
Proving Unsatisfiability with Hitting Formulas

Yuval Filmus1, Edward A. Hirsch2, Artur Riazanov3, Alexander Smal4, and Marc Vinyals5

1Technion — Israel Institute of Technology, Israel, yuvalfi@cs.technion.ac.il
2Ariel University, Israel, edwardh@ariel.ac.il
3EPFL, Switzerland, tunyash@gmail.com

4Technion — Israel Institute of Technology, Israel, avsmal@gmail.com
5University of Auckland, New Zealand, marc.vinyals@auckland.ac.nz

August 14, 2024

Abstract

A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be
simultaneously falsified. Hitting formulas have been studied in many different contexts at least
since [Iwa89] and, based on experimental evidence, Peitl and Szeider [PS22] conjectured that
unsatisfiable hitting formulas are among the hardest for resolution. Using the fact that hitting
formulas are easy to check for satisfiability we make them the foundation of a new static proof
system Hitting: a refutation of a CNF in Hitting is an unsatisfiable hitting formula such that
each of its clauses is a weakening of a clause of the refuted CNF. Comparing this system to
resolution and other proof systems is equivalent to studying the hardness of hitting formulas.

Our first result is that Hitting is quasi-polynomially simulated by tree-like resolution,
which means that hitting formulas cannot be exponentially hard for resolution and partially
refutes the conjecture of Peitl and Szeider. We show that tree-like resolution and Hitting are
quasi-polynomially separated, while for resolution, this question remains open. For a system that
is only quasi-polynomially stronger than tree-like resolution, Hitting is surprisingly difficult to
polynomially simulate in another proof system. Using the ideas of Raz–Shpilka’s polynomial
identity testing for noncommutative circuits [RS05] we show that Hitting is p-simulated by
Extended Frege, but we conjecture that much more efficient simulations exist. As a byproduct,
we show that a number of static (semi)algebraic systems are verifiable in deterministic polynomial
time.

We consider multiple extensions of Hitting, and in particular a proof system Hitting(⊕)
related to the Res(⊕) proof system for which no superpolynomial-size lower bounds are known.
Hitting(⊕) p-simulates the tree-like version of Res(⊕) and is at least quasi-polynomially
stronger. We show that formulas expressing the non-existence of perfect matchings in the
graphs Kn,n+2 are exponentially hard for Hitting(⊕) via a reduction to the partition bound for
communication complexity.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 16 (2023)

Contents

1 Introduction 3
1.1 Our results and methods . 6

1.1.1 Simulations of Hitting-based systems and proof verification using PIT . . . 6
1.1.2 Separations of Hitting from classical systems 7
1.1.3 A lower bound for Odd Hitting . 8
1.1.4 A lower bound for Hitting(⊕) . 8

1.2 Further research . 9

2 Basic definitions 11
2.1 Basic notation . 11
2.2 Hitting formulas and proof system . 12
2.3 Other Hitting-based proof systems . 12

2.3.1 Hitting Res . 12
2.3.2 Odd Hitting . 13
2.3.3 Hitting[k] . 13
2.3.4 Hitting(⊕) . 13

3 PIT helps to simulate Hitting, and more 14
3.1 Extended Frege p-simulates Hitting . 14
3.2 Proof of Theorem 3.4: Ext-PC p-simulates Hitting 15
3.3 Bonus: succinct proofs and efficient verification of static (semi)algebraic proof systems 18

4 Hitting vs tl-Res and other classical systems 20
4.1 tl-Res quasi-polynomially simulates Hitting . 20
4.2 Hitting is quasi-polynomially stronger than tl-Res 22
4.3 Hitting and tl-Res(⊕) are incomparable . 24

4.3.1 A hard formula for Hitting . 24
4.3.2 A hard formula for tl-Res(⊕) . 25

4.4 Relation to Res and NS . 26
4.4.1 Dag-like query complexity of functions . 26
4.4.2 Upper bound in Res . 28
4.4.3 Upper bound in NS . 29

5 Odd Hitting 30

6 Hitting(⊕) 31
6.1 Evidence against quasi-polynomial simulation by tl-Res(⊕) 31
6.2 Communication simulation of Hitting(⊕) . 32
6.3 Lower bounds on prtε . 35
6.4 A lower bound on the size of Hitting(⊕) refutations 38

2

1 Introduction

Propositional proof complexity is a well-established area with a number of mathematically rich
results. A propositional proof system [CR79] is formally a deterministic polynomial-time algorithm
that verifies candidate proofs of unsatisfiability of propositional formulas in conjunctive normal
form. The existence of a proof system that has such polynomial-size refutations for all unsatisfiable
formulas is equivalent to NP = co-NP, and (dis)proving it is out of reach of the currently available
methods. Towards this goal, Cook and Reckhow’s paper [CR79] started a program to develop new
stronger proof systems that have short proofs for tautologies that are hard for known proof systems
and to prove superpolynomial lower bounds for these new systems. The idea is that obtaining new
results where our previous techniques fail helps in developing new techniques.

One of the oldest propositional proof systems is the propositional version of resolution (Res)
[Bla37, DP60] that operates on Boolean clauses (disjunctions of literals treated as sets) and has

only a single rule that allows introducing resolvents
ℓ1∨···∨ℓk∨x ℓ′1∨···∨ℓ′m∨x

ℓ1∨···∨ℓk∨ℓ′1∨···∨ℓ′m
. Superpolynomial lower

bounds on the size of a particular case of resolution proofs are known since [Tse68], while exponential
lower bounds on general Res proof size were proven by Haken [Hak85] and Urquhart [Urq87] for the
pigeonhole principle and handshaking lemma, respectively. Furthermore Res encompasses CDCL
algorithms for SAT [BKS04, PD11], that are the most successful SAT-solving algorithms to date.

Motivated by the quest of finding hard examples for modern SAT-solvers, Peitl and Szeider
[PS22] experimentally investigated the hardness of hitting formulas for resolution. A hitting formula
as a mathematical object has been studied under a number of names and in various contexts (a
polynomial-time solvable SAT subclass, partitions of the Boolean cube viewed combinatorially, etc.)
[Iwa89, DD98, Kul04, Kul11, GK13, Gwy14, KZ13, PS22, FHK+23]. A formula H =

∧
iHi in CNF

with clauses Hi is a hitting formula if every pair of clauses cannot be falsified simultaneously (that
is, there is a variable that appears in the two clauses with different signs). Equivalently, the sets Si

of truth assignments falsifying clauses Hi are disjoint, thus in an unsatisfiable hitting formula every
assignment in {0, 1}n is covered exactly once by Si’s. Peitl and Szeider conjectured that hitting
formulas might be among the hardest formulas for resolution. Their conjecture was supported by
experimental results for formulas with a small number of variables.

One of the reasons why hitting formulas received an abundance of attention is that they are one
of the classes of CNFs that are polynomial-time tractable for satisfiability checking (along with e.g.
Horn formulas and 2-CNFs) [Iwa89]. First, it is straightforward to check whether a CNF formula
is hitting: simply enumerate all pairs of clauses and check that they contain some variable with
opposite signs. Then the number of satisfying assignments of a hitting formula is 2n −

∑
i 2n−|Hi|,

where |Hi| is the number of literals in Hi and n is the number of variables in H.
This nice property allows us to think about hitting not only as a class of formulas but as an

algorithm to determine satisfiability. For the algorithm to apply to any kind of formulas we need to
introduce nondeterminism, and this is best modelled with a proof system. Thus we define a new
static proof system based on unsatisfiable hitting formulas. A refutation of an arbitrary CNF F
in the Hitting proof system is an unsatisfiable hitting formula such that each of its clauses is a
weakening of a clause in F (i.e. a clause of F with extra literals).

By thinking of hitting as a proof system we reinterpret the conjecture of Peitl and Szeider as
the following question: is it possible to efficiently formalize the model counting argument above
within the Res proof system? Then the question of the hardness of hitting formulas for Res can be
phrased in terms of the relative strength of Res and Hitting: can Hitting be separated from

3

Res? That is, can we find formulas that are easy to refute in Hitting and hard to refute in Res?
More in general, by relating Hitting to other proof systems we can pinpoint both the hardness of
hitting formulas and the ability to formalize Iwama’s counting argument in those proof systems.

It turns out that Hitting is tightly connected to the tree-like version of Res (tl-Res), which
is exponentially weaker than Res [BSIW04]. It encompasses all DPLL algorithms [DP60, DLL62],
which form the base of multiple (exponential-time) upper bounds for SAT (see, e.g., [DH21] for a
survey). A DPLL algorithm splits the input problem F into subproblems F |x=0 and F |x=1 for some
variable x and applies easy simplification rules.

More precisely, tl-Res quasi-polynomially simulates Hitting (Theorem 4.2), and the simulation
cannot be improved to a polynomial one (Theorem 4.14). This partially answers the question
“How hard can hitting formulas be for resolution?” raised in [PS22] in the following way. Not only
every hitting formula has proofs of quasi-polynomial size, their unsatisfiability can be decided in
quasi-polynomial time by a DPLL algorithm. The simulation also entails that every exponential-size
lower bound we already have for tl-Res holds for Hitting, which in particular allows for a
separation of Res from Hitting.

Even though the very weak proof system tl-Res is enough to quasi-polynomially simulate
Hitting, it is surprisingly difficult to push the upper bound all the way to a polynomial: even
though we compare Hitting to a number of known proof systems with different strengths with the
hope of obtaining a polynomial simulation, the only system where we can polynomially simulate
Hitting is the very powerful Extended Frege (Corollary 3.5). As a byproduct of this result,
we prove also that various static (semi)algebraic proof systems (Nullstellensatz, Sherali–Adams,
Lovász–Schrijver, Sum-of-Squares) are indeed Cook–Reckhow (deterministically polynomial-time
verifiable) proof systems even when we measure the proof size in a succinct way, ignoring the part
enforcing Boolean variables. Such distinction can be safely ignored in lower bound results, but in
principle ought to be accounted for when constructing upper bounds. Efficient deterministic formal
proof verification becomes more and more important because of the increasing interest in algorithms
based on sum-of-squares [BS14, FKP19].

In more detail, we study the relation between various versions of Hitting and known proof
systems such as:

• Res(⊕), defined in [IS20] by analogy with the system Res(Lin) of [RT08] in the same vein
as Kraj́ıček’s R(. . .) systems [Kra98]. No superpolynomial-size lower bound is known for it,
however, [IS20] proves an exponential bound for its tree-like version. Res(⊕) extends Res by
allowing clauses to contain affine equations modulo two instead of just literals, and this is
the weakest known bounded-depth Frege system with parity gates where we do not know a
superpolynomial-size lower bound.

We prove two separations showing that Hitting is incomparable with tl-Res(⊕) (Sect. 4.3,
the separation is quasi-polynomial in one direction and exponential in the other direction).

• Nullstellensatz (NS), defined in [BIK+96] (where also an exponential-size lower bound was
proved), along with its version NSR [dRLNS21] that uses dual variables (x = 1−x introduced
in [ABSRW02] for PC [CEI96], which is a “dynamic” version of Hilbert’s Nullstellensatz that
allows generating elements of the ideal step-by-step). An exponential-size lower bound for
NSR follows from [BCIP02] (see Corollary 5.4).

• Cutting Planes (CP), defined in [CCT87], uses linear inequalities as its proof lines and has

4

two rules: the rule introducing nonnegative linear combinations and the integer rounding rule
(

∑
cixi≥c∑

cixi≥⌈c⌉
for integer ci’s).

• Frege, defined in [Rec76, CR79], can be thought of as any implicationally complete “textbook”
derivation system for propositional logic. Proving superpolynomial lower bounds for it is a
long-standing open problem that seems out of reach at the moment.

• Systems augmented by Tseitin’s extension rule and its analogues, such as Extended Frege.
This rule allows the introduction of new variables denoting some functions of already introduced
variables.

Given that known proof systems do not obviously polynomially simulate Hitting, this leaves
us with the following question: does augmenting SAT algorithms with the ability to reason about
hitting formulas lead to any improvements? Or its counterpart about proof systems, how powerful
are proof systems resulting from combining known proof systems with Hitting?

Recall that a DPLL algorithm splits the input problem F into subproblems F |x=0 and F |x=1.
Algorithms that give upper bounds for SAT use more general splittings; in fact one can split over any
tautology, that is, consider subproblems F ∧G1, . . . , F ∧Gm, where G1∨· · ·∨Gk is a tautology. Put
in another way, one can split over an unsatisfiable formula G1 ∧ · · · ∧Gk — including unsatisfiable
hitting formulas. We use this idea, although in a DAG-like context, to introduce the following
generalization of Hitting.

Hitting Res merges Hitting with Res. It uses the weakening rule and also extends the main
resolution rule to

C1 ∨H1, . . . , Ck ∨Hk

C1 ∨ · · · ∨ Ck

for a hitting formula H1∧· · ·∧Hk. It is also p-simulated by Extended Frege (Corollary 3.6).

Other ways in which we can generalize Hitting while keeping with the spirit of the proof system
are to allow some leeway in the requirement for the subcubes to form a partition, or in the type of
objects that constitute the partition. While at first these may appear to be a mere mathematical
curiosity, the connections to Nullstellensatz in the case of Odd Hitting and to the partition bound
in the case of Hitting(⊕) show that these are natural proof systems.

Hitting[k] strengthens Hitting by allowing to cover a falsifying assignment with at most k
sets. Such proofs can be efficiently verified and p-simulated in Extended Frege using the
inclusion-exclusion formula and polynomial identity testing (PIT) (Theorem 3.10).

Odd Hitting strengthens Hitting by allowing to cover a falsifying assignment with an odd
number of sets. Such proofs also can be efficiently verified and p-simulated in Extended
Frege using PIT (Prop. 3.8). This system is equivalent to a certain version of Nullstellensatz,
which we discuss in Sect. 5. We prove a lower bound for Odd Hitting (Corollary 5.4) that
allows us to separate it from Res.

Hitting(⊕) strengthens Hitting by allowing the complements of affine subspaces instead of
clauses, that is, a clause can now contain affine equations instead of just literals, and Si is
thus an affine subspace. Such proofs can be verified similarly to Hitting using the Gaussian
elimination. We prove an exponential-size lower bound for Hitting(⊕) (Theorem 6.9) which,
additionally, separates it from CP.

5

tl-Res

Hitting tl-Res(⊕)

Hitting(⊕)Extended Frege CP

Res

Odd Hitting

6.9

l.b. 4.5

4.7, 4.14 [IS20]

as in 4.7

4.22, 4.19

4.2

3.5

3.8

5.1, 5.4

Figure 1: Arrow A B means that B p-simulates A, a dashed arrow A B means B quasi-
polynomially simulates A. A B means a quasi-polynomial separation (a lower bound is for the
system A). An arrowhead in the tail A B means that A is exponentially separated from B.
A dotted line A B means that we do not know any simulations between A and B. Known
simulations involving CP and Extended Frege are not shown.

A summary of our simulations and separations is depicted in Figure 1, and more precise bounds
are stated in Table 1. Now we turn to a more detailed discussion.

Statement Hitting Hitting(⊕) Odd Hitting tl-Res tl-Res(⊕) Res CP

4.14, 4.31 2Õ(m) 2Ω̃(m2−ε) 2Õ(m)

4.22 2Õ(m) 2Ω̃(m2−ε)

5.4 2Ω̃(n) poly

4.19, [IS20] 2n
Ω(1)

poly 2Ω(n)

6.9 2Ω(n) poly

Table 1: Precise bounds in our separations. Upper bounds are black and lower bounds are purple.

1.1 Our results and methods

1.1.1 Simulations of Hitting-based systems and proof verification using PIT

Proof verification is not straightforward in static (semi)algebraic proof systems that use either
dual variables x̄ = 1 − x or do not open the parentheses in (1 − x) for the negation of a variable
x (such as static Lovász–Schrijver or Sherali–Adams proofs or NS proofs with dual variables). A
similar situation occurs with the verification of Hitting proofs which, contrary to most (or all?)

6

known proof systems, is based on model counting. Such reasoning is not expressed naturally in
propositional logic, and it makes it difficult to simulate Hitting proofs in other proof systems. We
observe that Hitting proofs can be expressed similarly to NS proofs with dual variables without
explicitly mentioning the side polynomials for x2 − x and x + x̄− 1 (in particular, we notice that
over GF(2), such proofs, which we call succinct NSR proofs, are equivalent to Odd Hitting proofs,
and that over any field they p-simulate Hitting proofs in a straightforward manner). We show that
the two problems have the same cure: we provide an efficient polynomial identity testing procedure
for multilinear polynomials modulo x + x̄− 1 that can also be formalized in Extended Frege.

Our approach uses the main idea of the Raz–Shpilka polynomial identity testing for noncommu-
tative circuits [RS05]. We introduce new variables for quadratic polynomials; crucially it suffices
to do so for a basis instead of the potentially exponential number of polynomials. This serves as
an inductive step cutting the degrees. Namely, at the first step we consider two variables x1 and
x2 and quadratic polynomials (potentially, (1 − x1)(1 − x2), (1 − x1)x2, x1(1 − x2), x1x2, 1 − x1,
x1, 1 − x2, and x2) appearing in the monomials mi as x̄1x̄2, x̄1x2, etc., and replace them using
linear combinations of new variables y1,2i , thus decreasing the degree by one. At the next step we

treat all the variables y1,2i as a single “layer” (note that they are not multiplied by each other). We

merge this layer of y1,2i with x3, getting a layer of variables y1,2,3j , and so on, until we reach a linear
equation, which is easy to verify.

In order to implement this strategy we prove a lemma allowing us to merge two layers of variables
(Lemma 3.7) by ensuring that after the merge the equivalence of polynomials still holds.

By using this polynomial identity testing we get not only an efficient algorithm for checking static
proofs (including succinct NSR proofs), but also a polynomial simulation in the Extended Polynomial
Calculus (Ext-PC) system that has been recently used in [Ale21], where an exponential-size lower
bound has been proved. Given that Ext-PC over GF(2) is equivalent to Extended Frege
(Prop. 3.3), we obtain p-simulations of Hitting, Hitting Res, Odd Hitting and Hitting[k] in
Extended Frege.

A simpler proof that succinct SA is verifiable in polynomial time was developed independently
in [dRPR24], where the proof system is named semantic SA. Interestingly, after applying algebraic
manipulations, their proof implicitly reduces the problem of verifying a SA proof to that of verifying a
Hitting proof. This suggests that proofs systems relying on model counting are not that uncommon
after all.

1.1.2 Separations of Hitting from classical systems

A polynomial simulation of tl-Res in Hitting (Theorem 4.7) can be easily shown by converting
tl-Res to a decision tree, then the assignments in the leaves provide a disjoint partition of the
Boolean cube. We show a quasi-polynomial simulation in the other direction through careful analysis
of a recursive argument (Theorem 4.2). The main idea is that an unsatisfiable formula containing m
clauses must necessarily contain a clause of width w ≤ log2m, and in a hitting formula this clause
must contain a variable that occurs with the opposite sign in at least (m− 1)/w clauses. Making a
decision over this variable thus removes a lot of clauses in one of the two branches. We also employ
a generalization of this idea to show that Hitting[k] proofs can be quasi-polynomially simulated in
Hitting (Prop. 4.4) and hence in tl-Res.

A polynomial simulation in the other direction is impossible because of a superpolynomial
separation. To show this result (Theorem 4.14) we use query complexity, and in particular, the

7

result of [AKK16] separating unambiguous query complexity from randomized query complexity.
We lift it using xorification to obtain the desired separation.

We then obtain a two-way separation between Hitting and tl-Res(⊕) (Sect. 4.4). On the
one hand Tseitin formulas are hard for Res [Urq87] and hence for Hitting. On the other hand,
[IS20] shows that they have polynomial-size tl-Res(⊕) (and thus also Hitting(⊕)) proofs. In
the other direction, similarly to the separation between Hitting and tl-Res, we again use
the separation of [AKK16] between unambiguous certificate complexity and randomized query
complexity as our starting point. However, since for tl-Res(⊕) we are unable to use decision
trees, we need to go through randomized communication complexity arguments, using a randomized
query-to-communication lifting theorem [GPW17].

Eventually, we discuss separations of Hitting from Res and NS. While the relevant lower
bounds for Hitting follow directly from known lower bounds for tl-Res, the other direction seems
much more difficult, if possible at all. One natural candidate for a separation result could be the
formulas that we used to separate Hitting from tl-Res, but this cannot work because they turn
out to have Res proofs of polynomial size (Theorem 4.31). We show this fact using dag-like query
complexity [GGKS20], the analogue of resolution width in query complexity, which stems from a
game characterization of Res [Pud00, AD08]. We need to reprove the result of [AKK16] accordingly,
improving it to a separation between unambiguous dag-like query complexity and randomized query
complexity. This immediately yields an upper bound on the Res width. Concerning NS, it is a
simple observation that Hitting is simulated by NS with respect to width vs degree. Furthermore,
as we discussed above, succinct NSR proofs (over any field) simulate Hitting with respect to size,
therefore separating Hitting from Res would amount to separating explicit vs succinct NSR size.

1.1.3 A lower bound for Odd Hitting

As mentioned above Odd Hitting is polynomially equivalent to succinct NSR proofs over GF(2),
and we explain this in more detail in the beginning of Sect. 5. It is easy to see that Odd Hitting
has short proofs of Tseitin formulas and thus it is exponentially separated from Res. The opposite
direction (Cor. 5.4) requires slightly more effort. It is known that Res width can be separated from
NS degree [BCIP02]. We use this result to get our size separation using xorification and the random
restriction technique of Aleknhovich and Razborov (see [BS09]).

1.1.4 A lower bound for Hitting(⊕)

Our lower bound for Hitting(⊕) (Theorem 6.9) uses a communication complexity argument.
Communication complexity reductions have a long history of applications in proof complexity
[BPS05, HN12, GP18, IS20, dRNV16]. The first step in these reductions is a simulation theorem,
which shows that a refutation of an arbitrary CNF ϕ in the proof system of interest can be used to
obtain a low-cost communication protocol solving the communication problem Search(ϕ): given
an assignment to the variables of ϕ, find a clause of ϕ falsified by this assignment. The second
step is reducing a known hard communication problem (usually set disjointness) to Search(ϕ) for a
carefully chosen CNF ϕ.

Until recently the applications of these reductions were limited to either proving a lower bound
for a tree-like version of the system or proving a size-space tradeoff, neither of which applies to our
result. However, over the last few years, the list of applications of the communication approach in
proof complexity has grown significantly. A major breakthrough came in [Sok17, GGKS20] with a

8

dag-like lifting theorem from resolution to monotone circuits and cutting plane refutations. Another
novel idea was introduced in [GHJ+22], where the authors derived a lower bound for Nullstellensatz
via a communication-like reduction from the Ω(

√
n) lower bound on the approximate polynomial

degree of ANDn [NS95].
We use yet another twist on this idea: we apply a communication reduction to the partition

bound [JK10], a generalization of randomized communication protocols which simulates Hitting(⊕)
(Lemma 6.6). To the best of our knowledge this is the first application of the partition bound in
a proof complexity context. We then adapt (Theorem 6.7) a communication reduction from set
disjointness in [IR21] so that it works for the partition bound and use the fact that set disjointness is
still hard for the partition bound to get our lower bound (Theorem 6.9). The choice of the reduction
of [IR21] is not particularly important, and we believe that reductions from [BPS05, GP18, IS20]
should also work. A nice feature of the reduction we use is that we get a lower bound for a natural
combinatorial principle: a formula encoding the non-existence of a perfect matching in a complete
bipartite graph Kn,n+2. Because this formula is known to have short CP proofs, we obtain a
separation between Hitting(⊕) and CP as an immediate corollary.

1.2 Further research

Relation between Hitting and Res. Although we have gained a lot of understanding of the
hardness of hitting formulas for resolution, the initial question of Peitl and Szeider is not fully
answered. In particular, we do not know whether hitting formulas can be superpolynomially hard
for Res. The negative answer implies a simulation of Hitting by Res. To show the positive
answer it is sufficient to separate two query complexity measures: dag-like query complexity (w) and
unambiguous certificate complexity (UC). The dag-like query complexity of the falsified clause search
problem for a formula F corresponds to the resolution width of F . The unambiguous certificate
complexity for this problem corresponds to the width of Hitting refutations of F . Note that
unambiguous certificate complexity only makes sense for functions, while dag-like query complexity
is defined for (total) relations. Unfortunately, separating even regular certificate complexity (C) and
w is an open problem for functions (without the uniqueness requirement the certificate complexity
can only decrease, so it might be easier to separate w from C than from UC). Lemma 4.23 and
Lemma 4.29 show that w is resistant to known lower bound techniques in the field of query complexity,
so tackling it will likely lead to finding new techniques there. Notice that we know how to separate w
and C for relations : every lower bound on the resolution width for an O(1)-CNF formula constitutes
a separation for the corresponding falsified clause search problem. Such a separation (constant vs.
polynomial) is unachievable for functions (we cannot hope for better than quadratic separation for
functions as w(R) ≤ C(R)2). Can we use ideas from resolution lower bounds to separate w and UC
(or at least C)?

Separate Hitting and Hitting[2]. With xorification like in Lemma 4.9 this problem can be
shown to be equivalent to a simple (if only in the statement!) question in query complexity: separate
unambiguous certificate complexity and 2-unambiguous certificate complexity (where every input
has one or two certificates). It is known how to separate one-sided versions of these query models
[GKY22], but similarly to the question of Hitting vs Res it is unclear how to extend this to the
two-sided case.

9

Is it possible to separate Hitting(⊕) and tl-Res(⊕)? In Section 6.1 we give evidence that
a simulation of Hitting(⊕) by tl-Res(⊕) along the lines of Theorem 4.2 is not possible. That,
however, does not rule out the existence of such a simulation. [She21, Conjecture 5.1.3] conjectures
that every affine subspace partition can be refined to one corresponding to a parity decision tree
with a quasi-polynomial blow-up. With some caveats1, the statement of this conjecture is equivalent
to the existence of quasi-polynomial simulation of Hitting(⊕) by tl-Res(⊕). So, is there an
exponential separation between these two systems? It seems that communication-based lower bounds
for tl-Res(⊕) can be transferred to Hitting(⊕) as it is done in Section 6. There are several
other techniques that yield tl-Res(⊕) lower bounds such as prover-delayer games [IS20, Gry19],
reduction to polynomial calculus degree [GK18], and the recent lifting from decision tree depth to
parity decision tree size directly [CMSS22, BK22]. None of those seem to work for Hitting(⊕), so
it is reasonable to think that some of the yielded formulas may have an upper bound in Hitting(⊕).
The most promising technique seems to be the lifting since it yields a wide family of formulas hard
for tl-Res(⊕) with the source of hardness inherent to the tree-like structure of refutations.

Better upper bound on Hitting. One intriguing matter is that although a very weak proof
system such as tl-Res is enough to quasi-polynomially simulate Hitting, we need to go all the
way to the very strong proof system Extended Frege for the simulation to become polynomial. A
natural question is then what is the weakest proof system that is enough to polynomially simulate
Hitting.

It is consistent with our findings that a fairly weak proof system such as NSR is already enough
to simulate Hitting; indeed this would be the case if NSR and succinct NSR were equivalent.
Hence we ask the same question regarding succinct (semi)algebraic proof systems: what is the
weakest proof system that polynomially simulates succinct NSR or succinct SA? And in particular,
is succinct NSR equivalent to NSR and is succinct SA equivalent to SA? One way to answer all
these questions would be to formalize the PIT of Theorem 3.4 in a weaker proof system.

The situation with Hitting(⊕) is even worse. We have shown how to p-simulate most of the
generalizations of Hitting that we defined, including Odd Hitting and Hitting[k], in Ext-PC,
but the argument does not work as is for Hitting(⊕) since we are relying on a noncommutative
PIT. Therefore we do not know even an Extended Frege simulation of Hitting(⊕) (though it is
of course quite expected).

Non-automatability of Hitting. It follows from Theorem 4.2 and quasi-polynomial automata-
bility of tl-Res [BP96] that Hitting is also quasi-polynomially automatable. Can we show that it
is impossible to do better? We think that it is possible to adapt the similar result of de Rezende
[dR21] for tl-Res.

1The refinement might be non-constructive, but its mere existence does not imply the simulation. The simulation
might produce parity decision trees that are not refinements of the initial Hitting(⊕) refutation but nevertheless,
solve the relation Search(ϕ).

10

2 Basic definitions

2.1 Basic notation

For a function f : N → R, Õ(f) and Ω̃(f) denote O and Ω up to logarithmic factors, that is,
g = Õ(f) and h = Ω̃(f) if g = O(f logC f) and h = O(f/ logC f) respectively for a constant C. For
example, 2nn2 = Õ(2n) and n/ log n = Ω̃(n).

Let f : {0, 1}n → {0, 1} be a Boolean function. The deterministic query complexity of f , denoted
by D(f), is the minimal number of (adaptive) queries to the input variables that is enough to
compute f(x) for any input x. The randomized query complexity of f , R(f), is the minimum number
of queries needed by a randomized algorithm that outputs f(x) for any input x with probability
at least 2/3. A partial assignment α ∈ {0, 1, ∗}n is a certificate for f if for any two assignments
x, y ∈ {0, 1}n agreeing with α, f(x) = f(y). The size of a certificate is the number of non-star
entries. The certificate complexity of f on an input x, denoted C(f, x), is size of the smallest
certificate α such that x agrees with α. For b ∈ {0, 1}, the (one-sided) b-certificate complexity of f is
defined as Cb(f) = maxx:f(x)=b C(f, x). The (two-sided) certificate complexity of f is the maximum
of 0- and 1-certificate complexities, C(f) = max{C0(f),C1(f)}. We say that a family of certificates
A ⊂ {0, 1, ∗}n is unambiguous if any two distinct certificates α, β ∈ A conflict, i.e., there is no
assignment that agrees with both α and β. For b ∈ {0, 1}, the (one-sided) unambiguous b-certificate
complexity of f , UCb(f), is the minimum number w such that there is an unambiguous family of
certificates A such that A contains only certificates of size at most w and every x ∈ f−1(b) agrees
with some certificate in A. The (two-sided) unambiguous certificate complexity of f is defined as
UC(f) = max{UC0(f),UC1(f)}.

For the definition of the basic proof complexity notions such as proof system and p-simulation,
we refer the reader to [CR79]. We consider also quasi-polynomial simulations: a proof system Π1

quasi-polynomially simulates proof system Π2 if for certain k ∈ N, for every formula F , the system
Π1 has a proof of F of size at most 2(log s)

k
, where s is the size of the shortest proof of F in Π2. One

could define (and name) a constructive (analogous to p-simulation) version of this notion, and in
fact our quasi-polynomial simulations (Theorem 4.2, Proposition 4.4) are constructive, that is, we
can produce the proofs in the simulating proof system in time polynomial in their length. This is
not important for the separation results, so we use the term “quasi-polynomial simulation” without
emphasizing the constructiveness. We say that a proof system Π1 is quasi-polynomially separated
from Π2 if there is an infinite sequence of formulas Fn, whose size tends to infinity, and a specific
k ∈ N such that Π2 has no proofs of Fn of size 2(log(sn+|Fn|))k , where sn is the size of the shortest
proof of Fn in Π2. Somewhat abusing the notation we say that Π1 is quasi-polynomially stronger
than Π2 if it polynomially simulates Π2 and is quasi-polynomially separated from it.

We use the following notation for widely known proof systems: Res for Resolution, tl-Res for
tree-like Resolution, Res(⊕) for Resolution over XORs of [IS20], tl-Res(⊕) for its tree-like version,
CP for Cutting Planes, NS for Nullstellensatz, PC for Polynomial Calculus, Frege for Frege and
Extended Frege for Extended Frege.

Deterministic communication complexity of a search problem defined by a ternary relation R
is the minimal amount of communication (number of bits) that is enough to solve the following
communication problem for two players on any input: Alice is given x, Bob is given y, and their
goal is to find some z such that (x, y, z) ∈ R. Alice and Bob can exchange information by sending
bit messages to each other. At the end of the game both players must know z. (Public coin) ε-error
randomized communication complexity of a search problem is the minimal amount of communication

11

that is enough for players to win the communication game with probability at least 1 − ε if the
players have access to a public source of random bits. If ε is not explicitly specified then we assume
ε = 1/3. More information on the standard definitions of communication complexity can be found
in [KN97].

2.2 Hitting formulas and proof system

Iwama [Iwa89] started to study hitting formulas as a polynomial-time tractable subclass of satisfia-
bility problems (see also [Kul04]).

Definition 2.1 (Hitting formula). A hitting formula is a formula F = C1 ∧ · · · ∧Cm in conjunctive
normal form such that every two of its clauses Ci and Cj contain contrary literals, that is, there is
some literal ℓ such that ℓ ∈ Ci and ℓ̄ ∈ Cj; in other words, Ci ∨ Cj is a tautology.

Sometimes the notion is defined for formulas in disjunctive normal form. We call them a different
name to avoid misunderstanding.

Definition 2.2 (Unambiguous DNF). An unambiguous DNF is the negation of a hitting formula,
that is, every two its terms (conjunctions) contradict each other.

Definition 2.3 (Hitting proof system). A refutation of a CNF F in Hitting is an unsatisfiable
hitting formula H such that every clause C in H has a strengthening C ′ ⊆ C in F .

Hitting refutations can be verified in polynomial time: the unsatisfiability of H can be easily
checked by counting the number of falsifying assignments, as implicitly noticed by Iwama [Iwa89]
(note that the sets of falsifying assignments for any two clauses of H are disjoint), and matching
clauses to their strengthening is done simply by considering all pairs C ∈ H, C ′ ∈ F .

The soundness of Hitting is trivial, the completeness is given by the “complete” hitting formula
consisting of all possible clauses containing all the variables of F : the unique assignment falsifying
such a clause C must also falsify some clause C ′ of (unsatisfiable) F , which is then the required
strengthening of C.

2.3 Other Hitting-based proof systems

2.3.1 Hitting Res

Hitting is a “static” proof system with no real derivation procedure. We add more power to it
by incorporating such steps into a Res refutation. Indeed, a resolution step can be generalized to
resolve over any contradiction, not just x ∧ x̄. In Hitting Res we resolve by hitting formulas:

Definition 2.4 (Hitting Res). This proof system embraces both Hitting and Res. One derivation
step uses an unsatisfiable hitting formula H1 ∧ · · · ∧Hk:

C1 ∨H1, . . . , Ck ∨Hk

C1 ∨ · · · ∨ Ck
.

We also allow weakening steps:
C

C ∨D
.

Proposition 2.5. Hitting Res p-simulates both Hitting and Res.

12

Proof. Hitting Res generalizes Res: if one uses the hitting formula x ∧ x̄ at every step, Hitting
Res turns exactly into Res. On the other hand, in Hitting we need to demonstrate that every
clause of a hitting formula is a weakening of some input clause, and this can be simulated using the
weakening rule.

2.3.2 Odd Hitting

While a hitting formula covers every falsifying assignment exactly once, that is, it satisfies exactly
one clause, an odd hitting formula does this an odd number of times.

Definition 2.6 (Odd hitting formula). An odd hitting formula is a formula F = C1 ∧ · · · ∧ Cm in
conjunctive normal form such that every falsifying assignment falsifies an odd number of its clauses.

Definition 2.7 (Odd Hitting proof system). A refutation of a CNF F in Odd Hitting is an
unsatisfiable odd hitting formula H such that every clause C in H has a strengthening C ′ ⊆ C in F .

It is not straightforward how to verify that a (not necessarily unsatisfiable) formula is an odd
hitting formula, and how to verify that a formula is an unsatisfiable odd hitting formula (thus
verifying Odd Hitting proofs). We show it in Prop. 3.9 and Prop. 3.8.

2.3.3 Hitting[k]

One can generalize hitting formulas by allowing a falsifying assignment to falsify a limited number
of clauses (and not just a single clause) [Kul11].

Definition 2.8 (Hitting-k formula). A hitting-k formula is a formula F in conjunctive normal
form such that every assignment falsifying F falsifies at most k clauses of F .

Definition 2.9 (Hitting[k]). A refutation of a CNF F in Hitting[k] is an unsatisfiable hitting-k
formula H such that every clause C in H has a strengthening C ′ ⊆ C in F .

We show in Theorem 3.10 that Hitting[k] refutations can be verified in polynomial time.

2.3.4 Hitting(⊕)

Hitting(⊕) stands to Hitting the same way as Res(⊕) stands to Res, where Res(⊕) is the
system defined in [IS20] that allows clauses to contain affine equations modulo two instead of just
literals. It resembles the system Res(Lin) of [RT08] and falls under the concept of Kraj́ıček’s R(. . .)
systems [Kra98].

Definition 2.10 (Hitting(⊕) formula). A hitting(⊕) formula decomposes {0, 1}n into disjoint affine

subspaces over GF(2). Namely, it is a conjunction of ⊕-clauses of the form
∨

k

(
ck ⊕

⊕
i∈Ik xi

)
,

where ck ∈ {0, 1} are constants, xi’s are variables, and any two its ⊕-clauses do not share a common
falsifying assignment.

Note that we can check that two affine subspaces are disjoint using Gaussian elimination, and
this gives an efficient way of checking whether a given formula is hitting(⊕).

⊕-clauses can be thought of as sets of linear (affine) equations similarly to clauses that we
usually think of as sets of literals.

13

Definition 2.11 (Hitting(⊕) proof system). A refutation of a CNF F in Hitting(⊕) is an
unsatisfiable hitting(⊕) formula H such that every ⊕-clause C in H has a strengthening C ′ ⊆ C in
F .

Note that Hitting(⊕) can be thought of also as a proof system for sets of affine subspaces
covering {0, 1}n, that is, unsatisfiable systems of disjunctions of linear (affine) equations.

3 PIT helps to simulate Hitting, and more

3.1 Extended Frege p-simulates Hitting

We prove that Hitting can be p-simulated at least in the most powerful logical propositional proof
system, Extended Frege. The obstacle is that the soundness of Hitting is based on the counting
argument that involves the number of assignments falsified by a clause, and it is not easy to express
this argument in propositional logic.

Our strategy is to p-simulate Hitting in a strong algebraic system that is p-equivalent to
Extended Frege in the case of GF(2).

There are several proof systems extending the power of PC by allowing to express polynomials in
a more compact way than linear combinations of monomials. Grigoriev and Hirsch [GH03] introduced
F-PC that allows to express polynomials as algebraic formulas without opening the parentheses. Of
course, this needs usual associativity–commutativity–distributivity rules to transform these formulas.
The next powerful system is Ext-PC considered by Alekseev [Ale21]. This is simply PC with
Tseitin’s extension rule generalized so that variables can be introduced for arbitrary polynomials. It
can be viewed as a way to express PC proofs where polynomials can be represented as algebraic
circuits (but transformations of these circuits must be justified using the definitions of extension
variables that denote gates values). Eventually, Grochow and Pitassi [Pit96, GP18] suggested to
generalize proof systems to allow the randomized verification of the proofs, and in these proof
systems, one can switch for free between different circuit representations of a polynomial.

A Frege system [CR79, §2] is defined as any implicationally complete inference system that
uses sound constant-size rule schemata for Boolean formulas (a schema means that the formulas
in the rules are represented by meta-variables, for example, F and G in the modus ponens rule
F ; F⊃G

G can be any formulas). An Extended Frege system additionally allows us to introduce
new variables using the axiom schema x ⇔ A for any formula A, where x is a new variable.

Grigoriev and Hirsch [GH03, Theorem 3] prove that F-PC (over any field), a system that allows
us to represent polynomials using arbitrary algebraic formulas and to transform them using the
ring rules, p-simulates Frege (and also a similar statement for constant-depth F-PC over finite
fields versus Frege with modular gates). They also state that Frege p-simulates F-PC over
GF(2) [GH03, Remark 5]. We include a formal proof of this statement for completeness. Namely,
we prove that F-PC over GF(2) is a Frege system itself (and it is known that all sound and
implicationally complete Frege systems over all possible sets of Boolean connectives are equivalent
[Rec76, Theorem 5.3.1.4.i]).

Proposition 3.1. F-PC over GF(2) is a Frege system.

Proof. F-PC operates with polynomial equations over GF(2), and these equations can be considered
as Boolean formulas that use ⊕, ∧ and the negation. All its rules are, of course, sound, the system
is complete, and the implicational completeness can be shown as follows: if A1, . . . , Ak |= F , then

14

A1, . . . , Ak, 1 − F |= 1; by completeness, there is a derivation A1, . . . , Ak, 1 − F ⊢∗ 1, which we can
multiply by F [GH03, Remark 2].

Definition 3.2 ([Ale21]). An Ext-PC refutation over R of a set of polynomials P ⊂ R[x1, . . . , xn]
is a PC refutation over R of a set P ∪Q, where Q consists of polynomials defining new variables yi:

Q := {y1 − q1(x1, . . . , xn), y2 − q2(x1, . . . , xn, y1), . . . , ym − qm(x1, . . . , xn, y1, . . . , ym−1)}

where qi ∈ R[x1, . . . , xn, y1, . . . , yi−1] are arbitrary polynomials.

While [Ale21] defines Ext-PC over arbitrary fields and even rings, we use it over finite fields
only.

Similarly to Prop. 3.1, we prove that Ext-PC over GF(2) is an Extended Frege system (and
it is known that all Extended Frege systems are p-equivalent [Rec76, Theorem 5.3.2.a]).

Proposition 3.3. Ext-PC over GF(2) is an Extended Frege system.

Proof. Extension variables can be introduced for any polynomial, but again these polynomials are
Boolean formulas in the basis of {⊕,∧, ¯}. So Ext-PC is an Extended Frege system.

The main theorem of this section is

Theorem 3.4. Ext-PC over a finite field p-simulates Hitting.

We prove it in the next subsection.

Corollary 3.5. Extended Frege p-simulates Hitting.

Proof. Follows from Theorem 3.4 and Prop. 3.3.

Corollary 3.6. Extended Frege p-simulates Hitting Res.

Proof. We show how Extended Frege simulates a single step of Hitting Res refutation that
uses a hitting formula H1 ∧ · · · ∧Hk:

C1 ∨H1, . . . , Ck ∨Hk

C1 ∨ · · · ∨ Ck
.

Since Extended Frege is p-equivalent to Extended Res, one can construct in polynomial
time an Extended Res refutation H1, . . . ,Hk ⊢∗ ⊥ by Corollary 3.5. Observe that if we weaken
the premises to C1 ∨H1, . . . , Ck ∨Hk, then this refutation turns into a derivation of a subset of
C1 ∨ · · · ∨ Ck. One can now combine the simulations of all steps into a single Extended Res
refutation.

3.2 Proof of Theorem 3.4: Ext-PC p-simulates Hitting

We have a hitting formula H = {C1, . . . , Cm}, translate it into a system of polynomial equations
{hi = 0} and want to construct an Ext-PC refutation of this system. In fact,

∑
i hi ≡ 1 as

polynomials (in what follows, we use the notation ≡ for the equality of polynomials). This is
certainly true pointwise on {0, 1}n, these polynomials are multilinear, and thus

∑
i hi is identical

to 1. It remains to derive this fact in Ext-PC.

15

We translate formulas in CNF to systems of polynomial equations using the dual variables as
in PCR of [ABSRW02]: for every variable x, we introduce a variable xR along with the axiom
x + xR − 1 = 0. Thus every clause Ci = ℓ1 ∨ · · · ∨ ℓk is represented by a monomial mi = ℓ1 · · · ℓk:
every negative literal of Ci is translated to its variable, and every positive literal is translated to the
dual variable. In the proof below, we ignore these formalities and speak in the terms of x and 1 − x
instead of x and xR. We switch between these two representations (xR and 1 − x) locally when
needed (in particular, we never switch to the 1 − x representation for more than two variables in a
monomial, and switch back to xR as soon as we are done with the respective step).

As mentioned in the introduction, our approach is based on the Raz–Shpilka deterministic
polynomial identity testing for noncommutative circuits [RS05]. The main idea is to introduce new
variables for quadratic polynomials: it suffices to do it for a basis. Namely, at the first step we
consider two variables x1 and x2 and quadratic polynomials (potentially, (1−x1)(1−x2), (1−x1)x2,
x1(1 − x2), x1x2, 1 − x1, x1, 1 − x2, and x2) appearing in the monomials mi as xR1 x

R
2 , xR1 x2, etc.,

and replace them using linear combinations of new variables y1,2i , thus decreasing the degree by

one. At the next steps we treat all the variables y1,2i as a single “layer” (note that they are not

multiplied by each other). We merge this layer of y1,2i with x3, getting a layer of variables y1,2,3j ,
and so on, until we reach a linear equation, which is easy to verify.

In order to implement this strategy, we prove a lemma allowing to merge two layers of variables.
This lemma holds over any field F.

Lemma 3.7. Let x⃗, y⃗, z⃗ be three disjoint vectors of variables. Suppose that Pi(x⃗), Qi(y⃗), Ri(z⃗) are
polynomials satisfying

t∑
i=1

Pi(x⃗)Qi(y⃗)Ri(z⃗) ≡ 0. (3.1)

Let W1, . . . ,Wk ∈ F[x⃗, y⃗], where k ≤ t, be a basis for {Pi(x⃗)Qi(y⃗) | i ∈ [t]}. In particular, let
Si(w⃗) =

∑k
j=1 σijwj be the expansion of Pi(x⃗)Qi(y⃗) in this basis, that is, Pi(x⃗)Qi(y⃗) = Si(W⃗ (x⃗, y⃗)).

Then
t∑

i=1

Si(w⃗)Ri(z⃗) ≡ 0. (3.2)

Proof. Let Tj(z⃗) =
∑t

i=1 σijRi(z⃗). Then

k∑
j=1

wjTj(z⃗) =

t∑
i=1

k∑
j=1

σijwjRi(z⃗) =

t∑
i=1

Si(w⃗)Ri(z⃗)

is the polynomial that we are proving to be identically zero. Assuming the contrary, we conclude
that for some j = j∗, the polynomial Tj∗ is not identically zero.

If Tj∗ would be multilinear (as it is in our applications, where all Ri’s are linear), that would
already be enough to reach a contradiction: there should be some vector ρ⃗ of 0/1-values such that
Tj∗(ρ⃗) ̸= 0. Let us substitute ρ⃗ for z⃗ and W⃗ (x⃗, y⃗) for w⃗ in (3.2). Under this substitution, (3.2) and
(3.1) turn into the same equation, which shows a linear dependency of Wj ’s contradicting the fact
that {wj | j ∈ [k]} is a basis.

In order to prove the statement without the multilinearity condition, choose an extension field
that is large enough so that we could choose a vector ζ of values in this field such that Tj∗(ζ) ̸= 0,
and perform the same substitution obtaining a linear dependency of Wj ’s over the extension field
and hence in F.

16

With this lemma at hand, we are ready to prove the simulation theorem.

Proof of Theorem 3.4. We consider a hitting formula H = {C1, . . . , Cm} and translate each its
clause Cj ∈ H into a product

∏n
i=1 P

i
j (xi), where

P i
j (xi) :=


1, if xi does not occur in Cj ,

xi, if xi occurs in Cj negatively,

1 − xi, if xi occurs in Cj positively.

We call this product a monomial, because in Ext-PC it can be represented using dual variables
xRi = 1−xi. We are going to refute

∑m
j=1

∏n
i=1 P

i
j (xi) in Ext-PC, namely, we derive the polynomial

1 from it.
Consider the vector space spanned by the set {P 1

j (x1)P
2
j (x2) | j ∈ [m]}. We can find a basis

{Y 1,2
i (x1, x2) | i ∈ [r]} and introduce extension variables for its polynomials, y1,2i = Y 1,2

i (x1, x2). We

then consider the linear functions P 1,2
j (Y 1,2(x1, x2)) giving the expansion of P 1

j (x1)P 2
j (x2) over this

basis, and we can derive in Ext-PC that P 1,2
j (y⃗1,2) − P 1

j (x1)P
2
j (x2) = 0.

Recall that
m∑
j=1

n∏
i=1

P i
j (xi) (3.3)

is identically 1, because this is a multilinear polynomial that equals 1 pointwise on {0, 1}n (2n values
uniquely define 2n coefficients of the multilinear polynomial). Then Lemma 3.7 shows that

m∑
j=1

P 1,2
j (y⃗1,2)

n∏
i=3

P i
j (xi) (3.4)

is also identically 1.
Since the new variables are not multiplied by each other in our monomials, we can continue this

process merging the variables y⃗1,2 with x3, then the new variables y⃗1,2,3 with x4, and so on, until
we merge all variables into y⃗[n]. That is, we eventually arrive at

m∑
j=1

P
[n]
j (y⃗[n]) (3.5)

for a linear function P
[n]
j . This linear polynomial is also identically 1.

It is easy to see that Ext-PC proves efficiently that all these polynomials are equivalent (switching
between dual variables and their definitions whenever needed within two layers of variables), in
particular, it derives efficiently (3.5) from (3.3).

Since (3.5) is a linear polynomial that is identically 1, it has all zero coefficients except for the
free term that is equal to 1.

The proof of Theorem 3.4 can be used for proving in Ext-PC similar statements about multilinear
polynomials that use dual variables. In particular, it can be used for simulating Odd Hitting and
Hitting[k].

Proposition 3.8. Odd Hitting proofs can be verified in deterministic polynomial time. Ext-PC
over GF(2) p-simulates Odd Hitting. In particular, Extended Frege p-simulates Odd Hitting.

17

Proof. The proof of Theorem 3.4 works in particular over GF(2).

This argument allows us to verify unsatisfiable odd hitting formulas. However, a similar technique
also makes it possible to check arbitrary formulas for being odd hitting.

Proposition 3.9. Given a formula in CNF, it can be checked in deterministic polynomial time
whether F is an odd hitting formula.

Proof. We need to check that there is no falsifying assignment that falsifies an even number of
clauses. For each clause C ∈ F , substitute the negation of C as an assignment into F , and drop
the identically false clause resulting from substituting C̄ into C; denote this formula FC . Then
check that falsifying assignments falsify an even number of clauses of FC by verifying the identity∑

iMi ≡ 0 over GF(2), where Mi’s are pseudomonomials (non-negative juntas) corresponding to the
clauses of FC . If for some C the identity is false, then F had a falsifying assignment that satisfied
an even number of clauses.

Theorem 3.10. Hitting[k] proofs can be verified in deterministic polynomial time. Ext-PC over
a finite field p-simulates Hitting[k]. In particular, Extended Frege p-simulates Hitting[k].

Proof. For a hitting-k formula
∧m

i=1 Ti, by the inclusion-exclusion formula∑
∅≠I∈2[m]

(−1)|I|+1
∏
i∈I

Ti = 1,

where we abuse the notation by identifying a clause and its PCR translation into a monomial that
uses dual variables. Note that the terms containing more than k clauses Ti’s are zeros.

Now we can proceed by analogy with the proof of Theorem 3.4 and Corollary 3.5.

3.3 Bonus: succinct proofs and efficient verification of static (semi)algebraic
proof systems

The proof of Theorem 3.4 does not just provide an Ext-PC proof, it provides a deterministic
polynomial-time verification procedure for polynomial identity testing for multilinear identities
modulo x + x̄ = 1. It can be used in other settings, for example, for verifying proofs in static
(semi)algebraic systems.

Historically, deterministic polynomial-time verification of proofs in such systems has not been
a major concern, because proving a superpolynomial lower bound for such a system implies a
lower bound for a variety of systems that emerge from supplementing the basic static system with
additional means of verification, for example, the axioms of the polynomial ring as in [GH03].
However, an increased interest to automated search for sum-of-squares-based proofs reveals the need
for an efficient deterministic formal proof verification procedure. A typical static proof constitutes a
formal combination of polynomials including non-negative juntas written in a formal way (without
opening the parentheses). To verify such a proof one needs to check that this polynomial is identical
to a constant. Opening the parentheses would not work as it would produce far too many monomials.

Fortunately, the proof of Theorem 3.4 demonstrates that any multilinear polynomial identity
using dual variables over a finite field can be verified efficiently. In this subsection we show how to
use this idea for static proof checking.

18

Verifying NS proofs is easy: it suffices to open parentheses in products of two polynomials, each
of them being represented as a sum of monomials with coefficients. Alekhnovich et al [ABSRW02]
suggested using dual variables in PCR, essentially adding extension axioms for the negations of
variables to PC. Such dual variables can be (and have been) also used in other algebraic and
semialgebraic proof systems, in particular, NS turns into a more powerful system NSR [dRLNS21].
It is more difficult to verify NSR proofs, however, the proof of Theorem 3.4 already does it over a
finite field: opening the parentheses, as before, without expanding the definitions of dual variables
turns the proof into a sum of monomials involving the input and dual variables, exactly as studied
in the proof of Theorem 3.4. In fact, the identity being verified is a succinct NSR proof of the form∑

figi ≡ 1 (3.6)

without explicitly mentioning the Boolean axioms x2−x = 0 or the dual variables axioms x+x̄−1 = 0,
that is, fi’s are only the translations of the original clauses. To verify this identity using the framework
of Theorem 3.4, we turn figi’s into multilinear polynomials by dropping monomials containing dual
variables x and x̄ together and reducing the degrees of variables to one in other monomials.

When we switch to Q in NSR or turn our attention to semialgebraic proof systems, there is a
problem with this approach: the coefficients can grow in our transformations between the bases,
and the bit-size of the new proof can become superpolynomial in terms of the bit-size of the original
proof (note that according to the Cook–Reckhow definition we are taking into account the bit-size of
the proof and not just the degree or the number of monomials as they sometimes do in the context
of algebraic proofs). To avoid this obstacle, we can proceed as follows:

• transform the proof from rationals to integers by multiplying it by all the denominators, the
free term 1 or −1 then becomes a different positive/negative constant,

• use the Chinese Remainder Theorem to employ verification in finite fields.

Let M be an upper bound on the absolute values of coefficients before monomials in (3.6) or a similar
equation in semialgebraic proof systems. Then by the Chinese Remainder Theorem, it suffices to
verify that P ≡ 0 modulo primes whose product exceeds 2M + 1. Using a deterministic polynomial-
time primality algorithm, we can find all primes up to K log(M) log log(M) in polynomial time. For
an appropriate value of K, their product exceeds 2M + 1. Then it is enough to verify the required
identity modulo each of these primes, that is, in the respective finite fields.

Common static systems proofs can be verified as multilinear polynomial identities using dual
variables by considering succinct proofs and multilinearization as above.

Static LS, SA, SCS. The static Lovász–Schrijver [GHP02] and Sherali–Adams [DMR09, ALN16],
and Subcube Sums proof systems [FMSV23] are defined as follows.

A pseudomonomial is a product of input variables and their negations (in the form of 1−x). A
conic junta is a nonnegative linear combination of pseudomonomials. We can generalize proofs
using juntas right away by allowing dual variables (and then juntas become simply monomials)
and augmenting the system with axioms x+ x̄− 1 = 0, as is done in [DMR09, dRLNS21]. We
can also consider succinct proofs as above by formulating identities modulo x2 − x = 0 and
x + x̄− 1 = 0 for every variable x.

Static LS is defined for a system of inequalities si ≥ 0 that typically include the (obvious)
translations of Boolean clauses as linear inequalities along with inequalities x2 − x ≥ 0,

19

x − x2 ≥ 0, x ≥ 0, 1 − x ≥ 0 for every variable. It is defined as a formal sum-of-products∑
siJi ≡ −1, where Ji’s are conic juntas. The dual variables version can be defined similarly

by augmenting the list of si’s with x + x̄− 1 ≥ 0, 1 − x− x̄ ≥ 0.

Sherali–Adams proofs are considered for systems of polynomial equations (the translations of
clauses into pseudomonomials Ci along with x2−x = 0 for every variable), the proof is a formal
sum-of-products

∑
Ci(Pi −Qi) +R ≡ −1. It can be viewed as a static Lovász–Schrijver proof,

where Ci = 0 is represented by the two inequalities Ci ≥ 0 and −Ci ≥ 0. Note that “additive”
(linear inequalities) and “multiplicative” (equations for pseudomonomials) representations of
clauses are in fact equivalent with respect to size [GHP02, Lemmas 3.1, 3.2], where efficiently
representing long clauses is, of course, only possible with dual variables.

A Subcube Sums proof can be viewed a restriction of succinct unary SA where Pi −Qi = 1
and only the size of R counts towards the size of the proof, with copies of the same monomial
counted with multiplicity. For instance, a SCS proof of a hitting formula is simply “0”.
Similarly to Hitting, this is an inherently succinct proof system.

Also, non-propositional versions of these systems are available, where the axioms are not
translations of clauses of a Boolean formula, and multiplying such axioms is allowed, which
would a priori cause a problem with our strategy. However, for translations of clauses, the
identities that we need to verify are still linear combinations of monomials in the input and
dual variables, so they fall completely under the same framework.

Static LS∞+ , SoS. These systems augment the previous systems with squares. A proof in LS∞+ is
an identity of the sort ∑

siJi +
∑
j

q2jJ
′
j ≡ −1

where qj are arbitrary polynomials and Ji’s and J ′j ’s are conic juntas. There are several
definitions of SoS in the literature, but modulo the equivalence between equations and pairs
of opposite inequalities, they are essentially the same in the propositional case. These systems
still fall under our framework, as opening the parentheses in a square of a sum of monomials,
(
∑

aiMi)
2 =

∑
a2iM

2
i +

∑
(2aiaj)MiMj , gives only a quadratic number of monomials.

4 Hitting vs tl-Res and other classical systems

In this section we prove that while Hitting p-simulates tl-Res, in the other direction tl-Res
simulates Hitting only quasi-polynomially. Moreover, tl-Res is quasi-polynomially weaker than
Hitting.

We also relate Hitting to other proof systems: the tree-like version of Res(⊕) (they are
incomparable), certain versions of NS, and Res.

4.1 tl-Res quasi-polynomially simulates Hitting

We can use a construction of small decision trees from DNF covers of Boolean functions to quasi-
polynomially simulate Hitting in tl-Res.

Theorem 4.1 ([EH89]). Let D0 and D1 be DNF covers of size r and s that cover the 0s and 1s
of a function f : {0, 1}n → {0, 1} respectively. Then there is a decision tree computing f of size at
most 2(rsn)log(r+s)+1.

20

We adapt the argument of Ehrenfeucht–Haussler to prove the following theorem. Intuitively,
every hitting formula defines a subcube partition of the Boolean cube {0, 1}n. The structure of this
partition can be used to greedily construct a decision tree (tl-Res refutation) that always queries
the most conflicting variable in the narrowest clause.

Theorem 4.2. If a CNF formula F has a Hitting refutation of size m, then F has a tl-Res
refutation of size at most O(22 log

3 m).

Proof. Let G be a hitting formula with n variables and m clauses that is a refutation of F and let
us recursively build a decision tree that solve the falsified clause search problem of G. As every
clause of G is a weakening of some clause of F the resulting tree will also solve the falsified clause
search problem of F . Let C be a narrowest clause in G, which has width at most logm (otherwise a
union bound shows that the formula is satisfiable). Since G is a hitting formula, every other clause
has at least one contrary literal with respect to C. Let ℓi be the literal in C that appears in the
maximal number of other clauses with a different sign, which by an averaging argument is at least
(m− 1)/ logm times. The decision tree queries the corresponding variable. If the answer does not
satisfy C then it satisfies all clauses containing ℓi, hence the resulting formula has n− 1 variables
and at most m− (m− 1)/ logm clauses. Otherwise the formula has n− 1 variables and at most
m− 1 clauses.

The number of leaves in the decision tree satisfies the recurrence

S(n,m) ≤ S(n− 1,m− (m− 1)/ logm) + S(n− 1,m− 1).

We claim that S(n,m) ≤ n2 log2 m. Indeed,

S(n,m) ≤ S(n− 1,m− (m− 1)/ logm) + S(n− 1,m− 1)

≤ (n− 1)2(log(m−(m−1)/ logm))2 + (n− 1)2 log
2(m−1)

≤ (n− 1)2(log(m(1−1/(2 logm))))2 + (n− 1)2 log
2 m

= (n− 1)2(logm+log(1−1/(2 logm)))2 + (n− 1)2 log
2 m

≤ (n− 1)2 logm·(logm+log(1−1/(2 logm))) + (n− 1)2 log
2 m

≤ (n− 1)2 logm·(logm−1/(2 logm)) + (n− 1)2 log
2 m

= (n− 1)2 log
2 m−1 + (n− 1)2 log

2 m

≤ (n− 1 + 1)2 log
2 m.

Remark 4.3. An alternative, more combinatorial way to compute the number of leaves of the tree is
as follows. At a node of type (n′,m′) (i.e., with n′ variables and m′ clauses), we have a left turn to a
node of type (n′′,m′′), where n′′ < n′ and m′′ ≤ (1−1/(2 logm′))m′ ≤ (1−1/(2 logm))m′, and a right
turn to a node of type (n′′,m′′), where n′′ < n′ and m′′ < m′. Every path from the root to a leaf (a node
of type (n′, 1)) thus contains at most log(1−1/(2 logm))−1 m = logm/ log(1−1/(2 logm))−1 = O(log2m)

left turns. We can identify each leaf with a binary string of length at most n with O(log2m) many
zeroes. The number of leaves is thus at most(

≤ n

≤ O(log2m)

)
≤ nO(log2 m).

21

The argument can be extended to Hitting[k] simulation by Hitting (and hence by tl-Res).

Proposition 4.4. Hitting quasi-polynomially simulates Hitting[k] up to k = (logm)O(1).

Proof. Consider a hitting-2 formula with m clauses. If it contains fewer than three clauses then
it mentions constantly many variables, and so can be refined to a hitting formula of constant size.
Otherwise, it mentions at most m variables, and the narrowest three clauses Ti, Tj , Tk each contain
at most log2m + O(1) literals. Consider sets of assignment Si, Sj , Sk falsified by these clauses. If
for some other clauses Ta, Tb their respective sets Sa, Sb are not disjoint, then Sa ∩ Sb ∩ Sc = ∅
for some c ∈ {i, j, k}, and so one of the literals in Tc appears negated in one of Ta, Tb. Hence we
can find a variable assignment such that for Ω(1/ logm) fraction of non-disjoint pairs Sa, Sb, the
variable assignment removes one of the clauses. Construct a decision tree whose root asks about
this variable, and recurse. A “left turn” is the answer which hits the Ω(1/ logm) fraction. After
O(log2m) left turns, the remaining sets are disjoint (the clauses form a hitting formula), which is a
leaf in our decision tree. Since the depth is at most n, the decision tree contains

(≤n
≤O(log2 m)

)
many

leaves, and so the original formula can be refined to a hitting formula of size nO(log2 m).
A similar argument works for reducing hitting-t formulas to hitting-(t − 1) formulas. In the

base case, fewer than t terms, the formula mentions fewer than t − 1 variables, and so there is
a refinement of size 2t. The decision tree contains nO(t log2 m) many leaves, and altogether the
reduction loses a multiplicative factor of nO(t log2 m). We can reduce all the way to a hitting formula
of size nO(t2 log2 m).

By analogy, Hitting[logk m] can be simulated in Hitting with complexity nO(logk+2 m).

Later in Theorem 4.14 we prove that the simulation of Hitting by tl-Res cannot be polynomial;
however, we do not know whether it can be improved to mO(logm).

Corollary 4.5. There are formulas that have polynomial-size Res proofs but require exponential-size
Hitting proofs.

Proof. [BSIW04] proves that there are formulas that have polynomial-size Res proofs but require
exponential-size tl-Res proofs. Using Theorem 4.2 the statement follows.

Remark 4.6. Similarly to Theorem 4.2, Hitting Res can be quasi-polynomially simulated in Res
(every hitting resolution step can be simulated using Theorem 4.2), and thus an exponential-size
lower bound for it also follows from exponential-size lower bounds for Res (e.g., [Urq87]).

4.2 Hitting is quasi-polynomially stronger than tl-Res

Theorem 4.7. Hitting p-simulates tl-Res.

Proof. A tl-Res proof can be viewed as a decision tree [BSIW04]: every application of the resolution
of clauses C ∨ x and D ∨ x̄ by the variable x is considered as a decision by the variable x, so that
the decision x = 0 leads to the node C ∨ x from the node C ∨D, and the decision x = 1 leads to
the node D ∨ x̄. Therefore, the assignment of decisions starting at the root, labelled by the final
empty clause, and ending at a leaf, labelled by a clause L of the input formula F , falsifies L. The
negation of such assignment, viewed as a clause N , is a weakening of L. The conjunction of all such
N ’s is an unsatisfiable hitting formula H that is a proof of F . The number of clauses in H is at
most the number of leaves in the decision tree and therefore at most the number of occurrences of
F ’s clauses in the tl-Res refutation.

22

We use ⊕-lifting to prove our separation result. We need three folklore or easy statements that
we include for the sake of completeness.

Definition 4.8 (Composition of multivariate functions). For Boolean functions f : {0, 1}n → {0, 1}
and g : {0, 1}m → {0, 1}, we define f ◦ gn : {0, 1}nm → {0, 1} as

(f ◦ gn)(x11, . . . , x
1
m, . . . , xn1 , . . . , x

n
m) := f(g(x11, . . . , x

1
m), . . . , g(xn1 , . . . , x

n
m)).

Lemma 4.9. If f : {0, 1}n → {0, 1} is a function requiring decision tree depth d, then f ◦ (⊕2)
n

requires decision tree size 2d.

Proof. We consider a size-s decision tree T computing (f ◦ (⊕2)n)(x11, x
1
2, . . . , x

n
1 , x

n
2) and transform

it into a querying strategy for f using at most log2 s queries. Starting at the root, we go down the
tree both querying f(y⃗)’s inputs yi and giving answers to the queries made in the original tree T .
We will be interested in the number of leaves in the current subtree of T .

Assume that T queries xij . If the other variable xi2−j has not been queried yet, we do not query

inputs of f and simply choose the answer τ ∈ {0, 1} for xij = τ that directs us to the subtree that

has fewer leaves. Otherwise, we choose τ = yi ⊕ xi2−j . Therefore, we go into the subtree of T
containing at least twice fewer leaves at least once per query to yi’s, and we can do it at most log2 s
times before we come to a leaf.

Lemma 4.10. Suppose a function f : {0, 1}n → {0, 1} has an unambiguous DNF of width w and
g : {0, 1}m → {0, 1} has a decision tree of depth d. Then f ◦ gn has an unambiguous DNF of width
wd.

Proof. A decision tree of depth d can be represented as an unambiguous DNF of width d itself, so
we have a set G of terms (conjunctions) of width at most d contradicting each other, and it is split
into two sets G0 and G1 equivalent to g(x⃗) = 0 and g(x⃗) = 1, respectively.

Consider a term in the unambiguous DNF representation of f(y⃗) and replace each literal yi = α
with unambiguous DNF representation of g(x⃗i) = α obtained from renaming the variables in Gα,
and then expand.

Lemma 4.11. Suppose an unambiguous DNF has width w. Then it has at most 2w terms.

Proof. Let n be the number of variables in the DNF. Then each term has at least 2n−w satisfying
assignments. Then since no assignment satisfies two terms, the number of terms is at most
2n

2n−w = 2w.

In order to prove our result, we need the following separation of randomized query complexity
(deterministic is enough for our purpose) and unambiguous certificate complexity from [AKK16].

Definition 4.12 ([ABDK16, AKK16]). Let f : {0, 1}N → {0, 1} be a function, c = 10 logN and
m = c · C(f) logN = 10C(f) log2N . Then the cheat sheet version of f , denoted fCS, is a total
function fCS : ({0, 1}N)c × ({0, 1}m)2

c → {0, 1}.
Let the input be written as (x1, x2, . . . , xc, Y1, Y2, . . . , Y2c), where for all i ∈ [c], xi ∈ {0, 1}N ,

and for all j ∈ [2c], Yj ∈ {0, 1}m. Let ℓi = f(xi) and ℓ ∈ [2c] be the positive integer corresponding
to the binary string ℓ1, . . . , ℓc. Then we define the value of fCS to be 1 if and only if Yℓ contains
certificates for f(xi) = ℓi for all i ∈ [c].

23

At first glance, the definition of fCS might look nonconstructive due to the usage of C(f).
However, the theorem of [AKK16] uses an appropriate upper bound on C(f), which is proved along
with the interactive construction of the function.

Theorem 4.13 ([AKK16, Theorem 5.1]). Let f0 = ANDn and fk be defined inductively as

fk := ANDn ◦ (ORn ◦ fk−1)CS, where fk has O(n25k) inputs. Then R(fk) = Ω̃(n2k+1) and UC(fk) =
Õ(nk+1).

Theorem 4.14. For every ε > 0, there exists a sequence of unsatifiable hitting formulas Gm

containing 2Õ(m) clauses of width at most Õ(m) such that Gm requires tl-Res proof size 2Ω̃(m2−ε).

Proof. We consider the composition of a function separating R and UC with the parity function.
Let f be the function given by Theorem 4.13. Let F0 and F1 be the respective unambiguous DNFs,
they both have width Õ(nk+1) and thus by Lemma 4.11 have size 2Õ(nk+1). Therefore, Lemma 4.10
provides two unambiguous DNFs, F0 ◦ (⊕2)

m representing f ◦ (⊕2)
m and F1 ◦ (⊕2)

m representing

f̄ ◦ (⊕2)
m, both of width Õ(nk+1) and of size 2Õ(nk+1).

Consider a CNF F = F0 ◦ (⊕2)m ∨ F1 ◦ (⊕2)m. This is an unsatisfiable hitting formula, so it is

a short Hitting proof of itself. It contains 2Õ(nk+1) clauses.

Suppose F has a tl-Res refutation of size s. Let us view it as a decision tree solving the
falsified clause search problem for F . Now let us change leaf labels in the following way: a leaf
labeled with a clause that came from Fi ◦ (⊕2)

m gets label i. It is easy to see that the resulting
tree computes f ◦ (⊕2)m. Recall that f is constructed by Theorem 4.13 and its query complexity is

Ω̃(n2k+1). By Lemma 4.9 its decision tree must have size 2Ω̃(n2k+1). Now the theorem claim holds
for m = nk+1.

4.3 Hitting and tl-Res(⊕) are incomparable

4.3.1 A hard formula for Hitting

In this section we observe that there exist formulas that are easy for tl-Res(⊕) and exponentially
hard for Hitting. For this, we recall the separation of tl-Res(⊕) from Res shown in [IS20] for
Tseitin formulas.

Definition 4.15 (Tseitin formulas TG,c). For a constant-degree graph G = (V,E) and a 0/1 vector
c of “charges” for the vertices, consider the following linear system in the variables xe for e ∈ E:

∧
v∈V

(⊕
e∋v

xe = cv

)
,

where
⊕

v∈V cv = 1. In the corresponding Tseitin formula TG,c in CNF each vertex constraint⊕
e∋v xe = cv expands into 2deg v−1 clauses of width deg v.

Theorem 4.16 ([Urq87]). There exists a family of constant-degree graphs Gn with n nodes and a
family of charge vectors cn such that TsGn,cn requires Res refutation of size 2Ω(n).

Theorem 4.17 ([IS20]). For any graph G and charges c the Tseitin formula TsG,c has a tree-like
Res(⊕) refutation of size linear in the size of the CNF.

24

Given the quasi-polynomial simulation of Theorem 4.2 and the following generalization of
Theorem 4.7, we can separate Hitting from tl-Res(⊕) and Hitting(⊕).

Proposition 4.18. If F has a tree-like Res(⊕) refutation of size s, then it has a Hitting(⊕)
refutation of size s.

Proof. By analogy with Theorem 4.7, the leaves of a tree-like Res(⊕) refutation form a Hitting(⊕)
refutation.

Corollary 4.19. There exists a family of CNF formulas Fn such that Fn requires Resolution
refutation of size 2Ω(n), Hitting refutation of size 2n

Ω(1)
and admits polynomial-size tree-like Res(⊕)

refutation (and, consequently, polynomial-size Hitting(⊕) refutation).

Proof. Take TsGn,cn from Theorem 4.16 and apply Prop. 4.18.

4.3.2 A hard formula for tl-Res(⊕)

In addition to separating Hitting from tl-Res, we can follow the same plan to separate it from
a stronger tl-Res(⊕) proof system, that is, to lift a separation between unambiguous certificate
complexity and query complexity. We cannot use decision tree size to bound tl-Res(⊕) size, but
rather the stronger randomized communication complexity measure.

Theorem 4.20 ([IS20, Theorem 3.11]). Let F be an unsatisfiable CNF that has tree-like Res(⊕)
refutation of size t then the randomized communication complexity of the falsified clause search
problem for F is O(log t).

An analogue of Lemma 4.9 for randomized communication complexity also holds, with the
difference that we need to compose the DNFs F0 and F1 from Theorem 4.14 with the indexing
function instead of ⊕. The indexing function Indexingm : [m] × {0, 1}m → {0, 1} is defined as
Indexingm(i, x) = xi, i.e. it accepts an index and a vector and returns the element of the vector
with the given index. Observe that Indexingm has a decision tree of depth ⌈log2m⌉ + 1: we first
query the index and then query a single bit of the vector.

Theorem 4.21 ([GPW17]). If a function f : {0, 1}n → {0, 1} requires a randomized decision tree
of depth t, then the function f ◦ (Indexingm)n where m = n256 requires randomized communication
cost Ω(t log n).

This is all we need to prove the separation.

Theorem 4.22. For every ϵ > 0, there is a sequence of unsatisfiable hitting formulas Gm containing
2Õ(m) clauses of width Õ(m) that requires tl-Res(⊕) proof size 2Ω̃(m2−ϵ).

Proof. We construct F as follows: take fk : {0, 1}M → {0, 1} from Theorem 4.13, where M =

O(n25k) and m = UC(fk) = Õ(nk+1), and compose it with IndexingM256 . By Lemma 4.10,
fk ◦ (IndexingM256)M and ¬(fk ◦ (IndexingM256)M) both have unambiguous DNF representations
of width Õ(nk+1). Then F is the conjunction of the negated terms in these representations.

On the one hand, by Lemma 4.11 F has size 2Õ(m), and since it is already a hitting formula, it
serves as a Hitting proof of itself.

On the other hand, let s be the size of the smallest tl-Res(⊕) refutation of F . Then by
Theorem 4.20 there exists a randomized communication protocol solving the falsified clause search

25

problem for F of cost O(log s). Observe that such protocol can be easily converted into a protocol
solving f ◦ (Indexingk256)k with the same cost and at most the same probability of error: if the
protocol returns a clause corresponding to a term in the representation of f ◦ (Indexingk256)k

answer 1, otherwise answer 0. Then by Theorem 4.21 we have that log s = Ω̃(n2k+1), i.e.

s = 2Ω̃(n2k+1) = 2Ω̃(m2−ϵ).

4.4 Relation to Res and NS

As we discussed in Section 4.3.1, a corollary of Theorem 4.2, which shows that tl-Res quasi-
polynomially simulates Hitting, is that if a proof system P is exponentially separated from tl-Res
then P is also exponentially separated from Hitting. Since this is the case with Res and NS—
which have short proofs of the ordering principle and the bijective pigeonhole principle [BR96]
respectively, while tl-Res requires exponentially long proofs of both—we conclude that Res and
NS are exponentially separated from Hitting.

In this section we explore whether a simulation or separation in the other direction exists. We
show that the formula that we used for the quasi-polynomial separation of Hitting from tl-Res
has short Res refutations, and therefore cannot be used for showing a separation from Res. We
also show that in a sense NS simulates Hitting.

4.4.1 Dag-like query complexity of functions

Our resolution upper bound is in fact an upper bound on a width, a measure that can be studied
through its characterization as a two-player game [Pud00, AD08]. Building on such game, Göös
et al. [GGKS20] introduced the following generalization of the query complexity of a function
f : {0, 1}n → M . We view it as a game between two players, the querier and the adversary. The
querier maintains a partial assignment ρ : [n] → {0, 1, ∗}. At each step the querier can either query
a variable i ∈ ρ−1(∗), in which case the adversary picks a value α ∈ {0, 1} and assigns ρ(i) := α, or
forget a variable i ∈ ρ−1({0, 1}), assigning ρ(i) := ∗. Note that the adversary may answer differently
the next time a forgotten variable is queried. The game ends only if ρ is a certificate for f , that is if
there exists m ∈ M such that for all x ∈ {0, 1}n consistent with ρ, we have f(x) = m. The width of
a particular game π is w(π), the maximal size (number of assigned variables) of ρ at any step of the
game, and the leaf-width is wout(π), the maximum size of ρ at any terminal step of the game. The
dag-like query complexity of f is the width of the game assuming optimal play where querier aims
to minimize the width and adversary aims to maximize it. Denote the dag-like query complexity of
f by w(f).

This notion can be similarly defined for relations, and for an unsatisfiable CNF ϕ =
∧

i∈[m]Ci

the dag-like query complexity of the falsified clause search relation {(x, i) | Ci(x) = 0} is exactly the
resolution width of ϕ [AD08]. If ϕ is a hitting formula, this relation is actually a function.

As a preliminary step towards our upper bound we compute the dag-like query complexity of
the OR ◦AND function, which is a key part of the construction of Theorem 4.13. We begin by
proving that dag-like query complexity is sub-multiplicative with respect to composition, and in
fact we can be a bit more precise.

Lemma 4.23. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions. Let π be
the dag-like query complexity game for g. Then

w(f ◦ gn) ≤ (w(f) − 1) · wout(π) + w(π) ≤ w(f) · w(g).

26

Proof. We simulate the querier’s strategy for f in the following way: suppose at some point the
querier for f had an assignment ρ : [n] → {0, 1, ∗}. Then the querier for f ◦ gn has assignments
ρ′1, . . . , ρ

′
n : [m] → {0, 1, ∗} such that whenever ρ(i) = α ≠ ∗, ρ′i corresponds to an α-certificate of g.

If the querier for f forgets a variable i, we assign ρ′i := ∗m, if they query a variable i, we run the
querying strategy for g within ρ′i and eventually end up with a certificate for g as an assignment ρ′i,
by definition |(ρ′i)−1({0, 1})| ≤ wout. The maximum number of assigned variables when simulating a
query to variable i is then w(π) corresponding to assignment ρ′i, and (w(f)−1)·wout(π) corresponding
to the remaining assignments.

Corollary 4.24. Let f, g be as in Lemma 4.23. Then

w(f ◦ gn) ≤ (w(f) − 1) · C(g) + min{C0(g)C1(g),m}.

Proof. Consider the standard strategy used to bound the query complexity of g in terms of its
certificate complexity, which can be described as follows. Let us pick an arbitrary 0-certificate ρ for
g and query all its variables. If the values match ρ, we return it, otherwise, we claim that the current
partial assignment τ contains a variable from every 1-certificate of g. Thus g|τ has 1-certificate
complexity at most C1(g)− 1. Let us apply this procedure (query some 0-certificate that agrees with
the current partial assignment) until we find a 0-certificate or the certificate complexity shrinks to
zero. In the latter case, there exists a 1-certificate which is a restriction of the current assignment.

Using this strategy for g as the game π in Lemma 4.23 (and forgetting all the variables
outside the found certificate just before the game ends) we get w(π) ≤ C0(g)C1(g) and wout(π) ≤
max{C0(g),C1(g)}. Since we never have to query a variable twice we can assume w(π) ≤ m.

Corollary 4.25. For g as in Lemma 4.23 we have

w(ANDn ◦ gn) ≤ (n− 1)C1(g) + w(g),

w(ORn ◦ gn) ≤ (n− 1)C0(g) + w(g).

Proof. Consider a decision tree for ANDn which queries input bits one by one and returns 0 as soon
as it encounters a 0-bit. Since in this tree all the assignments have at most a single 0, the cumulative
size of the certificates for g that we store until the end of the game is at most (n− 1)C1(g). This
combined with the argument in Lemma 4.23 yields the upper bound. The upper bound for ORn is
analogous.

Corollary 4.26. w(ORn ◦ANDn) ≤ 2n− 1.

We also need to introduce a notion of unambiguous dag-like query complexity, and its one-sided
variants. We define uw(f) to be the dag-like query complexity when querier is limited to strategies
where the certificates at terminal states are unambiguous. We define uw0(f) (resp. uw1(f)) to be
uw(f) when the adversary always answers consistently with a 0-input (resp. a 1-input).

Lemma 4.27. Let f : {0, 1}n → {0, 1} be a Boolean function. Then

uw0(ANDn ◦ gn) ≤ uw0(g) + (n− 1)uw1(g),

uw1(ANDn ◦ gn) ≤ n · uw1(g).

27

Proof. We use the same composition strategy from Lemma 4.23, taking the same strategy for ANDn

as in Corollary 4.26, and an unambiguous game π for g. At the time of evaluating gi we have
that assignments ρ′1, . . . , ρ

′
i−1 are all unambiguous 1-certificates, hence assigning up to (i− 1)uw1(g)

many variables, and the bounds follow. The terminal certificates are unambiguous because they
are the composition of unambigous certificates. Suppose that it is not the case, so there is some
input x that is covered with two certificates c1, c2. Certificates c1, c2 are the compositions of some
unambiguous ANDn certificates a1, a2, respectively, with the unambiguous certificates for g. If
a1 ̸= a2 then the composed certificates cannot agree. If a1 = a2 then c1 and c2 differ in the part
of certificate that correspond to some copy of g. But that is impossible as certificates for g are
unambiguous.

4.4.2 Upper bound in Res

To construct a Res refutation we first reprove the upper bound part of Theorem 4.13—separating
unambiguous certificate complexity from randomized query complexity—strengthening it to an upper
bound for unambiguous dag-like query complexity in place of unambiguous certificate complexity.
We need to make a few minor changes arising from the fact that w(ANDn) = n while C0(ANDn) = 1,
but using the fact that w(ORn ◦ANDn) = O(n) and not Θ(n2) is enough for our purposes.

Lemma 4.28 ([AKK16]). The following are unambiguous certificates for fCS.

• 0-certificates: c unambiguous certificates that f c = ℓ together with the contents of Yℓ.

• 1-certificates: the contents of Yℓ together with the positions described in Yℓ.

Lemma 4.29. Let f : {0, 1}N → {0, 1} be a Boolean function. Then

w(fCS) = O(w(f) log2 n), (4.1)

uw0(fCS) = O(uw(f) log2 n), (4.2)

uw1(fCS) = O(w(f) log2 n). (4.3)

Proof. To prove (4.1) we use the following strategy. We query the c copies of f in parallel to
obtain a pointer ℓ ∈ [2c], using width O(w(f) · c). We then query all of Yℓ and the positions
described by Yℓ, checking whether they are indeed a set of certificates for f c, for a total width of
O(w(f) · c + m). Since we choose c = 10 logN and m = c · C(f) · logN = O(w(f) log2N), the total
width is O(w(f) · c + m) = O(w(f) log2 n).

To get (4.3) we follow the same strategy as for (4.1). To prove (4.2) we use unambiguous
strategies to query the c copies of f , which increases the width to O(uw(f) · c+m). By Lemma 4.28
the certificates we obtain in both cases are unambiguous.

Lemma 4.30. Let k be a constant, and let fk be the function defined in Theorem 4.13. Then
uw(fk) = Õ(nk+1).

Proof. Let g1 = ORn ◦ANDn and gk = g1 ◦ (gk−1)CS, so that fk = ANDn ◦ (gk)CS.
Let us first show by induction that w(gk) = Õ(nk). We already proved the base case w(g1) = O(n)

in Corollary 4.26. Assuming that w(gk) = Õ(nk), the dag-like query complexity of its cheatsheet
version is w((gk)CS) = Õ(nk) by Lemma 4.29. Together with the fact that decision-DAG-width is

28

sub-multiplicative with respect to composition proven in Lemma 4.23, this implies that w(gk+1) =
Õ(nk+1).

Now we show by induction that uw(fk) = Õ(nk+1). We already proved the base case uw(f0) =
O(n) in Lemma 4.27.

For the induction step we have

uw0(fk+1) = uw0(AND ◦ (gk+1)CS) ≤ uw0((gk+1)CS) + n · uw1((gk+1)CS)

= Õ(uw(gk+1) + n · w(gk+1)) = Õ(n · uw(fk) + n · w(gk+1)) = Õ(nk+2 + nk+2),

uw1(fk+1) = uw1(AND ◦ (gk+1)CS) ≤ n · uw1((gk+1)CS) = Õ(nk+2)

concluding the proof.

Finally, we can build the Res refutation.

Theorem 4.31. The formula Gm of Theorem 4.14 has a Res refutation of size 2Õ(m).

Proof. Let F0 and F1 be the unambiguous DNFs that we obtain from the leaves of the strategy
for fk of Lemma 4.30. Since we used the same certificates as in Theorem 4.13, these are the
same as in Theorem 4.14, and we only need to modify our strategy to output the certificates
themselves rather than 0 and 1 in order to obtain a strategy for S, the falsified clause search problem
of F0 ∨ F1, of query complexity w(S) = Õ(nk+1). By sub-multiplicativity of query complexity
we have that the dag-like query complexity of S′, the falsified clause search problem of Gm, is
also w(S′) = Õ(nk+1) = Õ(m). From the equivalence between dag-like query complexity and
width we have that Gm has a Res refutation of width Õ(m), which implies a size upper bound of

|vars(Gm)|Õ(m) = 2Õ(m).

4.4.3 Upper bound in NS

Given a clause C =
∨

i∈P xi ∨
∨

i∈N xi, let pC =
∏

i∈P (1 − xi) ·
∏

i∈N xi be the polynomial whose
roots are the satisfying assignments of C. Recall that a NS certificate that a set of polynomials {pi}
has no common root is a set of polynomials {qi} such that

∑
piqi ≡ 1, and the degree of a certificate

is maxi deg(piqi). A NS refutation of a CNF F is a NS certificate for {pC | C ∈ F} ∪ {x2i − xi}.
It turns out that NS simulates Hitting with respect to degree.

Proposition 4.32. NS degree is at most Hitting width.

Proof. Let F be a CNF and H be a Hitting refutation of F . Observe that the polynomial
∑

C∈F pC
is identical to 1 because H is a partition of the hypercube. Fix for each clause C ∈ H a clause C ′ ∈ F
such that C ′ ⊆ C. Let qD =

∑
{C∈H|C′=D} pC\C′ . We claim that the set of polynomials {qD | D ∈ F}

is a NS certificate for F , and indeed we have
∑

D∈F pDqD =
∑

C∈F pC = 1. Furthermore, the
degree of pDqD is bounded by the degree of pC , which equals the width of H.

When measuring the size of a NS refutation it is more appropriate to consider a definition
that allows us to introduce dual variables x̄ = 1 − x [ABSRW02] resulting in a new system NSR
[dRLNS21], since otherwise a formula containing a wide clause with many positive literals would
already require exponential size when translated to polynomials. We discuss this system in Sect. 3.
Moreover, we discuss succinct NSR proofs that contain only side polynomials for the input axioms
and not for x2 − x = 0 or x + x̄ − 1 = 0. In fact, Prop. 4.32 already shows that succinct NSR
polynomially simulates Hitting with respect to size.

29

5 Odd Hitting

As mentioned in Sect. 3.3, Odd Hitting proofs can be verified similarly to NSR proofs over GF(2).
The two proof systems are similar: an NSR proof is a Nullstellensatz proof from pseudomonomial
equations mi = 0 that are translations of the input clauses Ci, the Boolean equations x2j −xj = 0 for
every variable xj , and the axioms x̄j + xj − 1 = 0 defining the dual variables. The side polynomials
over GF(2) are just sums of some monomials qik, rjℓ, and sjt such that∑

i

mi

∑
k

qik +
∑
j

(x2j − xj)
∑
ℓ

rjℓ +
∑
j

(x̄j + xj − 1)
∑
t

sjt ≡ 1.

On the other hand, an Odd Hitting proof also can be written using polynomials over GF(2) as a
sum of pseudomonomial equations mi = 0 multiplied by sums of monomials (every such product
expresses a weakening of Ci)∑

i

mi

∑
k

qik ≡ 1 (mod ⟨x2j − xj , x̄j + xj − 1⟩j).

The difference is that in Odd Hitting the equivalence is only modulo the ideal, thus Odd Hitting
gives succinct NSR proofs, as in Sect. 3.3. In the opposite direction, every NSR proof after cutting
the degrees and dropping rjℓ’s and sjt’s provides a valid Odd Hitting proof.

Like NS over GF(2), Odd Hitting can efficiently refute Tseitin formulas modulo 2 (see Def. 4.15),
which require exponential-size resolution proofs [Urq87].

Proposition 5.1. For any constant-degree graph G = (V,E) and 0/1-vector c, Odd Hitting has
a polynomial-size refutation of TG,c.

Proof. Each truth assignment falsifies an odd number of vertex constraints. For each constraint, it
falsifies exactly one of the 2deg v−1 clauses. Thus the total number of falsified clauses is odd, and
TG,c itself is an unsatisfiable odd-hitting formula.

A separation between Odd Hitting and NS without dual variables follows immediately from
the separation between NSR and NS of de Rezende et al [dRLNS21].

In the opposite direction, there are formulas that require exponentially larger proofs in Odd
Hitting than in Res. Dmitry Sokolov [private communication] suggested that the well-known
technique of xorification can produce an exponential separation between the size of Res and NSR
proofs from the bounds of [BCIP02]:

Theorem 5.2 ([BCIP02]). There exists a family of formulas that have Res proofs of constant width
and require NS degree Ω(n/ log n).

We notice that this technique is still viable for succinct NSR proofs, and hence Odd Hitting.
In the following lemma we apply xorification and the random restriction technique of Alekhnovich
and Razborov (see [BS09]) to get the separation.

Lemma 5.3. Let F be a CNF formula that requires degree d to refute in NS over a field F. Then
F ◦ (⊕2)

n requires size 2Ω(d) to refute in succinct NSR over F.

30

Proof. Denote by yi,0 and yi,1 the variables appearing in F ◦ (⊕2)
n as yi,0 ⊕ yi,1 instead of the

variable yi in F . Let
∑

figi ≡ 1 be a succinct NSR refutation of F ◦ (⊕2)n, and let s be the number
of monomials in the refutation, which we assume for the sake of contradiction to be less than (4/3)d.
Let D be the probability distribution over random restrictions where for every pair of variables
yi,0, yi,1 we sample j ∈ {0, 1} and b ∈ {0, 1} uniformly and we assign yi,j = b while leaving yi,1−j
unassigned. Observe that for ρ ∼ D we have {fi↾ρ | fi ∈ F ◦ (⊕2)

n} = F and that ρ respects
Boolean axioms, therefore

∑
figi↾ρ =

∑
fi↾ρ · gi↾ρ is a NSR refutation of F .

Since for any monomial m we have

Pr
ρ∼D

[deg(m↾ρ) ≥ d] ≤ Pr
ρ∼D

[deg(m) ≥ d and m↾ρ ̸= 0] ≤ (3/4)d,

the union bound gives that

Pr
ρ∼D

[deg(figi↾ρ) ≥ d] ≤ s Pr
ρ∼D

[deg(m↾ρ) ≥ d] ≤ s · (3/4)d < 1.

Therefore there exists a restriction such that deg(figi↾ρ) < d, contradicting our hypothesis that F
requires NS degree d.

Combining xorification with a lower bound on the degree of pebbling formulas we obtain a
separation between Odd Hitting and Res.

Corollary 5.4. There exists a family of formulas that have Res proofs of polynomial size and
require Odd Hitting proofs of size 2Ω(n/ logn).

Proof. By Theorem 5.2 and Lemma 5.3.

6 Hitting(⊕)

Hitting(⊕) extends Hitting to formulas that work with linear equations modulo two. We know
from Cor. 4.19 that Tseitin formulas separate Hitting(⊕) from Hitting and Res.

In this section, we show that perfect matching formulas (that have polynomial-size CP proofs)
require exponential-size Hitting(⊕) refutations. In order to do this, we lift them using (binary)
xorification and then reduce the question to the known communication complexity lower bound for
set disjointness.

6.1 Evidence against quasi-polynomial simulation by tl-Res(⊕)

Theorem 4.2 suggests that there might be a quasi-polynomial simulation of Hitting(⊕) by tl-
Res(⊕), which would imply that all exponential-size tl-Res(⊕) lower bounds imply exponential-size
lower bounds for Hitting(⊕). Recall that the crux of the proof of Theorem 4.2 is that we can
always find a literal that appears in an Ω(1/ log n) fraction of the clauses of a hitting formula, and
this provides an efficient splitting of the problem. The following proposition shows that the analogue
of this does not exist for Hitting(⊕), which is a piece of evidence that there is no similar simulation
in the case of Hitting(⊕). Namely, we prove that, contrary to the case of Hitting, there are
formulas that cannot be split so efficiently.

We use the construction that appears in [BFIK23, Section 5.1] for a different purpose.

31

Proposition 6.1. There exists an unsatisfiable hitting(⊕) formula over 2t−1 variables consisting of
2t (t− 1)-dimensional affine subspaces such that for every set S ⊆ [2t− 1] there is at most one affine
space in the formula contained in the codimension-1 affine subspace

{
x ∈ {0, 1}2t−1 |

⊕
i∈S xi = α

}
for α ∈ {0, 1}.

Proof. Let F2t be the finite field of order 2t, which we can identify with polynomials of degree
smaller than t over F2. Given such a polynomial b0 + b1x + · · · + bt−1x

t−1, we can identify it with
the string b0b1 . . . bt−1.

For every α ∈ F2t , we define

Vα := {(c, αc) | c = c0 + c1x + · · · + ct−1x
t−1 ∈ F2t , c0 = 1}.

We identify Vα with a subset of {0, 1}2t−1 by converting both parts to strings, concatenating them,
and removing the initial 1.

Claim 6.2. Sets {Vα}α∈F2t
form an unsatisfiable hitting(⊕) formula.

Proof. Define
Uα := {(d, αd) | d ∈ F2t}.

It is easy to see that Uα is a vector subspace of F2t
2 as η1(d1, αd1) + η2(d2, αd2) = ((η1d1 +

η2d2), α(η1d1 + η2d2)) ∈ Uα. If (x, y) ∈ Uα ∩ Uβ for α ̸= β then y = αx = βx, and so x = y = 0.
This shows that Uα, Uβ are trivially intersecting subspaces. Also, if x ≠ 0 then (x, y) is covered by
Uy/x. Together with U∞ = {(0, d) | d ∈ F2t}, we obtain the object called standard Desarguesian
spread of F2

2t \ {(0, 0)} (which we think of as a projective plane).
We obtain Vα by restricting Uα to those d satisfying d0 = 1. Thus Vα ∩ Vβ = ∅ and the Vα’s

cover all points of the form (x, y) where x0 = 1. Moreover, Vα is an affine subspace since it is an
intersection of Uα and an affine space {(c, d) | c0 = 1} projected on the last 2t− 1 coordinates. We
conclude that the Vα’s constitute a hitting(⊕) formula.

Now we proceed to prove the uniqueness of an affine space Vα contained in an arbitrary
codimension-1 affine subspace of {0, 1}2t−1. We can think of the entire domain as V = {(c, d) :
c, d ∈ F2t , c0 = 1}. The subspaces are Vα = {(c, d) : d = αc}. Any affine form on the encoding of
length 2t− 1 (obtained by removing the initial 1) corresponds to a linear form on the “homogenized”
encoding of length 2t. Moreover, we can express each such form as (γc + δd)0, where γ, δ ∈ F2t , and
we take the coefficient of x0 in the result.

A subspace Vα satisfies the constraint (γc + δd)0 = 0 if ((γ + αδ)c)0 = 0 for all c ∈ F2t such
that c0 = 1. Let η = γ + αδ. Choosing c = 1, we see that η0 = 0. If d ∈ F2t satisfies d0 = 0 then
(ηd)0 = (η(d + 1))0 + η0 = 0. Therefore (ηc)0 = 0 for all c ∈ F2t . In particular, if η = 0, since
otherwise we obtain a contradiction by choosing c = η−1.

There are now two cases. If δ = 0 then η = 0 implies γ = 0. If δ ̸= 0 then η = 0 implies
α = −γ/δ. We conclude that an affine equation that involves only the first half holds for no subspace
(unless it is the trivial 0 = 0), and any other affine equation holds for precisely one subspace.

6.2 Communication simulation of Hitting(⊕)

Consider the following complexity measure on relations introduced by Jain and Klauck [JK10,
Definition 22]. Let S ⊆ X × Y × O, let rect(X ,Y) (or just rect) be the set of subrectangles of

32

X × Y (that is, {A×B | A ⊆ X , B ⊆ Y}), let supp(S) = {(x, y) ∈ X × Y | ∃o ∈ O : (x, y, o) ∈ S}.
Then ε-partition bound of S is denoted by prtε(S) and defined by the value of the following linear
program: ∑

o∈O

∑
R∈rect

wo,R → min

∀(x, y) ∈ supp(S),
∑

o:(x,y,o)∈S

∑
(x,y)∈R∈rect

wo,R ≥ 1 − ε

∀o,R ∈ O × rect, wo,R ≥ 0

∀(x, y) ∈ X × Y,
∑
o∈O

∑
(x,y)∈R∈rect

wo,R = 1.

That is, we put weights wo,R on every answer o and rectangle R so that for every question (x, y)
the total weight is 1 for all rectangles where (x, y) participates and for all answers, and for every
question that does have an answer, the weight 1 − ε is concentrated on the correct answer(s).

Remark 6.3. Note that if we aggregate the “answers” o ∈ O into larger containers I(o′) ∈ O′ so
that O = ⊔

o′∈O′
I(o′) and (x, y, o′) ∈ O′ ⇔ ∃o ∈ I(o′) (x, y, o) ∈ O, we can only decrease the value of

prtε.

This measure lower bounds communication complexity in the following way:

Theorem 6.4 ([JK10]). ε-error randomized communication complexity of a relation S is at least
log prtε(S).

The classical communication complexity lower bound for set disjointness works for this measure
as well. The set disjointness relation Disjn : {0, 1}n × {0, 1}n → {0, 1} is defined as Disjn(x, y) =∧

i∈[n] ¬(xi ∧ yi).

Theorem 6.5 ([Raz92, JK10]). log prtε(Disjn) = Ω(n).

We prove that Hitting(⊕) size lower bounds can be deduced from lower bounds on prtε. Recall
that Hitting(⊕) can be considered not just a proof system for formulas in CNFs, but as a proof
system for sets of disjunctions of affine equations (sets of affine subspaces), which we will still call
clauses. We will use it in our proof (though the final bound will be for a formula in CNF).

Lemma 6.6. Let F =
∧

i∈[m]Ci be a set of affine subspaces over n variables having a Hitting(⊕)
refutation of size s. Let X ⊔ Y = [n] be an arbitrary partition of variables of F and let the
clause-search relation associated with F be

S := {(x, y, j) ∈ {0, 1}X × {0, 1}Y × [m] | Cj(x, y) = 0}.

Then for any constant ε ∈ (0, 1), prtε(S) = O(s2) (the constant in O may depend on ε).

Proof. Let A1, . . . , As be the affine subspaces forming the partition of {0, 1}n corresponding to the
Hitting(⊕) refutation of F , i.e. for every Aj there exists Ch(j) ∈ F such that for every x ∈ Aj ,
Ch(j)(x) = 0.

33

Now let us define the values of wi,R for i ∈ [m] and a rectangle R ∈ rect({0, 1}X , {0, 1}Y)
corresponding to prtε(S).

For each j ∈ [s] we define a part of the weights induced by Aj . Let Aj = {(x, y) ∈ {0, 1}X ×
{0, 1}Y | MXx + MY y = a} where a ∈ {0, 1}k, MX ∈ {0, 1}[k]×X , MY ∈ {0, 1}[k]×Y . Consider a
uniformly distributed matrix V ∈ {0, 1}t×k, then if (x, y) ∈ Aj ,

Pr
V

[
VMXx + VMY y = V a

]
= 1,

and if (x, y) ̸∈ Aj ,

Pr
V

[
VMXx + VMY y = V a

]
=

1

2t
.

For matrix V and u, v ∈ {0, 1}t, define the rectangle RV
u,v := {(x, y) | VMXx = u, V MY y = v}. We

can now define weights w
(j)
i,R (recall that h(j) is the index of the clause falsified in Aj):

w
(j)
i,R :=

{
2−kt if i = h(j) and R = RV

u,u+V a for some u ∈ {0, 1}t and V ∈ {0, 1}k×t,
0 otherwise.

(Note that the points of Ru,u+V a are guaranteed to fulfil the condition VMXx + VMY y = V a
above.) Then

∑
i∈[m]

R∋(x,y)

w
(j)
i,R =

∑
R∋(x,y)

w
(j)
h(j),R = EV w

(j)

h(j), RV
VMXx,V MY y

=

{
1 if (x, y) ∈ Aj ,

2−t otherwise.

Now fix t := ⌈log2(2s/ε)⌉, so 2−t ≤ ε/2s, and set wi,R := 1
1+(s−1)2−t

∑
j∈[s]w

(j)
i,R. Then

∑
i∈[m]

R∋(x,y)

wi,R =
1

1 + (s− 1)2−t


1︷ ︸︸ ︷∑

i∈[m]
R∋(x,y)

w
(j(x,y))
i,R +

∑
j∈[s]\{j(x,y)}

2−t︷ ︸︸ ︷∑
i∈[m]

R∋(x,y)

w
(j)
i,R

 = 1,

where j(x, y) ∈ [s] is such that Aj(x,y) ∋ (x, y). Let i(x, y) be the index of some fixed clause falsified
in Aj(x,y). Let us check the second condition on the weights:∑
(x,y,i)∈S
R∋(x,y)

wi,R ≥
∑

R∋(x,y)

wi(x,y),R ≥ 1

1 + (s− 1)2−t

∑
R∋(x,y)

w
(j(x,y))
i(x,y),R =

1

1 + (s− 1)2−t
≥ 1

1 + ε/2
≥ 1−ε.

The objective function of the linear program is

prtε(S) =
∑
i∈[m]
R∈rect

wi,R ≤
∑

i∈[m], j∈[s]
R∈rect

w
(j)
i,R ≤ s2t ≤ 4s2/ε.

The second inequality holds as by definition of w
(j)
i,R, for every j ∈ [s], it is non-negative in the 2t+kt

cases, and equals 2−kt in each of them.

34

B(0) B(1)

-

A(0)

A(1)

Figure 2: The graphs A(0), A(1), B(0), and B(1) and their pairwise symmetric differences. Only
A(1) ⊕B(1) is not a matching.

6.3 Lower bounds on prtε

To get a lower bound on the size of Hitting(⊕) refutations using Lemma 6.6, we need to show a
lower bound on prtε for clause-search relations. The idea is to utilize known reductions from set
disjointness, Disjn, that have been developed for randomized communication complexity.

The perfect matching principle PMG is a formula in CNF stating that a given subset of E(G) is
a perfect matching. It has a variable ze for every edge e ∈ E(G), and for every v ∈ V (G) it contains

• the clauses z̄f ∨ z̄g for every pair of edges f, g adjacent to v, and

• the clause
∨

e∋v ze.

Define a set of clauses (with affine equations) PM⊕G by replacing every variable ze in the formula
PMG by xe ⊕ ye (here xe and ye are variables of PM⊕G).

For a graph G, the relation Search-PM⊕G ⊆ {0, 1}E(G) ×{0, 1}E(G) × V (G) for PM⊕G is defined
as Search-PM⊕G := {(E1, E2, v) | degree of v in (V (G), E1 ⊕ E2) is not 1}. In other words, the
Search-PM⊕G problem asks to find a witness that the symmetric difference of the input sets is not
a perfect matching. Strictly speaking, it does not ask for a specific clause; however, Remark 6.3
explains that aggregating clauses into the set of clauses related to a single vertex is enough.

In the following theorem, we construct a communication-complexity reduction of Disjn to
Search-PM⊕G for a specific graph G by providing two functions fA, fB for Alice and Bob and
another function g for recovering the result after Search-PM⊕G finds a failing vertex in the graph
(V, fA(. . .) ⊕ fB(. . .)). We later use this reduction in order to prove bounds on prt.

Theorem 6.7 (variation on [IR21, Theorem 16]). Let G = K40n+1,40n+3. There exist a finite set
R, functions fA, fB : {0, 1}n ×R → {0, 1}E(G) and a function g : V (G) ×R → {0, 1} such that for
every a, b ∈ {0, 1}n and for every family of random variables {px,y}x,y∈{0,1}E(G) over V (G),

Pr
r←R

[
g(pfA(a,r),fB(b,r), r) ̸= Disjn(a, b) | (fA(a, r), fB(b, r),pfA(a,r),fB(b,r)) ∈ Search-PM⊕G

]
≤ 1

10
,

where r is uniformly distributed over R.

Proof. Itsykson and Riazanov [IR21] described four graphs A(0), A(1), B(0), B(1), all of them
subgraphs of K4,4, with the following two properties (see Fig. 2):

• A(a) ⊕B(b) is a perfect matching consisting of four edges for all (a, b) ̸= (1, 1).

35

• A(1) ⊕B(1) is the disjoint sum of K1,3 and K3,1, where in both cases the vertex numbered 1
on one side is connected to the vertices numbered 2, 3, 4 on the other side.

Using this gadget, we define R, fA, fB, g:

• R = S40n+1 × S40n+3 × {0, 1}E(G), where Sm is the symmetric group on m elements. In what
follows, we denote an element of R by (π1, π2, H).

• fA(a, π1, π2, H): start with a graph GA that is a disjoint union of 10 copies of A(a1), . . . , A(an)
(total of 10n subgraphs) and a copy of K1,3 with its vertex on the left numbered 40n + 1.
Compute the symmetric difference with H, then permute the vertices on the left using π1 and
the vertices on the right using π2.

• fB(b, π1, π2, H): start with a graph GB that is a disjoint union of 10 copies of B(b1), . . . , B(bn)
and a copy of the complement of K1,3 (that is, the empty graph 1× 3). As for fA, we compute
the symmetric difference with H and then apply π1, π2.

• g(v, π1, π2, H): return 1 if v is vertex π1(40n + 1) on the left.

If Disjn(a, b) = 1 then the graph fA(a, r)⊕ fB(b, r) consists of a matching of 40n edges together
with a copy of K1,3, after shuffling both sides according to r. The only vertex of degree other
than 1 is π1(40n + 1), and so if p returns a vertex in Search-PM⊕, it must return π1(40n + 1).
Consequently, g always returns 1. In this case, the probability in the statement of the theorem is
zero.

Now suppose that Disjn(a, b) = 0, say a1 = b1 = 1. Let G⊕ = GA ⊕GB, where GA, GB are the
graphs in the definitions of fA, fB, and define the permutation that touches only vertices in the ten
copies of A(1) ⊕B(1) and the vertices of the final K1,3.

σ1 = (1 5 9 · · · 37 40n + 1),

σ2 = (2 6 10 · · · 38 40n + 1) (3 7 11 · · · 39 40n + 2) (4 8 12 · · · 40 40n + 3).

Thus G⊕ is invariant under permuting vertices on the left using σ1 and those on the right using σ2
(simultaneously).

For fixed π1, π2, the distribution of (fA(a, r), fB(b, r)) (whose randomness comes only from H)
can be described as follows: sample a pair (HA, HB) whose symmetric difference is G⊕, and then
permute the result according to π1, π2, an operation we denote by superscripting the pair. Therefore

Pr
r←R

[
g(pfA(a,r),fB(b,r), r) ̸= Disjn(a, b) | (fA(a, r), fB(b, r),pfA(a,r),fB(b,r)) ∈ Search-PM⊕G

]
=

Pr
π1,π2

HA⊕HB=G⊕

[
pH

π1,π2
A ,H

π1,π2
B

= π1(40n + 1) | (Hπ1,π2

A , Hπ1,π2

B ,pH
π1,π2
A ,H

π1,π2
B

) ∈ Search-PM⊕G

]
.

Denote S(π1, π2) :=
(
Hπ1,π2

A , Hπ1,π2

B ,pH
π1,π2
A ,H

π1,π2
B

)
. Let t be chosen uniformly at random from

{0, . . . , 10}. Since (π1, π2) and (π1σ
t
1, π2σ

t
2) have the same distribution, the probability above is

36

equal to

Pr
π1,π2

HA⊕HB=G⊕

[
p
H

π1σ
t
1,π2σ

t
2

A ,H
π1σ

t
1,π2σ

t
2

B

= π1
(
σt
1(40n + 1))

∣∣∣∣ S(π1σ
t
1, π2σ

t
2) ∈ Search-PM⊕G

]
=

Pr
π1,π2

HA⊕HB=G
σt
1,σ

t
2

⊕

[
pH

π1,π2
A ,H

π1,π2
B

= π1(σ
t
1(40n + 1))

∣∣∣ S(π1, π2) ∈ Search-PM⊕G

]
=

Pr
π1,π2

HA⊕HB=G⊕

[
pH

π1,π2
A ,H

π1,π2
B

= π1(σ
t
1(40n + 1))

∣∣∣ S(π1, π2) ∈ Search-PM⊕G

]
≤ 1

11
,

since σt
1(40n + 1) is uniformly distributed over {1, 5, 9, . . . , 37, 40n + 1}.

In the next theorem we use the reduction from Theorem 6.7 in order to transform prt bounds
for Search-PM⊕G into bounds for the disjointness.

Theorem 6.8. For the graph G from Theorem 6.7 and small enough constant ε,

prt1/3(Disjn) ≤ prtε(Search-PM
⊕
G).

Proof. Let wv,R for v ∈ V (G) and R ∈ rect({0, 1}E(G), {0, 1}E(G)) be optimal weights in the ε-
partition bound for Search-PM⊕G. Let fA, fB, g be the reduction functions from Theorem 6.7. Let
f r
A(x) := fA(x, r) and f r

B(x) := fB(x, r). We claim that the following weights w′α,R for α ∈ {0, 1}
and R ∈ rect({0, 1}n, {0, 1}n) yield the upper bound on prt1/3(Disjn):

w′α,X×Y := Er

∑
A,B :⋃

(fr
A)−1(A)=X⋃

(fr
B)

−1(B)=Y

∑
v :

g(v,r)=α

wv,A×B.

Let us verify the properties of w′. First, we check that the sum of weights of rectangles covering
a point is exactly 1: ∑

α∈{0,1}
X×Y ∋(x,y)

w′α,X×Y = Er

∑
v∈V (G)

∑
A,B :

A∋fr
A(x)

B∋fr
B(y)

wv,A×B = 1.

Now we check that the sum of weights covering a point (x, y) and labeled with the correct answer
α = Disjn(x, y) is at least 2/3:∑

X×Y ∋(x,y)

w′α,X×Y = Es

∑
A∋fr

A(x)

B∋fr
B(y)

v : g(v,r)=α

wv,A×B ≥ Es

∑
A∋fr

A(x), B∋fr
B(y)

v : g(v,r)=α

(fr
A(x),fr

B(y),v)∈Search-PM
⊕
G

wv,A×B

= Es

∑
A∋fr

A(x), B∋fr
B(y)

(fr
A(x),fr

B(y),v)∈Search-PM
⊕
G

wv,A×B −Es

∑
A∋fr

A(x), B∋fr
B(y)

v : g(v,r)̸=α

(fr
A(x),fr

B(y),v)∈Search-PM
⊕
G

wv,A×B

≥ 1 − ε−Es

∑
v : g(v,r)̸=α

(fr
A(x),fr

B(y),v)∈Search-PM
⊕
G

∑
A∋fr

A(x)

B∋fr
B(y)

wv,A×B

︸ ︷︷ ︸
r

.

37

Now let us define a family of random variables pa,b for a, b ∈ {0, 1}E(G) over V (G) such that
Pr[pa,b = v] =

∑
A×B∋(a,b)wv,A×B and rewrite

Er

∑
v : g(v,r)̸=α

(fr
A(x),fr

B(y),v)∈Search-PM
⊕
G

Pr[pfr
A(x),fr

B(y)
= v]

= Pr
r

[
g(pfr

A(x),fr
B(y)

, r) ̸= α ∧ (x, y,pfr
A(x),fr

B(y)
) ∈ Search-PM⊕G

]
≤ 1

10
.

The last inequality holds by Theorem 6.7, so for ε < 9
10 − 2

3 the condition
∑

X×Y ∋(x,y)
w′α,X×Y ≥ 2

3

holds. Now let us compute the sum of all w′:∑
α∈{0,1};X,Y⊆{0,1}n

w′α,X×Y = Es

∑
X,Y⊆{0,1}n;v∈V (G)

wv,fA(A,r)×fB(B,r) ≤ prtε(Search-PM
⊕
G).

6.4 A lower bound on the size of Hitting(⊕) refutations

We can now derive the lower bound.

Theorem 6.9. Any Hitting(⊕) refutation of PMG for the graph G from Theorem 6.7 contains
2Ω(n) many subspaces.

Proof. Let ε be the constant from Theorem 6.8. If there is a Hitting(⊕) refutation of PMG(z̄)
with s subspaces, then we can convert it to a Hitting(⊕) refutation of PM⊕G(x̄, ȳ) (viewed as a set
of subspaces) with the same number of subspaces simply by replacing every variable ze with xe ⊕ ye
in the hitting(⊕) formula. Indeed, if a subspace Mz̄ = ā implies that a clause related to a vertex v
is false, then the subspace M(x̄ + ȳ) = ā implies that the degree of v in (V (G), E1 ⊕ E2) is not 1
(that is, one of the clauses of PM⊕G related to v is false). Lemma 6.6 (note also Remark 6.3) then
implies that prtε(Search-PM

⊕
G) = O(s2), and so prt1/3(Disjn) = O(s2) according to Theorem 6.8.

Theorem 6.5 implies that log s = Ω(n).

Remark 6.10. Note that the PMG formulas for Ki,j for i ̸= j have polynomial-size CP proofs: it
can be easily derived from the 2-clauses that the number of edges around a vertex is at most 1; then
take the sum of such inequalities around all vertices in the smaller part, and take the sum of the
other input inequalities in the larger part.

Acknowledgements

We thank Jan Johannsen, Ilario Bonacina, Oliver Kullmann, and Stefan Szeider for introducing us
to the topic; Zachary Chase, Susanna de Rezende, Mika Göös, Amir Shpilka, and Dmitry Sokolov
for helpful discussions. We also thank anonymous reviewers for their comments that helped us to
improve the presentation.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 802020-ERC-HARMONIC.

38

References

[ABDK16] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity
using cheat sheets. In STOC’16—Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, pages 863–876. ACM, New York, 2016. doi:

10.1145/2897518.2897644.

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–
1211, 2002. doi:10.1137/S0097539700366735.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. J. Comput. System Sci., 74(3):323–334, 2008. doi:10.1016/j.jcss.2007.06.
025.

[AKK16] Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly optimal separations
between communication (or query) complexity and partitions. In 31st Conference on
Computational Complexity, volume 50 of LIPIcs. Leibniz Int. Proc. Inform., pages
Art. No. 4, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016. doi:10.4230/
LIPIcs.CCC.2016.4.

[Ale21] Yaroslav Alekseev. A lower bound for polynomial calculus with extension rule. In
36th Computational Complexity Conference, volume 200 of LIPIcs. Leibniz Int. Proc.
Inform., pages Art. No. 21, 18. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021.
doi:10.4230/LIPIcs.CCC.2021.21.

[ALN16] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be
maximally long. ACM Trans. Comput. Log., 17(3):19, 2016. doi:10.1145/2898435.

[BCIP02] Josh Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi.
Homogenization and the polynomial calculus. Comput. Complex., 11(3-4):91–108, 2002.
doi:10.1007/s00037-002-0171-6.

[BFIK23] John Bamberg, Yuval Filmus, Ferdinand Ihringer, and Sascha Kurz. Affine vec-
tor space partitions. Des. Codes Cryptogr., 2023. doi:https://doi.org/10.1007/

s10623-023-01263-z.

[BIK+96] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, and P. Pudlák. Lower bounds on
Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc., 73(3):1–26,
1996. doi:10.1112/plms/s3-73.1.1.

[BK22] Paul Beame and Sajin Koroth. On disperser/lifting properties of the index and
inner-product functions, 2022. URL: https://arxiv.org/abs/2211.17211, doi:10.
48550/ARXIV.2211.17211.

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. J. Artif. Intell. Res., 22:319–351, 2004.
doi:10.1613/jair.1410.

39

https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1137/S0097539700366735
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.4230/LIPIcs.CCC.2021.21
https://doi.org/10.1145/2898435
https://doi.org/10.1007/s00037-002-0171-6
https://doi.org/https://doi.org/10.1007/s10623-023-01263-z
https://doi.org/https://doi.org/10.1007/s10623-023-01263-z
https://doi.org/10.1112/plms/s3-73.1.1
https://arxiv.org/abs/2211.17211
https://doi.org/10.48550/ARXIV.2211.17211
https://doi.org/10.48550/ARXIV.2211.17211
https://doi.org/10.1613/jair.1410

[Bla37] Archie Blake. Canonical expressions in Boolean algebra. PhD thesis, The University of
Chicago, 1937.

[BP96] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In
Proceedings of 37th Conference on Foundations of Computer Science, pages 274–282,
1996. doi:10.1109/SFCS.1996.548486.

[BPS05] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász-Schrijver
systems and beyond follow from multiparty communication complexity. In Lúıs Caires,
Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
Automata, Languages and Programming, pages 1176–1188, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[BR96] Paul Beame and Søren Riis. More on the relative strength of counting principles. In
Paul Beam and Samuel R. Buss, editors, Proof Complexity and Feasible Arithmetics,
Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24,
1996, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 13–35. DIMACS/AMS, 1996. doi:10.1090/dimacs/039/02.

[BS09] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, 2009. doi:10.1137/080723880.

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal
algorithms. Electron. Colloquium Comput. Complex., TR14-059, 2014. URL: https:
//eccc.weizmann.ac.il/report/2014/059, arXiv:TR14-059.

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of
tree-like and general resolution. Combinatorica, 24(4):585–603, 2004. doi:10.1007/
s00493-004-0036-5.

[CCT87] W. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, 1987.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages 174–183, New
York, 1996. ACM. doi:10.1145/237814.237860.

[CMSS22] Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting
to parity decision trees via stifling, 2022. URL: https://arxiv.org/abs/2211.17214,
doi:10.48550/ARXIV.2211.17214.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

[DD98] G. Davydov and I. Davydova. Dividing formulas and polynomial classes for satisfiability.
In SAT’98, 2nd Workshop on the Satisfiability Problem, page 12–21, 1998.

40

https://doi.org/10.1109/SFCS.1996.548486
https://doi.org/10.1090/dimacs/039/02
https://doi.org/10.1137/080723880
https://eccc.weizmann.ac.il/report/2014/059
https://eccc.weizmann.ac.il/report/2014/059
http://arxiv.org/abs/TR14-059
https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1145/237814.237860
https://arxiv.org/abs/2211.17214
https://doi.org/10.48550/ARXIV.2211.17214
https://doi.org/10.2307/2273702

[DH21] Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability
- Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 669–692. IOS Press, 2021. doi:10.3233/FAIA200999.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

[DMR09] Stefan S. Dantchev, Barnaby Martin, and Mark Nicholas Charles Rhodes. Tight
rank lower bounds for the Sherali–Adams proof system. Theor. Comput. Sci., 410(21-
23):2054–2063, 2009. doi:10.1016/j.tcs.2009.01.002.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[dR21] Susanna F. de Rezende. Automating tree-like resolution in time no(logn) is ETH-
hard. Procedia Computer Science, 195:152–162, 2021. Proceedings of the XI Latin
and American Algorithms, Graphs and Optimization Symposium. URL: https://
www.sciencedirect.com/science/article/pii/S1877050921021608, doi:https:

//doi.org/10.1016/j.procs.2021.11.021.

[dRLNS21] Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov.
The power of negative reasoning. In Valentine Kabanets, editor, 36th Computational
Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada
(Virtual Conference), volume 200 of LIPIcs, pages 40:1–40:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.40.

[dRNV16] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction
hinders real communication (and what it means for proof and circuit complexity). In
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 295–304, 2016. doi:10.1109/FOCS.2016.40.

[dRPR24] Susanna F. de Rezende, Aaron Potechin, and Kilian Risse. Clique is hard on av-
erage for sherali-adams with bounded coefficients. CoRR, abs/2404.16722, 2024.
URL: https://doi.org/10.48550/arXiv.2404.16722, arXiv:2404.16722, doi:10.
48550/ARXIV.2404.16722.

[EH89] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random
examples. Inform. and Comput., 82(3):231–246, 1989. doi:10.1016/0890-5401(89)
90001-1.

[FHK+23] Yuval Filmus, Edward Hirsch, Sascha Kurz, Ferdinand Ihringer, Artur Riazanov,
Alexander Smal, and Marc Vinyals. Irreducible subcube partitions. Elec J Comb, 2023.
URL: https://arxiv.org/abs/2212.14685, doi:10.48550/ARXIV.2212.14685.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and
efficient algorithm design. Found. Trends Theor. Comput. Sci., 14(1-2):1–221, 2019.
doi:10.1561/0400000086.

41

https://doi.org/10.3233/FAIA200999
https://doi.org/10.1016/j.tcs.2009.01.002
https://www.sciencedirect.com/science/article/pii/S1877050921021608
https://www.sciencedirect.com/science/article/pii/S1877050921021608
https://doi.org/https://doi.org/10.1016/j.procs.2021.11.021
https://doi.org/https://doi.org/10.1016/j.procs.2021.11.021
https://doi.org/10.4230/LIPIcs.CCC.2021.40
https://doi.org/10.1109/FOCS.2016.40
https://doi.org/10.48550/arXiv.2404.16722
http://arxiv.org/abs/2404.16722
https://doi.org/10.48550/ARXIV.2404.16722
https://doi.org/10.48550/ARXIV.2404.16722
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1016/0890-5401(89)90001-1
https://arxiv.org/abs/2212.14685
https://doi.org/10.48550/ARXIV.2212.14685
https://doi.org/10.1561/0400000086

[FMSV23] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. MaxSAT resolution
and subcube sums. ACM Trans. Comput. Logic, 24(1), 2023. doi:10.1145/3565363.

[GGKS20] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. Theory Comput., 16(13):1–30, 2020. doi:10.4086/toc.2020.
v016a013.

[GH03] Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret.
Comput. Sci., 303(1):83–102, 2003. Logic and complexity in computer science (Créteil,
2001). doi:10.1016/S0304-3975(02)00446-2.

[GHJ+22] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Separations in proof complexity and TFNP, 2022. URL:
https://arxiv.org/abs/2205.02168, doi:10.48550/ARXIV.2205.02168.

[GHP02] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of
semialgebraic proofs. Moscow Mathematical Journal, 2(4):647–679, 2002. doi:

10.17323/1609-4514-2002-2-4-647-679.

[GK13] Matthew Gwynne and Oliver Kullmann. Towards a theory of good SAT representations.
CoRR, abs/1302.4421, 2013. URL: http://arxiv.org/abs/1302.4421, arXiv:1302.
4421.

[GK18] Michal Garĺık and Leszek Aleksander Ko lodziejczyk. Some subsystems of constant-
depth frege with parity. ACM Trans. Comput. Logic, 19(4), nov 2018. doi:10.1145/
3243126.

[GKY22] Mika Göös, Stefan Kiefer, and Weiqiang Yuan. Lower Bounds for Unambiguous
Automata via Communication Complexity. In Miko laj Bojańczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 126:1–126:13, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/
opus/volltexte/2022/16467, doi:10.4230/LIPIcs.ICALP.2022.126.

[GP18] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and
polynomial identity testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018.
doi:10.1145/3230742.

[GPW17] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting
for bpp. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 132–143, 2017. doi:10.1109/FOCS.2017.21.

[Gry19] Svyatoslav Gryaznov. Notes on resolution over linear equations. In René van Bevern
and Gregory Kucherov, editors, Computer Science - Theory and Applications - 14th
International Computer Science Symposium in Russia, CSR 2019, Novosibirsk, Russia,
July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in Computer Science, pages
168–179. Springer, 2019. doi:10.1007/978-3-030-19955-5_15.

42

https://doi.org/10.1145/3565363
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.1016/S0304-3975(02)00446-2
https://arxiv.org/abs/2205.02168
https://doi.org/10.48550/ARXIV.2205.02168
https://doi.org/10.17323/1609-4514-2002-2-4-647-679
https://doi.org/10.17323/1609-4514-2002-2-4-647-679
http://arxiv.org/abs/1302.4421
http://arxiv.org/abs/1302.4421
http://arxiv.org/abs/1302.4421
https://doi.org/10.1145/3243126
https://doi.org/10.1145/3243126
https://drops.dagstuhl.de/opus/volltexte/2022/16467
https://drops.dagstuhl.de/opus/volltexte/2022/16467
https://doi.org/10.4230/LIPIcs.ICALP.2022.126
https://doi.org/10.1145/3230742
https://doi.org/10.1109/FOCS.2017.21
https://doi.org/10.1007/978-3-030-19955-5_15

[Gwy14] Matthew Gwynne. Hierarchies for efficient clausal entailment checking: With appli-
cations to satisfiability and knowledge compilation. PhD thesis, Swansea University,
2014.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

[HN12] Trinh Huynh and Jakob Nordstrom. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time-space trade-offs in proof complexity. In
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, page 233–248, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2213977.2214000.

[IR21] Dmitry Itsykson and Artur Riazanov. Proof Complexity of Natural Formulas via
Communication Arguments. In Valentine Kabanets, editor, 36th Computational
Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 3:1–3:34, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2021.3.

[IS20] Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two.
Ann. Pure Appl. Logic, 171(1):102722, 31, 2020. doi:10.1016/j.apal.2019.102722.

[Iwa89] Kazuo Iwama. CNF-satisfiability test by counting and polynomial average time. SIAM
J. Comput., 18(2):385–391, 1989. doi:10.1137/0218026.

[JK10] Rahul Jain and Hartmut Klauck. The partition bound for classical communication
complexity and query complexity. In Proceedings of the 25th Annual IEEE Conference
on Computational Complexity, CCC 2010, Cambridge, Massachusetts, USA, June 9-12,
2010, pages 247–258. IEEE Computer Society, 2010. doi:10.1109/CCC.2010.31.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[Kra98] Jan Kraj́ıček. Discretely ordered modules as a first-order extension of the cutting
planes proof system. Journal of Symbolic Logic, 63(4):1582–1596, 1998. doi:10.2307/
2586668.

[Kul04] Oliver Kullmann. The combinatorics of conflicts between clauses. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing
(SAT 2003), pages 426–440, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-24605-3_32.

[Kul11] Oliver Kullmann. Constraint satisfaction problems in clausal form II: minimal un-
satisfiability and conflict structure. Fundam. Informaticae, 109(1):83–119, 2011.
doi:10.3233/FI-2011-429.

[KZ13] Oliver Kullmann and Xishun Zhao. On Davis-Putnam reductions for minimally
unsatisfiable clause-sets. Theoret. Comput. Sci., 492:70–87, 2013. doi:10.1016/j.tcs.
2013.04.020.

43

https://doi.org/10.1145/2213977.2214000
https://doi.org/10.4230/LIPIcs.CCC.2021.3
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1137/0218026
https://doi.org/10.1109/CCC.2010.31
https://doi.org/10.2307/2586668
https://doi.org/10.2307/2586668
https://doi.org/10.1007/978-3-540-24605-3_32
https://doi.org/10.3233/FI-2011-429
https://doi.org/10.1016/j.tcs.2013.04.020
https://doi.org/10.1016/j.tcs.2013.04.020

[NS95] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4, 01 1995. doi:10.1145/129712.129757.

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers
as resolution engines. Artif. Intell., 175(2):512–525, 2011. doi:10.1016/j.artint.

2010.10.002.

[Pit96] Toniann Pitassi. Algebraic propositional proof systems. In Neil Immerman and
Phokion G. Kolaitis, editors, Descriptive Complexity and Finite Models, Proceedings
of a DIMACS Workshop 1996, Princeton, New Jersey, USA, January 14-17, 1996,
volume 31 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 215–244. DIMACS/AMS, 1996. doi:10.1090/dimacs/031/07.

[PS22] Tomás Peitl and Stefan Szeider. Are hitting formulas hard for resolution? CoRR,
abs/2206.15225, 2022. doi:10.48550/arXiv.2206.15225.

[Pud00] Pavel Pudlák. Proofs as games. Am. Math. Mon., 107(6):541–550, 2000. URL:
http://www.jstor.org/stable/2589349.

[Raz92] A. A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.

[Rec76] Robert A. Reckhow. On the Lengths of Proofs in the Propositional Calculus. PhD
thesis, University of Toronto, Department of Computer Science, 1976. Available from
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Comput. Complexity, 14(1):1–19, 2005. doi:10.1007/

s00037-005-0188-8.

[RT08] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs.
Ann. Pure Appl. Logic, 155(3):194–224, 2008. doi:10.1016/j.apal.2008.04.001.

[She21] Suhail Sherif. Communication Complexity and Quantum Optimization Lower Bounds
via Query Complexity. PhD thesis, Tata Institute of Fundamental Research, Mumbai,
2021.

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Pascal Weil, editor,
Computer Science - Theory and Applications - 12th International Computer Science
Symposium in Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings,
volume 10304 of Lecture Notes in Computer Science, pages 294–307. Springer, 2017.
doi:10.1007/978-3-319-58747-9_26.

[Tse68] G. S. Tseitin. On the complexity of derivation in the propositional calculus. Zapiski
nauchnykh seminarov LOMI, 8:234–259, 1968. English translation of this volume:
Consultants Bureau, N.Y., 1970, pp. 115–125.

[Urq87] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.
doi:10.1145/7531.8928.

44

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1145/129712.129757
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1090/dimacs/031/07
https://doi.org/10.48550/arXiv.2206.15225
http://www.jstor.org/stable/2589349
https://doi.org/10.1016/0304-3975(92)90260-M
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf
https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1016/j.apal.2008.04.001
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1145/7531.8928

