuits275

To describe the lower bound for k-Intn,d against AND ◦OR ◦ AND circuits, we first identify a276

special set of maxterms (maximal 0-inputs) of k-Intn,d. We do this by explicitly constructing277

such inputs.278

3.1 Maxterms of k-Intn,d279

Fix any integer k > 1 and d ∈ N. For any choice of n1, . . . , nk ∈ [n], and any ordered280

partition P = (P1, . . . , Pk) of [d] into k parts, we will construct an input N = (A1 . . . , Ak)281

where Ai ⊆ {0, 1}d with |Ai| = n such that N is a maxterm for k-Intn,d. Throughout, we282

will denote the j’th vector in Ai by aj
i .283

The input N = (A1 . . . , Ak) ∈ {0, 1}nkd is constructed as follows:284

Set every vector other than an1
1 , . . . , ank

k to all 1s.285

In each ani
i , set the indices contained in Pi to 0s. Set every other position to 1. Formally,286

for all i ∈ [k], set ani
i |Pi

← 0|Pi| and ani
i |[d]\Pi

← 1⃗.287
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We shall call ((n1, . . . , nk),P) the support of N , and denote it by sup(N).288

To see that N is indeed a maxterm of k-Intn,d, observe that since P is a partition of [d], for289

every position ℓ ∈ [d], there is a unique i ∈ [k] such that ℓ ∈ Pi. Therefore, by construction290

of N , ani
i [ℓ] = 0. So for every position ℓ, there is some vector among an1

1 , . . . , ank

k that is291

0 in position ℓ, and hence an1
1 ∩ · · · ∩ ank

k = ∅. Moreover, due to i being unique for each292

such ℓ, we also have a
nj

j [ℓ] = 1 for all j ̸= i. So changing ani
i [ℓ] from 0 to 1 results in the293

vectors intersecting at ℓ. Combining this with the fact that every vector in N other than294

an1
1 , . . . , ank

k is the all-1s vector, we conclude that N is indeed a maximal 0-input.295

We will be particularly interested in a subset of such maxterms of k-Intn,d that are formed296

by the permutations of the parts of some fixed partition into non-empty parts. We define297

this formally as follows.298

▶ Definition 10. (Permutation-maxterms) Fix an ordered partition P = (P1, . . . , Pk) of299

[d] into k non-empty parts. A permutation-maxterm with respect to P is any maxterm300

N constructed as above that has sup(N) = ((n1, . . . , nk),Pσ) for some n1 . . . , nk ∈ [n] and301

σ ∈ Sk.302

We shall use Nn,k,d
P to denote the set of all permutation-maxterms of k-Intn,d with respect303

to some ordered partition P of [d] into k non-empty parts. We drop the subscript, and304

superscripts if it is clear from context.305

Note that for any partition P as in the definition above, |Nn,k,d
P | = nkk! as there are nk

306

many k-tuples (n1, . . . , nk) and k! many permutations in Sk.307

▶ Remark 11. The proofs in this paper do not depend on the exact permutation chosen.308

Any arbitrary ordered permutation of [d] into k non-empty parts will work. For a further309

simplification, one could assume k = d, and fix the permutation P = (P1, . . . , Pk) to be310

Pi = {i} for all i ∈ [d].311

3.2 Support Graph312

We define a k-partite hypergraph to encode, and reason about, the relationship between313

permutation-maxterms of k-Intn,d. Here, by k-partite hypergraph we mean that every314

hyperedge must contain exactly one vertex from each part.315

Fix k ≥ 2 and d ≥ k, and any ordered partition P of [d] into k non-empty parts. For any316

subset S ⊆ Nn,k,d
P of permutation-maxterms of k-Intn,d(A1, . . . , Ak), we define the support317

graph of S as a k-partite hypergraph GS = (V1 ∪ · · · ∪ Vk, E) as follows. As usual we will318

use aj
i to denote the j’th vector in Ai. Corresponding to each vector aj

i ∈ Ai, we include k319

vertices in Vi denoted vj,1
i , . . . , vj,k

i . So for all i ∈ [k], we have |Vi| = nk and hence the graph320

GS is on nk2 many vertices.321

We define the set E of hyperedges as follows:322

(
vn1,b1

1 , . . . , vnk,bk

k

)
∈ E ⇐⇒ ∃ maxterm N ∈ S such that323

sup(N) = ((n1, . . . , nk),Pσ) and bi = σ(i) ∀i ∈ [k]324
325

▶ Remark 12. Note that the set of maxterms S ⊆ NP and the set of hyperedges in GS are in326

bijection. More precisely, a maxterm N with sup(N) = ((n1, . . . , nk),Pσ) corresponds to the327

hyperedge
(

v
n1,σ(1)
1 , . . . , v

nk,σ(k)
k

)
and vice-versa.328
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▶ Definition 13 (Co-disjoint). We call two vectors u ∈ {0, 1}d and v ∈ {0, 1}d as co-disjoint329

if and only if u ∩ v = ∅. i.e., the set of positions where u is 0, and the set where v is 0 are330

disjoint.331

For two tuples of vectors A = (a1, . . . , an) and B = (b1, . . . , bn) where ai, bi ∈ {0, 1}d, we332

say A and B are co-disjoint if for all i ∈ [n], ai and bi are co-disjoint.333

Maxterms M = (M1, . . . , Mk) and N = (N1, . . . , Nk), both from Nn,k,d
P , are said to be334

co-disjoint if and only if for all i ∈ [k], Mi and Ni are co-disjoint.335

Intuitively, the graph GS records where the 0s in each of the maxterms in S appear. This336

gives us the following close connection between co-disjointness of vectors across maxterms,337

and disjointness of their hyperedges.338

▶ Lemma 14. Let S ⊆ Nn,k,d
P , and let GS = (V1 ∪ · · · ∪ Vk, E) be its support graph. Let339

M = (M1, . . . , Mk) and N = (N1, . . . , Nk) be two maxterms from S and let EM , and EN340

respectively, denote their corresponding hyperedges in GS. Then for each i ∈ [k], we have the341

following two properties:342

1. If EM and EN share a vertex in Vi, then Mi = Ni.343

2. If EM and EN contain different vertices from Vi, then Mi and Ni are co-disjoint.344

Proof. Let sup(M) = (a1, . . . , ak,Pσ) and sup(N) = (b1, . . . , bk,Pπ).345

Proof of (1): If EM and EN share a vertex in Vi for some i ∈ [k], then v
ai,σ(i)
i = v

bi,π(i)
i346

and so we have ai = bi and σ(i) = π(i). Let ℓ = ai = bi, and let q = σ(i) = π(i). Then by347

construction of the maxterms M and N , all vectors in Mi other than mℓ
i are all 1s, and348

similarly all vectors in Ni other than nℓ
i are all 1s. The vector mℓ

i and nℓ
i both have 0s in349

indices from the part Pq, and 1s elsewhere. So mℓ
i = nℓ

i . Hence the tuple Mi and Ni are350

identical.351

Proof of (2): If EM and EN have different vertices from Vi, then v
ai,σ(i)
i ≠ v

bi,π(i)
i . So352

either ai ̸= bi or σ(i) ̸= π(i) (or both). The claim holds in both cases:353

If ai ̸= bi, then recall that by construction, the only vector that has 0s in Mi is the vector354

mai
i . Every other vector in Mi, and in particular mbi

i is the all 1s vector by construction.355

So the tuples of vectors Mi and Ni cannot both be 0 in any vector in any position.356

Else ai = bi and σ(i) ̸= π(i). By our construction of maxterms, the 0s in the vectors mai
i357

and nbi=ai
i are in the indices given by Pσ(i) and Pπ(i) respectively. Since P is a partition,358

and σ(i) ̸= π(i), Pσ(i) ∩ Pπ(i) = ∅. Therefore there cannot be an index where both mai
i359

and nbi
i are both 0.360

◀361

The following lemma follows directly from Lemma 14:362

▶ Lemma 15. Let S ⊆ Nn,k,d
P be a set of maxterms such that all hyperedges in GS are363

pairwise vertex-disjoint. Then the maxterms in S are pairwise co-disjoint. (i.e., for all364

positions ℓ ∈ [nkd], there is at most one maxterm in S that has 0 in the ℓ’th position.)365

Proof. Let M, N ∈ S be any two maxterms, and let the vertex set of GS be V = V1∪· · ·∪Vk.366

The hyperedges EM and EN , corresponding to M , and N respectively, are vertex-disjoint367

from the premise. So for each i ∈ [k], EM and EN contain different vertices from Vi. Applying368

Lemma 14 to GS , we obtain that Mi and Ni are co-disjoint for all i ∈ [k]. Hence there is no369

position where both M and N are 0 by definition of co-disjoint. ◀370
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3.3 Warm-up: 2-Intn,d371

We give a self-contained proof of our lower bound for the case of 2-Intn,d that demonstrates372

the strategy behind the proof for the general case.373

▶ Theorem 16. For all d > 1, any AND ◦ OR ◦ AND circuit with bottom fan-in t computing374

2-Intn,d requires top fan-in at least 2n2/t2.375

Proof. Let C = C1 ∧ C2 ∧ · · · ∧ Cs be an AND ◦ OR ◦ ANDt circuit with bottom fan-in t376

computing 2-Intn,d. Let P = (P1, P2) be any ordered partition of [d] into two non-empty parts.377

Consider the permutation-maxterms N = Nn,2,d
P of 2-Intn,d as described in definition 10.378

Since N is a subset of the 0-inputs of 2-Intn,d, the circuit C outputs 0 on every input in N .379

By an averaging argument, there exists i ∈ [s] such that Ci correctly outputs 0 on at least380

1/s fraction of inputs in N . We will show that |C−1
i (0)∩N| ≤ t2. Then the theorem follows381

as:382

2n2

s
= 1

s
|N | ≤ |C−1

i (0) ∩N| ≤ t2.383
384

In the following, we will show that ∀S ⊆ N with |S| > t2, there is a t-limit y ∈ C−1(1)385

for S. This will imply that |C−1
i (0)∩N| ≤ t2. To see why, let Ci = g1 ∨ g2 · · · ∨ gℓ with each386

gj having fan-in at most t. Suppose S ⊆ C−1
i (0) is a subset of vectors such that there is a387

string y ∈ C−1(1) that is a t-limit for S. Then, by definition of t-limit, for all T ⊆ [nkd] with388

|T | = t, there exists x ∈ S such that x|T = y|T . Now each of the gates gj is a function of at389

most t variables, and we know that for all inputs x ∈ S, we have gj(x) = 0 for all j ∈ [ℓ].390

Since y looks identical to some string in S when restricted to these t positions, all the gj will391

output 0 on y too. This forces Ci(y) = 0 leading to a contradiction since y ∈ C−1(1).392

Let S ⊆ N be any set with size |S| > t2 and let GS be its support graph. Note that since393

k = 2, GS is a bipartite graph with simple edges rather than hyperedges, and every maxterm394

in S corresponds to an edge in GS and vice versa. We claim at least one of the following is395

true for GS :396

(i) There exists a matching of size t + 1 in GS .397

(ii) There exists a vertex of degree at least t + 1 in GS .398

Indeed this is a consequence of König’s theorem: suppose the size of a maximum matching is399

at most t, then by König’s Theorem, the minimum vertex-cover has size at most t. Since400

there are |S| many edges in GS , there must be a vertex v in the vertex cover with degree at401

least |S|
t . Since |S| > t2, it must be that deg(v) > t which satisfies (ii). In both the above402

cases, we construct a string y ∈ C−1(1) that is a t-limit for S.403

Case (i): Consider the set S′ of maxterms corresponding to the edges in a maximum404

matching of GS . Then S′ is a set of at least t + 1 pairwise co-disjoint maxterms. Then405

y ≜ 1⃗ is a t-limit for S′. To see why, consider any set of t positions. By Lemma 15, at406

each of these positions, at most one of maxterms can be 0. Since there are t + 1 such407

maxterms and only t positions, there must be a maxterm where the value at all the given408

positions is 1, thus looking identical to y.409

Case (ii): Let the vertex set of GS be V = V1 ∪ V2. Without loss of generality, let the410

vertex v with deg(v) > t be in V1. Let E be the edges that have v as one endpoint, and411

let ME ⊆ S be the maxterms corresponding to the edges in E. Then by property (1) of412

Lemma 14, the first tuple of vectors in all these maxterms is the same. Let A1 be the413

first tuple of vectors. We construct the input y = (Y1, Y2) as follows: set Y1 ← A1, and414

set Y2 ← 1⃗.415
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Since the string y was obtained by taking first tuple of a maxterm, and setting every416

vector in the 2nd tuple to 1, it must be a 1-input.417

To see that y is a t-limit, take any subset of indices T ⊆ [2nd] with |T | = t. We will418

show that one of the maxterms in ME looks identical to y in these t positions. For every419

position from [nd] (the 1st tuple of vectors), every maxterm in ME is identical to y since420

Y1 = A1. So assume that all indices in T are from the range {nd + 1, . . . , 2nd}. By421

construction, y is all-1s in this range of indices. Since edges in E have distinct endpoints422

in V2, property (2) of Lemma 14 tells us that the second tuple of vectors in the maxterms423

in T are pairwise co-disjoint. This is similar to case (i): we have |ME | ≥ t + 1 many424

maxterms such that for any position in T , at most one of them is 0, and there are only t425

positions in T . So by the pigeon-hole principle, there must be a maxterm in ME that has426

1 in all positions from T , thus looking identical to y in these positions.427

◀428

Since 2-OVn,d is the negation of 2-Intn,d, the following is an immediate corollary of429

Theorem 16.430

▶ Corollary 17. For all d > 1, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing431

2-OVn,d requires top fan-in at least 2n2/t2.432

▶ Remark 18. It is easy to see that the t-limit string y constructed in the proof of Theorem433

16 is in fact an upper t-limit. Therefore the lower bound shown for 2-Intn,d works against a434

slightly more general class of circuits — AND ◦ OR ◦ AND circuits that have each bottom435

AND-gate seeing at most t positive literals. Analogously the lower bound for 2-OVn,d works436

against OR ◦ AND ◦ OR circuits where each bottom gate has at most t negated inputs.437

3.4 General case: k-Intn,d438

We will need the following lemma on k-partite hypergraphs:439

▶ Lemma 19. Let G be a k-partite hypergraph with m many hyperedges. Then for all t > 0440

at least one of the following holds:441

(i) There are more than t vertex-disjoint hyperedges in G.442

(ii) There is a vertex u such that deg(u) >
⌊

m
kt

⌋
.443

Proof. Let G be a k-partite hypergraph with m hyperedges. Let S be a largest set of444

vertex-disjoint hyperedges in G. If |S| > t, then the lemma is true. Suppose |S| ≤ t. Let VS445

be the set of vertices participating in the hyperedges in S. Since each hyperedge contains446

exactly k many vertices, |VS | ≤ kt. Also, since S is a largest such set, each of the remaining447

hyperedges must contain at least one vertex from VS . Therefore, by an averaging argument,448

there is a vertex u ∈ VS that is part of at least m−|S|
|VS | many hyperedges outside S, and 1449

hyperedge in S. Therefore, we have:450

deg(u) ≥ m− |S|
|VS |

+ 1 ≥ m− t

kt
+ 1 = m

kt
− 1

k
+ 1 >

⌊m

kt

⌋
451

452

◀453

We use Lemma 19 to show that if we start with enough hyperedges, then there is a subset of454

them such that in each part, either all of them coincide, or they are all distinct.455
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▶ Lemma 20. Let k ≥ 2, and let G = (V1 ∪ · · · ∪ Vk, E) be a k-partite hypergraph with456

|E| > k!tk

2 . Then there exists S ⊆ E with |S| > t such that for each i ∈ [k], exactly one of457

the following holds:458

1. There exists a vertex u ∈ Vi such that all hyperedges in S share the vertex u.459

2. No two hyperedges in S share the same vertex in Vi.460

Proof. Induction on k. Base case k = 2 is a consequence of König’s theorem: Since k = 2,461

G is just a bipartite graph. If there is a matching in G of size more than t, then let S be the462

edges in such a matching. Clearly the edges in S are vertex-disjoint and statement (2) holds.463

Else the maximum matching has size ≤ t. Then König’s theorem implies that the minimum464

vertex cover has size at most t. By an averaging argument, there must exist a vertex u such465

that deg(u) > |E|/t = k!tk

2t = 2t2

2t = t. Define S to be the set of edges that share u. Without466

loss of generality, let u ∈ V1. Then all edges in S must have distinct vertices in V2. Therefore467

in V1, they all coincide, and in V2 they are all distinct.468

Case k > 2: Apply Lemma 19 to G. If (i) holds, then we have a set S of more than t469

vertex-disjoint hyperedges. This means for all i ∈ [k], statement (2) holds and we are done.470

Suppose (ii) holds, then there is a vertex u such that deg(u) > ⌊m/kt⌋ = (k−1)! tk−1

2 . Let471

S be the set of all hyperedges that contain vertex u. Then |S| = deg(u). Let z ∈ [k] be such472

that u ∈ Vz.473

We construct a (k − 1)-partite hypergraph G′ = (V ′, E′) by removing Vz, and the z’th474

coordinate from each edge. More formally:475

V ′ ≜ V1 ∪ · · · ∪ Vz−1 ∪ Vz+1, · · · ∪ Vk476

E′ ≜ {(v1, . . . , vz−1, vz+1, . . . , vk) | (v1, . . . , vz−1, u, vz+1, vk) ∈ S}477
478

(Informally, an edge e′ ∈ E′ is just an edge e ∈ S with its z’th coordinate removed.)479

Note that |E′| = |S|. This is because ∀e1, e2 ∈ S such that e1 ̸= e2, the edges e1 and e2480

share the vertex u in Vz. So there must exist j ̸= z such that e1 and e2 use different vertices481

in Vj . Hence e′
1 ̸= e′

2. Further, observe that for any i ̸= z, e′
1, e′

2 ∈ E′ share a vertex in V ′
i if482

and only if e1 and e2 share the same vertex in Vi.483

Now G′ is a (k − 1)-partite hypergraph with |E′| = |S| > (k−1)! tk−1

2 many hyperedges.484

By induction on G′, for each i ̸= z, either all hyperedges in E′ share a vertex in V ′
i , or they485

use distinct vertices in V ′
i . By a previous observation, this means for all i ̸= z, all hyperedges486

in S share a vertex in Vi, or they use distinct vertices in Vi. We already know that all edges487

in S share the same vertex in Vz, namely u. Hence for all i ∈ [k], the edges in S satisfy (1)488

or (2). ◀489

▶ Remark 21. The statement of Lemma 19 can be seen as a sunflower lemma. Take any490

vertex u in the graph G that participates in at least one hyperedge from S. Then exactly491

one of the following holds: (i) The vertex u participates in exactly one hyperedge in S, or492

(ii) The vertex u participates in all hyperedges in S. The standard sunflower lemma would493

require more than k! tk hyperedges, while our statement needs half of that.494

We now describe how to construct an upper t-limit in the general case.495

▶ Lemma 22. LetM⊆ Nn,k,d
P be any set of permutation-maxterms of k-Intn,d for any k ≥ 2496

and d ≥ k. If |M| > k! tk

2 , then there is a string y ∈ k-Int−1
n,d(1) that is an upper t-limit for497

M.498

Proof. Let GM = (V, E) be the k-partite support graph of M (defined in section 3.2), and499

let V = V1 ∪ · · · ∪ Vk. By Lemma 20, there exists a set of hyperedges S ⊆ E with |S| ≥ t + 1500
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such that for each i ∈ [k], either all edges in S share the same vertex in Vi, or no two edges501

share a vertex of Vi. Let MS be the set of maxterms corresponding to S.502

Let B ⊆ [k] be the set of all indices i ∈ [k] such that all edges in S share the same vertex503

in Vi. Then B contains indices of parts where the edges in S use distinct vertices. (Observe504

that B is non-empty because otherwise all maxterms would share all vertices, and hence505

would be one and the same. But we know that |S| ≥ t + 1 > 1, so this cannot happen.) By506

property (1) of Lemma 14, this implies that for each i ∈ B, the i’th tuple of vectors in the507

maxterms in MS are identical. For each i ∈ B, denote the i’th tuple of vectors in all these508

maxterms as Ai.509

We construct the string y = (Y1, . . . , Yk) as follows:510

∀i ∈ B, set Yi ← Ai511

∀j ∈ B, set Yj ← 1⃗512
513

y is a 1-input of k-Intn,d:514

Observe that y can also be obtained by starting with any maxterm N = (N1, . . . , Nk) from515

S, and setting to 1s all vectors in Nj for all j ∈ B. Since N is a maxterm (maximal 0-input),516

the string y must be a 1-input. This also means that the string y is point-wise greater than517

or equal to any maxterm in S.518

y is a t-limit:519

Let T ⊆ [nkd] with |T | = t be a set of any t positions. For all i ∈ B, the string y is identical520

to every maxterm in MS . So assume that T only has positions that fall into tuples indexed521

by B. By property (2) of Lemma 14, the maxterms in MS are pairwise co-disjoint on all522

such positions. i.e., for any position ℓ ∈ T , at most one maxterm in MS can be 0. So we523

have t positions, and |MS | = |S| ≥ t + 1 maxterms. By pigeon-hole principle, there exists a524

maxterm in MS that is 1 on all these t positions, thus looking identical to y.525

Since y is point-wise greater or equal to every maxterm in S, we conclude that indeed y526

is an upper t-limit to M. ◀527

▶ Lemma 23. Let C be any OR ◦ AND circuit with bottom positive fan-in t computing a528

function f on n variables. Let y be any string that is an upper t-limit to f−1(0). Then529

C(y) = 0.530

Proof. Let g be any bottom AND-gate of C. Let P ⊆ [n] (Q ⊆ [n]) be the variables whose531

positive literals (negated literals resp.) are input to g. Then |P | ≤ t by assumption.532

Since y is an upper t-limit to g−1(0), it must be that for every set T of t positions there533

exists a string x(T ) ∈ g−1(0) such that y|T = x(T )|T . In particular, this holds for the set P .534

So in all positions from P , the gate g sees no difference between y and x(T ).535

The gate g sees negative literals of all variables from Q. Since y is an upper t-limit, we536

have x(T )|Q ≤ y|Q. Hence for all i ∈ Q such that ¬xi = 0, we also have ¬yi = 0. Hence537

g(y) ≤ g(x(T )) = 0 as x(T ) ∈ g−1(0). ◀538

▶ Theorem 24. For all k, d such that k ≤ d, any AND ◦ OR ◦ AND circuit with bottom539

positive fan-in t computing k-Intn,d requires top fan-in Ω
((

n
t

)k
)

.540

Proof. Let C = C1 ∧ · · · ∧ Cs be an AND ◦ OR ◦ ANDt circuit with bottom positive fan-in541

t, computing k-Intn,d. Consider the set N = Nn,k,d
P of all permutation-maxterms of k-Intn,d542

with respect to any ordered permutation P of [d] into k non-empty parts (see Definition 10,543
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and Remark 11). Since C outputs 0 on all inputs from N , there must be some OR ◦ ANDt544

subcircuit Ci that correctly outputs 0 on at least 1/s fraction of inputs in N . We will show545

that |C−1
i (0) ∩N| ≤ k! tk/2, and the theorem follows since:546

k! nk

s
= 1

s
|N | ≤ |C−1

i (0) ∩N| ≤ k! tk

2547
548

Let M = C−1
i (0) ∩ N . Suppose, for the sake of contradiction, |M| > k! tk/2. Since549

M⊆ N , we apply Lemma 22 to conclude that there exists a string y ∈ k-Int−1
n,d(1) that is550

an upper t-limit y for M. Then by Lemma 23, it must be that C(y) = 0. But this is a551

contradiction since y ∈ k-Int−1
n,d(1). ◀552

Since k-OVn,d is the negation of k-Intn,d, the following is an immediate corollary of Theorem553

24.554

▶ Theorem 1. For all k ≤ d, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing555

k-OVn,d requires top fan-in Ω
(
( n

t )k
)
.556

4 OR ◦ AND ◦ OR circuits557

In this section, we show that any OR ◦AND ◦OR circuit requires exponential size to compute558

2-Intn,d for any d ∈ Ω(n2). This result is a consequence of a known lower bound for the559

iterated intersection function defined as follows:560

▶ Definition 25 (Iterated Intersection). Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be561

tuples of vectors from {0, 1}d,562

Sn,d(A, B) = 1 ⇐⇒ ∀i ∈ [n] we have ai ∩ bi ̸= ∅563

Observe that Sn,d(A, B) differs from 2-Intn,d(A, B) in that the intersection between two564

vectors ai and bj when i ̸= j does not affect the value of Sn,d at all. Recall the definition of565

2-Intn,d(A, B):566

2-Intn,d(A, B) = 1 ⇐⇒ ∀i, j ∈ [n] we have ai ∩ bj ̸= ∅567
568

The function Sn,d can also be defined using an AND ◦ OR ◦ AND2 circuit of size nd:569

Sn,d(A, B) =
n∧

i=1

d∨
j=1

ai[j] ∧ bi[j].570

571

The result by Håstad, Jukna, Pudlák in [13] shows the following lower bound for computing572

Sn,d by OR ◦ AND ◦ OR circuits:573

▶ Proposition 26 ([13]). For all ℓ ≤ nd, any OR ◦AND ◦OR circuit computing Sn,d requires574

size min{2ℓ, (d/ℓ)n}.575

In particular, Proposition 26 shows that S√
n,

√
n requires 2Ω(

√
n) size OR ◦ AND ◦ OR576

circuits. This can be used to show lower bounds for 2-Intn,d:577

▶ Theorem 27. Let C be an OR ◦ AND ◦ OR circuit computing 2-Intn,d. Then for all ℓ ≤ d,578

size of C is at least min{2ℓ,
(

d
nℓ

)n}.579
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Proof. We show this by reducing Sn,⌊d/n⌋ to 2-Intn,d via projections. Let d′ = ⌊d/n⌋. Take580

any instance A = (a1, . . . , an) and B = (b1, . . . , bn) with ai, bi ∈ {0, 1}d′ of Sn,d′ . We581

create two sets of d-dimensional vectors A′ = (a′
1, . . . , a′

n) and B′ = (b′
1, . . . , b′

n) that serve582

as an instance of 2-Intn,d as follows — for all i ∈ [n], define a′
i = 1(i−1)d′

ai 1(n−i)d′ and583

b′
i = 0(i−1)d bi 0(n−i)d. Note that the dimension of each ai and bi is nd′ ≤ d.584

Observe that ai and bi are disjoint if and only if a′
i and b′

i are disjoint. So if (A, B) was a585

0-instance of Sn,d′ , then (A′, B′) is a 0-instance of 2-Intn,d.586

Further, if bj ̸= 0⃗ for some j ∈ [n], then for all i ̸= j, we have a′
i ∩ b′

j ̸= ∅. To see this,587

observe that if bj ̸= 0⃗, then there is some position p ∈ [(j − 1)d + 1, jd] such that b′
j [p] = 1.588

But by construction, the vector a′
i is 1 everywhere outside the interval [(i− 1)d + 1, id]. Since589

i ̸= j, the vector a′
i must be 1 at position p.590

If (A, B) was a 1-instance of Sn,d′ , then all ai intersect bi. This means all bi are non-zero591

vectors. Thus for all i, j ∈ [n], a′
i ∩ b′

j ̸= ∅.592

The above reduction shows that C can be used to compute Sn,⌊d/n⌋. Applying Proposition593

26 to C tells us that C must have size at least min{2ℓ,
(

d
nℓ

)n} for all ℓ ≤ d. ◀594

Our reduction in proof of Theorem 27 inflates the dimension of vectors by a factor595

of n making the obtained bound trivial when d ∈ O(n). However, we can still conclude596

an exponential lower bound by substituting ℓ = d/2n that gives us a lower bound of597

min{2d/2n, 2n} ∈ 2Ω(n) when d ∈ Ω(n2).598

Since 2-OVn,d is the negation of 2-Intn,d, the following is an immediate corollary.599

▶ Theorem 3. For all ℓ ≤ d, any AND ◦ OR ◦ AND circuit computing 2-OVn,d requires size600

s ∈ Ω(min{2ℓ,
(

d
nℓ

)n}). In particular, for ℓ = d/2n and d ∈ Ω(n2), s ∈ Ω(2n).601

5 A General Upper Bound602

In this section, we describe a more general construction of a depth-3 circuit to compute603

k-Intn,d that allows a trade-off between the top fan-in and bottom fan-in. We recall the604

construction given by equation 3 here:605

k-Intn,d(A1, . . . , Ak) =
∧

i1,...,ik∈[n]

∨
j∈[d]

(ai1 [j] ∧ · · · ∧ aik
[j]) (3)606

607

We now show that k-Intn,d can be computed by a monotone depth-3 AND ◦ OR ◦ AND608

circuit with top fan-in ⌈nk

t ⌉ and bottom fan-in at most kt for any integer 1 ≤ t ≤ nk.609

Let C be the circuit described in equation 3. Observe that each OR ◦ AND subcircuit610

of C is checking whether a particular choice ai1 ∈ A1, ai2 ∈ A2, . . . , aik
∈ Ak of vectors are611

intersecting or not. Since there are nk many such choices, the top fan-in is nk. Checking if a612

particular choice of k vectors intersects at some fixed coordinate uses an AND of fan-in k,613

and hence the bottom fan-in is k.614

We can generalise this to a circuit where each OR ◦ AND subcircuit checks whether t615

many such choices of vectors intersect. Each choice can be written as a k-tuple of vectors616

(ai1 , . . . , aik
). For convenience, let’s assume that t divides nk. Let T = {T1, T2, . . . Tnk/t} be617

a partition of the set of nk possible k-tuples of vectors into nk/t parts with each Tl containing618

exactly t many k-tuples. For the vectors in any particular k-tuple in Tl to have non-empty619

intersection, there must exist a position i ∈ [d] where all the k vectors in the k-tuple are 1.620

Hence to check if each of the k-tuples of vectors in Tℓ have non-zero intersection, it suffices to621
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check if there exist t positions i1, i2, . . . , it ∈ [d] such that the j’th k-tuple of vectors intersect622

in ij .623

Let Aj
l [i] be the AND of the bits in the ith position of the vectors in the jth tuple in624

Tl. This is an AND gate with fan-in k because there are k many vectors in each tuple. We625

construct the following circuit where the ℓ’th OR ◦ AND subcircuit checks if each k-tuple of626

vectors in Tℓ have non-zero intersection:627

Gt =
∧

l∈{1,..., nk

t }

∨
i1,i2,...it∈[d]

(A1
l [i1] ∧A2

l [i2] ∧ . . . At
l [it])628

Observe that Gt has top fan-in as nk/t, middle fan-in as dt, and bottom fan-in kt as desired.629
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