
Theory of Unconditional Pseudorandom Generators

Pooya Hatami
CSE Department

The Ohio State University
pooyahat@gmail.com

William M. Hoza
Simons Institute

University of California, Berkeley
williamhoza@berkeley.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 19 (2023)

Abstract

This is a survey of unconditional pseudorandom generators (PRGs). A PRG uses a short, truly
random seed to generate a long, “pseudorandom” sequence of bits. To be more specific, for each
restricted model of computation (e.g., bounded-depth circuits or read-once branching programs),
we would like to design a PRG that “fools” the model, meaning that every function computable
in the model behaves approximately the same when we plug in pseudorandom bits from the PRG
as it does when we plug in truly random bits. In this survey, we discuss four major paradigms for
designing PRGs:

• We present several PRGs based on k-wise uniform generators, small-bias generators, and simple
combinations thereof, including proofs of Viola’s theorem on fooling low-degree polynomials
(Comput. Complexity 2009) and Braverman’s theorem on fooling AC0 circuits (J. ACM 2010).

• We present several PRGs based on “recycling” random bits to take advantage of communication
bottlenecks, such as the Impagliazzo-Nisan-Wigderson generator (STOC 1994).

• We present connections between PRGs and computational hardness, including the Nisan-
Wigderson framework for converting a hard Boolean function into a PRG (J. Comput. Syst.
Sci. 1994).

• We present PRG frameworks based on random restrictions, including the “polarizing random
walks” framework (Chattopadhyay, Hatami, Hosseini, and Lovett, Theory Comput. 2019).

We explain how to use these paradigms to construct PRGs that work unconditionally, with no
unproven mathematical assumptions. The PRG constructions use ingredients such as finite field
arithmetic, expander graphs, and randomness extractors. The analyses use techniques such as
Fourier analysis, sandwiching approximators, and simplification-under-restrictions lemmas.

Acknowledgments We thank Yevgeniy Dodis, Avishay Tal, Emanuele Viola, and David Zucker-
man for helpful comments on drafts of this work.

Contents

1 Introduction 4
1.1 Whom shall we fool? Three PRG paradigms . 5

1.1.1 PRGs for everyday non-adversarial applications 5
1.1.2 PRGs for all efficient observers . 6
1.1.3 PRGs for restricted models of computation 7

1.2 Overview of this text . 8
1.3 The generic probabilistic existence proof . 9
1.4 Explicitness . 10

1.4.1 Families of PRGs . 10
1.4.2 The default conjecture: Explicit PRGs exist 11

1.5 Beyond PRGs: Hitting set generators and more . 12

2 Limited Independence and Small-Bias Generators 14
2.1 Limited independence . 14

2.1.1 Pairwise uniform bits . 14
2.1.2 k-wise uniform bits . 15
2.1.3 Perfectly fooling shallow decision trees . 16
2.1.4 Connection with coding theory: Dual codes 17

2.2 Small-bias distributions . 18
2.2.1 Fooling parities of variables . 18
2.2.2 A better seed length for parities of few variables 19
2.2.3 Connection with coding theory: Nearly balanced codes 20

2.3 Analysis technique: Fourier L1 bounds . 21
2.3.1 Basic Fourier analysis . 21
2.3.2 Almost k-wise uniform bits . 21
2.3.3 Fooling bounded-size decision trees . 22
2.3.4 Fooling width-2 branching programs . 24

2.4 Viola’s generator for low-degree F2-polynomials . 25
2.4.1 Directional derivatives . 26
2.4.2 The XOR of two independent copies of an arbitrary Boolean function 27
2.4.3 The reduction from fooling F to fooling ∂F 27
2.4.4 Inductive analysis of low-degree polynomials 29
2.4.5 Application: Width-2 branching programs that read several bits at a time . . 29

2.5 Analysis technique: Sandwiching approximators . 30
2.5.1 The sandwiching lemma . 30
2.5.2 Using k-wise uniform generators to fool size-m decision trees 31
2.5.3 Small-bias distributions fool read-once AC0 31

1

2.5.4 The sandwiching lemma and the triangle inequality are always enough 34
2.6 Braverman’s theorem: Limited independence fools AC0 37

2.6.1 LMN polynomials . 38
2.6.2 Operations on functions with low-degree sandwiching polynomials 38
2.6.3 Low-degree sandwichers for AC0 circuits . 39
2.6.4 Improved parameters via probabilistic polynomials 41

3 Recycling Random Bits 45
3.1 PRGs for two-party communication protocols . 45

3.1.1 Expander graphs from a PRG perspective . 45
3.1.2 Combinatorial rectangles and the Expander Mixing Lemma 47

3.2 The INW generator for standard-order ROBPs . 48
3.2.1 Concatenating two independent pseudorandom strings 49
3.2.2 Recycling seeds using a PRG for two-dimensional rectangles 50

3.3 The BRRY generator for standard-order regular ROBPs 51
3.3.1 Improved analysis of the INW generator for low-weight programs 51
3.3.2 Regular programs have low weight . 55

3.4 The Nisan-Zuckerman generator for short, wide ROBPs 56
3.4.1 Randomness extractors . 56
3.4.2 Using extractors to fool standard-order ROBPs 58

4 PRGs and Hardness 61
4.1 PRGs as high-quality lower bounds . 61

4.1.1 PRGs imply hard Boolean functions . 61
4.1.2 The lack-of-lower-bounds barrier . 63

4.2 The Nisan-Wigderson framework . 64
4.2.1 Constructing a PRG from a hard function . 64
4.2.2 Analysis: Unpredictability . 64
4.2.3 A family of nearly disjoint sets . 66
4.2.4 Unconditional applications . 67

4.3 Hardness-based PRGs beyond Nisan-Wigderson . 68

5 Random Restrictions 70
5.1 PRGs from polarizing random walks . 72

5.1.1 Simplification under truly random restrictions 72
5.1.2 Fractional PRGs . 72
5.1.3 From fractional PRGs to PRGs . 74
5.1.4 A better reduction for the low-error regime 78

5.2 Analysis technique: Fourier growth bounds . 80
5.2.1 The noise operator and simplification on average 80
5.2.2 Fourier growth bounds for regular ROBPs . 81
5.2.3 Using Fourier growth bounds to obtain PRGs 85

5.3 Fooling AC0 via the Ajtai-Wigderson framework . 88
5.3.1 Simplification under partially pseudorandom restrictions 88
5.3.2 Restrictions that preserve expectation . 90
5.3.3 Iterated restrictions . 91

5.4 The Forbes-Kelley generator for ROBPs . 92
5.4.1 Pseudorandomness plus noise . 93

2

5.4.2 A Fourier decomposition lemma for ROBPs 94
5.4.3 Pseudorandom restrictions that preserve the expectation of ROBPs 95
5.4.4 A better generator for the small-width setting 97

5.5 PRGs for read-once CNFs via early termination . 98
5.5.1 Simplification of read-once CNFs under fully-pseudorandom restrictions . . . 98
5.5.2 Iterated restrictions with early termination 100
5.5.3 Discussion: Two types of simplification . 102

5.6 Fooling general branching programs via the IMZ framework 102
5.6.1 Shrinkage of branching programs under fully-pseudorandom restrictions . . . 103
5.6.2 PRGs from fully-derandomized shrinkage lemmas 105

6 Table of PRGs 109
6.1 Circuit models . 109
6.2 Branching program models . 109
6.3 Algebraic models . 111
6.4 Models based on locality . 111

3

Chapter 1

Introduction

To make random choices, it would be useful to have an unlimited supply of “truly random” bits:
unbiased and independent coin flips. What can we do if we only have a few truly random bits?
A pseudorandom generator (PRG) uses a small amount of true randomness, called the “seed,” to
generate a long sequence that appears to be completely random (even though it isn’t). PRGs are
ubiquitous in computing theory and practice. The basic motivation is that we think of randomness
as a scarce computational resource, akin to time or space, so whenever we get our hands on some
random bits, we want to stretch them as far as possible.

To model PRGs mathematically, we consider some “observer,” modeled as a function f . Let Un

denote the uniform distribution over {0, 1}n. We would like to “fool” f in the following sense.

Definition 1.0.1 (Fooling). Suppose f : {0, 1}n → {0, 1} is a function, X is a probability distribution
over {0, 1}n, and ε > 0. We say that X fools f with error ε, or ε-fools f , if

|Pr[f(X) = 1]− Pr[f(Un) = 1]| ≤ ε.

More generally, we can consider a real-valued function f : {0, 1}n → R. In this case, we say that X
fools f with error ε if

|E[f(X)]− E[f(Un)]| ≤ ε.

If ε = 0, we say that X perfectly fools f .

Remark 1.0.2. As a shorthand, we often identify the function f with the random variable f(Un).
For example, instead of E[f(Un)], we simply write E[f].

Definition 1.0.1 says that although X might not be uniform, X and Un are nevertheless
indistinguishable, at least from f ’s perspective. Conversely, if X does not ε-fool f , we refer to f as
a “distinguisher” for X. A PRG’s job is to use a few truly random bits to sample a distribution
that fools f .

Definition 1.0.3 (PRGs). Suppose f : {0, 1}n → R and G : {0, 1}s → {0, 1}n are functions and
ε > 0. We say that G is an ε-PRG for f if G(Us) fools f with error ε. In this case, we also say
that G fools f with error ε. (See Figure 1.1.)

The parameter s is called the seed length of the PRG; we would like s to be as small as possible.
Throughout this text, the parameter “n” will always denote the number of pseudorandom bits we
are generating.

4

f f

G

≈

$ $$$$$$$

$ $ $ $

Figure 1.1: A PRG (G) uses a few truly random bits (depicted here using $ symbols) to sample a
pseudorandom string that is indistinguishable from a truly random string, from the perspective of
the observer (f).

1.1 Whom shall we fool? Three PRG paradigms

An unavoidable fact of life is that for any nontrivial PRG, there exists a function that is not fooled
by the PRG.

Claim 1.1.1 (Impossibility of fooling all functions). Let G : {0, 1}s → {0, 1}n where s < n. There
exists some f : {0, 1}n → {0, 1} such that G does not 0.49-fool f .

Proof. Let f be the indicator function for the image of G. Then E[f(G(Us))] = 1, whereas E[f] ≤ 1/2
because s < n.

In light of Claim 1.1.1, the best we can hope for is generating bits that fool some large sets of
observers but not all of them. After all, as Avi Wigderson says, randomness is in the eye of the
beholder. If F is a class of functions f : {0, 1}n → R, we say that G is an ε-PRG for F if G ε-fools
every f ∈ F .

Which observers shall we fool? The study of PRGs can be crudely divided into three paradigms
based on three possible answers:

1. Everyday non-adversarial applications.

2. All efficient observers.

3. Restricted models of computation.

We discuss these three paradigms in Sections 1.1.1 to 1.1.3.

1.1.1 PRGs for everyday non-adversarial applications

In practice, when programmers want randomness, they invoke some type of random() method
provided by the computing environment. Under the hood, these random() methods typically involve
several components, each of which might be quite sophisticated. When practitioners speak of
“pseudorandom number generators” or “random number generators,” they are usually referring to
the entire randomness system as a whole, including whatever techniques are used to produce an
initial seed. For example, the system might derive a seed from the current time of day, even though

5

such a seed is rather predictable. As another example, the system might use hardware random
number generators based on thermal noise measurements.

In this text, we sidestep the important issue of producing a seed, along with many other issues
that are important in practice. We focus on the challenge of stretching a truly random seed out to
a long pseudorandom string. In our terminology, this is the job of a PRG (see Definition 1.0.3). A
PRG is thus one of multiple components of a practical randomness system. For example, Java’s
Math.random() method currently uses a type of PRG called a linear congruential generator. For
such a PRG, the seed is a random number X0 ∈ {0, 1, . . . ,M − 1}, and the output sequence is
(X1, X2, X3, . . .), where

Xi+1 = a ·Xi + b modM

for some parameters M,a, b. Meanwhile, Python’s random.random() method uses an algorithm
called the “Mersenne twister” [MN98], and major web browsers currently use a PRG in the “xorshift+
family” [Vig17] to implement Javascript’s Math.random() function.

Why these PRGs are unsatisfactory

Practitioners use these randomness systems for both casual applications (e.g., video games) and
serious applications (e.g., randomized algorithms). However, for a generic randomized algorithm,
there is no firm mathematical guarantee that the outputs will be reliable when the algorithm is
executed using one of these practical randomness systems. The methods that practitioners typically
use to run randomized algorithms must be considered heuristics.

To be clear, a lot of work goes into designing high-quality practical randomness systems.
Designers strive to ensure that these systems can be safely used in any application that “comes up
naturally” in practice. The system is only deemed acceptable for everyday use when it passes a
great number of creative statistical tests, such as those in the TestU01 family [LS07].

These statistical tests are valuable, but there is a wide gap between the statistical tests and a
typical randomized algorithm. The designers behind practical systems such as Java’s Math.random()
method wisely do not claim that they work in adversarial scenarios, so these systems are considered
unsuitable for cryptography. This is true even if we focus solely on the PRG component of these
systems. Furthermore, sometimes programs “accidentally” distinguish pseudorandom numbers from
truly random numbers. There are quite a few documented cases in which PRGs have been shown
to cause inaccurate scientific simulations [KW84; PR85; FMF85; MBH86; FLW92; Gra93; Cod94;
CLK11]! One must imagine that other cases have gone unnoticed.

To a theoretician, this state of affairs is deeply unsatisfactory. Yes, modern practical PRGs seem
to almost always work well in practice, but we don’t have a mathematically rigorous explanation
for why these systems work. It’s not even clear what precisely the goal is. (Mathematically, how
can we make a distinction between “adversarially-designed” programs and “naturally-occurring”
programs?) By theoreticians’ standards, the success of practical PRGs is largely a mystery.

1.1.2 PRGs for all efficient observers

One of the great ideas in the theory of computing is to try to design a PRG that fools all
computationally efficient observers. Given such a PRG and a truly random seed, we would be able
to execute any randomized algorithm that is actually worth executing. (After all, there’s no point
running a program if one won’t even survive long enough to see the output!) Such a PRG could also
be used in cryptographic settings, because we can safely assume that eavesdroppers and hackers

6

only have so much computational power.1

For example, given a random seed X0 ∈ {1, 2, . . . ,M−1}, the Blum-Blum-Shub (BBS) generator
[BBS86] outputs the sequence (X1 mod 2, X2 mod 2, X3 mod 2, . . .) where

Xi+1 = X2
i modM.

This PRG is reminiscent of linear congruential generators, but the similarity is only superficial.
For a suitably chosen modulus M , it is believed that the BBS generator fools all polynomial-time
algorithms.

Why these PRGs are also (currently) unsatisfactory

Fooling all efficient observers is a well-defined and well-motivated goal. Unfortunately, nobody
knows how to prove that some efficiently-computable PRG actually has this marvelous property.

To be clear, there is a substantial body of “evidence” indicating that such PRGs exist. For
example, Blum, Blum, and Shub showed that their generator fools all polynomial-time observers,
under the plausible-but-unproven assumption that there is no good algorithm for the “quadratic
residuosity problem” [BBS86]. There are many other examples of PRGs that fool all polynomial-time
observers under reasonable cryptographic or complexity-theoretic assumptions [Yao82; BM84; NW94;
IW97; HILL99; KM02; Uma03; DMOZ20]. For practical cryptography, software developers tend to
use PRGs that are not even supported by rigorous conditional proofs of correctness, but rather are
supported by heuristic and intuitive arguments.

There is a genuine possibility that these PRGs are not secure. In one infamous incident, the
U.S. National Institute of Standards and Technology (NIST) recommended using a PRG called
“Dual EC DRBG.” The PRG was designed by the U.S. National Security Agency (NSA), and allegedly,
they intentionally designed it to be insecure for surveillance purposes [Per13].

Once again, to a theoretician, this state of affairs is not satisfactory. There is genuine room for
doubt about whether known PRGs work, and perhaps more importantly, even if they do work, we
don’t have a good explanation for why they work. Conditional proofs can be considered partial
explanations at best. The problem of designing PRGs that unconditionally fool all efficient observers
is very challenging, with connections to deep topics such as the famous P vs. NP problem. (See
Section 4.1.)

1.1.3 PRGs for restricted models of computation

The main topic of this text is a third paradigm for studying PRGs. In this third paradigm, we
identify an interesting and well-defined restricted model of computation. Then we design PRGs that
fool the chosen model of computation (unconditionally – with no unproven assumptions) and try to
optimize the seed length of the PRG.

A toy example might clarify the idea. Let us design a PRG G : {0, 1}2 → {0, 1}3 that fools every
observer f that only looks at two of the three output bits. This problem is not completely trivial,
because we don’t know which two bits f will observe. Nevertheless, the problem can be solved by
defining

G(u1, u2) = (u1, u2, u1 ⊕ u2),

1There is a subtle distinction here. In the context of randomized algorithms, it’s okay if the PRG itself uses a little
more time than the algorithms that we are trying to fool. On the other hand, in the context of cryptography, we want
an efficiently-computable PRG that fools all efficient adversaries, including those that use polynomially more time
than the PRG uses.

7

where ⊕ denotes the XOR operation. When u1 and u2 are chosen uniformly at random, the three
output bits are correlated, but any two of the bits are independent and uniform random.

Unconditional PRGs can be constructed for much richer and more interesting restricted models of
computation. We are especially interested in fooling models of computation that have a “complexity
theory” flavor, i.e., we want the output of the PRG to appear random to any observer that is
“sufficiently efficient” in some sense. Arguably, the two most important models in this field are
constant-depth circuits (AC0, see Definition 2.5.4) and read-once branching programs (ROBPs, see
Definition 3.2.1).

The value of these PRGs

Could PRGs for restricted models ever be directly used in practical applications? Potentially. PRGs
for restricted models can be used to simulate some randomized algorithms. For example, suppose a
randomized decision algorithm A uses S bits of space. For any fixed input a of A, we can consider
the output of A as a function of its random bits, say f(x) = A(a, x). It turns out that this function
f can be computed by an ROBP of width 2O(S). Therefore, PRGs that fool ROBPs can be used to
simulate A without significantly distorting its behavior.

Admittedly, it’s a bit unrealistic to imagine the PRGs studied in the theoretical literature being
implemented on actual computers, because it is hard to compete with the practical PRGs discussed
in Section 1.1.1. Instead, the study of PRGs for restricted models has a much grander and broader
purpose: these PRGs help to uncover the mysteries of the theory of computing, and hence are
invaluable from a scientific perspective.

Unconditional PRGs have many applications within theoretical computer science, and we will
not attempt to survey them here, but we will elaborate on one of the more important applications. A
major open problem asks whether randomized decision algorithms have any intrinsic advantage over
deterministic decision algorithms in terms of space complexity. PRGs for ROBPs have the potential
to resolve this question. As discussed above, a PRG for ROBPs can be used to simulate randomized
space-bounded decision algorithms using just a little bit of randomness. By exhaustively trying all
seeds of the PRG and taking the majority outcome, we can actually get a completely deterministic
simulation. An optimal PRG for ROBPs would imply that randomized space-S algorithms can be
simulated deterministically in space O(S), and hence randomness only confers a constant-factor
advantage.

So far, optimal constructions of PRGs for ROBPs are not known, but we do have “pretty good”
constructions (e.g., see Section 3.2). There are many partial derandomization results known for
space-bounded computation, building on the theory of PRGs for ROBPs (in nontrivial ways). For
example, it has been shown that randomized space-S algorithms can be simulated deterministically
in space slightly less than S3/2 [SZ99; Hoz21]. There is no particular “barrier” known preventing us
from designing optimal PRGs for ROBPs. This exciting problem is a central open problem in the
unconditional theory of PRGs.

Apart from any application, we hope to convince the reader that PRGs for restricted models are
interesting in their own right.

1.2 Overview of this text

In this work, we survey some of the most important frameworks and techniques for constructing
unconditional PRGs for restricted models of computation. We focus on four major PRG paradigms:

8

• In Chapter 2, we present k-wise uniform generators, small-bias generators, and simple combi-
nations thereof.

• In Chapter 3, we present PRGs that “recycle” randomness to take advantage of communication
bottlenecks, such as the Impagliazzo-Nisan-Wigderson generator [INW94].

• In Chapter 4, we present connections between PRGs and computational hardness, including
the Nisan-Wigderson framework for converting a hard Boolean function into a PRG [NW94].

• In Chapter 5, we present methods for constructing PRGs based on (pseudo)random restrictions,
including the relatively recent “polarizing random walks” framework [CHHL19].

Along the way, as needed, we introduce the computational models that we fool (decision trees,
circuits, branching programs, etc.) and techniques for analyzing PRGs (Fourier analysis, sandwiching
approximators, simplification-under-restriction lemmas, etc.)

The literature on unconditional PRGs is vast, and this survey is far from exhaustive. (For
example, we do not discuss the important line of work on fooling linear threshold functions [RS10;
DGJSV10; MZ13; GKM18].) Instead, we hope that this work serves as a suitable introduction to
the field of unconditional PRGs, preparing the reader to study new and old papers on PRGs and
make their own contributions.

The results that we cover include both classic and recent works. Besides covering the most
important principles of PRG design and analysis, we also made sure to include expositions of
many of the most important examples of unconditional PRGs, such as Viola’s PRG for low-degree
polynomials [Vio09], Braverman’s theorem that limited independence fools AC0 [Bra10], and Forbes
and Kelley’s relatively recent PRG for arbitrary-order ROBPs [FK18].

This text is primarily expository. However, we couldn’t help but include a few novel theorems
and proofs. For example, we present a new proof of Braverman’s theorem (Section 2.6), and we
present a new improvement to the polarizing random walks framework in the low-error regime
(Section 5.1.4). We also highlight plenty of important open problems regarding PRGs for restricted
models of computation.

Many wonderful prior expository works [Mil01; LW06; AB09; Gol10; Vad12; O’D14] and lecture
notes [Zuc01; Tre05; Ta-15; Ta-16; Vio17; Cha18; Ta-18; Cha19; Ta-19; Tal21; Cha22] include some
coverage of unconditional PRGs. However, none of them have quite the same focus as our work, so
we feel that our work fills a gap.

In the rest of this chapter, we discuss some additional basic issues related to the concept of a
PRG, paving the way for the PRG constructions in subsequent chapters.

1.3 The generic probabilistic existence proof

For many classes F , including classes defined by standard computational models (such as decision
trees, circuits, branching programs, etc.), there is a totally generic argument showing that there
exist PRGs that fool F with a small seed length.

Proposition 1.3.1 (Nonexplicit PRGs). Let F be a class of functions f : {0, 1}n → {0, 1}. For
every ε > 0, there exists an ε-PRG for F with seed length log log |F|+ 2 log(1/ε) +O(1).

Proof. Pick a function G : {0, 1}s → {0, 1}n uniformly at random. Consider any arbitrary f ∈ F .
For each seed y, the value f(G(y)) is a random bit satisfying

E
G
[f(G(y))] = E

Un

[f(Un)].

9

Furthermore, as y ranges over all 2s possible seeds, these random variables f(G(y)) are independent.
Therefore, by Hoeffding’s inequality,

Pr
G

∣∣∣∣∣∣E[f]− 2−s
∑

y∈{0,1}s
f(G(y))

∣∣∣∣∣∣ > ε

 ≤ 2e−2ε22s .

By the union bound, the probability that G fails to ε-fool F is bounded by 2|F|e−2ε22s . For
s = log log |F|+ 2 log(1/ε) + O(1), this probability is less than 1, i.e., there exists a G that does
ε-fool F .

In a typical case – e.g., if F is the set of all circuits of size at most n – each function f ∈ F
can be described using poly(n) bits, i.e., |F| ≤ 2poly(n). In this case, the PRG guaranteed by
Proposition 1.3.1 has seed length O(log(n/ε)).

1.4 Explicitness

Proposition 1.3.1 has a major weakness: it does not guarantee that the PRG is efficiently computable.
The proof of Proposition 1.3.1 is in some sense “nonconstructive.” Ideally, we want an algorithm for
sampling from a pseudorandom distribution, and we want the algorithm to be reasonably efficient
with respect to randomness and more conventional complexity measures simultaneously.

Definition 1.4.1 (Explicitness). A PRG G : {0, 1}s → {0, 1}n is explicit if it can be computed in
time poly(n).

One could consider alternative standards of explicitness. We could require that each individual
output bit can be computed in time polylog n, or that the PRG runs in space O(log n), or that each
bit can be computed in AC0, or any number of other conditions. The truth is, there is no “one true
definition” of explicitness. The appropriate definition depends on what one hopes to gain from the
PRG.

For example, one might plan to derandomize an algorithm by exhaustively trying all possible
seeds of a PRG. In this case, since we are inevitably going to spend more than 2s steps on this
brute-force process, it might make sense to relax our standard of “explicitness” and allow the PRG’s
time complexity to be as large as 2O(s) · poly(n) rather than poly(n). As another example, it turns
out that PRGs can be used to prove that certain models of computation cannot solve the “Minimum
Circuit Size Problem” [KC00]. For this application, the “correct” definition of explicitness is that
for each fixed seed u ∈ {0, 1}s, there is a Boolean circuit Cu of size o(n/ log n) such that for every
i ∈ [n], we have Cu(i) = G(u)i.

In this text, we will stick with Definition 1.4.1 for concreteness, but when we present PRG
constructions, we will generally not bother carefully verifying the runtime bound. Instead, we will
focus on making the construction clear to the reader.

1.4.1 Families of PRGs

Definition 1.4.1 refers to the time complexity of a PRG. To meaningfully speak of time complexity,
we technically ought to be considering a whole family of PRGs. The convention in this line of work
is to keep the family implicit. For example, a theorem might say something like the following.

10

For all n,m ∈ N and all ε > 0, there exists an explicit ε-PRG for size-m decision trees on n
input bits with seed length O(log(m/ε) + log log n).

(See Section 2.3.3.) Translating into more precise language, the same theorem can be restated
as follows.

There exists a randomized algorithm G satisfying the following.

1. Given input parameters n,m, ε, the algorithm G outputs a string G(n,m, ε) ∈ {0, 1}n.

2. For all n,m, ε, the output distribution G(n,m, ε) fools size-m decision trees with error ε.

3. G(n,m, ε) uses at most O(log(m/ε) + log log n) random bits and runs in time poly(n).

There is something potentially troubling about this “translation” process. The quantifiers got
flipped! In the informal theorem statement, we say “for all n,m, ε, there exists an explicit PRG,”
but strictly speaking, we mean that there exists a single algorithm G that works for all n,m, ε
simultaneously! Is this “flipped quantifiers” convention wise?

Let us make an analogy with big-O notation. Recall, e.g., the famous planar separator theorem:

For all n ∈ N, for every n-vertex planar graph, there exists a set of O(
√
n) vertices such that

removing those vertices splits the graph into connected components with at most 2n/3 vertices
each.

If we wanted to be more rigorous, we ought to flip the quantifiers and write something like the
following:

There exists a function f : N → N such that f ∈ O(
√
n) and for all n ∈ N, for every n-vertex

planar graph, there exists a set of f(n) vertices such that removing those vertices splits the
graph into connected components with at most 2n/3 vertices each.

We don’t bother with such careful language because it obscures more than it clarifies. The
important thing is that the expression “O(

√
n)” tells how the number of removed vertices scales

with the universally quantified parameter n. Analogously, when we say “there exists an explicit
PRG,” the word “explicit” tells how the computational complexity of the PRG scales with the
parameters.

1.4.2 The default conjecture: Explicit PRGs exist

For each “reasonable” class F , the standard conjecture is that there exists an explicit PRG with
essentially the same seed length as the generic nonexplicit bound (Proposition 1.3.1). Oftentimes,
this conjecture can be supported with evidence in the form of conditional constructions. For example,
consider the class F of all CNF formulas of size at most n. The nonexplicit PRG has seed length
O(log(n/ε)). Under plausible complexity-theoretic assumptions, there is indeed an explicit PRG for
all size-n Boolean circuits (whether CNF formulas or not) with seed length O(log(n/ε)) [IW97].

11

Even without a compelling conditional construction, the “default” conjecture would be that a
probabilistic existence proof can be matched by an explicit construction. The main challenge is to
find the explicit construction. Typically, such a PRG would be optimal, i.e., one can unconditionally
prove a seed length lower bound matching the nonexplicit bound to within a constant factor.2

For example, every PRG for size-n CNF formulas (explicit or not) must have seed length at least
Ω(log(n/ε)).

1.5 Beyond PRGs: Hitting set generators and more

For the sake of context, in this section we briefly describe some relaxations of the PRG definition.
The main motivation behind studying these relaxations is that constructing PRGs is challenging.
These “generalized PRGs” are sometimes easier to construct, and yet they suffice for some (but not
all) of the applications of PRGs. We only give a short overview of these concepts, since our main
focus is true PRGs.

The most well-known “generalized PRG” concept is a hitting set generator (HSG).

Definition 1.5.1 (HSGs). Suppose F is a class of functions f : {0, 1}n → {0, 1}. An ε-HSG for F
is a function G : {0, 1}s → {0, 1}n such that for every f ∈ F , if E[f] ≥ ε, then there exists some x
such that f(G(x)) = 1.

An HSG is a “one-sided PRG.” HSGs have been studied since the 1980s [AKS87] if not earlier.
HSGs can be used to derandomize algorithms that have one-sided error, simply by trying all seeds.
In some contexts, HSGs can also be used (in nontrivial ways) to derandomize algorithms that have
two-sided error [ACR98; ACRT99; BF99; GVW11; CH22].

A few years ago, Braverman, Cohen, and Garg introduced a different generalization of PRGs,
called weighted PRGs (WPRGs) [BCG20].3

Definition 1.5.2 (WPRG). Suppose F is a class of functions f : {0, 1}n → R. An ε-WPRG for F
is a pair (G, ρ), where G : {0, 1}s → {0, 1}n and ρ : {0, 1}s → R, such that for every f ∈ F , we have∣∣∣∣ E

U∼Us

[f(G(U)) · ρ(U)]− E[f]
∣∣∣∣ ≤ ε.

Thus, WPRGs generalize PRGs because we consider sparse linear combinations of the outputs of
f rather than sparse convex combinations of the outputs of f . Several recent works have exploited
this extra flexibility to construct WPRGs with better parameters than known PRGs [BCG20; CL20;
CDRST21; PV21b; Hoz21].

Yet another generalization of PRGs is the concept of a deterministic sampler.

Definition 1.5.3 (Deterministic sampler). Suppose F is a class of functions f : {0, 1}n → R. An
ε-deterministic sampler for F is a deterministic oracle algorithm A that makes queries to a function
f ∈ F and outputs a number Af ∈ R such that |Af − E[f]| ≤ ε.

The deterministic sampler model isolates a key feature of PRGs, which is that they are useful
even if we merely have black-box access to the function f . Deterministic samplers have been
discussed (by name) in a couple of recent works [CH22; PV22]. Several older algorithms can also be
understood as deterministic samplers [ACR98; ACRT99; ISW99; BF99; GVW11].

2For a counterexample, see the work of Hoza, Pyne, and Vadhan [HPV21].
3In Braverman, Cohen, and Garg’s original paper [BCG20], they speak of “pseudorandom pseudo-distributions.”

The “weighted PRG” terminology was introduced later, by Cohen, Doron, Renard, Sberlo, and Ta-Shma [CDRST21].

12

One can show that these four concepts form a hierarchy:

PRG =⇒ WPRG =⇒ deterministic sampler =⇒ HSG.

Thus, PRGs (our focus in this text) are the most desirable of the four.

13

Chapter 2

Limited Independence and Small-Bias
Generators

In this chapter, we study “k-wise uniform” generators, “small-bias” generators, and simple combina-
tions thereof. What these PRG constructions have in common is that they are closely related to
error correcting codes. Prior knowledge of coding theory is not necessary to understand the PRGs.
The constructions of these PRGs are fairly elementary, but we emphasize that the analyses are
interesting and not always trivial. We will build up to showing that these simple PRGs can fool
moderately powerful classes of functions, such as bounded-depth circuits and low-degree polynomials
over F2.

2.1 Limited independence

2.1.1 Pairwise uniform bits

For our first PRG, let us fool the first nontrivial case of juntas.

Definition 2.1.1 (Juntas). A function f on {0, 1}n is a k-junta if f only depends on at most k
variables, i.e.,

f(x) = g(xi1 , . . . , xik)

for some indices i1, . . . , ik ∈ [n] and some function g.

Fooling 1-juntas is trivial. Indeed, let G : {0, 1} → {0, 1}n be the PRG with seed length 1 given
by G(b) = (b, b, b, . . . , b). Then G perfectly fools every 1-junta, because for any i, the i-th bit in the
output of the PRG is a uniform bit.

Let us consider the case of 2-juntas. Fooling one specific 2-junta, such as the function f(x) =
x7 ∧ x13, is trivial: using a 2-bit seed, we can sample X7, X13 ∈ {0, 1} uniformly and independently
at random and set Xi = 0 for all i ̸∈ {7, 13}. The challenge is to construct a single PRG that fools
all 2-juntas simultaneously. In other words, the challenge is that when we design the PRG, we don’t
know in advance which two bits are relevant.

Theorem 2.1.2 (Pairwise uniform bits). For every n ∈ N, there is an explicit PRG that perfectly
fools 2-juntas on n bits with seed length ⌊log n⌋+ 1.

A distribution X that perfectly fools 2-juntas is also called a pairwise uniform distribution,
because every two bits of X are uniform over {0, 1}2. In practice, people often use the alternative

14

phrase “pairwise independent.” This practice is a little sloppy, because it doesn’t clarify the marginal
distributions of the individual coordinates of X.

A generator for n = 3 was described in Section 1.1.3. The solution for larger n is a natural
generalization.

Proof of Theorem 2.1.2. Let s = ⌊log n⌋+ 1, and let I1, . . . , In be distinct nonempty subsets of [s].
The PRG G : {0, 1}s → {0, 1}n is given by

G(y) =

⊕
i∈I1

yi, . . . ,
⊕
i∈In

yi

 . (2.1)

To prove that this works, consider sampling Y ∈ {0, 1}s uniformly at random, and let j, k ∈ [n] be
distinct. Define

Z =
⊕

i∈Ij∩Ik

Yi, A =
⊕

i∈Ij\Ik

Yi, B =
⊕

i∈Ik\Ij

Yi.

Then (G(Y)j , G(Y)k) = (Z ⊕ A,Z ⊕ B). Furthermore, Z, A, and B are mutually independent
random variables, and A and B are uniformly distributed. Therefore, (G(Y)j , G(Y)k) is uniformly
distributed over {0, 1}2. Therefore, for any function f that only depends on xj and xk, the random
variables f(G(Us)) and f(Un) are identically distributed.

The seed length in Theorem 2.1.2 is precisely optimal [ABI86; CGHFRS85], i.e., every pairwise
uniform generator has a seed length of at least ⌊log n⌋+ 1.

2.1.2 k-wise uniform bits

For our next PRG, let us fool the class of k-juntas for any k, i.e., we will construct a k-wise uniform
distribution.

Theorem 2.1.3 (k-wise uniform bits). For every n, k ∈ N, there is an explicit PRG that perfectly
fools k-juntas on n bits with seed length O(k log n).

Proof. Let Fq be a finite field with at least n elements. Let P be the set of univariate polynomials
over Fq of degrees less than k. Let z1, . . . , zk ∈ Fq be distinct. In preparation for defining the PRG,
define H : P → Fk

q by
H(p) = (p(z1), . . . , p(zk)).

The function H is injective, because if H(p) = H(p′), then p− p′ is a polynomial with at least k
zeroes of degree less than k, hence p = p′. Furthermore, |P| = |Fk

q | = qk, since a polynomial p ∈ P
can be specified by k coefficients from Fq. Therefore, H is bijective, and hence if P ∈ P is sampled
uniformly at random, H(P) is a uniform random vector.

Now let z1, . . . , zn ∈ Fq be distinct, and define G : P → Fn
q by

G(p) = (p(z1), . . . , p(zn)).

By the above analysis, when P ∈ P is sampled uniformly at random, any k coordinates of G(P) are
independent and uniform random.

All that remains is to bridge the gap between field elements and bits. Let q be a power of two,
so that field elements can be naturally encoded as bitstrings. The seed of our PRG describes a
polynomial p ∈ P by giving the encodings of its k coefficients; this requires k log q = k · ⌈log n⌉
bits if we pick q to be the smallest power of two that is at least n. The output of our PRG is the
sequence of first bits of the encodings of the coordinates of G(p).

15

x5

x3 x1

1 x4x6x2

0 1 1 0 1 0

0

0

0 0

0

0

1

1

1

1

1 1

Figure 2.1: A depth-3 decision tree. Note that the function it computes depends on all 6 variables.

The seed length in Theorem 2.1.3 is optimal up to a constant factor for moderate values of k.
More precisely, the optimal seed length is Θ(k · log(n/k)) [CGHFRS85; ABI86; CL21], which is a
slight improvement over Theorem 2.1.3 when k ≥ n1−o(1). Even when k is small, the constant factor
in the seed length of Theorem 2.1.3 can be improved by roughly a factor of two [ABI86].

2.1.3 Perfectly fooling shallow decision trees

Next, let us fool shallow decision trees, which generalize juntas.

Definition 2.1.4 (Decision trees). A decision tree over {0, 1}n is a tree, where each internal node
is labeled with a variable xi and has two children, the two edges leading from an internal node to its
children are labeled 0 and 1, and each leaf is labeled with an output value (0 or 1). A decision tree
computes a function f : {0, 1}n → {0, 1} by walking from root to leaf according to the values of the
variables queried. (See Figure 2.1.)

Every k-junta can be computed by a depth-k decision tree. To fool decision trees, rather than
constructing a new PRG from scratch, we’ll show that every PRG for k-juntas automatically fools
depth-k decision trees – even though such a tree might compute a function that depends on far
more than k variables. This is a common pattern in PRG design: first one designs a PRG for a
relatively simple class of functions, and then one proves that such a PRG automatically fools a more
sophisticated class of functions.

Proposition 2.1.5 (Perfect PRGs for shallow decision trees). Let n, k ∈ N and let X be a k-wise
uniform distribution over {0, 1}n. Then X perfectly fools depth-k decision trees. Consequently,
there is an explicit PRG with seed length O(k log n) that perfectly fools depth-k decision trees on n
variables.

Proof. Let f be a depth-k decision tree. Let A be the set of accepting leaves of f , i.e., leaves that
are labeled 1. For each leaf u ∈ A, define fu : {0, 1}n → {0, 1} by letting fu(x) = 1 if and only if
f arrives at u when it reads x. Note that fu is a k-junta, because its value only depends on the
variables queries on the path from the root to u. Furthermore, we can express f as

f(x) =
∑
u∈A

fu(x).

16

Therefore, by linearity of expectation,

E[f(X)] = E

[∑
u∈A

fu(X)

]
=
∑
u∈A

E[fu(X)] =
∑
u∈A

E[fu] = E

[∑
u∈A

fu

]
= E[f].

The simple technique in the proof above is quite valuable. Let us abstract it out and generalize
it to the case of imperfect PRGs.

Lemma 2.1.6 (Triangle Inequality for PRG Errors). Let f1, . . . , fk : {0, 1}n → R be functions, let
λ0, . . . , λk ∈ R, and let f(x) = λ0+

∑k
i=1 λi ·fi(x). Let X be a distribution over {0, 1}n, and assume

that X fools fi with error εi for each i. Then X fools f with error ε, where

ε =
k∑

i=1

|λi| · εi.

Proof.

|E[f(X)]− E[f]| =

∣∣∣∣∣
k∑

i=1

λi · E[fi(X)]−
k∑

i=1

λi · E[fi]

∣∣∣∣∣ (Linearity of expectation)

≤
k∑

i=1

|λi| · |E[fi(X)]− E[fi]| (Standard triangle inequality)

≤
k∑

i=1

|λi| · εi (X fools fi with error εi.)

2.1.4 Connection with coding theory: Dual codes

For readers with a background in coding theory, the constructions of pairwise and k-wise uniform
generators might have felt familiar. Indeed, the constructions are closely related to the Hadamard
code and the Reed-Solomon code, respectively. For the sake of those readers who have some
familiarity with coding theory, we will now describe a general elegant characterization of exactly
which linear codes induce k-wise uniform distributions. Recall that a linear code over Fn

2 is a
subspace C ⊆ Fn

2 , and its dual code is defined as

C⊥ = {x ∈ Fn
2 : ∀y ∈ C, ⟨x, y⟩ = 0},

where ⟨·, ·⟩ is the standard dot product over Fn
2 . The minimum distance of a code is the smallest

Hamming distance between two distinct codewords. For a linear code C, this distance coincides
with the smallest Hamming weight among all nonzero codewords of C.

Proposition 2.1.7 (Connection between k-wise uniformity and coding theory). Let C ⊆ Fn
2 be a

linear subspace, and sample X uniformly at random from C. Then X is k-wise uniform if and only
if C⊥ has minimum distance at least k + 1.

Proof. First, suppose X is k-wise uniform. Let x ∈ Fn
2 be a nonzero vector with Hamming weight at

most k. Then ⟨x,X⟩ is a uniform random bit, so there is certainly some y ∈ C such that ⟨x, y⟩ = 1.
Therefore, x ̸∈ C⊥. Since C⊥ is a subspace, it follows that C⊥ has minimum distance at least k + 1.

Conversely, suppose C⊥ has minimum distance at least k+1, and consider any k distinct indices
i1, . . . , ik ∈ [n]. Let s = dim(C), and let M ∈ Fn×s

2 be a matrix with image C and rows M1, . . . ,Mn.

17

Let x ∈ Fn
2 be an arbitrary nonzero vector supported on the indices i1, . . . , ik. Then x has Hamming

weight at most k, so x ̸∈ C⊥, i.e., there is some z ∈ Fs
2 such that

0 ̸= ⟨x,Mz⟩ =
n∑

i=1

xi · ⟨Mi, z⟩ =

〈
n∑

i=1

xiMi, z

〉
.

Therefore,
∑n

i=1 xiMi ≠ 0. Since x was arbitrary, this shows that Mi1 , . . . ,Mik are linearly
independent. Define

M ′ =

Mi1

Mi2
...

Mik

 .
Since row rank is equal to column rank, there are k linearly independent columns of M ′ with
indices in some set J = {j1, . . . , jk}. Therefore, when z ∈ Fs

2 is chosen uniformly at random, M ′z
is a uniform random element of Fk

2. To see this, note that for any x ∈ Fk
2 and any fixing of all zj

with j /∈ J , there is a unique choice of zJ ∈ Fk
2 for which M ′z = x. It follows that X is k-wise

uniform.

Proposition 2.1.7 provides a generic recipe for constructing k-wise uniform distributions from
error correcting codes. Recall that the redundancy of a code is the difference between the block
length and the message length. A binary linear code with block length n, minimum distance k + 1,
and redundancy s induces a k-wise uniform generator with seed length s and output length n.

2.2 Small-bias distributions

2.2.1 Fooling parities of variables

For our first imperfect PRG, let us fool parity functions.

Definition 2.2.1 (Parity functions). A parity function is a function f : {0, 1}n → {0, 1} of the
form f(x) =

⊕
i∈S xi for some set S ⊆ [n].

Equivalently, we can think of f as a map Fn
2 → F2. Then f is a parity function if and only if

f(x) = ⟨a, x⟩ for some fixed vector a, where ⟨·, ·⟩ is the usual inner product, i.e., ⟨a, x⟩ =
∑n

i=1 ai ·xi.
Sometimes it is more convenient to work with {±1}-valued functions, in which case parity functions
become character functions.

Definition 2.2.2 (Character functions). Let n ∈ N, and let S ⊆ [n]. The character function of S,
denoted χS : {0, 1}n → {±1}, is defined by

χS(x) =
∏
i∈S

(−1)xi .

Note that f : {0, 1}n → {0, 1} is a parity function if and only if (−1)f is a character function.
Since (−1)f = 1− 2f , it follows that fooling character functions with error ε is equivalent to fooling
parity functions with error ε/2.

Definition 2.2.3 (Bias). An ε-biased distribution over {0, 1}n is a distribution that ε-fools character
functions. Equivalently, a distribution is ε-biased if it (ε/2)-fools parity functions. An ε-biased
generator is an ε-PRG for character functions.

18

Theorem 2.2.4 (Small-bias generators [NN93; Per90]). For every n ∈ N, ε > 0, there is an explicit
ε-biased generator with output length n and seed length O(log(n/ε)).

Remark 2.2.5. Ideally, we want to design PRGs for interesting and powerful models of computation.
The reader might feel that “parity functions” is hardly a “model of computation” at all, and the
utility of ε-biased generators is unclear. However, we will see later that any distribution that fools
parity functions with sufficiently low error also fools many more interesting models. Furthermore,
ε-biased generators are building blocks in many more powerful PRGs.

Theorem 2.2.4 was proved by Naor and Naor [NN93] and independently by Peralta [Per90]; we’ll
present a simpler construction due to Alon, Goldreich, H̊astad, and Peralta [AGHP92].

Proof of Theorem 2.2.4. Let q = n/ε, and assume without loss of generality that q is a power of

two. As vector spaces over F2, identify Fq with Flog q
2 . Our PRG G : Fq × Fq → {0, 1}n is defined by

(G(y, z))i = ⟨y, zi⟩.

To prove that this works, let f : {0, 1}n → {0, 1} be a nonzero parity function, say f(x) =
⊕

i∈S xi.
Then doing arithmetic in F2,

f(G(y, z)) =
∑
i∈S

⟨y, zi⟩ =

〈
y,
∑
i∈S

zi

〉
.

Define g(z) =
∑

i∈S z
i. Then g is a nonzero polynomial in Fq[z] of degree at most n, and f(G(y, z)) =

⟨y, g(z)⟩. When z is a root of g, obviously f(G(y, z)) = 0. On the other hand, when z is not a root
of g, if we sample Y ∈ Fq uniformly at random, f(G(Y, z)) is a uniform random bit. Therefore,
when we sample Y,Z ∈ Fq independently and uniformly at random,

E
Y,Z

[f(G(Y,Z))] =
1

2
· Pr

Z
[g(Z) ̸= 0] ∈

[
1

2
− n

2q
,
1

2

]
.

Since E[f] = 1
2 , our PRG G fools parity functions with error n/(2q) = ε/2, and hence it fools

character functions with error ε.

2.2.2 A better seed length for parities of few variables

The seed length O(log(n/ε)) in Theorem 2.2.4 is asymptotically optimal [AGHP92]. However, we can
achieve a better seed length for parities of just a few variables, i.e., functions that are simultaneously
parity functions and juntas.

Definition 2.2.6 (k-wise ε-bias). Let X be a distribution over {0, 1}n. We say that X is k-wise
ε-biased if it ε-fools every character function χS for which |S| ≤ k. Similarly, a k-wise ε-biased
generator is an ε-PRG for character functions χS that satisfy |S| ≤ k.

Theorem 2.2.7 (k-wise ε-biased generators [NN93]). For every n, k ∈ N and every ε > 0, there is
an explicit k-wise ε-biased generator with output length n and seed length O(log(k/ε) + log log n).

Proof. Let G : {0, 1}s → {0, 1}n be a k-wise uniform generator that is also a linear transformation
when we think of it as a map between vector spaces, G : Fs

2 → Fn
2 . Let Y be an ε-biased distribution

over {0, 1}s. We will show that G(Y) fools parities of at most k bits. Indeed, let f(x) =
∑

i∈S xi,

19

where x ∈ Fn
2 and |S| ≤ k. LetM ∈ Fn×s

2 be the matrix representation of G, with rowsM1, . . . ,Mn ∈
Fs
2. Then for any y ∈ Fs

2,

f(G(y)) =
∑
i∈S

⟨Mi, y⟩ =
∑
i∈S

s∑
j=1

Mijyj =
s∑

j=1

(∑
i∈S

Mij

)
yj .

This is a parity function of the variables y1, . . . , ys. Therefore, since Y is ε-biased, |E[f(G(Y))]−
E[f(G(U))]| ≤ ε/2. Furthermore, since G is k-wise uniform and f is a k-junta, E[f(G(U))] = E[f].
Therefore, G(Y) is k-wise ε-biased. To achieve the promised seed length, we can plug in the
constructions of Theorems 2.1.3 and 2.2.4 for G and Y respectively.

Once again, the seed length of Theorem 2.2.7 is optimal up to constant factors.

2.2.3 Connection with coding theory: Nearly balanced codes

In Section 2.1.4, we saw a connection between k-wise uniform distributions and error correcting
codes that “explains” our constructions of k-wise uniform generators (Theorems 2.1.2 and 2.1.3).
Now we discuss a similar connection between ε-biased distributions and error correcting codes.

Suppose C ⊆ Fm
2 is a linear code. It is generally desirable for C to have a large minimum

weight. Small-biased distributions are equivalent to codes C that also have a small maximum weight.
Specifically, we say that C is ε-balanced if every nonzero x ∈ C has relative Hamming weight 1

2 ± ε.

Proposition 2.2.8 (Nearly balanced code ⇐⇒ small-bias distribution). Let M ∈ Fm×n
2 be a linear

transformation, and let C be the image of M , i.e., C = {Ma : a ∈ {0, 1}n}. Sample X uniformly at
random from the rows of M , so X ∈ {0, 1}n. Then C is ε-balanced if and only if X is (2ε)-biased.

Proof. For any nonzero “message” a ∈ {0, 1}n, the relative Hamming weight of Ma is the fraction
of rows Mi of M such that ⟨a,Mi⟩ = 1, i.e., Pr[⟨a,X⟩ = 1].

A nearly balanced code that stretches an n-bit message to an m-bit codeword corresponds to
a small-bias generator that stretches a (logm)-bit seed to an n-bit pseudorandom string. In both
problems, it is desirable to minimize m. A natural way to construct a nearly balanced code is to
concatenate the Hadamard code with the Reed-Solomon code. Through Proposition 2.2.8, that
gives an explicit ε-biased generator similar to the PRG we constructed to prove Theorem 2.2.4. The
two constructions are not quite identical. Both have seed length O(log(n/ε)), so the coding-theory
perspective gives an alternative proof of Theorem 2.2.4.

Because of the connection between small-bias distributions and nearly balanced codes, even
constant-factor improvements in the seed length of small-bias generators are interesting. Note that
a constant factor in the seed length translates to a constant factor in the exponent of the codeword
length! The seed length in Theorem 2.2.4 is 2 log(n/ε) +O(1). For moderate ε, the best small-bias
generator is a construction by Ta-Shma [TS17] with seed length1

log n+ 2 log(1/ε) + Õ(log2/3(1/ε)).

This seed length is extremely close to the nonconstructive bound of log n + 2 log(1/ε) + O(1)
(Proposition 1.3.1), as well as to the lower bound of log n+2 log(1/ε)− log log(1/ε)−O(1) [AGHP92].
Ta-Shma’s seed length translates to an ε-balanced code that stretches messages of length n to
codewords of length n/ε2+o(1).

1Here, we are ignoring rounding issues. That is, the domain size S of Ta-Shma’s generator is not necessarily a
power of two, and when we say “seed length” we simply mean log2 S.

20

Open Problem 2.2.9 (Optimal small-bias generators up to an additive constant in the seed length).
Construct an explicit ε-biased generator with seed length log n+ 2 log(1/ε) + O(1), and hence an
explicit ε-balanced code that stretches messages of length n to codewords of length O(n/ε2).

2.3 Analysis technique: Fourier L1 bounds

2.3.1 Basic Fourier analysis

PRGs for character functions (i.e., small-bias distributions) are especially important because
character functions are the basic “building blocks” out of which all other functions f : {0, 1}n → R
can be assembled.

Proposition 2.3.1 (The Fourier expansion). Every function f : {0, 1}n → R can be uniquely written
as a linear combination of characters, i.e.,

f(x) =
∑
S⊆[n]

f̂(S) · χS(x), (2.2)

where f̂(S) ∈ R.

Proof. The space of all functions f : {0, 1}n → R is a vector space, isomorphic to R2n . Define an
inner product on this space by

⟨f, g⟩ = E
U∼Un

[f(U) · g(U)].

With respect to this inner product, the 2n character functions are orthonormal. Therefore, they
form a basis.

The decomposition of Equation (2.2) is called the Fourier expansion of f , and the numbers f̂(S)
are called the Fourier coefficients of f . The Fourier expansion of f can reveal important information
about f . For example, by linearity of expectation,

E[f] =
∑
S⊆[n]

f̂(S) · E[χS] = f̂(∅). (2.3)

2.3.2 Almost k-wise uniform bits

Let us use Fourier analysis to obtain another PRG for k-juntas. For moderate error, its seed length is
superior to that of the k-wise uniform generator that we saw before (Theorem 2.1.3). The following
theorem is a form of “Vazirani’s XOR Lemma.”

Theorem 2.3.2 (Almost k-wise uniform generator [NN93]). If X is a k-wise δ-biased distribution
over {0, 1}n, then X fools [−1, 1]-valued k-juntas with error δ ·2k/2. Consequently, for every k, n ∈ N
and ε > 0, there is an explicit ε-PRG for [−1, 1]-valued k-juntas with seed length O(k + log(1/ε) +
log logn).

A distribution X that fools all {0, 1}-valued k-juntas with error ε is also called an ε-almost
k-wise uniform distribution.2 An equivalent condition is that every k coordinates of X are ε-close
to Uk in total variation distance. In practice, people often use the alternative phrase “ε-almost
k-wise independent.”

The proof of Theorem 2.3.2 is based on bounding the magnitude of Fourier coefficients.

2Warning: Occasionally, the same “ε-almost” terminology refers to some other measure of the extent to which X
fails to be perfectly k-wise uniform [Aar10].

21

Definition 2.3.3 (Fourier L1 norm). Let f : {0, 1}n → R. The Fourier L1 norm of f , denoted
L1(f), is the sum of absolute values of Fourier coefficients of f :

L1(f) =
∑
S⊆[n]

|f̂(S)|.

Lemma 2.3.4 (Universal Fourier L1 bound). For any function f : {0, 1}n → [−1, 1], we have
L1(f) ≤ 2n/2.

Proof. By the Cauchy-Schwarz inequality, L1(f) ≤
√

2n ·
∑

S⊆[n] f̂(S)
2. Furthermore, for any

function f : {0, 1}n → R,

E[f(Un)
2] = ⟨f, f⟩ =

∑
S,T⊆[n]

f̂(S) · f̂(T) · ⟨χS , χT ⟩ =
∑
S⊆[n]

f̂(S)2. (2.4)

(Equation (2.4) is called Parseval’s theorem.) In our case, f is [−1, 1]-valued, so E[f(Un)
2] ≤ 1 and

hence
∑

S⊆[n] f̂(S)
2 ≤ 1.

Lemma 2.3.5 (Fourier L1 bound =⇒ fooled by small-bias). Let f : {0, 1}n → R. If X is ε-biased,
then X fools f with error ε · L1(f).

Proof. This is a special case of the Triangle Inequality for PRG Errors (Lemma 2.1.6).

Proof of Theorem 2.3.2. Let f : {0, 1}n → [−1, 1] be a k-junta, i.e., f(x) = g(xi1 , . . . , xik) for
some function g : {0, 1}k → [−1, 1], where i1, . . . , ik are distinct. By Lemmas 2.3.4 and 2.3.5, the
distribution (Xi1 , . . . , Xik) fools g with error δ · 2k/2, and hence X fools f with the same error. The
final seed length follows from Theorem 2.2.7 by choosing δ = ε · 2−k/2.

2.3.3 Fooling bounded-size decision trees

Recall that in Section 2.1.3, we showed that k-wise uniform generators, with seed length O(k log n),
perfectly fool depth-k decision trees. As another application of Fourier L1 bounds, let’s design
another PRG for bounded-depth decision trees with a better seed length (although this time the
error will be nonzero). More generally, we will consider decision trees of unbounded depth but
bounded size. The size of a decision tree is the number of leaves. (See Figure 2.2.)

Proposition 2.3.6 (PRG for bounded-size decision trees). If X is a δ-biased distribution over
{0, 1}n, then X fools size-m decision trees with error mδ. Consequently, for every n,m ∈ N
and ε > 0, there is an explicit ε-PRG for size-m decision trees on n input bits with seed length
O(log(mn/ε)).

Note that Proposition 2.3.6 implies a PRG for depth-k decision trees with seed length O(k +
log(n/ε)), because a depth-k decision tree always has size at most 2k. The proof of Proposition 2.3.6
is similar to the construction of almost k-wise uniform generators: we will bound the Fourier L1

norm of size-m decision trees. We start with the special case of conjunctions of literals.

Proposition 2.3.7 (Fourier L1 bound for conjunctions of literals). Suppose f : {0, 1}n → {0, 1} is
a conjunction of literals, i.e.,

f(x) =
∧
i∈S

ℓi

where S ⊆ [n] and each ℓi is either xi or ¬xi. Then L1(f) = 1.

22

x1

1x2

1x3

1

xn

10

. . .

1

1

1

1

0

0

0

0

0
. .
.

Figure 2.2: A decision tree computing the OR function on n bits. Note that the size of this decision
tree is n+ 1, which is relatively low, whereas the depth of this decision tree is maximal, which is
unavoidable for the OR function.

Proof. There is a convenient formula for the Fourier coefficients of any function f :

E
U∼Un

[f(U) · χS(U)] = ⟨f, χS⟩ =
∑
T⊆[n]

f̂(T) · ⟨χT , χS⟩ = f̂(S). (2.5)

In the case f = NORn (the n-input NOR function), we get

N̂ORn(S) = E
U∼Un

[NORn(U) · χS(U)] = 2−n.

Therefore, L1(NORn) = 2n ·2−n = 1. More generally, consider any conjunction of literals f . Without
loss of generality, we may assume that all n variables appear in f . Consequently, there is some
string a ∈ {0, 1}n such that f(x) = NORn(x+ a), where + is the bitwise XOR operation. Therefore,
by Equation (2.5), for each S ⊆ [n],

f̂(S) = E
U
[NORn(U + a) · χS(U)] = E

U
[NORn(U) · χS(U + a)] = χS(a) · N̂ORn(S) = ±2−n.

(In general, negating variables can only change the signs of Fourier coefficients, not the absolute
values.) Therefore, L1(f) = 2n · 2−n = 1.

Corollary 2.3.8 (Fourier L1 bound for decision trees). If f is a size-m decision tree, then L1(f) ≤ m.

Proof. One can verify that the Fourier L1(f) norm truly is a norm, i.e., L1(f + g) ≤ L1(f) + L1(g)
and L1(λf) = |λ| ·L1(f). Let f be a size-m decision tree. Just like in the proof of Proposition 2.1.5,
we can write f =

∑
u∈A fu, where A is the set of accepting leaves and fu(x) indicates whether x

leads to u. Each fu is a conjunction of literals. Therefore, L1(f) ≤
∑

u∈A L1(fu) ≤ m.

23

x1

x1

x3

x3

x1

x2

x1

x1

x4

x3

x3

x3

x1

x1

x2

x2

1

0

0

1

1 1 1 1 1 1
acc

rej

1

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0
vstart

Figure 2.3: A width-2 length-8 branching program computing the function f : {0, 1}4 → {0, 1}
defined by f(x) = 1 ⇐⇒ |x| = 2, where |x| denotes Hamming weight. Note that this function
cannot be computed by a width-2 read-once branching program. This example is derived from work
by Borodin, Dolev, Fich, and Paul [BDFP86].

Combining Corollary 2.3.8, Lemma 2.3.5, and Theorem 2.2.4 completes the proof of Proposi-
tion 2.3.6. When m < n, one can improve the seed length to O(log(m/ε) + log log n) using m-wise
δ-biased generators.

Proposition 2.3.6 extends to the more powerful model of parity decision trees, which are decision
trees in which each internal node may query an arbitrary parity function of the input [KM93]. The
reason is that we can write such a tree f as f(x) = g(h1(x), . . . , hm(x)) where g is a size-m standard
decision tree and h1, . . . , hm are parity functions. Consequently,

f(x) =
∑
S⊆[n]

ĝ(x) · (−1)
∑

i∈S hi(x).

For each fixed S, the function (−1)
∑

i∈S hi(x) is a character function, so it has Fourier L1 norm 1,
and hence L1(f) ≤ L1(g) ≤ m.

2.3.4 Fooling width-2 branching programs

For a final application of Fourier L1 bounds, let us obtain a PRG for width-2 branching programs
(see Figure 2.3). Branching programs are one of the oldest sequential models of computation. For
general size-m branching programs, which model computing with logm bits of memory, the current
best PRG has seed length roughly

√
m (see Section 5.6). We can do much better in the special case

of width-2 branching programs, which model computing with a single bit of memory and a clock.
The precise definition follows.

Definition 2.3.9 (Bounded-width branching programs). A width-w length-m branching program
f is a directed (multi)graph with m + 1 layers V0, . . . , Vm of w vertices each. For i ∈ [m], each
vertex v ∈ Vi−1 is labeled with an index jv ∈ [n] and has two outgoing edges labeled 0 and 1 leading
to vertices in Vi. There is a designated “start vertex” vstart ∈ V0 and a designated set of “accepting
vertices” Vaccept ⊆ Vm.3 Given an input x ∈ {0, 1}n, the program starts at vstart, and in each step,
having reached a vertex v, the program queries xjv and traverses the corresponding outgoing edge.
Eventually, the program reaches a vertex v ∈ Vm, and f(x) = 1 ⇐⇒ v ∈ Vaccept.

The following theorem is attributed to unpublished 1995 work of Saks and Zuckerman (see also
the work of Bogdanov, Dvir, Verbin, and Yehudayoff [BDVY13]).

3Note that we do not allow the branching program to halt prior to reaching layer m. This type of program is
sometimes referred to as a “strict” width-w program [BDFP86].

24

Theorem 2.3.10 (PRGs for width-2 branching programs). If X is a δ-biased distribution over
{0, 1}n, then X fools width-2 length-m branching programs with error δ · (m+ 1)/2. Consequently,
for every n,m ∈ N and ε > 0, there is an explicit ε-PRG for width-2 length-m branching programs
with seed length O(log(mn/ε)).

One can show that every width-2 branching program on n variables can be simulated by a width-2
branching program of length m = O(n2) [BDFP86], so the seed length in Theorem 2.3.10 actually
simplifies to O(log(n/ε)). When Theorem 2.3.10 is mentioned in the literature, it is sometimes
indicated that we should assume that the branching program is read-once [GMRTV12; BDVY13;
HZ20], but such an assumption is not necessary. Once again, we will prove Theorem 2.3.10 by
proving a Fourier L1 bound.

Lemma 2.3.11 (Fourier L1 bound for width-2 branching programs). If f is a width-2 length-m
branching program, then L1(f) ≤ m/2 + 1/2.

Proof. Let F (x) = (−1)f(x). For each vertex v in f , let f→v(x) indicate whether f(x) visits v,
and let F→v(x) = (−1)f→v(x). We will prove by induction on m that L1(F) ≤ m. For the base
case m = 1, the function F is a 1-junta, i.e., F (x) = (−1)xi or F (x) = (−1)1−xi or F (x) = 1 or
F (x) = −1. In each case, L1(F) = 1. Now, for the inductive step, let Vm−1 = {u, v}. Then there
exist 1-juntas ϕu, ϕv : {0, 1}n → {±1} such that

F (x) = f→u(x) · ϕu(x) + f→v(x) · ϕv(x)

=

(
1

2
− 1

2
· F→u(x)

)
· ϕu(x) +

(
1

2
+

1

2
· F→u(x)

)
· ϕv(x)

=
1

2
· F→u(x) · (ϕv(x)− ϕu(x)) +

1

2
· (ϕu(x) + ϕv(x)) .

Now, L1(ϕu) = L1(ϕv) = 1, and by induction, L1(F→u) ≤ m− 1. Therefore,

L1(F) ≤
1

2
· L1(F→u) · (L1(ϕv) + L1(ϕu)) +

1

2
(L1(ϕu) + L1(ϕv)) ≤ m− 1 + 1 = m,

completing the induction. Finally, f(x) = 1
2 − 1

2F (x), so L1(f) ≤ 1
2 + m

2 .

Theorem 2.3.10 follows by combining Lemmas 2.3.5 and 2.3.11 and Theorem 2.2.4. Analogously
to the situation with decision trees, when m < n, one can improve the seed length to O(log(m/ε) +
log logn) using (2m)-wise δ-biased generators.

2.4 Viola’s generator for low-degree F2-polynomials

In Section 2.2 we saw a simple construction of an explicit small-bias generator, i.e., a PRG that
fools all F2-linear functions with logarithmic seed length. We’ve discussed connections between
small-bias generators and coding theory and some simple applications of small-bias generators. As
a natural generalization, let us construct PRGs for quadratic or higher degree polynomials.

Remark 2.4.1 (Polynomials over F2 vs. polynomials over R). Over the reals, every degree-d
polynomial is perfectly fooled by d-wise uniform generators. However, in this section, we are working
over F2. Thus, a low-degree polynomial is a function of the form PARITY ◦ AND where the AND
gates have low fan-in. In this setting, k-wise uniformity is not a good approach. For instance, the
uniform distribution over all strings with even Hamming weight is (n− 1)-wise uniform, and yet it
does not even fool degree-1 polynomials (parity functions).

25

The problem of designing PRGs for low-degree F2-polynomials seemed to be much harder than
constructing small-bias generators or k-wise uniform generators. For a long time, even for constant
degree, the best construction known was a PRG by Luby, Veličković, and Wigderson [LVW93] with
seed length 2O(

√
logn). Over a decade later, a new line of work [BV10a; Lov09] led to Viola’s elegant

proof [Vio09] that simply summing d independent copies of small-bias generators gives a PRG for
degree-d polynomials.

Theorem 2.4.2 (PRG for low-degree F2-polynomials [Vio09]). Let Y1, . . . , Yd be independent δ-
biased random variables over Fn

2 where δ ≤ 1/2. Then Y1 + · · ·+ Yd fools degree-d F2-polynomials

with error 4 · (δ/2)1/2d−1
. Consequently, for every n, d ∈ N and ε > 0, there is an explicit ε-PRG

for degree-d F2-polynomials in n variables with seed length O(d · log n+ d · 2d · log(1/ε)).

For context, it is easy to show that a sum of independent small-bias random variables is “more
pseudorandom” than a single small-bias random variable in the sense that it has smaller bias (see
below). Theorem 2.4.2 says that not only does the sum have smaller bias, it also fools higher-degree
polynomials.

Observation 2.4.3 (XORing decreases bias). Let Y1, . . . , Yd be independent δ-biased random
variables distributed over Fn

2 . Then
∑d

i=1 Yi is (δd)-biased.

Proof. For every nonempty S ⊆ [n], we have∣∣∣∣∣E
[
χS

(
d∑

i=1

Yi

)]∣∣∣∣∣ =
∣∣∣∣∣

d∏
i=1

E[χS(Yi)

∣∣∣∣∣ ≤ δd.

2.4.1 Directional derivatives

The proof of Theorem 2.4.2 is based on the notion of directional derivatives over F2, defined below.

Definition 2.4.4 (Directional derivative). Let f : Fn
2 → F2 and y ∈ Fn

2 . The directional derivative
∂yf is defined by

∂yf(x) = f(x+ y) + f(x).

If F is a class of functions f : Fn
2 → F2, we define ∂F = {∂yf : f ∈ F , y ∈ Fn

2}.

To fool low-degree polynomials, our strategy will be to show how to convert PRGs for ∂F into
PRGs for F , where F is any “reasonable” class. Formally, the only requirement on F is that is
“closed under shifts,” as defined below.

Definition 2.4.5 (Closure under shifts). For a function f on Fn
2 and a vector y ∈ Fn

2 , we define
the shift f+y by the formula f+y(x) = f(x+ y). Let F be a class of functions f on Fn

2 . We say
that F is closed under shifts if for every f ∈ F and every y ∈ Fn

2 , we have f+y ∈ F .

Lemma 2.4.6 (PRG for ∂F =⇒ PRG for F). Let F be a class of functions f : Fn
2 → F2 that is

closed under shifts. Suppose W fools ∂F with error γ, Y is δ-biased, and Y is independent of W .
Then W + Y fools F with error

√
2γ + δ/2.

In general, ∂F seems to be “more complicated” than F itself, so Lemma 2.4.6 might not sound
particularly useful. However, ∂F is “simpler” than F in one respect, namely degree:

Observation 2.4.7 (Differentiation decreases degree). Let d ≥ 1, let f : Fn
2 → F2 be a degree-d

polynomial, and let y ∈ Fn
2 . Then ∂yf is a degree-(d− 1) polynomial.

Thus, we will be able to prove Theorem 2.4.2 by applying Lemma 2.4.6 inductively.

26

2.4.2 The XOR of two independent copies of an arbitrary Boolean function

The proof of Lemma 2.4.6 (the reduction from fooling F to fooling ∂F) relies on the following
lemma, which explains how to use small-bias distributions to “recycle” randomness and thereby
fool a certain class of functions.

Lemma 2.4.8 (Using small-bias distributions to fool g(x) · g(y)). Let n be an even positive integer,
let g : {0, 1}n/2 → {±1}, and let f(x, y) = g(x) · g(y). Let U and Y be independent, where U ∼ Un/2

and Y is an ε-biased random variable over Fn/2
2 . Then (U,U + Y) fools f with error ε.

Proof. Define F : {0, 1}n/2 → [−1, 1] by

F (x) = E
U
[g(U) · g(U + x)].

Let U ′ ∼ Un/2 be independent of U . Then for any S ⊆ [n], by Equation (2.5),

F̂ (S) = E
U,U ′

[g(U) · g(U + U ′) · χS(U
′)] = E

U,U ′
[g(U) · g(U ′) · χS(U + U ′)] =

(
E
U
[g(U) · χS(U)]

)2

= ĝ(S)2.

Therefore, L1(F) =
∑

S ĝ(S)
2 ≤ 1 by Parseval’s theorem. Consequently, Y fools F with error ε by

Lemma 2.3.5, and hence (U,U + Y) fools f with error ε.

Remark 2.4.9 (Characterizing small bias). One can show the following converse to Lemma 2.4.8:
If U ∼ Un/2, Y is independent, and (U,U + Y) fools all functions of the form f(x, y) = g(x) · g(y) ∈
{±1} with error ε, then Y is ε-biased. Thus, the condition in Lemma 2.4.8 gives an alternative
characterization of small-bias distributions.

Remark 2.4.10 (Connection to expander graphs). The seed length for sampling the distribution
(U,U + Y) that appears in Lemma 2.4.8 is n/2 + O(log(n/ε)). Lemma 2.4.8 generalizes to the
case that g has bounded variance, Var[g] ≤ 1, rather than being {±1}-valued. This generalization
is closely related to the notion of a spectral expander. In Section 3.1.1, we will discuss spectral
expanders in more detail, and in particular we will discuss PRGs for such tests with the improved
seed length n/2 +O(log(1/ε)).

2.4.3 The reduction from fooling F to fooling ∂F

To prove Lemma 2.4.6, we will consider two cases based on the extent to which f ∈ F is balanced.
For a function f : Fn

2 → F2, define

imbalance(f) =
∣∣∣E [(−1)f(Un)

]∣∣∣ = 2 ·
∣∣∣∣E[f]− 1

2

∣∣∣∣ .
(In the literature, this quantity is often referred to as the “bias” of f . We use the term “imbalance”
instead to avoid confusion with small-bias distributions.) We begin with the case that f is close to
balanced.

Lemma 2.4.11 (Fooling well-balanced functions). Let F be a class of functions f : Fn
2 → F2 that is

closed under shifts. Suppose W fools ∂F with error γ, Y is δ-biased, and Y is independent of W .
Then W + Y fools each f ∈ F with error imbalance(f) +

√
γ/2 + δ/2.

27

Proof. First observe that

|E[f(W + Y)]− E[f(Un)]| =
1

2
·
∣∣∣E [(−1)f(W+Y)

]
− E

[
(−1)f(Un)

]∣∣∣
≤ 1

2
·
∣∣∣E [(−1)f(W+Y)

]∣∣∣+ 1

2
· imbalance(f).

Thus, it suffices to bound |E[(−1)f(W+Y)|. By Jensen’s inequality,(
E

W,Y

[
(−1)f(W+Y)

])2

≤ E
W

[(
E
Y

[
(−1)f(W+Y)

])2
]
= E

W,Y,Y ′

[
(−1)f(W+Y)+f(W+Y ′)

]
,

where Y ′ is an independent copy of Y . For fixed Y , the function f+Y (x)
def
= f(x+Y) is in F because

F is closed under shifts. Furthermore, for fixed Y, Y ′, the function g(x)
def
= f(x+ Y) + f(x+ Y ′) is

in ∂F , because g = ∂Y+Y ′f+Y . Therefore, the assumption on W gives

E
W,Y,Y ′

[
(−1)f(W+Y)+f(W+Y ′)

]
≤ E

Y,Y ′,U∼Un

[
(−1)f(U+Y)+f(U+Y ′)

]
+ 2γ.

Finally, observing that (U + Y,U + Y ′) is identically distributed to (U,U + Y + Y ′), we have

E
Y,Y ′,U∼Un

[
(−1)f(U+Y)+f(U+Y ′)

]
= E

Y,Y ′,U∼Un

[
(−1)f(U)+f(U+Y+Y ′)

]
≤ imbalance(f)2 + δ2,

where the last inequality follows from Lemma 2.4.8 and the fact that Y + Y ′ is (δ2)-biased. In
summary, we have shown that

|E[f(W + Y)]− E[f(Un)]| ≤
1

2
·
∣∣∣∣ EW,Y

[
(−1)f(W+Y)

]∣∣∣∣+ 1

2
· imbalance(f)

≤ 1

2
·
√
imbalance(f)2 + δ2 + 2γ +

1

2
· imbalance(f)

≤ imbalance(f) +
δ

2
+

√
γ

2
.

Now we move on to the case that f is significantly imbalanced. In this case, W alone (rather
than W + Y) already fools f .

Lemma 2.4.12 (Fooling imbalanced functions). Let F be any class of functions f : Fn
2 → F2.

Suppose W fools ∂F with error γ. Then W fools each f ∈ F with error γ · imbalance(f)−1.

Proof. Let U and U ′ be two independent copies of Un. Then

imbalance(f) ·
∣∣∣E [(−1)f(W)

]
− E

[
(−1)f(U)

]∣∣∣ = ∣∣∣E [(−1)f(W)+f(U)
]
− E

[
(−1)f(U)+f(U ′)

]∣∣∣
=
∣∣∣E [(−1)f(W)+f(W+U)

]
− E

[
(−1)f(U

′)+f(U ′+U)
]∣∣∣

≤ 2γ,

where the last inequality is due to the fact that for any fixing of U , the function ∂Uf is fooled by
W .

Now we combine the two cases to complete the proof of the reduction.

28

Proof of Lemma 2.4.6. For any f ∈ F and any fixing of Y , the function f+Y (x)
def
= f(x+ Y) is in

F , and imbalance(f+Y) = imbalance(f). Therefore, Lemma 2.4.12 implies that W + Y fools f with
error γ · imbalance(f)−1. Combining with Lemma 2.4.11 shows that W + Y fools f with error

min
{
γ · imbalance(f)−1, imbalance(f) +

√
γ/2 + δ/2

}
≤
√
2γ + δ/2,

where the last inequality follows by case analysis based on whether imbalance(f) ≤
√
γ/2.

2.4.4 Inductive analysis of low-degree polynomials

Proof of Theorem 2.4.2. By Lemma 2.4.6 and Observation 2.4.7, for every i, the random variable∑i
j=1 Yj fools degree-i polynomials with error εi, where ε1 = δ/2 and εi+1 =

√
2εi + δ/2. Since

δ ≤ 1/2, we get εi+1 ≤
√
2εi +

√
δ/2/2. Since εi ≥ δ/2, we get εi+1 ≤ (

√
2 + 1/2) · √εi ≤ 2

√
εi. It

follows that
εd ≤ 4 · (δ/2)1/2d−1

.

The seed length bound follows by choosing δ = 2 · (ε/4)2d−1
and using the small-bias generator

construction of Theorem 2.2.4.

When d is constant, the seed length in Theorem 2.4.2 is optimal. However, the generator becomes
trivial when d = Θ(log n).

Open Problem 2.4.13 (PRGs for logarithmic-degree polynomials). Design an explicit nontrivial
PRG for F2-polynomials of degree log n.

Open Problem 2.4.13 is closely related to the challenge of proving better correlation bounds
against polynomials; see Viola’s survey [Vio22].

2.4.5 Application: Width-2 branching programs that read several bits at a time

Studying low-degree polynomials is natural enough from a mathematical perspective, but what
about from a computing perspective? The reader might find it strange to think of polynomials as
a computational model. However, we will now show that PRGs for low-degree polynomials imply
PRGs for other models of a more “computational” nature, which demonstrates the importance of
Viola’s PRG. In particular, we can fool compositions with juntas, provided that the outer function
has bounded Fourier L1 norm.

Definition 2.4.14 (Compositions with juntas). Let f : {0, 1}r → R. For each n, d ∈ N, we define
f ◦ JUNTAn,d to be the class of all functions g : {0, 1}n → R of the form

g(x) = f(ϕ1(x), . . . , ϕr(x)),

where each ϕi is a d-junta on n bits. If F is a class of functions f : {0, 1}r → R, then we define
F ◦ JUNTAn,d =

⋃
f∈F f ◦ JUNTAn,d.

Lemma 2.4.15 (PRGs for compositions with juntas). Suppose X is a distribution over {0, 1}n that
fools degree-d polynomials over Fn

2 with error ε, and let f : {0, 1}r → R. Then X fools f ◦ JUNTAn,d

with error 2ε · L1(f).

29

Proof. If g(x) = f(ϕ1(x), . . . , ϕr(x)), then by the Fourier expansion of f , we have

g(x) =
∑
S⊆[r]

f̂(S) · (−1)
∑

i∈S ϕi(x).

The summation in the exponent may be performed modulo 2. If each ϕi is a d-junta, then each
ϕi can be computed by a degree-d polynomial over F2, hence

∑
i∈S ϕi(x) mod 2 is also a degree-d

polynomial over F2. Therefore, X fools (−1)
∑

i∈S ϕi(x) with error 2ε. The lemma follows by the
Triangle Inequality for PRG Errors.

Probably the most interesting example is when we take F to be the class of width-2 length-
m branching programs on 2m input bits (see Definition 2.3.9). Then F ◦ JUNTAn,d is precisely
the class of functions computable by a variant model of width-2 length-m branching programs
in which the program reads d bits at a time, i.e., each vertex v is labeled by a set of indices
Jv ⊆ [n] with |Jv| = d and has 2d outgoing edges corresponding to the possible values of the input
substring xJv . For this model, Theorem 2.4.2 and Lemmas 2.3.11 and 2.4.15 imply a seed length of
O(d · log n+d ·2d · log(m/ε)). This was shown by Bogdanov, Dvir, Verbin, and Yehudayoff [BDVY13].
(They assume that the program is “oblivious” in the sense that Ju = Jv if u and v are in the same
layer, but such an assumption is not necessary.)

2.5 Analysis technique: Sandwiching approximators

2.5.1 The sandwiching lemma

Suppose we wish to show that a distribution X fools some class F . A common approach has two
steps:

1. Prove that X fools some “simpler” class Fsimp.

2. Prove a “transfer theorem,” saying that every distribution that fools Fsimp also fools F
(possibly with some loss in the error parameter).

The second step requires showing that Fsimp can “simulate” F in some sense. For example, several
times, we have shown that every function in some class of interest in can be written as a linear
combination of “simpler” functions:

• Every depth-k decision tree can be written as a sum of k-juntas (Proposition 2.1.5).

• Every Boolean function can be written as a linear combination of parity functions (Proposi-
tion 2.3.1).

• Every width-2 branching program that reads several bits at a time can be written as a linear
combination of low-degree polynomials over F2 (Section 2.4.5).

In each case, the Triangle Inequality for PRG Errors gives us our desired transfer theorem. (The
final error depends on the magnitude of the coefficients in the linear combination.) In this section,
we present a second method for proving a “transfer theorem” stating that every distribution that
fools Fsimp also fools F .

Suppose X is a distribution that fools Fsimp, and suppose that Fsimp approximately simulates
F in some sense. For example, suppose that for every f ∈ F , there is an f ′ ∈ Fsimp such that
E[|f − f ′|] is small. Unfortunately, it does not immediately follow that X fools F : although f and

30

f ′ behave similarly under the uniform distribution, it isn’t clear whether they behave similarly
under the pseudorandom distribution X. A technique for getting around this issue is to establish a
stronger form of approximation called sandwiching.

Definition 2.5.1 (Sandwiching). Let f, fℓ, fu : {0, 1}n → R. We say that f is δ-sandwiched between
fℓ and fu if fℓ ≤ f ≤ fu and E[fu − fℓ] ≤ δ. In this case, we refer to fℓ and fu as “sandwichers”
or “sandwiching approximators” for f .

Lemma 2.5.2 (Sandwiching Lemma). Suppose f is δ-sandwiched between fℓ and fu, and suppose
X fools fℓ and fu with error ε. Then X fools f with error ε+ δ.

Proof.

E[f(X)] ≤ E[fu(X)] ≤ E[fu] + ε ≤ E[f] + ε+ δ

E[f(X)] ≥ E[fℓ(X)] ≥ E[fℓ]− ε ≥ E[f]− ε− δ.

2.5.2 Using k-wise uniform generators to fool size-m decision trees

To illustrate the sandwiching technique, let us return to the decision tree model. Recall that we
showed that k-wise uniform generators fool depth-k decision trees (Proposition 2.1.5), and then
later we showed that small-bias generators fool size-m decision trees (Proposition 2.3.6). The latter
model generalizes the former by taking m = 2k. We now show that k-wise uniform generators also
fool bounded-size decision trees.

Proposition 2.5.3 (Limited independence fools bounded-size decision trees). If X is a k-wise
uniform distribution, then X fools size-m decision trees with error m · 2−k.

Proof. Let f be a size-m decision tree. Define a depth-k decision tree fℓ by starting with f
and replacing each internal node at depth exactly k with a leaf labeled 0 (and deleting all of its
descendants). Similarly, define fu by replacing each internal node at depth k with a leaf labeled 1.
Let us show that f is δ-sandwiched between fℓ and fu, for δ = m · 2−k.

Clearly fℓ ≤ f ≤ fu. For each “new” leaf u of fℓ or fu (i.e., u was not a leaf in f), the
probability of reaching u on a uniform random input is precisely 2−k. The number of new leaves is
the number of internal nodes of f at depth k, which is at most m. Therefore, by the union bound,
E[fu − fℓ] ≤ m · 2−k.

The Sandwiching Lemma completes the proof, because X fools fℓ and fu with error 0 (see
Section 2.1.3).

Proposition 2.5.3 implies that using k-wise uniform generators, we can ε-fool size-m decision
trees using a seed of length O(log(m/ε) · log n). This seed length is inferior to the seed length that
we obtained previously using small-bias generators, which was O(log(mn/ε)) (see Proposition 2.3.6).
However, sometimes it is useful to understand the effect of specific classes of distributions, such as
k-wise uniform distributions, on a given model of computation.

2.5.3 Small-bias distributions fool read-once AC0

For a more sophisticated example of a sandwiching argument, let us consider “AC0 circuits,” i.e.,
bounded-depth Boolean circuits of unbounded fan-in.

31

∨

∧ ∧∧

∨ ∨∨ ∨ ∨ ∨

x3 ¬x12 ¬x4 ¬x14x8 ¬x11 ¬x2 ¬x1 x5 ¬x13 ¬x9 x6x10x7

Figure 2.4: A depth-3 read-once AC0 formula.

Definition 2.5.4 (AC0 circuits). An AC0 circuit is a directed acyclic graph where every input
node is labeled by a literal (xi or ¬xi) or a constant (0 or 1), every internal node (“gate”) is labeled
by ∧ or ∨, and there is exactly one output node. The in-degrees (also called fan-ins) of ∧ or ∨ gates
are not bounded. The size of the circuit is the total number of its ∧ and ∨ gates. The depth of the
circuit is the length of its longest directed path.

Traditionally, the expression “AC0” refers to the complexity class consisting of all languages
that can be decided by constant-depth polynomial size families of unbounded-fan-in circuits. As
suggested by Definition 2.5.4, we will instead adopt the convenient convention of speaking of “size-m
depth-d AC0 circuits,” where m is not necessarily poly(n) and d is not necessarily O(1). That
being said, m = poly(n) and d = O(1) is the parameter regime in which we are most interested.

Later, we will present PRGs for general AC0 circuits. (See Sections 2.6, 4.2, 5.1 and 5.3.)
For now, let us focus on fooling the read-once version of AC0, a substantially easier problem. A
read-once AC0 formula is an AC0 circuit in which every variable appears at most once and the
underlying graph structure is a tree. See Figure 2.4.

Theorem 2.5.5 (Small-bias fools read-once AC0). For every n, d ∈ N and ε > 0 with d ≥ 2, there
is a value δ = exp(−Θ(log n)d−1 · log(1/ε)) such that if X is a δ-biased distribution over {0, 1}n,
then X fools depth-d read-once AC0 formulas with error ε. Consequently, there is an explicit ε-PRG
for depth-d read-once AC0 formulas with seed length O(log n)d−1 · log(1/ε).

When d = 2 (read-once CNFs and DNFs) and ε is constant, the seed length of Theorem 2.5.5 is
O(log n), which is optimal. For larger d or smaller ε, the seed length is not optimal: the optimal
seed length would be O(log(n/ε)), independent of depth (note we always have d ≤ n). That being
said, a benefit of Theorem 2.5.5 is the simplicity of the PRG itself. See Section 5.5 for a discussion
of more sophisticated PRGs for read-once AC0 with better seed lengths.

The case d = 2 of Theorem 2.5.5 was first explicitly stated and proven by De, Etesami, Trevisan,
and Tulsiani [DETT10]. It also readily follows [LV17, Appendix A] from earlier work by Chari,
Rohatgi, and Srinivasan [CRS00]. It seems that the case d > 2 does not appear in the literature,
but the argument for d > 2 is a straightforward generalization of the argument for d = 2.

The proof of Theorem 2.5.5 works by repeatedly applying the following lemma.

32

Lemma 2.5.6 (PRG for depth d =⇒ PRG for depth d + 1). Suppose a distribution X fools
depth-d read-once AC0 formulas with error ε, where d ≥ 1. Then X fools depth-(d+ 1) read-once

AC0 formulas with error exp
(
−Ω

(
log(1/ε)
logn

))
.

Proof. Let f be a depth-(d+ 1) read-once AC0 formula. Assume for now that the output gate of
f is ∨, so we can write f(x) = f1(x) ∨ · · · ∨ fm(x). Define the weight of such a formula to be the
expected number of terms satisfied on a uniform random input, i.e., Weight(f) =

∑m
i=1 E[fi]. As a

first step, we will show that for every even positive integer k, the distribution X fools f with error

ε · (2m)k + (e ·Weight(f)/k)k. (2.6)

To prove it, let us use the inclusion-exclusion principle to compute f(x). For each positive integer r,
define ψr : {0, 1}n → R by

ψr(x) =
r∑

t=1

(−1)t−1
∑

S⊆[m]
|S|=t

∧
i∈S

fi(x).

Since k is even, ψk ≤ f ≤ ψk−1, and we claim that

E[ψk−1 − ψk] ≤ (e ·Weight(f)/k)k. (2.7)

Indeed, if k > m, then Equation (2.7) holds because ψk−1 ≡ ψk ≡ f , and meanwhile if k ≤ m, then

E[ψk−1 − ψk] =
∑

S⊆[m]
|S|=k

∏
i∈S

E[ϕi] ≤
(
m

k

)
·
(∑m

i=1 E[ϕi]
m

)k

≤
(em
k

)k
·
(
Weight(f)

m

)k

= (e ·Weight(f)/k)k.

(The first inequality follows from Maclaurin’s inequality.) Thus, f is sandwiched between ψk and
ψk−1. Furthermore, since the top gate of each ϕi is ∧, each function

∧
i∈S ϕi(x) is a depth-d read-once

AC0 formula. Therefore, by the Triangle Inequality for PRG Errors, X fools ψr with error δr where

δr = ε ·
r∑

t=1

(
m

t

)
= ε ·

(
m+ r − 1

r

)
≤ ε · (m+ r)r.

Since ψr = ψm for all r ≥ m, it follows that X fools ψr with error ε · (2m)r. Therefore, by the
sandwiching lemma (Lemma 2.5.2), X fools ϕ with the error given by Equation (2.6).

Now let

k∗ =
log(1/ε)

2 log(2m)
,

or to be more precise, let k∗ be the smallest even positive integer that is at least the above value.
We split into two cases. For the first case, suppose Weight(f) ≤ k∗/(2e). Then we achieve error

ε · (2m)k∗ + 2−k∗ = exp

(
−Ω

(
log(1/ε)

logm

))
.

Since f is read-once, m ≤ n, so this error value is sufficient to establish the lemma. For the second
case, suppose Weight(f) > k∗/(2e). Let f

′(x) = f1(x) ∨ · · · ∨ fm′(x), where m′ is the largest value
such that Weight(f ′) ≤ k∗/(2e). Then f

′ ≤ f ≤ 1, and

E[1− f ′] =

m′∏
i=1

(1− E[fi]) ≤ e−Weight(f ′) ≤ e−(k∗
2e

−1).

33

Therefore, ϕ is δ-sandwiched between ϕ′ and 1, where δ = exp
(
−Ω

(
log(1/ε)
logm

))
. Furthermore, X

fools f ′ with error

ε · (2m′)k∗ + 2−k∗ ≤ (2m)k∗ + 2−k∗ = exp

(
−Ω

(
log(1/ε)

logm

))
,

and obviously X fools 1 with error 0, so another application of the sandwiching lemma completes
the proof in this case.

Finally, suppose the output gate of ϕ is ∧. Then ¬ϕ can be computed by a depth-(d + 1)
read-once formula where the output gate is ∨. Therefore, X fools ¬ϕ, and hence it fools ϕ with the
same error.

Remark 2.5.7. More generally, we can consider any class F of Boolean functions on n bits. (The
interesting case is when F is not closed under complement.) Let AND ⋄ F denote the “read-once
composition” of AND with F , i.e., the class of functions of the form f(x) =

∧t
i=1 fi(x) where

f1, . . . , ft ∈ F and f1, . . . , ft depend on disjoint parts of the input. Define OR ⋄ F similarly. The
proof of Lemma 2.5.6 shows that if X fools AND ⋄ F with error ε, then X fools OR ⋄ F with error
exp(−Ω(log(1/ε)/ log n)).

Proof of Theorem 2.5.5. By Proposition 2.3.7, if f is a depth-1 read-once AC0 formula, then either
L1(f) ≤ 1 or L1(¬f) ≤ 1. Either way, every δ-biased distribution fools f with error δ. This is the
base case of an induction on d, where Lemma 2.5.6 is the inductive step.

We can also consider read-k depth-d AC0 circuits for k > 1. Servedio and Tan studied the case
d = 2 [ST19b], improving on previous work by Klivans, Lee, and Wan [KLW10]. Both works show
that small-bias distributions fool read-k CNFs and DNFs; in the case of polynomial-size DNFs,
Servedio and Tan’s analysis [ST19b] leads to a seed length of poly(k, log(1/ε)) · log n. The case of
larger depth d > 2 is open.

Open Problem 2.5.8 (PRGs for read-twice AC0 circuits). Design an explicit PRG for read-twice
depth-d AC0 circuits with a better seed length than the state-of-the-art PRG for general depth-d
AC0 circuits [Lyu22].

2.5.4 The sandwiching lemma and the triangle inequality are always enough

Suppose we wish to show that every distribution that fools one class Fsimp also fools another class
F . As discussed at the beginning of this section, we have presented two techniques for proving such
a “transfer theorem”:

1. The first technique is to express each f ∈ F as a linear combination of functions in Fsimp and
invoke the Triangle Inequality for PRG Errors.

2. The second technique is to sandwich each f ∈ F between functions in Fsimp and invoke the
Sandwiching Lemma.

We will now show that these are the only two techniques that are ever necessary. That is, we
will show that if every distribution that fools Fsimp also fools F , then that fact can be proven by
sandwiching each f ∈ F between linear combinations of functions in Fsimp.

34

Theorem 2.5.9 (Characterization of when fooling one class implies fooling another). Let n ∈ N,
let Fsimp be a finite class of functions f : {0, 1}n → R, and let g : {0, 1}n → R. Let ε0, ε > 0 and
suppose that every distribution X that fools Fsimp with error ε0 also fools g with error ε. Then g is
(2ε)-sandwiched between two functions fℓ, fu : {0, 1}n → R of the form

fℓ(x) = λ
(0)
ℓ +

kℓ∑
i=1

λ
(i)
ℓ f

(i)
ℓ (x) (2.8)

fu(x) = λ(0)u +

ku∑
i=1

λ(i)u f (i)u (x), (2.9)

where kℓ, ku ∈ N, λ(i)ℓ , λ
(i)
u ∈ R, f (i)ℓ , f

(i)
u ∈ Fsimp, and

ε0 ·
kℓ∑
i=1

|λ(i)ℓ | ≤ ε (2.10)

ε0 ·
ku∑
i=1

|λ(i)u | ≤ ε. (2.11)

Conversely, if we start from the assumption that Equations (2.8) to (2.11) hold, then for any
distribution X that fools Fsimp with error ε0, the Triangle Inequality for PRG Errors implies that X
fools fℓ and fu with error ε, and therefore the Sandwiching Lemma implies that X fools g with error
3ε. This recovers the assumption of Theorem 2.5.9 up to a factor of three4 in the error parameter.
In this sense, Theorem 2.5.9 shows that the Triangle Inequality for PRG Errors and the Sandwiching
Lemma are “complete.”

Before presenting the proof, let us elaborate on what the theorem says in two important special
cases.

• Let Fsimp be the class of Boolean k-juntas and let ε0 = 0. Then Theorem 2.5.9 says that
a function is fooled by every k-wise uniform distribution if and only if the function can be
sandwiched between two low-degree polynomials. This was first shown by Bazzi [Baz09].

• Next, let Fsimp to be the class of parity functions. Then Theorem 2.5.9 essentially says that a
function is fooled by every small-bias distribution if and only if the function can be sandwiched
between two functions with low Fourier L1 norm.5 This was first shown by De, Etesami,
Trevisan, and Tulsiani [DETT10].6

The general case seems to be folklore.

Proof of Theorem 2.5.9. The proof uses linear programming duality. For each f ∈ Fsimp, define
f : {0, 1}n → R by f(x) = f(x) − E[f]. Consider the following linear program in the variables

4A more refined analysis, involving a more cumbersome version of the Sandwiching Lemma, gives a tight character-
ization without the extra factor of three.

5Actually the quantity that matters is the sum of absolute values of the nonempty Fourier coefficients, whereas we
included the empty Fourier coefficient in our definition of Fourier L1 norm.

6Note that there is a minor mistake in the formulation by De et al. [DETT10]: in their Proposition 2.7, the lower
and upper sandwichers should be allowed to have different values of “l” and “δ.”

35

{px}x∈{0,1}n :

Maximize
∑

x∈{0,1}n
pxg(x),

subject to px ≥ 0 for all x ∈ {0, 1}n

and
∑

x∈{0,1}n
px = 1

and
∑

x∈{0,1}n
pxf(x) ≤ ε0 for all f ∈ Fsimp

and −
∑

x∈{0,1}n
pxf(x) ≤ ε0 for all f ∈ Fsimp.

The constraints say that the px variables are the probability mass function of some distribution
that fools Fsimp with error ε0. The program is feasible, because if nothing else we can set px = 2−n

(the uniform distribution). The objective function is the expectation of g under the distribution
defined by the px variables, so the optimal value must be at most E[g] + ε.

The dual linear program, in the variables z and {y+f , y
−
f }f∈Fsimp

, is as follows:

Minimize z + ε0 ·
∑
f∈F0

(y+f + y−f),

subject to y+f , y
−
f ≥ 0 for all f ∈ Fsimp

and z +
∑
f∈F0

f(x) · (y+f − y−f) ≥ g(x) for all x ∈ {0, 1}n.

By strong LP duality, the optimal value of this dual linear program is also at most E[g] + ε. Observe
that given a feasible solution to the dual linear program, if we subtract min{y+f , y

−
f } from y+f

and from y−f , then we get another feasible solution and the objective function can only decrease.

Therefore, by setting yf = y+f − y−f , we obtain real numbers z∗ and {y∗f}f∈Fsimp
such that

z∗ + ε0 ·
∑

f∈Fsimp

|y∗f | ≤ E[g] + ε, and

z∗ +
∑

f∈Fsimp

f(x)y∗f ≥ g(x) for all x ∈ {0, 1}n.

Define

fu(x) = z∗ +
∑

f∈Fsimp

y∗f · f(x)

=

z∗ − ∑
f∈Fsimp

y∗f E[f]

+
∑

f∈Fsimp

y∗f · f(x).

Then fu has the form given by Equation (2.9), and fu ≥ g. Furthermore, E[fu] = z∗, so

0 ≤ E[fu − g] = z∗ − E[g] ≤ ε− ε0 ·
∑

f∈Fsimp

|y∗f |.

36

∨

∧∧

x2 ¬x1x1 ¬x2 x3 ¬x4 x4 ¬x3

∧ ∧

∨

∧ ∧

∨

x5 ¬x6 x6 ¬x5

∧ ∧ ∧

∨

Figure 2.5: A depth-4 size-13 AC0 circuit computing the function f(x) = MAJ(x1⊕x2, x3⊕x4, x5⊕
x6).

This shows that E[fu − g] ≤ ε and that Equation (2.11) holds.
Fooling g is equivalent to fooling −g, so the above also shows that there is some function fℓ of

the form given by Equation (2.8) such that −fℓ ≥ −g, E[g − fℓ] ≤ ε, and Equation (2.10) holds.
Therefore, g is (2ε)-sandwiched between fℓ and fu.

2.6 Braverman’s theorem: Limited independence fools AC0

In Section 2.5.3, we presented a PRG for read-once AC0 formulas. In this section, we will present
a PRG for general (read-many) AC0 circuits (see Figure 2.5). In particular, we will show that
every k-wise uniform generator fools constant-depth polynomial-size AC0 circuits for a suitable
k = polylog(n). This was first conjectured by Linial and Nisan [LN90]. Two decades later, it was
proved to be true for depth-2 circuits by Bazzi [Baz09] and a simpler proof of this was discovered by
Razborov [Raz09]. Building on this line of work, Braverman [Bra10] proved that k-wise independence
for polylogarithmic k fools AC0 circuits. The parameters were subsequently improved by Tal [Tal17]
and Harsha and Srinivasan [HS19], leading to the following.

Theorem 2.6.1 (Braverman’s theorem [Bra10; Tal17; HS19]). For every n,m, d ∈ N and ε > 0,
there is a value k = (logm)O(d) · log(1/ε) such that if X is a k-wise uniform distribution over {0, 1}n,
then X fools size-m depth-d AC0 circuits with error ε. Consequently, there is an explicit ε-PRG for
depth-d size-m AC0 circuits with seed length

(logm)O(d) · log n · log(1/ε).

For context, Braverman’s theorem represents neither the first nor the best unconditional PRG
for AC0 known. Instead, the advantage of Braverman’s theorem is that k-wise uniformity is a
particularly simple and general PRG construction. That being said, the analysis is quite nontrivial,
as we will see.

We will present two proofs of Braverman’s theorem. First, we present a novel proof that is
arguably simpler7 than previous proofs, but it does not give the best parameters – the value of

7In particular, the new proof does not require “probabilistic polynomials” for AC0 circuits.

37

k will be slightly worse than what Theorem 2.6.1 promises. Then, we will present the known
state-of-the-art proof [Bra10; Tal17; HS19].

2.6.1 LMN polynomials

Observe that every degree-k polynomial over the reals is perfectly fooled by k-wise uniform generators.
To prove that k-wise uniform generators fool AC0 circuits, our approach will be to show that AC0

circuits are sandwiched between degree-k polynomials. Our starting point is the Linial-Mansour-
Nisan theorem [LMN93] and its subsequent improvements [Bop97; H̊as01; Tal17], which show that
AC0 circuits can indeed be approximated by bounded low-degree polynomials in the L2 norm.

Theorem 2.6.2 (LMN polynomials [Tal17]). Let f : {0, 1}n → {0, 1} be computable by a size-m
depth-d AC0 circuit and let γ > 0. There exists f̃ : {0, 1}n → R such that:

1. (L2 approximation) We have∥∥∥f − f̃
∥∥∥2
2

def
= E

x∼Un

[∣∣∣f(x)− f̃(x)
∣∣∣2] ≤ γ. (2.12)

2. (Low-degree) We have
deg(f̃) ≤ O(logm)d−1 · log(1/γ).

3. (Bounded) For every x ∈ {0, 1}n, we have∣∣∣f̃(x)∣∣∣ ≤ 2O(logm)d−1·log(1/γ)·log logm. (2.13)

The proof of Theorem 2.6.2 uses random restrictions and switching lemmas to analyze the
Fourier spectrum of AC0 circuits.8 We will not study the proof of Theorem 2.6.2 here. Instead,
we will take Theorem 2.6.2 for granted, and use it to show that AC0 circuits are sandwiched by
low-degree polynomials.

2.6.2 Operations on functions with low-degree sandwiching polynomials

We begin with a couple of lemmas about sandwiching by low-degree polynomials.

Lemma 2.6.3 (If f and g have low-degree sandwichers, then f + g has low-degree sandwichers).
Suppose that f : {0, 1}n → R is ε-sandwiched by polynomials of degree k and g : {0, 1}n → R is
δ-sandwiched by polynomials of degree k. Then the sum f + g is (ε+ δ)-sandwiched by polynomials
of degree k.

We omit the simple proof.

Lemma 2.6.4 (If f has low-degree sandwichers and g is a bounded low-degree polynomial, then
f · g has low-degree sandwichers). Suppose that f : {0, 1}n → R is ε-sandwiched by polynomials of
degree k. Let g : {0, 1}n → [−L,L], and let h(x) = f(x) · g(x). Then h is O(ε · L)-sandwiched by
polynomials of degree k + deg(g).

8The polynomial f̃ is defined by dropping all but the lowest-degree Fourier coefficients of f . The bounds
Equations (2.12) and (2.13) follow from a bound on the L2 tail of f [Tal17, Theorem 1] and a bound on the L1 growth
of f [Tal17, Theorem 37].

38

Proof. Let fℓ, fu be the sandwichers for f . Suppose first that g is [0, L]-valued. In this case, for
every x ∈ {0, 1}n,

fℓ(x) · g(x) ≤ h(x) ≤ fu(x) · g(x),

and
(fu(x)− fℓ(x)) · g(x) ≤ L · (fu(x)− fℓ(x)),

showing that h is (ε · L)-sandwiched between fℓ · g and fu · g, each of which has degree k + deg(g).
Next, suppose that g is [−L, 0]-valued. The previous argument shows that −fg is (ε · L)-

sandwiched by polynomials of degree k + deg(g), and therefore so is fg by negating and swapping
the sandwichers.

Finally, consider the general case that g is [−L,L]-valued. Write g = −L + g′, where g′ is
[0, 2L]-valued. Then

h = −L · f + f · g′.

By our previous analyses, −L · f is (ε · L)-sandwiched by polynomials of degree k, and f · g′ is
(2ε · L)-sandwiched by polynomials of degree k + deg(g′) = k + deg(g). By Lemma 2.6.3, it follows
that h is (3ε · L)-sandwiched by polynomials of degree k + deg(g).

2.6.3 Low-degree sandwichers for AC0 circuits

We are now prepared to show that AC0 circuits are sandwiched by low-degree polynomials, and
hence they are fooled by k-wise uniform distributions.

Theorem 2.6.5 (AC0 circuits are sandwiched by low-degree polynomials). Let m, d ∈ N and ε > 0.
Every size-m depth-d AC0 circuit f is ε-sandwiched by polynomials of degree (logm)O(d2) · log(1/ε).

By the Sandwiching Lemma, Theorem 2.6.5 implies Braverman’s Theorem (Theorem 2.6.1),
albeit with k = (logm)O(d2) · log(1/ε) instead of k = (logm)O(d) · log(1/ε).

Proof of Theorem 2.6.5. We will show by induction on d that f has ε-sandwiching polynomials of
degree

(c logm)(d
2−d)/2 · (log logm)d−1 · ⌈log(m/ε)⌉

for a suitable constant c. First, consider the base case d = 1, and assume without loss of generality
that f is an AND of m literals.

• If m < log(1/ε), then f can be computed exactly by a polynomial of degree m, so we are done.

• If m ≥ log(1/ε), then our upper sandwicher is the product of the first ⌈log(1/ε)⌉ literals and
our lower sandwicher is the constant 0 function.

Now, for the inductive step, suppose f has depth d > 1. Assume without loss of generality that the
top gate of f is OR, say f =

∨m
i=1 fi. We reason similarly to Bazzi [Baz09] and Razborov [Raz09].

For each i ∈ [m], let gi =
∧i−1

j=1(¬fi), so that

f =

m∑
i=1

fi · gi.

39

Each function gi is a size-m depth-d AC0 circuit; let g̃i be the corresponding polynomial approxi-
mation from Theorem 2.6.2 with error parameter γ = ε/(2m3). We define

h =

m∑
i=1

fi · g̃i

fℓ = f − (f − h)2 (2.14)

fu = f + (f − h)2 ·

((
m∑
i=1

fi

)
− f

)
. (2.15)

The plan is, we will show that f is sandwiched between fℓ and fu, and then we will use our induction
hypothesis to show that fℓ and fu are sandwiched by low-degree polynomials. Consequently, f itself
is sandwiched by low-degree polynomials.

From the definitions, clearly fℓ ≤ f ≤ fu. Furthermore,

E[fu − fℓ] = E

[
(f − h)2 ·

(
1− f +

m∑
i=1

fi

)]
≤ m · E[(f − h)2]

= m · E

(m∑
i=1

fi · (gi − g̃i)

)2

≤ m2 ·
m∑
i=1

E[f2i · (gi − g̃i)
2]

≤ m3 · γ = ε/2.

Now we turn to showing that fℓ and fu are themselves sandwiched by low-degree polynomials. For
the first step, we claim that

fℓ = 1− (1− h)2 (2.16)

fu = 1 + (1− h)2 ·

((
m∑
i=1

fi

)
− 1

)
. (2.17)

Indeed, when f(x) = 1, this is clear, since we have simply substituted 1 for each appearance of f
in Equations (2.14) and (2.15). Meanwhile, when f(x) = 0, Equations (2.16) and (2.17) still hold,
because fi(x) = 0 for every i and therefore

∑m
i=1 fi(x) = 0 and h(x) = 0.

Next, we will plug the definition of h into Equations (2.16) and (2.17) and expand. For
convenience, define f0 = g̃0 = 1. That way, we get

fℓ =
m∑
i=0

m∑
j=0

ci,j · fi · fj · g̃i · g̃j

fu =

m∑
i=0

m∑
j=0

m∑
k=0

ci,j,k · fi · fj · fk · g̃j · g̃k,

where |ci,j | ≤ 1 and |ci,j,k| ≤ 1. For simplicity, let us focus on a single term from the expansion of
fu, namely a term of the form ci,j,k · fi · fj · fk · g̃j · g̃k. By Equation (2.13), for every x, we have
|ci,j,k · g̃j(x) · g̃k(x)| ≤ L where

L = 2O(logm)d−1·log(m/ε)·log logm.

40

Now, each subcircuit fi has an AND gate on top, so the product fi · fj · fk can be computed by a
size-m depth-(d− 1) AC0 circuit. Therefore, by induction, for every δ > 0, the product fi · fj · fk is
δ-sandwiched by polynomials of degree D where

D = (c logm)((d−1)2−(d−1))/2 · (log logm)d−2 · ⌈log(m/δ)⌉.

We select δ = Θ(ε
Lm3). That way, Lemma 2.6.4 ensures that the term ci,j,k · fi · fj · fk · g̃j · g̃k is(

ε
4(m+1)3

)
-sandwiched by polynomials of degree D + deg(g̃j · g̃k). Therefore, by Lemma 2.6.3, fu as

a whole (and similarly fℓ as well) is (ε/4)-sandwiched by polynomials of degree D + deg(g̃j · g̃k).
Consequently, f is ε-sandwiched by polynomials of degree D + deg(g̃j · g̃k). All that remains is to
simplify the degree bound:

D + deg(g̃j · g̃k) = (c logm)((d−1)2−(d−1))/2 · (log logm)d−2 · ⌈log(m/δ)⌉+O(logm)d−1 · log(1/γ)

= (c logm)((d−1)2−(d−1))/2 ·O(logm)d−1 · (log logm)d−1 · log(m/ε)

≤ (c logm)(d
2−d)/2 · (log logm)d−1 · ⌈log(m/ε)⌉,

provided that we choose the constant c large enough. (Note that (d−1)2−(d−1)
2 + d− 1 = d2−d

2 .)

2.6.4 Improved parameters via probabilistic polynomials

So far, we have shown that k-wise uniform generators fool size-m depth-d AC0 circuits where
k = (logm)O(d2) · log(1/ε). Next, we will show how to improve the exponent from O(d2) to
O(d).9 The improvement relies on a line of work constructing probabilistic real polynomials for AC0

circuits [BRS91; Tar93; Bra10; HS19], starting with two independent papers by Beigel, Reingold, and
Spielman [BRS91] and Tarui [Tar93] (see also, e.g., work by Razborov [Raz87], Smolensky [Smo87],
and Toda and Ogiwara [TO92]). These works show that for every AC0 circuit f , there is a
distribution F over low-degree polynomials such that for each fixed input x ∈ {0, 1}n, with high
probability over f̃ ∼ F , we have the exact equality f̃(x) = f(x). In our setting, we will actually be
thinking of the input x as random, which allows us to fix some f̃ ∈ Supp(F) that agrees with f with
high probability over the choice of input. Furthermore, even in the “bad case” that f(x) ̸= f̃(x),
the constructions still have some guarantees. The best parameters known are achieved by Harsha
and Srinivasan [HS19], who prove the following:

Theorem 2.6.6 (BRS-Tarui polynomials [HS19]). Let f : {0, 1}n → {0, 1} be computable by a
depth-d size-m AC0 circuit, let δ > 0, and let D be a distribution over {0, 1}n. There exist a
polynomial f̃ : {0, 1}n → R and an “error function” E : {0, 1}n → {0, 1} such that

• E[E(D)] ≤ δ, and if E(x) = 0, then f(x) = f̃(x). (Hence, Prx∼D

[
f(x) ̸= f̃(x)

]
≤ δ.)

• deg(f̃) ≤ (logm)O(d) log(1/δ) and
∥∥f̃∥∥∞ def

= maxx
∣∣f̃(x)∣∣ ≤ exp

(
(logm)O(d) log(1/δ)

)
.

• E can be computed by an AC0 circuit of size10 mO(1) and depth d+O(1).

9Note that for certain small values of d such as d = 3, the parameters from the first proof are actually superior to
the parameters from the second proof. We thank Avishay Tal for pointing this out (personal communication).

10In Harsha and Srinivasan’s work [HS19], the size bound is stated as (m log(1/δ))O(1). We may assume without
loss of generality that log(1/δ) < m, because f can be computed exactly by a degree-m polynomial (namely its Fourier
expansion).

41

Note that Theorem 2.6.6 provides a low-degree approximation over an arbitrary input distribution,
unlike LMN polynomials (Theorem 2.6.2) which are specific to the uniform distribution. The
constructions of probabilistic polynomials for AC0 [BRS91; Tar93; Bra10; HS19] rely on Valiant
and Vazirani’s isolation lemma [VV86].

Braverman’s original proof that k-wise uniformity fools AC0 circuits for polylogarithmic k was
based on a clever combination of LMN polynomials and BRS-Tarui polynomials. We present (a
version of) that proof below to prove Theorem 2.6.1.

Lemma 2.6.7 (Sandwichers forAC0 with better parameters). Let f : {0, 1}n → {0, 1} be computable
by a depth-d size-m AC0 circuit, let δ > 0, and let D be a distribution over {0, 1}n. There exist
polynomials pℓ, pu : {0, 1}n → R of degree (logm)O(d) log(1/δ) and a function E : {0, 1}n → {0, 1}
such that f is δ-sandwiched between pℓ − E and pu + E, and furthermore,

E[E(Un)] ≤ δ and E[E(D)] ≤ δ. (2.18)

To be clear, f is sandwiched between pℓ −E and pu +E with respect to the uniform distribution
(see Definition 2.5.1). The only part of the conclusion that says something about the arbitrary
distribution D is the bound E[E(D)] ≤ δ.

Proof. Let D′ = 1
2(D + Un), i.e., D

′ is D with probability 1/2 and Un with probability 1/2. Let

f̃ be the BRS-Tarui polynomial for f from Theorem 2.6.6 and let E be the corresponding error
function with respect to the distribution D′ with error E[E(D′)] ≤ δ/24. Note that

E[E(D′)] =
1

2
E[E(D)] +

1

2
E[E(Un)] ≤

δ

24
,

so E[E(D)] ≤ δ/12 and E[E(Un)] ≤ δ/12, proving Equation (2.18).
Recall that the error function E can be computed by an AC0 circuit of size mO(1) and depth

d+O(1) (see Theorem 2.6.6). Therefore, we may apply Theorem 2.6.2 to get an LMN polynomial
Ẽ that satisfies ∥E − Ẽ∥22 ≤ γ for an error parameter γ that will be specified later. Define three
more approximations to f by the formulas

ϕ = 1− (1− f) · (1− E) = f ∨ E (2.19)

ϕ̃ = 1− (1− f̃) · (1− Ẽ)

pu =
(
1− (1− f̃) · (1− Ẽ)

)2
=
(
ϕ̃
)2
.

We must show that pu + E is an upper sandwicher for f . By a case analysis, let us prove that the
following two bounds hold (pointwise):

f ≤ pu + E (2.20)

pu ≤ f + 2E + 2 ·
(
ϕ̃− ϕ

)2
. (2.21)

• (Case 1) Suppose f(x) > E(x), i.e., E(x) = 0 and f(x) = 1. Then f̃(x) = f(x) = 1, so
pu(x) = 1 as well, which implies Equations (2.20) and (2.21).

• (Case 2) Suppose f(x) ≤ E(x), i.e., E(x) = 1 or f(x) = 0. Then Equation (2.20) holds
because pu is non-negative. Furthermore, ϕ(x) = E(x) in this case, so

pu(x) =
(
E(x) + ϕ̃(x)− ϕ(x)

)2
≤ 2E(x)2 + 2 ·

(
ϕ̃(x)− ϕ(x)

)2
,

which implies Equation (2.21) because E(x)2 = E(x).

42

Now, because of the factor of 1−E in Equation (2.19), we have the identity ϕ = 1− (1− f̃) · (1−E),
so Equation (2.21) becomes

pu ≤ f + 2E + 2 ·
(
(1− f̃) · (E − Ẽ)

)2
.

Therefore,

E[pu + E − f] ≤ 3E[E] + 2E
[(

(1− f̃) · (E − Ẽ)
)2]

≤ δ/4 + 2 · (1 + ∥f̃∥∞)2 · ∥E − Ẽ∥22
≤ δ/4 + 2 · (1 + ∥f̃∥∞)2 · γ.

By choosing γ = δ/(8 · (1 + ∥f̃∥∞)2), we get E[pu + E − f] ≤ δ/2.
Next, let us bound the degree of pu. Recall that Theorems 2.6.2 and 2.6.6 give the bounds

deg(f̃) ≤ (logm)O(d) log(1/δ)

∥f̃∥∞ ≤ exp
(
(logm)O(d) log(1/δ)

)
deg(Ẽ) ≤ O(logm)d+O(1) log(1/γ) = (logm)O(d) log(1/δ).

Therefore, deg(pu) ≤ 2 deg(f̃) + 2 deg(Ẽ) ≤ (logm)O(d) log(1/δ).
To summarize, we have shown that every size-m depth-d AC0 circuit f can be upper-sandwiched

by pu + E where pu is a low-degree polynomial and E is a Boolean function with low expectation
under both Un and D. The class of size-m depth-d AC0 circuits is closed under complementation, so
1− f has an upper sandwicher of the same form. Therefore, f can be lower -sandwiched by pℓ −E′

where pℓ is a low-degree polynomial and E′ is a Boolean function with low expectation under both
Un and D. If we use 1− f̃ as our BRS-Tarui polynomial for 1− f in the above argument, then we
can furthermore ensure E′ ≡ E.

Braverman’s theorem follows readily from Lemma 2.6.7:

Proof of Theorem 2.6.1. Let D be a k-wise independent distribution, where k is the bound on the
degrees of the low-degree polynomials pu and pℓ from Lemma 2.6.7 with δ = ε/2. By Lemma 2.6.7,
the circuit f is (ε/2)-sandwiched between pℓ − E and pu + E, where E is (ε/2)-fooled by D. Since
pu and pℓ are degree-k polynomials, they are perfectly fooled by D. Therefore, by the sandwiching
lemma, f is ε-fooled by D.

Intriguingly, although the proof of Theorem 2.6.1 is a sandwiching argument, the sandwichers
are apparently not low-degree polynomials. They are of the form pℓ − E and pu + E, where pℓ
and pu are low-degree polynomials, but the “error function” E does not seem to be a low-degree
polynomial. (Furthermore, the sandwichers depend on the pseudorandom distribution D.)

In a formal sense, sandwiching polynomials are the only tool one ever needs to prove that
k-wise uniform generators fool some class of functions, as discussed in Section 2.5.4. However, the
proof of Braverman’s theorem demonstrates that in practice, it is wise to “think outside the box”
and consider other, more creative arguments. The technique of designing low-complexity error
indicator functions, along the lines of Theorem 2.6.6, has turned out to be useful in other PRG
problems [MRT19; DHH20; HHTT22].

It is an open problem to improve the parameters of Braverman’s theorem even further. What
is the optimal k such that every k-wise uniform generator fools depth-d size-m AC0 circuits with

43

error ε? There are counterexamples showing that k = Ω((logm)d−1 log(1/ε)) [LV96], but that still
leaves a significant gap between the lower and upper bounds.

Open Problem 2.6.8 (Improved parameters for Braverman’s theorem). Show that for every
m, d ∈ N and ε > 0, there exists a value

k = (logm)d+O(1) log(1/ε)

such that every k-wise uniform distribution fools depth-d size-m AC0 circuits with error ε.

Explicit PRGs for AC0 circuits with seed length (logm)d+O(1) log(1/ε) are already known (see
Section 5.3); the question is whether a generic k-wise uniform generator does the job.

44

Chapter 3

Recycling Random Bits

In this chapter, we will present a few PRG constructions based on the paradigm of recycling random
bits. In its simplest form, the idea is that we start by sampling n/2 truly random bits X. Then
we “mix in” a few more truly random bits in some way, producing n/2 additional bits Y . Our final
output is the concatenation (X,Y).

This type of approach tends to make the most sense if there is a “communication bottleneck”
between the part of the computation that processes X and the part of the computation that processes
Y . Indeed, our first instantiation of this paradigm will be a PRG for two-party communication
protocols in the next section.

3.1 PRGs for two-party communication protocols

In this section, we will present a PRG that fools two-party interactive communication protocols.

Definition 3.1.1 (Two-party communication protocol). Let n be an even positive integer. In a
two-party protocol on n bits with communication cost m, Alice holds x ∈ {0, 1}n/2 and Bob holds
y ∈ {0, 1}n/2. They communicate interactively; in each round, the identity of the speaker is a
function of all the bits transmitted so far, and the content of the message is a function of the bits
transmitted and that party’s input (x or y). After at most m bits have been transmitted in total, the
protocol terminates, and both parties output the same bit f(x, y).

Are these protocols deterministic, or are they randomized? Both, in a sense: the protocol is
deterministic after fixing x and y, but we are thinking of x and y as random bits and seeking to
replace them with pseudorandom bits. The seed length in the following theorem, due to Impagliazzo,
Nisan, and Wigderson [INW94], is optimal.

Theorem 3.1.2 ([INW94]). For every n,m ∈ N and every ε > 0, there is an explicit ε-PRG for
two-party protocols on n bits with communication cost m with seed length n

2 +O(m+ log(1/ε)).

3.1.1 Expander graphs from a PRG perspective

Toward proving Theorem 3.1.2, let us take a detour to briefly discuss expander graphs. Doing justice
to the topic of expanders is beyond the scope of this work; see, e.g., Vadhan’s monograph [Vad12]
for a thorough treatment. Let us recall the definition.

Definition 3.1.3 (Spectral expanders). Let G be a regular undirected graph with transition probability
matrix M ∈ [0, 1]N×N . Let the eigenvalues of M be 1 = λ1 ≥ λ2 ≥ · · · ≥ λN . We say G is an
ε-spectral expander if |λi| ≤ ε for i = 2, 3, . . . , N .

45

There is an alternative and equivalent definition of expander graphs in the language of PRGs.
We focus on the special case that the number of vertices is a power of two, because that’s the most
natural scenario from the PRG perspective, but the following lemma generalizes in the natural way
to an arbitrary number of vertices.

Lemma 3.1.4 (PRG characterization of spectral expander graphs). Let n be an even positive
integer, and let F be the class of functions f : {0, 1}n → R of the form f(x, y) = g(x) · h(y) where
g, h : {0, 1}n/2 → R satisfy Var[g] ≤ 1 and Var[h] ≤ 1. Let G be a regular undirected graph on
the vertex set {0, 1}n/2, sample a uniform random vertex X in G, and sample a uniform random
neighbor Y of X. For every ε > 0, the following are equivalent.

1. G is an ε-spectral expander (see Definition 3.1.3).

2. The distribution (X,Y) fools F with error ε.

Proof. We will identify functions mapping {0, 1}n/2 → R with column vectors in the space R2n/2

endowed with the inner product ⟨g, h⟩ = EU∼Un/2
[g(U) · h(U)] and the norm ∥g∥ =

√
⟨g, g⟩.

(1 =⇒ 2) Fix an arbitrary f ∈ F , say f(x, y) = g(x) · h(y) where Var[g] ≤ 1 and Var[h] ≤ 1.
First, suppose E[g] = E[h] = 0. Then

|E[f(X,Y)]| = |⟨g,Mh⟩| ≤ ∥g∥ · ∥Mh∥

by the Cauchy-Schwarz inequality. Since G is regular, the all-ones vector is an eigenvector of M
with eigenvalue λ1 = 1. Since E[g] = 0, the vector g is orthogonal to the all-ones vector. By the
spectral theorem for real symmetric matrices, it follows that g is a linear combination of eigenvectors
other than the all-ones vector, so by Definition 3.1.3, ∥Mg∥ ≤ ε · ∥g∥. Therefore,

|E[f(X,Y)]| ≤ ε · ∥g∥ · ∥h∥ = ε ·
√

Var[g] ·
√
Var[h] ≤ ε.

Now for the general case, write g = E[g] + g and h = E[h] + h, so

f(x, y) = E[g] · E[h] + g(x) · h(y) + E[g] · h(y) + E[h] · g(x).

Since G is regular, each marginal distribution X and Y is uniform over {0, 1}n/2. Therefore,
E[g(X)] = E[h(Y)] = 0. Furthermore, Var[g] = Var[g] ≤ 1 and Var[h] = Var[h] ≤ 1, so

|E[f(X,Y)]− E[f]| = |E[g(X) · h(Y)]| ≤ ε.

(2 =⇒ 1) Let g be a unit eigenvector ofM with eigenvalue λ and assume that g is not parallel to
the all-ones vector. By the spectral theorem for symmetric matrices, it follows that g is orthogonal to
the all-ones vector, i.e., E[g] = 0. Since g has unit norm as a vector, we have Var[g] = 1. Therefore,

|λ| = |⟨Mg, g⟩| = |E[g(X) · g(Y)]| ≤ ε.

The seed length required to sample the distribution (X,Y) in Lemma 3.1.4 is governed by the
degree of the expander graph. There exist explicit expanders with degree poly(1/ε):

Theorem 3.1.5 (Explicit expanders). For every n ∈ N and every ε > 0, there exists an ε-spectral
expander with vertex set {0, 1}n and degree D = poly(1/ε). The expander is “strongly explicit,” i.e.,
given a vertex x and a value i ∈ [D], the ith neighbor of x can be computed in time poly(n, log(1/ε)).

See Vadhan’s monograph [Vad12] for a discussion of approaches to proving Theorem 3.1.5.
Theorem 3.1.5 translates to a seed length of n/2 + O(log(1/ε)) in Lemma 3.1.4. Pushing to
the extreme, a “Ramanujan graph” is an ε-spectral expander of degree D where ε = 2

√
D − 1,

which is essentially the best possible [Alo86; Nil91; Fri93] and which translates to a seed length
of n/2 + 2 log(1/ε) + O(1). There is a lot of work on the problems of proving existence of and
explicitly constructing Ramanujan graphs and “near-Ramanujan” graphs [LPS88; Mar88; Mor94;
Fri08; CM08; BT11; MSS15; Coh16; Bor20; MOP20; Alo21].

46

3.1.2 Combinatorial rectangles and the Expander Mixing Lemma

In the language of PRGs, the famous Expander Mixing Lemma is the “1 =⇒ 2” direction of
Lemma 3.1.4, specialized to the case that g and h are Boolean-valued. That is, the Expander Mixing
Lemma explains how to use expander graphs to fool two-dimensional combinatorial rectangles,
defined next.

Definition 3.1.6 (Combinatorial rectangles). Let n be a multiple of d and let f : {0, 1}n → {0, 1}.
We say that f is a d-dimensional combinatorial rectangle if there are functions f1, . . . , fd : {0, 1}n/d →
{0, 1} such that

f(x(1), . . . , x(d)) =
d∏

i=1

fi(x
(i)).

Lemma 3.1.7 (Expander Mixing Lemma). Let n be an even positive integer and let G be an
ε-spectral expander on vertex set {0, 1}n/2. Sample a uniform random vertex X, then sample a
uniform random neighbor Y of X. Then the distribution (X,Y) fools two-dimensional combinatorial
rectangles with error ε.

Proof. Immediate from Lemma 3.1.4.

Corollary 3.1.8 (Optimal PRG for two-dimensional combinatorial rectangles). For every n ∈ N
and every ε > 0, there is an explicit ε-PRG for two-dimensional combinatorial rectangles on n bits
with seed length n

2 +O(log(1/ε)).

Proof. Immediate from Lemma 3.1.7 and Theorem 3.1.5.

There is a large body of work designing PRGs for high-dimensional combinatorial rectan-
gles [ASWZ96; EGLNV98; LLSZ97; Lu02; GMRTV12; Vio14; GY20; HLV18; Lee19]. Near-optimal
constructions are known [GMRTV12; GY20; Lee19], but it is still an open problem to get the
optimal seed length.

Open Problem 3.1.9 (Optimal PRGs for high-dimensional combinatorial rectangles). Design an
explicit PRG for d-dimensional combinatorial rectangles with seed length O(n/d+log(1/ε)+log log n).

For this section, however, it suffices to focus on the two-dimensional case. A two-dimensional
combinatorial rectangle f can be computed by a communication protocol with a particularly simply
structure: Alice computes g(x) and sends it to Bob, and then Bob computes h(x) and multiplies.
Given Corollary 3.1.8, we are now ready to fool general two-party communication protocols by
using the standard decomposition of communication protocols into combinatorial rectangles.

Proof of Theorem 3.1.2. Without loss of generality, we may assume that the parties always transmit
exactly m bits in total. Define π : {0, 1}n → {0, 1}m by letting π(x, y) be the sequence of bits
transmitted when Alice holds x and Bob holds y. For each possible transcript z ∈ {0, 1}m, define
functions gz, hz : {0, 1}n/2 → {0, 1} by the rule

gz(x) = 1 ⇐⇒ ∃y, π(x, y) = z

hz(y) = 1 ⇐⇒ ∃x, π(x, y) = z.

That way, π(x, y) = z ⇐⇒ gz(x) = hz(y) = 1. Since both parties output f(x, y), there is some set
A ⊆ {0, 1}m such that f(x, y) = 1 ⇐⇒ π(x, y) ∈ A. Therefore,

f(x, y) =
∑
z∈A

gz(x) · hz(y),

47

vstart

1

0

x1

1

0

1

0

1

0

0

1

1

0

x3

1

0

1

0

1

0

0

1

1

0

x5

1

0

1

0

1

0

0

1

reject

reject

reject

reject

accept

1

0

x2

0

1

1

0

0

1

1

0

x4

0

1

1

0

0

1

1

0

x6

0

1

1

0

0

1

0

1

0

1

0

1

Figure 3.1: A width-5 length-6 standard-order ROBP computing the function f(x) = MAJ(x1 ⊕
x2, x3 ⊕ x4, x5 ⊕ x6).

a linear combination of two-dimensional combinatorial rectangles. Therefore, by the Triangle
Inequality for PRG Errors, every δ-PRG for two-dimensional combinatorial rectangles fools f with
error |A|δ ≤ 2mδ. Picking δ = 2−mε and applying Corollary 3.1.8 completes the proof.

3.2 The INW generator for standard-order ROBPs

In this section, we will present the Impagliazzo-Nisan-Wigderson (INW) generator [INW94], which
is one of the most influential unconditional PRG constructions. We will prove that it fools standard-
order read-once branching programs (standard-order ROBPs), defined next.

Definition 3.2.1 (Standard-order read-once branching programs). A length-n standard-order
read-once branching program (standard-order ROBP) f consists of a directed layered multigraph
with n+ 1 layers, V0, . . . , Vn. For every i < n, each vertex v ∈ Vi has two outgoing edges leading
to Vi+1, one labeled 0 and the other labeled 1. Vertices in Vn have zero outgoing edges. There is a
designated “start vertex” vstart ∈ V0. An input x ∈ {0, 1}n selects a path (v0, v1, . . . , vn) through the
graph: the path starts at v0 = vstart, and upon reaching a vertex vi ∈ Vi, the bit xi+1 specifies which
outgoing edge to use. There is a designated set of “accept vertices” Vaccept ⊆ Vn, and f(x) = 1 if
vn ∈ Vaccept and f(x) = 0 otherwise. The width of the program is the maximum number of vertices
in a single layer. (See Figure 3.1.)

The standard-order ROBP model is important because as discussed in Section 1.1.3, it models
the behavior of a space-efficient randomized algorithm as a function of its random bits. In more
detail, if σ is an input and A is a randomized space-S decision algorithm where S ≥ log |σ|, then
there is some width-w ROBP f computing the function f(x) = A(σ, x), where w = 2O(S). Therefore,

48

if X is a distribution that fools width-w ROBPs, then A can be executed using X in place of true
randomness without significantly distorting the algorithm’s acceptance probability.

Remark 3.2.2 (ROBP terminology). In the pseudorandomness literature, standard-order ROBPs
are often referred to as simply “ROBPs.” This practice is a bit misleading, since the definition is
not simply “a branching program that is read-once.” Indeed, in addition to being read-once, we are
assuming that the program is oblivious, meaning that the variable queried in time step i depends only
on i, and more specifically, we are assuming that the branching program follows the standard variable
ordering, meaning that in time step i, the program queries the variable xi. (These assumptions
are well-motivated, because in the standard model of randomized space-bounded computation, we
merely have the ability to repeatedly flip a single fair coin, which is equivalent to observing a one-way
stream of random bits.) Unsurprisingly, many papers outside the pseudorandomness literature use
terms like “read-once branching program” to refer to more general models that are not necessarily
even oblivious [Weg87; BHST87; Raz91; BJS01; BLP15]. In this text, for clarity, we use the more
verbose term “standard-order ROBP” to emphasize the variable ordering assumption.1

There is some convenient standard notation for subprograms of ROBPs.

Definition 3.2.3 (Subprograms of ROBPs). Let f be a standard-order ROBP with layers V0, . . . , Vn.
Let u ∈ Vi and S ⊆ Vj where i ≤ j. We let fu→S denote the subprogram from u to S, i.e., the
standard-order ROBP on layers Vi, . . . , Vj with start vertex u and accept vertices S. We use the
shorthand fu→v = fu→{v}, f→v = fvstart→v, and fu→ = fu→Vaccept.

3.2.1 Concatenating two independent pseudorandom strings

As mentioned previously, we are working toward presenting the INW PRG and proving that it fools
standard-order ROBPs. The INW PRG is based on recycling seeds recursively. After constructing a
PRG with output length n/2, we will use two correlated seeds to generate two pseudorandom strings
of length n/2 and concatenate them to get a string of length n. To argue that the INW PRG works,
we will argue that using two correlated seeds is almost as good as using two independent seeds.

Let us begin by arguing that using two independent seeds would work well in the first place.
This argument is generic and applies to many different models of computation, not just ROBPs.

Lemma 3.2.4 (Concatenating independent pseudorandom strings). Let n be an even positive integer,
let f : {0, 1}n → R, and let XL, XR be independent random variables distributed over {0, 1}n/2. Let
F be the class of all restrictions of f to n/2 bits. If XL and XR fool F with error ε, then (XL, XR)
fools f with error 2ε.

Proof. Sample U ∼ Un/2 so that XL, XR, U are mutually independent. Then

E
XL,XR

[f(XL, XR)] = E
XL

[
E
XR

[f(XL, XR)]

]
= E

XL

[
E
U
[f(XL, U)]± ε

]
= E

U

[
E
XL

[f(XL, U)]

]
± ε

= E[f]± 2ε.

1Hoza used the same verbose terminology in some other recent expository work [Hoz22].

49

3.2.2 Recycling seeds using a PRG for two-dimensional rectangles

The main lemma of the INW generator allows us to double the output length of a PRG by paying a
small additive penalty in terms of the seed length.

Lemma 3.2.5 (Recycling seeds for standard-order ROBPs). Let n be an even positive integer.
Suppose G : {0, 1}s → {0, 1}n/2 is an ε-PRG for width-w length-(n/2) standard-order ROBPs. Let
(YL, YR) be a distribution over {0, 1}2s that δ-fools two-dimensional combinatorial rectangles. Then
(G(YL), G(YR)) fools width-w length-n standard-order ROBPs with error 2ε+ wδ.

Proof. Let f be a width-w length-n standard-order ROBP. Define g : {0, 1}2s → {0, 1} by composing
f with two independent copies of G, i.e.,

g(yL, yR) = f(G(yL), G(yR)).

By Lemma 3.2.4, using two independent seeds fools f with error 2ε, i.e., |E[f]−E[g]| ≤ 2ε. Now let
us compare two independent seeds to the two correlated seeds (YL, YR). For any xL, xR ∈ {0, 1}n/2,
we can write

f(xL, xR) =
∑

v∈Vn/2

f→v(xL) · fv→(xR).

Consequently, if we define gv(yL, yR) = f→v(G(yL)) · fv→(G(yR)), then

g(yL, yR) =
∑

v∈Vn/2

gv(yL, yR).

Each function gv is a two-dimensional combinatorial rectangle on 2s bits. Therefore, (YL, YR) fools
gv with error δ, so by the Triangle Inequality for PRG Errors, (YL, YR) fools g with error wδ.
Therefore,

|E[f]− E[g(YL, YR)]| ≤ 2ε+ wδ.

Theorem 3.2.6 (The INW generator for standard-order ROBPs [INW94]). For every n,w ∈ N
and every ε > 0, there is an explicit ε-PRG for width-w length-n standard-order ROBPs with seed
length O(log(wn/ε) · log n).

Proof. Set δ = ε
wn . We start with the trivial PRG G(y) = y where |y| = 1. We repeatedly apply

Lemma 3.2.5, using Corollary 3.1.8 to sample YL, YR. Each time we apply Lemma 3.2.5, we double the
output length of our PRG, we increase its seed length from s to s+O(log(1/δ)) = s+O(log(wn/ε)),
and we increase its error from ε0 to 2ε0 +

ε
n . After log n iterations, we are done.

The seed length in Theorem 3.2.6 was actually already achieved by Nisan [Nis92] prior to
Impagliazzo, Nisan, and Wigderson’s work [INW94]. Nisan’s PRG [Nis92] follows a fairly similar
intuition as the INW generator, but the details are different. The INW generator has some advantages
over Nisan’s generator; most importantly, the INW generator has turned out to be more flexible
and amenable to analysis in other models. (We will see an example in Section 3.3.)

The optimal seed length for fooling width-w length-n standard-order ROBPs would beO(log(wn/ε)).
Designing optimal or near-optimal PRGs for standard-order ROBPs is one of the biggest open
problems in the unconditional theory of PRGs. Some of the work on this problem focuses on the case
that the width of the program is very small. In Section 2.3.4, we saw that small-bias generators fool
width-2 branching programs with seed length O(log(n/ε)). Explicit PRGs for width-3 standard-order
ROBPs are known with seed length Õ(log n · log(1/ε)) [MRT19]. However, for width-4 ROBPs, no
PRG constructions are known with a seed length better than that of the INW generator.

50

Open Problem 3.2.7 (Better PRGs for width-4 ROBPs). Design an explicit 0.1-PRG for width-4
length-n standard-order ROBPs with seed length o(log2 n).

A candidate PRG for ROBPs, suggested by Reingold and Vadhan [MZ09; LV17], is to take a
sum (i.e., bitwise XOR) of a few independent small-bias distributions. Recall Viola’s proof that a
sum of d small-bias distributions fools degree-d polynomials over F2 (see Section 2.4). Perhaps a
similar PRG can work for constant-width ROBPs.

Open Problem 3.2.8 (ROBPs and sums of small-bias distributions). Prove or disprove the
suggestion that a sum of O(1) small-bias distributions fools constant-width standard-order ROBPs
with near-logarithmic seed length.

Amazingly, it is consistent with current knowledge that simply summing two small-bias distribu-
tions fools polynomial -width standard-order ROBPs with optimal seed length O(log(n/ε)).

Due to the difficulty of constructing improved PRGs, much of the recent research on pseu-
dorandomness for ROBPs has focused on constructing relaxations of PRGs such as HSGs and
WPRGs (defined in Section 1.5) [GMRTV12; ŠŽ21; BCG20; HZ20; CL20; CDRST21; PV21b;
Hoz21]. Another line of work seeks PRGs for restricted classes of ROBPs; we will discuss an example
in the next section.

3.3 The BRRY generator for standard-order regular ROBPs

As discussed in the previous section, it is still an open problem to design an explicit PRG for
constant-width standard-order ROBPs with seed length o(log2 n). However, we can get a better
seed length for many interesting special cases, including regular programs. A standard-order ROBP
is called regular if every vertex of the program (except those in the first layer) has in-degree 2; see
Figure 3.2. There is a reduction showing that optimal PRGs for standard-order regular ROBPs imply
optimal PRGs for all standard-order ROBPs [RTV06; BHPP22], which helps to motivate studying
this special case. We will present a result by Braverman, Rao, Raz, and Yehudayoff [BRRY14],
which shows how to achieve seed length Õ(log n) for constant-width standard-order regular ROBPs.

Theorem 3.3.1 (The BRRY generator for standard-order regular ROBPs [BRRY14]). For every
w, n ∈ N and ε > 0, there is an explicit ε-PRG for width-w length-n standard-order regular ROBPs
with seed length

O (log n · (logw + log log n+ log(1/ε))) .

As we will see, the PRG construction is actually the same INW generator that we discussed in
Section 3.2 (albeit with different parameters). The improvement comes from a better analysis.

3.3.1 Improved analysis of the INW generator for low-weight programs

For intuition, let us briefly summarize the INW analysis that we seek to improve (see Section 3.2).
In each round of the INW construction, we use a δ-spectral expander to recycle the seed from
the previous round. The analysis essentially argues that we pay an error δ at each vertex in the
program, so the total error is δwn. We therefore chose δ = ε

wn . In each of the log n rounds of the
construction, the seed length increases by an additive O(log(1/δ)), leading to the final seed length
of O(log(wn/ε) · log n).

Braverman, Rao, Raz, and Yehudayoff had the insight that this analysis is overly pessimistic in
some cases, because it treats every vertex in the program as “important.” In reality, sometimes a
vertex v is “unimportant,” in the sense that its two out-neighbors v[0], v[1] have almost the same

51

vstart reject

accept

reject

accept

0

x1

1

0

1

1

0

1

0

0

x3

1

0

1

1

0

1

0

0

x2

0

1

0

1

0

1

0

1

0

x4

0

1

0

1

0

1

0

1

Figure 3.2: Let n be an even positive integer. The function f(x) = x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn can
be computed by a width-4 standard-order regular ROBP. The case n = 4 is shown above.

acceptance probabilities: E[fv[0]→] ≈ E[fv[1]→]. After reaching such a v, it doesn’t matter much
whether we read a high-quality random bit or a low-quality random bit, because it doesn’t matter
much whether we go to v[0] or v[1]. Rather than contributing a penalty of δ to the overall error
bound, intuitively we might hope that the error at such a vertex is closer to δ · |E[fv[0]→]−E[fv[1]→]|.

To formalize this intuition, we rely on a generalization of ROBPs that output real values instead
of Boolean ones, called read-once evaluation programs (ROEPs).

Definition 3.3.2 (Read-once evaluation programs). A length-n standard-order read once evaluation
program (standard-order ROEP) f has the same graph structure as a length-n standard-order ROBP,
but in the final layer, instead of a set of accept vertices Vaccept ⊆ Vn, it has a value qv ∈ R assigned
to each vertex v ∈ Vn. Each input x ∈ {0, 1}n defines a path from vstart to a vertex v ∈ Vn as usual,
which determines the output of the program f(x) = qv. Thus, f computes a function f : {0, 1}n → R.

Standard-order ROBPs are a special case of standard-order ROEPs, where qv = 1 if v ∈ Vaccept
and qv = 0 if v ∈ Vn \ Vaccept. If v is a vertex in an ROEP f , then the subprogram f→v is an ROBP
while the subprogram fv→ is an ROEP. We extend the notation qv to the case that v ̸∈ Vn by the
rule qv = E[fv→], i.e., qv is the expected label of the vertex reached by starting at v and taking
a random walk to Vn. The “importance” of a vertex in an ROEP is captured by the following
definition.

Definition 3.3.3 (Weight in an ROEP). Let f be a standard-order ROEP with layers V0, . . . , Vn.
Let v ∈ Vi with i < n. Let v[0] and v[1] be the two out-neighbors of v. The weight of v, denoted
Weight(v), is defined to be

Weight(v) = |qv[0] − qv[1]|.
The weight of f is the sum of the weights of the vertices,2 i.e.,

Weight(f) =

n−1∑
i=0

∑
v∈Vi

Weight(v).

2In the original paper [BRRY14], Braverman, Rao, Raz, and Yehudayoff considered edge weights instead of vertex
weights. The two definitions are equivalent.

52

In Fourier-analytic terms, we have the following formula [RSV13]:

Weight(f) = 2

n∑
i=1

∑
v∈Vi−1

∣∣∣f̂v→({i})
∣∣∣ .

Clearly, we always have Weight(v) ≤ 1 and hence Weight(f) ≤ wn. Now let us show that the
INW generator fools low-weight programs with a shorter seed.

Theorem 3.3.4 (The BRRY generator for low-weight standard-order ROEPs [BRRY14]). For
every w, n,m ∈ N and ε > 0, there is an explicit ε-PRG for width-w length-n ROEPs f that satisfy
Weight(f) ≤ m with seed length

O(log n · (log(wm/ε) + log log n)).

In the original paper [BRRY14], to prove Theorem 3.3.4, Braverman, Rao, Raz, and Yehudayoff
analyzed the INW generator in terms of randomness extraction, similar to the analysis of the
Nisan-Zuckerman generator (see Section 3.4). Here, we will show how to carry out the analysis
more directly, using the PRG characterization of spectral expanders (Lemma 3.1.4). The first step,
like the original INW analysis, is to analyze two independent seeds. We use the following refinement
of Lemma 3.2.4.

Lemma 3.3.5 (Refined analysis of the concatenation of independent pseudorandom strings). Let n
be an even positive integer, let f : {0, 1}n → R, and let XL, XR be independent random variables
distributed over {0, 1}n/2. Define fL : {0, 1}n/2 → R by

fL(x) = E[f(x, Un/2)],

and let FR be the class of all functions fR : {0, 1}n/2 → R of the form

fR(x) = f(a, x)

where a ∈ {0, 1}n/2. If XL fools fL with error εL and XR fools FR with error εR, then (XL, XR)
fools f with error εL + εR.

Proof. Sample U ∼ Un/2 so that XL, XR, U are mutually independent. Then

E
XL,XR

[f(XL, XR)] = E
XL

[
E
XR

[f(XL, XR)]

]
= E

XL

[
E
U
[f(XL, U)]± εR

]
= E

XL

[fL(XL)]± εR

= E[fL]± (εL + εR)

= E[f]± (εL + εR).

Next, we argue that the outputs of a very-low-weight ROEP fall in a small interval.

Lemma 3.3.6 (Low weight =⇒ bounded range). For every standard-order ROEP f and every
pair of inputs x, y, we have |f(x)− f(y)| ≤ Weight(f).

Proof. We proceed by induction on the length of f . For a length-1 standard-order ROEP, by
definition, |f(0)− f(1)| = Weight(vstart) ≤ Weight(f). If the length of f is n > 1, then let fL be
the ROEP consisting of the first n− 1 layers of f , and let u, v ∈ Vn−1 be the penultimate vertices
visited when f reads x and y respectively. By induction, |qu − qv| ≤ Weight(fL). Furthermore, we
have |qu − f(x)| = 1

2 Weight(u) and |qv − f(y)| = 1
2 Weight(v). Therefore,

|f(x)− f(y)| ≤ Weight(fL) +
1

2
Weight(u) +

1

2
Weight(v) ≤ Weight(f).

53

Finally, we are ready to analyze two correlated seeds. Recall that the INW generator is based
on a key lemma (Lemma 3.2.5) that says, if G fools width-w length-(n/2) ROBPs with error ε
and (X,Y) is a random edge in a δ-spectral expander, then (G(X), G(Y)) fools width-w length-n
ROBPs with error 2ε+ δw. We will prove the following more refined lemma that allows us to avoid
the critical factor of two.

Lemma 3.3.7 (Recycling randomness for low-weight programs). Suppose G : {0, 1}s → {0, 1}n/2
fools every width-w length-(n/2) ROEP f with error ε·Weight(f). Fix some δ-spectral expander on the
vertex set {0, 1}s, and sample a uniform random vertex X and a uniform random neighbor Y . Then
the distribution (G(X), G(Y)) fools every width-w length-n ROEP f with error (ε+wδ) ·Weight(f).

Proof. Let f be a width-w length-n ROEP. Let WeightL and WeightR denote the weights of the left
half and right half of f , respectively, so Weight(f) = WeightL+WeightR. Similarly to the proof of
Lemma 3.2.5, we can write

f(x, y) =
∑

v∈Vn/2

f→v(x) · fv→(y).

Fix a vertex v ∈ Vn/2. Define g(a) = f→v(G(a)) ∈ {0, 1} and h(b) = fv→(G(b)) ∈ R. By
Lemma 3.3.6, the outputs of h fall in an interval of length Weight(fv→) = WeightR. Therefore, by
Lemma 3.1.4, we have

|E[g(X) · h(Y)]− E[g]E[h]| ≤ δ ·Var[g] ·Var[h] ≤ δ · 1 ·WeightR .

Therefore, if we let U,U ′ be independent uniform seeds, then by the triangle inequality,

|E[f(G(U), G(U ′))]− E[f(G(X), G(Y))]| ≤
∑

v∈Vn/2

δ ·WeightR = wδ ·WeightR .

To bound |E[f(G(U), G(U ′))]− E[f]|, we use Lemma 3.3.5. The function fL that appears in that
lemma is precisely the left half of f , a standard-order ROEP of weight WeightL. Therefore, G fools
fL with error ε ·WeightL. Meanwhile, each function fR considered in that lemma is a subprogram
of the form fv→ for some v ∈ Vn/2, hence a standard-order ROEP of weight WeightR. Therefore, G
fools fR with error ε ·WeightR. Thus, Lemma 3.3.5 guarantees that

|E[f(G(U), G(U ′))]− E[f]| ≤ ε ·WeightL+ε ·WeightR .

Therefore,

|E[f(G(X), G(Y))]− E[f]| ≤ ε ·Weight(f) + wδ ·WeightR ≤ (ε+ wδ) ·Weight(f).

Just like the original INW generator, we can use Lemma 3.3.7 to inductively construct a PRG
for width-w length-n standard-order ROEPs. We start with a trivial PRG outputting a single bit.
Then, in each of log n steps, we use a δ-spectral expander to recycle the seed and thereby double the
output length. The final error is wδ ·Weight(f) · log n. To ε-fool standard-order ROEPs of weight
at most m, we may set δ = ε

wm logn . If we use a sparse expander (see Theorem 3.1.5), then in each
step, the seed length of our PRG increases by an additive O(log(1/δ)) bits. Thus, the final seed
length is O(log n · log(1/δ)), which is

O(log n · (log(wm/ε) + log log n)),

completing the proof of Theorem 3.3.4.

54

3.3.2 Regular programs have low weight

Recall that our original goal was to design an improved PRG for standard-order regular ROBPs
(Theorem 3.3.1). To apply the analysis of low-weight programs, Braverman, Rao, Raz, and
Yehudayoff showed that width-w standard-order regular ROBPs have weight at most O(w2).3 The
original proof has a “combinatorial” flavor and is based on studying a certain pebble game. Here
we present a more “analytic” interpretation of their argument.

Lemma 3.3.8 (Regular programs have bounded weight). If f is a length-n standard-order regular
ROEP, then

Weight(f) ≤ 2
∑

u,v∈Vn

|qu − qv|.

In particular, if f is a width-w standard-order regular ROBP, then Weight(f) ≤ 2w2.

Proof. For each i, let Di =
∑

u,v∈Vi
|qu − qv|. For i < n, let Weighti =

∑
u∈Vi

Weight(u). For
a vertex u, we let u[0] and u[1] denote the two out-neighbors of u. If we sample X,Y ∈ {0, 1}
uniformly at random, then

1

2
Weighti+Di =

1

2

∑
u∈Vi

|qu[0] − qu[1]|+
∑

u,v∈Vi
u̸=v

|qu − qv|

=
∑
u∈Vi

E
X,Y

[
|qu[X] − qu[Y]|

]
+
∑

u,v∈Vi
u̸=v

∣∣∣∣EX [qu[X]

]
− E

Y

[
qv[Y]

]∣∣∣∣
≤
∑
u∈Vi

E
X,Y

[
|qu[X] − qu[Y]|

]
+
∑

u,v∈Vi
u̸=v

E
X,Y

[
|qu[X] − qv[Y]|

]
(Triangle inequality)

=
∑

u,v∈Vi

E
X,Y

[
|qu[X] − qu[Y]|

]
=

∑
u,v∈Vi+1

deg−(u) · deg−(v)
4

· |qu − qv|

= Di+1 (Regularity.)

Rearranging, we have shown 1
2 Weighti ≤ Di+1 −Di. Summing over i < n completes the proof.

Combining Lemma 3.3.8 and Theorem 3.3.4 completes the proof of Theorem 3.3.1.
Besides regular ROBPs, another well-studied class of branching programs is permutation ROBPs,

which are regular ROBPs with the additional assumption that for each vertex v, the two incoming
edges of v have distinct labels. Braverman, Rao, Raz, and Yehudayoff’s paper [BRRY14] is one of a
great number of papers studying pseudorandomness for regular and permutation ROBPs [BRRY14;
BV10b; De11; KNP11; Ste12; RSV13; CHHL19; HPV21; PV21b; PV21a; PV22; BHPP22; LPV22].
We will revisit permutation ROBPs in Section 5.2.

Let us highlight one open problem regarding these topics. As mentioned in Section 3.2, Meka,
Reingold, and Tal designed a PRG for width-3 standard-order ROBPs with seed length Õ(log n ·

3In Braverman, Rao, Raz, and Yehudayoff’s definition of a regular ROBP [BRRY14], they only allowed a single
accept vertex (|Vaccept| = 1), hence their weight bound was O(w) rather than O(w2). For the purpose of Theorem 3.3.1,
it makes no difference whether we allow multiple accept vertices, because an ε-PRG for the single-accept-vertex model
is also an (εw)-PRG for the multiple-accept-vertex model. However, there are other contexts in which bounding the
number of accept vertices makes a huge difference [HPV21; PV21b; PV21a; PV22; BHPP22; LPV22].

55

log(1/ε)) [MRT19]. Roughly speaking, their approach involves reducing to the permutation case
and then applying the INW generator. The INW generator has a log n · log(1/ε) term in its seed
length (even for permutation branching programs [PV21a]), so Meka, Reingold, and Tal get no
improvement over Nisan’s PRG when the error is 1/n. This motivates the following problem.

Open Problem 3.3.9 (Low-error PRGs for width-3 standard-order permutation ROBPs). Design
an explicit PRG for width-3 standard-order permutation ROBPs with error 1/n and seed length
o(log2 n).

3.4 The Nisan-Zuckerman generator for short, wide ROBPs

In the previous section, we focused on width-w length-n standard-order ROBPs where w ≪ n. In
this section, let us study the opposite regime, i.e., w ≫ n. One reason to study this regime is that
it corresponds to derandomizing space-bounded algorithms that only use a little bit of randomness
in the first place.

Nisan and Zuckerman designed a PRG with optimal seed length O(logw) for the case that
n = polylogw and the error parameter is moderate [NZ96]. In contrast, the INW generator’s seed
length is Θ(logw · log logw) for such parameters.

Theorem 3.4.1 (The Nisan-Zuckerman generator). Let ν > 0 and c ≥ 1 be constants. For all
w ∈ N, there is an explicit PRG for width-w length-(logcw) standard-order ROBPs with seed length

O(logw) and error 2− log1−ν w.

Recall that when we say the PRG is “explicit,” we mean that its time complexity is polynomial
in its output length (Definition 1.4.1). In the case of Theorem 3.4.1, this means that the time
complexity of the PRG is polylog(w). As usual in this text, we will refrain from carefully verifying
this time complexity bound. However, it will turn out to be useful to analyze the space complexity of
the PRG. As we will see, the Nisan-Zuckerman PRG can be computed using O(logw) bits of space.
Using the connection between randomized space-bounded algorithms and ROBPs, one can show the
following striking corollary: If a decision problem can be solved by a randomized algorithm using S
bits of space and poly(S) random bits, then it can also be solved by a deterministic algorithm using
O(S) bits of space [NZ96].

3.4.1 Randomness extractors

The proof of Theorem 3.4.1 uses seeded randomness extractors (introduced by Nisan and Zucker-
man [NZ96]) to recycle randomness. Informally, a randomness extractor is a tool for converting an
“imperfect” source of randomness into near-uniform random bits. The following definition specifies
our model of imperfect randomness.

Definition 3.4.2 (k-Source [CG88; Zuc90]). The min-entropy of a distribution X, denoted Hmin(X),
is defined by

Hmin(X) = inf
x∈supp(X)

log

(
1

Pr[X = x]

)
.

We say that a random variable X on {0, 1}t is a k-source if Hmin(X) ≥ k, that is, for every
x ∈ {0, 1}t, Pr[X = x] ≤ 2−k.

(Min-entropy is also sometimes denoted H∞(X).) To precisely define extractors, let dTV(·, ·)
denote total variation distance.

56

Definition 3.4.3 (Seeded Randomness Extractor). A function Ext : {0, 1}t × {0, 1}d → {0, 1}m is
a (k, ε)-extractor if for every k-source X,

dTV(Ext(X,Ud), Um) ≤ ε,

where Ud is independent of X.

Intuitively, extractors and PRGs both produce some type of random bits, but they are incompa-
rable:

• The output of an extractor fools all tests f : {0, 1}m → {0, 1} (this is equivalent to being close
to uniform in total variation distance), whereas the output of a PRG only fools some tests.

• On the other hand, an extractor requires a seed and an imperfect source of randomness,
whereas a PRG only requires a seed.

Formally, it is possible to view extractors as a special case of PRGs,4 but this viewpoint is probably
not helpful.

There is a rich and beautiful theory of randomness extractors that goes beyond the scope of this
text; see, e.g., Vadhan’s monograph [Vad12]. We will take for granted an explicit construction due
to Guruswami, Umans, and Vadhan [GUV09], or rather a space-optimized version by Kane, Nelson,
and Woodruff [KNW08].

Theorem 3.4.4 ([GUV09; KNW08]). For every k ≤ t and ε > 0, there is an (k, ε)-extractor
Ext : {0, 1}t × {0, 1}d → {0, 1}m with m ≥ k/2 and d = O(log(t/ε)). Furthermore, given (x, y, k) as
input, Ext(x, y) can be computed in space O(t+ log(1/ε)).

Toward proving Theorem 3.4.1, we will first study a PRG of the following form:

G(x, y1, . . . , yℓ) = (Ext(x, y1), . . . ,Ext(x, yℓ)). (3.1)

We will then compose this PRG with itself to prove Theorem 3.4.1. Here’s the intuition behind
Equation (3.1). Let (X,Y1, . . . , Yℓ) be a uniform random seed. After the ROBP reads some prefix
(Ext(X,Y1), . . . ,Ext(X,Yi)), it only “remembers” logw bits of information about what it has seen.
We will set |X| = 3 logw. Since the ROBP only “knows” logw bits about X, the random variable
X should still have 2 logw bits of entropy “from the ROBP’s perspective.” Therefore, Ext(X,Yi+1)
should appear nearly uniform to the ROBP.

The most elegant way to formalize this intuition is to use the concept of conditional min-entropy
introduced by Dodis, Ostrovsky, Reyzin, and Smith [DORS08].

Definition 3.4.5 (Conditional min-entropy). Let X and A be jointly distributed random variables.
The conditional min-entropy of X given A is

H̃min(X | A) = log

(
1

Ea∼A[supx∈supp(X) Pr[X = x | A = a]]

)
.

Conditional min-entropy can be interpreted in terms of strategies for guessing X after seeing A
[Vad12, Problem 6.7]. Conditional min-entropy satisfies the following intuitive “chain rule” first
proven by Dodis, Ostrovsky, Reyzin, and Smith [DORS08, Lemma 2.2].

4Given Ext : {0, 1}t × {0, 1}d → {0, 1}m, we can define G : {0, 1}d → {0, 1}2
t×m by letting G(y) be the table of all

values Ext(x, y) for x ∈ {0, 1}t. Then Ext is a (k, ε)-extractor if and only if G is an ε-PRG for the class of functions f
of the form f(M) = 1

|S| ·
∑

i∈S g(Mi), where g : {0, 1}m → {0, 1} and S ⊆ [2t] with |S| ≤ 2k.

57

Lemma 3.4.6 (Chain rule for min-entropy). If | supp(A)| ≤ w, then

H̃min(X | A) ≥ Hmin(X)− logw.

If X has a lot of min-entropy given A, then intuitively, we should expect that Ext(X,Ud)
looks uniform even given A. This intuition is correct, as expressed by the following lemma, by
Vadhan [Vad12]. (See also a similar earlier lemma by Dodis et al. [DORS08, Lemma 2.3].)

Lemma 3.4.7 (Extracting from sources with high conditional min-entropy [Vad12, Problem 6.8]).
Let Ext : {0, 1}t × {0, 1}d → {0, 1}m be a (k, ε)-extractor. If H̃min(X | A) ≥ k, then

dTV

(
(Ext(X,Ud), A), (Um, A)

)
≤ 3ε.

(Here Ud is independent of (X,A) and Um is independent of A.)

Finally, we will need the following standard “data processing inequality,” which says that
applying a function – even a randomized function – can only make two distributions closer.

Lemma 3.4.8 (Data processing inequality for total variation distance). Let A and Ã be random
variables over the same space. Let R be independent of both A and Ã, and let f be any function.
Then

dTV

(
f(A,R), f(Ã, R)

)
≤ dTV

(
A, Ã

)
.

3.4.2 Using extractors to fool standard-order ROBPs

We are now ready to analyze the PRG of Equation (3.1). We will show that it achieves the following
parameters.

Lemma 3.4.9 (One iteration of the Nisan-Zuckerman generator). Let w, n ∈ N with n ≥ logw, and
let ε > 0. There is an explicit ε-PRG for width-w length-n standard-order ROBPs with seed length

O

(
logw +

n log(n/ε)

logw

)
.

Furthermore, the generator can be computed by an algorithm that reads the seed once from left to
right and runs in space O(log(wn/ε)).

Proof. Let ℓ = n
logw . Let ε

′ = ε
3ℓ , and let Ext : {0, 1}3 logw × {0, 1}d → {0, 1}logw be the (2 logw, ε′)-

extractor of Theorem 3.4.4, so d = O(log(n/ε)). The PRG G is given by Equation (3.1). The seed
length and efficiency claims are clear.

As for correctness, our job is to show that G fools every width-w length-n standard-order ROBP.
It will be convenient to group the n layers into ℓ blocks of logw layers each. This can be viewed
as a width-w length-ℓ ROBP over the alphabet {0, 1}logw, i.e., each vertex has w outgoing edges
labeled with all strings in {0, 1}logw. Let f be such a program, with layers V0, . . . , Vℓ. For i < n,
a ∈ Vi, and r ∈ {0, 1}logw, let a[r] denote the vertex reached from a by traversing the outgoing edge
with label r.

Sample X,Y1, . . . , Yℓ, R1, . . . , Rℓ independently and uniformly at random, where X ∈ {0, 1}3 logw,
Yi ∈ {0, 1}d, and Ri ∈ {0, 1}logw. Let A0, . . . , Aℓ be the sequence of vertices reached when f reads
the truly random bits R1, . . . , Rℓ, i.e., A0 = vstart and

Ai = Ai−1[Ri].

58

Similarly, let R̃i = Ext(X,Yi), and let Ã0, . . . , Ãℓ be the sequence of vertices reached when f reads
the pseudorandom bits R̃1, . . . , R̃ℓ, i.e., Ã0 = vstart and

Ãi = Ãi−1

[
R̃i

]
.

We will prove by induction on i that dTV

(
Ai, Ãi

)
≤ 3ε′i. The base case i = 0 is trivial. Now fix

i > 0. By the triangle inequality, we have

dTV

(
Ai, Ãi

)
= dTV

(
Ai−1[Ri], Ãi−1

[
R̃i

])
≤ dTV

(
Ai−1[Ri], Ãi−1[Ri]

)
+ dTV

(
Ãi−1[Ri], Ãi−1

[
R̃i

])
.

Applying the data processing inequality (Lemma 3.4.8) to each term, we get

dTV

(
Ai, Ãi

)
≤ dTV

(
Ai−1, Ãi−1

)
+ dTV

(
(Ãi−1, Ri), (Ãi−1, R̃i)

)
.

The first term is at most 3ε′ · (i − 1) by induction. As for the second term, the chain rule for
min-entropy (Lemma 3.4.6) implies that

H̃min(X | Ãi−1) ≥ 2 logw.

Therefore, Lemma 3.4.7 guarantees that the second term is at most 3ε′. Summing up, we get
dTV

(
Ai, Ãi

)
≤ 3ε′i as claimed. Therefore,

|E[f]− E[f(G(U3 logw+ℓd)]| =
∣∣Pr[Aℓ ∈ Vaccept]− Pr

[
Ãℓ ∈ Vaccept

]∣∣ ≤ dTV

(
Aℓ, Ãℓ

)
≤ ε.

Lemma 3.4.9 implies Theorem 3.4.1 when c is small, such as c = 1.5. To handle larger c, we
compose the generator of Lemma 3.4.9 with itself. More details are below.

Proof of Theorem 3.4.1. Let ε = 2− log1−ν w. Let w1 = w and n1 = logcw, and let G1 be the ε-PRG
of Lemma 3.4.9 for width-w1 length-n1 ROBPs. This generator G1 has seed length n2 = O(logc−ν w).
Furthermore, G1 can be computed by an algorithm that reads the seed once from left to right
and runs in space O(logw). It follows that for any width-w standard-order ROBP f , the function

f2(x)
def
= f(G1(x)) can be computed by an ROBP of width w2 = poly(w). Therefore, let G2

be the ε-PRG of Lemma 3.4.9 for width-w2 length-n2 standard-order ROBPs, with seed length
n3 = O(logc−2ν w). The composition G1 ◦ G2 fools f with error 2ε. Once again, f(G1(G2(x)))
can be computed by a standard-order ROBP of width w3 = poly(w). Continuing in this way for
O(c/ν) = O(1) steps, we obtain an explicit O(ε)-PRG for f with seed length O(logw).

An interesting feature of the proof of Theorem 3.4.1 is that the efficiency of the PRG of
Lemma 3.4.9 is a key part of the proof of correctness of the final PRG.

After Nisan and Zuckerman’s work [NZ96], Armoni developed their techniques further and
designed a PRG that “interpolates” between the INW generator and the Nisan-Zuckerman genera-
tor [Arm98]. Armoni’s seed length was slightly improved later [KNW08] by plugging in extractors
that were developed after Armoni’s work [GUV09] (and analyzing their space complexity). At the
extremes n ≥ w and n ≤ polylog(w), Armoni’s generator has the same seed length as the INW
generator and the Nisan-Zuckerman generator, respectively. However, in the intermediate regime
polylog(w) ≪ n≪ w, Armoni’s generator (as optimized by Kane, Nelson, and Woodruff [KNW08])
is the best PRG known for ROBPs. It outperforms the INW generator in this regime by a factor of

59

log logw (for moderate error), and this slight improvement (combined with other techniques) later
led to the current best unconditional derandomization of space-bounded computation [Hoz21].

The Nisan-Zuckerman generator does not have optimal error. Improving the error is an appealing
open problem.

Open Problem 3.4.10 (Improving the error of the Nisan-Zuckerman generator). For some function
n = ω(logw), design an explicit PRG for width-w length-n standard-order ROBPs with seed length
O(logw) and error 1/w.

The “hitting set generator” analogue of Open Problem 3.4.10 has been solved [AKS87; HZ20].

60

Chapter 4

PRGs and Hardness

From an algorithm-design perspective, an explicit PRG construction is a “positive” theorem – an
upper bound on the resources needed to sample a distribution that fools such-and-such class. An
explicit PRG can be used as a building block in a larger algorithm.

On the other hand, from a complexity perspective, a construction of an explicit PRG G fooling
a model F provides a concrete example of a task that F cannot do. A PRG construction is thus a
“negative” theorem – an impossibility result – a lower bound on the resources required to distinguish
the generator’s output from the uniform distribution.

In this chapter, we will explore connections between PRGs and more traditional “lower bound”
notions. First, in Section 4.1, we will investigate the “PRGs as lower bounds” viewpoint in more
detail and discuss its implications for the prospect of PRG design. Then, in Section 4.2, we will go
the other direction, i.e., we will show how to construct PRGs from suitable lower bounds.

4.1 PRGs as high-quality lower bounds

4.1.1 PRGs imply hard Boolean functions

We begin by showing that for every PRG G for a class F , there is a certain Boolean function h
(closely related to G) that cannot be computed by a certain class F ′ (closely related to F). We will
make the mild assumption that F is “closed under restrictions” as defined below.

Definition 4.1.1 (Closure under restrictions). Let F be a class of functions f on {0, 1}n. We say
that F is closed under restrictions if the following holds. Let f ∈ F , let i ∈ [n], and let b ∈ {0, 1}.
Define g(x) = f(x(i→b)), where x(i→b) denotes the string obtained from x by replacing the i-th bit
with b. Then g ∈ F .

Proposition 4.1.2 (PRG =⇒ Hard Function). Let F be a class of functions f : {0, 1}n → {0, 1}
that is closed under restrictions. Let G : {0, 1}s → {0, 1}n be an ε-PRG for F where s < n and
ε < 1/2. Define h : {0, 1}s+1 → {0, 1} by

h(x) = 1 ⇐⇒ there exist y, z such that G(y) = (x, z).

Let F ′ be the class of functions f : {0, 1}s+1 → {0, 1} of the form f(x) = f0(x, a) where f0 ∈ F and
a ∈ {0, 1}n−s−1. Then h ̸∈ F ′.

Proof. Since G fools F and F is closed under restrictions, the distribution G(Us)1...s+1 fools F ′ with
error ε. In contrast, let us show that it does not ε-fool h. Indeed, E[h(G(Us)1...s+1)] = 1, whereas
E[h] ≤ 1/2, because the image of G has size at most 2s.

61

If the PRG G is explicit, then the hard function h in Proposition 4.1.2 is “somewhat explicit.”
For example, if s = nΩ(1), then Definition 1.4.1 implies that h ∈ NP.

The conclusion of Proposition 4.1.2 is a “worst-case” lower bound, i.e., it merely asserts that
there is no function in F that correctly computes the hard function g on all inputs. An “average-case”
lower bound, as formalized below, is stronger: it asserts that no function in F can correctly compute
the hard function on significantly more than half of the inputs (with respect to some distribution).

Definition 4.1.3 (Average-case hardness). Let F be a class of functions f : {0, 1}r → {0, 1}, let
h : {0, 1}r → {0, 1}, and let D be a distribution over {0, 1}r. We say that h is ε-hard for F with
respect to D if for every f ∈ F , ∣∣∣∣ PrX∼D

[f(X) = h(X)]− 1

2

∣∣∣∣ ≤ ε.

(Note that in Definition 4.1.3, we assume that the success probability is neither significantly
more than 1/2, nor significantly less than 1/2. This is just for convenience. The two bounds are
equivalent if F is closed under complement.) The following refined reduction, first formalized by
Viola [Vio09], shows that PRGs imply average-case hardness.

Proposition 4.1.4 (PRG =⇒ Average-Case Hardness [Vio09]). Let F be a class of functions
f : {0, 1}n → {0, 1} that is closed under restrictions. Let G : {0, 1}s → {0, 1}n be an ε-PRG for F .
Let r = s+ ⌈log(1/ε)⌉ and assume that r ≤ n. Define h : {0, 1}r → {0, 1} by

h(x) = 1 ⇐⇒ there exist y, z such that G(y) = (x, z).

Let F ′ be the class of functions f : {0, 1}r → {0, 1} of the form f(x) = f0(x, a) where f0 ∈ F and
a ∈ {0, 1}n−r. Let D = 1

2Ur +
1
2G(Us)1...r, i.e., the distribution D is a balanced convex combination

of the distributions Ur and G(Us)1...r. Then h is ε-hard for F ′ with respect to D.

Proof. Sample U ∼ Ur and U ′ ∼ Us. Fix any f ∈ F ′, say f(x) = f0(x, a). Then

Pr
X∼D

[f(X) = h(X)] =
1

2
Pr[f(U) = h(U)] +

1

2
Pr[f(G(U ′)1...r) = h(G(U ′)1...r)]

=
1

2
Pr[f(U) = h(U)] +

1

2
Pr[f(G(U ′)1...r) = 1]

≤ 1

2
Pr[f(U) = 0] +

1

2
Pr[h(U) = 1] +

1

2
(Pr[f(U) = 1] + ε)

=
1

2
+
ε+ E[h]

2

≤ 1

2
+ ε,

where the first inequality uses the fact that F is closed under restrictions and hence the distribution
G(U ′)1...r fools F ′ with error ε. Since G also fools complements of functions in F , we also get the
reverse inequality PrX∼D[f(X) = h(X)] ≥ 1

2 − ε.

Proposition 4.1.4 demonstrates that there is a hierarchy of lower bounds:

PRG =⇒ Average-Case Lower Bound =⇒ Worst-Case Lower Bound. (4.1)

A PRG construction is a lower bound that is particularly strong, qualitatively speaking. Admittedly,
the average-case lower bound in Proposition 4.1.4 is with respect to a certain (explicitly-sampleable)
non-uniform distribution D, whereas traditionally, we seek average-case lower bounds with respect
to the uniform distribution. However, it turns out that in many cases the two types of average-case
lower bound are essentially equivalent [CLLO21].

62

4.1.2 The lack-of-lower-bounds barrier

Looking at Equation (4.1), an optimist might hope to use PRGs to prove new lower bounds. In
practice, however, lower bounds come first. Therefore, a lack of known lower bounds for a particular
model can be considered a type of barrier to constructing PRGs for that model.

For example, it would be great to obtain an explicit PRG that fools all size-n Boolean circuits
with seed length, say, O(

√
n). By Proposition 4.1.2, such a PRG would imply the existence of a

function h ∈ NP with quadratic circuit complexity. But proving that such a function exists would
be a major breakthrough in circuit complexity. The conventional wisdom is that one should not try
to design an unconditional PRG for size-n Boolean circuits until after proving the corresponding
circuit lower bounds.

The good news, as we have seen already in Chapters 2 and 3, is that this “lack-of-lower-bounds
barrier” still leaves plenty of room for a rich theory of unconditional PRGs. After all, highly
nontrivial lower bounds are already known for many interesting classes, and hence we can try to
design PRGs with matching parameters. For example, for AC0 circuits (see Definition 2.5.4), the
state-of-the-art lower bounds are as follows.

Theorem 4.1.5 (Parity is hard for AC0 circuits [IMP12; H̊as14]). For every m, d ∈ N and ε > 0,
there exists a value r = O(logd−1m · log(1/ε)) such that the parity function on r bits is ε-hard for
depth-d size-m AC0 circuits with respect to the uniform distribution.

In light of Theorem 4.1.5, we may reasonably hope to design an explicit ε-PRG for depth-d
size-m AC0 circuits with seed length as low as

O(logd−1m · log(1/ε)). (4.2)

(Assume for simplicity that d ≥ 2 and m ≥ n, where n is the number of pseudorandom bits.) Indeed,
recall that Braverman’s theorem (Section 2.6) implies a fairly similar seed length of logO(d)m·log(1/ε).
Furthermore, as we will discuss in Section 5.3, explicit PRGs for AC0 are known with better seed
lengths, getting very close to the bound of Equation (4.2). The optimal seed length would be
O(log(m/ε)), independent of d, but we should probably not expect to go below O(logd−1m · log(1/ε))
until after improving the known lower bounds for AC0 (Theorem 4.1.5).

As another example, let us consider standard-order ROBPs. Here the situation is better, because
optimal lower bounds are known:

Proposition 4.1.6 (Inner product is hard for standard-order ROBPs). For each even positive
integer 2r ∈ N, let IP2r : {0, 1}2r → {0, 1} denote the function

IP2r(x, y) =

r∑
i=1

xiyi mod 2.

For every w ∈ N and ε > 0, there exists a value r = O(log(w/ε)) such that IP2r is ε-hard for width-w
standard-order ROBPs with respect to the uniform distribution.

Proof. For every width-w length-(2r) standard-order ROBP f , there is a communication protocol in
which Alice holds x, Bob holds y, they communicate 1 + ⌈logw⌉ bits, and then they output f(x, y).
(Alice simulates the first half of f and sends the state to Bob; Bob simulates the second half of f
and sends the output bit to Alice.) The proposition follows by plugging in classic lower bounds
on the average-case communication complexity of IP2r (e.g., see Rao and Yehudayoff’s text [RY20,
Theorem 5.6]).

Thus, for standard-order ROBPs, there is no lack-of-lower-bounds barrier, and it is perfectly
reasonable to try to design optimal PRGs.

63

4.2 The Nisan-Wigderson framework

In the previous section, we saw that a PRG implies a hard decision problem. In this chapter, we will
discuss a famous method due to Nisan and Wigderson [NW94] for going the other way: converting a
hard decision problem into a PRG. Thus, we will establish a fairly tight connection between PRGs
and lower bounds (although there are losses that are important in some cases, so the connection is
not a perfect equivalence).

4.2.1 Constructing a PRG from a hard function

Let h : {0, 1}r → {0, 1} be a candidate “hard function.” Let s > r, and let S1, . . . , Sn be a family of
r-subsets of [s], i.e., Si ⊆ [s] and |Si| = r. The Nisan-Wigderson generator G : {0, 1}s → {0, 1}n is
given by

G(x) = (h(xS1), . . . , h(xSn)), (4.3)

where xS = xi1xi2 . . . xir when S = {i1 < i2 < · · · < ir}. In words, the generator applies the hard
function to n different substrings of the seed.

We will prove that this construction works under certain assumptions on h and S1, . . . , Sn.
Intuitively, to ensure that the output bits of G appear to be independent, we should apply the hard
function h to inputs that are almost “unrelated.” We will achieve this property by requiring that
the sets of indices S1, . . . , Sn are “nearly” disjoint.

Definition 4.2.1 (Nearly disjoint sets). We say that sets S1, . . . , Sn are k-nearly disjoint1 if
|Si ∩ Sj | ≤ k for all distinct i, j ∈ [n].

Meanwhile, the function h should be hard to compute, even on average (see Definition 4.1.3). To
fool a function f , we will assume that h is hard for compositions of f with arbitrary k-juntas (see
Definition 2.4.14). Under these assumptions, the Nisan-Wigderson generator achieves the following
parameters.

Theorem 4.2.2 (Nisan-Wigderson reduction). Let f : {0, 1}n → {0, 1}. Suppose h : {0, 1}r → {0, 1}
is ε-hard for f ◦ JUNTAr,k with respect to the uniform distribution, and suppose that S1, . . . , Sn are
k-nearly disjoint r-subsets of [s] for some s > r. Then the Nisan-Wigderson generator G given by
Equation (4.3) fools f with error ε · n.

4.2.2 Analysis: Unpredictability

The proof of Theorem 4.2.2 is based on the problem of predicting the next bit of a pseudorandom
string after seeing the first few bits. A truly random string is completely unpredictable.

Definition 4.2.3 (Unpredictability). Let X be a distribution over {0, 1}n, let f : {0, 1}n → {0, 1},
and let ε > 0. We say that X is ε-unpredictable for f if for every i ∈ [n] and every a ∈ {0, 1}n−i+1,
we have ∣∣∣∣Pr[f(X1, X2, . . . , Xi−1, a) = Xi]−

1

2

∣∣∣∣ ≤ ε.

Equivalently, X fools the test x 7→ f(x1, x2, . . . , xi−1, a)⊕ xi with error ε. We say that a generator
G : {0, 1}s → {0, 1}n is ε-unpredictable for f if G(Us) is ε-unpredictable for f .

1A family of nearly disjoint sets, all of the same size, is also known as a design or a partial design or a partial
Steiner system or a packing.

64

In some of the early literature, something like Definition 4.2.3 is actually taken to be the
definition of a PRG [Sha83; BM84]. As a first step toward proving Theorem 4.2.2, let us show that
the Nisan-Wigderson generator is unpredictable.

Lemma 4.2.4 (The NW PRG is unpredictable). Under the assumptions of Theorem 4.2.2, the
Nisan-Wigderson generator G is ε-unpredictable for f .

Proof. Fix i ∈ [n] and a ∈ {0, 1}n−i+1. Sample a seed Y ∈ {0, 1}s uniformly at random, and let
X = G(Y). Then∣∣∣∣Pr[f(X1, . . . , Xi−1, a) = Xi]−

1

2

∣∣∣∣ =
∣∣∣∣∣ E
Y[s]\Si

[
Pr
YSi

[f(h(YS1), . . . , h(YSi−1), a) = h(YSi)]

]
− 1

2

∣∣∣∣∣
≤ E

Y[s]\Si

[∣∣∣∣PrYSi

[f(h(YS1), . . . , h(YSi−1), a) = h(YSi)]−
1

2

∣∣∣∣] .
Consider any arbitrary fixing of Y[s]\Si

and let Z = YSi . For each j < i, since we fixed Y[s]\Si
and

|Si ∩ Sj | ≤ k, there is some k-junta ϕj such that h(YSj) = ϕj(Z). Therefore,∣∣∣∣PrYSi

[f(h(YS1), . . . , h(YSi−1), a) = h(YSi)]−
1

2

∣∣∣∣ = ∣∣∣∣PrZ [f(ϕ1(Z), . . . , ϕi−1(Z), a) = h(Z)]− 1

2

∣∣∣∣
≤ ε,

because h is ε-hard for f ◦ JUNTAr,k (note that each bit of a can trivially be computed by a
0-junta.)

To complete the proof of Theorem 4.2.2, we will relate the “predictor” model to the standard
“distinguisher” model. We will show that if a distribution is unpredictable for f , then it also fools f ,
with a factor of n loss in the error parameter. This lemma is attributed to Yao.

Lemma 4.2.5 (Unpredictable =⇒ Pseudorandom). Let X be a distribution over {0, 1}n and let
f : {0, 1}n → {0, 1}. If X is ε-unpredictable for f , then X fools f with error ε · n.

Proof. Let R ∼ Un be independent of X. Define hybrid distributions D0, D1, . . . , Dn by

Di = X1X2 . . . XiRi+1Ri+2 . . . Rn,

so Di consists of i pseudorandom bits followed by n− i truly random bits. By the triangle inequality,

|E[f(X)]− E[f]| = |E[f(Dn)]− E[f(D0)]| ≤
n∑

i=1

|E[f(Di)]− E[f(Di−1)]|.

For each i ∈ [n], we have

|E[f(Di)]− E[f(Di−1)]|

=

∣∣∣∣E[f(Di−1) | Ri = Xi]−
(
1

2
E[f(Di−1) | Ri = Xi] +

1

2
E[f(Di−1) | Ri ̸= Xi]

)∣∣∣∣
=

∣∣∣∣12 E[f(Di−1) | Ri = Xi] +
1

2
E[¬f(Di−1) | Ri ̸= Xi]−

1

2

∣∣∣∣
=

∣∣∣∣E[f(Di−1)⊕Ri ⊕Xi]−
1

2

∣∣∣∣
≤ E

R

[∣∣∣∣EX[f(Di−1)⊕Ri ⊕Xi]−
1

2

∣∣∣∣] .
65

This is at most ε, because for any fixing of R, if we let g(x) = f(x1 . . . xi−1Ri . . . Rn)⊕Ri⊕xi, then
either g or ¬g is testing whether f successfully predicts xi given x1, . . . , xi−1. Summing up, we get
|E[f(X)]− E[f]| ≤ ε · n.

4.2.3 A family of nearly disjoint sets

We have now shown how to construct a PRG given two ingredients: a hard function h and a family
of nearly disjoint sets S1, . . . , Sn. The hard function must be tailored to the specific class of functions
that we wish to fool, but constructing the family of nearly disjoint sets is a combinatorics problem
that can be addressed separately. We will construct such a family using an argument by Erdős,
Frankl, and Füredi [EFF85].

Lemma 4.2.6 (Existence of nearly disjoint sets [EFF85]). Let k, r, n ∈ N with r > k ≥ 1.
For a suitable value s = O(n1/(k+1) · r2/k), there exists a k-nearly disjoint family of r-subsets
S1, . . . , Sn ⊆ [s]. Furthermore, given k, r, and n, the family can be deterministically constructed in
time poly(n, 2s).

Proof. Construct S1, . . . , Sn greedily. That is, for i ∈ [n], having constructed S1, . . . , Si−1, search
exhaustively through all subsets of [s] to find a set Si of size r such that for every j < i, we have
|Sj ∩ Si| ≤ k. To prove that such a set exists, consider picking Si uniformly at random from among
all subsets of [s] of size r. Then by the union bound,

Pr
Si

[∃j < i such that |Si ∩ Sj | > k] ≤
i−1∑
j=1

Pr
Si

[|Sj ∩ Si| > k] = (i− 1) ·

(
r

k+1

)
·
(s−(k+1)
r−(k+1)

)(
s
r

)
< n ·

(
r

k+1

)2(
s

k+1

) ,
where the last step uses the identity

(
s
r

)
·
(

r
k+1

)
=
(

s
k+1

)
·
(s−(k+1)
r−(k+1)

)
. Therefore, a suitable Si is

guaranteed to exist provided n ≤
(

s
k+1

)
/
(

r
k+1

)2
. Choose the universe size to be s = ⌈er2 ·n1/(k+1)/k⌉,

because that way

n ≤
(
sk

er2

)k+1

<

(
s

k+1

)(
r

k+1

)2 ,
where the last step uses 0 < k < r ≤ s.

Optimality Ignoring explicitness, what is the best possible universe size s in Lemma 4.2.6?
Equivalently, given k, r, and s, what is the largest number n such that there exists a k-nearly
disjoint family of r-subsets S1, . . . , Sn ⊆ [s]? This seems to be an open problem in combinatorics,
even if we are only interested in rough asymptotics. The proof of Lemma 4.2.6 shows the existence
of a family with n ≥

(
s

k+1

)
/
(

r
k+1

)2
. Conversely, in every such family, each size-(k+1) subset of [s] is

contained in at most one Si, so
2 n ≤

(
s

k+1

)
/
(

r
k+1

)
. This last bound can be slightly improved [Sch64;

Für88], but it seems that there is still a significant gap.

Open Problem 4.2.7 (Optimal nearly disjoint sets). For given values k, r, and s, determine
(asymptotically) the maximum value n such that there exists a k-nearly disjoint family of r-subsets
S1, . . . , Sn ⊆ [s].

2In terms of universe size, we get s ≥ Ω(n1/(k+1) · r). One can also prove s ≥ Ω(min{r2/k, nr}) using the
inclusion-exclusion principle.

66

When k and r are constant, the problem has been solved: a famous theorem by Rödl [Röd85] says
that there exist families with n = (1− o(1)) ·

(
s

k+1

)
/
(

r
k+1

)
. When k and r are growing parameters,

however, the situation seems to be less clear. For example, when r = k2 and s = 100k3, the optimal
value of n is somewhere between 2Θ(k) and kΘ(k), but the true value seems to be unknown.

Efficiency The proof of Lemma 4.2.6 is simple, but it’s somewhat unsatisfactory because of the
exhaustive search. The universe size s corresponds to the seed length of the Nisan-Wigderson
generator. The time complexity poly(n, 2s) in Lemma 4.2.6 is too high to get a strictly “explicit”
PRG, except in the case s = O(log n), since our definition of explicitness (Definition 1.4.1) is that the
runtime should be poly(n). In the literature [NW94; KM02; HR03], there are several constructions
of families of nearly disjoint sets that are “more explicit” than the construction of Lemma 4.2.6, but
unfortunately, the parameters of these constructions are not quite as good.

Open Problem 4.2.8 (More efficient constructions of nearly disjoint sets). Find a family of nearly
disjoint sets that has the same parameters as Lemma 4.2.6 and that can be constructed in time
poly(n). (Assume s < n.)

4.2.4 Unconditional applications

To illustrate the Nisan-Wigderson framework, let us use the framework to design another PRG
for AC0 circuits. Recall that the parity function is hard for such circuits (Theorem 4.1.5). By
plugging the parity function into the Nisan-Wigderson framework, we get a PRG with the following
parameters.

Corollary 4.2.9 (Hardness-based PRG for AC0). For any n,m, d ∈ N and ε > 0, there is an ε-PRG
for depth-d size-m AC0 circuits on n input bits with seed length s = log2d+O(1)(mn) · polylog(1/ε).
The PRG can be computed in time 2O(s).

Proof. Let k = ⌊log n⌋. By Theorem 4.1.5, for a suitable value

r = O(logd+1(mn) · log(n/ε)),

the parity function h : {0, 1}r → {0, 1} is (ε/n)-hard for depth-(d+2) size-(m+n · 2k) AC0 circuits.
Let S1, . . . , Sn ⊆ [s] be the k-nearly disjoint family of r-subsets from Lemma 4.2.6, and let G be the
Nisan-Wigderson PRG given by Equation (4.3). To prove the correctness of this PRG, let f be a
depth-d size-m AC0 circuit on n input bits. Every function in f ◦ JUNTAr,k can be computed by a
circuit of depth d+ 2 and size m+ n · 2k, because every k-junta can be computed by a depth-two
AC0 circuit of size 2k. Therefore, h is (ε/n)-hard for f ◦ JUNTAr,k, so Theorem 4.2.2 implies that
G fools f with error ε. By Lemma 4.2.6, the seed length of our generator is s = O(n1/(k+1) · r2/k),
which is log2d+O(1)(mn) · log2(1/ε) as claimed.

Historically, the Nisan-Wigderson approach provided the first explicit PRG for constant-depth
polynomial-size AC0 circuits with seed length polylog n [Nis91]. The seed length in Corollary 4.2.9
is a little better than the seed length implied by Braverman’s theorem (Section 2.6) in some cases,
because the factor 2 in the exponent is better. Today, we can use other frameworks to construct
PRGs for AC0 circuits with better seed lengths (see the discussion in Section 5.3.) However, the
Nisan-Wigderson framework remains a valuable, flexible approach for designing PRGs, especially for
more powerful models of computation. For example, the Nisan-Wigderson framework has been used
to construct unconditional PRGs forAC0 circuits augmented with a few gates that compute arbitrary
threshold functions or symmetric functions [LVW93; Vio07; LS11; ST18; KL18]. Also, a line of
work initiated by Trevisan [Tre01] shows that there are connections between the Nisan-Wigderson
framework and unconditional constructions of randomness extractors (see Definition 3.4.3).

67

4.3 Hardness-based PRGs beyond Nisan-Wigderson

In summary, the Nisan-Wigderson framework is a method for converting a hard function into a
PRG. Starting from a function on r bits that is ε-hard for f ◦ JUNTAr,k, we get a PRG for f with
seed length O(n1/(k+1) · r2/k) and error ε · n.

Many other PRG constructions, including those that we saw in Chapters 2 and 3 and those that
we will see in Chapter 5, are related to lower bounds in a less direct way. To design a PRG for
a class F , rather than using the mere fact that such-and-such lower bound holds, we can try to
distill and develop the insights that were used to prove the lower bound. For example, as we saw in
Section 2.6, Braverman’s theorem relies on the LMN theorem (Theorem 2.6.2), which builds on
H̊astad’s switching lemma [Has89], which was originally proven for the sake of proving lower bounds
for AC0 [Has89]. As another example, the INW generator for ROBPs (Section 3.2) relies on the
same “communication complexity” intuition that appears in the proof of optimal lower bounds for
ROBPs (Proposition 4.1.6).

There are also methods other than the Nisan-Wigderson framework for generically converting
hardness into randomness. These methods improve on the Nisan-Wigderson framework in fascinating
and important ways. However, the known applications of these other methods are almost exclusively
conditional. Since our focus is on unconditional PRGs, we will only briefly survey these other
methods.

Optimizing the circuit-size blow-up Suppose we wish to design a PRG for size-n circuits of
unbounded depth. The Nisan-Wigderson framework can produce such a PRG, given a function
that is hard for circuits that are a little larger. Indeed, if f is a size-n circuit, then every function
in f ◦ JUNTAr,k can be computed by a circuit of size m = n · 2O(k). To avoid paying the severe
n1/(k+1) penalty in the Nisan-Wigderson seed length, one can choose k = Θ(log n), in which case
m = n1+Θ(1).

There is a line of work on improving the size complexity m, i.e., showing how to construct a
PRG for size-n circuits given a function that is hard for (some type of) circuits of size O(n) or even
(1 + α)n [RRV02; HR03; DMOZ20; CT21].

Read-once models There is another “loss” in the Nisan-Wigderson reduction of a more qualitative
nature. The Nisan-Wigderson framework is not well-suited for the important problem of fooling
standard-order ROBPs. The reason is that every polynomial-size read-many branching program can
be written in the form f ◦ JUNTAr,1 where f is a polynomial-size standard-order ROBP. Read-many
branching programs are vastly more powerful than ROBPs, and the Nisan-Wigderson framework
does not give us any way to take advantage of the read-once condition.

Babai, Nisan, and Szegedy nevertheless designed an unconditional hardness-based PRG for
standard-order ROBPs [BNS92] via a different reduction. (Their generator was superseded by
superior PRGs such as Nisan’s PRG [Nis92] and the INW PRG [INW94], which we discussed in
Section 3.2.)

The seed length compared to the domain size The seed length in the Nisan-Wigderson
reduction is not ideal. Recall that a PRG with seed length s implies a hard function on s+ 1 bits
(Proposition 4.1.2). Therefore, starting from a hard function on r bits, we can hope to construct a
PRG with seed length roughly r, rather than the r2 factor that appears in Lemma 4.2.6. Indeed,
there is a line of work showing how to convert an appropriately-hard function on r bits into a PRG
with seed length O(r) or even (1 + α)r [ISW06; SU05; Uma03; DMOZ20; CT21].

68

Worst-case hardness assumptions Recall that in the Nisan-Wigderson framework, we rely on
access to a function h that is hard on average, i.e., it is hard to compute h on even a (1/2+ε)-fraction
of inputs. There is a line of work on constructing PRGs from worst-case hardness [IW97; STV01;
ISW06; SU05; Uma03; DMOZ20; CT21]. To highlight one example, Umans showed how to construct
a PRG for size-n circuits given a function that cannot be computed (in the worst case) by circuits
of size nc for a suitable constant c [Uma03]. If the hard function is on r bits, then the PRG has seed
length O(r), and given the truth table of the hard function and a seed, the PRG can be computed
in time 2O(r) [Uma03].

Uniform hardness assumptions In the Nisan-Wigderson framework, we start with a function
h on a finite domain that is hard for some concrete, “nonuniform” model of computation. There are
also many known constructions of PRGs from uniform complexity-theoretic hardness assumptions
such as BPP ̸= EXP [BFNW93; CNS99; IW01; TV07; Gol11; CIS18; CRTY20].

The error parameter The Nisan-Wigderson reduction converts an ε-hard function into a PRG
with error ε · n. Fefferman, Shaltiel, Umans, and Viola have studied the problem of avoiding the
factor-of-n blow-up [FSUV13].

One of the motivations for studying this problem is the challenge of designing better PRGs for
AC0[⊕] circuits, i.e., AC0 circuits augmented with parity gates. For context, fairly strong lower
bounds are known for this class. In particular, it follows from Smolensky’s work [Smo93; Fil10] that

for every m, d ∈ N and ε > 0 with d ≤ log(m/ε)
log log(m/ε) , there is a value r = ε−2 · (log(m/ε))O(d) such

that the majority function on r bits is ε-hard for depth-d size-m AC0[⊕] circuits. Therefore, even if
we treat the lack-of-lower-bounds barrier as a real barrier, we can hope to design PRGs for these
circuits with polylogarithmic seed length (at least in the constant-error regime). So far, however,
the best fully-explicit PRGs for these circuits have much larger seed length, very close to the trivial
seed length of n bits [FSUV13].

Open Problem 4.3.1 (PRGs for AC0[⊕]). Design an explicit PRG that fools constant-depth
polynomial-size AC0[⊕] circuits on n input variables with seed length o(n).

Note that if we severely relax our standards of “explicitness,” then there are known constructions
of PRGs for AC0[⊕] with seed length no(1) [CR22; CLW20].

Cryptographic PRGs The Nisan-Wigderson generator is unsuitable for cryptography, because
computing the generator involves evaluating the “hard function” h. A cryptographic PRG cannot
afford to evaluate a function that is hard for the adversary to compute, because a cryptographic
PRG must fool all efficient adversaries – including those that use polynomially more time than the
PRG itself uses.

Nevertheless, the paradigm of using some type of “hard function” to construct a PRG has
been highly successful in the cryptographic setting [Yao82; GMT82; Sha83; BM84; BBS86; Lev87;
ACGS88; GL89; GKL93; HILL99; Gol01; Hol06; HHR06; HHR11; VZ12; HRV13; YLW15; YGLW15;
DVV16; EWT21; MZ21]. Indeed, hardness-based cryptographic PRGs predate the Nisan-Wigderson
framework.

69

Chapter 5

Random Restrictions

In this chapter, we will present several constructions of PRGs based on random restrictions. A
restriction is a string R ∈ {0, 1, ⋆}n. Intuitively, when Ri = ⋆, the interpretation is that R does
not assign any value to the i-th variable. A restriction R can be applied to a function f via the
following two definitions.

Definition 5.0.1 (Composition of restrictions). If R ∈ {0, 1, ⋆}n and x ∈ {0, 1}n, define the
composition R ◦ x ∈ {0, 1, ⋆}n by

(R ◦ x)i =

{
Ri if Ri ∈ {0, 1}
xi if Ri = ⋆.

(5.1)

More generally, the same formula holds when x is an element of {0, 1, ⋆}n rather than {0, 1}n, so ◦
is an associative binary operation on the space {0, 1, ⋆}n.

Definition 5.0.2 (Applying a restriction to a function). Let f be a function on {0, 1}n, and let
R ∈ {0, 1, ⋆}n be a restriction. Then the restricted function f |R is the function on {0, 1}n defined by

f |R(x) = f(R ◦ x).

Remark 5.0.3 (Order of restriction composition). Some sources define the composition operator ◦
the other way around, so f |R(x) = f(x ◦R) rather than f(R ◦ x). Both conventions are reasonable.
The motivation behind our convention is that one can identify a restriction R ∈ {0, 1, ⋆}n with the
unique function R : {0, 1}n → {0, 1}n such that for every f and x, we have f |R(x) = f(R(x)). (See
Figure 5.1.) Under this identification, the restriction composition operator ◦ is literally function
composition.

We will often consider random restrictions as defined below.

Definition 5.0.4 (Truly random restrictions). For p > 0, let Rp denote a truly random restriction
over {0, 1, ⋆}n with ⋆-probability p, i.e., the coordinates are independent, and each coordinate is

⋆ with probability p

0 with probability (1− p)/2

1 with probability (1− p)/2.

(The parameter n will be clear from context.)

70

f

0 111

x1 x2 x3 x4 x5 x6 x7 x8

R

Figure 5.1: The restricted function f |R in the case R = {0, ⋆, 1, 1, ⋆, ⋆, 1, ⋆}. We still think of f |R as
a function on the 8-variable domain {0, 1}8, but its output only depends on the values of four of
those variables.

Random restrictions have been used in many areas of the theory of computing, perhaps starting
with Subbotovskaya’s pioneering work on De Morgan formulas [Sub61]. The process of designing a
PRG for a class F using restrictions can be divided into two main steps.

1. Prove a lemma that says that functions in F simplify in some sense under restrictions. We will
refer to such a lemma as a “simplification-under-restrictions lemma.” This first step requires
an intimate understanding of the specific class F .

2. Apply a generic reduction that says how to construct a PRG for any class satisfying a suitable
simplification-under-restrictions lemma (and perhaps also satisfying some mild conditions such
as closure properties). This second step is mainly about the abstract logic of restrictions and
PRGs.

As we will see, this plan can be instantiated in multiple ways. There are several different types
of simplification-under-restrictions lemmas:

• Are we considering truly random restrictions, or pseudorandom restrictions, or “partially
pseudorandom” restrictions?

• What is our measure of “simplicity?”

• Does simplification occur with high probability, or does it merely occur “on average?”

Correspondingly, there are several distinct reductions from the problem of constructing PRGs to
the problem of proving simplification under restrictions. We will discuss the polarizing random
walks framework (Sections 5.1 and 5.2), the iterated restrictions paradigm (Sections 5.3 to 5.5),
and the Impagliazzo-Meka-Zuckerman framework (Section 5.6). Perhaps these variations make the
topic a bit confusing, but on the bright side, all this flexibility means that we have a rich toolkit for
constructing PRGs.

71

5.1 PRGs from polarizing random walks

In this section, we present our first reduction showing that if a class simplifies under random
restrictions, then we get a PRG for that class. This first reduction, based on “polarizing random
walks,” was introduced relatively recently by Chattopadhyay, Hatami, Hosseini, and Lovett [CHHL19].
It has the benefit that its assumptions are quite minimal, i.e., it is applicable in a relatively broad
set of circumstances.

5.1.1 Simplification under truly random restrictions

Let F be a class of functions f : {0, 1}n → {0, 1} that we wish to fool. Suppose that we have shown
that functions in our class F simplify under random restrictions. Specifically, suppose we have
identified a class Fsimp of “simpler” functions and values p, δ > 0 such that for each f ∈ F , we have

Pr[f |Rp ∈ Fsimp] ≥ 1− δ.

For example, Rossman proved the following theorem [Ros19] using H̊astad’s famous switching
lemma [Has89] and his more recent “multi-switching” lemma [H̊as14].

Theorem 5.1.1 (AC0 simplifies under restrictions [Ros19]). For every n,m, d ∈ N, there is a value
p = 1/Θ(logm)d−1 such that if f : {0, 1}n → {0, 1} is computable by a depth-d size-m AC0 circuit
and δ > 0, then with probability 1− δ, the restricted function f |Rp can be computed by a decision
tree of depth at most log(1/δ).

For this section, we will consider a class “simple” if we can fool it with a short seed. For example,
we consider small-depth decision trees to be simple, because we can ε-fool decision trees of depth
log(1/δ) using a seed of length O(log(1/δ) + log(1/ε) + log log n) (see Section 2.3.3). In general,
assuming that functions in F simplify to Fsimp under restrictions, and assuming that we have a
good PRG for Fsimp, how can we design a PRG for the original class F? Our strategy will be to
first design a relaxation of a PRG called a fractional PRG. Then, we will gradually transform the
fractional PRG into a genuine PRG.

5.1.2 Fractional PRGs

For the purposes of this approach, it will be convenient to work with Boolean functions f : {−1, 1}n →
R instead of our usual domain {0, 1}n. Recall that a PRG for a family of Boolean functions is a
function G : {0, 1}s → {−1, 1}n such that E[f(G(Us))] ≈ E[f] for every function f in the family. A
fractional PRG is a relaxation of a PRG where we allow G to take values in the solid hypercube
[−1, 1]n as opposed to {−1, 1}n. For this to make sense, we would like to be able to “evaluate”
f : {−1, 1}n → R on arbitrary inputs from [−1, 1]n. One natural way to do this is by considering
the multilinear extension of f . Recall that every Boolean function f : {−1, 1}n → R has a unique
Fourier expansion,

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

The formula above can be evaluated at an arbitrary point x ∈ Rn, which allows us to extend f to a
multilinear polynomial f : Rn → R. To understand how to interpret the value f(x) for fractional
vectors x ∈ [−1, 1]n, we make the following definition.

Definition 5.1.2 (Product distribution notation). For x ∈ [−1, 1]n, let Πx be the unique product
distribution over {−1, 1}n satisfying E[Πx] = x.

72

Fact 5.1.3 (Evaluation at fractional points). Let f : {−1, 1}n → R be any function. Extend f to
the domain [−1, 1]n via the Fourier expansion. Then for every x ∈ [−1, 1]n, we have

f(x) = E[f(Πx)].

More generally, for every product distribution X over [−1, 1]n, we have E[f(X)] = f(E[X]).

Proof. This is immediate from multilinearity and linearity of expectation.

As a result, if f takes values in {−1, 1}, then its multilinear extension is a map [−1, 1]n → [−1, 1].
Another useful corollary is that f(0n) = E[f]. Thus, a PRG can be seen as a method of sampling
a distribution X over {−1, 1}n such that E[f(X)] ≈ f(0n). We will define a fractional PRG by
allowing the pseudorandom distribution to take values inside the cube.

Definition 5.1.4 (Fractional PRGs). Let f : {−1, 1}n → R, and extend f to the domain [−1, 1]n

via the Fourier expansion. A random variable X ∈ [−1, 1]n is said to ε-fool f , or fool f with error
ε, if

|E[f(X)]− f(0n)| ≤ ε.

We say that X fools a family F of Boolean functions with error ε if X fools (the multilinear extension
of) each function in F with error ε. A fractional ε-PRG for F is a function G : {0, 1}s → [−1, 1]n

such that G(Us) fools F with error ε.

We can trivially fool all Boolean functions with error 0 and seed length 0 by simply outputting
0n. However, our main motivation for defining fractional PRGs is as a means to constructing true
PRGs, and our PRG construction will require some non-triviality conditions from the fractional
PRG. In particular, we will require each coordinate of the fractional PRG to have variance bounded
away from zero.

Definition 5.1.5 (Noticeability). We say that a random variable X ∈ [−1, 1]n is q-noticeable for a
parameter q ≥ 0, if for every i ∈ [n], E[X2

i] ≥ q. We say that a fractional PRG G : {0, 1}s → [−1, 1]n

is q-noticeable if G(Us) is q-noticeable.

The following lemma shows that if a class F simplifies to another class Fsimp under restrictions,
and we have a good PRG for Fsimp, then we get a good fractional PRG for the original class F ,
where the noticeability depends on the ⋆-probability of the restrictions.

Lemma 5.1.6 (Simplification implies fractional PRGs). Let F and Fsimp be classes of functions
f : {−1, 1}n → {−1, 1}. Let p, δ > 0, and suppose that for each f ∈ F , we have

Pr[f |Rp ∈ Fsimp] ≥ 1− δ.

Let X be a distribution over {−1, 1}n that ε-fools Fsimp. Then pX is (p2)-noticeable and fools F
with error ε+ 2δ.

Proof. Clearly, we always have (pX)2i = p2, showing that pX is (p2)-noticeable. Now fix f ∈ F , and
sample R ∼ Rp independently of X. For each fixed string x ∈ {±1}n, the composition R ◦ x is a
product distribution over {±1}n, where

E[(R ◦ x)i] = (1− p) · 0 + p · xi = p · xi.

Therefore, by Fact 5.1.3, we have E[f(R ◦ x)] = f(px). Consequently, EX [f(pX)] = ER,X [f(R ◦X)].
Clearly, |ER,X [f(R ◦X)]− E[f]| ≤ ε+ 2δ.

73

By combining Lemma 5.1.6 and Theorem 5.1.1, we get a fractional PRG for AC0 with the
following parameters.

Corollary 5.1.7 (Fractional PRGs for AC0). For every n,m, d ∈ N and every ε > 0, there is
an explicit q-noticeable fractional PRG that ε-fools depth-d size-m AC0 circuits with seed length
O(log(1/ε) + log log n), where q = 1/Θ(logm)2d−2.

5.1.3 From fractional PRGs to PRGs

In this section we will prove that fractional PRGs can be used to construct PRGs with small seed
length as long as the fractional PRG has two useful properties: it has a small seed length and all its
coordinates have noticeable variance.

Theorem 5.1.8 (Fractional PRG =⇒ Standard PRG [CHHL19]). Suppose that F is a family
of functions f : {−1, 1}n → {−1, 1} that is closed under restrictions and shifts. Assume that there
exists an explicit q-noticeable fractional PRG for F with error ε and seed length s. Then there exists
an explicit PRG for F with seed length O(s · q−1 · log(n/ε)) and error O(ε · q−1 · log(n/ε)).

For example, by combining Theorem 5.1.8 and Corollary 5.1.7, we get the following PRG for
AC0.

Corollary 5.1.9 (PRG for AC0 based on simplification under truly random restrictions). For
every n,m, d ∈ N and ε > 0, there is an explicit ε-PRG for depth-d size-m AC0 circuits on n input
bits with seed length

Õ(logm)2d−2 · Õ(log(n/ε) · log(1/ε)).

The seed length in Corollary 5.1.9 is slightly better than the other PRGs for AC0 circuits that
we have already seen (Braverman’s theorem in Section 2.6, and the Nisan-Wigderson generator
in Section 4.2). More importantly, this new PRG generalizes in some ways that the previously
discussed PRGs do not. After all, the same approach works whenever a class simplifies under
random restrictions. In fact, as we will discuss in Section 5.2, it even works in the more general
setting of a class that simplifies “on average” under random restrictions.

Random walks

To prove Theorem 5.1.8, we will take a random walk through the solid hypercube [−1, 1]n. It is
natural to take Y (0) = 0n as the starting point, since E[f] = f(0n). Our goal then is to define a
random walk that converges quickly to the Boolean cube {−1, 1}n, while each step of the walk does
not incur much error. We will define the steps by independent samples from the output distribution
X of the fractional PRG.

To this end let X(1), . . . , X(t) be t independent samples of X where t is to be determined later.
A natural first step for the random walk is Y (1) = Y (0) +X(1), as it has the two useful properties:

1. |E[f(Y (1))]− E[f(Y (0))]| ≤ ε, and

2. Each coordinate of Y (1) is likely closer to {−1, 1} due to p-noticeability.

It is tempting to continue this approach for all steps and in particular define Y (j) = Y (j−1) +X(j).
This does not work, since we may already step out of the [−1, 1]n cube, and in fact after some steps
start getting farther and farther from {−1, 1}n. A slight modification that works is to normalize
coordinates according to their distance from {−1, 1}n.

74

For two vectors x, x′ ∈ [−1, 1]n, define x ⊙ x′ ∈ [−1, 1]n to be their coordinate-wise product.
Moreover, for every vector y ∈ [−1, 1]n define δy ∈ [0, 1]n to be the vector with i-th coordinate
(δy)i = 1− |yi|, i.e., (δy)i is the distance from yi ∈ [−1, 1] to the Boolean endpoints {−1, 1}. The
vector δy defines dimensions of the largest subcube inside [−1, 1]n centered at y. Using this notation,
we can now define the random walk:

• Y (0) = 0n, and

• For j > 0, let Y (j) = Y (j−1) + δY (j−1) ⊙X(j).

We will show that this random walk quickly gets close to {−1, 1}n. Still, there is a chance that the
coordinates of Y (t) are never exactly integers. The final construction takes care of this by outputting
the coordinate-wise signs of Y (t). To this end, for x ∈ Rn define sign(x) ∈ {−1, 1}n to be the vector
with i-th coordinate sign(x)i = 1 ⇐⇒ xi > 0.

The Generator G:

1. Let X1, . . . , Xt be independent copies of X for a suitable value t = O(q−1 · log(n/ε))

2. Let Y (0) = 0n, and for j > 0 define Y (j) = Y (j−1) + δY (j−1) ⊙X(j)

3. Output sign(Y (t))

Analysis of the random walk

To prove the correctness of the generator G, we will prove that the random walk has three properties:

(a) Each step introduces little error: For every f ∈ F and j ∈ [t],
∣∣E [f(Y (j))

]
− E

[
f(Y (j+1))

]∣∣ ≤ ε.

(b) The walk polarizes with high probability: Pr[∥δY (t)∥∞ ≤ ε/n] ≥ 1− ε.

(c) The final rounding operation introduces little error: For every f ∈ F , conditioned on polarization,
|f(Y (t))− f(sign(Y (t)))| ≤ ε.

We prove these properties in the next three lemmas.

Lemma 5.1.10 (Steps incur small error). Let F be a family of functions f : {−1, 1}n → R that is
closed under restrictions, and suppose X ∈ [−1, 1]n fools F with error ε. Then for every f ∈ F and
y ∈ [−1, 1]n,

|f(y)− E[f(y + δy ⊙X)]| ≤ ε.

In particular, for every j ∈ [t], ∣∣∣E [f(Y (j))
]
− E

[
f(Y (j+1))

]∣∣∣ ≤ ε.

Proof. Let y ∈ [−1, 1]n be fixed. Sample a restriction R ∈ {−1, 1, ⋆}n, independent of X, where the
coordinates of R are independent and distributed as follows:

Ri =

{
sign(yi) with probability |yi|
⋆ with probability 1− |yi|.

75

We can extend the composition operation R ◦ x to the case of a vector x ∈ [−1, 1]n in the natural
way: we use x to fill in the ⋆ coordinates of R (see Equation (5.1)). That way, for each coordinate
i ∈ [n], we have

E
R
[(R ◦ x)i] = |yi| · sign(yi) + (1− |yi|) · xi = yi + (1− |yi|) · xi,

and hence overall,
E
R
[R ◦ x] = y + δy ⊙ x.

By Fact 5.1.3, it follows that

E
R
[f |R(x)] = E

R
[f(R ◦ x)] = f

(
E
R
[R ◦ x]

)
= f(y + δy ⊙ x).

Consequently,∣∣∣∣f(y)− E
X
[f(y + δy ⊙X)]

∣∣∣∣ = ∣∣∣∣ER[f |R(0n)]− E
R,X

[f |R(X)]

∣∣∣∣ ≤ E
R

[∣∣∣∣f |R(0n)− E
X
[f |R(X)]

∣∣∣∣] ≤ ε,

where the last step uses the fact that F is closed under restriction, hence X fools f |R with error ε
for every fixing of R.

Next, we will show that the random walk above converges to {−1, 1}n quickly. For this argument,
we assume that X is both q-noticeable for a large enough q > 0 and symmetric as defined below.

Definition 5.1.11 (Symmetric random variables). Let X be a random variable distributed over
[−1, 1]n. We say that X is symmetric if for every x ∈ [−1, 1]n, we have Pr[X = x] = Pr[X = −x].

We can justify the symmetry assumption as follows. Starting from an arbitrary q-noticeable
fractional ε-PRG Gfrac for F with seed length s, we can define a new q-noticeable fractional PRG
with seed length s+ 1 by the formula

G′
frac(x, b) = (−1)b ·Gfrac(x).

The distribution G′
frac(Us+1) is symmetric, and because F is closed under shifts, G′

frac(Us+1) still
fools F with error ε. (This is the only place where we use the assumption that F is closed under
shifts.)

The symmetry assumption is helpful because of the following lemma concerning the case n = 1.

Lemma 5.1.12. Let X ∈ [−1, 1] be a symmetric q-noticeable random variable. Then

E
[√

1−X
]
≤ 1− q/8.

In their original paper, Chattopadhyay, Hatami, Hosseini, and Lovett observed that Lemma 5.1.12
follows immediately from the Taylor expansion of the function

√
1− x [CHHL19]. We present an

alternative argument below.

Proof of Lemma 5.1.12. Let Y = |X|, and sample Z ∈ {±1} independently of X. Then the product
Y Z is distributed identically to X. Furthermore, for each fixed value y ∈ [0, 1], we have(

E
[√

1− yZ
])2

=

(√
1− y +

√
1 + y

2

)2

=
1 +

√
1− y2

2
≤ 1− y2

4
.

Therefore,

E
[√

1−X
]
= E

Y

[
E
Z

[√
1− Y Z

]]
≤ E

Y

[√
1− Y 2/4

]
≤ E

Y
[1− Y 2/8] ≤ 1− q/8.

76

Next, let us use Lemma 5.1.12 to show that coordinate-wise polarization happens with high
probability. Indeed, looking ahead, the probability will be high enough to allow a union bound over
all coordinates.

Lemma 5.1.13 (Polarization). Let A(1), . . . , A(t) ∈ [−1, 1] be independent symmetric q-noticeable
random variables. Define B(0) = 0, and for j > 0 define

B(j) = B(j−1) + (1− |B(j−1)|) ·A(j). (5.2)

Then Pr[1− |B(t)| ≥ e−tq/8] ≤ e−tq/16.

Proof. What happens to the distance 1−|B(·)| when we apply the update rule given in Equation (5.2)?
If sign(A(j)) = sign(B(j−1)) (the “good case”), the distance decreases by a factor of 1− |A(j)|. If
sign(A(j)) ̸= sign(B(j−1)) (the “bad case”), the distance might increase, but at most it increases by
a factor of 1 + |A(j)|. Either way, for j > 0, we have

1− |B(j)| ≤ (1− |B(j−1)|) · (1−A(j) · sign(B(j−1))).

We have assumed that A(1), . . . , A(j−1) are symmetric. It follows that B(j−1) is also symmetric.
Therefore, |B(j−1)| and A(j) · sign(B(j−1)) are independent. As a consequence,

E
[√

1− |B(j)|
]
≤ E

[√
1− |B(j−1)|

]
· E
[√

1−A(j) · sign(B(j−1))

]
.

The random variable A(j) · sign(B(j−1)) is symmetric and q-noticeable, so we may apply
Lemma 5.1.12, giving us

E
[√

1− |B(j)|
]
≤ E

[√
1− |B(j−1)|

]
· (1− q/8).

By induction, this implies that

E
[√

1− |B(t)|
]
≤ (1− q/8)t ≤ e−qt/8.

The lemma follows by Markov’s inequality.

Now we show that the final rounding step does not introduce too much error.

Lemma 5.1.14 (Rounding Error). Let f : {−1, 1}n → {−1, 1} be a function, and extend it to the
domain [−1, 1]n via the Fourier expansion. For every y ∈ [−1, 1]n,

|f(y)− f(sign(y))| ≤
n∑

i=1

(1− |yi|) ≤ n · ∥δy∥∞.

Proof. We have

|f(y)− f(sign(y))| = |E[f(Πy)]− f(sign(y))| (Fact 5.1.3)

≤ 2 · Pr[Πy ̸= sign(y)] (since ∥f∥∞ ≤ 1)

≤ 2 ·
n∑

i=1

1− |yi|
2

,

where the final inequality follows by the union bound and the observation that the marginal
distributions of Πy are given by

(Πy)i =

{
sign(yi) with probability 1+|yi|

2

− sign(yi) with probability 1−|yi|
2 .

77

We can now analyze G and complete the proof of Theorem 5.1.8. The output of the generator
G is sign(Y (t)) for t = 16 log(n/ε)/q. The seed for G is determined by t independent samples from
the fractional generator, and hence has seed-length ts = O(s log(n/ε)/q). Let E denote the event
that ∥δY (t)∥∞ ≤ e−tq/8 ≤ ε/n. Then, we can bound the error of the generator sign(Y (t)) as follows:

|E[f]− E[f(sign(Y (t)))]|

≤ |E[f(sign(Y (t)))]− E[f(Y (t))]|+
t∑

j=1

|E[f(Y (j))]− E[f(Y (j−1))]|

≤ |E[f(sign(Y (t)))− f(Y (t))]|+ εt (by Lemma 5.1.10)

≤ |E[f(sign(Y (t)))− f(Y (t)) | E]|+ 2Pr[E] + εt

≤ |E[f(sign(Y (t)))− f(Y (t)) | E]|+ 2n · e−tq/16 + εt (by Lemma 5.1.13)

≤ |E[f(sign(Y (t)))− f(Y (t)) | E]|+ ε(t+ 2)

≤ (t+ 2)ε (by Lemma 5.1.14)

≤ O(ε log(n/ε)/q).

5.1.4 A better reduction for the low-error regime

In this section, we present a more refined reduction, showing how to convert a fractional PRG into a
standard PRG with slightly better parameters than what was achieved by Chattopadhyay, Hatami,
Hosseini, and Lovett [CHHL19] (Theorem 5.1.8).

Theorem 5.1.15 (Fractional PRG =⇒ Standard PRG, refined version). Suppose that F is a
family of functions f : {−1, 1}n → {−1, 1} that is closed under restrictions and shifts. Assume that
there exists a q-noticeable fractional PRG for F with error ε and seed length s. Then there exists an
explicit PRG for F with seed length O((s+ log(1/ε)) · q−1 · log n) and error O(ε · q−1 · log n).

For comparison, recall that in the conclusion of Theorem 5.1.8, the seed length is O(s · q−1 ·
log(n/ε)) and the error is O(ε · q−1 · log(n/ε)). We typically have s ≥ log(1/ε), so the parameters
of Theorem 5.1.15 are superior in the regime ε < n−ω(1).

The idea behind the improvement is to replace the trivial rounding step. Instead of taking
O(q−1 · log(n/ε)) steps of the random walk and arguing that all the coordinates of Y (t) are well-
polarized (i.e., close to {−1, 1}), we will take only O(q−1 · log n) steps of the random walk and argue
that most of the coordinates of Y (t) are well-polarized. Then, we will show how to approximately
sample from the mostly-polarized product distribution ΠY (t) .

More precisely, our notion of being “mostly polarized” is that when we sample from ΠY (t) , with
high probability, we get a vector that only disagrees with sign(Y (t)) in a few coordinates:

Definition 5.1.16 (Polarization). Let y ∈ [−1, 1]n, let k ∈ N, and let δ > 0. We say that y is
(k, δ)-polarized if

Pr[∆(Πy, sign(y)) ≤ k] ≥ 1− δ,

where ∆ denotes Hamming distance.

We now show that O(q−1 · log n) steps of the random walk suffice to achieve (2k, ε)-polarization
where k = O(log(1/ε)/ log n). For this argument, we assume that the coordinates of the output
distribution X of the fractional PRG are k-wise independent. To justify this assumption, observe
that we can replace X with X ⊙X ′, where X ′ ∈ {±1}n is a k-wise independent distribution. Since
F is closed under shifts, this distribution still fools F with error ε. This modification only increases

78

the seed length of the fractional PRG by an additive O(k log n) = O(log(1/ε)) bits; this is the reason
for the s+ log(1/ε) term in the conclusion of Theorem 5.1.15.

Lemma 5.1.17 (Polarization, refined version). Let k = ⌈log(1/ε)/ log n⌉ and assume that the
coordinates of X are k-wise independent.1 There exists a value t = O(p−1 log n) such that with
probability 1− ε, the vector Y (t) is (2k, ε)-polarized.

Proof. Let J be the set of coordinates where Y (t) is “poorly polarized,” namely

J =

{
i ∈ [n] : 1− |Y (t)

i | ≥ 1

n2

}
.

By Lemma 5.1.13, there is a choice of t = O(p−1 log n) such that for each coordinate i ∈ [n], we
have Pr[i ∈ J] ≤ 1/n2. Therefore, for any set S ⊆ [n] with |S| = k, we have

Pr[S ⊆ J] ≤ n−2k.

Thus by a union bound,

Pr[|J | ≥ k] ≤
(
n

k

)
· n−2k ≤ n−k ≤ ε.

Now, fix any y ∈ [−1, 1]n such that |{i ∈ [n] : 1−|yi| ≥ 1/n2}| < k. Every such y is (2k, ε)-polarized,
because

Pr[∆(Πy, sign(y)) ≥ 2k] ≤
(
n− k

k

)
·
(

1

2n2

)k

≤ n−k ≤ ε.

Next, as outlined before, we show that when y is (2k, ε)-polarized, we can approximately sample
from Πy. We use a näıve “brute force” approach.

Lemma 5.1.18 (Approximately sampling from well-polarized product distributions). Let y ∈
[−1, 1]n, let k ∈ N, and let δ > 0. There is a randomized algorithm Sample such that Sample(y, k, δ)
outputs a string in {−1, 1}n, and if y is (k, δ)-polarized, then the output distribution Sample(y, k, δ)
is within total variation distance O(δ) of Πy. Furthermore, Sample(y, k, δ) runs in time poly(nk, 1/δ)
and it uses O(k log n+ log(1/δ)) truly random bits.

Proof. Let z = 1
2δy ∈ [0, 1/2]n. Let D be the product distribution over {0, 1}n such that E[D] = z.

Note that if we could sample x ∼ D, then we could sample Πy by outputting the vector with i-th
coordinate (−1)xi · sign(yi). Thus, it suffices to show how to efficiently sample a vector from {0, 1}n
with a distribution close to D in total variation distance. To achieve this, it is helpful to think of a
perfect sample from D as being produced by the following process.

Perfectly sampling D:

1. Pick ρ ∈ [0, 1] uniformly at random.

2. Initialize µ := 0

3. For e ∈ {0, 1}n:

3.1 µ := µ+
∏

i:ei=0 zi
∏

i:ei=1(1− zi)

3.2 If µ ≥ ρ then halt and output e

4. Output 0n

1In fact, it suffices for the coordinates to be ε2-almost k-wise independent.

79

To efficiently sample from D (approximately), we make two changes. First, in the “for loop,”
we only iterate over e that satisfy

∑n
i=1 ei ≤ k. By the assumption of (k, δ)-polarization, this

change only introduces total variation error at most δ. Second, we discretize ρ. That is, we sample
ρ ∈ {0, α, 2α, . . . , 1} uniformly at random, where α = δ · n−k. The additional total variation error
introduced by this second change is at most

(
n
k

)
· α ≤ δ.

Given Lemmas 5.1.17 and 5.1.18, it follows that the PRG below proves Theorem 5.1.15, assuming
that X is symmetric and its coordinates are k-wise independent.

The Generator G′:

1. Let t = O(q−1 · log(n)) and k = ⌈log(1/ε)/ log n⌉

2. Let X(1), . . . , X(t) be independent copies of X

3. Let Y (1) = 0n, and for j > 0 define Y (j) = Y (j−1) + δY (j−1) ⊙X(j)

4. Output Sample(Y (t), 2k, ε)

5.2 Analysis technique: Fourier growth bounds

Let F be a class of functions f : {0, 1}n → {0, 1} that we wish to fool, and let Fsimp be a class
of “simpler” functions that we know how to fool. In the previous section, we considered the case
that every f ∈ F simplifies to Fsimp with high probability under random restrictions, i.e., for some
p, δ > 0, we have

Pr[f |Rp ∈ Fsimp] ≥ 1− δ. (5.3)

We presented the “polarizing random walks” framework, which shows that under this assumption,
we can construct a PRG for F .

In this section, we consider a more general setting, which is when F “simplifies on average”
under restrictions. We explain the meaning of this condition in Section 5.2.1. Then, in Section 5.2.2,
we present an example of this condition – we show that bounded-width regular ROBPs satisfy such
an “average-case” simplification-under-restrictions lemma. Finally, in Section 5.2.3, we show that
the polarizing random walks framework still works under this weaker assumption, and consequently
we get a PRG for the model of bounded-width “arbitrary-order permutation ROBPs.”

5.2.1 The noise operator and simplification on average

The notion of “simplification on average” is based on the noise operator.

Definition 5.2.1 (Noise operator). Let f : {0, 1}n → R and p > 0. We define Tpf : {0, 1}n → R by
the equation

Tpf(x) = E[f |Rp(x)].

Tp is called the “noise operator” with parameter p, because for each bit of x, with probability
1 − p, we replace the bit with a fresh random bit (“noise”). Intuitively, Tpf is a “smoothed out”
version of f , and smaller values of p correspond to more smoothing out.

We say that f simplifies on average under the random restriction Rp if the function Tpf lies in
some “simpler” class Fsimp. For example, let F be the class of parity functions. When we apply a

80

random restriction Rp, with high probability, no meaningful simplification occurs: the restriction
of a parity function is another parity function (or its complement). However, parity functions do
drastically simplify on average over restrictions. Indeed, if f is a parity function on k bits, then
Tpf is approximated by the constant 1/2 function to within pointwise error p−k.

For a more interesting example, let us return to the model of bounded-width regular ROBPs,
which we studied previously in Section 3.3. These programs can compute parity functions, so once
again, they do not meaningfully simplify under a typical individual restriction. However, we will
show that these programs simplify on average under restrictions. Specifically, we will show that Tpf
is fooled by almost k-wise uniform distributions, where p and k are suitable parameters and f is
any bounded-width regular ROBP. Our approach for proving this simplification-under-restrictions
lemma is to bound the Fourier growth of f , discussed next.

5.2.2 Fourier growth bounds for regular ROBPs

Recall the Fourier L1 bound from Section 2.3, which is a simple Fourier-analytic way of measuring
the “complexity” of a Boolean function. Fourier growth is a more refined complexity measure which
takes into account the degree of Fourier coefficients. Specifically:

Definition 5.2.2 (Functions with bounded Fourier growth). For a, b ≥ 1, denote by Ln
1 (a, b) the

family of all n-variate Boolean functions f : {−1, 1}n → {−1, 1} that satisfy∑
S⊆[n]
|S|=d

∣∣∣f̂(S)∣∣∣ ≤ a · bd,

for every d ∈ [n]. Define L1(a, b) =
⋃

n∈N Ln
1 (a, b).

Remark 5.2.3 (Fourier L2 tail bounds). One can similarly define Ln
2 (a, b) to be the family of all

n-variate Boolean functions f : {−1, 1}n → {−1, 1} that satisfy∑
S⊆[n]
|S|=d

∣∣∣f̂(S)∣∣∣2 ≤ a · 2−d/b,

for every d ∈ [n]. Tal showed that L2(a, b) ⊆ L1(a,O(b)) [Tal17]. The simple example of the PARITY
function (i.e.,

∏
i∈[n] xi) shows that the reverse is not true. In other words, having bounded L1

Fourier growth is a weaker assumption than having bounded L2 Fourier tails.

Reingold, Steinke, and Vadhan were the first to prove a Fourier growth bound for regular
ROBPs [RSV13]. Later, building on their work and work by Chattopadhyay, Hatami, Reingold,
and Tal [CHRT18], Lee, Pyne, and Vadhan improved the bound [LPV22]. In this section, we will
present the proof of the latter bound.

Theorem 5.2.4 (Fourier growth of regular ROBPs [LPV22]). If f is a width-w standard-order2

regular ROBP, then f ∈ L1(1, w − 1). That is, for every d ≥ 0,∑
|S|=d

|f̂(S)| ≤ (w − 1)d.

After we are done proving Theorem 5.2.4, we will show that Fourier growth bounds imply
simplification on average under restrictions.

2The theorem holds more generally for the “arbitrary-order” model, in which the ROBP reads the variables in
an arbitrary permuted order (note that we still assume the ROBP is oblivious). The reason is that the quantity∑

|S|=d |f̂(S)| is invariant under variable permutations.

81

Level 1 Fourier coefficients

The first step of the proof of Theorem 5.2.4 is to bound the level-1 Fourier coefficients of f . As a
shorthand, we write f̂(i) rather than f̂({i}). We will prove the following.

Lemma 5.2.5 (Bound on level-1 Fourier coefficients of regular ROBPs). Let f be a width-w length-n
standard-order regular ROBP. Then

n∑
i=1

|f̂(i)| ≤ E[f] · (w − 1).

Proof. Let m be the number of rejecting vertices in the final layer, i.e., m = w − |Vaccept|. We will
show by induction on n that

n∑
i=1

|f̂(i)| ≤ E[f] ·m. (5.4)

The lemma will follow, because m ≤ w (and if m = w, then f ≡ 0 and the lemma is trivial).
In the base case n = 0, Equation (5.4) is trivial, so assume that n > 0. Let V0, . . . , Vn be the

layers of f . Partition Vn−1 = R ∪ S ∪ T based on the number of accepting edges, i.e.,

R = {v ∈ Vn−1 : E[fv→] = 0}
S = {v ∈ Vn−1 : E[fv→] = 1/2}
T = {v ∈ Vn−1 : E[fv→] = 1}.

Observe that m = |R|+ 1
2 |S| because f is regular. For each i < n, we have

f̂(i) = E
x∼Un

[f(x) · (−1)xi] = E
x1,...,xn−1

[
(−1)xi · E

xn

[f(x)]

]
= E

x1,...,xn−1

[
(−1)xi ·

(
f→T (x) +

1

2
f→S(x)

)]
= f̂→T (i) +

1

2
f̂→S(i).

Therefore, if we write p→A as a shorthand for the probability of visiting a vertex in A ⊆ Vn−1

(namely, p→A = E[f→A]), then we have

n−1∑
i=1

|f̂(i)| ≤ 1

2

n−1∑
i=1

|f̂→T (i)|+
1

2

n−1∑
i=1

|f̂→T (i) + f̂→S(i)|

=
1

2

n−1∑
i=1

|f̂→T (i)|+
1

2

n−1∑
i=1

|f̂→S∪T (i)|

≤ 1

2
|R ∪ S| · p→T +

1

2
|R| · (p→S∪T) (Induction)

= m · p→T + |R| · p→S

2
.

Meanwhile, at i = n, we have

|f̂(n)| ≤ E
x1,...,xn−1

[∣∣∣∣Exn

[(−1)xn · f(x)]
∣∣∣∣] = p→S

2
≤ |S|

2
· p→S

2
,

82

because the regularity of f implies that |S| is even. Therefore, overall,

n∑
i=1

|f̂(i)| ≤ m · p→T +

(
|R|+ |S|

2

)
· p→S

2

= m ·
(
p→T +

p→S

2

)
= m · E[f].

Higher-level Fourier coefficients

To bound the higher-level Fourier coefficients, we rely on a notion of local monotonicity [BV10b;
CHRT18]. For every vertex v of an ROBP f , define pv→ = E[fv→].

Definition 5.2.6 (Local Monotonicity). Let f be a standard-order ROBP with layers V0, . . . , Vn.
We say that f is locally monotone if for each i ∈ [n] and each vertex u ∈ Vi−1, if we let (u, v) be the
outgoing 0-edge and (u, s) be the outgoing 1-edge, then ps→ ≥ pv→.

It is easy to see that if f is a locally monotone ROBP, then for every i, we have f̂(i) ≤ 0.3

We observe that every ROBP can be “locally monotonized” by relabeling its edges, and so local
monotonicity is a property of the labeling and not the structure of the graph.

Observation 5.2.7 (Local Monotonization [CHRT18]). Let f be a standard-order ROBP with
layers V0, . . . , Vn. There exists a locally monotone standard-order ROBP f ′ obtained by relabeling
edges of f . Furthermore, for every i ∈ [n] and every v ∈ Vi−1,

f̂ ′v→(i) = −
∣∣∣f̂v→(i)

∣∣∣ .
Proof. First order the vertices in each layer according to pv→, breaking ties according to a predeter-
mined fixed ordering. We start from the layer Vi for i = n and move backwards. For every vertex
v ∈ Vi we relabel its outgoing edges if they do not satisfy the local monotonicity condition. Note
that for each vertex v, the acceptance probability pv→ remains unchanged under this relabeling,
and hence the ordering of the vertices within each layer remains the same. Furthermore, swapping
the labels of the outgoing edges of a vertex v ∈ Vi−1 flips the sign of the Fourier coefficient f̂v→(i)
so that it is nonpositive.

Note that if f is regular, then so is the local monotonization f ′. Given Observation 5.2.7, we
are prepared to bound the higher-level Fourier coefficients of a regular ROBP, using an inductive
argument due to Chattopadhyay, Hatami, Reingold, and Tal [CHRT18].

Proof of Theorem 5.2.4. We will show by induction on d that∑
|S|=d

|f̂(S)| ≤ (w − 1)d · E[f].

3In the literature, the reverse inequality is claimed [CHRT18; LPV22], but this seems to be a mistake.

83

Lemma 5.2.5 is the base case d = 1. For the inductive step, let the layers of f be V0, . . . , Vn. Then

∑
|S|=d+1

|f̂(S)| =
n∑

i=1

∑
T⊆[i−1]
|T |=d

|f̂(T ∪ {i})| =
n∑

i=1

∑
T⊆[i−1]
|T |=d

∣∣∣∣∣∣
∑

v∈Vi−1

f̂→v(T) · f̂v→(i)

∣∣∣∣∣∣
≤

n∑
i=1

∑
T⊆[i−1]
|T |=d

∑
v∈Vi−1

|f̂→v(T)| · |f̂v→(i)|

=
n∑

i=1

∑
v∈Vi−1

 ∑
T⊆[i−1]
|T |=d

|f̂→v(T)|

 · |f̂v→(i)|

≤ (w − 1)d ·
n∑

i=1

∑
v∈Vi−1

E[f→v] · |f̂v→(i)|

by induction. Now, to get rid of the absolute value signs, let f ′ be the local monotonization of f
from Observation 5.2.7. Then continuing, we have

∑
|S|=d+1

|f̂(S)| ≤ (w − 1)d ·
n∑

i=1

∑
v∈Vi−1

E[f→v] · |f̂v→(i)|

= (w − 1)d ·
n∑

i=1

∑
v∈Vi−1

E[f ′→v] · (−f̂ ′v→(i))

= (w − 1)d ·
n∑

i=1

− E
x∼Un

 ∑
v∈Vi−1

f ′→v(x) · f ′v→(x) · (−1)xi

= (w − 1)d ·

n∑
i=1

−f̂ ′(i)

≤ (w − 1)d · (w − 1) · E[f ′] (Lemma 5.2.5)

= (w − 1)d+1 · E[f].

Fourier growth bounds imply simplification on average

So far, we have shown that regular ROBPs have bounded Fourier growth. Next, we show that in
general, functions with bounded Fourier growth simplify on average under restrictions, to the point
that they can be fooled by k-wise small-bias distributions.

Proposition 5.2.8 (Bounded Fourier growth =⇒ simplification on average under restrictions).
Let a, b ≥ 1 and f ∈ Ln

1 (a, b). Let ε ∈ (0, 1), and let X ∈ {−1, 1}n be k-wise δ-biased,4 where

δ = ε/(2a) and k = ⌈log(2a/ε)⌉.

Let p = 1/(2b). Then X fools Tpf with error ε.

4Since we are working over ±1, the meaning of “k-wise δ-biased” is that for every nonempty set S ⊆ [n] with
|S| ≤ k, we have |E[

∏
i∈S Xi]| ≤ δ.

84

Proof. The Fourier expansion of Tpf is given by

Tpf(x) = E
R∼Rp

[f(R ◦ x)] =
∑
S⊆[n]

f̂(S) E
R∼Rp

[χS(R ◦ x)]

=
∑
S⊆[n]

f̂(S) · p|S| · χS(x).

(Informally, the noise operator Tp “attenuates” the Fourier coefficients of f .) Noting that T̂pf(∅) =
E[Tpf], we have

|E[Tpf(X)]− E[Tpf]| =

∣∣∣∣∣∣∣∣
∑
S⊆[n]
S ̸=∅

p|S|f̂(S)E

[∏
i∈S

Xi

]∣∣∣∣∣∣∣∣ ≤
∑
S⊆[n]
S ̸=∅

p|S|
∣∣∣f̂(S)∣∣∣ · ∣∣∣∣∣E

[∏
i∈S

Xi

]∣∣∣∣∣ .
When |S| ≤ k, we have

∣∣E [∏i∈S Xi

]∣∣ ≤ δ. When |S| > k, we use the trivial bound
∣∣E [∏i∈S Xi

]∣∣ ≤ 1.
Plugging these bounds into the above inequality, we get

|E[Tpf(X)]− E[Tpf]| ≤ δ · a ·
k∑

d=1

(pb)d + a ·
n∑

d=k+1

(pb)d ≤ δa+ 2−ka ≤ ε.

Thus, in particular, bounded-width standard-order regular ROBPs simplify on average under
restrictions.

5.2.3 Using Fourier growth bounds to obtain PRGs

Using the analysis in the previous section, let us now obtain a PRG for ROBPs. We already
presented some PRGs for standard-order ROBPs in Chapter 3, such as the INW PRG. However,
those PRGs rely heavily on the fact that the order of the input variables of the ROBP is known to
the generator. A more challenging scenario is when we wish to fool functions of the form

f(x) = g(xπ(1), . . . , xπ(n)),

where g is a width-w length-n standard-order ROBP and π is an unknown permutation of the
coordinates [n]. We refer to such a function f as a width-w length-n arbitrary-order ROBP (see
Figure 5.2). One motivation for fooling arbitrary-order ROBPs is that they can simulate other
interesting classes of tests, such as read-once formulas [BPW11]. In this section, we will focus on a
subclass of ROBPs called permutation ROBPs.

Definition 5.2.9 (Permutation ROBPs). Let f be a length-n arbitrary-order ROBP with layers
V0, . . . , Vn. We say that f is a permutation ROBP if for every i ∈ [n] and v ∈ Vi, there are exactly
two incoming edges to v (regularity), and those two edges have distinct labels (one is labeled 0 and
the other is labeled 1).

In Section 3.3, we saw the BRRY generator, which fools constant-width standard-order regular
ROBPs with seed length Õ(log n). We will now show how to design another PRG for constant-width
permutation ROBPs, which once again has seed length Õ(log n), but this time the PRG works even
in the more challenging arbitrary-order setting:

85

vstart reject

accept

reject

accept

0

x1

1

0

1

0

1

0

1

0

x2

1

0

1

0

1

0

1

0

x3

0

1

0

1

0

1

0

1

0

x4

0

1

0

1

0

1

0

1

Figure 5.2: Define f : {0, 1}2n → {0, 1} by the formula f(x) =
⊕

1≤i≤j≤n xi · xn+j . This function
can be computed by a width-4 arbitrary-order permutation ROBP (the case n = 2 is shown above).
In contrast, every standard-order ROBP computing f has width 2Ω(n). This can be shown by a
communication complexity argument, reducing from the inner product mod 2 problem.

Theorem 5.2.10 (PRG for arbitrary-order permutation ROBPs [RSV13; CHHL19; LPV22]).
For every w, n ∈ N and ε > 0, there is an explicit ε-PRG for width-w length-n arbitrary-order
permutation ROBPs with seed length Õ(w2 · log n · log(1/ε)).5

As a reminder, we showed in Section 5.2.2 that permutation ROBPs (and more generally regular
ROBPs) simplify on average under restrictions. To prove Theorem 5.2.10, we now observe that such
an average-case simplification-under-restrictions lemma is sufficient for the polarizing random walks
framework.

Lemma 5.2.11 (Simplification on average implies fractional PRGs). Let F be a class of functions
f : {±1}n → R. Let p, ε > 0, let X be a distribution over {−1, 1}n, and assume that for every
f ∈ F , the distribution X fools Tpf with error ε. Then pX is (p2)-noticeable and fools F with error
ε.

Proof. The proof is exactly the same as the proof of Lemma 5.1.6, except that we replace the final
step with the following:∣∣∣∣ ER,X

[f(R ◦X)]− E[f]
∣∣∣∣ = ∣∣∣∣EX[Tpf(X)]− E[Tpf]

∣∣∣∣ ≤ ε.

Putting everything together gives us our PRG for bounded-width arbitrary-order permutation
ROBPs:

Proof of Theorem 5.2.10. Let f be a width-w length-n arbitrary-order permutation ROBP. Such a
program f satisfies the Fourier growth bound of Theorem 5.2.4 regardless of the order in which it reads
the input variables, because the quantity

∑
|S|=d |f̂(S)| is invariant under variable permutations.

5The specific seed length in Theorem 5.2.10 does not appear in prior work, but it does follow directly from prior
work [RSV13; CHHL19; LPV22; FK18]. In particular, if ε > 1/n, then it follows from Lee, Pyne, and Vadhan’s
work [LPV22], whereas if ε ≤ 1/n, then it follows from Forbes and Kelley’s work [FK18]. Our refined polarizing
random walks framework (Theorem 5.1.15) gives us a unified proof of Theorem 5.2.10 for all ε.

86

Let γ = ε/t for a suitable value t = O(w2 log n). Let δ = γ/2, let k = ⌈log(2/γ)⌉, and let
X ∈ {−1, 1}n be k-wise δ-biased. Let p = 1

2·(w−1) . Then by Theorem 5.2.4 and Proposition 5.2.8, X

fools Tpf with error γ. Therefore, by Lemma 5.2.11, pX is (p2)-noticeable and fools f with error γ.
The distributionX can be explicitly sampled using a seed of length s = O(log(1/γ)+log log n) (see

Theorem 2.2.7). Furthermore, the class of width-w permutation ROBPs is closed under restrictions
and shifts. Therefore, by the refined polarizing random walks framework (Theorem 5.1.15), there is
an explicit PRG for such programs with error O(γ · p−2 · log n) = ε and seed length

O
(
s · p−2 · log n

)
= O

(
w2 · log n · (log(w/ε) + log log n)

)
.

To be clear, the Fourier growth bound (Theorem 5.2.4) works for all regular ROBPs, not merely
permutation ROBPs. However, the class of width-w arbitrary-order regular ROBPs is unfortunately
not closed under restrictions. It is therefore unclear how to apply the polarizing random walks
framework to such programs.

Open Problem 5.2.12 (PRGs for arbitrary-order regular ROBPs). Design a PRG for constant-
width arbitrary-order regular ROBPs with seed length o(log2 n).

Thankfully, the more restricted class consisting of width-w arbitrary-order permutation ROBPs
is closed under restrictions, a fact which is crucial in the proof of Theorem 5.2.10.

More generally, by the same argument, one can use the polarizing random walks framework to
construct a PRG for any class with bounded Fourier growth, provided that the class is closed under
restrictions and shifts.6

Theorem 5.2.13 (PRG for functions with bounded Fourier growth). For every n, a, b, ε, there is
an explicit PRG G such that if F ⊆ L1(a, b) and F is closed under restrictions and shifts, then G
fools F with error ε. Furthermore, G has seed length

O(b2 · log n · (log(ab/ε) + log log n)).

When Reingold, Steinke, and Vadhan proved their Fourier growth bound for standard-order
regular ROBPs, they also conjectured a Fourier growth bound for all standard-order ROBPs (whether
regular or not) [RSV13]. In particular, they conjectured that constant-width standard-order ROBPs
are in L1(poly(n), polylog(n)). The width-3 case of this conjecture was proven by Steinke, Vadhan,
and Wan [SVW17], and then the general case was proven by Chattopadhyay, Hatami, Reingold,
and Tal [CHRT18].

Theorem 5.2.14 (Fourier growth bound for ROBPs [CHRT18]). Suppose f is a width-w length-n
standard-order ROBP. Then f ∈ L1(1, O(log n)w). That is, for every d ∈ [n],∑

|S|=d

|f̂(S)| ≤ O(log n)wd.

Combining Theorems 5.2.13 and 5.2.14 gives a PRG for constant-width arbitrary-order ROBPs
with seed length polylog(n). Later (Section 5.4), we will see a better PRG for this class that will
make use of Theorem 5.2.14 in a more sophisticated way.

Motivated by the goal of constructing new PRGs for classes of functions such as AC0[⊕] and
F2-polynomials (see Open Problems 2.4.13 and 4.3.1), there has been effort on two fronts with the

6One can show that closure under shifts is not necessary. On the other hand, it seems quite challenging to handle
classes that are not closed under restrictions.

87

latter having led to some success: 1. Prove reasonable Fourier tail bounds for the said classes, and 2.
Construct fractional PRGs under more relaxed assumptions, for example, Fourier tail bounds only
on few levels. Chattopadhyay, Hatami, Lovett, and Tal showed how to construct a fractional PRG
using only second-level Fourier bounds [CHLT18]. Then, Chattopadhyay, Gaitonde, Lee, Lovett, and
Shetty showed that better bounds can be achieved if bounds on higher Fourier levels are available,
and interestingly, that fractional PRGs can be achieved even from bounds on |

∑
S:|S|=d f̂(S)| where

one can have cancellations, as opposed to L1 bounds [CGLLS21]. These works show that certain
improved bounds on the Fourier tails of F2-polynomials will lead to new PRGs. On the other hand,
Viola [Vio21] showed that the conjectured Fourier tail bounds in these works is equivalent to new
correlation bounds, perhaps hinting at the difficulty in the success of these approaches.

5.3 Fooling AC0 via the Ajtai-Wigderson framework

Let F be a class of functions f : {0, 1}n → {0, 1} that we wish to fool. In this section, we revisit the
case that functions in F simplify with high probability under restrictions. That is, suppose that for
some values p, δ > 0, we have

Pr[f |Rp ∈ Fsimp] ≥ 1− δ, (5.5)

and furthermore suppose that we already have an explicit PRG for the “simpler” class Fsimp, say
with seed length s.

In Section 5.1, we presented the polarizing walks framework, which allows us to construct a
PRG for the original class F with a seed length of roughly p−2 · s · log n. In this section, we present
an older PRG framework due to Ajtai and Wigderson [AW89]. The Ajtai-Wigderson framework
achieves a better seed length, but it requires a stronger initial assumption. Roughly speaking, we
will show that if it is possible to “derandomize the choice of ⋆ positions” in Equation (5.5), then we
can fool F with a seed length of approximately p−1 · s · log n. The distinction between p−2 and p−1

is quite important in many cases.

5.3.1 Simplification under partially pseudorandom restrictions

The Ajtai-Wigderson framework is based on partially pseudorandom restrictions, meaning that
the set of ⋆ positions is pseudorandom, but the assigned values are truly random. To reason
about these two components of a restriction separately, we must introduce notation for encoding
restrictions using bitstrings. Many different notational approaches have been used for this encoding;
unfortunately, it seems inevitable that the notation is somewhat cumbersome and clunky. We will
take the approach of defining the following ⋆○ operation.

Definition 5.3.1 (Encoding restrictions). For x, y ∈ {0, 1}n, define x ⋆○ y ∈ {0, 1, ⋆}n by

(x ⋆○ y)i =

{
xi if yi = 0

⋆ if yi = 1.

(See Figure 5.3.)

The assumption of the Ajtai-Wigderson framework is that we have a simplification-under-
restrictions lemma of the form

Pr[f |U ⋆○Z ∈ Fsimp] ≥ 1− δ, (5.6)

88

x ⋆○ y = 1 ⋆ 0 ⋆ ⋆ 1 1 ⋆

x

y

Assignment

Star-set

Figure 5.3: In the restriction x ⋆○ y, the string y indicates the ⋆ positions, and the string x assigns
values to the non-⋆ positions.

where the assigned bits U ∈ {0, 1}n is distributed uniformly at random, the star set Z ∈ {0, 1}n
is independent of U , and Z can be sampled explicitly with a short seed. For example, for AC0,
there is a line of work on proving derandomized switching lemmas [AW89; TX13; Tal17; ST19a;
Kel21; Lyu22]. By combining Lyu’s “derandomized multi-switching lemma” [Lyu22] with Rossman’s
arguments [Ros19], one can prove the following.7

Lemma 5.3.2 (Simplification of AC0 under a partially pseudorandom restriction [Lyu22; Ros19]).
For every n,m, d, δ, there is a random variable Z over {0, 1}n that can be explicitly sampled using
Õ(d · log(mn/δ)) truly random bits such that for any depth-d size-m AC0 circuit f on n input bits,

Pr[DT(f |U ⋆○Z) ≤ O(log(md/δ))] ≥ 1− δ.

Here, U is a uniform random n-bit string independent of Z. Furthermore, for each coordinate i, the
“star probability” is given by E[Zi] = Θ(1/ logm)d−1.

We will not study the proof of Lemma 5.3.2 here. Instead, we will focus on the logic of
constructing a PRG given a statement such as Lemma 5.3.2. The only fact we will use about shallow
decision trees is that they can be fooled with a short seed length. Indeed, in its simplest form, the
Ajtai-Wigderson framework reduces the problem of constructing PRGs to the problem of proving
statements like Equation (5.6) with the following parameters.

Theorem 5.3.3 (Simplification under partially-pseudorandom restrictions =⇒ PRG [AW89]). Let
F and Fsimp be classes of functions f : {0, 1}n → {0, 1}. Assume that F is closed under restrictions.
Let Z be a random variable over {0, 1}n that can be explicitly sampled using s truly random bits
such that

∀f ∈ F , Pr[f |U ⋆○Z ∈ Fsimp] ≥ 1− δ

where U ∈ {0, 1}n is uniform random and independent of Z. Assume that we can explicitly compute
a value p such that for every i ∈ [n], we have E[Zi] ≥ p. Suppose also that there is an explicit δ-PRG
for Fsimp with seed length s′. Then there is an explicit PRG for F with seed length t · (s+ s′) and
error O(tδ), where t = ⌈p−1 ln(n/δ)⌉.

For example, applying the Ajtai-Wigderson framework to Lemma 5.3.2 gives the following PRG
for AC0.

7Note that Lyu actually proved a fully derandomized multi-switching lemma [Lyu22], but we only use the weaker
version where the assigned bits are truly random.

89

Corollary 5.3.4 (PRG for AC0 via the Ajtai-Wigderson framework). For every n,m, d ∈ N and
ε > 0, there is an explicit ε-PRG for size-m depth-d AC0 circuits with seed length

O(logm)d−1 · Õ(log(mn/ε) · log(n/ε)).

When m = poly(n) and ε = 1/ poly(n), the seed length in Corollary 5.3.4 is only O(log n)d+O(1),
which is superior to the O(d) exponents in the seed lengths of the PRGs that we saw previously
(Sections 2.6, 4.2 and 5.1). Trevisan and Xue were the first to achieve exponent d+O(1) [TX13].
Several subsequent papers improved on their seed length [Tal17; ST19a; Kel21; Lyu22], and the
current best seed length is achieved by Lyu [Lyu22]. Let d be constant and let m ≥ n. Using
a sophisticated variant of the Ajtai-Wigderson framework, Lyu designed an explicit ε-PRG for
size-m depth-d AC0 circuits with seed length Õ(logd−1m · log(m/ε)), which is quite close to the
lack-of-lower-bounds barrier of Θ(logd−1m · log(1/ε)) (see Section 4.1.2). The remaining gap between
the two bounds is most pronounced for the case d = 2. The best PRGs for CNFs and DNFs have
seed length Õ(log(m/ε) · logm) [DETT10; Tal17], whereas the lack-of-lower-bounds barrier allows
for a seed length as low as O(logm · log(1/ε)).

Open Problem 5.3.5 (Better PRGs for CNFs and DNFs). Design an explicit PRG for polynomial-
size CNFs and DNFs on n variables with error 0.1 and seed length o(log2 n).

In the remainder of this section, we explain the Ajtai-Wigderson framework in its simplest form,
i.e., we prove Theorem 5.3.3.

5.3.2 Restrictions that preserve expectation

The first step of the proof of Theorem 5.3.3 is to construct a fully pseudorandom restriction that
preserves the expectations of functions in F , as defined next.

Definition 5.3.6 (Preserving expectation). Let f : {0, 1}n → R, and let R be a random variable
distributed over {0, 1, ⋆}n. We say that R preserves the expectation of f to within ε, or ε-preserves
the expectation of f , if

|E[f |R(U)]− E[f]| ≤ ε.

Here U is independent of R and distributed uniformly over {0, 1}n.

Recall that we are assuming that f simplifies under the partially-pseudorandom restriction
U ⋆○ Z. To construct a restriction that preserves the expectation of f , we replace the truly random
bits with stars, and we replace the stars with pseudorandom bits. To explain further, for y ∈ {0, 1}n,
let y denote the string obtained by flipping each bit of y, i.e., yi = 1 − xi. Observe that the ⋆○
operation (Definition 5.3.1) and the ◦ operation (Definition 5.0.1) satisfy the following “duality”
condition:

Fact 5.3.7 (Restriction duality). For any x, y, z ∈ {0, 1}n, we have (x ⋆○ y) ◦ z = (z ⋆○ y) ◦ x.

(See Figure 5.4.) As a consequence of Fact 5.3.7, whenever we have a simplification-under-
restriction lemma with a derandomized set of ⋆ positions (Equation (5.6)), there is a related
restriction that preserves expectations:

Lemma 5.3.8 (Simplification =⇒ preserving expectation). Let Fsimp be a class of functions
f : {0, 1}n → {0, 1}. Let X,Z,U be independent random variables taking values in {0, 1}n, where U
is uniform and X fools Fsimp with error ε. Let f : {0, 1}n → {0, 1}, and assume that

Pr[f |U ⋆○Z ∈ Fsimp] ≥ 1− δ.

Then X ⋆○ Z preserves the expectation of f to within ε+ δ.

90

(x ⋆○ y) ◦ z = x1 z2 x3 z4 z5 x6 x7 z8

yi = 0

yi = 1

= (z ⋆○ y) ◦ x

Figure 5.4: To compute (x ⋆○ y) ◦ z, we use y to partition the coordinates into two parts. The
coordinates in one part get their values from x, while the coordinates in the other part get their
values from z. Thus, if we swap the roles of x and z and flip each bit of y, nothing changes. Here
we depict the case y = 01011001.

Proof. We must show that (X ⋆○ Z) ◦ U fools f . By Fact 5.3.7,

f((X ⋆○ Z) ◦ U) = f((U ⋆○ Z) ◦X)

= f |U ⋆○Z(X).

By assumption, except with probability δ, f |U ⋆○Z ∈ Fsimp, and in this case, X fools the restricted
function with error ε.

Observe that if U ⋆○ Z (the restriction that causes simplification) has ⋆-probability p, then
X ⋆○ Z (the restriction that preserves expectations) has ⋆-probability 1− p. When we are trying to
prove simplification under restrictions, we want the ⋆-probability to be as large as possible, whereas
when we are trying to prove preservation of expectation, we want the ⋆-probability to be as small as
possible.

5.3.3 Iterated restrictions

Lemma 5.3.2 provides us with a fully pseudorandom restriction R that preserves the expectation of
f ∈ F . Because R is fully pseudorandom, we can afford to sample it and apply it, so f becomes f |R.
The next lemma says that if we then sample another copy of R and further restrict the restricted
function, we continue preserving its expectation.

Lemma 5.3.9 (Composing restrictions that preserve expectations). Let F be a class of functions
f : {0, 1}n → R that is closed under restriction. Let R(1), . . . , R(t) be independent random variables
distributed over {0, 1, ⋆}n, assume that each R(i) preserves the expectation of every f ∈ F to within
ε, and let R = R(1) ◦ · · · ◦R(t). Then R preserves the expectation of every f ∈ F to within ε · t.

Proof. Let us prove it by induction on t. The base case t = 1 is trivial. For the inductive step, let
R(<t) = R(1) ◦ · · · ◦R(t−1) and assume that R(<t) preserves the expectation of every f ∈ F to within
ε · (t− 1). Fix some f ∈ F , and let F = f |R(<t) . Since F is closed under restriction, we have F ∈ F

91

with probability 1. Sample U ∈ {0, 1}n uniformly at random. Then

|E[f |R(U)]− E[f]| = |E[f(R(<t) ◦R(t) ◦ U)]− E[f]|
= |E[F |R(t)(U)]− E[f]|
≤ |E[F |R(t)(U)]− E[F (U)]|+ |E[F (U)]− E[f]|

≤ E
F

[∣∣∣∣ E
R(t),U

[F |R(t)(U)]− E
U
[F (U)]

∣∣∣∣]+ |E[f |R(<t)(U)]− E[f]|

≤ E
F
[ε] + ε · (t− 1) = ε · t.

To get a full PRG, we will take t to be large enough that with high probability, the composed
restriction R in Lemma 5.3.9 assigns values to all variables.

Lemma 5.3.10 (Preserving expectation =⇒ PRG). Let F be a class of functions f : {0, 1}n → R
that is closed under restrictions. Suppose there is a distribution R over {0, 1, ⋆}n such that R can
be explicitly sampled using s truly random bits, and R preserves the expectation of every f ∈ F to
within δ, and for every coordinate i, Pr[Ri = ⋆] ≤ 1− p. Then there is an explicit PRG for F with
seed length s · t and error O(tδ), where t = ⌈p−1 ln(n/δ)⌉.

Proof. Let R◦t = R(1) ◦ · · · ◦ R(t), where R(1), . . . , R(t) are independent copies of R. Our PRG
outputs the string R◦t ◦ 0n. This PRG clearly has seed length s · t. By Lemma 5.3.9, the restriction
R◦t preserves the expectation of every f ∈ F to within error t · δ. Furthermore, the probability that
there are any stars remaining in R◦t is bounded by

Pr[R◦t /∈ {0, 1}n] ≤
n∑

i=1

Pr[R◦t
i = ⋆] =

n∑
i=1

Pr[Ri = ⋆]t ≤
n∑

i=1

(1− p)t ≤ δ.

Consequently, R◦t ◦ 0n fools F with error (t+ 1) · δ.

Theorem 5.3.3 (the Ajtai-Wigderson reduction) follows from Lemmas 5.3.8 and 5.3.10.

5.4 The Forbes-Kelley generator for ROBPs

In Section 5.2, we presented a PRG for arbitrary-order permutation ROBPs. In this section, we
present Forbes and Kelley’s PRGs [FK18], which fool general arbitrary-order ROBPs, without any
permutation assumption. In the polynomial-width case, Forbes and Kelley achieve seed length
O(log3 n) (Theorem 5.4.5), and in the constant-width case, they achieve seed length Õ(log2 n)
(Theorem 5.4.8).

These seed lengths constitute significant improvements over several earlier PRGs for arbitrary-
order ROBPs [BPW11; IMZ19; RSV13; SVW17; HLV18; CHRT18]. For polynomial-width programs,
the best prior seed length was Õ(

√
n) [RSV13]. For width-w programs where w = O(1), the best

prior seed length was Õ(logw+1 n) [CHRT18]. Forbes and Kelley’s work implies the first PRG
with polylogarithmic seed length for read-once formulas with constant fan-in over an arbitrary
basis, since every such formula can be computed by a polynomial-width ROBP under some input
order [BPW11].

In terms of techniques, Forbes and Kelley’s work builds on several earlier papers, especially work
by Reingold, Steinke, and Vadhan [RSV13] and work by Hamarty, Lee, and Viola [HLV18]. Forbes
and Kelley’s PRGs are based on a generalization of the Ajtai-Wigderson framework (Section 5.3).
We begin by explaining the generalized framework, and then we will present Forbes and Kelley’s
PRGs.

92

5.4.1 Pseudorandomness plus noise

Let F be a class of functions that we wish to fool. Recall the first step of the Ajtai-Wigderson
framework: we showed (Lemma 5.3.8) that if functions in F simplify with high probability under
partially-pseudorandom restrictions, then we get a fully pseudorandom restriction that preserves the
expectation of each f ∈ F . We now refine that analysis to get an “if and only if” condition (actually
three equivalent conditions).

Lemma 5.4.1 (Characterizing preservation of expectation). Let X,Z,U be mutually independent
random variables, where each is distributed over {0, 1}n and U is uniform random. Let f : {0, 1}n →
R be a function and let ε > 0. The following are equivalent.

1. (Preservation of Expectation) The restriction X ⋆○ Z preserves the expectation of f to within
error ε, i.e.,

|E[f |X ⋆○Z(U)]− E[f]| ≤ ε.

2. (Simplification on Average) The distribution X fools g with error ε, where

g(x)
def
= E

Z,U
[f |U ⋆○Z(x)]. (5.7)

3. (Pseudorandomness Plus Noise) The distribution X + (Z ∧ U) fools f with error ε, i.e.,

|E[f(X + (Z ∧ U)]− E[f]| ≤ ε, (5.8)

where + denotes addition over Fn
2 and ∧ denotes coordinatewise conjunction.

Proof. (1 ⇐⇒ 2) By Fact 5.3.7, we have

f |X ⋆○Z(U) = f((U ⋆○ Z) ◦X) = f |U ⋆○Z(X).

Therefore, E[f |X ⋆○Z(U)] = E[g(X)]. Furthermore, because U is uniform random, we have E[g] =
E[f].

(2 ⇐⇒ 3) Because U is uniform random, the random variables X + (Z ∧ U) and (U ⋆○ Z) ◦X
are identically distributed. (In each case, we start with X and then we randomize the bits where
Zi = 1.) Therefore, E[f(X + (Z ∧ U)] = E[g(X)]. As mentioned previously, the fact that U is
uniform random also implies that E[f] = E[g].

Recall that the noise operator with parameter p is defined by Tpf(x) = E[f |Rp(x)]. The function
g defined in Equation (5.7) can be understood as the result of applying a partially derandomized
noise operator to f . Thus, Item 2 says that f simplifies on average under partially-pseudorandom
restrictions. This condition is a combination of what we studied in Section 5.2 (simplification
on average) and what we studied in Section 5.3 (simplification under partially-pseudorandom
restrictions). A form of the perspective embodied by Item 2 was first studied by Gopalan, Meka,
Reingold, Trevisan, and Vadhan [GMRTV12].

In this section, it will not be so useful to think in terms of “simplification.” Instead, it will be
more productive to reason about fooling f itself using a partially-pseudorandom distribution, as
articulated in Item 3. Intuitively, establishing Equation (5.8) is easier than trying to design a PRG
in one shot, because the helpful “noise vector” Z ∧ U contributes a considerable amount of true
randomness into the picture. This “pseudorandomness plus noise” perspective originates in work by
Haramaty, Lee, and Viola [HLV18]. We adopt this perspective for the rest of this section.

93

Once we obtain random variables X,Z ∈ Fn
2 satisfying Equation (5.8), we can repeat the same

procedure iteratively to get a PRG for F . This is because for any fixed x, z ∈ Fn
2 , fooling the new

function g(y) = f(x+ (z ∧ y)) is equivalent to fooling f |x ⋆○z (see Lemma 5.3.10). We now move on
to explaining the Forbes-Kelley PRGs for arbitrary-order ROBPs, which are important examples of
the “pseudorandomness plus noise” approach.

5.4.2 A Fourier decomposition lemma for ROBPs

The starting point for Forbes and Kelley’s work is the following Fourier decomposition lemma for
ROBPs. For simplicity, we assume that the ROBP uses the standard variable ordering (note that
permuting variables just permutes Fourier coefficients in the obvious way).

Lemma 5.4.2 (Forbes-Kelley decomposition of ROBPs). Let f be a length-n width-w standard-order
ROBP with layers V0, V1, . . . , Vn. Then

f(x) = L(x) +H(x),

where
L(x) =

∑
S:|S|<k

f̂(S)χS(x),

and

H(x) =

n∑
i=1

∑
v∈Vi

Hv(x)fv→(x),

where Hv(x) =
∑

S⊆[i]:|S|=k,i∈S f̂→v(S)χS(x).

Proof. Since L(x) is exactly the degree < k part of the Fourier expansion of f , we just need to show
that

H(x) =
∑

S⊆[n]:|S|≥k

f̂(S)χS(x).

For every S with |S| ≥ k, let i(S) denote the k-th smallest index that appears in S, let SL := S∩[i(S)],
and let SR := S \ SL. Note that |SL| = k and i(S) ∈ SL. We have

f̂(S) =
∑

v∈Vi(S)

f̂→v(SL) · f̂v→(SR),

94

where we used the fact that f(x) =
∑

i∈Vi(S)
f→v(x) · fv→(x). Thus,

∑
S⊆[n]:|S|≥k

f̂(S)χS(x) =

n∑
i=1

∑
S:i(S)=i

f̂(S)χS(x)

=
n∑

i=1

∑
S:i(S)=i

∑
v∈Vi

f̂→v(SL) · f̂v→(SR)χSL
(x)χSR

(x)

=
n∑

i=1

∑
v∈Vi

∑
SL⊆[i]
|SL|=k
i∈SL

∑
SR⊆[n]\[i]

f̂→v(SL) · f̂v→(SR)χSL
(x)χSR

(x)

=
n∑

i=1

∑
v∈Vi

Hv(x)
∑

SR⊆[n]\[i]

f̂v→(SR)χSR
(x)

=
n∑

i=1

∑
v∈Vi

Hv(x)fv→(x)

= H(x).

5.4.3 Pseudorandom restrictions that preserve the expectation of ROBPs

The key point of the construction will be to analyze ROBPs under bounded independent restrictions.
In the proposition below, once again we assume for simplicity that the ROBP reads its variables in
the standard order; this is without loss of generality because k-wise uniformity is preserved under
variable permutations.

Proposition 5.4.3 (Preserving the expectation of ROBPs). Suppose f : {0, 1}n → {0, 1} is computed
by a width-w standard-order ROBP. Suppose that X,Z,U are independent random variables, where
X is 2k-wise uniform, Z is k-wise uniform, and U is uniform. Then∣∣∣∣ E

X,Z,U
[f(X + Z ∧ U)]− E[f]

∣∣∣∣ ≤ wn

2k/2
.

Remark 5.4.4. For our current project of designing PRGs for ROBPs, the fact that Z is pseu-
dorandom in Proposition 5.4.3 is not crucial. After all, if we take Z to be truly random, then
Proposition 5.4.3 says that X fools T1/2f , where T1/2 is the noise operator with parameter p = 1/2.
From there, the polarizing random walks framework gives a PRG (see Sections 5.1 and 5.2). Since
p is a constant, the seed length from the polarizing random walks framework is the same as the
seed length from the iterated restrictions framework for this case. (In general, the polarizing walks
framework has a worse dependence on p.)

That being said, there are other benefits to the iterated restrictions paradigm besides seed length.
In particular, the fact that Z is pseudorandom will be crucial in Section 5.5, which builds on this
section using an “early termination” approach.

95

Proof. The key is to utilize Lemma 5.4.2. We have∣∣∣∣ E
X,Z,U

[f(X + Z ∧ U)]− E[f]
∣∣∣∣

=

∣∣∣∣ E
X,Z,U

[L(X + Z ∧ U) +H(X + Z ∧ U)]− f̂(∅)]

∣∣∣∣
=

∣∣∣∣ E
X,Z,U

[H(X + Z ∧ U)]

∣∣∣∣ ,
where the last equality uses the fact that

E
X,Z,U

[L(X + Z ∧ U)] = f̂(∅),

since X + Z ∧ U is k-wise uniform. It is left to bound |EX,Z,U [H(X + Z ∧ U)]|. Note that,∣∣∣∣ E
X,Z,U

[H(X + Z ∧ U)

∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

∑
v∈Vi

E
X,Z,U

[Hv(X + Z ∧ U)fv→(X + Z ∧ U)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

∑
v∈Vi

E
X,Z

[
E
U
[Hv(X + Z ∧ U)]E

U
[fv→(X + Z ∧ U)]

]∣∣∣∣∣∣
≤

n∑
i=1

∑
v∈Vi

E
X,Z

[∣∣∣∣EU [Hv(X + Z ∧ U)]

∣∣∣∣]
≤ nw ·max

v
E

X,Z

[∣∣∣∣EU [Hv(X + Z ∧ U)]

∣∣∣∣] ,
where the first inequality uses the triangle inequality and the fact that |EU [fv→(X + Z ∧ U)]| ≤ 1.
It is thus sufficient to bound EX,Z [|EU [Hv(X + Z ∧ U)]|] for every i and v ∈ Vi.

E
X,Z

[∣∣∣∣EU [Hv(X + Z ∧ U)]

∣∣∣∣]2
≤ EX,Z

[(
E
U
[Hv(X + Z ∧ U)]

)2
]

= E
X,Z,U,U ′

[∑
S,S′⊆[i]:

i∈S,S′,|S|=|S′|=k

f̂→v(S)f̂→v(S
′)χS(X + Z ∧ U)χS′(X + Z ∧ U ′)

]

=
∑

S,S′⊆[i]:
i∈S,S′,|S|=|S′|=k

f̂→v(S)f̂→v(S
′) E

X,Z

[
E
U
[χS(X + Z ∧ U)] E

U ′
[χS′(X + Z ∧ U ′)]

]

where the first step is the Cauchy-Schwarz inequality. Now note that, whenever Z has a 1 coordinate
in S or S′, then EU [χS(X + Z ∧ U)]EU ′ [χS′(X + Z ∧ U ′] = 0. Otherwise when Z is all zeros on
both S and S′ coordinates, we have χS(X + Z ∧ U) = χS(X) and χS′(X + Z ∧ U ′) = χS′(X). Now
since X is 2k-wise uniform, in this case we get

E
X

[
E
U
[χS(X + Z ∧ U)] E

U ′
[χS′(X + Z ∧ U ′)]

]
= E

X
[χS(X) · χS′(X)] =

{
1 if S = S′

0 if S ̸= S′.

96

Putting these facts together, we get∑
S,S′⊆[i]:

i∈S,S′,|S|=|S′|=k

f̂→v(S)f̂→v(S
′) E

X,Z

[
E
U
[χS(X + Z ∧ U)] E

U ′
[χS′(X + Z ∧ U ′]

]

=
∑
S⊆[i]:

i∈S,|S|=k

f̂→v(S)
2 Pr

Z
[Zi = 0 ∀i ∈ S]

= 2−k ·
∑
S⊆[i]:

i∈S,|S|=k

f̂→v(S)
2 ≤ 2−k,

where the second equality is due to T being k-wise uniform, and the last inequality follows from
Parseval’s identity.

Given Proposition 5.4.3, we can get a full ε-PRG for arbitrary-order ROBPs by choosing
k = O(log(wn/ε)) and applying the generic reduction Lemma 5.3.10. Using efficient constructions
of k-wise and 2k-wise uniform distributions, an individual restriction can be sampled explicitly using
O(k log n) = O(log n · log(nwε)) truly random bits. Therefore, the overall seed length is as follows.

Theorem 5.4.5 (PRGs for arbitrary-order ROBPs [FK18]). For every n,w ∈ N and ε > 0, there is
an explicit ε-PRG for width-w length-n arbitrary-order ROBPs with seed length O(log n · log(n/ε) ·
log(nw/ε)). In particular, when w = poly(n) and ε = 1/ poly(n), the seed length is O(log3 n).

For small values of ε, a better seed length of O(log(nw/ε) · log2 n) can be achieved by terminating
the iterative restriction process after O(log n) restrictions instead of O(log(n/ε)) restrictions and
observing that the restricted function is an O(log(nw/ε))-junta with high probability. See Forbes
and Kelley’s work for details [FK18].

5.4.4 A better generator for the small-width setting

Forbes and Kelley showed how to achieve a better seed length when w is small. The construction is
similar, except that k-wise uniform distributions are replaced by small-bias distributions.8

Proposition 5.4.6 (Preserving the expectation of ROBPs that have low level-k Fourier weight
[FK18, Lemma 7.2]). Suppose f : {0, 1}n → {0, 1} is computed by a width-w standard-order ROBP.
Moreover, suppose that X and Z are independent β-biased random variables distributed over {0, 1}n.
Let k ∈ N, and let L =

∑
|S|=k |f̂(S)|. Then the restriction X ⋆○Z preserves the expectation of f to

within
O
((

2−k/2 +
√
β · (L+ 2k/4)

)
· n · w

)
.

The proof of Proposition 5.4.6 is similar to the proof of Proposition 5.4.3, and we omit it. The
point is that Proposition 5.4.6 allows us to take advantage of bounds on the Fourier growth of f .
Plugging Theorem 5.2.14 into Proposition 5.4.6 and choosing k = Θ(log(wn/ε)) yields the following.

Proposition 5.4.7 (Preserving the expectation of low-width ROBPs). For every w, n ∈ N and
ε > 0, there is a value

β = 2−O(log(wn/ε)·w·log logn)

such that if X and Z are independent β-biased random variables distributed over {0, 1}n, then the
restriction X ⋆○ Z preserves the expectation of any width-w ROBP f : {0, 1}n → {0, 1} to within ε.

8In Forbes and Kelley’s work [FK18], they take the star-set T to be almost k-wise uniform; this is implied by the
small-bias condition (see Theorem 2.3.2.)

97

Note that the restriction X ⋆○ Z has ⋆-probability 1/2, so we are assigning values to roughly
half the input bits. Furthermore, when w is a constant, the restriction X ⋆○Z can be sampled using
Õ(log(n/ε)) truly random bits. Iterating for O(log n) steps like before leads to the following PRG.

Theorem 5.4.8 ([FK18]). There is an explicit PRG for width-w length-n arbitrary-order ROBPs
with error ε and seed length O(w · log(nw/ε) · log n · log logn).

5.5 PRGs for read-once CNFs via early termination

Let F be a class of functions that we wish to fool. In Sections 5.3 and 5.4, our approach for fooling
F was to first design a pseudorandom restriction R that approximately preserves the expectations
of functions in F . Then, we iteratively applied many copies of this restriction, assigning values
to more and more variables. If R assigns values to a p-fraction of the variables, then we perform
roughly p−1 · log n many iterations. Thus, if each copy of R costs s truly random bits, then this
approach leads to a final seed length of roughly p−1 · s · log n.

In this section, we develop a refined version of the iterated restrictions paradigm that can lead
to an improved seed length in some cases. The idea is, we start by composing t copies of R, say
R′ = R(1) ◦ · · · ◦R(t), where the number of iterations (t) is significantly smaller than p−1 · log n, such
as perhaps t = p−1 · log log n. Then, we prove that functions in F simplify under this composed
restriction R′. That is, we show that

∀f ∈ F , Pr[f |R′ ∈ Fsimp] ≥ 1− δ, (5.9)

where Fsimp is some class of “simpler” functions. Consequently, there is no need to continue
sampling copies of R. Instead, we can use a PRG for Fsimp to finish the job, taking advantage of
the “simplicity” of the restricted function f |R′ . This leads to a final seed length of s · t+ s′, where
s′ is the seed length for fooling Fsimp.

Observe that the restriction R′ in this framework is fully pseudorandom. Thus, the key challenge
of this approach is that it requires proving a fully-derandomized simplification-under-restrictions
lemma (Equation (5.9)). In Section 5.5.1, we show an example of a fully-derandomized simplification-
under-restriction lemma, for the class of read-once CNF formulas. Then, in Section 5.5.2, we explain
how to use that lemma to design a near-optimal PRG for such formulas.

5.5.1 Simplification of read-once CNFs under fully-pseudorandom restrictions

Recall that a CNF is a conjunction of clauses, each of which is a disjunction of literals. We will
show that under a suitable pseudorandom restriction, a read-once CNF is likely to simplify, in the
sense that the restricted formula only has a few remaining clauses. We begin with the following
convenient definition, which generalizes the notion of γ-almost k-wise uniformity.

Definition 5.5.1 (k-wise γ-close distributions). Let Σ be an alphabet, let n ∈ N, and let X,Y be
distributions over Σn. Let k ∈ N and γ > 0. We say that X is k-wise γ-close to Y if for every
S ⊆ [n] with |S| ≤ k, the substrings XS and YS have total variation distance at most γ.

Recall that the width of a clause is the number of literals in the clause. A width-w CNF is
a CNF in which each clause has width at most w. We begin by analyzing the effect of a “mild”
pseudorandom restriction, i.e., a restriction that only assigns values to a constant fraction of the
input variables. Intuitively, under such a restriction, the width of a read-once CNF should decrease
by a constant factor, because in any given clause, a constant fraction of the variables should be
assigned values. We show that this indeed occurs in all but a few “exceptional” clauses.

98

Lemma 5.5.2 (Simplification of read-once CNFs under mild fully-pseudorandom restrictions). For
every w ∈ N and δ > 0, there is a value k = O(w + log(1/δ)) such that the following holds. Let f be
a width-w read-once CNF. Let γ = 2−4k, let p ≤ 2−10, and let R̃ be a distribution over {0, 1, ⋆}n that
is k-wise γ-close to Rp. Then with probability 1− δ, the restricted function f |

R̃
can be computed by

a read-once CNF of the form f |
R̃
= fnarrow ∧ fsmall, where fnarrow is a read-once CNF of width at

most w/2 and fsmall is a read-once CNF with at most O(log2(1/δ)) clauses.

To prove Lemma 5.5.2, we rely on the following tail bound, which we cite without proof.

Theorem 5.5.3 (Tail bound for almost k-wise independent random variables [DMRTV21]). Let
q > 0 and let X ∈ {0, 1}m, where X1, . . . , Xm are independent random variables with E[Xi] ≥ q for
each i. Let k be an even positive integer, let γ > 0, and let X̃ be k-wise γ-close to X. Then9

Pr
[
X̃1 = X̃2 = · · · = X̃m = 0

]
≤
(
16k

qm

)k/2

+ 2k · γ ·
(
1

q

)k

.

The specific bound of Theorem 5.5.3 appears in work by Doron, Meka, Reingold, Tal, and
Vadhan [DMRTV21] as a corollary of earlier work by Steinke, Vadhan, and Wan [SVW17]; a
similar bound appears in work by Celis, Reingold, Segev, and Wieder [CRSW13]. Now we prove
Lemma 5.5.2 using Theorem 5.5.3.

Proof of Lemma 5.5.2. Let k be a multiple of w such that 32k · 2−k/2 ≤ δ. Let m be the number
of clauses in f , say f = C1 ∧ · · · ∧ Cm. We consider three cases based on the value of m. For the
first case, suppose that m ≤ 8w. For j ∈ [m], let Xj be the indicator for the bad event that there
are more than w/2 variables that are read by Cj and kept alive by R. Let fsmall consist of all the
clauses with Xj = 1 and let fnarrow consist of all the clauses with Xj = 0; our job is to show that
fsmall has few clauses with high probability. Let wj be the number of variables that Cj reads, so

wj ≤ w. If R̃ is a truly random restriction R̃ = Rp, then

E[Xj] ≤
(
wj

w/2

)
· pw/2 ≤ 2w · pw/2 ≤ 2−4w.

For any set S ⊆ [m] of size |S| = k/w, the clauses {Cj}j∈S read a total of at most k variables, so

when R̃ is a pseudorandom restriction (namely k-wise γ-close to Rp), we have

Pr[XS = 1S] ≤ γ + (2−4w)k/w = 2 · 2−4k.

Therefore, by the union bound,

Pr

∑
j

Xj ≥ k/w

 ≤
(
m

k/w

)
· 2 · 2−4k ≤ 8w·k/w · 2 · 2−4k = 2 · 2−k ≤ δ/(16k).

Note that k/w = O(1 + log(1/δ)/w) ≤ O(log(1/δ)), so indeed, with high probability, fsmall has at
most O(log(1/δ)) clauses.

Next, for the second case, suppose that 8w < m ≤ 8w · 16(k/w). In this case, write f =
f1 ∧ · · · ∧ f16(k/w), where each fj is a read-once CNF of width at most w with at most 8w clauses.
We apply the previous argument to each fj . By the union bound, with probability 1 − δ, each

9The statement in Doron, Meka, Reingold, Tal, and Vadhan’s work [DMRTV21] includes an extra assumption
k ≤ qm. This assumption is not necessary, because if k > qm, then the conclusion of the theorem is trivial.

99

fj |R̃ can be written as f
(j)
narrow ∧ f (j)small, where f

(j)
narrow has width at most w/2 and f

(j)
small has at most

O(log(1/δ)) clauses. Define fnarrow =
∧

j f
(j)
narrow and fsmall =

∧
j f

(j)
small, and observe that fsmall has

at most O(log(1/δ) · k/w) ≤ O(log2(1/δ)) clauses.
For the final case, suppose that m > 8w · 16(k/w). In this case, we will show that with high

probability, the restricted function is identically zero. Let X = (X1, . . . , Xm), where Xj indicates
whether the clause Cj is falsified by a truly random restriction, i.e., Xj = 1 ⇐⇒ Cj |Rp ≡ 0.

Similarly, let X̃ = (X̃1, . . . , X̃m), where X̃j indicates whether Cj |R̃ ≡ 0. Observe that X1, . . . , Xm

are independent and E[Xj] ≥ (1−p
2)w ≥ 4−w. Meanwhile, the vector X̃ is (k/w)-wise γ-close to X.

Therefore, by Theorem 5.5.3,

Pr[f |R ̸≡ 0] = Pr[X̃ = 0m] ≤
(
16k/w

4−wm

)k/(2w)

+ 2(k/w) · γ · 4w(k/w)

≤ 2−k/2 + 2(k/w) · 2−2k

≤ δ.

Next, we analyze the effect of a pseudorandom restriction with a relatively small ⋆-probability
(more similar to the traditional “switching lemma” regime). By applying Lemma 5.5.2 several
times, we show that the number of clauses in a read-once CNF drastically decreases under such a
restriction.

Corollary 5.5.4 (Simplification of read-once CNFs under fully-pseudorandom restrictions). For
every w ∈ N and δ > 0, there is a value k = O(w + log(1/δ)) such that the following holds. Let
f be a width-w read-once CNF. Let γ = 2−4k, let p ≤ 2−10, let t = ⌈logw⌉, and let R̃(1), . . . , R̃(t)

be independent random variables, where each R̃(j) is k-wise γ-close to Rp. Then with probability
1 − δ, the restricted function f |

R̃(1)◦···◦R̃(t) can be computed by a read-once CNF with at most

Õ(logw · log2(1/δ)) many clauses.

Proof sketch. We repeatedly apply Lemma 5.5.2 with failure probability δ/t. The first time, we
apply it to f , which with high probability becomes fnarrow ∧ fsmall. The second time, we apply it to
fnarrow, which becomes f ′narrow ∧ f ′small. The third time, we apply it to f ′narrow, etc. After t iterations,
the width of the “narrow” part drops below 1, so only the “small” parts remain. All together, the
“small” parts have O(t · log2(t/δ)) many clauses.

5.5.2 Iterated restrictions with early termination

So far, we have shown that read-once CNFs simplify under fully-pseudorandom restrictions (Corol-
lary 5.5.4). Next, we shall use Corollary 5.5.4 to design a PRG for read-once CNFs. Previously, we
showed that δ-biased generators ε-fool read-once AC0 formulas (Section 2.5.3); this led to a seed
length of O(log n · log(1/ε)) for the depth-two case. Now we will show how to achieve near-optimal
seed length Õ(log(n/ε)).

Theorem 5.5.5 (Near-optimal PRG for read-once depth-two formulas). For every n ∈ N and ε > 0,
there is an explicit ε-PRG for read-once CNFs and DNFs with seed length Õ(log(n/ε)).

Theorem 5.5.5 was first proven by Gopalan, Meka, Reingold, Trevisan, and Vadhan [GMRTV12].
(Compared to Gopalan, Meka, Reingold, Trevisan, and Vadhan’s original proof [GMRTV12], the
analysis we present here is more similar to later work that considers more general models [Lee19;
DMRTV21].) Later, Doron, Hatami, and Hoza achieved a slightly better seed length of O(log n) +
Õ(log(1/ε)) [DHH20]. It remains an open problem to achieve the optimal seed length for this basic
and fundamental class.

100

Open Problem 5.5.6 (Optimal PRGs for read-once depth-two formulas). Construct an explicit
PRG for read-once CNFs with seed length O(log(n/ε)).

As outlined at the beginning of this section, we prove Theorem 5.5.5 using the iterated restrictions
paradigm. As the first (and main) step, let us aim for seed length Õ(w + log(n/ε)), where w is the
width of the formula.

Lemma 5.5.7 (PRGs for bounded-width read-once CNFs). For every w, n ∈ N and ε > 0, there is
an explicit ε-PRG for width-w read-once CNFs on n input variables with seed length Õ(w+log(n/ε)).

Proof. The PRG outputs R(1) ◦ · · · ◦R(t) ◦ Z, where each R(i) is distributed according to X ⋆○ Y ,
X and Y are β-biased, and Z is α-biased for suitable values

t = O(logw)

β = 2−Θ(w+log(n/ε)·log logn)

α = 2−Θ(log(1/ε)·log log(w/ε)).

Observe that the seed length is O(t log(n/β) + log(1/α)), which is indeed Õ(w + log(n/ε)). Our
remaining job is to prove correctness. Let f : {0, 1}n → {0, 1} be a width-w read-once CNF, and let
R be the composed restriction R = R(1) ◦ · · · ◦R(t).

The first step of the correctness proof is to show that each individual restriction R(i) preserves
the expectation of read-once CNFs. This is a straightforward consequence of Forbes and Kelley’s
work (see Section 5.4). Indeed, read-once CNFs can be simulated by width-3 arbitrary-order ROBPs.
Therefore, by Proposition 5.4.7, each individual restriction R(i) preserves the expectation of f to
within ε

3t , provided we choose β < 2−c·log(n/ε)·log logn for a large enough constant c. Consequently,
by Lemma 5.3.9, the composed restriction R preserves the expectation of f to within ε/3.

The next step is to show that read-once CNFs simplify under the composed restriction R. This
is a straightforward consequence of our analysis in Section 5.5.1. Indeed, for every k, each individual
restriction R(i) is k-wise (2β · 2k/2)-close to R1/2 by Theorem 2.3.2. Therefore, a composition

of ten restrictions such as R(1) ◦ · · · ◦ R(10) is k-wise (20β · 2k/2)-close to Rp where p = 2−10.
Therefore, by Corollary 5.5.4, with probability 1− ε/3, the restricted function f |R is computable
by a read-once CNF with at most m∗ many clauses, where m∗ = Õ(logw · log2(1/ε)), provided
we choose t = 10⌈logw⌉ and β < 2−c′·(w+log(1/ε)) for a large enough constant c′. Let E be the bad
event that the restricted function is not computable by a read-once CNF with only m∗ clauses.

The third step is to show that the small-bias distribution Z fools the simplified formula. This
follows from our analysis in Section 2.5.3. In that section, we argued that α-bias generators fool
read-once CNFs with error exp(−Ω(log(1/α)/ log n)). Looking at the proof more closely, if the
number of clauses is bounded by m∗, then the error is actually exp(−Ω(log(1/α)/ logm∗)). This
error is at most ε/3 provided we choose a suitable value α = 2−Θ(log(1/ε)·log log(w/ε)).

To wrap up the proof, let us compute the overall error of our PRG. Let U be a uniform random
n-bit string. Then

|E[f(R ◦ Z)]− E[f]| ≤ |E[f(R ◦ Z)]− E[f(R ◦ U)]|+ |E[f(R ◦ U)]− E[f]|

≤ E
R

[∣∣∣∣EZ [f |R(Z)]− E
U
[f |R(U)]

∣∣∣∣]+ ε/3

≤ E
R

[∣∣∣∣EZ [f |R(Z)]− E
U
[f |R(U)]

∣∣∣∣ | ¬E]+ 2ε/3

≤ ε.

101

To complete the proof of Theorem 5.5.5, we need to eliminate the dependence on width from
Lemma 5.5.7. We accomplish this by a sandwiching argument.

Lemma 5.5.8. Let f be a read-once CNF. For every ε > 0, f can be ε-sandwiched by read-once
CNFs of width ⌈log(n/ε)⌉.

Proof. Define fu by deleting from f all clauses of width greater than ⌈log(n/ε)⌉, and meanwhile
define fℓ by deleting all but the first ⌈log(n/ε)⌉ literals from each clause. Clearly, fℓ ≤ f ≤ fu.
Furthermore, a clause of width ⌈log(n/ε)⌉ has expectation at least 1− ε/n. A read-once CNF can
have at most n clauses, so by the union bound, Prx[fu(x) ̸= fℓ(x)] ≤ ε.

Theorem 5.5.5 is an immediate consequence of Lemmas 2.5.2, 5.5.7 and 5.5.8.

5.5.3 Discussion: Two types of simplification

Looking again at the construction and analysis, our near-optimal PRG for read-once CNFs is based
on combining two distinct simplification-under-restrictions lemmas:

• The first step of the PRG is applying a Forbes-Kelley pseudorandom restriction R (with
⋆-probability p = 1/2). As discussed in Section 5.4.1, the fact that R preserves the expectation
of every read-once CNF is equivalent to saying that every read-once CNF “simplifies on
average” under a related partially-pseudorandom restriction (with ⋆-probability 1− p = 1/2).

• The second step of the PRG is arguing that read-once CNFs simplify with high probability
under R◦t for some t = O(log logn). Note that R◦t is a fully-pseudorandom restriction with
⋆-probability 1/ polylog(n).

This is an attribute of the early termination framework more generally. In general, when we’re trying
to prove the first simplification-under-restrictions lemma, two things are working in our favor: the
relevant restriction is only partially pseudorandom, and it suffices to show simplification on average.
On the other hand, when we’re trying to prove the second simplification-under-restrictions lemma,
we have something else going for us: the ⋆-probability is relatively low. The early termination
framework’s power comes from the fact that we get to combine the advantages of these two different
settings.

In the decade since Gopalan, Meka, Reingold, Trevisan, and Vadhan introduced the early
termination framework [GMRTV12], it has proven to be a versatile and powerful approach to PRG
design, especially in the regime of near-optimal seed length [GMRTV12; MRT19; DHH19; Lee19;
LV20; DHH20; DMRTV21]. Recently, Lyu introduced a different “partition-based” refinement of
the iterated restrictions framework, which is also based on showing simplification under purely-
pseudorandom restrictions, and used it to design an improved PRG for AC0 circuits [Lyu22].

5.6 Fooling general branching programs via the IMZ framework

Let F be a class of functions that we wish to fool. Let us suppose yet again that functions in F
simplify with high probability under restrictions. That is, for some values p, δ > 0, we have

Pr[f |Rp ∈ Fsimp] ≥ 1− δ, (5.10)

where Fsimp is some class of “simpler” functions.
In Section 5.1, we used the polarizing walks framework to design a PRG for F with a seed length

of roughly p−2 · s (ignoring log factors), where s is the seed length of a PRG for Fsimp. Then, in

102

Section 5.3, we showed that if it is possible to partially derandomize Equation (5.10), then we can
improve the seed length to roughly p−1 · s using the Ajtai-Wigderson framework. In this section, we
will present a framework due to Impagliazzo, Meka, and Zuckerman [IMZ19] (the “IMZ framework”).
Assuming that it is possible to fully derandomize Equation (5.10), the IMZ framework gives a PRG
for F with a seed length of roughly p−1 + r, where r is the description length of functions in the
“simpler” class Fsimp, i.e., r = log |Fsimp|.

Observe that our measure of “simplicity” has changed. In all the previous sections, what
mattered was the cost of fooling functions in Fsimp (i.e., s), but now, what matters is the cost of
describing functions in Fsimp (i.e., r). Usually, the fooling cost s is much smaller than the description
length r. (Indeed, ideally we hope for s ≈ log r; see Proposition 1.3.1.) Nevertheless, the IMZ
framework is sometimes superior to the Ajtai-Wigderson framework, because the final seed length in
the Ajtai-Wigderson framework is approximately the product p−1 · s, whereas the final seed length
in the IMZ framework is closer to the sum p−1 + r.

We emphasize that the IMZ framework requires a fully-derandomized simplification-under-
restrictions lemma (just like the early termination framework that we discussed in Section 5.5). In
Section 5.6.1, we will prove a fully-derandomized simplification-under-restrictions lemma for general
branching programs where we only have a bound on the size of the program (i.e., the number of
vertices). Then, in Section 5.6.2, we explain how to use such a lemma to construct a PRG.

5.6.1 Shrinkage of branching programs under fully-pseudorandom restrictions

In this section, we study general size-m branching programs, with no restriction on the width or the
number of times each variable is read.

Definition 5.6.1 (Unrestricted branching programs). A size-m branching program over n input
variables is a directed acyclic graph with at most m vertices. Each non-sink vertex v is labeled with
an index jv ∈ [n] has two outgoing edges labeled 0 and 1. A subset Vaccept of the sink vertices are
designated as “accepting vertices.” Given an input x ∈ {0, 1}n, the program starts at a designated
“start vertex” vstart, and in each step, having reached a vertex v, the program queries xjv and
traverses the corresponding outgoing edge. Eventually, the program reaches a sink vertex v, and
f(x) = 1 ⇐⇒ v ∈ Vaccept. (See Figure 5.5.)

Let BP(f) denote the size of the smallest branching program computing f . One can eas-
ily show that branching programs shrink under truly random restrictions, in the sense that
E[BP(f |Rp)] ≤ p · BP(f). We will prove that similar shrinkage occurs with high probability rather
than in expectation, and furthermore that it occurs under a fully pseudorandom restriction. In
particular, our pseudorandom restriction distribution is as follows.

Definition 5.6.2 (k-wise independent restrictions). Let R be a distribution over {0, 1, ⋆}n. We say
that R is a k-wise independent p-regular restriction if the coordinates of R are k-wise independent,
and the marginal distributions are given by

Ri =

⋆ with probability p

0 with probability (1− p)/2

1 with probability (1− p)/2.

Equivalently, R is k-wise 0-close to Rp (see Definition 5.5.1).

103

x23

x24

x34

x13

x14

x34

x12

x14

x24

x12

x13

x23

acc

rej

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0

0 0 0

0 0 0

0

0

0

vstart

Figure 5.5: Let n = m2, and let x ∈ {0, 1}n = {0, 1}m×m be the adjacency matrix of an undirected
graph G. There is a branching program of size O(m3) = O(n1.5) that tests whether G has a triangle
given x (the case m = 4 is shown above). In contrast, every read-once branching program computing
this function must have width 2Ω(n), even if we allow arbitrary variable ordering. This follows from
communication complexity lower bounds in the best-case partition model [PS84].

Lemma 5.6.3 (High-probability shrinkage of branching programs under fully-pseudorandom
restrictions). For every δ > 0, there is a value k = O(log(1/δ)) such that for every f : {0, 1}n → {0, 1}
and every p > 0, if R ∈ {0, 1, ⋆}n is a k-wise independent p-regular restriction, then

Pr
[
BP(f |R) ≤ ⌈p · BP(f)⌉ · 2O(

√
log(1/δ))

]
≥ 1− δ.

As discussed previously, what we really care about is the description length of f |R, but this can
be bounded in terms of the branching program size BP(f |R). To prove Lemma 5.6.3, we rely on a
tail bound for sums of k-wise independent random variables, which we cite without proof.10

Theorem 5.6.4 (Tail bound for sums of k-wise independent random variables [BR94, Lemma 2.3]).
Let X1, . . . , Xn ∈ [0, 1] be k-wise independent, where k ≥ 4 is an even integer, and let X =

∑n
i=1Xi.

Then for any ∆ > 0,

Pr [|X − E[X]| ≥ ∆] ≤ 8 ·
(
kE[X] + k2

∆2

)k/2

.

Proof of Lemma 5.6.3. Identify f with a branching program computing f of size BP(f). For i ∈ [n],
let mi be the number of nodes in f that query xi. Let H be the set of “heavy variables,” namely

H = {i : mi > h} where h = p · BP(f) · 2
√

log(1/δ). We first show that with high probability, few

10Here we are citing a bound due to Bellare and Rompel [BR94]. Skorski has shown an improvement to Bellare
and Rompel’s bound [Sko22], but the improved bound is slightly more complicated and it makes no difference in our
application, so we stick with Bellare and Rompel’s simpler bound [BR94].

104

heavy variables are left alive. Indeed, since k >
√

log(1/δ), we have

Pr
[
|H ∩R−1(⋆)| ≥

√
log(1/δ)

]
≤
(|H|√

log(1/δ)

)
· p

√
log(1/δ) ≤ (p|H|)

√
log(1/δ)

≤ (p · BP(f)/h)
√

log(1/δ)

= δ.

Now let us consider the “light” variables. For each i ̸∈ H, let Xi = mi · 1[Ri = ⋆]/h ∈ [0, 1]. Let
X =

∑
i∈H Xi, so E[X] ≤ p · BP(f)/h < 1. By Theorem 5.6.4 with ∆ = O(log(1/δ)), we have

Pr[X ≤ O(log(1/δ))] ≥ 1− δ.

Our branching program for f |R begins by querying all the variables in H ∩ R−1(⋆) and storing
all those values in memory. Then it simulates the branching program for f , skipping queries to
variables in H ∪R−1({0, 1}) since those values are known. The size of the branching program is

2|H∩R−1(⋆)| − 1 + 2|H∩R−1(⋆)| ·
∑

i∈R−1(⋆)\H

mi < (1 + h ·X) · 2|H∩R−1(⋆)|,

which is bounded by ⌈p · BP(f)⌉ · 2O(
√

log(1/δ)) except with probability 2δ. Replacing δ with δ/2
completes the proof.

The parameters of Lemma 5.6.3 are perhaps a bit disappointing. Let m = BP(f). When

δ < 2−Θ(log2 m), the lemma breaks down: it is not able to show that any shrinkage occurs with
probability 1 − δ. Unfortunately, this is unavoidable. Indeed, by a standard counting argument,

there exists a function f with BP(f) ≥ m that only reads k
def
= O(logm) of the input variables. For

this function f , assuming p ≥ 1/m, even under a truly random restriction R = Rp, we have

Pr[BP(f |R) = BP(f)] ≥ pk ≥ 2−O(log2 m).

Thus, in the regime p ≥ 1/m (which is the most interesting regime), one cannot prove a shrinkage
lemma where the failure probability is exponentially small compared to m.

5.6.2 PRGs from fully-derandomized shrinkage lemmas

Now let us present the IMZ reduction.

Theorem 5.6.5 (Simplification under fully-pseudorandom restrictions =⇒ PRG [IMZ19]). Let F
and Fsimp be classes of functions f : {0, 1}n → {0, 1}. Assume that F is closed under restrictions
and shifts, and assume that Fsimp contains the constant 0 function. Let δ > 0, and let R be a
random variable over {0, 1, ⋆}n that can be explicitly sampled using q truly random bits such that

∀f ∈ F , Pr[f |R ∈ Fsimp] ≥ 1− δ.

Assume that we can explicitly compute a value p such that for every i ∈ [n], we have Pr[Ri = ⋆] ≥ p.
Let r ∈ N, and assume that (a) log |Fsimp| ≤ r and (b) there is an explicit δ-PRG for Fsimp with
seed length r.11 Then there is an explicit PRG that fools F with error O(tδ) and seed length
O(t · (q + log(r/δ)) + r), where t = ⌈p−1 ln(n/δ)⌉.

11Given condition (a), condition (b) is relatively mild; note that the optimal seed length would be O(log(r/δ)) (see
Proposition 1.3.1).

105

We think of q and polylog(nm/δ) as “small,” so the seed length in Theorem 5.6.5 is indeed
approximately p−1 + r, as suggested at the beginning of this section. For branching programs,
Theorem 5.6.5 implies the following PRG.

Corollary 5.6.6 (PRG for branching programs [IMZ19]). For any n,m, ε, there is an explicit

ε-PRG for size-m branching programs with seed length
√
m · 2O(

√
log(m/ε)) · polylog n.

When ε = 1/poly(m) and m ≥ n, the seed length in Corollary 5.6.6 is m
1
2
+o(1).

Proof sketch. Assume without loss of generality that log n ≤ m ≤ n2. Let p be the largest power
of two with p < 1/

√
m. Let t = ⌈p−1 ln(n/ε)⌉ and let δ = Θ(ε/t). Let R be a k-wise independent

p-regular restriction where k = O(log(1/δ)). By a construction similar to the proof of Theorem 2.1.3,
the distribution R can be sampled explicitly using q truly random bits, where

q = O(k log(n/p)) = O(log(m/ε) log n).

Let Fsimp be the class of all branching programs of size at most m′, where

m′ = ⌈p ·m⌉ · 2O(
√

log(1/δ)) =
√
m · 2O(

√
log(m/ε)).

By Lemma 5.6.3, for every size-m branching program f , we have Pr[f |R ∈ Fsimp] ≥ 1 − δ. Let
r = O(m′ log n). Then log |Fsimp| ≤ r, and furthermore there is an explicit PRG that perfectly fools
Fsimp with seed length r, namely an m′-wise uniform generator. Therefore, by Theorem 5.6.5, there
is an explicit PRG for size-m branching programs with error O(tδ) = ε and seed length

O(t · (s+ log(r/δ)) + r) =
√
m · 2O(

√
log(m/ε)) · polylog(n).

In their original paper, Impagliazzo, Meka, and Zuckerman used the IMZ framework to design
PRGs for a few additional classes, such as De Morgan formulas [IMZ19]. Later, Hatami, Hoza, Tal,
and Tell gave improved PRGs for branching programs and De Morgan formulas using variants of the
IMZ framework [HHTT22]. For branching programs, the improved seed length is

√
m · polylog(n/ε),

which is close to the lack-of-lower-bounds barrier. See also the work of Cheraghchi, Kabanets, Lu,
and Myrisiotis for another variation on the IMZ framework [CKLM20].

Now let us get started proving the basic IMZ reduction (Theorem 5.6.5). The proof draws
inspiration from the Nisan-Zuckerman generator (Section 3.4). The high-level intuition is that when
we do a restriction, the restricted function cannot encode much information about the random bits
we have used so far (since it can be succinctly described), and therefore we can use an extractor to
recycle the random bits.

In detail, let G : {0, 1}r → {0, 1}n be a δ-PRG for Fsimp, let Ext : {0, 1}ℓ × {0, 1}d → {0, 1}r be
an (ℓ− r, δ)-extractor, and let G′ denote the following PRG.

1. Sample t independent copies R(1), . . . , R(t) of the restriction R.

2. Sample X,Y (1), . . . , Y (t) uniformly at random, let Z(i) = Ext(X,Y (i)), and output

t∑
i=1

R(i) ◦G(Z(i)),

where the sum is over Fn
2 .

106

Lemma 5.6.7 (Correctness of the IMZ reduction). Under the assumptions of Theorem 5.6.5, the
generator G′ defined above fools F with error O(tδ).

Proof. The proof is a hybrid argument. Sample U (1), . . . , U (t) ∈ {0, 1}n independently and uniformly
at random. Define hybrid distributions H(0), . . . ,H(t) by

H(j) =

(
j∑

i=1

R(i) ◦ U (i)

)
+

t∑
i=j+1

R(i) ◦G(Z(i)),

i.e., in the first j terms of the sum, we fill in the stars of R(i) using truly random bits instead of the
pseudorandom bits G(Z(i)). Fix some f ∈ F and some j ∈ [t]. Let us show that E[f(H(j−1))] ≈
E[f(H(j))].

There is a random variable B, independent of U (j) and Y (j), such that

H(j−1) = B +R(j) ◦G(Z(j))

H(j) = B +R(j) ◦ U (j).

(Note that B and X are not independent.) Define f+B(x) = f(x+B), define F = f+B|R(j) , and
define

F ′ =

{
F if F ∈ Fsimp

the 0 function if F /∈ Fsimp.

By construction, F ′ ∈ Fsimp, so F
′ can be described using r bits. By Lemma 3.4.6, H̃min(X | F ′) ≥

ℓ− r. Therefore, by Lemma 3.4.7,

dTV((Z
(j), F ′), (U,F ′)) ≤ 3δ,

where U is a uniform random r-bit string independent of F ′. Applying a deterministic function can
only make two distributions closer, so

|E[F ′(G(Z(j)))]− E[F ′(G(U))]| ≤ 3δ.

Since F ′ ∈ Fsimp, the generator G fools F ′ with error δ, hence |E[F ′(G(U))] − E[F ′(U (j))]| ≤ δ.
Furthermore, with probability 1− δ, we have F ≡ F ′. Therefore, overall,

|E[F (G(Z(j)))]− E[F (U (j))]| ≤ 5δ,

or equivalently,
|E[f(H(j−1))]− E[f(H(j))]| ≤ 5δ.

Clearly, H(0) is the output distribution of our PRG G′. By the triangle inequality, H(0) and
H(t) are nearly indistinguishable to f . To complete the proof, let us show that H(t) is statistically
close to uniform. Indeed, for each j ∈ [n], we have

Pr[∀i ∈ [t], R
(i)
j ̸= ⋆] ≤ (1− p)t ≤ e−pt ≤ δ/n.

Therefore, by the union bound, with probability at least 1−δ, we have
⋃t

i=1(R
(i))−1(⋆) = [n]. In this

case, with repsect to the randomness of U (1), . . . , U (t), the distribution H(t) is uniform. Therefore,
overall, the total variation distance between H(t) and the uniform distribution is at most δ, and
hence G′ fools f with error (5t+ 1)δ.

107

To complete the proof of Theorem 5.6.5, we bound the seed length of G′.

Proof of Theorem 5.6.5. The restrictions R(1), . . . , R(t) cost qt truly random bits in total. Using the
GUV extractor (Theorem 3.4.4), the source length ℓ of the extractor Ext is O(r), and its seed length
is d = O(log(r/δ)). Therefore, the total seed length is (q + d)t+ ℓ, which is O((q + log(r/δ)) · t+ r)
as claimed.

108

Chapter 6

Table of PRGs

For reference, we conclude this text with a table of the best explicit PRG constructions currently
known, arranged by the model they fool. The table is not meant to be exhaustive; only a selection of
important computational models are included. In each case, we only record a single state-of-the-art
seed length, which in many cases is superior to the PRG constructions that we presented.

6.1 Circuit models

In the table below, we use d to denote depth and m to denote size. Assume d = O(1) and m ≥ n.

Model Seed length Approach Reference

Depth-1 AC0 circuits O(log(1/ε) + log log n) k-wise δ-bias Folklore

AC0 circuits Õ(logd−1m · log(m/ε)) Variant of the Ajtai-
Wigderson framework

[Lyu22]

Read-once CNFs/DNFs O(log n) + Õ(log(1/ε)) Iterated restrictions
with early termination

[DHH20]

Read-once AC0 Õ(log(n/ε)) Iterated restrictions [DHH19; DMRTV21]

De Morgan formulas m1/3+o(1) · polylog(1/ε) Variant of the IMZ
framework

[HHTT22]

Read-once De Morgan for-
mulas

O(log2 n · log(n/ε)) Iterated restrictions [FK18]

6.2 Branching program models

In the table below, we use m to denote size and w to denote width. Assume m ≥ n.

109

Model Seed length Approach Reference

Unrestricted branching
programs

√
m · polylog(n/ε) Variant of the IMZ frame-

work
[HHTT22]

Width-2 branching pro-
grams that read d bits
at a time

O(d log n+ d · 2d · log(m/ε)) Sum of d δ-biased distribu-
tions

[BDVY13]

Standard-order ROBPs
with w = 3

Õ(log n · log(1/ε)) Iterated restrictions with
early termination

[MRT19]

Standard-order ROBPs
with 4 ≤ w ≤ n

O(log(n/ε) · log n) Recycling seeds [Nis92; INW94]

Standard-order ROBPs
with w ≫ n

O
(
log(w/ε)·logn

log logw

)
Recycling seeds [Arm98; KNW08]

Standard-order regular
ROBPs

Õ(log(w/ε) · log n) INW generator [BRRY14]

Standard-order permu-
tation ROBPs with w =
O(1)

O(log n · log(1/ε)) INW generator [KNP11; De11; Ste12]

Arbitrary-order ROBPs O(log(wn/ε) · log2 n) Iterated restrictions [FK18]

Arbitrary-order ROBPs
with w = O(1)

Õ(log(n/ε) · log n) Iterated restrictions [FK18]

Arbitrary-order permu-
tation ROBPs with w =
O(1)

Õ(log n · log(1/ε)) Polarizing random walks [CHHL19]

Decision trees, or more
generally parity decision
trees

O(log(m/ε)) δ-bias [KM93]

110

6.3 Algebraic models

Model Seed length Approach Reference

Parity functions O(log(n/ε)) Balanced codes [NN93]

Parities of at most k bits O(log(k/ε) + log log n) ε-biased seed for k-wise uni-
form generator

[NN93]

Degree-d polynomials
over F2

O(d log n+ d2d log(1/ε)) Sum of d δ-biased distribu-
tions

[Vio09]

6.4 Models based on locality

Model Seed length Approach Reference

[−1, 1]-valued k-juntas O(k + log(1/ε) + log log n) k-wise δ-bias [NN93]

Two-dimensional combi-
natorial rectangles

n
2 +O(log(1/ε)) Random edge of expander [INW94]

d-dimensional combina-
torial rectangles

Õ(n/d+ log(1/ε) + log log n) Iterative alphabet reduc-
tion

[GY20]

Two-party communica-
tion protocols with cost
m

n
2 +O(m+ log(1/ε)) Random edge of expander [INW94]

111

Bibliography

[Aar10] Scott Aaronson. “BQP and the polynomial hierarchy”. In: Proc. 42nd Annual ACM
Symposium on Theory of Computing (STOC). 2010, pp. 141–150. doi: 10.1145/
1806689.1806711 (cit. on p. 21).

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009. doi: 10.1017/CBO9780511804090 (cit. on p. 9).

[ABI86] Noga Alon, László Babai, and Alon Itai. “A fast and simple randomized parallel
algorithm for the maximal independent set problem”. In: J. Algorithms 7.4 (1986),
pp. 567–583. issn: 0196-6774. doi: 10.1016/0196-6774(86)90019-2 (cit. on pp. 15,
16).

[ACGS88] Werner Alexi, Benny Chor, Oded Goldreich, and Claus P. Schnorr. “RSA and Rabin
functions: certain parts are as hard as the whole”. In: SIAM J. Comput. 17.2 (1988).
Special issue on cryptography, pp. 194–209. issn: 0097-5397. doi: 10.1137/0217013
(cit. on p. 69).

[ACR98] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. “A new general
derandomization method”. In: J. ACM 45.1 (1998), pp. 179–213. issn: 0004-5411.
doi: 10.1145/273865.273933 (cit. on p. 12).

[ACRT99] Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim, and Luca Trevisan.
“Weak random sources, hitting sets, and BPP simulations”. In: SIAM J. Comput.
28.6 (1999), pp. 2103–2116. issn: 0097-5397. doi: 10.1137/S0097539797325636
(cit. on p. 12).

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. “Simple Construc-
tions of Almost k-wise Independent Random Variables”. In: Random Structures &
Algorithms 3.3 (1992), pp. 289–304. doi: 10.1002/rsa.3240030308 (cit. on pp. 19,
20).

[AKS87] Miklós Ajtai, János Komlós, and Endre Szemerédi. “Deterministic Simulation in
LOGSPACE”. In: Proc. 19th Annual ACM Symposium on Theory of Computing
(STOC). 1987, pp. 132–140. doi: 10.1145/28395.28410 (cit. on pp. 12, 60).

[Alo21] Noga Alon. “Explicit expanders of every degree and size”. In: Combinatorica 41.4
(2021), pp. 447–463. issn: 0209-9683. doi: 10.1007/s00493-020-4429-x (cit. on
p. 46).

[Alo86] Noga Alon. “Eigenvalues and expanders”. In: Combinatorica 6.2 (1986), pp. 83–96.
issn: 0209-9683. doi: 10.1007/BF02579166 (cit. on p. 46).

112

https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1137/0217013
https://doi.org/10.1145/273865.273933
https://doi.org/10.1137/S0097539797325636
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1145/28395.28410
https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1007/BF02579166

[Arm98] Roy Armoni. “On the derandomization of space-bounded computations”. In: Proc.
2nd International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM). 1998, pp. 47–59. doi: 10.1007/3-540-49543-6_5
(cit. on pp. 59, 110).

[ASWZ96] Roy Armoni, Michael Saks, Avi Wigderson, and Shiyu Zhou. “Discrepancy sets and
pseudorandom generators for combinatorial rectangles”. In: Proc. 37th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 1996, pp. 412–421. doi:
10.1109/SFCS.1996.548500 (cit. on p. 47).

[AW89] Miklós Ajtai and Avi Wigderson. “Deterministic Simulation of Probabilistic Constant-
Depth Circuits”. In: Advances in Computing Research – Randomness and Computa-
tion 5 (1989), pp. 199–23 (cit. on pp. 88, 89).

[Baz09] Louay M. J. Bazzi. “Polylogarithmic Independence Can Fool DNF Formulas”. In:
SIAM J. Comput. 38.6 (2009), pp. 2220–2272. doi: 10.1137/070691954 (cit. on
pp. 35, 37, 39).

[BBS86] L. Blum, M. Blum, and M. Shub. “A simple unpredictable pseudorandom number
generator”. In: SIAM J. Comput. 15.2 (1986), pp. 364–383. issn: 0097-5397. doi:
10.1137/0215025 (cit. on pp. 7, 69).

[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. “Pseudorandom pseudo-
distributions with near-optimal error for read-once branching programs”. In: SIAM
J. Comput. 49.5 (2020), STOC18–242–STOC18–299. issn: 0097-5397. doi: 10.1137/
18M1197734 (cit. on pp. 12, 51).

[BDFP86] Allan Borodin, Danny Dolev, Faith E. Fich, and Wolfgang Paul. “Bounds for width
two branching programs”. In: SIAM J. Comput. 15.2 (1986), pp. 549–560. issn:
0097-5397. doi: 10.1137/0215040 (cit. on pp. 24, 25).

[BDVY13] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. “Pseudorandomness
for Width-2 Branching Programs”. In: Theory of Computing 9 (2013), pp. 283–293.
doi: 10.4086/toc.2013.v009a007 (cit. on pp. 24, 25, 30, 110).

[BF99] Harry Buhrman and Lance Fortnow. “One-Sided Versus Two-Sided Error in Proba-
bilistic Computation”. In: Proc. 16th Symposium on Theoretical Aspects of Computer
Science (STACS). 1999, pp. 100–109. isbn: 978-3-540-49116-3. doi: 10.1007/3-540-
49116-3_9 (cit. on p. 12).

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs”. In: Comput.
Complexity 3.4 (1993), pp. 307–318. issn: 1016-3328. doi: 10.1007/BF01275486
(cit. on p. 69).

[BHPP22] Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne. “Hitting
Sets for Regular Branching Programs”. In: Proc. 37th Computational Complexity
Conference (CCC). 2022, 3:1–3:22. isbn: 978-3-95977-241-9. doi: 10.4230/LIPIcs.
CCC.2022.3 (cit. on pp. 51, 55).

[BHST87] László Babai, Péter Hajnal, Endre Szemerédi, and György Turán. “A lower bound
for read-once-only branching programs”. In: J. Comput. System Sci. 35.2 (1987),
pp. 153–162. issn: 0022-0000. doi: 10.1016/0022-0000(87)90010-9 (cit. on p. 49).

113

https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1109/SFCS.1996.548500
https://doi.org/10.1137/070691954
https://doi.org/10.1137/0215025
https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/0215040
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.1007/3-540-49116-3_9
https://doi.org/10.1007/3-540-49116-3_9
https://doi.org/10.1007/BF01275486
https://doi.org/10.4230/LIPIcs.CCC.2022.3
https://doi.org/10.4230/LIPIcs.CCC.2022.3
https://doi.org/10.1016/0022-0000(87)90010-9

[BJS01] Paul Beame, T. S. Jayram, and Michael Saks. “Time-space tradeoffs for branching
programs”. In: J. Comput. System Sci. 63.4 (2001), pp. 542–572. issn: 0022-0000.
doi: 10.1006/jcss.2001.1778 (cit. on p. 49).

[BLP15] Paul Beame, Vincent Liew, and Mihai Pǎtraşcu. “Finding the median (obliviously)
with bounded space”. In: Proc. 42nd International Colloquium on Automata, Lan-
guages and Programming (ICALP). 2015, pp. 103–115. doi: 10.1007/978-3-662-
47672-7_9 (cit. on p. 49).

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically Strong Se-
quences of Pseudorandom Bits”. In: SIAM J. Comput. 13.4 (1984), pp. 850–864.
issn: 0097-5397. doi: 10.1137/0213053 (cit. on pp. 7, 65, 69).

[BNS92] László Babai, Noam Nisan, and Márió Szegedy. “Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs”. In: J. Comput. System Sci. 45.2
(1992), pp. 204–232. issn: 0022-0000. doi: 10.1016/0022-0000(92)90047-M (cit. on
p. 68).

[Bop97] Ravi B. Boppana. “The Average Sensitivity of Bounded-Depth Circuits”. In: Inf.
Process. Lett. 63.5 (1997), pp. 257–261. doi: 10.1016/S0020-0190(97)00131-2
(cit. on p. 38).

[Bor20] Charles Bordenave. “A new proof of Friedman’s second eigenvalue theorem and
its extension to random lifts”. In: Ann. Sci. Éc. Norm. Supér. (4) 53.6 (2020),
pp. 1393–1439. issn: 0012-9593. doi: 10.24033/asens.245 (cit. on p. 46).

[BPW11] Andrej Bogdanov, Periklis A. Papakonstantinou, and Andrew Wan. “Pseudoran-
domness for Read-Once Formulas”. In: FOCS. Ed. by Rafail Ostrovsky. IEEE, 2011,
pp. 240–246. isbn: 978-1-4577-1843-4 (cit. on pp. 85, 92).

[BR94] M. Bellare and J. Rompel. “Randomness-efficient oblivious sampling”. In: Proc.
35th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1994,
pp. 276–287. doi: 10.1109/SFCS.1994.365687 (cit. on p. 104).

[Bra10] Mark Braverman. “Polylogarithmic independence fools AC0 circuits”. In: J. ACM
57.5 (2010), 28:1–28:10. issn: 0004-5411. doi: 10.1145/1754399.1754401 (cit. on
pp. 9, 37, 38, 41, 42).

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. “Pseudorandom
generators for regular branching programs”. In: SIAM J. Comput. 43.3 (2014),
pp. 973–986. issn: 0097-5397. doi: 10.1137/120875673 (cit. on pp. 51–53, 55, 110).

[BRS91] Richard Beigel, Nick Reingold, and Daniel A. Spielman. “The perceptron strikes
back”. In: Proc. 6th Annual IEEE Conference on Structure in Complexity Theory.
1991, pp. 286,287,288,289,290,291. doi: 10.1109/SCT.1991.160270 (cit. on pp. 41,
42).

[BT11] Avraham Ben-Aroya and Amnon Ta-Shma. “A combinatorial construction of almost-
Ramanujan graphs using the zig-zag product”. In: SIAM J. Comput. 40.2 (2011),
pp. 267–290. issn: 0097-5397. doi: 10.1137/080732651 (cit. on p. 46).

[BV10a] Andrej Bogdanov and Emanuele Viola. “Pseudorandom bits for polynomials”. In:
SIAM J. Comput. 39.6 (2010), pp. 2464–2486. issn: 0097-5397. doi: 10.1137/
070712109 (cit. on p. 26).

114

https://doi.org/10.1006/jcss.2001.1778
https://doi.org/10.1007/978-3-662-47672-7_9
https://doi.org/10.1007/978-3-662-47672-7_9
https://doi.org/10.1137/0213053
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/S0020-0190(97)00131-2
https://doi.org/10.24033/asens.245
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1145/1754399.1754401
https://doi.org/10.1137/120875673
https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.1137/080732651
https://doi.org/10.1137/070712109
https://doi.org/10.1137/070712109

[BV10b] Joshua Brody and Elad Verbin. “The Coin Problem and Pseudorandomness for
Branching Programs”. In: Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2010, pp. 30–39. doi: 10.1109/FOCS.2010.10. url:
https://www.cs.swarthmore.edu/~brody/papers/TheCoinProblemFOCS.pdf

(cit. on pp. 55, 83).

[CDRST21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. “Error
reduction for weighted PRGs against read once branching programs”. In: Proc. 36th
Computational Complexity Conference (CCC). 2021, 22:1–22:17. doi: 10.4230/
LIPIcs.CCC.2021.22 (cit. on pp. 12, 51).

[CG88] Benny Chor and Oded Goldreich. “Unbiased Bits from Sources of Weak Randomness
and Probabilistic Communication Complexity”. In: SIAM J. on Computing 17.2
(1988), pp. 230–261. doi: 10.1137/0217015 (cit. on p. 56).

[CGHFRS85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and
Roman Smolensky. “The Bit Extraction Problem or t-Resilient Functions”. In: Proc.
26th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1985,
pp. 396–407. doi: 10.1109/SFCS.1985.55 (cit. on pp. 15, 16).

[CGLLS21] Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, and Abhishek
Shetty. “Fractional Pseudorandom Generators from Any Fourier Level”. In: Proc.
36th Computational Complexity Conference (CCC). 2021, 10:1–10:24. isbn: 978-3-
95977-193-1. doi: 10.4230/LIPIcs.CCC.2021.10 (cit. on p. 88).

[CH22] Kuan Cheng and William M. Hoza. “Hitting Sets Give Two-Sided Derandomization
of Small Space”. In: Theory of Computing 18.21 (2022), pp. 1–32. doi: 10.4086/
toc.2022.v018a021 (cit. on p. 12).

[Cha18] Eshan Chattopadhyay. Pseudorandomness and Combinatorial Constructions. Course
at Cornell University. 2018. url: https://courses.cs.cornell.edu/cs6815/
2018fa/ (cit. on p. 9).

[Cha19] Eshan Chattopadhyay. Pseudorandomness and Combinatorial Constructions. Course
at Cornell University. 2019. url: https://courses.cs.cornell.edu/cs6815/
2019fa/ (cit. on p. 9).

[Cha22] Eshan Chattopadhyay. Pseudorandomness and Combinatorial Constructions. Course
at Cornell University. 2022. url: https://courses.cs.cornell.edu/cs6815/
2022fa/ (cit. on p. 9).

[CHHL19] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. “Pseudo-
random generators from polarizing random walks”. In: Theory Comput. 15.1 (2019),
pp. 1–26. doi: 10.4086/toc.2019.v015a010 (cit. on pp. 9, 55, 72, 74, 76, 78, 86,
110).

[CHLT18] Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. “Pseudo-
random Generators from the Second Fourier Level and Applications to AC0 with
Parity Gates”. In: Proc. 10th Conference on Innovations in Theoretical Computer
Science (ITCS). 2018, 22:1–22:15. isbn: 978-3-95977-095-8. doi: 10.4230/LIPIcs.
ITCS.2019.22 (cit. on p. 88).

[CHRT18] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. “Improved
pseudorandomness for unordered branching programs through local monotonicity”.
In: Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018,
pp. 363–375. doi: 10.1145/3188745.3188800 (cit. on pp. 81, 83, 87, 92).

115

https://doi.org/10.1109/FOCS.2010.10
https://www.cs.swarthmore.edu/~brody/papers/TheCoinProblemFOCS.pdf
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://doi.org/10.1137/0217015
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.4230/LIPIcs.CCC.2021.10
https://doi.org/10.4086/toc.2022.v018a021
https://doi.org/10.4086/toc.2022.v018a021
https://courses.cs.cornell.edu/cs6815/2018fa/
https://courses.cs.cornell.edu/cs6815/2018fa/
https://courses.cs.cornell.edu/cs6815/2019fa/
https://courses.cs.cornell.edu/cs6815/2019fa/
https://courses.cs.cornell.edu/cs6815/2022fa/
https://courses.cs.cornell.edu/cs6815/2022fa/
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.1145/3188745.3188800

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. “Fine-Grained De-
randomization: From Problem-Centric to Resource-Centric Complexity”. In: Proc.
45th International Colloquium on Automata, Languages and Programming (ICALP).
2018, 27:1–27:16. isbn: 978-3-95977-076-7. doi: 10.4230/LIPIcs.ICALP.2018.27
(cit. on p. 69).

[CKLM20] Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis.
“Circuit lower bounds for MCSP from local pseudorandom generators”. In: ACM
Trans. Comput. Theory 12.3 (2020), Art. 21, 27. issn: 1942-3454. doi: 10.1145/
3404860 (cit. on p. 106).

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. “Optimal Error Pseudodistributions for
Read-Once Branching Programs”. In: Proc. 35th Annual IEEE Conference on
Computational Complexity (CCC). Vol. 169. 2020, 25:1–25:27. isbn: 978-3-95977-
156-6. doi: 10.4230/LIPIcs.CCC.2020.25 (cit. on pp. 12, 51).

[CL21] Kuan Cheng and Xin Li. “Efficient document exchange and error correcting codes
with asymmetric information”. In: Proc. 2021 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2021, pp. 2424–2443. doi: 10.1137/1.9781611976465.
144 (cit. on p. 16).

[CLK11] Timothy H. Click, Aibing Liu, and George A. Kaminski. “Quality of random number
generators significantly affects results of Monte Carlo simulations for organic and
biological systems”. In: Journal of Computational Chemistry 32.3 (2011), pp. 513–
524. doi: 10.1002/jcc.21638 (cit. on p. 6).

[CLLO21] Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira. “Majority vs. Approximate
Linear Sum and Average-Case Complexity Below NC¹”. In: Proc. 48th International
Colloquium on Automata, Languages and Programming (ICALP). 2021, 51:1–51:20.
isbn: 978-3-95977-195-5. doi: 10.4230/LIPIcs.ICALP.2021.51 (cit. on p. 62).

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. “Almost-everywhere circuit lower
bounds from non-trivial derandomization”. In: Proc. 61st Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 2020, pp. 1–12. doi: 10.1109/
FOCS46700.2020.00009 (cit. on p. 69).

[CM08] Sebastian M. Cioabă and M. Ram Murty. “Expander graphs and gaps between
primes”. In: Forum Math. 20.4 (2008), pp. 745–756. issn: 0933-7741. doi: 10.1515/
FORUM.2008.035 (cit. on p. 46).

[CNS99] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. “Hardness and hierarchy theorems
for probabilistic quasi-polynomial time”. In: Proc. 31st Annual ACM Symposium on
Theory of Computing (STOC). 1999, pp. 726–735. doi: 10.1145/301250.301444
(cit. on p. 69).

[Cod94] P.D. Coddington. “Analysis of Random Number Generators Using Monte Carlo
Simulation”. In: International Journal of Modern Physics C 05.03 (1994), pp. 547–
560. doi: 10.1142/S0129183194000726 (cit. on p. 6).

[Coh16] Michael B. Cohen. “Ramanujan graphs in polynomial time”. In: Proc. 57th Annual
IEEE Symposium on Foundations of Computer Science (FOCS). 2016, pp. 276–281.
doi: 10.1109/FOCS.2016.37 (cit. on p. 46).

[CR22] Lijie Chen and Hanlin Ren. “Strong average-case circuit lower bounds from nontrivial
derandomization”. In: SIAM J. Comput. 51.3 (2022), STOC20–115–STOC20–173.
issn: 0097-5397. doi: 10.1137/20M1364886 (cit. on p. 69).

116

https://doi.org/10.4230/LIPIcs.ICALP.2018.27
https://doi.org/10.1145/3404860
https://doi.org/10.1145/3404860
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.1137/1.9781611976465.144
https://doi.org/10.1137/1.9781611976465.144
https://doi.org/10.1002/jcc.21638
https://doi.org/10.4230/LIPIcs.ICALP.2021.51
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1515/FORUM.2008.035
https://doi.org/10.1515/FORUM.2008.035
https://doi.org/10.1145/301250.301444
https://doi.org/10.1142/S0129183194000726
https://doi.org/10.1109/FOCS.2016.37
https://doi.org/10.1137/20M1364886

[CRS00] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. “Improved algorithms via
approximations of probability distributions”. In: J. Comput. System Sci. 61.1 (2000),
pp. 81–107. issn: 0022-0000. doi: 10.1006/jcss.1999.1695 (cit. on p. 32).

[CRSW13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. “Balls and bins: smaller
hash families and faster evaluation”. In: SIAM J. Comput. 42.3 (2013), pp. 1030–
1050. issn: 0097-5397. doi: 10.1137/120871626 (cit. on p. 99).

[CRTY20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. “On Exponential-Time
Hypotheses, Derandomization, and Circuit Lower Bounds: Extended Abstract”. In:
Proc. 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS).
2020, pp. 13–23. doi: 10.1109/FOCS46700.2020.00010 (cit. on p. 69).

[CT21] Lijie Chen and Roei Tell. “Simple and Fast Derandomization from Very Hard
Functions: Eliminating Randomness at Almost No Cost”. In: Proc. 53rd Annual ACM
Symposium on Theory of Computing (STOC). 2021, 283–291. isbn: 9781450380539.
doi: 10.1145/3406325.3451059 (cit. on pp. 68, 69).

[De11] Anindya De. “Pseudorandomness for Permutation and Regular Branching Programs”.
In: Proc. 26th Annual IEEE Conference on Computational Complexity (CCC). 2011,
pp. 221–231. doi: 10.1109/CCC.2011.23 (cit. on pp. 55, 110).

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. “Improved pseu-
dorandom generators for depth 2 circuits”. In: Proc. 14th International Workshop
on Randomization and Approximation Techniques in Computer Science (RANDOM).
2010, pp. 504–517. doi: 10.1007/978-3-642-15369-3_38 (cit. on pp. 32, 35, 90).

[DGJSV10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and
Emanuele Viola. “Bounded independence fools halfspaces”. In: SIAM J. Comput.
39.8 (2010), pp. 3441–3462. issn: 0097-5397. doi: 10.1137/100783030 (cit. on p. 9).

[DHH19] Dean Doron, Pooya Hatami, and William M. Hoza. “Near-Optimal Pseudorandom
Generators for Constant-Depth Read-Once Formulas”. In: Proc. 34th Computational
Complexity Conference (CCC). 2019, 16:1–16:34. isbn: 978-3-95977-116-0. doi: 10.
4230/LIPIcs.CCC.2019.16 (cit. on pp. 102, 109).

[DHH20] Dean Doron, Pooya Hatami, and William M. Hoza. “Log-Seed Pseudorandom
Generators via Iterated Restrictions”. In: Proc. 35th Computational Complexity
Conference (CCC). 2020, 6:1–6:36. isbn: 978-3-95977-156-6. doi: 10.4230/LIPIcs.
CCC.2020.6 (cit. on pp. 43, 100, 102, 109).

[DMOZ20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly Optimal
Pseudorandomness From Hardness”. In: Proc. 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 2020, pp. 1057–1068. doi: 10.1109/
FOCS46700.2020.00102 (cit. on pp. 7, 68, 69).

[DMRTV21] Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan. “Pseu-
dorandom Generators for Read-Once Monotone Branching Programs”. In: Proc.
25th International Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM). 2021, 58:1–58:21. isbn: 978-3-95977-207-5. doi:
10.4230/LIPIcs.APPROX/RANDOM.2021.58 (cit. on pp. 99, 100, 102, 109).

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. “Fuzzy extrac-
tors: how to generate strong keys from biometrics and other noisy data”. In: SIAM J.
Comput. 38.1 (2008), pp. 97–139. issn: 0097-5397. doi: 10.1137/060651380 (cit. on
pp. 57, 58).

117

https://doi.org/10.1006/jcss.1999.1695
https://doi.org/10.1137/120871626
https://doi.org/10.1109/FOCS46700.2020.00010
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1007/978-3-642-15369-3_38
https://doi.org/10.1137/100783030
https://doi.org/10.4230/LIPIcs.CCC.2019.16
https://doi.org/10.4230/LIPIcs.CCC.2019.16
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://doi.org/10.1109/FOCS46700.2020.00102
https://doi.org/10.1109/FOCS46700.2020.00102
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.58
https://doi.org/10.1137/060651380

[DVV16] Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. “Fine-
grained cryptography”. In: Proc. 36th Annual International Cryptology Conference
(CRYPTO). 2016, pp. 533–562. doi: 10.1007/978-3-662-53015-3_19 (cit. on
p. 69).

[EFF85] P. Erdős, P. Frankl, and Z. Füredi. “Families of finite sets in which no set is covered
by the union of r others”. In: Israel J. Math. 51.1-2 (1985), pp. 79–89. issn: 0021-2172.
doi: 10.1007/BF02772959 (cit. on p. 66).

[EGLNV98] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velic̆ković.
“Efficient approximation of product distributions”. In: Random Structures Algorithms
13.1 (1998), pp. 1–16. issn: 1042-9832. doi: 10.1002/(SICI)1098-2418(199808)13:
1<1::AID-RSA1>3.0.CO;2-W (cit. on p. 47).

[EWT21] Shohei Egashira, Yuyu Wang, and Keisuke Tanaka. “Fine-grained cryptography
revisited”. In: J. Cryptology 34.3 (2021), Paper No. 23, 43. issn: 0933-2790. doi:
10.1007/s00145-021-09390-3 (cit. on p. 69).

[Fil10] Yuval Filmus. Smolensky’s Lower Bound. 2010. url: https://yuvalfilmus.cs.
technion.ac.il/Manuscripts/Smolensky.pdf (cit. on p. 69).

[FK18] Michael A. Forbes and Zander Kelley. “Pseudorandom generators for read-once
branching programs, in any order”. In: Proc. 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 2018, pp. 946–955. doi: 10.1109/FOCS.
2018.00093 (cit. on pp. 9, 86, 92, 97, 98, 109, 110).

[FLW92] Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong. “Monte Carlo simulations:
Hidden errors from ‘good’ random number generators”. In: Phys. Rev. Lett. 69 (23
1992), pp. 3382–3384. doi: 10.1103/PhysRevLett.69.3382 (cit. on p. 6).

[FMF85] Thomas Filk, Mihail Marcu, and Klaus Fredenhagen. “Long range correlations in
random number generators and their influence on Monte Carlo simulations”. In:
Physics Letters B 165.1 (1985), pp. 125–130. issn: 0370-2693. doi: 10.1016/0370-
2693(85)90705-1 (cit. on p. 6).

[Fri08] Joel Friedman. “A proof of Alon’s second eigenvalue conjecture and related problems”.
In: Mem. Amer. Math. Soc. 195.910 (2008), pp. viii+100. issn: 0065-9266. doi:
10.1090/memo/0910 (cit. on p. 46).

[Fri93] Joel Friedman. “Some geometric aspects of graphs and their eigenfunctions”. In:
Duke Math. J. 69.3 (1993), pp. 487–525. issn: 0012-7094. doi: 10.1215/S0012-
7094-93-06921-9 (cit. on p. 46).

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. “On
Beating the Hybrid Argument”. In: Theory Comput. 9 (2013), pp. 809–843. doi:
10.4086/toc.2013.v009a026 (cit. on p. 69).

[Für88] Zoltán Füredi. “Matchings and covers in hypergraphs”. In: Graphs Combin. 4.2
(1988), pp. 115–206. issn: 0911-0119. doi: 10.1007/BF01864160 (cit. on p. 66).

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby. “On the existence of pseudoran-
dom generators”. In: SIAM J. Comput. 22.6 (1993), pp. 1163–1175. issn: 0097-5397.
doi: 10.1137/0222069 (cit. on p. 69).

[GKM18] Parikshit Gopalan, Daniel M. Kane, and Raghu Meka. “Pseudorandomness via the
discrete Fourier transform”. In: SIAM J. Comput. 47.6 (2018), pp. 2451–2487. issn:
0097-5397. doi: 10.1137/16M1062132 (cit. on p. 9).

118

https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/BF02772959
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.1007/s00145-021-09390-3
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.1103/PhysRevLett.69.3382
https://doi.org/10.1016/0370-2693(85)90705-1
https://doi.org/10.1016/0370-2693(85)90705-1
https://doi.org/10.1090/memo/0910
https://doi.org/10.1215/S0012-7094-93-06921-9
https://doi.org/10.1215/S0012-7094-93-06921-9
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.1007/BF01864160
https://doi.org/10.1137/0222069
https://doi.org/10.1137/16M1062132

[GL89] O. Goldreich and L. A. Levin. “A Hard-Core Predicate for All One-Way Functions”.
In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC). 1989,
25–32. isbn: 0897913078. doi: 10.1145/73007.73010 (cit. on p. 69).

[GMRTV12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan.
“Better Pseudorandom Generators from Milder Pseudorandom Restrictions”. In: Proc.
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS). 2012,
pp. 120–129. doi: 10.1109/FOCS.2012.77 (cit. on pp. 25, 47, 51, 93, 100, 102).

[GMT82] Shafi Goldwasser, Silvio Micali, and Po Tong. “Why and how to establish a private
code on a public network”. In: Proc. 23rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 1982, pp. 134–144. doi: 10.1109/SFCS.1982.100
(cit. on p. 69).

[Gol01] Oded Goldreich. Foundations of Cryptography Volume I: Basic Tools. Cambridge
University Press, 2001. doi: 10.1017/CBO9780511546891 (cit. on p. 69).

[Gol10] Oded Goldreich. A primer on pseudorandom generators. Vol. 55. University Lecture
Series. American Mathematical Society, Providence, RI, 2010, pp. x+114. isbn:
978-0-8218-5192-0. doi: 10.1090/ulect/055 (cit. on p. 9).

[Gol11] Oded Goldreich. “In a world of P = BPP”. In: Studies in complexity and cryptogra-
phy. Vol. 6650. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2011, pp. 191–
232. doi: 10.1007/978-3-642-22670-0_20 (cit. on p. 69).

[Gra93] Peter Grassberger. “On correlations in ‘good’ random number generators”. In:
Physics Letters A 181.1 (1993), pp. 43–46. issn: 0375-9601. doi: 10.1016/0375-
9601(93)91122-L (cit. on p. 6).

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. “Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy codes”. In: J. ACM 56.4
(2009), Art. 20, 34. issn: 0004-5411. doi: 10.1145/1538902.1538904 (cit. on pp. 57,
59).

[GVW11] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “Simplified derandomization of
BPP using a hitting set generator”. In: Studies in Complexity and Cryptography.
Vol. 6650. Lecture Notes in Computer Science. Springer, Heidelberg, 2011, pp. 59–67.
doi: 10.1007/978-3-642-22670-0_8 (cit. on p. 12).

[GY20] Parikshit Gopalan and Amir Yehudayoff. “Concentration for limited independence
via inequalities for the elementary symmetric polynomials”. In: Theory Comput. 16
(2020), Paper No. 17, 29. doi: 10.4086/toc.2020.v016a017 (cit. on pp. 47, 111).

[H̊as01] Johan H̊astad. “A slight sharpening of LMN”. In: Journal of Computer and System
Sciences 63.3 (2001), pp. 498–508. doi: 10.1006/jcss.2001.1803 (cit. on p. 38).

[H̊as14] Johan H̊astad. “On the Correlation of Parity and Small-Depth Circuits”. In: SIAM
J. Comput. 43.5 (2014), pp. 1699–1708. doi: 10.1137/120897432 (cit. on pp. 63,
72).

[Has89] John Hastad. “Almost Optimal Lower Bounds for Small Depth Circuits”. In: Adv.
Comput. Res. 5 (1989), pp. 143–170. url: https://www.csc.kth.se/~johanh/
largesmalldepth.pdf (cit. on pp. 68, 72).

119

https://doi.org/10.1145/73007.73010
https://doi.org/10.1109/FOCS.2012.77
https://doi.org/10.1109/SFCS.1982.100
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1090/ulect/055
https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1016/0375-9601(93)91122-L
https://doi.org/10.1016/0375-9601(93)91122-L
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1007/978-3-642-22670-0_8
https://doi.org/10.4086/toc.2020.v016a017
https://doi.org/10.1006/jcss.2001.1803
https://doi.org/10.1137/120897432
https://www.csc.kth.se/~johanh/largesmalldepth.pdf
https://www.csc.kth.se/~johanh/largesmalldepth.pdf

[HHR06] Iftach Haitner, Danny Harnik, and Omer Reingold. “Efficient pseudorandom gen-
erators from exponentially hard one-way functions”. In: Proc. 33rd International
Colloquium on Automata, Languages and Programming (ICALP). 2006, pp. 228–239.
doi: 10.1007/11787006_20 (cit. on p. 69).

[HHR11] Iftach Haitner, Danny Harnik, and Omer Reingold. “On the Power of the Randomized
Iterate”. In: SIAM J. Comput. 40.6 (2011), pp. 1486–1528. issn: 0097-5397. doi:
10.1137/080721820 (cit. on p. 69).

[HHTT22] Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. “Fooling constant-
depth threshold circuits”. In: Proc. 62nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 2022, pp. 104–115. doi: 10.1109/FOCS52979.2021.
00019 (cit. on pp. 43, 106, 109, 110).

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A pseudo-
random generator from any one-way function”. In: SIAM J. Comput. 28.4 (1999),
pp. 1364–1396. issn: 0097-5397. doi: 10.1137/S0097539793244708 (cit. on pp. 7,
69).

[HLV18] Elad Haramaty, Chin Ho Lee, and Emanuele Viola. “Bounded independence plus
noise fools products”. In: SIAM J. Comput. 47.2 (2018), pp. 493–523. issn: 0097-5397.
doi: 10.1137/17M1129088 (cit. on pp. 47, 92, 93).

[Hol06] Thomas Holenstein. “Pseudorandom generators from one-way functions: a simple
construction for any hardness”. In: Theory of cryptography. Vol. 3876. Lecture Notes
in Comput. Sci. Springer, Berlin, 2006, pp. 443–461. doi: 10.1007/11681878_23
(cit. on p. 69).

[Hoz21] William M. Hoza. “Better pseudodistributions and derandomization for space-
bounded computation”. In: Proc. 25th International Workshop on Randomization
and Approximation Techniques in Computer Science (RANDOM). 2021, 28:1–28:23.
doi: 10.4230/LIPIcs.APPROX/RANDOM.2021.28 (cit. on pp. 8, 12, 51, 60).

[Hoz22] WilliamM. Hoza. “Recent Progress on Derandomizing Space-Bounded Computation”.
In: Bulletin of the EATCS 138 (2022), pp. 114–143. url: https://eatcs.org/
images/bulletin/beatcs138.pdf (cit. on p. 49).

[HPV21] William M. Hoza, Edward Pyne, and Salil Vadhan. “Pseudorandom Generators for
Unbounded-Width Permutation Branching Programs”. In: Proc. 12th Conference
on Innovations in Theoretical Computer Science (ITCS). 2021, 7:1–7:20. isbn: 978-
3-95977-177-1. doi: 10.4230/LIPIcs.ITCS.2021.7 (cit. on pp. 12, 55).

[HR03] Tzvika Hartman and Ran Raz. “On the distribution of the number of roots of
polynomials and explicit weak designs”. In: Random Structures Algorithms 23.3
(2003), pp. 235–263. issn: 1042-9832. doi: 10.1002/rsa.10095 (cit. on pp. 67, 68).

[HRV13] Iftach Haitner, Omer Reingold, and Salil Vadhan. “Efficiency improvements in
constructing pseudorandom generators from one-way functions”. In: SIAM J. Comput.
42.3 (2013), pp. 1405–1430. issn: 0097-5397. doi: 10.1137/100814421 (cit. on p. 69).

[HS19] Prahladh Harsha and Srikanth Srinivasan. “On polynomial approximations to AC0”.
In: Random Structures Algorithms 54.2 (2019), pp. 289–303. doi: 10.1002/rsa.
20786 (cit. on pp. 37, 38, 41, 42).

120

https://doi.org/10.1007/11787006_20
https://doi.org/10.1137/080721820
https://doi.org/10.1109/FOCS52979.2021.00019
https://doi.org/10.1109/FOCS52979.2021.00019
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/17M1129088
https://doi.org/10.1007/11681878_23
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://eatcs.org/images/bulletin/beatcs138.pdf
https://eatcs.org/images/bulletin/beatcs138.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.1002/rsa.10095
https://doi.org/10.1137/100814421
https://doi.org/10.1002/rsa.20786
https://doi.org/10.1002/rsa.20786

[HZ20] William M. Hoza and David Zuckerman. “Simple optimal hitting sets for small-
success RL”. In: SIAM J. Comput. 49.4 (2020), pp. 811–820. issn: 0097-5397. doi:
10.1137/19M1268707 (cit. on pp. 25, 51, 60).

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. “A satisfiability
algorithm for AC0”. In: Proc. 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2012, pp. 961–972. url: https://dl.acm.org/doi/10.5555/
2095116.2095193 (cit. on p. 63).

[IMZ19] Russell Impagliazzo, Raghu Meka, and David Zuckerman. “Pseudorandomness from
shrinkage”. In: J. ACM 66.2 (2019), Art. 11, 16. issn: 0004-5411. doi: 10.1145/
3230630 (cit. on pp. 92, 103, 105, 106).

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. “Pseudorandomness for
Network Algorithms”. In: Proc. 26th Annual ACM Symposium on Theory of Com-
puting (STOC). 1994, pp. 356–364. isbn: 0897916638. doi: 10.1145/195058.195190
(cit. on pp. 9, 45, 48, 50, 68, 110, 111).

[ISW06] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. “Reducing the seed length
in the Nisan-Wigderson generator”. In: Combinatorica 26.6 (2006), pp. 647–681.
issn: 0209-9683. doi: 10.1007/s00493-006-0036-8 (cit. on pp. 68, 69).

[ISW99] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. “Near-optimal conversion
of hardness into pseudo-randomness”. In: Proc. 40th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 1999, pp. 181–190. doi: 10.1109/SFFCS.
1999.814590 (cit. on p. 12).

[IW01] Russell Impagliazzo and Avi Wigderson. “Randomness vs time: derandomization
under a uniform assumption”. In: J. Comput. System Sci. 63.4 (2001), pp. 672–688.
issn: 0022-0000. doi: 10.1006/jcss.2001.1780 (cit. on p. 69).

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP If E Requires Exponential
Circuits: Derandomizing the XOR Lemma”. In: Proc. 29th Annual ACM Symposium
on Theory of Computing (STOC). 1997, pp. 220–229. isbn: 0897918886. doi: 10.
1145/258533.258590 (cit. on pp. 7, 11, 69).

[KC00] Valentine Kabanets and Jin-Yi Cai. “Circuit Minimization Problem”. In: Proc.
32nd Annual ACM Symposium on Theory of Computing (STOC). 2000, 73–79. doi:
10.1145/335305.335314 (cit. on p. 10).

[Kel21] Zander Kelley. “An Improved Derandomization of the Switching Lemma”. In: Proc.
53rd Annual ACM Symposium on Theory of Computing (STOC). 2021, 272–282.
isbn: 9781450380539. doi: 10.1145/3406325.3451054 (cit. on pp. 89, 90).

[KL18] Valentine Kabanets and Zhenjian Lu. “Satisfiability and Derandomization for Small
Polynomial Threshold Circuits”. In: Proc. 22nd International Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM). 2018, 46:1–
46:19. isbn: 978-3-95977-085-9. doi: 10.4230/LIPIcs.APPROX-RANDOM.2018.46
(cit. on p. 67).

[KLW10] Adam R. Klivans, Homin K. Lee, and Andrew Wan. “Mansour’s Conjecture is True
for Random DNF Formulas”. In: Proc. 23rd Conference on Learning Theory (COLT).
2010, pp. 368–380. url: http://www.learningtheory.org/colt2010/papers/
085Lee.pdf (cit. on p. 34).

121

https://doi.org/10.1137/19M1268707
https://dl.acm.org/doi/10.5555/2095116.2095193
https://dl.acm.org/doi/10.5555/2095116.2095193
https://doi.org/10.1145/3230630
https://doi.org/10.1145/3230630
https://doi.org/10.1145/195058.195190
https://doi.org/10.1007/s00493-006-0036-8
https://doi.org/10.1109/SFFCS.1999.814590
https://doi.org/10.1109/SFFCS.1999.814590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/3406325.3451054
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.46
http://www.learningtheory.org/colt2010/papers/085Lee.pdf
http://www.learningtheory.org/colt2010/papers/085Lee.pdf

[KM02] Adam R. Klivans and Dieter van Melkebeek. “Graph Nonisomorphism Has
Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses”. In:
SIAM J. Comput. 31.5 (2002), pp. 1501–1526. issn: 0097-5397. doi: 10.1137/
S0097539700389652 (cit. on pp. 7, 67).

[KM93] Eyal Kushilevitz and Yishay Mansour. “Learning decision trees using the Fourier
spectrum”. In: SIAM J. Comput. 22.6 (1993), pp. 1331–1348. issn: 0097-5397. doi:
10.1137/0222080 (cit. on pp. 24, 110).

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. “Pseudorandom Genera-
tors for Group Products”. In: Proc. 43rd Annual ACM Symposium on Theory of
Computing (STOC). 2011, pp. 263–272. doi: 10.1145/1993636.1993672 (cit. on
pp. 55, 110).

[KNW08] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. Revisiting Norm Estimation
in Data Streams. 2008. arXiv: 0811.3648 [cs.DS] (cit. on pp. 57, 59, 110).

[KW84] Claus Kalle and Stephan Wansleben. “Problems with the random number generator
RANF implemented on the CDC cyber 205”. In: Computer Physics Communications
33.4 (1984), pp. 343–346. issn: 0010-4655. doi: 10.1016/0010-4655(84)90139-5
(cit. on p. 6).

[Lee19] Chin Ho Lee. “Fourier Bounds and Pseudorandom Generators for Product Tests”.
In: Proc. 34th Computational Complexity Conference (CCC). 2019, 7:1–7:25. doi:
10.4230/LIPIcs.CCC.2019.7 (cit. on pp. 47, 100, 102).

[Lev87] Leonid A. Levin. “One way functions and pseudorandom generators”. In: Combina-
torica 7.4 (1987), pp. 357–363. issn: 0209-9683. doi: 10.1007/BF02579323 (cit. on
p. 69).

[LLSZ97] Nathan Linial, Michael Luby, Michael Saks, and David Zuckerman. “Efficient con-
struction of a small hitting set for combinatorial rectangles in high dimension”. In:
Combinatorica 17.2 (1997), pp. 215–234. issn: 0209-9683. doi: 10.1007/BF01200907
(cit. on p. 47).

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. “Constant depth circuits, Fourier
transform, and learnability”. In: Journal of the ACM 40.3 (1993), pp. 607–620. doi:
10.1145/174130.174138 (cit. on p. 38).

[LN90] Nathan Linial and Noam Nisan. “Approximate inclusion-exclusion”. In: Combina-
torica 10.4 (1990), pp. 349–365. doi: 10.1007/BF02128670 (cit. on p. 37).

[Lov09] Shachar Lovett. “Unconditional Pseudorandom Generators for Low Degree Polyno-
mials”. In: Theory of Computing 5.1 (2009), pp. 69–82. doi: 10.4086/toc.2009.
v005a003 (cit. on p. 26).

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. “Ramanujan graphs”. In: Combinatorica
8.3 (1988), pp. 261–277. issn: 0209-9683. doi: 10.1007/BF02126799 (cit. on p. 46).

[LPV22] Chin Ho Lee, Edward Pyne, and Salil Vadhan. “Fourier Growth of Regular Branch-
ing Programs”. In: Proc. 26th International Workshop on Randomization and Ap-
proximation Techniques in Computer Science (RANDOM). 2022, 2:1–2:21. isbn:
978-3-95977-249-5. doi: 10.4230/LIPIcs.APPROX/RANDOM.2022.2 (cit. on pp. 55,
81, 83, 86).

122

https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/0222080
https://doi.org/10.1145/1993636.1993672
https://arxiv.org/abs/0811.3648
https://doi.org/10.1016/0010-4655(84)90139-5
https://doi.org/10.4230/LIPIcs.CCC.2019.7
https://doi.org/10.1007/BF02579323
https://doi.org/10.1007/BF01200907
https://doi.org/10.1145/174130.174138
https://doi.org/10.1007/BF02128670
https://doi.org/10.4086/toc.2009.v005a003
https://doi.org/10.4086/toc.2009.v005a003
https://doi.org/10.1007/BF02126799
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.2

[LS07] Pierre L’Ecuyer and Richard Simard. “TestU01: A C Library for Empirical Testing
of Random Number Generators”. In: ACM Trans. Math. Softw. 33.4 (Aug. 2007).
issn: 0098-3500. doi: 10.1145/1268776.1268777 (cit. on p. 6).

[LS11] Shachar Lovett and Srikanth Srinivasan. “Correlation bounds for poly-size AC0

circuits with n1−o(1) symmetric gates”. In: Proc. 15th International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM).
2011, pp. 640–651. doi: 10.1007/978-3-642-22935-0_54 (cit. on p. 67).

[Lu02] Chi-Jen Lu. “Improved pseudorandom generators for combinatorial rectangles”.
In: Combinatorica 22.3 (2002), pp. 417–433. issn: 0209-9683. doi: 10 . 1007 /

s004930200021 (cit. on p. 47).

[LV17] Chin Ho Lee and Emanuele Viola. “Some limitations of the sum of small-bias
distributions”. In: Theory Comput. 13 (2017), Paper No. 16, 23. doi: 10.4086/toc.
2017.v013a016 (cit. on pp. 32, 51).

[LV20] Chin Ho Lee and Emanuele Viola. “More on bounded independence plus noise:
pseudorandom generators for read-once polynomials”. In: Theory Comput. 16 (2020),
Paper No. 7, 50. doi: 10.4086/toc.2020.v016a007 (cit. on p. 102).

[LV96] M. Luby and B. Veličković. “On Deterministic Approximation of DNF”. In: Algo-
rithmica 16.4/5 (1996), pp. 415–433. doi: 10.1007/BF01940873 (cit. on p. 44).

[LVW93] Michael Luby, Boban Veličković, and Avi Wigderson. “Deterministic approximate
counting of depth-2 circuits”. In: Proc. 2nd Israel Symposium on Theory and Com-
puting Systems (ISTCS). 1993, pp. 18–24. doi: 10.1109/ISTCS.1993.253488
(cit. on pp. 26, 67).

[LW06] Michael Luby and Avi Wigderson. “Pairwise Independence and Derandomization”.
In: Foundations and Trends in Theoretical Computer Science 1.4 (2006), pp. 237–301.
issn: 1551-305X. doi: 10.1561/0400000009 (cit. on p. 9).

[Lyu22] Xin Lyu. “Improved Pseudorandom Generators for AC0 Circuits”. In: Proc. 37th
Computational Complexity Conference (CCC). 2022, 34:1–34:25. isbn: 978-3-95977-
241-9. doi: 10.4230/LIPIcs.CCC.2022.34 (cit. on pp. 34, 89, 90, 102, 109).

[Mar88] G. A. Margulis. “Explicit group-theoretic constructions of combinatorial schemes
and their applications in the construction of expanders and concentrators”. In:
Problemy Peredachi Informatsii 24.1 (1988), pp. 51–60. issn: 0555-2923. url: http:
//mi.mathnet.ru/eng/ppi/v24/i1/p51 (cit. on p. 46).

[MBH86] A Milchev, K Binder, and DW Heermann. “Fluctuations and lack of self-averaging
in the kinetics of domain growth”. In: Zeitschrift für Physik B Condensed Matter
63.4 (1986), pp. 521–535. doi: 10.1007/BF01726202 (cit. on p. 6).

[Mil01] Peter Bro Miltersen. “Derandomizing complexity classes”. In: Handbook of random-
ized computing, Vol. I, II. Vol. 9. Comb. Optim. Kluwer Acad. Publ., Dordrecht,
2001, pp. 843–941. doi: 10.1007/978-1-4615-0013-1_19 (cit. on p. 9).

[MN98] Makoto Matsumoto and Takuji Nishimura. “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator”. In: ACM Trans.
Model. Comput. Simul. 8.1 (Jan. 1998), 3–30. issn: 1049-3301. doi: 10.1145/
272991.272995 (cit. on p. 6).

123

https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1007/978-3-642-22935-0_54
https://doi.org/10.1007/s004930200021
https://doi.org/10.1007/s004930200021
https://doi.org/10.4086/toc.2017.v013a016
https://doi.org/10.4086/toc.2017.v013a016
https://doi.org/10.4086/toc.2020.v016a007
https://doi.org/10.1007/BF01940873
https://doi.org/10.1109/ISTCS.1993.253488
https://doi.org/10.1561/0400000009
https://doi.org/10.4230/LIPIcs.CCC.2022.34
http://mi.mathnet.ru/eng/ppi/v24/i1/p51
http://mi.mathnet.ru/eng/ppi/v24/i1/p51
https://doi.org/10.1007/BF01726202
https://doi.org/10.1007/978-1-4615-0013-1_19
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995

[MOP20] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. “Explicit near-Ramanujan
graphs of every degree”. In: Proc. 52nd Annual ACM Symposium on Theory of
Computing (STOC). ACM, New York, 2020, pp. 510–523. doi: 10.1145/3357713.
3384231 (cit. on p. 46).

[Mor94] Moshe Morgenstern. “Existence and explicit constructions of q+1 regular Ramanujan
graphs for every prime power q”. In: J. Combin. Theory Ser. B 62.1 (1994), pp. 44–62.
issn: 0095-8956. doi: 10.1006/jctb.1994.1054 (cit. on p. 46).

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. “Pseudorandom Generators for
Width-3 Branching Programs”. In: Proc. 51st Annual ACM Symposium on Theory
of Computing (STOC). 2019, pp. 626–637. doi: 10.1145/3313276.3316319 (cit. on
pp. 43, 50, 56, 102, 110).

[MSS15] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. “Interlacing families
I: Bipartite Ramanujan graphs of all degrees”. In: Ann. of Math. (2) 182.1 (2015),
pp. 307–325. issn: 0003-486X. doi: 10.4007/annals.2015.182.1.7 (cit. on p. 46).

[MZ09] Raghu Meka and David Zuckerman. “Small-bias spaces for group products”. In: Proc.
13th International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM). 2009, pp. 658–672. doi: 10.1007/978-3-642-
03685-9_49 (cit. on p. 51).

[MZ13] Raghu Meka and David Zuckerman. “Pseudorandom generators for polynomial
threshold functions”. In: SIAM J. Comput. 42.3 (2013), pp. 1275–1301. issn: 0097-
5397. doi: 10.1137/100811623 (cit. on p. 9).

[MZ21] Noam Mazor and Jiapeng Zhang. “Simple Constructions from (Almost) Regular
One-Way Functions”. In: Proc. 19th Theory of Cryptography Conference (TCC).
2021, pp. 457–485. isbn: 978-3-030-90453-1. doi: 10.1007/978-3-030-90453-1_16
(cit. on p. 69).

[Nil91] A. Nilli. “On the second eigenvalue of a graph”. In: Discrete Math. 91.2 (1991),
pp. 207–210. issn: 0012-365X. doi: 10.1016/0012-365X(91)90112-F (cit. on p. 46).

[Nis91] N. Nisan. “Pseudorandom bits for constant depth circuits”. In: Combinatorica 11.1
(1991), pp. 63–70. doi: 10.1007/BF01375474 (cit. on p. 67).

[Nis92] Noam Nisan. “Pseudorandom generators for space-bounded computation”. In: Com-
binatorica 12.4 (1992), pp. 449–461. doi: 10.1007/BF01305237 (cit. on pp. 50, 68,
110).

[NN93] Joseph Naor and Moni Naor. “Small-bias probability spaces: efficient constructions
and applications”. In: SIAM J. Comput. 22.4 (1993), pp. 838–856. issn: 0097-5397.
doi: 10.1137/0222053 (cit. on pp. 19, 21, 111).

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs Randomness”. In: J. Comput. Syst.
Sci. 49.2 (1994), pp. 149–167. doi: 10.1016/S0022-0000(05)80043-1 (cit. on pp. 7,
9, 64, 67).

[NZ96] Noam Nisan and David Zuckerman. “Randomness is linear in space”. In: J. Comput.
System Sci. 52.1 (1996), pp. 43–52. issn: 0022-0000. doi: 10.1006/jcss.1996.0004
(cit. on pp. 56, 59).

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
doi: 10.1017/CBO9781139814782 (cit. on p. 9).

124

https://doi.org/10.1145/3357713.3384231
https://doi.org/10.1145/3357713.3384231
https://doi.org/10.1006/jctb.1994.1054
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.1007/978-3-642-03685-9_49
https://doi.org/10.1007/978-3-642-03685-9_49
https://doi.org/10.1137/100811623
https://doi.org/10.1007/978-3-030-90453-1_16
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1007/BF01375474
https://doi.org/10.1007/BF01305237
https://doi.org/10.1137/0222053
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1017/CBO9781139814782

[Per13] Nicole Perlroth. “Government Announces Steps to Restore Confidence on Encryption
Standards”. In: The New York Times (2013). url: https://bits.blogs.nytimes.
com/2013/09/10/government-announces-steps-to-restore-confidence-on-

encryption-standards/ (visited on 07/14/2021) (cit. on p. 7).

[Per90] Rene Peralta. “On the randomness complexity of algorithms”. In: University of
Wisconsin, Milwaukee CS Research Report TR 90-1 (1990) (cit. on p. 19).

[PR85] Giorgio Parisi and Federico Rapuano. “Effects of the random number generator
on computer simulations”. In: Physics Letters B 157.4 (1985), pp. 301–302. issn:
0370-2693. doi: 10.1016/0370-2693(85)90670-7 (cit. on p. 6).

[PS84] Christos H. Papadimitriou and Michael Sipser. “Communication complexity”. In: J.
Comput. System Sci. 28.2 (1984), pp. 260–269. issn: 0022-0000. doi: 10.1016/0022-
0000(84)90069-2 (cit. on p. 104).

[PV21a] Edward Pyne and Salil Vadhan. “Limitations of the Impagliazzo-Nisan-Wigderson
Pseudorandom Generator Against Permutation Branching Programs”. In: Proc. 27th
International Computing and Combinatorics Conference (COCOON). 2021, pp. 3–12.
doi: 10.1007/978-3-030-89543-3_1 (cit. on pp. 55, 56).

[PV21b] Edward Pyne and Salil Vadhan. “Pseudodistributions that beat all pseudorandom
generators (extended abstract)”. In: Proc. 36th Computational Complexity Confer-
ence (CCC). 2021, 33:1–33:15. doi: 10.4230/LIPIcs.CCC.2021.33. Full version:
ECCC preprint TR21-019 (cit. on pp. 12, 51, 55).

[PV22] Edward Pyne and Salil Vadhan. “Deterministic Approximation of Random Walks
via Queries in Graphs of Unbounded Size”. In: Proc. 5th Symposium on Simplicity
in Algorithms (SOSA). 2022, pp. 57–67. doi: 10.1137/1.9781611977066.5 (cit. on
pp. 12, 55).

[Raz09] Alexander Razborov. “A Simple Proof of Bazzi’s Theorem”. In: ACM Transactions
on Computation Theory 1.1 (2009). doi: 10.1145/1490270.1490273 (cit. on pp. 37,
39).

[Raz87] A. A. Razborov. “Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition”. In: Math. Notes 41.4 (1987), pp. 333–338. doi:
10.1007/BF01137685 (cit. on p. 41).

[Raz91] Alexander A. Razborov. “Lower bounds for deterministic and nondeterministic
branching programs”. In: Proc. 8th International Conference on Fundamentals of
Computation Theory (FCT). 1991, pp. 47–60. doi: 10.1007/3-540-54458-5_49
(cit. on p. 49).

[Röd85] Vojtěch Rödl. “On a Packing and Covering Problem”. In: European Journal of Com-
binatorics 6.1 (1985), pp. 69–78. issn: 0195-6698. doi: 10.1016/S0195-6698(85)
80023-8 (cit. on p. 67).

[Ros19] Benjamin Rossman. “Criticality of Regular Formulas”. In: Proc. 34th Computational
Complexity Conference (CCC). 2019, 1:1–1:28. isbn: 978-3-95977-116-0. doi: 10.
4230/LIPIcs.CCC.2019.1 (cit. on pp. 72, 89).

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. “Extracting all the randomness and
reducing the error in Trevisan’s extractors”. In: J. Comput. System Sci. 65.1 (2002),
pp. 97–128. issn: 0022-0000. doi: 10.1006/jcss.2002.1824 (cit. on p. 68).

125

https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://doi.org/10.1016/0370-2693(85)90670-7
https://doi.org/10.1016/0022-0000(84)90069-2
https://doi.org/10.1016/0022-0000(84)90069-2
https://doi.org/10.1007/978-3-030-89543-3_1
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://eccc.weizmann.ac.il/report/2021/019/
https://doi.org/10.1137/1.9781611977066.5
https://doi.org/10.1145/1490270.1490273
https://doi.org/10.1007/BF01137685
https://doi.org/10.1007/3-540-54458-5_49
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.4230/LIPIcs.CCC.2019.1
https://doi.org/10.4230/LIPIcs.CCC.2019.1
https://doi.org/10.1006/jcss.2002.1824

[RS10] Y. Rabani and A. Shpilka. “Explicit Construction of a Small ε-Net for Linear
Threshold Functions”. In: SIAM J. on Computing 39.8 (2010), pp. 3501–3520. doi:
10.1137/090764190 (cit. on p. 9).

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. “Pseudorandomness for regular
branching programs via Fourier analysis”. In: Proc. 17th International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM).
2013, pp. 655–670. doi: 10.1007/978-3-642-40328-6_45 (cit. on pp. 53, 55, 81,
86, 87, 92).

[RTV06] Omer Reingold, Luca Trevisan, and Salil Vadhan. “Pseudorandom walks on regular
digraphs and the RL vs. L problem”. In: Proc. 38th Annual ACM Symposium on
Theory of Computing (STOC). 2006, pp. 457–466. doi: 10.1145/1132516.1132583
(cit. on p. 51).

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity and Applications.
Cambridge University Press, 2020. doi: 10.1017/9781108671644 (cit. on p. 63).

[Sch64] J. Schönheim. “On coverings”. In: Pacific J. Math. 14 (1964), pp. 1405–1411. issn:
0030-8730. url: http://projecteuclid.org/euclid.pjm/1103033815 (cit. on
p. 66).

[Sha83] Adi Shamir. “On the Generation of Cryptographically Strong Pseudorandom Se-
quences”. In: ACM Trans. Comput. Syst. 1.1 (1983), 38–44. issn: 0734-2071. doi:
10.1145/357353.357357 (cit. on pp. 65, 69).

[Sko22] Maciej Skorski. “Tight Chernoff-Like Bounds Under Limited Independence”. In:
Proc. 26th International Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM). 2022, 15:1–15:14. isbn: 978-3-95977-249-5. doi:
10.4230/LIPIcs.APPROX/RANDOM.2022.15 (cit. on p. 104).

[Smo87] Roman Smolensky. “Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity”. In: Proc. 19th Annual ACM Symposium on Theory of Com-
puting (STOC). 1987, pp. 77–82. doi: 10.1145/28395.28404 (cit. on p. 41).

[Smo93] R. Smolensky. “On Representations by Low-Degree Polynomials”. In: Proc. 34th
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 1993,
pp. 130–138. doi: 10.1109/SFCS.1993.366874 (cit. on p. 69).

[ST18] Rocco A. Servedio and Li-Yang Tan. “Luby-Veličković-Wigderson revisited: improved
correlation bounds and pseudorandom generators for depth-two circuits”. In: Proc.
22nd International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM). 2018, 56:1–56:20. doi: 10.4230/LIPIcs.APPROX-
RANDOM.2018.56 (cit. on p. 67).

[ST19a] Rocco A. Servedio and Li-Yang Tan. “Improved Pseudorandom Generators from
Pseudorandom Multi-Switching Lemmas”. In: Proc. 28th International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM).
2019, 45:1–45:23. isbn: 978-3-95977-125-2. doi: 10.4230/LIPIcs.APPROX-RANDOM.
2019.45 (cit. on pp. 89, 90).

[ST19b] Rocco A. Servedio and Li-Yang Tan. “Pseudorandomness for read-k DNF formulas”.
In: Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
2019, pp. 621–638. doi: 10.1137/1.9781611975482.39 (cit. on p. 34).

126

https://doi.org/10.1137/090764190
https://doi.org/10.1007/978-3-642-40328-6_45
https://doi.org/10.1145/1132516.1132583
https://doi.org/10.1017/9781108671644
http://projecteuclid.org/euclid.pjm/1103033815
https://doi.org/10.1145/357353.357357
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://doi.org/10.1137/1.9781611975482.39

[Ste12] Thomas Steinke. Pseudorandomness for Permutation Branching Programs Without
the Group Theory. ECCC preprint TR12-083. 2012. url: https://eccc.weizmann.
ac.il/report/2012/083/ (cit. on pp. 55, 110).

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom Generators without
the XOR Lemma”. In: J. Comput. Syst. Sci. 62.2 (2001), pp. 236–266. doi: 10.
1006/jcss.2000.1730 (cit. on p. 69).

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-entropies
and a new pseudorandom generator.” In: J. ACM 52.2 (2005), pp. 172–216. doi:
10.1145/1059513.1059516 (cit. on pp. 68, 69).

[Sub61] B. A. Subbotovskaya. “Realizations of linear function by formulas using +, ·,−”.
In: Doklady Akademii Nauk SSSR 136:3 (1961). In Russian, pp. 553–555. url:
http://mi.mathnet.ru/eng/dan/v136/i3/p553 (cit. on p. 71).

[SVW17] Thomas Steinke, Salil Vadhan, and Andrew Wan. “Pseudorandomness and Fourier-
Growth Bounds for Width-3 Branching Programs”. In: Theory Comput. 13 (2017),
Paper No. 12. doi: 10.4086/toc.2017.v013a012 (cit. on pp. 87, 92, 99).

[ŠŽ21] Jǐŕı Š́ıma and Stanislav Žák. “A polynomial-time construction of a hitting set for
read-once branching programs of width 3”. In: Fund. Inform. 184.4 (2021), pp. 307–
354. issn: 0169-2968. doi: 10.3233/fi-2021-2101 (cit. on p. 51).

[SZ99] Michael Saks and Shiyu Zhou. “BPHSPACE(S) ⊆ DSPACE(S3/2)”. In: J. Comput.
System Sci. 58.2 (1999), pp. 376–403. issn: 0022-0000. doi: 10.1006/jcss.1998.
1616 (cit. on p. 8).

[Ta-15] Amnon Ta-Shma. Randomized algorithms and de-randomization. Course at Tel-
Aviv University. 2015. url: http://www.cs.tau.ac.il/~amnon/Classes/2015-
PRG/class.htm (cit. on p. 9).

[Ta-16] Amnon Ta-Shma. Expanders, Pseudorandomness and Derandomization. Course at
Tel-Aviv University. 2016. url: http://www.cs.tau.ac.il/~amnon/Classes/
2016-PRG/class.htm (cit. on p. 9).

[Ta-18] Amnon Ta-Shma. Space-Bounded Computation. Course at Tel-Aviv University. 2018.
url: http://www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm
(cit. on p. 9).

[Ta-19] Amnon Ta-Shma. A first course in derandomization. Course at Tel-Aviv University.
2019. url: http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/
class.htm (cit. on p. 9).

[Tal17] Avishay Tal. “Tight Bounds on the Fourier Spectrum of AC0”. In: Proc. 32nd
Computational Complexity Conference (CCC). 2017, 15:1–15:31. isbn: 978-3-95977-
040-8. doi: 10.4230/LIPIcs.CCC.2017.15 (cit. on pp. 37, 38, 81, 89, 90).

[Tal21] Avishay Tal. Pseudorandomness. Course at University of California, Berkeley. 2021.
url: https://www.avishaytal.org/pseudorandomness (cit. on p. 9).

[Tar93] Jun Tarui. “Probabilistic polynomials, AC0 functions and the polynomial-time
hierarchy”. In: Theoret. Comput. Sci. 113.1 (1993), pp. 167–183. issn: 0304-3975.
doi: 10.1016/0304-3975(93)90214-E (cit. on pp. 41, 42).

[TO92] Seinosuke Toda and Mitsunori Ogiwara. “Counting classes are at least as hard as the
polynomial-time hierarchy”. In: SIAM J. Comput. 21.2 (1992), pp. 316–328. issn:
0097-5397. doi: 10.1137/0221023 (cit. on p. 41).

127

https://eccc.weizmann.ac.il/report/2012/083/
https://eccc.weizmann.ac.il/report/2012/083/
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1145/1059513.1059516
http://mi.mathnet.ru/eng/dan/v136/i3/p553
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.3233/fi-2021-2101
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1006/jcss.1998.1616
http://www.cs.tau.ac.il/~amnon/Classes/2015-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2015-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2016-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2016-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/class.htm
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://www.avishaytal.org/pseudorandomness
https://doi.org/10.1016/0304-3975(93)90214-E
https://doi.org/10.1137/0221023

[Tre01] Luca Trevisan. “Extractors and pseudorandom generators”. In: J. ACM 48.4 (2001),
pp. 860–879. issn: 0004-5411. doi: 10.1145/502090.502099 (cit. on p. 67).

[Tre05] Luca Trevisan. Pseudorandomness and Combinatorial Constructions. Course at
University of California, Berkeley. 2005. url: https://web.archive.org/web/
20150115081847/http://www.cs.berkeley.edu/~luca/pacc/ (cit. on p. 9).

[TS17] Amnon Ta-Shma. “Explicit, almost optimal, epsilon-balanced codes”. In: Proc. 49th
Annual ACM Symposium on Theory of Computing (STOC). 2017, pp. 238–251. doi:
10.1145/3055399.3055408 (cit. on p. 20).

[TV07] Luca Trevisan and Salil Vadhan. “Pseudorandomness and average-case complexity
via uniform reductions”. In: Comput. Complexity 16.4 (2007), pp. 331–364. issn:
1016-3328. doi: 10.1007/s00037-007-0233-x (cit. on p. 69).

[TX13] Luca Trevisan and Tongke Xue. “A Derandomized Switching Lemma and an Im-
proved Derandomization of AC0”. In: Proc. 28th Annual IEEE Conference on
Computational Complexity (CCC). 2013, pp. 242–247. doi: 10.1109/CCC.2013.32
(cit. on pp. 89, 90).

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In: J. of Com-
puter and System Sciences 67.2 (2003), pp. 419–440. doi: 10.1016/S0022-0000(03)
00046-1 (cit. on pp. 7, 68, 69).

[Vad12] Salil P. Vadhan. “Pseudorandomness”. In: Foundations and Trends in Theoretical
Computer Science 7.1-3 (2012), pp. 1–336. doi: 10.1561/0400000010 (cit. on pp. 9,
45, 46, 57, 58).

[Vig17] Sebastiano Vigna. “Further scramblings of Marsaglia’s xorshift generators”. In:
J. Comput. Appl. Math. 315 (2017), pp. 175–181. issn: 0377-0427. doi: 10.1016/j.
cam.2016.11.006 (cit. on p. 6).

[Vio07] Emanuele Viola. “Pseudorandom Bits for Constant-Depth Circuits with Few Ar-
bitrary Symmetric Gates”. In: SIAM J. Comput. 36.5 (2007), pp. 1387–1403. doi:
10.1137/050640941 (cit. on p. 67).

[Vio09] Emanuele Viola. “The Sum of D Small-Bias Generators Fools Polynomials of Degree
D”. In: Comput. Complexity 18.2 (2009), pp. 209–217. doi: 10.1007/s00037-009-
0273-5 (cit. on pp. 9, 26, 62, 111).

[Vio14] Emanuele Viola. “Randomness buys depth for approximate counting”. In: Comput.
Complexity 23.3 (2014), pp. 479–508. issn: 1016-3328. doi: 10.1007/s00037-013-
0076-6 (cit. on p. 47).

[Vio17] Emanuele Viola. Special Topics in Complexity Theory. Course at Northeastern
University. 2017. url: https://www.ccs.neu.edu/home/viola/classes/spepf17.
html (cit. on p. 9).

[Vio21] Emanuele Viola. “Fourier conjectures, correlation bounds, and majority”. In: Proc.
48th International Colloquium on Automata, Languages and Programming (ICALP).
2021, 111:1–111:15. doi: 10.4230/LIPIcs.ICALP.2021.111 (cit. on p. 88).

[Vio22] Emanuele Viola. Correlation bounds against polynomials. ECCC preprint TR22-142.
2022. url: https://eccc.weizmann.ac.il/report/2022/142/ (cit. on p. 29).

[VV86] L. G. Valiant and V. V. Vazirani. “NP is as easy as detecting unique solutions”. In:
Theoret. Comput. Sci. 47.1 (1986), pp. 85–93. issn: 0304-3975. doi: 10.1016/0304-
3975(86)90135-0 (cit. on p. 42).

128

https://doi.org/10.1145/502090.502099
https://web.archive.org/web/20150115081847/http://www.cs.berkeley.edu/~luca/pacc/
https://web.archive.org/web/20150115081847/http://www.cs.berkeley.edu/~luca/pacc/
https://doi.org/10.1145/3055399.3055408
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1109/CCC.2013.32
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1561/0400000010
https://doi.org/10.1016/j.cam.2016.11.006
https://doi.org/10.1016/j.cam.2016.11.006
https://doi.org/10.1137/050640941
https://doi.org/10.1007/s00037-009-0273-5
https://doi.org/10.1007/s00037-009-0273-5
https://doi.org/10.1007/s00037-013-0076-6
https://doi.org/10.1007/s00037-013-0076-6
https://www.ccs.neu.edu/home/viola/classes/spepf17.html
https://www.ccs.neu.edu/home/viola/classes/spepf17.html
https://doi.org/10.4230/LIPIcs.ICALP.2021.111
https://eccc.weizmann.ac.il/report/2022/142/
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/0304-3975(86)90135-0

[VZ12] Salil Vadhan and Colin Jia Zheng. “Characterizing pseudoentropy and simplifying
pseudorandom generator constructions”. In: Proc. 44th Annual ACM Symposium on
Theory of Computing (STOC). 2012, pp. 817–836. doi: 10.1145/2213977.2214051
(cit. on p. 69).

[Weg87] Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner Series in Com-
puter Science. John Wiley & Sons, Inc., 1987, pp. xii+457. isbn: 0-471-91555-6. url:
https://dl.acm.org/doi/10.5555/35517 (cit. on p. 49).

[Yao82] Andrew C. Yao. “Theory and Applications of Trapdoor Functions”. In: Proc. 23rd
Annual ACM Symposium on Theory of Computing (STOC). 1982, pp. 80–91. doi:
10.1109/SFCS.1982.45 (cit. on pp. 7, 69).

[YGLW15] Yu Yu, Dawu Gu, Xiangxue Li, and Jian Weng. “The randomized iterate, revisited—
almost linear seed length PRGs from a broader class of one-way functions”. In: Proc.
12th Theory of Cryptography Conference (TCC). 2015, pp. 7–35. doi: 10.1007/978-
3-662-46494-6_2 (cit. on p. 69).

[YLW15] Yu Yu, Xiangxue Li, and Jian Weng. “Pseudorandom generators from regular one-
way functions: new constructions with improved parameters”. In: Theoret. Comput.
Sci. 569 (2015), pp. 58–69. issn: 0304-3975. doi: 10.1016/j.tcs.2014.12.013
(cit. on p. 69).

[Zuc01] David Zuckerman. Pseudorandomness and Combinatorial Constructions. Course at
the University of Texas at Austin. 2001. url: https://www.cs.utexas.edu/~diz/
395T/01/ (cit. on p. 9).

[Zuc90] David Zuckerman. “General weak random sources”. In: Proc. 31st Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 1990, pp. 534–543. doi:
10.1109/FSCS.1990.89574 (cit. on p. 56).

129
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1145/2213977.2214051
https://dl.acm.org/doi/10.5555/35517
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1007/978-3-662-46494-6_2
https://doi.org/10.1007/978-3-662-46494-6_2
https://doi.org/10.1016/j.tcs.2014.12.013
https://www.cs.utexas.edu/~diz/395T/01/
https://www.cs.utexas.edu/~diz/395T/01/
https://doi.org/10.1109/FSCS.1990.89574

