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Abstract

The seminal work of Raz (J. ACM 2013) as well as the recent breakthrough results by Limaye,
Srinivasan, and Tavenas (FOCS 2021, STOC 2022) have demonstrated a potential avenue for obtaining
lower bounds for general algebraic formulas, via strong enough lower bounds for set-multilinear formulas.

In this paper, we make progress along this direction by proving near-optimal lower bounds against low-
depth as well as unbounded-depth set-multilinear formulas. More precisely, we show that over any field
of characteristic zero, there is a polynomial f computed by a polynomial-sized set-multilinear branching
program (i.e., f is in set-multilinear VBP) defined over Θ(n2) variables and of degree Θ(n), such that

any product-depth ∆ set-multilinear formula computing f has size at least nΩ(n1/∆/∆). Moreover, we
show that any unbounded-depth set-multilinear formula computing f has size at least nΩ(logn).

If such strong lower bounds are proven for the iterated matrix multiplication (IMM) polynomial or
rather, any polynomial that is computed by an ordered set-multilinear branching program (i.e., a further
restriction of set-multilinear VBP), then this would have dramatic consequences as it would imply super-
polynomial lower bounds for general algebraic formulas (Raz, J. ACM 2013; Tavenas, Limaye, and
Srinivasan, STOC 2022).

Prior to our work, either only weaker lower bounds were known for the IMM polynomial (Tavenas, Li-
maye, and Srinivasan, STOC 2022), or similar strong lower bounds were known but for a hard polynomial
not known to be even in set-multilinear VP (Kush and Saraf, CCC 2022; Raz, J. ACM 2009).

By known depth-reduction results, our lower bounds are essentially tight for f and in general, for any
hard polynomial that is in set-multilinear VBP or set-multilinear VP. Any asymptotic improvement in
the lower bound (for a hard polynomial, say, in VNP) would imply super-polynomial lower bounds for
general set-multilinear circuits.
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1 Introduction

1.1 Background on Algebraic Complexity

Algebraic Complexity Theory is the study of the complexity of computational problems which can be de-
scribed as computing a multivariate polynomial P (x1, . . . , xN ) over some elements x1, . . . , xN lying in a
fixed field F. Several fundamental computational tasks such as computing the determinant, permanent,
matrix product, etc., can be represented using this framework. The natural computational models that we
investigate in this setting are models such as algebraic circuits, algebraic branching programs, and algebraic
formulas, all of which employ the natural algebraic operations in F[x1, . . . , xN ] to compute P .

An algebraic circuit over a field F for a multivariate polynomial P (x1, . . . , xN ) is a directed acyclic
graph (DAG) whose internal vertices (called gates) are labeled as either + (sum) or × (product), and leaves
(vertices of in-degree zero) are labeled by the variables xi or constants from F. A special output gate (the
root of the DAG) represents the polynomial P . If the DAG happens to be a tree, such a resulting circuit
is called an algebraic formula. The size of a circuit or formula is the number of nodes in the DAG. We also
consider the product-depth of the circuit, which is the maximum number of product gates on a root-to-leaf
path. The class VP (respectively, VF) then is defined to be the collection of all polynomials having at most
polynomially large degree which can be computed by polynomial-sized circuits (respectively, formulas).

An algebraic branching program is a layered DAG with two special nodes in it: a start-node and an end-
node. All edges of the ABP go from layer ℓ−1 to layer ℓ for some ℓ (say start-node is the unique node in layer
0) and are labeled by a linear polynomial. Every directed path γ from start-node to end-node computes
the monomial Pγ , which is the product of all labels on the path γ. The ABP computes the polynomial
P =

∑
γ Pγ , where the sum is over all paths γ from start-node to end-node. Its size is simply the number

of nodes in the DAG, its depth is the length of the longest path from the start-node to the end-node, and
width is the maximum number of nodes in any layer. The class VBP then is defined to be the collection of
all polynomials which can be computed by polynomial-sized branching programs1.

The complexity of these models is measured by the size, which serves as an indicator of the time complexity
of computing the polynomial. The product-depth measures the extent to which this computation can be
made parallel. As these models are supposed to construct a formal polynomial P , they are syntactic models of
computation. This is unlike a Boolean circuit, which is only required to model specific truth-table constraints.
The problem of proving algebraic circuit lower bounds is therefore widely considered to be easier than its
Boolean counterpart. Indeed, we know that proving VP ̸= VNP, the algebraic analog of the P vs NP
problem, is implied by the latter separation in the non-uniform setting ([Bür00]). Similarly, proving super-
polynomial lower bounds for algebraic formulas is the algebraic analogue of the NC1 vs NP problem and is
also considered to be one of the central challenges in algebraic complexity theory. We refer the reader to
[Sap15] for a more elaborate survey of this topic and for the formal definitions of the algebraic complexity
classes VF, VBP, VP, and VNP.

1.2 A Recent Breakthrough

Much like in the Boolean setting, the problem of showing lower bounds for general algebraic circuits (or even
formulas) has remained elusive. However, some remarkable progress has been made very recently by Limaye,
Srinivasan, and Tavenas ([LST21]) who in a spectacular breakthrough, showed the first super-polynomial
lower bounds for algebraic formulas of all constant depths. Prior to their work, the best known lower bound
([KST16]) even for product-depth 1 (or ΣΠΣ formulas) was only almost-cubic. This is in stark contrast
with the Boolean setting, in which we have known strong constant-depth lower bounds for many decades
[Ajt83, FSS84, Yao85, H̊as86, Raz87, Smo87]. Constant-depth formulas are critical to the study of algebraic
complexity theory, as unlike the Boolean setting, strong enough bounds against them are known to yield VP
̸= VNP ([AV08]). This helps put into perspective the importance of the work [LST21].

The crucial step in the proof of the [LST21] result is to first establish super-polynomial lower bounds for
a certain restricted class of (low-depth) algebraic formulas, namely set-multilinear formulas which we now
define along with other important circuit models. A polynomial is said to be homogeneous if each monomial
has the same total degree and multilinear if every variable occurs at most once in any monomial. Now,

1The inclusions VF ⊆ VBP ⊆ VP follow.
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suppose that the underlying variable set is partitioned into d sets X1, . . . , Xd. Then the polynomial is said
to be set-multilinear with respect to this variable partition if each monomial in P has exactly one variable
from each set. Note that a set-multilinear polynomial is both multilinear and homogeneous. Next, we
define different models of computation corresponding to these variants of polynomials classes. An algebraic
formula/branching program/circuit is set-multilinear with respect to a variable partition (X1, . . . , Xd) if each
internal node in the formula/branching program/circuit computes a set-multilinear polynomial2. Multilinear
and homogeneous formulas/branching programs/circuits are defined analogously.

Several well-studied and interesting polynomials happen to be set-multilinear. For example, the de-
terminant and the permanent polynomials, the study of which is profoundly consequential to the field of
algebraic complexity theory, are set-multilinear (with respect to the column variables). Another well-studied
polynomial, namely the Iterated Matrix Multiplication polynomial, is also set-multilinear. The polynomial
IMMn,d is defined on N = dn2 variables, where the variables are partitioned into d sets X1, . . . , Xd of size
n2, each of which is represented as an n×n matrix with distinct variable entries. The polynomial IMMn,d is
defined to be the polynomial that is the (1, 1)-th entry of the product matrix X1X2 · · ·Xd. Note that hence,
this polynomial precisely captures the computational power of a branching program of width n and depth d
and is “complete” for the class VBP. This polynomial has a simple divide-and-conquer-based set-multilinear
formula of size nO(log d), and more generally for every ∆ ≤ log d, a set-multilinear formula of product-depth

∆ and size nO(∆d1/∆), and circuit3 of size nO(d1/∆). Even without the set-multilinearity constraint, no sig-
nificantly better upper bound is known. It is reasonable to conjecture that this simple upper bound is tight
up to the constant in the exponent.

The lower bounds in [LST21] for general constant-depth algebraic circuits are shown in the following
sequence of steps:

1. It is shown that general low-depth algebraic formulas can be transformed to set-multilinear algebraic
formulas of low depth, and without much of a blow-up in size (as long as the degree is small). More
precisely, any product-depth ∆ formula of size s computing a polynomial that is set-multilinear with
respect to the partition (X1, . . . , Xd) where each |Xi| ≤ n, can be converted to a set-multilinear
formula4 of product-depth 2∆ and size poly(s)·dO(d). Such a ‘set-multilinearization’ of general formulas
of small degree was already shown before in [Raz13] (which we describe soon in more detail); however,
the main contribution of [LST21] here is to prove this depth-preserving version of it.

2. Strong lower bounds are then established for low-depth set-multilinear circuits (of small enough degree).
More precisely, any set-multilinear circuit C computing IMMn,d (where d = O(log n)) of product-depth

∆ must have size at least ndexp(−O(∆))

. This combined with the first step yields the desired lower bound
for general constant-depth circuits.

Given Raz’s set-multilinearization of formulas of small degree that we alluded to, and this description of
the set-multilinear formula lower bounds from [LST21] when d = O(log n), it is evident the “small degree”
regime is inherently interesting to study – as it provides an avenue, via hardness escalation, for tackling
one of the grand challenges of algebraic complexity theory, namely proving super-polynomial lower bounds
for general algebraic formulas. However, we shall now see that even the large degree regime can be equally
consequential in this regard.

1.3 The Large Degree Regime

Consider a polynomial P that is set-multilinear with respect to the variable partition (X1, . . . , Xd) where
each |Xi| ≤ n. In this paper, we shall focus on studying set-multilinear formula complexity in the regime
where d and n are polynomially related (as opposed to say, the assumption d = O(log n) described above).
We now provide some background and motivation for studying this regime.

2Of course, a non-root node need not be set-multilinear with respect to the entire variable partition. Nevertheless, here we
demand that it must be set-multilinear with respect to some subset of the collection {X1, . . . , Xd}.

3Any product-depth ∆ (set-multilinear) circuit of size s can be simulated by a product-depth ∆ (set-multilinear) formula of
size s2∆. Hence, any constant-depth formula lower bound automatically yields a corresponding circuit lower bound.

4There is also an intermediate ‘homogenization’ step which we skip describing here for the sake of brevity.
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In follow-up work [TLS22], the same authors showed the first super-polynomial lower bound against
unbounded-depth set-multilinear formulas computing IMMn,n

5. As is astutely described in [TLS22], studying
the set-multilinear formula complexity of IMM is extremely interesting and consequential even in the setting
d = n because of the following reasons:

• IMMn,n is a self-reducible polynomial i.e., it is possible to construct formulas for IMMn,n by recursively
using formulas for IMMn,d (for any d < n). In particular, if we had formulas of size no(log d) for IMMn,d

(for some d < n), this would imply formulas of size no(logn) for IMMn,n. In other words, an optimal
nΩ(logn) lower bound for IMMn,n implies nωd(1) lower bounds for IMMn,d for any d < n.

• Raz in [Raz13] showed that if an N -variate set-multilinear polynomial of degree d has an algebraic
formula of size s, then it also has a set-multilinear formula of size poly(s) · (log s)d. In particular,
for a set-multilinear polynomial P of degree d = O(logN/ log logN), it follows that P has a formula
of size poly(N) if and only if P has a set-multilinear formula of size poly(N). Thus, having Nωd(1)

set-multilinear formula size lower bounds for such a low degree would imply super-polynomial lower
bounds for general formulas.

In particular, proving the optimal nΩ(logn) set-multilinear formula size lower bound for IMMn,n would
have dramatic consequences as it would yield general formula lower bounds (and more specifically, the
separation VF ⊊ VBP). To this end, the authors in [TLS22] are able to show a weaker bound of the form
(log n)Ω(logn) instead. Even though it is the case that ‘simply’ improving the base of this exponent from
log n to n yields general formula lower bounds, it seems that we are still far from achieving it. Indeed, as is
observed in [TLS22], we do not even have the optimal nΩ(

√
n) lower bound for IMMn,n

6 when product-depth
∆ = 2. For constant (or low) product-depths (i.e., when ∆ ≤ log n), [TLS22] shows a set-multilinear formula

size lower bound of (log n)Ω(∆n1/∆) for IMMn,n (while we expect the lower bound to be nΩ(n1/∆)).
The best set-multilinear lower bound we know for any explicit polynomial of degree Θ(n) and in poly(n)

variables and for any constant ∆ ≥ 2 is indeed nΩ(n1/∆), from a recent work by the authors ([KS22]).
However, the polynomial for which these bounds are obtained is not IMMn,n. The “hard” polynomial in
this work is NWn,n, which comes from the class of so-called Nisan-Wigderson design-based polynomials7

and is known to be in VNP, but not known to be even in VP. The authors are also able to establish an
nΩ(logn) set-multilinear formula size lower bound for NWn,n in the unbounded-depth setting. By far the
most striking problem left open by this work is to “simplify” the hard polynomial from NWn,n to IMMn,n.

We remark that such a line of simplification has been successful in other contexts in algebraic complexity
theory. Indeed, for several lower bounds for algebraic circuit classes in the past, a lower bound was initially
shown for the NW polynomial and then with additional effort, was shown to also hold for the IMM polyno-
mial. For instance, [KSS14] showed a lower bound of nΩ(

√
n) for the top fan-in of a ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit

computing the NW polynomial, which was subsequently shown for IMM by [FLMS15]. Similarly, [KLSS17]

showed an nΩ(
√
d) size lower bound for homogeneous depth-4 algebraic formulas for the NW polynomial,

which was then shown for IMM later in [KS17]. In our context of set-multilinear formula lower bounds,
such a simplification from NW to IMM would be especially momentous as it would directly lead to general
formula lower bounds. In this paper, although we are presently unable to simplify all the way down to IMM,
we manage to make significant progress along this direction.

1.4 Our Results

The main result of this work is the following statement.

Theorem 1. Let N be a growing parameter and ∆ be a constant integer. Then, over any field of charac-
teristic zero, there is an explicit polynomial PN defined over N = Θ(n2) variables with degree d = Θ(n) that
is set-multilinear with respect to the variable partition X = (X1, . . . , Xd) where each |Xi| = n and such that:

5Note that for IMMn,n, each Xi has size n2, not n. But the important thing for us here is that the degree, n, is polynomially
related to this parameter.

6This is known for set-multilinear (and even multilinear) ΣΠΣΠ circuits (see [FLMS15, KST18]), but those are only special
cases of general product-depth 2 circuits, which are ΣΠΣΠΣ.

7The name is inspired from [NW94].
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• there is a poly(N)-size set-multilinear branching program computing PN (i.e., its every internal node
computes a set-multilinear polynomial),

• any set-multilinear formula of product-depth ∆ computing PN must have size at least NΩ(d1/∆), and

• further, any set-multilinear formula of arbitrary product-depth PN must have size at least NΩ(log d).

Remark 1. Similar to [KS22], the lower bound in Theorem 1 is actually dΩ(d1/∆/∆), where d is the degree
of the underlying polynomial, and it holds as long as degree d ≤ n and the product-depth ∆ ≤ log d/ log log d
(the details are deferred to the proof of Theorem 12 in Section 4).

A few more remarks are in order. First, given that IMMn,n is complete for the class VBP as described
in Section 1.2, one might expect that Theorem 1 immediately implies such a lower bound for IMMn,n as
well, thereby obtaining general formula lower bounds. Curiously, however, this is not the case. This is
because the underlying reduction from PN to IMMn,n destroys the set-multilinearity of the formula, and
hence the set-multilinear formula lower bounds no longer apply. Nevertheless, we observe that if we can make
the hard polynomial in Theorem 1 be computable by a polynomial-sized ordered set-multilinear branching
program8, then that does yield the desired lower bounds for IMMn,n. More precisely, given a variable
partition (X1, . . . , Xd) (say with each |Xi| ≤ n), we say that a set-multilinear branching program of width n
and depth d is ordered with respect to (X1, . . . , Xd) if for each ℓ ∈ [d], all edges of the ABP from layer ℓ− 1
to layer ℓ are labeled using a linear form in Xℓ. Let f(X1, . . . , Xd) be a polynomial that can be computed
by an ordered set-multilinear ABP A. Then, given any set-multilinear formula computing IMMn,d (say over

the variables {x(ℓ)
i,j } where i, j ∈ [n] and 1 ≤ ℓ ≤ d), we immediately obtain a set-multilinear formula of the

same size for f by replacing x
(ℓ)
i,j with the linear form e

(ℓ)
i,j , where e

(ℓ)
i,j is the label of the edge in A between

the i-th node of layer ℓ − 1 and j-th node of layer ℓ. As a consequence, any lower bound on the size of
a set-multilinear formula computing f yields a lower bound for one computing IMMn,d. We conclude that
replacing PN in Theorem 1 by any polynomial that is computable by an ordered set-multilinear ABP would
yield general formula lower bounds! This observation raises the question of the relative power of ordered vs
general set-multilinear ABPs – we leave this as an intriguing open problem (see Section 5).

We also remark that obtaining this precise bound is interesting also when viewed through the lens of depth-
reduction. Tavenas ([Tav15]), building on several prior works ([AV08, Koi12]), showed that any algebraic
circuit of poly(N) size computing a homogeneous N -variate polynomial of degree d can be converted to

a homogeneous circuit of product-depth9 ∆ of size NO(d1/∆). It easily follows from the proof that this
depth reduction preserves syntactic restrictions. That is, if we start with a syntactically set-multilinear
circuit, the resulting product-depth ∆ circuit is also syntactically set-multilinear. Therefore, because PN

has a polynomial-sized set-multilinear circuit (in particular, a set-multilinear ABP), it follows that it has

a product-depth ∆ set-multilinear formula of size NO(d1/∆). Furthermore, by classical depth-reduction
results10, it follows that a size s, degree d set-multilinear circuit can be simulated by a set-multilinear
formula of size sO(log d). Hence, the lower bounds we obtain for PN in Theorem 1 – in both, the constant and
unbounded-depth settings – are asymptotically optimal. In fact, the precise bound in Theorem 1 is also sharp
in the sense that any asymptotic improvement in its exponent for any constant ∆ (say, for a set-multilinear
polynomial in VNP) would imply super-polynomial set-multilinear circuit lower bounds (i.e., set-multilinear
VP ̸= set-multilinear VNP), which would be quite a strong and exciting result, as it would demonstrate
considerable progress towards the VP vs VNP problem.

On a related note, in [KS22], the authors posed a question about the possibility of obtaining improved
depth-reduction bounds for set-multilinear circuits. More specifically, it was observed that if any asymptotic

improvement in the exponent on the NO(d1/∆) bound for general circuits from [Tav15] could be shown to hold
for set-multilinear circuits in the setting of Theorem 1 (i.e., when N = Θ(d2)), then combined with the lower
bounds for NWn,n, this would imply super-polynomial set-multilinear circuit lower bounds. It was noted
that [FLMS15] rules out the possibility of obtaining a stronger reduction to depth-4, or ΣΠΣΠ circuits, as it
shows an nΩ(

√
n) size lower bound for set-multilinear depth-4 circuits computing IMMn,n, which of course has

8Interestingly, this model, along with that of read-once oblivious ABPs (or ROABPs), has been studied quite extensively in
the polynomial identity testing (PIT) literature; see [FS13, AGKS15, GG20].

9The result is stated in [Tav15] for ΣΠΣΠ circuits but the proof can be appropriately modified for larger product-depths.
10See [VSBR83] and then, [AR16] for an adaptation to the set-multilinear setting.
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small polynomial-sized set-multilinear circuits. Nevertheless, there could still be the possibility of obtaining
improved depth-reduction statements for product-depths 2 (which is ΣΠΣΠΣ and hence more general than
depth-4) or higher, and combining it with the lower bound for NWn,n to obtain general set-multilinear circuit
lower bounds. We answer this question in the negative and remark that Theorem 1 implies that an improved
depth-reduction bound for set-multilinear circuits is impossible (at least when N and d are polynomially
related).

We also point out the differences in the quality of the best lower bounds known in the closely related (and
more general) multilinear setting. Despite the multilinear formula model receiving significant attention in
the literature11, to the best of our knowledge, the best known lower bound for a polynomial of degree n over
poly(n) variables even for product-depth 2 multilinear formulas12 is only 2Ω(

√
n) ([CLS19]), and generalizes

as 2Ω(∆n1/∆) for higher ∆ ≤ log n. In contrast, using the terminology of [LST21], the lower bounds that
we obtain for constant product-depth set-multilinear formulas in this paper (and indeed, in [KS22]) are
stronger, non-FPT bounds. Furthermore, we point out that even solely the third item of Theorem 1 i.e.,
an nΩ(logn) lower bound for a set-multilinear polynomial of degree n over poly(n) variables computable by
a small set-multilinear branching program, is a new result – as far as we know, it is not implied by any
prior work. For example, though [Raz09] shows that the n× n determinant and permanent require nΩ(logn)

multilinear formula size, these polynomials are not actually known to have small set-multilinear (or even
multilinear) circuits – in fact, they are conjectured not to ([NW97]).

We now move on to the second result of this paper. As noted earlier, prior to this work, the “hard”
polynomial for which we had the same lower bounds as Theorem 1 was not known to be even in VP. In the
result below, we construct a set-multilinear polynomial in VP matching the bounds of [KS22].

Theorem 2. Let N be a growing parameter and ∆ be a constant integer. Then, over any field of character-
istic zero, there is an explicit polynomial QN defined over N = Θ(n2) variables with degree d = Θ(n) that is
set-multilinear with respect to the variable partition X = (X1, . . . , Xd) where each |Xi| = n and such that:

• there is a poly(N)-size set-multilinear circuit computing QN ,

• any set-multilinear formula of product-depth ∆ computing QN must have size at least NΩ(d1/∆), and

• further, any set-multilinear formula of arbitrary product-depth QN must have size at least NΩ(log d).

Remark 2. Similar to Theorem 1, the lower bound in Theorem 2 is actually dΩ(d1/∆/∆), where d is the degree
of the underlying polynomial, and it holds as long as degree d ≤ n and the product-depth ∆ ≤ log d/ log log d
(the details are deferred to the proof of Theorem 5 in Section 3).

Evidently, despite already being a new result, Theorem 2 is subsumed by Theorem 1. However, as we
shall see in Section 3 and also in the proof overview below, this construction and the associated lower bound
argument is simpler than that of Theorem 1. Moreover, this argument will be quite instructive and helpful
for the reader to ease into the proof of the main result (Theorem 12 in Section 4).

1.5 Proof Overview and Relation to Prior Work

In this subsection, we give an overview of the proof techniques used in both Theorems 1 and 2. We divide the
subsection into two parts: the first part discusses the construction of our hard polynomial in VP (which is
mainly inspired from a result ([RY08]) of Raz and Yehudayoff) and the second part discusses the construction
of our hard polynomial in VBP (which relies upon the arc-partition framework of Dvir, Malod, Perifel, and
Yehudayoff ([DMPY12])).

11See [NW97, RY09, CLS19, CELS18, KNS20] for results in the bounded-depth setting and [Raz09, DMPY12, HY11, KST18]
for results in the unbounded-depth setting. Note that however, in many of these works, the “hard” polynomial is not set-
multilinear and as such, the corresponding lower bounds do not even apply in our setting.

12The situation is significantly better for ∆ = 1 (or multilinear ΣΠΣ formulas) as [KNS20] shows a lower bound of nΩ(d) –
in fact, for IMMn,d.
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VP Construction. We shall first discuss an overview of the proof of Theorem 2. At a high-level, our
overall proof techniques are similar to that of many known lower bounds. We work with a measure that is
known to be small for all polynomials computed by small enough set-multilinear formulas (suitably so in the
bounded and unbounded-depth settings) from the work [KS22], where it is also shown to be large for the NW
polynomial. These partial derivative measures were introduced by Nisan and Wigderson in [NW97], who used
them to prove the constant-depth set-multilinear formula lower bounds we discussed earlier. [LST21, TLS22]
use a particular variant of this measure and this measure is in turn inspired from these works.

Given a variable partition (X1, . . . , Xd), the idea is to label each set of variables Xi as ‘positive’ or
‘negative’ uniformly at random. Let P and N denote the set of positive and negative indices respectively,
and let MP and MN denote the sets of all set-multilinear monomials over P and N respectively. For
a polynomial f that is set-multilinear over the given variable partition (X1, . . . , Xd), the measure then is
simply the rank of the ‘partial derivative matrix’M(f) whose rows are indexed by the elements ofMP and
columns indexed by NP , and the entry of this matrix corresponding to a row m1 and a column m2 is the
coefficient of the monomial m1 ·m2 in the given polynomial. We remark that though this was inspired by
the measure and the techniques from [LST21], it is also reminiscent of the measure used in [Raz06, Raz09]
to prove multilinear formula lower bounds. [KS22] shows that indeed for the NW polynomial, the matrix
M(NW ) always has full-rank (at least when conditioned on the event |P| = |N |).

In proving Theorem 2, our main contribution is to construct a set-multilinear polynomial Q such that
M(Q) always has full-rank – but in addition, Q is computable by a small set-multilinear circuit. For this,
we turn to the literature on the multilinear setting for inspiration. In [Raz06], Raz constructed a multilinear
polynomial g computable by a small multilinear circuit and showed a super-polynomial (general-depth)
multilinear formula size bound for it. The measure used was the rank of a matrix defined analogously
to M(·). Our starting point for constructing Q was a simplification of g (which we call h) by Raz and
Yehudayoff ([RY08]) using Dyck words13, which we shall describe in more detail in Section 3. One idea
that is key in these constructions is the introduction of auxiliary variables: h = h(X,Λ) is defined over an
original variable set X = {x1, . . . , xn} and an auxiliary variable set Λ of poly(n) size. It is then shown that
the matrix associated to h(X) has full-rank (i.e., h has “large” measure), when viewed as a matrix over the
extended field F(Λ). In other words, the auxiliary variables assist in showing that its matrix (whose entries
are now polynomials over variables in Λ) is non-singular.

While attempting to “set-multilinearize” the construction of h(X,Λ) in order to define our Q(XQ,ΛQ)
(say where XQ = (X1, . . . , Xd) and each |Xi| = n), we were able adapt the correct (i.e., a set-multilinear)
dependence of Q on the XQ-variables (from that of h on X) in a relatively straightforward manner – this
involved picking the right ‘gadget’ or ‘building block’ in the set-multilinear setting, which turns out to the
inner product gadget (see Observation 4). Essentially, the simple observation that if X1 is labeled ‘positive’
and X2 is labeled ‘negative’, then the n× n matrix corresponding to the inner product polynomial X1 ·X2

is full-rank allows us to ‘build’ more complicated and higher-degree full-rank polynomials, similar to how
h is ‘built’ by [RY08]. However, the main hurdle that we encountered while trying to construct Q using
the construction of h was to achieve the correct dependence on the auxiliary variables. The issue is that
if we introduce too many sets of auxiliary variables (i.e., if ΛQ = (Λ1, . . . ,Λd′) and d′ = ω(d)), then the
degree of the polynomial blows up and because we work over the extended field F(Λ), the final quantitative
expression for the lower bound in the constant-depth case of Theorem 2 suffers (in fact, it becomes even
worse than the aforementioned lower bound of [CLS19] in the constant-depth multilinear formula model).
As a consequence, we need to be judicious in our use of the auxiliary variables – we highlight some of the
finer details later on in Section 3. For this reason, the analysis of our hard polynomial being full-rank ends
up being more intricate than [RY08]. In turn, this leads to the demand that the characteristic of F be zero
– although we suspect that this assumption should not be necessary; see the discussion in Section 5.

VBP Construction. For proving Theorem 1, we build upon the work of Dvir, Malod, Perifel, and Yehu-
dayoff ([DMPY12]), who showed the first separation between multilinear branching programs and formulas.
That is, they constructed an n-variate polynomial F that can be computed by a small multilinear branching
program, but needs multilinear formulas of size nΩ(logn) to compute. Our overall strategy is to adapt their
approach to our set-multilinear setting – however, there are some inherent difficulties in doing so because of

13[RY08] does not actually explicitly use Dyck words in its construction, but we benefited from its exposition given in [Sap15].
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the nature of the very strong bounds sought in the low-depth setting (which was not an issue for [DMPY12]
as this setting was not considered in that work). In what follows, we provide an overview of the arc-partition
framework of [DMPY12], state it in our set-multilinear setting, and describe the additional challenges we
face with the adaptation.

The proof of Theorem 1 consists of two parts: (i) constructing a small set-multilinear ABP computing a
polynomial G and (ii) showing that any set-multilinear multilinear formula computing G must be very large
(appropriately so in the constant and general-depth settings). The two parts have opposing demands: In
part (i) we wish to make the polynomial G simple enough so that a small ABP can compute it, whereas in
part (ii) we will need to rely on the hardness of G to prove lower bounds. One might wonder if we can get
away with using the same rank measure that was defined above for the VP construction in order to meet
these two demands. However, as far as we know, full-rank polynomials (in the sense described above) may
also require super-polynomial sized set-multilinear ABPs. [DMPY12] were faced with a similar challenge:
full-rank multilinear polynomials (say with respect to the aforementioned analogous measure of [Raz06])
may also require super-polynomial sized multilinear ABPs. Thus, in order to prove a separation between
multilinear ABPs and formulas, they sought a property which is weaker than being full-rank but is still
useful enough for proving lower bounds. One of the main ideas in their proof is an ingenious construction of
a special subset of partitions, called arc-partitions, which is sufficiently powerful to carry through the lower
bound proof and, at the same time, simple enough to carry part (i) of the proof. In this context, a partition
simply refers to a particular ‘positive’/‘negative’ labelling of the variable sets X1, . . . , Xd. The point is that
the support of the distribution over these arc-partitions turns out to be much smaller than the support of the
uniform distribution over such labellings that was used as our measure in the VP construction. Nevertheless,
after overcoming some hurdles that we soon describe, we are able to adapt their argument to show that every
arc-full-rank polynomial f (i.e., the matrixM(f) is always full-rank, but now defined only with respect to
the labellings coming from this special arc-partition distribution, instead of the uniform distribution) must
have very large set-multilinear formulas – appropriately so in the constant and general-depth settings.

Let us now describe this family of partitions (stated in our set-multilinear setting) and its advantages.
More specifically, we will describe a distribution over partitions (or labellings, as explained above). The
partitions that will have positive probability of being obtained in this distribution will be called arc-partitions.
The distribution is defined according to the following (iterative) sampling algorithm. Position the d variable
sets on a cycle with d nodes so that there is an edge between i and i + 1 modulo d. Start with the arc
[L1, R1] = {1, 2} (an arc is a connected path on the cycle). At step t > 1 of the process, maintain a partition
of the arc [Lt, Rt]. “Grow” this partition by first picking a pair uniformly at random out of the three possible
pairs {Lt − 2, Lt − 1}, {Lt − 1, Rt + 1}, {Rt + 1, Rt + 2}, and then choosing a labelling (or partition) Π on
this pair i.e., assigning one of them ‘positive’ and the other ‘negative’ uniformly at random. After d/2 steps,
we have chosen a partition of the d variable sets into two disjoint, equal-size sets of variables P and N .

Given these arc-partitions of [DMPY12], let us now briefly describe how we obtain the desired optimal
lower bounds in the constant-depth setting. In part (i) of the proof, in order to construct an arc-full-rank set-
multilinear branching program, we face similar challenges as we did in the VP construction – but similarly,
a more careful use of the auxiliary variables comes to the rescue. Next, we show that with high probability
over the arc-partition distribution, the rank of a polynomial computed by a product-depth ∆ set-multilinear
formula is (appropriately) small. This is done via a proof by induction on ∆. We separately show that each
summand Ci of C = C1 + · · · + Ct for a product-depth ∆ formula C has small enough rank, yielding the
desired bound by the sub-additivity of rank. There are two cases: either Ci already has a factor of very

large degree (i.e., at least ∼ d
∆−1
∆ , which allows us to use the inductive hypothesis for ∆− 1) or otherwise,

we argue that we may assume that it has many factors (roughly K ∼ d1/∆ many) of a similar degree. It is
this inductive argument (and specifically, the first case) that forces us to work with an arc-partition over a
larger D-cycle (where D ≥ d) – one of the reasons contributing to a more nuanced analysis than [DMPY12].
In the second case, the many factors then define a “non-redundant” K-coloring of the d variable sets. This
is simply a (partial) mapping Ci : [D] → [K] so that the pre-images of every color k ∈ [K] are not too
small (and of similar sizes). A color k is said to be “balanced” with respect to a partition Π if the number
of ‘positive’ variable sets of color k is roughly the same as the number of ‘negative’ variable sets of color
k. Now, for a given coloring Ci, if we choose a random partition Π from the set of all partitions, simple
properties of the hyper-geometric distribution imply that the probability that all colors in Ci are “balanced”

is at most p = d−Ω(K) = d−Ω(d1/∆). This bound, in turn, proves a roughly 1/p = dΩ(d1/∆) lower bound
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for the size of product-depth ∆ set-multilinear formulas for the VP construction (Theorem 2). Following
a similar overall outline, we adapt the [DMPY12] argument to show that for any “non-redundant” partial
K-coloring Ci, for a random arc-partition, the probability that all colors in Ci are “balanced” is at most
d−Ω(K) as well. This turns out to be significantly more difficult than showing it for a random partition (from
the set of all partitions). Furthermore, because we seek such strong and optimal bounds in the low-depth
setting, the analysis turns out to be more intricate (Section 4.4 in particular). Throughout Section 4 where
we formally prove Theorem 1, we have suitably placed remarks to point out the locations where we require
a different technical or conceptual argument than [DMPY12].

2 Preliminaries

2.1 Relative Rank and its Properties

We first describe the notation that we need to define the measures that we use to prove Theorems 1 and 2.

Definition 1 (Relative Rank Measure of [LST21, TLS22]). Let f be a polynomial that is set-multilinear
with respect to the variable partition (X1, X2, . . . , Xd) where each set is of size n. Let w = (w1, w2, . . . , wd)
be a tuple (or word) of non-zero real numbers such that 2|wi| ∈ [n] for all i ∈ [d]. For each i ∈ [d], let
Xi(w) be the variable set obtained by removing arbitrary variables from the set Xi such that |Xi(w)| = 2|wi|,
and let X(w) denote the tuple of sets of variables (X1(w), . . . , Xd(w)). Corresponding to a word w, define
Pw := {i | wi > 0} and Nw := {i | wi < 0}. Let MP

w be the set of all set-multilinear monomials over a
subset of the variable sets X1(w), X2(w), . . . , Xd(w) indexed by Pw, and similarly let MN

w be the set of all
set-multilinear monomials over these variable sets indexed by Nw.

Define the ‘partial derivative matrix’ matrixMw(f) whose rows are indexed by the elements ofMP
w and

columns indexed by the elements of NP
w as follows: the entry of this matrix corresponding to a row m1 and

a column m2 is the coefficient of the monomial m1 ·m2 in f . We define

relrkw(f) :=
rank(Mw(f))√
|MP

w | · |MN
w |

=
rank(Mw(f))

2
1
2

∑
i∈[d] |wi|

.

Definition 2. For any tuple w = (w1, . . . , wt) and a subset S ⊆ [t], we shall refer to the sum
∑

i∈S wi by
wS. And by w|S, we will refer to the tuple obtained by considering only the elements of w that are indexed
by S. We denote by Fsm[T ] the set of set-multilinear polynomials over the tuple of sets of variables T .

The following is a simple result that establishes various useful properties of the relative rank measure.

Claim 3 ([LST21]). 1. (Imbalance) Say f ∈ Fsm[X(w)]. Then, relrkw(f) ≤ 2−|w[d]|/2.

2. (Sub-additivity) If f, g ∈ Fsm[X(w)], then relrkw(f + g) ≤ relrkw(f) + relrkw(g).

3. (Multiplicativity) Say f = f1f2 · · · ft and assume that for each i ∈ [t], fi ∈ Fsm[X(w|Si)], where
(S1, . . . , St) is a partition of [d]. Then

relrkw(f) =
∏
i∈[t]

relrkw|Si
(fi).

2.2 Inner Product Gadget

We crucially need the following observation to construct the hard polynomials in Theorems 1 and 2.

Observation 4. Let n = 2k and X1 = {x1,1, . . . , x1,n} and X2 = {x2,1, . . . , x2,n} be two disjoint sets of
variables. Then, for any symmetric word w ∈ {k,−k}2 (i.e., where w1 + w2 = 0) and for the inner product
‘gadget’ f = X1 ·X2 =

∑n
i=1 x1,ix2,i, relrkw(f) = 1 i.e.,Mw(f) is full-rank.
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3 A Hard Set-multilinear Polynomial in VP

3.1 Description of the Polynomial

Let d be an even integer and let X = (X1, . . . , Xd) be a collection of sets of variables where each |Xi| = n, and
similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables where each |Yi| = n. We shall refer
to the Y -variables as the auxiliary variables. For i and j ∈ {1, . . . , d}, let Xi ·Xj denote the inner-product
quadratic form

∑n
k=1 xikxjk. Here, we shall assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.

For two integers i ∈ N and j ∈ N, we denote [i, j] = {k ∈ N : i ≤ k and k ≤ j} and call such a set
an interval. For every interval [i, j] ⊆ [d], we define a polynomial fi,j(X,Y ) ∈ Fsm[Xi, . . . , Xj , Yi, . . . , Yj ] as
follows:

fi,j =


yi,jyj,i(Xi ·Xj) if j = i+ 1

0 if j − i is even

yi,jyj,i(Xi ·Xj) · fi+1,j−1 +
∑j−1

r=i+1 fi,rfr+1,j otherwise

Remark 3. As described in Section 1.5, other than the use of the inner product gadget, one key difference
between fi,j and the construction in [RY08] is that it uses fewer auxiliary variables. More specifically,
while [RY08] had a ‘fresh’ auxiliary variable for every choice of i, r, j in the sum, we are unable to afford
that not only because it destroys the set-multilinearity of the polynomial but most importantly, because of
the aforementioned degree blow-up. This is also the reason why more straightforward attempts to “set-
multilinearize” [RY08] such as by adding two ‘copies’ y0 and y1 for each of their auxiliary variables y (where
intuitively y0 and y1 correspond to setting y as 0 or 1 respectively in their argument) do not work.

The following is a more precise and general version of Theorem 2 that is stated in Section 1. We also
incorporate Remark 2 here and show our lower bound for any degree d ≤ n. Theorem 2 follows from the
special case d = n.

Theorem 5. Let n = 2k, and suppose d ≤ n be an even integer that is large enough14, and 1 ≤ ∆ ≤
log d/ log log d be any positive integer. Let Xi, Yi denote the sets of n variables {xi,j : j ∈ [n]} and {yi,j : j ∈
[n]} respectively and let X,Y be the tuples (X1, . . . , Xd) and (Y1, . . . , Yd). Then,

• there is a poly(n, d)-size set-multilinear circuit computing Fn,d = f1,d(X,Y ) as defined above,

• any set-multilinear formula of product-depth ∆ computing Fn,d must have size at least dΩ(d1/∆/∆), and

• further, any set-multilinear formula of arbitrary product-depth computing Fn,d must have size at least
dΩ(log d).

3.2 Proof of Hardness

Note that the first item in Theorem 5 follows immediately from the recursive definition of f1,d (notice that
there are only up to d2 many distinct intervals of [d]). For proving the next two items, we invoke the
symmetric word framework of [KS22]. The following couple of lemmas help establish that the relative rank
measure with respect to symmetric words is (suitably) small for low-depth and general-depth set-multilinear
formulas, respectively.

Lemma 6 ([KS22]). Let C be a set-multilinear formula of product-depth 1 ≤ ∆ ≤ log d/ log log d of size at
most s which computes a polynomial (over any fixed field) that is set-multilinear with respect to the partition
(X1, . . . , Xd) where each |Xi| = n. Let w ∈ {k,−k}d be chosen uniformly at random. Then, we have

relrkw(C) ≤ s · 2− kd1/∆

20

with probability at least 1− s · d− d1/∆

12∆ .

14We only need d to be larger than some absolute constant.
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Lemma 7 ([KS22]). Let F be a set-multilinear formula of size at most s which computes a polynomial (over
any fixed field) that is set-multilinear with respect to the partition (X1, . . . , Xd) where each |Xi| = n. Let
w ∈ {k,−k}d be chosen uniformly at random. Then, we have

relrkw(F ) ≤ s · 2−
k log d

20

with probability at least 1− s · d−
log d
60 .

Next, we shall show that the hard polynomial Fn,d in Theorem 5 has high relative rank (in fact, the
maximum possible value – 1) with respect to a symmetric word. For this, we consider an alternate view of
these polynomials and require the following notion. For an even integer d, define Dyck(d) to be the collection
of all strings (called Dyck words) of length d over symbols ‘(’ and ‘)’ that are well-matched in the natural
way. More precisely, it is the collection of all strings u of length d such that all prefixes of u contain no more
)’s than (’s and the total number of (’s in u equals the total number of ). For example, “()()” and “(())”
belong to Dyck(4) but not “(()(”. Note that for any ‘(’ appearing in a Dyck word, there is a unique ‘)’ which
“closes” it. Given a Dyck word u ∈ Dyck(d), we call (i, j) a matching parenthesis pair of u if there is ‘(’ in
the i-th position of u that is closed by a ‘)’ in the j-th position of u (clearly then, j − i > 0 must be odd).

Given a string u ∈ Dyck(d) and the setup above for defining the polynomials fi,j , we can associate to
u a product of inner products polynomial IPu ∈ Fsm[Xi, . . . , Xj ] in the natural way: define IPu to be the
product of all Xi ·Xj where (i, j) is a matching parenthesis pair of u. For example, the strings “()()” and
“(())” would correspond to the polynomials (X1 ·X2) · (X3 ·X4) and (X1 ·X4) · (X2 ·X3) respectively. We
define yu analogously: it is the product of all yi,j · yj,i where (i, j) is a matching parenthesis pair of u. So, if
u = “(())” ∈ Dyck(4), then yu = y1,4y4,1y2,3y3,2. The following observation then follows immediately from
the recursive definition of fi,j .

Observation 8. For every interval [i, j] ⊆ [d] where j−i is odd, there exist constants cu ∈ F corresponding to
every u ∈ Dyck(j−i+1) such that fi,j(X,Y ) =

∑
u∈Dyck(j−i+1) cuyuIPu

15. Moreover, if F has characteristic
zero, then every cu ̸= 0.

Claim 9. Let d be a positive even integer. For any w ∈ {−k, k}d with w[d] = 0 (i.e., |Pw| = |Nw|), there
exists a Dyck work u ∈ Dyck(d) such that for every matching parenthesis pair (i, j) of u, either i ∈ Pw and
j ∈ Nw, or i ∈ Nw and j ∈ Pw.

Proof. We prove this by induction on d. The base case d = 2 is trivial as there is only a single matching
parenthesis pair (1, 2) for which the given condition must indeed hold. Now, suppose d > 2 and w ∈ {−k, k}d
is a given word with w[d] = 0. Let us refer to Pw and Nw as the two ‘parts’ of w and take cases on the
membership of 1 and d in these sets.

Case 1: 1 and d are in different parts. By the induction hypothesis, there is a Dyck word u′ ∈ Dyck(d−2)
(corresponding to the subset {2, . . . , d− 1} of indices) for which the desired condition holds. Hence, we can
simply define u to be the string ‘(u′)’ and the claim follows.

Case 2: 1 and d are in the same part. Notice that there exists an index r such that both w[1,r] and
w[r+1,d] are 0. Then, we can define u to be the concatenation of the two Dyck words that the induction
hypothesis yields for the intervals [1, r] and [r + 1, d] respectively and the claim follows.

Lemma 10. Let n = 2k and d ≤ n be an even integer. Over any field F of characteristic zero, the
polynomial Fn,d = f1,d ∈ Fsm[X,Y ] as defined above satisfies the following: For any w ∈ {−k, k}d with
w[d] = 0, Mw(Fn,d) is full-rank when viewed as a matrix over the field F(Y ), the field of rational functions
over the Y variables.

Proof. Fix a word w ∈ {−k, k}d with w[d] = 0 and let s ∈ Dyck(d) be a Dyck word as given by Claim 9.
By Observation 8, we know that F = f1,d has the form

∑
u∈Dyck(d) cuyuIPu. Consider the polynomial f

obtained by plugging in yi,j = yj,i = 0 for every i, j such that (i, j) is not a matching parenthesis pair of s,
and yi,j = yj,i = 1 for every i, j such that (i, j) is a matching parenthesis pair of s. Observe that the only
surviving term from F in f is the one indexed by s. Therefore, to argue thatMw(F ) is full-rank over F(Y )16,

15Strictly speaking, the indices within IPu and yu here need to be “translated” appropriately to suit the interval [i, j] (which
may not necessarily be [1, j − i+ 1]).

16We need to show that its determinant – a polynomial in F[Y ] – is non-zero.
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it suffices to show thatMw(csIPs) is full-rank. As cs ̸= 0 by Observation 8, this follows from Observation 4
(the matrix of the inner product gadget has full rank), Claim 9 (w ‘splits’ every matching parenthesis pair
of s), and Claim 3 (the multiplicativity of relrkw).

Let us return to the proof of the last two items of Theorem 5. Let C be a set-multilinear formula of
product depth ∆ of size s computing Fn,d(X) (now interpreted as a formula over the field F(Y )). Suppose

s < d
d1/∆

24∆ . Then, by Lemma 6, with probability at least 1− d−
d1/∆

24∆ ,

relrkw(C) ≤ s · 2− kd1/∆

20 .

But now, we can condition on the event that w[d] = 0 (which occurs with probability Θ( 1√
d
)) to establish

the existence of a word w ∈ {−k, k}d with w[d] = 0 such that w satisfies relrkw(C) ≤ s · 2− kd1/∆

20 . This is

because of the asymptotic bound 1√
d
≫ d−

d1/∆

24∆ , which follows from the given constraints on the parameters

d,∆. Therefore, by Lemma 10,

s ≥ 2
kd1/∆

20 · relrkw(C) = n
d1/∆

20

which contradicts the assumption that s < d
d1/∆

24∆ . Thus, we conclude that s ≥ d
d1/∆

24∆ = dΩ(d1/∆/∆).
Similarly, to see the final item of Theorem 5, let F be a set-multilinear formula of size s computing Fn,d

(now interpreted as a formula over the field F(Y )). Suppose s < d
log d
120 . Then, by Lemma 7, with probability

at least 1− d−
log d
120 ,

relrkw(F ) ≤ s · 2−
klog d

20 .

But now, we can condition on the event that w[d] = 0 (which occurs with probability Θ( 1√
d
)) to establish

the existence of a word w ∈ {−k, k}d with w[d] = 0 such that w satisfies relrkw(F ) ≤ s · 2−
klog d

20 . This is

because of the trivial asymptotic bound 1√
d
≫ d−

log d
120 . Therefore, again by Lemma 10,

s ≥ 2
klog d

20 · relrkw(F ) = n
log d
20

which contradicts the assumption that s < d
log d
120 . Thus, we conclude that s ≥ d

log d
120 = dΩ(log d).

4 A Hard Set-multilinear Polynomial in VBP

4.1 Arc-partition Measure Description

This subsection is adapted from Section 2 of [DMPY12]. Let n = 2k, d ≤ n be an even integer, and let
X = (X1, X2, . . . , Xd) be a collection of disjoint sets of n variables each. An arc-partition will be a special
kind of symmetric word w ∈ {−k, k}d (i.e., a one-to-one map Π from X to {−k, k}d). For the purpose of
this subsection, the reader can even choose to think of the alphabet of w as {−1, 1} (i.e., one ‘positive’ and
one ‘negative’ value) – we use k,−k only to remain consistent with Definition 1.

Identify X with the set {1, 2, . . . , d} in the natural way. Consider the d-cycle graph, i.e., the graph with
nodes {1, 2, . . . , d} and edges between i and i + 1 modulo d. For two nodes i ̸= j in the d-cycle, denote by
[i, j] the arc between i, j, that is, the set of nodes on the path {i, i + 1, . . . , j − 1, j} from i to j in d-cycle.
First, define a distribution DP on a family of pairings (a list of disjoint pairs of nodes in the cycle) as
follows. A random pairing is constructed in d/2 steps. At the end of step t ∈ [d/2], we shall have a pairing
(P1, . . . , Pt) of the arc [Lt, Rt]. The size of [Lt, Rt] is always 2t. The first pairing contains only P1 = {L1, R1}
with L1 = 1 and R1 = 2. Given (P1, . . . , Pt) and [Lt, Rt], define the random pair Pt + 1 (independently of
previous choices) by

Pt+1 =


{Lt − 2, Lt − 1} with probability 1/3

{Lt − 1, Rt + 1} with probability 1/3

{Rt + 1, Rt + 2} with probability 1/3
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Define
[Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1.

So, Lt+1 is either Lt − 2, Lt − 1 or Lt, each value is obtained with probability 1/3, and similarly (but
not independently) for Rt+1.

The final pairing is P = (P1, P2, . . . , Pd/2). Denote by P ∼ DP a pairing distributed according to DP .

Once a pairing P has been obtained, a word w ∈ {−k, k}d is obtained by simply randomly assigning +k
and −k to the indices of any pair Pi. More formally, for every t ∈ [n/2], if Pt = {it, jt}, let with probability
1/2, independently of all other choices,

wit = +k and wjt = −k,

and with probability 1/2,
wit = −k and wjt = +k.

Denote by w ∼ D a word in {−1, 1}n that is sampled using this procedure. We call such a word an
arc-partition. For a pair Pt = {it, jt}, we refer to it and jt as partners.

Definition 3 (Arc-full-rank). We say that a polynomial f that is set-multilinear over X = (X1, . . . , Xd) is
arc-full-rank if for every arc-partition w ∈ {−k, k}d, relrkw(f) = 1.

4.2 Construction of an Arc-full-rank Polynomial

Below, we describe a simple construction of an ABP that computes an arc-full-rank set-multilinear poly-
nomial. The high-level idea is to construct an ABP in which every path between start-node and end-node
corresponds to a specific execution of the random process which samples arc-partitions. Each node in the
ABP corresponds to an arc [L,R], which sends an edge to each of the nodes [L − 2, R], [L − 1, R + 1]
and [L,R + 2]. The edges have specially chosen labels that help guarantee full rank with respect to every
arc-partition. For simplicity of presentation, we allow the edges of the program to be labeled by degree
three polynomials in three variables. This assumption can be easily removed by replacing each edge with a
constant-size ABP computing the corresponding degree three polynomial.

Formally, the nodes of the program are even-size arcs in the d-cycle, d an even integer. The start-node
of the program is the empty arc ∅ and the end-node is the whole cycle [d] (both are “special” arcs). Let
X = (X1, . . . , Xd) be a collection of sets of variables where each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd)
be a distinct collection of sets of variables where each |Yi| = n (we shall refer to the Y -variables as auxiliary
variables). For i and j in {1, . . . , d}, let Xi ·Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here,

we shall assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
Construct the branching program by connecting a node/arc of size 2t to three nodes/arcs of size 2t+ 2.

For t = 1, there is just one node [1, 2], and the edge from start-node to it is labeled y1,2y2,1(X0 ·X1). For
t > 1, the node [L,R] ⊃ [1, 2] of size 2t < d is connected to the three nodes: [L − 2, R], [L − 1, R + 1], and
[L,R+ 2]. (It may be the case that the three nodes are the end-node.) The edge labeling is:

• The edge between [L,R] and [L− 2, R] is labeled yL−2,L−1yL−1,L−2(XL−2 ·XL−1).

• The edge between [L,R] and [L− 1, R+ 1] is labeled yL−1,R+1yR+1,L−1(XL−1 ·XR+1).

• The edge between [L,R] and [L,R+ 2] is labeled yR+1,R+2yR+2,R+1(XR+1 ·XR+2).

Consider the ABP thus described, and the polynomial G = Gn,d it computes. For every path γ from
start-node to end-node in the ABP, the list of edges along γ yields a pairing P ; every edge e in γ corresponds
to a pair Pe = {ie, je} of nodes in d-cycle. Thus,

G =
∑
γ

∏
e={ie,je}∈γ

yie,jeyje,ie · (Xie ·Xje). (1)

where the sum is over all paths γ from start-node to end-node.

14



Remark 4. There is in fact a one-to-one correspondence between pairings P and such paths γ (this follows
by induction on t). Note that this is true only because pairings are tuples i.e., they are ordered by definition.
Otherwise, it is of course still possible to obtain the same set of pairs in a given pairing using multiple
different orderings. The sum defining G can be thought of, therefore, as over pairings P .

The following statement summarizes the main useful property of G.

Lemma 11. Over any field F of characteristic zero, the polynomial G = Gn,d defined above is arc-full-rank
as a set-multilinear polynomial in the variables X over the field F(Y ) of rational functions in Y .

Proof. Let w ∼ D be an arc-partition. We want to show that Mw(G) has full rank. The arc-partition
w is defined from a pairing P = (P1, . . . , Pd/2) (though as discussed in Remark 4, there could be multiple
such P ). The pairing P corresponds to a path γ from start-node to end-node. Consider the polynomial
f that is obtained by setting every yi,j = yj,i = 0 in F such that {i, j} is not a pair in P , and setting
every yi,j = yj,i = 1 for every pair {i, j} in P . Then, it is easy to see that the only terms that survive in
(1) correspond to paths (and in turn, pairings) which have the same underlying set of pairs as P . As a
consequence, f is simply some non-zero constant times a polynomial which is full-rank. Mw(f) being full
rank then implies that Mw(G) is also full-rank17.

4.3 Bounding relrkw for Small Set-multilinear Formulas

As discussed in Section 1, the high-level strategy to prove Theorem 1 is to show that the relative rank (with
respect to arc-partitions) of our hard polynomial is large (as already established in Lemma 11), while it is
small for (small enough) set-multilinear formulas. The remainder of the section is devoted to establishing the
latter. Before moving on to it, we shall first state the following more precise and general version of Theorem
1. We also incorporate Remark 1 here and show our lower bound for any degree d ≤ n. Theorem 1 follows
from the special case d = n.

Theorem 12. Let n = 2k, and suppose d ≤ n be an even integer that is large enough18, and 1 ≤ ∆ ≤
log d/ log log d be any integer. Let Xi, Yi denote the sets of n variables {xi,j : j ∈ [n]} and {yi,j : j ∈ [n]}
respectively and let X,Y be the tuples (X1, . . . , Xd) and (Y1, . . . , Yd). Then,

• there is a poly(n, d)-size branching program computing Gn,d as defined above whose every internal node
computes a set-multilinear polynomial,

• any set-multilinear formula of product-depth ∆ computing Gn,d must have size at least dΩ(d1/∆/∆).

• Further, any set-multilinear formula of arbitrary product-depth computing Gn,d must have size at least
dΩ(log d).

The following couple of lemmas formalize the high-level idea mentioned before the statement of Theorem
12 – they correspond to the low-depth case and general depth case respectively. Most of the remainder of
this section is devoted to the proof of Lemma 13; Lemma 14 has a similar (and in fact, easier) proof and for
this reason, we only provide a sketch that is deferred to the appendix.

Lemma 13. Let K be any field and let X1, . . . , XD be sets of n distinct variables each. Let C be a set-
multilinear formula over K of constant product-depth ∆ ≥ 1 of size at most s which computes a polynomial
over K that is set-multilinear with respect to the partition (Xi1 , . . . , Xid) where 1 ≤ i1 < · · · < id ≤ D and
each |Xi| = n. Let w ∼ D be an arc-partition sampled from {−k, k}D. Then, we have

relrkw(C) ≤ s · 2− kd1/∆

2000

with probability at least 1− s · d−
d1/∆

107∆ .

17This argument is the same as in the proof of Lemma 10.
18We only need d to be larger than some absolute constant.
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Remark 5. Note that in the statement above, we are abusing notation and overloading the relrkw notation –
assume that relrkw(C) is defined in the obvious projective manner i.e., if S = {i1, . . . , id}, then relrkw(C) :=
relrkw|S (C) where w|S is as defined in Definition 2.

Lemma 14. Let K be any field and let X1, . . . , Xd be sets of n distinct variables each. Let F be a set-
multilinear formula over K of size at most s which computes a polynomial over K that is set-multilinear
with respect to the partition (X1, . . . , Xd) where each |Xi| = n. Let w ∼ D be an arc-partition sampled from
{−k, k}d. Then, we have

relrkw(F ) ≤ s · 2−
k log d
2000

with probability at least 1− s · d−
log d

107∆ .

Before moving on to the technical core of this section (the proof of Lemma 13), let us finish the proof of
Theorem 12.

Proof of Theorem 12 given Lemmas 13 and 14. Note that the first item follows immediately from the defi-
nition of Gn,d (see (1)). Let us prove the last two items of Theorem 12. Let C be a set-multilinear formula of
product depth ∆ of size s computing Gn,d(X) (now interpreted as a formula over the field F(Y )). Suppose

s < d
d1/∆

2×107∆ . Then, by Lemma 13, for an arc-partition w ∼ D sampled from {−k, k}d, it follows that with

probability at least 1− d
− d1/∆

2×107∆ ,

relrkw(C) ≤ s · 2− kd1/∆

2000 .

Fix such an arc-partition w. By Lemma 11, we have

s ≥ 2
kd1/∆

2000 · relrkw(C) = n
d1/∆

2000

which contradicts the assumption that s < d
d1/∆

2×107∆ . Thus, we conclude that s ≥ d
d1/∆

2×107∆ = dΩ(d1/∆/∆).
Similarly, to see the final item of Theorem 12, let F be a set-multilinear formula of size s computing Gn,d

(now interpreted as a formula over the field F(Y )). Suppose s < d
log d

2×107 . Then, for an arc-partition w ∼ D
sampled from {−k, k}d, by Lemma 14, with probability at least 1− d

− log d

2×107 ,

relrkw(F ) ≤ s · 2−
klog d
2000 .

Fix such an arc-partition w. Therefore, again by Lemma 11,

s ≥ 2
klog d
2000 · relrkw(F ) = n

log d
2000

which contradicts the assumption that s < d
log d

2×107 . Thus, we conclude that s ≥ d
log d

2×107 = dΩ(log d).

The essential ingredient in the proof of Lemma 13 is a combinatorial proposition which we will call the
“many violations lemma”. As alluded to in Section 1.5, this is a modification of a corresponding statement
in [DMPY12] (Lemma 4.1). However, because we are working in the low-depth setting (as opposed to
[DMPY12]) and because we are seeking such strong and near-optimal lower bounds, we need to make
significant changes – this includes introducing new conceptual arguments to tighten the analysis. To state
this lemma, we shall reproduce some of the definitions made in Section 4 of [DMPY12].

Again, we identify the set of variables X = (X1, . . . , XD) with the D-cycle {1, . . . , D}, where addition is
modulo D. Let S be a collection of disjoint subsets of the cycle to K parts, namely, S = (S1, . . . , SK) where
each Sk ⊂ {1, . . . , D} and Sk ∩ Sk′ = ∅ for all k ̸= k′ in [K]. We also think of [K] as a set of colors, and of
S as a (partial) K-coloring of some d nodes of the cycle, where d = |S1|+ · · ·+ |SK |. We shall refer to the
nodes in the D-cycle outside of S as uncolored.

For a pairing P , define the number of k-violations by

Vk(P ) = {Pt ∈ P : |Pt ∩ Sk| = 1}.
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In words, it is the set of pairs in which one color is k and the other color is different. Fix ε = 1/1000 and
denote

G(P ) = {k ∈ [K] : |Vk(P )| ≥ dε}.

We do not include S as a subscript in these two notations since S will be known from the context (and will be
fixed throughout most of the discussion). The next crucial lemma shows that for every fixed non-redundant
K-coloring of the cycle, a random pairing has, with high probability, many colors with many violations.

Lemma 15 (Many Violations Lemma). For all large enough d and for all integers K in the range [2d
1

∆+1 /3, 2d
1

∆+1 ]
the following holds: Let S = (S1, . . . , SK) be a collection of disjoint subsets of the D-cycle and suppose that

|Sk| ≥ d
∆

∆+1 /2 for all k ∈ [K]. Then,

P[G(P ) ≤ K/1000] ≤ d−K/500,

where P ∼ DP .

Remark 6. Other than the differences in parameter ranges, one key difference between the statement above
from Lemma 4.1 in [DMPY12] is the loosening of the requirement that S be a partition of the D-cycle. Note
that here, we only demand that S be a collection of disjoint subsets (i.e., some nodes are allowed to remain
uncolored) – this requirement is indeed key for the inductive proof of Lemma 13 to go through.

Before proving Lemma 15, let us next see that the many violations lemma suffices to prove the relative
rank upper bound on low-depth set-multilinear formulas.

Proof of Lemma 13 given Lemma 15. We prove the statement by induction on ∆. Identify the set {i1, . . . , id}
with [d].

If ∆ = 1, then C = C1 + · · ·+Ct where each Ci is a product of linear forms. So, for all i ∈ [t], by Claim
3,

relrkw(Ci) =

d∏
i=1

2−
1
2 |wj | = 2−

kd
2

where in the last step, we used the observation that regardless of the choice of w, |wj | = k for all j ∈ [n].
Hence, by the sub-additivity of relrkw, with probability 1, we have

relrkw(C) ≤ s · 2− kd
2 ≤ s · 2− kd

2000 .

Next, we assume the statement is true for all formulas of product-depth ≤ ∆. Let C be a formula of
product-depth ∆ + 1. So, C is of the form C = C1 + · · · + Ct. Using a similar terminology to that in
[LST21] and [KS22], we say that a sub-formula Ci of size si is of type 1 if one of its factors has degree at

least T∆ = d
∆

∆+1 , otherwise we say it is of type 2.
Suppose Ci = Ci,1 · · · · · Ci,ti is of type 1 with, say, Ci,1 having degree at least T∆. Let wi,1 be the

corresponding word i.e., wi,1 = w|S1
if Ci,1 is set-multilinear with respect to S1 ⊊ [d]. If it has size si,1, then

since it has product-depth at most ∆, it follows by induction that

relrkw(Ci) ≤ relrkwi,1(Ci,1) ≤ si,1 · 2−
kT

1/∆
∆

2000 ≤ si · 2−
kd1/(∆+1)

2000

with probability at least

1− si,1 · T
−

T
1/∆
∆

107∆

∆ ≥ 1− si · d−
d1/(∆+1)

107∆
· ∆
∆+1 = 1− si · d

− d1/(∆+1)

107(∆+1) .

Now suppose that Ci = Ci,1 · · · · · Ci,ti is of type 2 i.e., each factor Ci,j has degree < T∆. Note

that this forces ti > d/T∆ = d
1

∆+1 . As the formula is set-multilinear, (S1, . . . , Sti) form a partition of
[d] where each Ci,j is set-multilinear with respect to (Xℓ)ℓ∈Sj and Ci is set-multilinear with respect to
(Xℓ)ℓ∈S . Let w

i,1, . . . , wi,ti be the corresponding decomposition, whose respective sums are denoted simply
by wS1

, . . . , wSti
.
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From the properties of relrkw (Claim 3), we have

relrkw(Ci) =

ti∏
j=1

relrkwi,j (Ci,j) ≤
ti∏

j=1

2−
1
2 |wSj

| = 2−
1
2

∑ti
j=1 |wSj

|,

from which we observe that the task of upper bounding relrkw(C) can be reduced to the task of lower
bounding the sum

∑ti
j=1 |wSj

|, which is established in the following claim. For the sake of convenience, the
choice of the alphabet for w below is scaled down to {−1, 1}.

Claim 16. For large enough d, suppose (S1, . . . , SK) is a partition of [d] such that each |Sj | < T∆ = d
∆

∆+1 .
Then, we have

P
w∼D

 K∑
j=1

|wSj
| < d1/(∆+1)

2000

 ≤ d−
d1/(∆+1)

107 .

Here, D refers to the original distribution i.e., an arc-partition over the D-cycle.

Proof. We first show that without loss of generality, we may assume that each Sj has size ‘roughly’ T∆. To
see this, we apply the following clubbing procedure to the sets in the partition (S1, . . . , SK):

• Start with the given partition (S1, . . . , SK). At each step in the procedure, we shall ‘club’ two of the
sets in the partition according to the following rule.

• If there are two distinct sets S′ and S′′ in the current partition each of size < T∆/2, we remove both
of them and add their union S′ ∪ S′′ to the partition.

• If the rule above is no longer applicable, then we have at most one set in the current partition of size
< T∆/2. If there is none, then we halt the procedure here. Otherwise, we union this set with any one
of the other sets and then halt.

After the clubbing procedure, we are left with a partition (S′
1, . . . , S

′
K′) of [d] such that T∆

2 ≤ |S
′
j | ≤ 3T∆

2

for each j ∈ [K ′], also implying that 2d1/(∆+1)

3 ≤ K ′ ≤ 2d1/(∆+1). Through a repeated use of the triangle

inequality, we see that
∑K′

j=1 |wS′
j
| ≤

∑K
j=1 |wSj

|. Therefore, upper bounding the latter sum is a ‘smaller’
event than upper bounding the former sum. Hence, it suffices to prove the statement of the claim with the
assumption that T∆

2 ≤ |Sj | ≤ 3T∆

2 for each j ∈ [K] (we henceforth drop the primed notation).
Applying Lemma 15 to the tuple (S1, . . . , SK), we obtain that

P[G(P ) ≤ K/1000] ≤ d−K/500.

The idea is to condition on the high probability event that G(P ) > K/1000. Fix a pairing P with this
property. Consider an ordering σ of the colors in G(P ). A color k is said to be bright with respect to an
ordering if there are at least dε/2 nodes x of color k such that either the partner of x is uncolored or its
partner is colored using a color that appears after k in the ordering σ. Call an ordering σ of the nodes in
G(P ) good if there are at least |G(P )|/2 bright colors with respect to σ. The observation is that for any
ordering σ of the colors, either σ itself is good, or its reverse is good. We conclude that given any pairing P ,
there exists a good ordering of G(P ). Fix any such good ordering and let H(P ) be the collection of bright
colors with respect to this ordering.

Next, notice that if the sum
∑K

j=1 |wSj
| is at most d1/(∆+1)

2000 , then so is the sum
∑

k∈H(P ) |wSk
|. Let

K ′ = |H(P )| (which is at least K/2000 if G(P ) > K/1000). View the sampling of Π from P as happening
in a specific order, according to the order of k1, k2, . . . , kK′ : First define Π on pairs with at least one point
with color k1, then define Π on remaining pairs with at least one point with color k2, and so forth. When
finished with k1, . . . , kK′ , continue to define Π on all other pairs.

Conditioned on the event that G(P ) > K/1000, this implies that |wSj
| ≤ 1 for each j ∈ H(P ). For every

j ∈ H(P ), define Ej to be the event that |wSkj
| ≤ 1. By choice, conditioned on E1, . . . , Ej−1, there are

at least dε/2 pairs Pt so that |Pt ∩ Skj
| = 1 that are not yet assigned a ‘positive’ or ‘negative’ sign. For

every such Pt, the element in Pt ∩ Skj
is assigned a positive sign with probability 1/2, and is independent
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of any other Pt′ . The probability that a binomial random variable B over a universe of size U ≥ dε/2 and
marginals 1/2 obtains any specific value is at most O(U−1/2) = O(d−ε/2). Hence, for all j ∈ H(P ), by the
union bound,

P[Ej |E1, . . . , Ej−1, P ] ≤ P
B
[U/2− 1 ≤ B ≤ U/2 + 1] ≤ O(3 · d−ε/2) ≤ d−ε/4.

Therefore,

P[|wSkj
| ≤ 1 for all j ∈ H(P )] ≤ E[d−ε|H(P )|/4|G(P ) > K/1000] + d−K/500 ≤ d−K/107 .

Finally, we note that

P
w∼D

 K∑
j=1

|wSj | <
d1/(∆+1)

2000

 ≤ P[|wSkj
| ≤ 1 for all j ∈ H(P )].

The claim above and the preceding calculation immediately implies that for a sub-formula Ci of type 2,

relrkw(Ci) ≤ si · 2−
kd1/(∆+1)

2000

with probability at least 1− d−
d1/(∆+1)

107 ≥ 1− si · d
− d1/(∆+1)

107(∆+1) .
Next, by a union bound over i ∈ [t] and the sub-additivity property of relrkw, it follows that

relrkw(C) ≤ relrkw(C1) + · · ·+ relrkw(Ct) ≤ s1 · 2−
kd1/(∆+1)

2000 + · · ·+ st · 2−
kd1/(∆+1)

2000 = s · 2− kd1/(∆+1)

2000

with probability at least 1− s · d−
d1/(∆+1)

107(∆+1) , which concludes the proof of the lemma.

4.4 Proof of the Many Violations Lemma

Fix some collection of disjoint subsets (or a ‘partial’ coloring) S = (S1, . . . , SK) of the D-cycle satisfying the
conditions of the lemma. Think of S as a partial function from the D-cycle to the set [K], either assigning
a node its color in [K] or leaving it uncolored; S(i) is the color of i. Use the following definition to partition
the proof into cases. For a color k, count the number of jumps in it (with respect to the partition S) to be

Jk = {j ∈ Sk : k = S(j) ̸= S(j + 1)},

the set of elements j of color k so that j+1 is either uncolored or has a color different from k. As mentioned
previously, this subsection is adapted from the proof of Lemma 4.1 in [DMPY12]. In what follows, we
include remarks where we require a more refined analysis than [DMPY12] or a different argument to suit
the parameter demands of Lemma 15. Overall, we have attempted to provide a more comprehensive and
complete exposition to the proof of the many violations lemma.

Case 1: Many colors with many jumps. The high-level idea is that each color with many jumps has
many violations because pairs of the form (j, j + 1) yield violations as soon as they are constructed.

Assume that for at least K/2 colors k, |Jk| > d2ε. Denote by B ⊆ [K] the set of k’s that satisfy this
inequality. Then, for every k in B, there exists a subset Qk ⊂ Jk of size N = ⌈d2ε⌉. Let

Q :=
⋃
k∈B

Qk.

We think of the construction of the (random) pairing P as happening in epochs, depending on Q, as follows.
For t > 0, define the random variable

Q(t) = Q \ [Lt − 4, Rt + 4],
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the set Q after removing a four-neighborhood of [Lt, Rt]. For a certain sequence of time steps t, we will
define special nodes qt which lie in this small ‘cloud’ around the arc [Lt, Rt] (i.e., within a distance of 4
on either side of the arc) - it is for these special nodes qt that the set of pairs (qt, qt+1) will provide many
violations. We now formalize this intuition.

Let τ1 ≥ τ0 := 1 be the first time t after τ0 so that the distance between [Lt, Rt] and Q(τ0) is at most
two. The distance between [Lτ0 , Rτ0 ] and Q(τ0) is at least five. The size of the arc [Lt, Rt] increases by two
at each time step. So, τ1 ≥ τ0 + 2. Let q1 be an element of Q(τ0) that is of distance at most two from
[Lτ1 , Rτ1 ]; if there is more than one such q1, choose arbitrarily. The minimality of τ1 implies that q1 is not
in [Lτ1 , Rτ1 ].

Let τ2 ≥ τ1 be the first time t after τ1 so that the distance between [Lt, Rt] and Q(τ1) is at most two. Let
q2 be an element of Q(τ1) that is of distance at most two from [Lτ2 , Rτ2 ]. Define τj , qj for j > 2 similarly,
until Q(τj) is empty. As long as |Q(τj)| ≥ 8, we have |Q(τj+1)| ≥ |Q(τj)|−8. This process, therefore, has at
least KN/16 steps. For 1 ≤ j ≤ KN/16, denote by Ej the event that during the time between τj and τj+1

the pair {qj , qj +1} is added to P . The pair {qj , qj +1} is violating color S(qj). At time τj , even conditioned
on all the past P1, . . . , Pτj , in at most two steps (and before τj+1) we can add the pair {qj , qj +1} to P . For
every j, therefore,

P[Ej |P1, . . . , Pτj ] ≥ (1/3)(1/3) = 1/9.

Next, let N ′ = ⌈KN/960⌉. We want to show that with high probability, for at least N ′ many j, the event

Ej occurs. There are
( ⌊KN/16⌋
⌈KN/960⌉

)
many ways of choosing a set of indices j of size N −N ′. Subsequently,

P[there is j1, . . . , jN ′ so that Ej1 ∩ · · · ∩ EjN′ ] ≥ 1−
(
⌊KN/16⌋
⌈KN/960⌉

)
·
(
8

9

)N−N ′

≥ 1−
(
960e

16

)N ′

·
(
8

9

)60N ′

≥ 1− cN
′

where 0 < c < 1 is a universal constant. Finally, we argue that if there do exist j1, . . . , jN ′ for which the
events Ej1 , . . . , EjN′ occur, then G(P ) ≥ K/1000. To see this, note that the size of every Qk is N . So,
every color k in B can contribute at most N elements to j1, . . . , jN ′ . If G(P ) < K/1000, then at most
these many colors can contribute larger than dε (and up to N elements) - combined, at most KN/1000
elements. However, there are at least K/2 − K/1000 colors which can contribute only up to dε elements.
Again combined, this is not sufficient to cover the N ′ elements overall (for large enough d), which is a
contradiction. Hence,

P[G(P ) ≥ K/1000] ≥ P[there is j1, . . . , jN ′ so that Ej1 ∩ · · · ∩ Ej′N
].

and the proof follows in this case as cN
′ ≪ d−Ω(K).

Case 2: Many colors with few jumps. The intuition is that many violations will come from pairs of
the form {Lt−1, Rt+1} in the construction of the pairing. Assume that for at least K/2 colors k, |Jk| ≤ d2ε.
Denote again by B ⊆ [K] the set of k’s that satisfy the above inequality. We say that a color k is noticeable
in the arc A if

d
∆

∆+1−4ε ≤ |Sk ∩A| ≤ |A| − d
∆

∆+1−4ε.

Claim 17. There are K ′ ≥ K/2− 1 disjoint arcs A1, . . . , AK′ so that for every j ∈ [K ′],

1. |Aj | = m = ⌊d
∆

∆+1−3ε⌋ and,

2. there is a color kj in B that is noticeable in Aj.

Moreover, the colors k1, . . . , kK′ can be chosen to be pairwise distinct.

Proof. For each color k in B, there are at least d
∆

∆+1 /2 vertices of color k in the D-cycle and at most d2ε

jumps in the color k. Therefore, there is at least one k-monochromatic arc of size at least d
∆

∆+1−2ε. Hence,
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on the D-cycle, there are such monochromatic arcs Ik1 , . . . , Ik|B| for the colors k1, . . . , k|B| in B, in this order
(1 < 2 < · · · < D).

Consider an arc A of size m included in Ik1
. Thus |Sk1

∩ A| = m. If we “slide” the arc A until it is
included in Ik2

, then |Sk1
∩A| = 0. By continuity, there is an intermediate position for the arc A such that

d
∆

∆+1−4ε ≤ |Sk1 ∩A| ≤ m− d
∆

∆+1−4ε. This provides the first arc A1 of the claim.

Sliding an arc inside Ik2
to inside Ik3

shows that there exists an arc A2 such that d
∆

∆+1−4ε ≤ |Sk2
∩A2| ≤

m− d
∆

∆+1−4ε. The arcs A1 and A2 are disjoint: The distance of the largest element of A1 and the smallest
element of Ik2 is at most m. The distance of the smallest element of A2 and the largest element of Ik2 is at
most m. The size of Ik2 is larger than 2m. Proceed in this way to define A3, . . . , A|B|−1.

Use Claim 17 to divide the construction of the (random) pairing into epochs. Denote by A(0) the family
of arcs given by the claim. Let τ1 be the first time t that the arc [Lt, Rt] hits one of the arcs in A(0). Denote
by A1 that arc that is hit at time τ1 (break ties arbitrarily). Denote by k1 the color that is noticeable in
A1. Let σ1 be the first time t so that A1 is contained in [Lt, Rt]. Let A(1) be the subset of A(0) of arcs
that have an empty intersection with [Lσ1 , Rσ1 ]. Similarly, let τ2 be the first time t after σ1 that the arc
[Lt, Rt] hits one of the arcs in A(1). If there are no arc in A(1), define τ2 =∞. Denote by A2 that arc that
is hit at time τ2. Denote by k2 the color that is noticeable in A2. Let σ2 be the first time t so that A2 is
contained in [Lt, Rt]. Let A

(2) be the subset of A(1) of arcs that have an empty intersection with [Lσ2, Rσ2].
Define τj , σj , Aj , kj , A

(j) for j > 2 analogously. For every j ≥ 1, denote by Ej the event that during the
time between τj and τj+1 the number of pairs added that violate color kj ’s at most dε. (If Ej does not hold,
then |Vkj

(P )| ≥ dε and kj ∈ G(P ). The main part of the proof is summarized in the following proposition,
whose proof is deferred to Section 4.5.

Lemma 18 (Chessboard Lemma). Let δ = 0.10. For every j ≥ 1, and any choice of pairs P1, . . . , Pτj ,

P[Ej |P1, . . . , Pτj , |A(j−1)| ≥ 3] ≤ d−δ

Given this lemma, let us finish the proof of Lemma 15. Define K ′′ = ⌊K ′/10⌋ and let T denote the
event that the number of j’s for which |A(j)| ≥ 3 is at least K ′′. First, we argue that T occurs with high
probability.

For any j ≥ 1, consider the evolution of the arc [Lt, Rt] between the time steps τj (when it first hits arc
Aj) and σj (when it completely engulfs it). During this epoch, let us call the evolution of [Lt, Rt] in the
‘direction’ of Aj as good (labelled ‘G’) and away from the direction of Aj as bad (‘B’). To this end, for any
time step in this epoch, we can code the three possible choices for the evolution of [Lt, Rt] as GG (when the
arc is grown in the direction of Aj), GB (when it is grown equally on either side), or BB (when it is grown
away from the direction of Aj). Consequently, the evolution of [Lt, Rt] during this epoch can be realized as
a sequence consisting of the symbols G and B.

Consider the sequence s of G’s and B’s obtained by concatenating the sequences corresponding to all the
epochs (ignoring the choices made at time steps that do not lie in such epochs, i.e., between τj and σj for
some j - as there is no corresponding notion of a ‘good’ direction outside such epochs). The intuition is that
if |A(K′′)| < 3 (i.e., if T does not occur), then there must be an extremely large number of B’s compared to
G’s (i.e., the arc [Lt, Rt] evolves disproportionately in the bad direction) in the concatenated string s, which
should occur only with a vanishingly small probability.

Consider the sub-string s′ of s that corresponds to the choices made only for the nodes in A(0) \ A(K′′).
Note that there are precisely mK ′′ many G’s in s′. Suppose |A(K′′)| = 2 for concreteness (the cases |A(K′′)| =
1 and |A(K′′)| = 0 are similar). This implies that there are m(K ′− 2−K ′′) many B’s in s′. Since only up to
mK ′′ many of these B’s may appear as a result of the evolution making a choice of the form GB, it follows
that the evolution of [Lt, Rt] must make a choice of the form BB at least m(K ′ − 2− 2K ′′)/2 times out of
a possible m(K ′ − 2)/2, in order to cover the elements of A(0) \ A(K′′). Denote K1 := (K ′ − 2)/2. By the
union bound, this probability is at most

P[|A(K′′)| = 2] ≤
(
mK1

mK ′′

)
·
(
1

3

)m(K1−K′′)

< cmK′′

2

for some universal constant 0 < c2 < 1. Similarly, we have bounds for both P[|A(K′′)| = 1] and P[|A(K′′)| = 0]
and it follows that P[T ] ≥ 1− cmK′′

for some universal constant 0 < c < 1.
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Remark 7. The argument above for showing that T occurs with high probability differs considerably from

[DMPY12], where the corresponding event is sketched to occur with probability only at least 1−dcm
1/3

, which
is not strong enough for our purposes.

Next, note that

P[G(P ) < K/1000] ≤ P[G(P ) < K/1000 ∩ T ] + P[¬T ] ≤ P[G(P ) < K/1000|T ] + P[¬T ].

If G(P ) < K/1000, then at least K/2 − K/1000 colors in B have at most dε many violations. Since
K ′′ = ⌊K ′/10⌋ < K/2 − K/1000, in particular, there must exist at least K ′′/2 colors within the first K ′′

colors (here we are using the ordering of colors as provided by Claim 17) for which there are at most dε

many violations. We then obtain the following by conditioning on T , using the union bound.

P[G(P ) < K/1000 ∩ T ] ≤ 2K
′′

max
H={j1<···<jK′′/2}⊂[K′′]

P[Ej1 , . . . , EjK′′/2 ||A
(K′′)| ≥ 3]

For a fixed choice of H, by the chain rule and Lemma 18, we have

P[Ej1 ∩ · · · ∩ EjK′′/2 ||A
(K′′)| ≥ 3] = P[Ej1 |T ] · P[Ej2 |Ej1 ∩ T ] · · · · · P[EjK′′/2 |EjK′′/2−1

∩ · · · ∩ Ej1 ∩ T ]

≤ d−δK′′/2 ≤ d−0.1K′/20 ≤ d−K/400.

Overall, we conclude that
P[G(P ) < K/1000] ≤ d−K/500.

4.5 Proof of the Chessboard Lemma

To prove Lemma 18, we use a different point of view of the random process. We begin by describing this
different view, and later describe its formal connection to the distribution on pairings. This subsection is
adapted from Section 5 of [DMPY12] and closely follows their argument, though with numerous parameter
changes to suit our demands.

The view uses two definitions. One is a standard definition of a two-dimensional random walk, and the
other is a definition of a “chessboard” configuration in the plane. The proof of the proposition will follow by
analyzing the behavior of the random walk on the “chessboard”. Let d be as above and m be as defined in
Lemma 17. The random walk W on N2 is defined as follows. It starts at the origin, W0 = (0, 0). At every
step it move to one of three nodes, independently of previous choices,

Wt+1 =


Wt + (0, 2) with probability 1/3

Wt + (1, 1) with probability 1/3

Wt + (2, 0) with probability 1/3

At time t, the L1-distance of Wt from the origin is thus 2t.
The “chessboard” is defined as follows. Let α1 : [m] → {0, 1} and α2 : [2m] → {0, 1} be two Boolean

functions. The functions α1, α2 induce a “chessboard” structure on the board [m] × [2m]. A position in
the board ξ = (ξ1, ξ2) is colored either white or black. It is colored black if α1(ξ1) ̸= α2(ξ2) and white if
α1(ξ1) = α2(ξ2). We say that the “chessboard” is well-behaved if

1. α1 is far from constant:

d
∆

∆+1−4ε ≤ |{ξ1 ∈ [m] : α1(ξ1) = 1}| ≤ m− d
∆

∆+1−4ε.

2. α1 does not contain many jumps:

|{ξ1 ∈ [m− 1] : α1(ξ1) ̸= α1(ξ1 + 1)}| ≤ d2ε

3. α2 does not contain many jumps:

|{ξ2 ∈ [2m− 1] : α2(ξ2) ̸= α2(ξ2 + 1)}| ≤ d2ε
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Consider a random walk W on top of the “chessboard” and stop it when reaching the boundary of the
board (i.e., when it tries to make a step outside the board [m]× [2m]). We define a good step to be a step
of the form (1, 1) that lands in a black block. We will later relate good steps to violating edges. Our goal is,
therefore, to show that a typical W makes many good steps.

Lemma 19. Let δ = 0.10 and assume the chessboard is well-behaved. The probability that W makes less
than d2ε good steps is at most d−δ.

We use this lemma to show Lemma 18.

Proof of Lemma 18 given Lemma 19. Recall that Aj is an arc of size |Aj | = m = ⌊d
∆

∆+1−3ε⌋ so that there is
a color kj satisfying

d
∆

∆+1−4ε ≤ |Sk ∩A| ≤ |A| − d
∆

∆+1−4ε. (2)

Furthermore, condition on P1, . . . , Pτj , |A(j−1)| ≥ 3. Assume without loss of generality that Rτj is in Aj

(when Lτj is in Aj , the analysis is similar). The distance of Rτj from the smallest element of Aj is at most
one (the length of “one step to the right” is between zero and two). We now grow the random interval until
σj , i.e., as long as Rt stays in Aj . At the same time, Lt performs a movement to the left. Since |A(j−1)| ≥ 3,
there are at least 2m steps for Lt to take to the left before hitting Aj . There is a one-to-one correspondence
between pairings P and random walks W using the correspondence

Pt+1 = {Lt − 2, Lt − 1} ←→Wt+1 = Wt + (0, 2),

Pt+1 = {Lt − 1, Rt + 1} ←→Wt+1 = Wt + (1, 1),

Pt+1 = {Rt + 1, Rt + 2} ←→Wt+1 = Wt + (2, 0).

Define the function α1 to be 1 at positions of Aj with color kj , and 0 at the other positions. Set the
function α2 as to describe the color kj from Lτj leftward. The “chessboard” is well-behaved by (2) and since
kj is in the set B defined in case 2 of the proof of Lemma 15 (so there are not many jumps for the color kj).
Finally, if W makes a good step, then the corresponding pair added to P violated color kj . So, if Ej holds
for P , then the corresponding W makes less than d2ε good steps. Formally, by Lemma 15,

P[Ej |P1, . . . , Pτj , |A(j−1)| ≥ 3] ≤ P[W makes less than d2ε good steps] ≤ d−δ.

Proof of Lemma 19. Define three events ER, EC , ED, all of which happen with small probability, so that
every W that is not in their union makes many good steps.

Call a subset of the board of the form I × [2m] or [m]× I, where I is a sub-interval, a region. The width
of a region is the size of I. Let R be the set of regions of width at least d4ε. The size of R is at most 2m2.
For a region r in R, denote by Er the event that the number of steps of the form (1, 1) that W makes in r
is less than d2ε given that it makes at least d3ε steps in r. Denote

ER =
⋃
r∈R

Er

To estimate the probability of Er, note that we can simply apply the Chernoff bound to a sum of d3ε

Bernoulli random variables with p = 1/3. By the union bound, we conclude that there is a universal constant
0 < c < 1 such that

P[ER] ≤ cd
3ε

.

Denote by H the set of all points in the board with L1-norm at least m5/8. At time T the random walk
W is distributed along all points in N2 of L1-norm exactly T . The distribution of W on this set is the same
as that of a random walk on Z that is started at 0, and moves at every step to the right with probability 1/3,
stays in place with probability 1/3 and moves to the left with probability 1/3. The probability that such a
random walk on Z is at a specific point in Z at time T is at most O(T−1/2). Hence, for every point h in H,
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P[W hits h] ≤ O(m−5/16) ≤ m−1/4.

Call a point c = (ξ1, ξ2) in the board a corner if both (ξ1, ξ2) and (ξ1 + 1, ξ2 + 1) are of the same color
κ ∈ {black,white}, but (ξ1 + 1, ξ2) and (ξ1, ξ2 + 1) are not of color κ. For a corner c, denote by ∆(c) the
d4ε-neighborhood of c in L1-metric. Denote by ∆ the union over all ∆(c), for corners c in H. Denote by
EC the event that W hits any point in ∆. Since the board is well-behaved, the number of jumps in each of
α1, α2 is at most d2ε. Therefore, the number of corners is at most d4ε. By the union bound,

P[EC ] ≤ O(d4εd8εm−1/4) ≤ d−0.112,

where in the last step, we plugged in ε = 1/1000 and used m ≥ d1/2−3ε. Next, let m′ = ⌈m5/8⌉. Define three
(vertical) lines: D1 is the line {m′} × [2m], D2 is the line {2m′} × [2m] and D3 is the line {m−m′} × [2m].
Denote by ED the event that W does not cross the line D3 before stopped (i.e., hitting the boundary of the
board). Chernoff’s bound implies that there is a universal constant 0 < c < 1 for which

P [ED] ≤ cm.

To conclude the proof by the union bound, it suffices to show that for every W not in ER ∪ EC ∪ ED,
the walk W makes at least d2ε good steps. Fix such a walk W . Since W /∈ ED, we know that W crosses the
line D2.

We consider several cases. Define a block to be a maximal monochromatic rectangle in the board. The
board is thus partitioned into black blocks and white blocks - which is what led [DMPY12] to calling it a
“chessboard.” We now think of the board [m] × [2m] as drawn in the plane with (1, 1) at the bottom-left
corner and (m, 2m) at the upper-right corner.

Case 1: The walk W does not hit any white block after crossing D1 and before crossing D2. In this
case, all steps taken in the region whose left border is D1 and right border is D2 are in a black area. The
number of such steps is at least m5/8/2≫ d3ε. Since W /∈ ER, the claim holds.

Case 2: The walk W hits a white block after crossing D1 and before crossing D2. Let us label the blocks
as follows: we associate every block with a pair ⟨η1, η2⟩ where η1 is between 1 and the number of jumps in
α1 and η2 is between 1 and the number of jumps in α2. So, the label of the “bottom-left” is ⟨1, 1⟩, the label
of the block “above” it is ⟨1, 2⟩ and the label of the block “to its right” is ⟨2, 1⟩, etc. There are two sub-cases
to consider:

Sub-case 1: At some point after crossing D1 and before crossing D3, there are two white blocks of the
form ⟨η1, η2⟩, ⟨η1+1, η2+1⟩ so that W intersects both blocks. Let c be the corner between these two blocks
(which must exist by definition). Since W /∈ EC , we know that W does not visit ∆(c). Therefore, W must
walk in a black area around ∆(c). Every path surrounding ∆(c) has length at least d4ε. Since W /∈ ER, the
claim holds.

Sub-case 2: At all times after crossing D1 and before crossing D3, the walk never moves from a white
block ⟨η1, η2⟩ to one of the two white blocks ⟨η1 + 1, η2 + 1⟩, ⟨η1 − 1, η2 − 1⟩. Since W /∈ ED, this is indeed
the last case. The width of a combinatorial rectangle in the board is the size of its “bottom side” (i.e., the
corresponding subset of [m]). Let η be the first white block W hits after crossing D1. Let Σ be the family of
black blocks that are to the right but on the same height as η. Define γ as the maximal width of a rectangle
of the form σ ∩ [0,m−m0 − 1]× [2m] over all σ ∈ Σ. Since the board is well-behaved, it follows (from the

first condition) that the total width of the black area on the same height as η is at least d
∆

∆+1−4ε. Also,
since we are in case 2, the left border of η is to the left of D2. Therefore, the total width of the black area

to the right of the left border of η and to the left of D3, on the same height as η is at least d
∆

∆+1−4ε − 3m′.
Therefore, since the number of jumps is at most d2ε,

γ ≥ (d
∆

∆+1−4ε − 3m′)/d2ε ≫ d4ε.

Since we are in this sub-case, the walk W must “go through” every black block it hits: it can go from
bottom side to upper side or from left side to right side (but not from left side to upper side or from bottom
side to right side). Consider the behaviour of W after it hits η: starting from a white block, because W /∈ ED,
it is guaranteed to cross D3. Therefore, the color of the block that W “exits” from from each column must
keep alternating between white and black. For each black block in Σ, therefore, there exists a black block in
the same column that W crosses horizontally. Focusing on one such black block of width γ, since W /∈ ER,
the claim holds.
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5 Discussion and Open Problems

We conclude by mentioning some interesting directions for future work.

• The most interesting and natural question is to make the hard polynomial in our main result IMMn,n.
This would imply super-polynomial algebraic formula lower bounds. As far as we know, it is conceivable
that even the complexity measure of [KS22] as described in Section 3 could be used to prove the lower
bound for the IMMn,n polynomial. While the relative rank of IMMn,n itself is low, there might be
a suitable “restriction” of it such that for a randomly chosen w ∈ {−k, k}n, with reasonably high
probability the restriction has large rank. This could then be used to prove the lower bound for
IMMn,n (using Lemma 6 and Lemma 7). Secondly, we point out that perhaps it is more viable to find
an ordered set-multilinear branching program (as described in Section 1.4) which can be shown to be
arc-full-rank. This would also lead to general formula lower bounds.

• The discussion in Section 1.4 raises the question of the relative computational power of the ordered vs
general set-multilinear branching program models. Clearly, if it is shown that these classes coincide,
then it leads to formula lower bounds via Theorem 1. We would like to note here that in fact,
exponential lower bounds are known for the ordered model (see [AR16] for a discussion19).

Acknowledgments. We would like to thank Srikanth Srinivasan for several helpful and insightful discus-
sions. Our early discussions with him were what inspired much of this work.

19What they term as a ‘type-width 1’ set-multilinear ABP is an ordered set-multilinear ABP for us.
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A Proof Sketch of Lemma 14

In this section, we describe the proof of Lemma 14. As mentioned in Section 4, the proof structure is very
similar to that of Lemma 13. The setup is similar as well, but we describe it here again for the convenience
of the reader.

Again, we identify the set of variables X = (X1, . . . , Xd) with the d-cycle {1, 2, . . . , d}, where addition is
modulo d. Let S be a partition of the cycle to K parts, namely, S = (S1, . . . , SK). We also think of [K] as
a set of colors, and of S as a (now “full”) coloring of the cycle.

For a pairing P , define the number of k-violations by

Vk(P ) = {Pt ∈ P : |Pt ∩ Sk| = 1}

in words, the set of pairs in which one color is k and the other color is different. Fix ε = 1/1000 and denote

G(P ) = {k ∈ [K] : |Vk(P )| ≥ dε}

We do not include S as a subscript in these two notations since S will be known from the context (and will
be fixed throughout most of the discussion). We begin by stating the analogue to Lemma 15, which shows
that for every fixed K-coloring of the cycle, a random pairing has, with high probability, many colors with
many violations.

Lemma 20. There is a constant C > 0 such that for all integers K in the range [C, d1/1000] the following
holds: Let S = (S1, . . . , SK) be a partition of the d-cycle and suppose that |Sk| ≥ d7/8 for all k ∈ [K]. Then,

P[G(P ) ≤ K/1000] ≤ d−K/500,

where P ∼ DP .

Let us prove Lemma 14 given this lemma.

Proof of Lemma 14 given Lemma 20. We first need the following structural result, whose proof can be ex-
trapolated from [SY10] , where it is shown for multilinear formulas.

Lemma 21 (Product Lemma; see [DMPY12, SY10]). Assume that F is a formula with at most s leaves,
and is set-multilinear with respect to the set partition (X1, . . . , Xd). Then, we can write

F =

s∑
i=1

ℓ∏
j=1

Fi,j

where ℓ ≥ log d/100 and for each i ∈ [s], the product Fi =
∏ℓ

j=1 Fi,j is also set-multilinear. Furthermore,

the degree of each Fi,j is at least d7/8.
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Continuing with the proof, let F be a formula as in the statement of Lemma 14. We start by writing
F =

∑s
i=1 Fi in the form given by Lemma 21, so that each Fi =

∏ℓ
j=1 Fi,j . As each Fi is set-multilinear,

(Si,1, . . . , Si,ℓ) form a partition of [d] where each Fi,j is set-multilinear with respect to (Xp)p∈Si,j
. Let

wi,1, . . . , wi,ℓ be the corresponding decomposition, whose respective sums are denoted simply by wSi,1
, . . . , wSi,ℓ

.
From the properties of relrkw (Claim 3), we have

relrkw(Fi) =

ℓ∏
j=1

relrkwi,j (Fi,j) ≤
ℓ∏

j=1

2−
1
2 |wSj

| = 2−
1
2

∑ℓ
j=1 |wSj

|,

from which we observe that the task of upper bounding relrkw(F ) can be reduced to the task of lower

bounding the sum
∑ℓ

j=1 |wSj |, which is established in the following claim. For the sake of convenience, the
choice of the alphabet for w below is scaled down to {−1, 1}.

Claim 22. For large enough d, suppose (S1, . . . , SK) is a partition of [d] such that each |Sj | ≥ d7/8. Then,
we have

P
w∼D

 K∑
j=1

|wSj | <
log d

2000

 ≤ d−
log d

107 .

Here, D refers to the original distribution i.e., an arc-partition over the d-cycle.

Proof. The proof is going to be similar to that of Claim 16. Applying Lemma 20 to the tuple (S1, . . . , SK),
we obtain that

P[G(P ) ≤ K/1000] ≤ d−K/500.

The idea is to condition on the high probability event that G(P ) > K/1000. Fix a pairing P with this
property. Consider an ordering σ of the colors in G(P ). A color k is said to be bright with respect to an
ordering if there are at least dε/2 nodes x of color k such that either the partner of x is uncolored or its
partner is colored using a color that appears after k in the ordering σ. Call an ordering σ of the nodes in
G(P ) good if there are at least |G(P )|/2 bright colors with respect to σ. The observation is that for any
ordering σ of the colors, either σ itself is good, or its reverse is good. We conclude that given any pairing P ,
there exists a good ordering of G(P ). Fix any such good ordering and let H(P ) be the collection of bright
colors with respect to this ordering.

Next, notice that if the sum
∑K

j=1 |wSj
| is at most log d

2000 , then so is the sum
∑

k∈H(P ) |wSk
|. Let K ′ =

|H(P )| (which is at least K/2000 if G(P ) > K/1000). View the sampling of Π from P as happening in a
specific order, according to the order of k1, k2, . . . , kK′ : First define Π on pairs with at least one point with
color k1, then define Π on remaining pairs with at least one point with color k2, and so forth. When finished
with k1, . . . , kK′ , continue to define Π on all other pairs.

Conditioned on the event that G(P ) > K/1000, this implies that |wSj
| ≤ 1 for each j ∈ H(P ). For every

j ∈ H(P ), define Ej to be the event that |wSkj
| ≤ 1. By choice, conditioned on E1, . . . , Ej−1, there are

at least dε/2 pairs Pt so that |Pt ∩ Skj
| = 1 that are not yet assigned a ‘positive’ or ‘negative’ sign. For

every such Pt, the element in Pt ∩ Skj
is assigned a positive sign with probability 1/2, and is independent

of any other Pt′ . The probability that a binomial random variable B over a universe of size U ≥ dε/2 and
marginals 1/2 obtains any specific value is at most O(U−1/2) = O(d−ε/2). Hence, for all j ∈ H(P ), by the
union bound,

P[Ej |E1, . . . , Ej−1, P ] ≤ P
B
[U/2− 1 ≤ B ≤ U/2 + 1] ≤ O(3 · d−ε/2) ≤ d−ε/4.

Therefore,

P[|wSkj
| ≤ 1 for all j ∈ H(P )] ≤ E[d−ε|H(P )|/4|G(P ) > K/1000] + d−K/500 ≤ d−K/107 .

Finally, we note that

P
w∼D

 K∑
j=1

|wSj
| < log d

2000

 ≤ P[|wSkj
| ≤ 1 for all j ∈ H(P )].
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The claim above and the preceding calculation immediately implies that for every sub-formula Fi of size
si,

relrkw(Fi) ≤ si · 2−
k log d
2000

with probability at least 1− d−
log d

107 ≥ 1− si · d−
log d

107 .
Next, by a union bound over i ∈ [s] and the sub-additivity property of relrkw, it follows that

relrkw(F ) ≤ s · 2−
k log d
2000

with probability at least 1− s · d−
log d

107 , which concludes the proof of the lemma.

We shall omit the proof of Lemma 20 here as it is, in fact, a significantly easier adaptation of Lemma
4.1 from [DMPY12] than the proof of Lemma 15 – this is because we no longer need to conduct the tighter
analysis that was necessary for the low-depth case.
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