Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 19 (2023)

Theory of Unconditional Pseudorandom Generators

Pooya Hatami William M. Hoza
CSE Department Simons Institute
The Ohio State University University of California, Berkeley

pooyahat@gmail.com williamhoza@berkeley.edu

ISSN 1433-8092

Abstract

This is a survey of unconditional pseudorandom generators (PRGs). A PRG uses a short, truly
random seed to generate a long, “pseudorandom” sequence of bits. To be more specific, for each
restricted model of computation (e.g., bounded-depth circuits or read-once branching programs),
we would like to design a PRG that “fools” the model, meaning that every function computable
in the model behaves approximately the same when we plug in pseudorandom bits from the PRG
as it does when we plug in truly random bits. In this survey, we discuss four major paradigms for
designing PRGs:

e We present several PRGs based on k-wise uniform generators, small-bias generators, and simple
combinations thereof, including proofs of Viola’s theorem on fooling low-degree polynomials
(Comput. Complexity 2009) and Braverman’s theorem on fooling AC? circuits (J. ACM 2010).

e We present several PRGs based on “recycling” random bits to take advantage of communication
bottlenecks, such as the Impagliazzo-Nisan-Wigderson generator (STOC 1994).

e We present connections between PRGs and computational hardness, including the Nisan-

Wigderson framework for converting a hard Boolean function into a PRG (J. Comput. Syst.
Sci. 1994).

e We present PRG frameworks based on random restrictions, including the “polarizing random
walks” framework (Chattopadhyay, Hatami, Hosseini, and Lovett, Theory Comput. 2019).

We explain how to use these paradigms to construct PRGs that work unconditionally, with no
unproven mathematical assumptions. The PRG constructions use ingredients such as finite field
arithmetic, expander graphs, and randomness extractors. The analyses use techniques such as
Fourier analysis, sandwiching approximators, and simplification-under-restrictions lemmas.

Acknowledgments We thank Yevgeniy Dodis, Avishay Tal, Emanuele Viola, and David Zucker-
man for helpful comments on drafts of this work.

Contents

1 Introduction
1.1 Whom shall we fool? Three PRG paradigms

1.11
1.1.2
1.1.3

PRGs for everyday non-adversarial applications
PRGs for all efficient observers
PRGs for restricted models of computation

1.2 Overview of thistext e
1.3 The generic probabilistic existence proof
1.4 Explicitness e

1.4.1
1.4.2

Families of PRGs e
The default conjecture: Explicit PRGsexist

1.5 Beyond PRGs: Hitting set generators and more

2 Limited Independence and Small-Bias Generators
2.1 Limited independence e

2.1.1
2.1.2
2.1.3
2.14

Pairwise uniform bits Lo
k-wise uniform bits oL oL
Perfectly fooling shallow decision trees
Connection with coding theory: Dual codes

2.2 Small-bias distributions e

2.2.1
2.2.2
2.2.3

Fooling parities of variables
A better seed length for parities of few variables
Connection with coding theory: Nearly balanced codes

2.3 Analysis technique: Fourier Ly bounds 0L

2.3.1
2.3.2
2.3.3
234

Basic Fourier analysis o
Almost k-wise uniform bits oL
Fooling bounded-size decision trees
Fooling width-2 branching programs

2.4 Viola’s generator for low-degree Fo-polynomials

2.4.1
2.4.2
2.4.3
244
2.4.5

Directional derivatives
The XOR of two independent copies of an arbitrary Boolean function .
The reduction from fooling F to fooling OF
Inductive analysis of low-degree polynomials
Application: Width-2 branching programs that read several bits at a time . .

2.5 Analysis technique: Sandwiching approximators

2.5.1
2.5.2
2.5.3

The sandwiching lemma oL
Using k-wise uniform generators to fool size-m decision trees
Small-bias distributions fool read-once AC®,

2.5.4 The sandwiching lemma and the triangle inequality are always enough
2.6 Braverman’s theorem: Limited independence fools AC®
2.6.1 LMN polynomials e
2.6.2 Operations on functions with low-degree sandwiching polynomials
2.6.3 Low-degree sandwichers for AC? circuits
2.6.4 Improved parameters via probabilistic polynomials

Recycling Random Bits

3.1 PRGs for two-party communication protocols
3.1.1 Expander graphs from a PRG perspective
3.1.2 Combinatorial rectangles and the Expander Mixing Lemma

3.2 The INW generator for standard-order ROBPs
3.2.1 Concatenating two independent pseudorandom strings
3.2.2 Recycling seeds using a PRG for two-dimensional rectangles

3.3 The BRRY generator for standard-order regular ROBPs
3.3.1 Improved analysis of the INW generator for low-weight programs
3.3.2 Regular programs have low weight

3.4 The Nisan-Zuckerman generator for short, wide ROBPs
3.4.1 Randomness extractors oL L oo
3.4.2 Using extractors to fool standard-order ROBPs

PRGs and Hardness

4.1 PRGs as high-quality lower bounds Lo oo
4.1.1 PRGs imply hard Boolean functions
4.1.2 The lack-of-lower-bounds barrier

4.2 The Nisan-Wigderson framework 0oL
4.2.1 Constructing a PRG from a hard function
4.2.2 Analysis: Unpredictability
4.2.3 A family of nearly disjoint sets L o oL
4.2.4 Unconditional applications oo,

4.3 Hardness-based PRGs beyond Nisan-Wigderson

Random Restrictions

5.1 PRGs from polarizing random walks L oL
5.1.1 Simplification under truly random restrictions L.
5.1.2 Fractional PRGs
5.1.3 From fractional PRGsto PRGs
5.1.4 A better reduction for the low-error regime

5.2 Analysis technique: Fourier growth bounds
5.2.1 The noise operator and simplification on average
5.2.2 Fourier growth bounds for regular ROBPs,
5.2.3 Using Fourier growth bounds to obtain PRGs

5.3 Fooling AC via the Ajtai-Wigderson framework
5.3.1 Simplification under partially pseudorandom restrictions
5.3.2 Restrictions that preserve expectation 00
5.3.3 Tterated restrictions L

5.4 The Forbes-Kelley generator for ROBPs
5.4.1 Pseudorandomness plus noise Lo oo

37
38
38
39
41

45
45
45
47
48
49
50
ol
ol
95
o6
56
o8

61
61
61
63
64
64
64
66
67
68

5.5

5.6

5.4.2 A Fourier decomposition lemma for ROBPs
5.4.3 Pseudorandom restrictions that preserve the expectation of ROBPs
5.4.4 A better generator for the small-width setting
PRGs for read-once CNF's via early termination
5.5.1 Simplification of read-once CNF's under fully-pseudorandom restrictions . . .
5.5.2 Iterated restrictions with early termination
5.5.3 Discussion: Two types of simplification
Fooling general branching programs via the IMZ framework
5.6.1 Shrinkage of branching programs under fully-pseudorandom restrictions . . .
5.6.2 PRGs from fully-derandomized shrinkage lemmas

Table of PRGs

6.1
6.2
6.3
6.4

Circuit models e
Branching program models
Algebraic models
Models based on locality

100
102
102
103
105

Chapter 1

Introduction

To make random choices, it would be useful to have an unlimited supply of “truly random” bits:
unbiased and independent coin flips. What can we do if we only have a few truly random bits?
A pseudorandom generator (PRG) uses a small amount of true randomness, called the “seed,” to
generate a long sequence that appears to be completely random (even though it isn’t). PRGs are
ubiquitous in computing theory and practice. The basic motivation is that we think of randomness
as a scarce computational resource, akin to time or space, so whenever we get our hands on some
random bits, we want to stretch them as far as possible.

To model PRGs mathematically, we consider some “observer,” modeled as a function f. Let U,
denote the uniform distribution over {0,1}". We would like to “fool” f in the following sense.

Definition 1.0.1 (Fooling). Suppose f: {0,1}" — {0,1} is a function, X is a probability distribution
over {0,1}", and € > 0. We say that X fools f with error ¢, or e-fools f, if

|Pr{f(X) = 1] - Pr[f(Us) = 1]| < =.

More generally, we can consider a real-valued function f: {0,1}" — R. In this case, we say that X
fools f with error € if
|E[f(X)] = E[f(Un)]| <e.

If e =0, we say that X perfectly fools f.

Remark 1.0.2. As a shorthand, we often identify the function f with the random variable f(Uy,).
For example, instead of E[f(U,)], we simply write E[f].

Definition 1.0.1 says that although X might not be uniform, X and U, are nevertheless
indistinguishable, at least from f’s perspective. Conversely, if X does not e-fool f, we refer to f as
a “distinguisher” for X. A PRG’s job is to use a few truly random bits to sample a distribution
that fools f.

Definition 1.0.3 (PRGs). Suppose f: {0,1}" — R and G: {0,1}* — {0,1}" are functions and
e > 0. We say that G is an e-PRG for f if G(Us) fools f with error e. In this case, we also say
that G fools f with error e. (See Figure 1.1.)

The parameter s is called the seed length of the PRG; we would like s to be as small as possible.

Throughout this text, the parameter “n” will always denote the number of pseudorandom bits we
are generating.

Q

o —
o —
o —
o —
o —
o —
o —
o —

%4
o —
o —
s —

Figure 1.1: A PRG (G) uses a few truly random bits (depicted here using $ symbols) to sample a
pseudorandom string that is indistinguishable from a truly random string, from the perspective of
the observer (f).

1.1 Whom shall we fool? Three PRG paradigms

An unavoidable fact of life is that for any nontrivial PRG, there exists a function that is not fooled
by the PRG.

Claim 1.1.1 (Impossibility of fooling all functions). Let G: {0,1}* — {0,1}" where s < n. There
exists some f: {0,1}"™ — {0, 1} such that G does not 0.49-fool f.

Proof. Let f be the indicator function for the image of G. Then E[f(G(Us))] = 1, whereas E[f] < 1/2
because s < n. O

In light of Claim 1.1.1, the best we can hope for is generating bits that fool some large sets of
observers but not all of them. After all, as Avi Wigderson says, randomness is in the eye of the
beholder. If F is a class of functions f: {0,1}" — R, we say that G is an e-PRG for F if G e-fools
every f € F.

Which observers shall we fool? The study of PRGs can be crudely divided into three paradigms
based on three possible answers:

1. Everyday non-adversarial applications.
2. All efficient observers.
3. Restricted models of computation.

We discuss these three paradigms in Sections 1.1.1 to 1.1.3.

1.1.1 PRGs for everyday non-adversarial applications

In practice, when programmers want randomness, they invoke some type of random() method
provided by the computing environment. Under the hood, these random() methods typically involve
several components, each of which might be quite sophisticated. When practitioners speak of
“pseudorandom number generators” or “random number generators,” they are usually referring to
the entire randomness system as a whole, including whatever techniques are used to produce an
initial seed. For example, the system might derive a seed from the current time of day, even though

such a seed is rather predictable. As another example, the system might use hardware random
number generators based on thermal noise measurements.

In this text, we sidestep the important issue of producing a seed, along with many other issues
that are important in practice. We focus on the challenge of stretching a truly random seed out to
a long pseudorandom string. In our terminology, this is the job of a PRG (see Definition 1.0.3). A
PRG is thus one of multiple components of a practical randomness system. For example, Java’s
Math.random() method currently uses a type of PRG called a linear congruential generator. For
such a PRG, the seed is a random number Xy € {0,1,..., M — 1}, and the output sequence is
(Xl, XQ, Xg, v), where

Xit1=a-X;+bmod M

for some parameters M, a,b. Meanwhile, Python’s random.random() method uses an algorithm
called the “Mersenne twister” [MNO98], and major web browsers currently use a PRG in the “xorshift+
family” [Vigl7] to implement Javascript’s Math.random() function.

Why these PRGs are unsatisfactory

Practitioners use these randomness systems for both casual applications (e.g., video games) and
serious applications (e.g., randomized algorithms). However, for a generic randomized algorithm,
there is no firm mathematical guarantee that the outputs will be reliable when the algorithm is
executed using one of these practical randomness systems. The methods that practitioners typically
use to run randomized algorithms must be considered heuristics.

To be clear, a lot of work goes into designing high-quality practical randomness systems.
Designers strive to ensure that these systems can be safely used in any application that “comes up
naturally” in practice. The system is only deemed acceptable for everyday use when it passes a
great number of creative statistical tests, such as those in the TestU01 family [LS07].

These statistical tests are valuable, but there is a wide gap between the statistical tests and a
typical randomized algorithm. The designers behind practical systems such as Java’s Math.random()
method wisely do not claim that they work in adversarial scenarios, so these systems are considered
unsuitable for cryptography. This is true even if we focus solely on the PRG component of these
systems. Furthermore, sometimes programs “accidentally” distinguish pseudorandom numbers from
truly random numbers. There are quite a few documented cases in which PRGs have been shown
to cause inaccurate scientific simulations [KW84; PR85; FMF85; MBH&6; FLW92; Gra93; Cod94;
CLK11]! One must imagine that other cases have gone unnoticed.

To a theoretician, this state of affairs is deeply unsatisfactory. Yes, modern practical PRGs seem
to almost always work well in practice, but we don’t have a mathematically rigorous explanation
for why these systems work. It’s not even clear what precisely the goal is. (Mathematically, how
can we make a distinction between “adversarially-designed” programs and “naturally-occurring”
programs?) By theoreticians’ standards, the success of practical PRGs is largely a mystery.

1.1.2 PRGs for all efficient observers

One of the great ideas in the theory of computing is to try to design a PRG that fools all
computationally efficient observers. Given such a PRG and a truly random seed, we would be able
to execute any randomized algorithm that is actually worth executing. (After all, there’s no point
running a program if one won’t even survive long enough to see the output!) Such a PRG could also
be used in cryptographic settings, because we can safely assume that eavesdroppers and hackers

only have so much computational power.!

For example, given a random seed Xy € {1,2,..., M — 1}, the Blum-Blum-Shub (BBS) generator
[BBS86] outputs the sequence (X; mod 2, X3 mod 2, X3 mod 2,...) where

X;41 = X? mod M.

This PRG is reminiscent of linear congruential generators, but the similarity is only superficial.
For a suitably chosen modulus M, it is believed that the BBS generator fools all polynomial-time
algorithms.

Why these PRGs are also (currently) unsatisfactory

Fooling all efficient observers is a well-defined and well-motivated goal. Unfortunately, nobody
knows how to prove that some efficiently-computable PRG actually has this marvelous property.

To be clear, there is a substantial body of “evidence” indicating that such PRGs exist. For
example, Blum, Blum, and Shub showed that their generator fools all polynomial-time observers,
under the plausible-but-unproven assumption that there is no good algorithm for the “quadratic
residuosity problem” [BBS86]. There are many other examples of PRGs that fool all polynomial-time
observers under reasonable cryptographic or complexity-theoretic assumptions [Yao82; BM84; NW94;
IW97; HILL99; KM02; Uma03; DMOZ20]. For practical cryptography, software developers tend to
use PRGs that are not even supported by rigorous conditional proofs of correctness, but rather are
supported by heuristic and intuitive arguments.

There is a genuine possibility that these PRGs are not secure. In one infamous incident, the
U.S. National Institute of Standards and Technology (NIST) recommended using a PRG called
“Dual EC DRBG.” The PRG was designed by the U.S. National Security Agency (NSA), and allegedly,
they intentionally designed it to be insecure for surveillance purposes [Perl3].

Once again, to a theoretician, this state of affairs is not satisfactory. There is genuine room for
doubt about whether known PRGs work, and perhaps more importantly, even if they do work, we
don’t have a good explanation for why they work. Conditional proofs can be considered partial
explanations at best. The problem of designing PRGs that unconditionally fool all efficient observers
is very challenging, with connections to deep topics such as the famous P vs. NP problem. (See
Section 4.1.)

1.1.3 PRGs for restricted models of computation

The main topic of this text is a third paradigm for studying PRGs. In this third paradigm, we
identify an interesting and well-defined restricted model of computation. Then we design PRGs that
fool the chosen model of computation (unconditionally — with no unproven assumptions) and try to
optimize the seed length of the PRG.

A toy example might clarify the idea. Let us design a PRG G: {0,1}2 — {0,1}? that fools every
observer f that only looks at two of the three output bits. This problem is not completely trivial,
because we don’t know which two bits f will observe. Nevertheless, the problem can be solved by
defining

G(u1,u2) = (u1,u2, u1 ® uz),

!There is a subtle distinction here. In the context of randomized algorithms, it’s okay if the PRG itself uses a little
more time than the algorithms that we are trying to fool. On the other hand, in the context of cryptography, we want
an efficiently-computable PRG that fools all efficient adversaries, including those that use polynomially more time
than the PRG uses.

where @ denotes the XOR operation. When u; and ug are chosen uniformly at random, the three
output bits are correlated, but any two of the bits are independent and uniform random.

Unconditional PRGs can be constructed for much richer and more interesting restricted models of
computation. We are especially interested in fooling models of computation that have a “complexity
theory” flavor, i.e., we want the output of the PRG to appear random to any observer that is
“sufficiently efficient” in some sense. Arguably, the two most important models in this field are
constant-depth circuits (ACO, see Definition 2.5.4) and read-once branching programs (ROBPs, see
Definition 3.2.1).

The value of these PRGs

Could PRGs for restricted models ever be directly used in practical applications? Potentially. PRGs
for restricted models can be used to simulate some randomized algorithms. For example, suppose a
randomized decision algorithm A uses S bits of space. For any fixed input a of A, we can consider
the output of A as a function of its random bits, say f(z) = A(a,z). It turns out that this function
f can be computed by an ROBP of width 20(5). Therefore, PRGs that fool ROBPs can be used to
simulate A without significantly distorting its behavior.

Admittedly, it’s a bit unrealistic to imagine the PRGs studied in the theoretical literature being
implemented on actual computers, because it is hard to compete with the practical PRGs discussed
in Section 1.1.1. Instead, the study of PRGs for restricted models has a much grander and broader
purpose: these PRGs help to uncover the mysteries of the theory of computing, and hence are
invaluable from a scientific perspective.

Unconditional PRGs have many applications within theoretical computer science, and we will
not attempt to survey them here, but we will elaborate on one of the more important applications. A
major open problem asks whether randomized decision algorithms have any intrinsic advantage over
deterministic decision algorithms in terms of space complexity. PRGs for ROBPs have the potential
to resolve this question. As discussed above, a PRG for ROBPs can be used to simulate randomized
space-bounded decision algorithms using just a little bit of randomness. By exhaustively trying all
seeds of the PRG and taking the majority outcome, we can actually get a completely deterministic
simulation. An optimal PRG for ROBPs would imply that randomized space-S algorithms can be
simulated deterministically in space O(S), and hence randomness only confers a constant-factor
advantage.

So far, optimal constructions of PRGs for ROBPs are not known, but we do have “pretty good”
constructions (e.g., see Section 3.2). There are many partial derandomization results known for
space-bounded computation, building on the theory of PRGs for ROBPs (in nontrivial ways). For
example, it has been shown that randomized space-S algorithms can be simulated deterministically
in space slightly less than S3/2 [SZ99; Hoz21]. There is no particular “barrier” known preventing us
from designing optimal PRGs for ROBPs. This exciting problem is a central open problem in the
unconditional theory of PRGs.

Apart from any application, we hope to convince the reader that PRGs for restricted models are
interesting in their own right.

1.2 Overview of this text

In this work, we survey some of the most important frameworks and techniques for constructing
unconditional PRGs for restricted models of computation. We focus on four major PRG paradigms:

e In Chapter 2, we present k-wise uniform generators, small-bias generators, and simple combi-
nations thereof.

e In Chapter 3, we present PRGs that “recycle” randomness to take advantage of communication
bottlenecks, such as the Impagliazzo-Nisan-Wigderson generator [INW94].

e In Chapter 4, we present connections between PRGs and computational hardness, including
the Nisan-Wigderson framework for converting a hard Boolean function into a PRG [NW94].

e In Chapter 5, we present methods for constructing PRGs based on (pseudo)random restrictions,
including the relatively recent “polarizing random walks” framework [CHHL19].

Along the way, as needed, we introduce the computational models that we fool (decision trees,
circuits, branching programs, etc.) and techniques for analyzing PRGs (Fourier analysis, sandwiching
approximators, simplification-under-restriction lemmas, etc.)

The literature on unconditional PRGs is vast, and this survey is far from exhaustive. (For
example, we do not discuss the important line of work on fooling linear threshold functions [RS10;
DGJSV10; MZ13; GKM18].) Instead, we hope that this work serves as a suitable introduction to
the field of unconditional PRGs, preparing the reader to study new and old papers on PRGs and
make their own contributions.

The results that we cover include both classic and recent works. Besides covering the most
important principles of PRG design and analysis, we also made sure to include expositions of
many of the most important examples of unconditional PRGs, such as Viola’s PRG for low-degree
polynomials [Vio09], Braverman’s theorem that limited independence fools AC [Bral0], and Forbes
and Kelley’s relatively recent PRG for arbitrary-order ROBPs [FK18|.

This text is primarily expository. However, we couldn’t help but include a few novel theorems
and proofs. For example, we present a new proof of Braverman’s theorem (Section 2.6), and we
present a new improvement to the polarizing random walks framework in the low-error regime
(Section 5.1.4). We also highlight plenty of important open problems regarding PRGs for restricted
models of computation.

Many wonderful prior expository works [Mil01; LW06; AB09; Goll0; Vad12; O’D14] and lecture
notes [Zuc01; Tre05; Ta-15; Ta-16; Viol7; Chal8; Ta-18; Chal9; Ta-19; Tal21; Cha22] include some
coverage of unconditional PRGs. However, none of them have quite the same focus as our work, so
we feel that our work fills a gap.

In the rest of this chapter, we discuss some additional basic issues related to the concept of a
PRG, paving the way for the PRG constructions in subsequent chapters.

1.3 The generic probabilistic existence proof

For many classes F, including classes defined by standard computational models (such as decision
trees, circuits, branching programs, etc.), there is a totally generic argument showing that there
exist PRGs that fool F with a small seed length.

Proposition 1.3.1 (Nonexplicit PRGs). Let F be a class of functions f: {0,1}" — {0,1}. For
every € > 0, there exists an e-PRG for F with seed length loglog | F| + 2log(1/e) + O(1).

Proof. Pick a function G: {0,1}° — {0, 1}" uniformly at random. Consider any arbitrary f € F.
For each seed y, the value f(G(y)) is a random bit satisfying

E[f(G(y)] = E[f(Un)]-

G Un

Furthermore, as y ranges over all 2° possible seeds, these random variables f(G(y)) are independent.
Therefore, by Hoeffding’s inequality,

Pr|[E[f]-27° Y f(G(y)|>e| <27%7%.
“ y€e{0,1}s

By the union bound, the probability that G fails to e-fool F is bounded by 2|F |e_25228. For
s = loglog |F| + 2log(1/¢) + O(1), this probability is less than 1, i.e., there exists a G that does
e-fool F. O

In a typical case — e.g., if F is the set of all circuits of size at most n — each function f € F
can be described using poly(n) bits, i.e., |F| < 2P°W() In this case, the PRG guaranteed by
Proposition 1.3.1 has seed length O(log(n/¢)).

1.4 Explicitness

Proposition 1.3.1 has a major weakness: it does not guarantee that the PRG is efficiently computable.
The proof of Proposition 1.3.1 is in some sense “nonconstructive.” Ideally, we want an algorithm for
sampling from a pseudorandom distribution, and we want the algorithm to be reasonably efficient
with respect to randomness and more conventional complexity measures simultaneously.

Definition 1.4.1 (Explicitness). A PRG G: {0,1}* — {0,1}" is explicit if it can be computed in
time poly(n).

One could consider alternative standards of explicitness. We could require that each individual
output bit can be computed in time polylogn, or that the PRG runs in space O(logn), or that each
bit can be computed in ACP, or any number of other conditions. The truth is, there is no “one true
definition” of explicitness. The appropriate definition depends on what one hopes to gain from the
PRG.

For example, one might plan to derandomize an algorithm by exhaustively trying all possible
seeds of a PRG. In this case, since we are inevitably going to spend more than 2° steps on this
brute-force process, it might make sense to relax our standard of “explicitness” and allow the PRG’s
time complexity to be as large as 200%) . poly(n) rather than poly(n). As another example, it turns
out that PRGs can be used to prove that certain models of computation cannot solve the “Minimum
Circuit Size Problem” [KCO00]. For this application, the “correct” definition of explicitness is that
for each fixed seed u € {0,1}*, there is a Boolean circuit C,, of size o(n/logn) such that for every
i € [n], we have Cy(i) = G(u);.

In this text, we will stick with Definition 1.4.1 for concreteness, but when we present PRG
constructions, we will generally not bother carefully verifying the runtime bound. Instead, we will
focus on making the construction clear to the reader.

1.4.1 Families of PRGs

Definition 1.4.1 refers to the time complexity of a PRG. To meaningfully speak of time complexity,
we technically ought to be considering a whole family of PRGs. The convention in this line of work
is to keep the family implicit. For example, a theorem might say something like the following.

10

For all n,m € N and all € > 0, there exists an explicit e-PRG for size-m decision trees on n
input bits with seed length O(log(m/e) + loglogn).

(See Section 2.3.3.) Translating into more precise language, the same theorem can be restated
as follows.

There exists a randomized algorithm G satisfying the following.
1. Given input parameters n, m, e, the algorithm G outputs a string G(n,m,e) € {0,1}".
2. For all n,m, e, the output distribution G(n,m,e) fools size-m decision trees with error .

3. G(n,m,e) uses at most O(log(m/e) + loglogn) random bits and runs in time poly(n).

There is something potentially troubling about this “translation” process. The quantifiers got
flipped! In the informal theorem statement, we say “for all n, m, e, there exists an explicit PRG,”
but strictly speaking, we mean that there exists a single algorithm G that works for all n,m,e
simultaneously! Is this “flipped quantifiers” convention wise?

Let us make an analogy with big-O notation. Recall, e.g., the famous planar separator theorem:

For all n € N, for every n-vertex planar graph, there exists a set of O(y/n) vertices such that
removing those vertices splits the graph into connected components with at most 2n/3 vertices
each.

If we wanted to be more rigorous, we ought to flip the quantifiers and write something like the
following;:

There exists a function f: N — N such that f € O(y/n) and for all n € N, for every n-vertex
planar graph, there exists a set of f(n) vertices such that removing those vertices splits the
graph into connected components with at most 2n/3 vertices each.

We don’t bother with such careful language because it obscures more than it clarifies. The
important thing is that the expression “O(y/n)” tells how the number of removed vertices scales
with the universally quantified parameter n. Analogously, when we say “there exists an explicit
PRG,” the word “explicit” tells how the computational complexity of the PRG scales with the
parameters.

1.4.2 The default conjecture: Explicit PRGs exist

For each “reasonable” class F, the standard conjecture is that there exists an explicit PRG with
essentially the same seed length as the generic nonexplicit bound (Proposition 1.3.1). Oftentimes,
this conjecture can be supported with evidence in the form of conditional constructions. For example,
consider the class F of all CNF formulas of size at most n. The nonexplicit PRG has seed length
O(log(n/e)). Under plausible complexity-theoretic assumptions, there is indeed an explicit PRG for
all size-n Boolean circuits (whether CNF formulas or not) with seed length O(log(n/e)) [IW97].

11

Even without a compelling conditional construction, the “default” conjecture would be that a
probabilistic existence proof can be matched by an explicit construction. The main challenge is to
find the explicit construction. Typically, such a PRG would be optimal, i.e., one can unconditionally
prove a seed length lower bound matching the nonexplicit bound to within a constant factor.?
For example, every PRG for size-n CNF formulas (explicit or not) must have seed length at least

Q(log(n/e)).

1.5 Beyond PRGs: Hitting set generators and more

For the sake of context, in this section we briefly describe some relaxations of the PRG definition.
The main motivation behind studying these relaxations is that constructing PRGs is challenging.
These “generalized PRGs” are sometimes easier to construct, and yet they suffice for some (but not
all) of the applications of PRGs. We only give a short overview of these concepts, since our main
focus is true PRGs.

The most well-known “generalized PRG” concept is a hitting set generator (HSG).

Definition 1.5.1 (HSGs). Suppose F is a class of functions f: {0,1}" — {0,1}. An e-HSG for F
is a function G: {0,1}° — {0,1}" such that for every f € F, if E[f] > ¢, then there exists some x
such that f(G(x)) = 1.

An HSG is a “one-sided PRG.” HSGs have been studied since the 1980s [AKS87] if not earlier.
HSGs can be used to derandomize algorithms that have one-sided error, simply by trying all seeds.
In some contexts, HSGs can also be used (in nontrivial ways) to derandomize algorithms that have
two-sided error [ACR98; ACRT99; BF99; GVW11; CH22|.

A few years ago, Braverman, Cohen, and Garg introduced a different generalization of PRGs,
called weighted PRGs (WPRGs) [BCG20].3

Definition 1.5.2 (WPRG). Suppose F is a class of functions f: {0,1}" — R. An e-WPRG for F
is a pair (G, p), where G: {0,1}* — {0,1}" and p: {0,1}* — R, such that for every f € F, we have

JE (F(GW) - p0)] ~Blf]| <.
Thus, WPRGs generalize PRGs because we consider sparse linear combinations of the outputs of
f rather than sparse conver combinations of the outputs of f. Several recent works have exploited
this extra flexibility to construct WPRGs with better parameters than known PRGs [BCG20; CL20;
CDRST21; PV21b; Hoz21].
Yet another generalization of PRGs is the concept of a deterministic sampler.

Definition 1.5.3 (Deterministic sampler). Suppose F is a class of functions f: {0,1}" — R. An
e-deterministic sampler for F is a deterministic oracle algorithm A that makes queries to a function
f € F and outputs a number A7 € R such that |Af —E[f]| < e.

The deterministic sampler model isolates a key feature of PRGs, which is that they are useful
even if we merely have black-box access to the function f. Deterministic samplers have been
discussed (by name) in a couple of recent works [CH22; PV22]. Several older algorithms can also be
understood as deterministic samplers [ACR98; ACRT99; ISW99; BF99; GVW11].

2For a counterexample, see the work of Hoza, Pyne, and Vadhan [HPV21].
3In Braverman, Cohen, and Garg’s original paper [BCG20], they speak of “pseudorandom pseudo-distributions.”
The “weighted PRG” terminology was introduced later, by Cohen, Doron, Renard, Sberlo, and Ta-Shma [CDRST21].

12

One can show that these four concepts form a hierarchy:
PRG =— WPRG = deterministic sampler = HSG.

Thus, PRGs (our focus in this text) are the most desirable of the four.

13

Chapter 2

Limited Independence and Small-Bias
Generators

In this chapter, we study “k-wise uniform” generators, “small-bias” generators, and simple combina-
tions thereof. What these PRG constructions have in common is that they are closely related to
error correcting codes. Prior knowledge of coding theory is not necessary to understand the PRGs.
The constructions of these PRGs are fairly elementary, but we emphasize that the analyses are
interesting and not always trivial. We will build up to showing that these simple PRGs can fool
moderately powerful classes of functions, such as bounded-depth circuits and low-degree polynomials
over [Fy.

2.1 Limited independence

2.1.1 Pairwise uniform bits

For our first PRG, let us fool the first nontrivial case of juntas.

Definition 2.1.1 (Juntas). A function f on {0,1}" is a k-junta if f only depends on at most k
variables, i.e.,
f(x) =g(xiy, ..., zi)

for some indices i1, ..., i € [n] and some function g.

Fooling 1-juntas is trivial. Indeed, let G: {0,1} — {0,1}" be the PRG with seed length 1 given
by G(b) = (b,b,b,...,b). Then G perfectly fools every 1-junta, because for any i, the i-th bit in the
output of the PRG is a uniform bit.

Let us consider the case of 2-juntas. Fooling one specific 2-junta, such as the function f(z) =
x7 A 13, is trivial: using a 2-bit seed, we can sample X7, X13 € {0, 1} uniformly and independently
at random and set X; = 0 for all 7 ¢ {7,13}. The challenge is to construct a single PRG that fools
all 2-juntas simultaneously. In other words, the challenge is that when we design the PRG, we don’t
know in advance which two bits are relevant.

Theorem 2.1.2 (Pairwise uniform bits). For every n € N, there is an explicit PRG that perfectly
fools 2-juntas on n bits with seed length [logn| + 1.

A distribution X that perfectly fools 2-juntas is also called a pairwise uniform distribution,
because every two bits of X are uniform over {0,1}2. In practice, people often use the alternative

14

phrase “pairwise independent.” This practice is a little sloppy, because it doesn’t clarify the marginal
distributions of the individual coordinates of X.

A generator for n = 3 was described in Section 1.1.3. The solution for larger n is a natural
generalization.

Proof of Theorem 2.1.2. Let s = |logn| + 1, and let I1,..., I, be distinct nonempty subsets of [s].
The PRG G: {0,1}* — {0,1}" is given by

Gy)=|Puvi-- . Pui |- (2.1)

i€l i€l

To prove that this works, consider sampling Y € {0, 1}* uniformly at random, and let j, k € [n] be
distinct. Define

Z= P v, A= P v, B= P v.

iel;Nly ’iGIj\Ik iEIk\Ij

Then (G(Y);,G(Y)r) = (Z ® A, Z @ B). Furthermore, Z, A, and B are mutually independent
random variables, and A and B are uniformly distributed. Therefore, (G(Y);, G(Y)) is uniformly
distributed over {0, 1}2. Therefore, for any function f that only depends on xj and xy, the random
variables f(G(Us)) and f(U,) are identically distributed. O

The seed length in Theorem 2.1.2 is precisely optimal [ABI86; CGHFRSS85], i.e., every pairwise
uniform generator has a seed length of at least |logn]| + 1.

2.1.2 k-wise uniform bits

For our next PRG, let us fool the class of k-juntas for any k, i.e., we will construct a k-wise uniform
distribution.

Theorem 2.1.3 (k-wise uniform bits). For every n,k € N, there is an explicit PRG that perfectly
fools k-juntas on n bits with seed length O(klogn).

Proof. Let F, be a finite field with at least n elements. Let P be the set of univariate polynomials
over [F, of degrees less than k. Let 2q,..., 2, € IFy be distinct. In preparation for defining the PRG,
define H: P — IF’; by

H(p) = (p(21),- -, p(2k))-
The function H is injective, because if H(p) = H(p'), then p — p’ is a polynomial with at least k
zeroes of degree less than k, hence p = p’. Furthermore, |P| = |F ’;\ = ¢*, since a polynomial p € P
can be specified by k coefficients from F,. Therefore, H is bijective, and hence if P € P is sampled
uniformly at random, H(P) is a uniform random vector.
Now let 21, ..., zn € Fy be distinct, and define G: P — Fy by

G(p) = (p(21),-- -, p(zn)).

By the above analysis, when P € P is sampled uniformly at random, any k coordinates of G(P) are
independent and uniform random.

All that remains is to bridge the gap between field elements and bits. Let g be a power of two,
so that field elements can be naturally encoded as bitstrings. The seed of our PRG describes a
polynomial p € P by giving the encodings of its k coefficients; this requires klogq = k - [logn|
bits if we pick ¢ to be the smallest power of two that is at least n. The output of our PRG is the
sequence of first bits of the encodings of the coordinates of G(p). O

15

Figure 2.1: A depth-3 decision tree. Note that the function it computes depends on all 6 variables.

The seed length in Theorem 2.1.3 is optimal up to a constant factor for moderate values of k.
More precisely, the optimal seed length is O(k - log(n/k)) [CGHFRS85; ABI86; CL21], which is a
slight improvement over Theorem 2.1.3 when k > n!=°(1), Even when k is small, the constant factor
in the seed length of Theorem 2.1.3 can be improved by roughly a factor of two [ABI86].

2.1.3 Perfectly fooling shallow decision trees

Next, let us fool shallow decision trees, which generalize juntas.

Definition 2.1.4 (Decision trees). A decision tree over {0,1}" is a tree, where each internal node
is labeled with a variable x; and has two children, the two edges leading from an internal node to its
children are labeled 0 and 1, and each leaf is labeled with an output value (0 or 1). A decision tree
computes a function f: {0,1}™ — {0,1} by walking from root to leaf according to the values of the
variables queried. (See Figure 2.1.)

Every k-junta can be computed by a depth-k decision tree. To fool decision trees, rather than
constructing a new PRG from scratch, we’ll show that every PRG for k-juntas automatically fools
depth-k decision trees — even though such a tree might compute a function that depends on far
more than k variables. This is a common pattern in PRG design: first one designs a PRG for a
relatively simple class of functions, and then one proves that such a PRG automatically fools a more
sophisticated class of functions.

Proposition 2.1.5 (Perfect PRGs for shallow decision trees). Let n,k € N and let X be a k-wise
uniform distribution over {0,1}"™. Then X perfectly fools depth-k decision trees. Consequently,
there is an explicit PRG with seed length O(klogn) that perfectly fools depth-k decision trees on n
variables.

Proof. Let f be a depth-k decision tree. Let A be the set of accepting leaves of f, i.e., leaves that
are labeled 1. For each leaf u € A, define f,: {0,1}" — {0,1} by letting f,(x) = 1 if and only if
f arrives at u when it reads x. Note that f, is a k-junta, because its value only depends on the
variables queries on the path from the root to u. Furthermore, we can express f as

@) =3 fula).

u€A

16

Therefore, by linearity of expectation,

qu(X)] =) E[fu(X)] =) E[f) =E

ucA ucA ucA

E[f(X)]=E

> fu] = E[f]. O

ucA

The simple technique in the proof above is quite valuable. Let us abstract it out and generalize
it to the case of imperfect PRGs.

Lemma 2.1.6 (Triangle Inequality for PRG Errors). Let fi,..., frx: {0,1}" = R be functions, let
A0y -, Ak € R, and let f(x) =)\0+Zf:1 i+ fi(x). Let X be a distribution over {0,1}", and assume
that X fools f; with error e; for each i. Then X fools f with error €, where

k
g = Z ’)\z’ * &5
=1

Proof.
k k
B[f(X)] = E[f]l = D> X -EBIf(X)] = > A -E[fi] (Linearity of expectation)
=1 =1
k
<INl E[f(X)] - E[f]] (Standard triangle inequality)
=1
k
< Z Al - €5 (X fools f; with error ¢;.) O
i=1

2.1.4 Connection with coding theory: Dual codes

For readers with a background in coding theory, the constructions of pairwise and k-wise uniform
generators might have felt familiar. Indeed, the constructions are closely related to the Hadamard
code and the Reed-Solomon code, respectively. For the sake of those readers who have some
familiarity with coding theory, we will now describe a general elegant characterization of exactly
which linear codes induce k-wise uniform distributions. Recall that a linear code over Fj is a
subspace C C F?, and its dual code is defined as

C+={z €F3:Vy € C, (x,y) = 0},

where (-,-) is the standard dot product over F4. The minimum distance of a code is the smallest
Hamming distance between two distinct codewords. For a linear code C, this distance coincides
with the smallest Hamming weight among all nonzero codewords of C.

Proposition 2.1.7 (Connection between k-wise uniformity and coding theory). Let C C F3 be a
linear subspace, and sample X uniformly at random from C. Then X 1is k-wise uniform if and only
if C+ has minimum distance at least k + 1.

Proof. First, suppose X is k-wise uniform. Let = € F3 be a nonzero vector with Hamming weight at
most k. Then (z, X) is a uniform random bit, so there is certainly some y € C such that (z,y) = 1.
Therefore, x ¢ C+. Since C* is a subspace, it follows that C* has minimum distance at least k + 1.

Conversely, suppose C- has minimum distance at least k + 1, and consider any k distinct indices
i1,...,1 € [n]. Let s = dim(C'), and let M € F3*° be a matrix with image C and rows Mj, ..., M,.

17

Let z € F§ be an arbitrary nonzero vector supported on the indices 1, ...,%;. Then 2 has Hamming
weight at most k, so x ¢ C*, i.e., there is some z € F§ such that

0 # (x, Mz) sz- M;, z) = <Zx1MZ,z>

Therefore, Y i, ;M; # 0. Since x was arbitrary, this shows that M;,, ..., M; are linearly
independent. Define
M,

11

M.

M ="
M;,
Since row rank is equal to column rank, there are k linearly independent columns of M’ with
indices in some set J = {j1,...,jr}. Therefore, when z € I} is chosen uniformly at random, M’z
is a uniform random element of IF’Q“ To see this, note that for any x € IF’IQc and any fixing of all z;
with j ¢ J, there is a unique choice of z; € F% for which M’z = z. It follows that X is k-wise
uniform. O

Proposition 2.1.7 provides a generic recipe for constructing k-wise uniform distributions from
error correcting codes. Recall that the redundancy of a code is the difference between the block
length and the message length. A binary linear code with block length n, minimum distance k + 1,
and redundancy s induces a k-wise uniform generator with seed length s and output length n.

2.2 Small-bias distributions

2.2.1 Fooling parities of variables
For our first imperfect PRG, let us fool parity functions.

Definition 2.2.1 (Parity functions). A parity function is a function f: {0,1}" — {0,1} of the
form f(x) = @ies x; for some set S C [n].

Equivalently, we can think of f as a map Fy — 5. Then f is a parity function if and only if
f(x) = (a, z) for some fixed vector a, where (-, -) is the usual inner product, i.e., (a,z) = Y 1" | a; - x;.
Sometimes it is more convenient to work with {+1}-valued functions, in which case parity functions
become character functions.

Definition 2.2.2 (Character functions). Let n € N, and let S C [n]. The character function of S,
denoted xs: {0,1}" — {£1}, is defined by

vs(@) = [J(-D"
i€S

Note that f: {0,1}" — {0, 1} is a parity function if and only if (—1) is a character function.
Since (—1)f =1 —2f, it follows that fooling character functions with error ¢ is equivalent to fooling
parity functions with error /2.

Definition 2.2.3 (Bias). An e-biased distribution over {0, 1}" is a distribution that e-fools character
functions. Equivalently, a distribution is e-biased if it (¢/2)-fools parity functions. An e-biased
generator is an e-PRG for character functions.

18

Theorem 2.2.4 (Small-bias generators [NN93; Per90]). For every n € N,e > 0, there is an explicit
e-biased generator with output length n and seed length O(log(n/¢)).

Remark 2.2.5. Ideally, we want to design PRGs for interesting and powerful models of computation.
The reader might feel that “parity functions” is hardly a “model of computation” at all, and the
utility of e-biased generators is unclear. However, we will see later that any distribution that fools
parity functions with sufficiently low error also fools many more interesting models. Furthermore,
e-biased generators are building blocks in many more powerful PRGSs.

Theorem 2.2.4 was proved by Naor and Naor [NN93] and independently by Peralta [Per90]; we’ll
present a simpler construction due to Alon, Goldreich, Hastad, and Peralta [AGHP92].

Proof of Theorem 2.2.4. Let ¢ = n/e, and assume without loss of generality that ¢ is a power of
two. As vector spaces over Fy, identify F, with F 12qu. Our PRG G: F, x F; — {0,1}™ is defined by

(G(y7 Z))l = <y7 Zi>'

To prove that this works, let f: {0,1}" — {0,1} be a nonzero parity function, say f(z) = @,cq -
Then doing arithmetic in Fa,

ﬂa%m:EJ%ﬁ:<%§y§.

1€S €S

Define g(z) = >_,.¢ 2". Then g is a nonzero polynomial in Fy[z] of degree at most n, and f(G(y, z)) =
(y,9(2)). When z is a root of g, obviously f(G(y,z)) = 0. On the other hand, when z is not a root
of g, if we sample Y € F, uniformly at random, f(G(Y,z2)) is a uniform random bit. Therefore,
when we sample Y, Z € [F, independently and uniformly at random,

1 1 n 1
Y, Z))] = - - Pr[g(Z R
EUG.2)] = Bla2) £0l€ 5~ 5.5
Since E[f] = 3, our PRG G fools parity functions with error n/(2g) = £/2, and hence it fools
character functions with error €. Ul

2.2.2 A better seed length for parities of few variables

The seed length O(log(n/e)) in Theorem 2.2.4 is asymptotically optimal [AGHP92]. However, we can
achieve a better seed length for parities of just a few variables, i.e., functions that are simultaneously
parity functions and juntas.

Definition 2.2.6 (k-wise e-bias). Let X be a distribution over {0,1}". We say that X is k-wise
e-biased if it e-fools every character function xs for which |S| < k. Similarly, a k-wise e-biased
generator is an e-PRG for character functions xs that satisfy |S| < k.

Theorem 2.2.7 (k-wise e-biased generators [NN93|). For every n,k € N and every € > 0, there is
an explicit k-wise e-biased generator with output length n and seed length O(log(k/e) + loglogn).

Proof. Let G:{0,1}* — {0,1}" be a k-wise uniform generator that is also a linear transformation
when we think of it as a map between vector spaces, G: F5 — 5. Let Y be an e-biased distribution
over {0,1}°. We will show that G(Y’) fools parities of at most k bits. Indeed, let f(x) =, g,

19

where © € F§ and |S| < k. Let M € F5™* be the matrix representation of G, with rows My, ..., M, €
F5. Then for any y € F3,

FG) =D (Miy) =D> Myy; = > (Z Mw) Yj-

ieS €S j=1 j=1 \ieSs

This is a parity function of the variables y,...,ys. Therefore, since Y is e-biased, |E[f(G(Y))] —
E[f(G(U))]| < €/2. Furthermore, since G is k-wise uniform and f is a k-junta, E[f(G(U))] = E[f].
Therefore, G(Y) is k-wise e-biased. To achieve the promised seed length, we can plug in the
constructions of Theorems 2.1.3 and 2.2.4 for G and Y respectively. O

Once again, the seed length of Theorem 2.2.7 is optimal up to constant factors.

2.2.3 Connection with coding theory: Nearly balanced codes

In Section 2.1.4, we saw a connection between k-wise uniform distributions and error correcting
codes that “explains” our constructions of k-wise uniform generators (Theorems 2.1.2 and 2.1.3).
Now we discuss a similar connection between e-biased distributions and error correcting codes.
Suppose C' C F3" is a linear code. It is generally desirable for C' to have a large minimum
weight. Small-biased distributions are equivalent to codes C that also have a small mazimum weight.
Specifically, we say that C' is e-balanced if every nonzero x € C' has relative Hamming weight % +e.

Proposition 2.2.8 (Nearly balanced code <= small-bias distribution). Let M € Fy"*" be a linear
transformation, and let C' be the image of M, i.e., C = {Ma :a € {0,1}"}. Sample X uniformly at
random from the rows of M, so X € {0,1}". Then C is e-balanced if and only if X is (2¢)-biased.

Proof. For any nonzero “message” a € {0,1}", the relative Hamming weight of Ma is the fraction
of rows M; of M such that (a, M;) =1, i.e., Pr[{a, X) = 1]. O

A nearly balanced code that stretches an n-bit message to an m-bit codeword corresponds to
a small-bias generator that stretches a (logm)-bit seed to an n-bit pseudorandom string. In both
problems, it is desirable to minimize m. A natural way to construct a nearly balanced code is to
concatenate the Hadamard code with the Reed-Solomon code. Through Proposition 2.2.8, that
gives an explicit e-biased generator similar to the PRG we constructed to prove Theorem 2.2.4. The
two constructions are not quite identical. Both have seed length O(log(n/¢)), so the coding-theory
perspective gives an alternative proof of Theorem 2.2.4.

Because of the connection between small-bias distributions and nearly balanced codes, even
constant-factor improvements in the seed length of small-bias generators are interesting. Note that
a constant factor in the seed length translates to a constant factor in the ezponent of the codeword
length! The seed length in Theorem 2.2.4 is 2log(n/e) + O(1). For moderate &, the best small-bias
generator is a construction by Ta-Shma [TS17] with seed length!

logn + 2log(1/¢) + O(log?3(1/e)).

This seed length is extremely close to the nonconstructive bound of logn + 2log(1/e) + O(1)
(Proposition 1.3.1), as well as to the lower bound of log n+2log(1/e) —loglog(1/¢e)—O(1) [AGHP92].
Ta-Shma’s seed length translates to an e-balanced code that stretches messages of length n to
codewords of length n/e2to(1),

'Here, we are ignoring rounding issues. That is, the domain size S of Ta-Shma’s generator is not necessarily a
power of two, and when we say “seed length” we simply mean log, S.

20

Open Problem 2.2.9 (Optimal small-bias generators up to an additive constant in the seed length).
Construct an explicit e-biased generator with seed length logn + 2log(1/¢) + O(1), and hence an
explicit e-balanced code that stretches messages of length n to codewords of length O(n/e?).

2.3 Analysis technique: Fourier 1,; bounds

2.3.1 Basic Fourier analysis

PRGs for character functions (i.e., small-bias distributions) are especially important because
character functions are the basic “building blocks” out of which all other functions f: {0,1}" — R
can be assembled.

Proposition 2.3.1 (The Fourier expansion). Every function f: {0,1}" — R can be uniquely written
as a linear combination of characters, i.e.,

= > F(9) - xs(@), (2.2)

SC[n]

where f(S) € R.

Proof. The space of all functions f: {0,1}" — R is a vector space, isomorphic to R?". Define an
inner product on this space by

(frg) = E [fU) 9U)].

With respect to this inner product, the 2" character functions are orthonormal. Therefore, they
form a basis. O

The decomposition of Equation (2.2) is called the Fourier ezpansion of f, and the numbers f(S)
are called the Fourier coefficients of f. The Fourier expansion of f can reveal important information
about f. For example, by linearity of expectation,

=Y F(9)-Elxs] = f(2). (2.3)

SCln]

2.3.2 Almost k-wise uniform bits

Let us use Fourier analysis to obtain another PRG for k-juntas. For moderate error, its seed length is
superior to that of the k-wise uniform generator that we saw before (Theorem 2.1.3). The following
theorem is a form of “Vazirani’s XOR Lemma.”

Theorem 2.3.2 (Almost k-wise uniform generator [NN93]). If X is a k-wise §-biased distribution
over {0,1}", then X fools [—1,1]-valued k-juntas with error &-2¥/2. Consequently, for every k,n € N
and € > 0, there is an explicit e-PRG for [—1, 1]-valued k-juntas with seed length O(k + log(1/e) +
loglogn).

A distribution X that fools all {0,1}-valued k-juntas with error € is also called an e-almost
k-wise uniform distribution.? An equivalent condition is that every k coordinates of X are e-close
to Uy in total variation distance. In practice, people often use the alternative phrase “e-almost
k-wise independent.”

The proof of Theorem 2.3.2 is based on bounding the magnitude of Fourier coefficients.

2Warning: Occasionally, the same “e-almost” terminology refers to some other measure of the extent to which X
fails to be perfectly k-wise uniform [Aarl0].

21

Definition 2.3.3 (Fourier L; norm). Let f: {0,1}" — R. The Fourier L; norm of f, denoted
Li(f), is the sum of absolute values of Fourier coefficients of f:

Li(f) =Y If(S)]-
SCln]

Lemma 2.3.4 (Universal Fourier Ly bound). For any function f:{0,1}" — [-1,1], we have
Li(f) <272,

~

Proof. By the Cauchy-Schwarz inequality, Li(f) < \/ 27> ey f (S)2. Furthermore, for any
function f: {0,1}" — R,

Ef U =)= Y FS)-F(T) - (xs,xr) =Y F(S)2 (2.4)

S,1C[n] SC[n]

(Equation (2.4) is called Parseval’s theorem.) In our case, f is [~1, 1]-valued, so E[f(U,)?] <1 and
hence 3 gc f(S)2 <. O

Lemma 2.3.5 (Fourier L; bound = fooled by small-bias). Let f: {0,1}" — R. If X is e-biased,
then X fools f with error e - Li(f).

Proof. This is a special case of the Triangle Inequality for PRG Errors (Lemma 2.1.6). O

Proof of Theorem 2.3.2. Let f: {0,1}" — [—1,1] be a k-junta, i.e., f(z) = g(xi,...,z;,) for
some function g: {0,1}* — [~1,1], where i1,. .., are distinct. By Lemmas 2.3.4 and 2.3.5, the
distribution (Xj,,...,X;,) fools g with error ¢ - 2k/2 and hence X fools f with the same error. The
final seed length follows from Theorem 2.2.7 by choosing § = ¢ - 27%/2, 0

2.3.3 Fooling bounded-size decision trees

Recall that in Section 2.1.3, we showed that k-wise uniform generators, with seed length O(klogn),
perfectly fool depth-k decision trees. As another application of Fourier L; bounds, let’s design
another PRG for bounded-depth decision trees with a better seed length (although this time the
error will be nonzero). More generally, we will consider decision trees of unbounded depth but
bounded size. The size of a decision tree is the number of leaves. (See Figure 2.2.)

Proposition 2.3.6 (PRG for bounded-size decision trees). If X is a d-biased distribution over
{0,1}", then X fools size-m decision trees with error mo. Consequently, for every n,m € N
and € > 0, there is an explicit e-PRG for size-m decision trees on n input bits with seed length
O(log(mn/e)).

Note that Proposition 2.3.6 implies a PRG for depth-k decision trees with seed length O(k +
log(n/¢)), because a depth-k decision tree always has size at most 2¥. The proof of Proposition 2.3.6
is similar to the construction of almost k-wise uniform generators: we will bound the Fourier Lq
norm of size-m decision trees. We start with the special case of conjunctions of literals.

Proposition 2.3.7 (Fourier L; bound for conjunctions of literals). Suppose f: {0,1}" — {0,1} is
a conjunction of literals, i.e.,
fle)= N\t

i€S
where S C [n] and each ¢; is either x; or —x;. Then Li(f)=1.

22

Figure 2.2: A decision tree computing the OR function on n bits. Note that the size of this decision
tree is n + 1, which is relatively low, whereas the depth of this decision tree is maximal, which is
unavoidable for the OR function.

Proof. There is a convenient formula for the Fourier coefficients of any function f:

~

) xs(U)] = (fixs) = Y FT) - (xr xs) = F(S). (2.5)
TCIn]

E
U~Un

In the case f = NOR,, (the n-input NOR function), we get

NOR,(S) = E [NOR,(U)- xs(U)] = 27"
Therefore, L1 (NOR,) = 2"-27" = 1. More generally, consider any conjunction of literals f. Without
loss of generality, we may assume that all n variables appear in f. Consequently, there is some
string a € {0,1}" such that f(x) = NOR,(z + a), where + is the bitwise XOR operation. Therefore,
by Equation (2.5), for each S C [n],

7(8) = EINOR, (U + a) - xs(U)] = EINOR, () - xs(U +a)] = xs(a) - NOR, (S) = £27".
(In general, negating variables can only change the signs of Fourier coefficients, not the absolute
values.) Therefore, Ly(f) =2"-27" = 1. O
Corollary 2.3.8 (Fourier L; bound for decision trees). If f is a size-m decision tree, then L1(f) < m.

Proof. One can verify that the Fourier L;(f) norm truly is a norm, i.e., Li(f + ¢) < Li(f) + L1(g)
and Li(Af) = |A|- Li(f). Let f be a size-m decision tree. Just like in the proof of Proposition 2.1.5,
we can write f =) 4 fu, where A is the set of accepting leaves and f,(z) indicates whether x
leads to u. Each f, is a conjunction of literals. Therefore, L1(f) < >°,c 4 L1(fu) < m. O

23

s
0

Figure 2.3: A width-2 length-8 branching program computing the function f: {0,1}* — {0,1}
defined by f(z) =1 <= |z| = 2, where |z| denotes Hamming weight. Note that this function
cannot be computed by a width-2 read-once branching program. This example is derived from work
by Borodin, Dolev, Fich, and Paul [BDFP86].

Combining Corollary 2.3.8, Lemma 2.3.5, and Theorem 2.2.4 completes the proof of Proposi-
tion 2.3.6. When m < n, one can improve the seed length to O(log(m/e) + loglogn) using m-wise
d-biased generators.

Proposition 2.3.6 extends to the more powerful model of parity decision trees, which are decision
trees in which each internal node may query an arbitrary parity function of the input [KM93]. The

reason is that we can write such a tree f as f(x) = g(hi(x),..., hm(x)) where g is a size-m standard
decision tree and hy, ..., h,, are parity functions. Consequently,
F@) = 3) (-1 T,
SCln]

For each fixed S, the function (—1)Zi€S hi(¥) ig a character function, so it has Fourier L; norm 1,
and hence Li(f) < Li(g) < m.

2.3.4 Fooling width-2 branching programs

For a final application of Fourier L; bounds, let us obtain a PRG for width-2 branching programs
(see Figure 2.3). Branching programs are one of the oldest sequential models of computation. For
general size-m branching programs, which model computing with logm bits of memory, the current
best PRG has seed length roughly /m (see Section 5.6). We can do much better in the special case
of width-2 branching programs, which model computing with a single bit of memory and a clock.
The precise definition follows.

Definition 2.3.9 (Bounded-width branching programs). A width-w length-m branching program
f is a directed (multi)graph with m + 1 layers Vy, ..., Vy, of w vertices each. For i € [m], each
verter v € V;_1 is labeled with an index j, € [n] and has two outgoing edges labeled 0 and 1 leading
to vertices in V;. There is a designated “start vertex” vgart € Vo and a designated set of “accepting
vertices” Vaccept C Vin.3 Given an input x € {0,1}™, the program starts at vsiart, and in each step,
having reached a vertex v, the program queries x;, and traverses the corresponding outgoing edge.
Eventually, the program reaches a vertex v € Vi, and f(z) =1 <= v € Viceept-

The following theorem is attributed to unpublished 1995 work of Saks and Zuckerman (see also
the work of Bogdanov, Dvir, Verbin, and Yehudayoff [BDVY13]).

3Note that we do not allow the branching program to halt prior to reaching layer m. This type of program is
sometimes referred to as a “strict” width-w program [BDFPS86].

24

Theorem 2.3.10 (PRGs for width-2 branching programs). If X is a d-biased distribution over
{0,1}", then X fools width-2 length-m branching programs with error ¢ - (m + 1)/2. Consequently,
for every n,m € N and € > 0, there is an explicit e-PRG for width-2 length-m branching programs
with seed length O(log(mn/e)).

One can show that every width-2 branching program on n variables can be simulated by a width-2
branching program of length m = O(n?) [BDFP86], so the seed length in Theorem 2.3.10 actually
simplifies to O(log(n/c)). When Theorem 2.3.10 is mentioned in the literature, it is sometimes
indicated that we should assume that the branching program is read-once [GMRTV12; BDVY13;
HZ20], but such an assumption is not necessary. Once again, we will prove Theorem 2.3.10 by
proving a Fourier L; bound.

Lemma 2.3.11 (Fourier L; bound for width-2 branching programs). If f is a width-2 length-m
branching program, then Li(f) <m/2+1/2.

Proof. Let F(x) = (—1)7(®). For each vertex v in f, let f_,,(x) indicate whether f(z) visits v,
and let F,,(z) = (—1)/~*@) . We will prove by induction on m that L;(F) < m. For the base
case m = 1, the function F is a 1-junta, i.e., F(x) = (=1)% or F(z) = (=1)!"% or F(x) = 1 or
F(z) = —1. In each case, L1(F') = 1. Now, for the inductive step, let V;,_1 = {u,v}. Then there
exist 1-juntas ¢, ¢, : {0,1}" — {£1} such that

F@) = foul@) - 6u(a) + Foo(a) - bu()
(575 Fol@) oul)+ (5 + 5 Foulo) - 6,00

2 2 2 2

Now, Li(¢y) = Li1(¢y) = 1, and by induction, Ly (F.,,) < m — 1. Therefore,

Ly(F) < 3 - In(Fo) - (Ea(60) + La6u) + (Ea(60) + La(60) S m— 141 =m,

completing the induction. Finally, f(z) = 3 — 3F(z), so Li(f) < 5 + 2. O

Theorem 2.3.10 follows by combining Lemmas 2.3.5 and 2.3.11 and Theorem 2.2.4. Analogously
to the situation with decision trees, when m < n, one can improve the seed length to O(log(m/e) +
loglogn) using (2m)-wise d-biased generators.

2.4 Viola’s generator for low-degree Fy-polynomials

In Section 2.2 we saw a simple construction of an explicit small-bias generator, i.e., a PRG that
fools all Fa-linear functions with logarithmic seed length. We’ve discussed connections between
small-bias generators and coding theory and some simple applications of small-bias generators. As
a natural generalization, let us construct PRGs for quadratic or higher degree polynomials.

Remark 2.4.1 (Polynomials over Fo vs. polynomials over R). QOuver the reals, every degree-d
polynomial is perfectly fooled by d-wise uniform generators. However, in this section, we are working
over Fo. Thus, a low-degree polynomial is a function of the form PARITY o AND where the AND
gates have low fan-in. In this setting, k-wise uniformity is not a good approach. For instance, the
uniform distribution over all strings with even Hamming weight is (n — 1)-wise uniform, and yet it
does not even fool degree-1 polynomials (parity functions).

25

The problem of designing PRGs for low-degree Fa-polynomials seemed to be much harder than
constructing small-bias generators or k-wise uniform generators. For a long time, even for constant
degree, the best construction known was a PRG by Luby, Velickovié¢, and Wigderson [LVW93] with
seed length 20(V108™) " Over a decade later, a new line of work [BV10a; Lov09] led to Viola’s elegant
proof [Vio09] that simply summing d independent copies of small-bias generators gives a PRG for
degree-d polynomials.

Theorem 2.4.2 (PRG for low-degree Fo-polynomials [Vio09]). Let Yi,...,Y; be independent ¢-
biased random variables over F4 where 6 < 1/2. Then Y1 + --- + Yy fools degree-d Fa-polynomials
with error 4 - (5/2)1/2d_1. Consequently, for every n,d € N and € > 0, there is an explicit e-PRG
for degree-d Fo-polynomials in n variables with seed length O(d -logn + d - 2% - log(1/e)).

For context, it is easy to show that a sum of independent small-bias random variables is “more
pseudorandom” than a single small-bias random variable in the sense that it has smaller bias (see
below). Theorem 2.4.2 says that not only does the sum have smaller bias, it also fools higher-degree
polynomials.

Observation 2.4.3 (XORing decreases bias). Let Yi,...,Y; be independent §-biased random
variables distributed over Fy. Then sz:1 Y; is (6%)-biased.

The proof of Theorem 2.4.2 is based on the notion of directional derivatives over Fo, defined below.

Proof. For every nonempty S C [n], we have

Xs@iﬁ)

2.4.1 Directional derivatives

d

[Elxs(v3)

=1

E < 69, O

Definition 2.4.4 (Directional derivative). Let f: F5 — Fo and y € 3. The directional derivative
Oy [is defined by

Oy f(x) = fz +y) + f(2).
If F is a class of functions f: Fy — Fo, we define OF = {0yf : f € F,y € F§}.

To fool low-degree polynomials, our strategy will be to show how to convert PRGs for d.F into
PRGs for F, where F is any “reasonable” class. Formally, the only requirement on F is that is
“closed under shifts,” as defined below.

Definition 2.4.5 (Closure under shifts). For a function f on F} and a vector y € Fy, we define
the shift ft¥ by the formula f*Y(z) = f(z +y). Let F be a class of functions f on F3. We say
that F is closed under shifts if for every f € F and every y € FY, we have fTY € F.

Lemma 2.4.6 (PRG for 0F = PRG for F). Let F be a class of functions f: F§ — Fy that is
closed under shifts. Suppose W fools OF with error v, Y is d-biased, and Y is independent of W.
Then W +Y fools F with error \/2v + §/2.

In general, OF seems to be “more complicated” than F itself, so Lemma 2.4.6 might not sound
particularly useful. However, OF is “simpler” than F in one respect, namely degree:

Observation 2.4.7 (Differentiation decreases degree). Let d > 1, let f: F§ — Fy be a degree-d
polynomial, and let y € Fy. Then Oy f is a degree-(d — 1) polynomial.

Thus, we will be able to prove Theorem 2.4.2 by applying Lemma 2.4.6 inductively.

26

2.4.2 The XOR of two independent copies of an arbitrary Boolean function

The proof of Lemma 2.4.6 (the reduction from fooling F to fooling 0F) relies on the following
lemma, which explains how to use small-bias distributions to “recycle” randomness and thereby
fool a certain class of functions.

Lemma 2.4.8 (Using small-bias distributions to fool g(x) - g(y)). Let n be an even positive integer,
let g: {0,1}"/2 — {£1}, and let f(zx,y) = g(x)-g(y). Let U and Y be independent, where U ~ Un/2

and Y s an e-biased random wvariable over IF;Z/Q. Then (U, U +Y) fools f with error ¢.
Proof. Define F: {0,1}"/? — [~1,1] by

F(z) =E[g(U) - 9(U + 2)].

Let U’ ~ U, 2 be independent of U. Then for any S C [n], by Equation (2.5),

2
F(S) = B la0) o0+ U) - xs(U)] = B o€) - o0") - xs(U + U] = (Bo@) - xs(0)])
(s

Therefore, L1 (F) = >4 3(5)? < 1 by Parseval’s theorem. Consequently, Y fools F with error € by
Lemma 2.3.5, and hence (U,U +Y') fools f with error e. O

Remark 2.4.9 (Characterizing small bias). One can show the following converse to Lemma 2.4.8:
IfU ~ Uyy, Y is independent, and (U,U +Y') fools all functions of the form f(x,y) = g(z)-g(y) €
{£1} with error e, then'Y is e-biased. Thus, the condition in Lemma 2.4.8 gives an alternative
characterization of small-bias distributions.

Remark 2.4.10 (Connection to expander graphs). The seed length for sampling the distribution
(U,U +Y) that appears in Lemma 2.4.8 is n/2 + O(log(n/e)). Lemma 2.4.8 generalizes to the
case that g has bounded variance, Var[g] < 1, rather than being {+1}-valued. This generalization
1s closely related to the notion of a spectral expander. In Section 3.1.1, we will discuss spectral
expanders in more detail, and in particular we will discuss PRGs for such tests with the improved
seed length n/2 + O(log(1/¢)).

2.4.3 The reduction from fooling F to fooling 0F

To prove Lemma 2.4.6, we will consider two cases based on the extent to which f € F is balanced.
For a function f: F§ — Iy, define

1

imbalance(f) = ‘E [(—1)f(U")} ‘ =2 ‘E[f] - 2' :

(In the literature, this quantity is often referred to as the “bias” of f. We use the term “imbalance”

instead to avoid confusion with small-bias distributions.) We begin with the case that f is close to
balanced.

Lemma 2.4.11 (Fooling well-balanced functions). Let F be a class of functions f: Fy — Fy that is
closed under shifts. Suppose W fools OF with error v, Y is -biased, and Y is independent of W.
Then W +Y fools each f € F with error imbalance(f) + /v/2 4 §/2.

27

Proof. First observe that

ELFOV +)] ~ EF)]| = 5 - [[(-1)/ V)] & [(-1)/@)],

< % . ’E [(—1)f(W+Y)} ’ + % - imbalance(f).

Thus, it suffices to bound |E[(—=1)/W+Y)|. By Jensen’s inequality,

(& [coe]) <z

where Y is an independent copy of Y. For fixed Y, the function f*Y () def f(z+Y) is in F because

F is closed under shifts. Furthermore, for fixed Y,Y”, the function g(z) & fla+Y)+ fx+Y)is
in OF, because g = Oy Ly’ . Therefore, the assumption on W gives

<E [(_1)f(W+Y)D2] - F [(_l)f(W—i-Y)—kf(W—&-Y’)} :
Y W,Y,Y"

VWA HFW Y] VAU +F(U+Y)
W,IX@,Y’ [(b } - Y,Y’%NU,L [(1) } +2y

Finally, observing that (U +Y,U 4 Y”) is identically distributed to (U,U +Y +Y”), we have

(/I = B[O OR] < imbalance(f)? + 6,

E
Y)Y UnUn Y,Y UnUny

where the last inequality follows from Lemma 2.4.8 and the fact that Y + Y is (§2)-biased. In
summary, we have shown that

[Ef(W +Y)] - E[f(Un)]] <

:)MI/EY [(—1)f(w+y)} ’ + % - imbalance(f)

N = N =

1
< — - y/imbalance(f)2 + 62 + 2y + 3 imbalance(f)

o
< imbalance(f) + 5t \/Z O

Now we move on to the case that f is significantly imbalanced. In this case, W alone (rather
than W +Y) already fools f.

Lemma 2.4.12 (Fooling imbalanced functions). Let F be any class of functions f: Fj — Fs.
Suppose W fools OF with error y. Then W fools each f € F with error -y - imbalance(f) 1.

Proof. Let U and U’ be two independent copies of U,,. Then
imbalance(f) - ‘E [(_1)f(W)} _E [(_1)f(U)H — ‘E {(_Uf(WHf(U)} _E {(_Uf(U)Jrf(U’)”
— ‘E [(_1)f(W)+f(W+U)] _E [(_1)f(U/)+f(U/+U)} ‘
<2,

where the last inequality is due to the fact that for any fixing of U, the function 0y f is fooled by
w. O

Now we combine the two cases to complete the proof of the reduction.

28

Proof of Lemma 2.4.6. For any f € F and any fixing of Y, the function f*Y (z) def flx4+Y)isin
F, and imbalance(f*Y) = imbalance(f). Therefore, Lemma 2.4.12 implies that W + Y fools f with
error 7 - imbalance(f)~!. Combining with Lemma 2.4.11 shows that W + Y fools f with error

min {7 -imbalance(f) !, imbalance(f) + \/7/2 + 5/2} <V2y+6/2,
where the last inequality follows by case analysis based on whether imbalance(f) < /7/2. O

2.4.4 Inductive analysis of low-degree polynomials

Proof of Theorem 2.4.2. By Lemma 2.4.6 and Observation 2.4.7, for every i, the random variable
Z;Zl Y; fools degree-i polynomials with error ;, where 1 = §/2 and €;11 = v/2¢; + §/2. Since
5 <1/2, we get g;41 < V/2¢; + M/2 Since g; > /2, we get g;41 < (V2 +1/2) - VEi <28 Tt
follows that

eq < 4-(5/2)1/27"

The seed length bound follows by choosing § = 2 - (¢/4)2°”" and using the small-bias generator
construction of Theorem 2.2.4. O

When d is constant, the seed length in Theorem 2.4.2 is optimal. However, the generator becomes
trivial when d = O(logn).

Open Problem 2.4.13 (PRGs for logarithmic-degree polynomials). Design an explicit nontrivial
PRG for Fo-polynomials of degree logn.

Open Problem 2.4.13 is closely related to the challenge of proving better correlation bounds
against polynomials; see Viola’s survey [Vio22].

2.4.5 Application: Width-2 branching programs that read several bits at a time

Studying low-degree polynomials is natural enough from a mathematical perspective, but what
about from a computing perspective? The reader might find it strange to think of polynomials as
a computational model. However, we will now show that PRGs for low-degree polynomials imply
PRGs for other models of a more “computational” nature, which demonstrates the importance of
Viola’s PRG. In particular, we can fool compositions with juntas, provided that the outer function
has bounded Fourier L; norm.

Definition 2.4.14 (Compositions with juntas). Let f: {0,1}" — R. For each n,d € N, we define
foJUNTA,, 4 to be the class of all functions g: {0,1}" — R of the form

g(:L') - f((lsl(x)v .- ‘7¢T’<x))7

where each ¢; is a d-junta on n bits. If F is a class of functions f: {0,1}" — R, then we define
F o JUNTAws = User f o JUNTA,, 4.

Lemma 2.4.15 (PRGs for compositions with juntas). Suppose X is a distribution over {0,1}" that
fools degree-d polynomials over Fy with error ¢, and let f: {0,1}" — R. Then X fools f o JUNTA,, 4
with error 2e - Li(f).

29

Proof. If g(z) = f(¢1(x),...,dr(x)), then by the Fourier expansion of f, we have

g(@) =Y F(9) - (~1)res @),

SC[r]

The summation in the exponent may be performed modulo 2. If each ¢; is a d-junta, then each
¢; can be computed by a degree-d polynomial over Fy, hence), ¢ ¢i(x) mod 2 is also a degree-d
polynomial over Fy. Therefore, X fools (—1)21'63@'(7”) with error 2¢. The lemma follows by the
Triangle Inequality for PRG Errors. O

Probably the most interesting example is when we take F to be the class of width-2 length-
m branching programs on 2m input bits (see Definition 2.3.9). Then F o JUNTA,, 4 is precisely
the class of functions computable by a variant model of width-2 length-m branching programs
in which the program reads d bits at a time, i.e., each vertex v is labeled by a set of indices
J, C [n] with |J,| = d and has 2¢ outgoing edges corresponding to the possible values of the input
substring x,. For this model, Theorem 2.4.2 and Lemmas 2.3.11 and 2.4.15 imply a seed length of
O(d-logn+d-2-log(m/c)). This was shown by Bogdanov, Dvir, Verbin, and Yehudayoff [BDVY13].
(They assume that the program is “oblivious” in the sense that J, = J, if u and v are in the same
layer, but such an assumption is not necessary.)

2.5 Analysis technique: Sandwiching approximators

2.5.1 The sandwiching lemma

Suppose we wish to show that a distribution X fools some class F. A common approach has two
steps:

1. Prove that X fools some “simpler” class Fgimp.

2. Prove a “transfer theorem,” saying that every distribution that fools Fgmp also fools F
(possibly with some loss in the error parameter).

The second step requires showing that Fgmp can “simulate” F in some sense. For example, several
P)

times, we have shown that every function in some class of interest in can be written as a linear

combination of “simpler” functions:

e Every depth-k decision tree can be written as a sum of k-juntas (Proposition 2.1.5).

e Every Boolean function can be written as a linear combination of parity functions (Proposi-
tion 2.3.1).

e Every width-2 branching program that reads several bits at a time can be written as a linear
combination of low-degree polynomials over Fa (Section 2.4.5).

In each case, the Triangle Inequality for PRG Errors gives us our desired transfer theorem. (The
final error depends on the magnitude of the coefficients in the linear combination.) In this section,
we present a second method for proving a “transfer theorem” stating that every distribution that
fools Fgimp also fools F.

Suppose X is a distribution that fools Fgmp, and suppose that Fsimp approzimately simulates
F in some sense. For example, suppose that for every f € F, there is an f' € Fgimp such that
E[|f — f'|] is small. Unfortunately, it does not immediately follow that X fools F: although f and

30

f’ behave similarly under the uniform distribution, it isn’t clear whether they behave similarly
under the pseudorandom distribution X. A technique for getting around this issue is to establish a
stronger form of approximation called sandwiching.

Definition 2.5.1 (Sandwiching). Let f, fo, fu: {0,1}" — R. We say that f is -sandwiched between
fe and fy if fo < f < fu and E[f, — fo] < 0. In this case, we refer to f; and f, as “sandwichers”
or “sandwiching approximators” for f.

Lemma 2.5.2 (Sandwiching Lemma). Suppose f is §-sandwiched between f; and f,, and suppose
X fools fo and f, with error e. Then X fools f with error € + 4.

Proof.

Elfu +e <E[f]+e+0

E[,(X0)
E E[fy] — e > E[f] - = — 6. O

[fe(X)]

<
>

2.5.2 Using k-wise uniform generators to fool size-m decision trees

To illustrate the sandwiching technique, let us return to the decision tree model. Recall that we
showed that k-wise uniform generators fool depth-k decision trees (Proposition 2.1.5), and then
later we showed that small-bias generators fool size-m decision trees (Proposition 2.3.6). The latter
model generalizes the former by taking m = 2¥. We now show that k-wise uniform generators also
fool bounded-size decision trees.

Proposition 2.5.3 (Limited independence fools bounded-size decision trees). If X is a k-wise
uniform distribution, then X fools size-m decision trees with error m - 2.

Proof. Let f be a size-m decision tree. Define a depth-k decision tree f, by starting with f
and replacing each internal node at depth exactly k with a leaf labeled 0 (and deleting all of its
descendants). Similarly, define f,, by replacing each internal node at depth k with a leaf labeled 1.
Let us show that f is 6-sandwiched between f; and f,, for § = m - 27,

Clearly f; < f < fu. For each “new” leaf u of f; or f, (i.e., u was not a leaf in f), the
probability of reaching v on a uniform random input is precisely 27%. The number of new leaves is
the number of internal nodes of f at depth k, which is at most m. Therefore, by the union bound,
E[fu - fﬁ] s=m- 27k,

The Sandwiching Lemma completes the proof, because X fools f, and f, with error 0 (see
Section 2.1.3). O

Proposition 2.5.3 implies that using k-wise uniform generators, we can e-fool size-m decision
trees using a seed of length O(log(m/e) - logn). This seed length is inferior to the seed length that
we obtained previously using small-bias generators, which was O(log(mn/e)) (see Proposition 2.3.6).
However, sometimes it is useful to understand the effect of specific classes of distributions, such as
k-wise uniform distributions, on a given model of computation.

2.5.3 Small-bias distributions fool read-once AC°

For a more sophisticated example of a sandwiching argument, let us consider “ACY circuits,” i.e.,
bounded-depth Boolean circuits of unbounded fan-in.

31

Figure 2.4: A depth-3 read-once AC® formula.

Definition 2.5.4 (ACO circuits). An ACO circuit is a directed acyclic graph where every input
node is labeled by a literal (x; or —x;) or a constant (0 or 1), every internal node (“gate”) is labeled
by A or V, and there is exactly one output node. The in-degrees (also called fan-ins) of A or V gates
are not bounded. The size of the circuit is the total number of its A\ and V gates. The depth of the
circuit is the length of its longest directed path.

Traditionally, the expression “AC"” refers to the complezity class consisting of all languages
that can be decided by constant-depth polynomial size families of unbounded-fan-in circuits. As
suggested by Definition 2.5.4, we will instead adopt the convenient convention of speaking of “size-m
depth-d ACP circuits,” where m is not necessarily poly(n) and d is not necessarily O(1). That
being said, m = poly(n) and d = O(1) is the parameter regime in which we are most interested.

Later, we will present PRGs for general ACY circuits. (See Sections 2.6, 4.2, 5.1 and 5.3.)
For now, let us focus on fooling the read-once version of AC?, a substantially easier problem. A
read-once ACY formula is an ACP circuit in which every variable appears at most once and the
underlying graph structure is a tree. See Figure 2.4.

Theorem 2.5.5 (Small-bias fools read-once ACY). For every n,d € N and ¢ > 0 with d > 2, there
is a value 6 = exp(—O(logn)* 1 -log(1/€)) such that if X is a §-biased distribution over {0,1}",
then X fools depth-d read-once AC® formulas with error e. Consequently, there is an explicit e-PRG
for depth-d read-once AC°® formulas with seed length O(logn)?~1 -log(1/¢).

When d = 2 (read-once CNFs and DNFs) and ¢ is constant, the seed length of Theorem 2.5.5 is
O(logn), which is optimal. For larger d or smaller ¢, the seed length is not optimal: the optimal
seed length would be O(log(n/¢)), independent of depth (note we always have d < n). That being
said, a benefit of Theorem 2.5.5 is the simplicity of the PRG itself. See Section 5.5 for a discussion
of more sophisticated PRGs for read-once AC® with better seed lengths.

The case d = 2 of Theorem 2.5.5 was first explicitly stated and proven by De, Etesami, Trevisan,
and Tulsiani [DETT10]. It also readily follows [LV17, Appendix A] from earlier work by Chari,
Rohatgi, and Srinivasan [CRS00]. It seems that the case d > 2 does not appear in the literature,
but the argument for d > 2 is a straightforward generalization of the argument for d = 2.

The proof of Theorem 2.5.5 works by repeatedly applying the following lemma.

32

Lemma 2.5.6 (PRG for depth d = PRG for depth d + 1). Suppose a distribution X fools
depth-d read-once AC® formulas with error €, where d > 1. Then X fools depth-(d 4 1) read-once

AC? formulas with error exp <—Q (M))

logn

Proof. Let f be a depth-(d + 1) read-once ACY formula. Assume for now that the output gate of
fis V, so we can write f(z) = fi(x) V-V fi(z). Define the weight of such a formula to be the
expected number of terms satisfied on a uniform random input, i.e., Weight(f) = > ", E[f;]. As a
first step, we will show that for every even positive integer k, the distribution X fools f with error

- (2m)* + (e - Weight(f)/k). (2.6)

To prove it, let us use the inclusion-exclusion principle to compute f(x). For each positive integer r,
define ¢,.: {0,1}" — R by

T

Ur(x) =Y (=D YN filw).

t=1 SClm]i€S
|S|=t

Since k is even, ¢, < f < 9,1, and we claim that

Etpr—1 — ¥&) < (e - Weight(f)/k)*. (2.7)
Indeed, if & > m, then Equation (2.7) holds because 1;_1 = ¢y = f, and meanwhile if k& < m, then

s o= 32 Tl = (1) (B520) = ()" (R0

SC[m]i€S
IS|=k

= (e- Weight(f)/k)k.

(The first inequality follows from Maclaurin’s inequality.) Thus, f is sandwiched between 1}, and
Yg—1. Furthermore, since the top gate of each ¢; is A, each function \;cg ¢i(z) is a depth-d read-once
AC? formula. Therefore, by the Triangle Inequality for PRG Errors, X fools 1, with error 8, where

@:e.g(ﬁ):e.(mﬁ—l) <e(mry.

Since ¥, = 1, for all r > m, it follows that X fools 1, with error € - (2m)". Therefore, by the
sandwiching lemma (Lemma 2.5.2), X fools ¢ with the error given by Equation (2.6).

Now let
 log(1/2)
* 2log(2m)’
or to be more precise, let k. be the smallest even positive integer that is at least the above value.
We split into two cases. For the first case, suppose Weight(f) < k./(2e). Then we achieve error

e (2m)k + 275 = exp (Q (bg(l/‘?))) .

logm

Since f is read-once, m < n, so this error value is sufficient to establish the lemma. For the second
case, suppose Weight(f) > k./(2¢). Let f'(x) = f1(z) V-V fpr(x), where m' is the largest value
such that Weight(f’) < k./(2¢). Then f' < f <1, and

m/

E[l — f] = [[(1 — E[f)]) < e~ Weisht(f) < =521,
=1

33

Therefore, ¢ is d-sandwiched between ¢’ and 1, where § = exp (—Q <1°g(1/ 5)». Furthermore, X

logm
fools f’ with error

e @) 2k < 2m)t 2k = exp (—Q (log(l/ 5))) ,

logm

and obviously X fools 1 with error 0, so another application of the sandwiching lemma completes
the proof in this case.

Finally, suppose the output gate of ¢ is A. Then —¢ can be computed by a depth-(d + 1)
read-once formula where the output gate is V. Therefore, X fools =¢, and hence it fools ¢ with the
same error.]

Remark 2.5.7. More generally, we can consider any class F of Boolean functions on n bits. (The
interesting case is when F is not closed under complement.) Let AND o F denote the “read-once
composition” of AND with F, i.e., the class of functions of the form f(z) = /\§:1 fi(x) where
fi,..., ft € F and f1,..., ft depend on disjoint parts of the input. Define OR o F similarly. The
proof of Lemma 2.5.6 shows that if X fools AND o F with error e, then X fools OR o F with error

exp(—Q(log(1/e)/logn)).

Proof of Theorem 2.5.5. By Proposition 2.3.7, if f is a depth-1 read-once AC? formula, then either
Li(f) <1or Li(—f) < 1. Either way, every d-biased distribution fools f with error . This is the
base case of an induction on d, where Lemma 2.5.6 is the inductive step. O

We can also consider read-k depth-d AC? circuits for k > 1. Servedio and Tan studied the case
d = 2 [ST19b], improving on previous work by Klivans, Lee, and Wan [KLW10]. Both works show
that small-bias distributions fool read-k CNFs and DNFs; in the case of polynomial-size DNF's,
Servedio and Tan’s analysis [ST19b] leads to a seed length of poly(k,log(1/¢)) - logn. The case of
larger depth d > 2 is open.

Open Problem 2.5.8 (PRGs for read-twice ACY circuits). Design an explicit PRG for read-twice
depth-d ACP circuits with a better seed length than the state-of-the-art PRG for general depth-d
ACP circuits [Lyu22].

2.5.4 The sandwiching lemma and the triangle inequality are always enough

Suppose we wish to show that every distribution that fools one class Fgmp also fools another class
F. As discussed at the beginning of this section, we have presented two techniques for proving such
a “transfer theorem”:

1. The first technique is to express each f € F as a linear combination of functions in Fn,, and
invoke the Triangle Inequality for PRG Errors.

2. The second technique is to sandwich each f € F between functions in Fgm, and invoke the
Sandwiching Lemma.

We will now show that these are the only two techniques that are ever necessary. That is, we
will show that if every distribution that fools Fgimp also fools F, then that fact can be proven by
sandwiching each f € F between linear combinations of functions in Fgimp.

34

Theorem 2.5.9 (Characterization of when fooling one