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Abstract

We propose an application for near-term quantum devices: namely, generating cryptographi-
cally certified random bits, to use (for example) in proof-of-stake cryptocurrencies. Our protocol
repurposes the existing “quantum supremacy” experiments, based on random circuit sampling,
that Google and USTC have successfully carried out starting in 2019. We show that, when-
ever the outputs of these experiments pass the now-standard Linear Cross-Entropy Benchmark
(LXEB), under plausible hardness assumptions they necessarily contain Ω(n) min-entropy, where
n is the number of qubits. To achieve a net gain in randomness, we use a small random
seed to produce pseudorandom challenge circuits. In response to the challenge circuits, the
quantum computer generates output strings that, after verification, can then be fed into a
randomness extractor to produce certified nearly-uniform bits—thereby “bootstrapping” from
pseudorandomness to genuine randomness. We prove our protocol sound in two senses: (i)
under a hardness assumption called Long List Quantum Supremacy Verification, which we justify
in the random oracle model, and (ii) unconditionally in the random oracle model against an
eavesdropper who could share arbitrary entanglement with the device. (Note that our protocol’s
output is unpredictable even to a computationally unbounded adversary who can see the random
oracle.) Currently, the central drawback of our protocol is the exponential cost of verification,
which in practice will limit its implementation to at most n ∼ 60 qubits, a regime where attacks
are expensive but not impossible. Modulo that drawback, our protocol appears to be the only
practical application of quantum computing that both requires a QC and is physically realizable
today.
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1 Introduction

After three decades of quantum computing theory and experiment, the world finally has noisy
quantum devices, with 50− 60 qubits or ∼ 100 photons, that solve special sampling problems in a
way that’s conjectured to outperform any existing classical computer. The devices include Google’s
53-qubit “Sycamore” chip [12], USTC’s “Jiuzhang” [65] and “Zu Chongzhi” [62], and most recently
Xanadu’s “Borealis” [40]. The sampling problems, which include Random Circuit Sampling [7] and
BosonSampling [4], grew directly out of work in quantum complexity theory beginning around 2010.

To be clear, it’s still debated in which senses current devices have achieved the milestone of
“quantum supremacy”—a term coined by Preskill [51] in 2012, to refer to an orders-of-magnitude
speedup over all known classical approaches for some well-defined (but not necessarily useful)
computational task. On the one hand, since Google’s original 2019 announcement [12], the sampling
experiments have continued to improve, for example in number of qubits and circuit depth (for RCS)
[62], and in number of photons and measurement fidelity (for BosonSampling) [40]. One expects
further improvements. On the other hand, classical spoofing attacks against the experiments have
also improved—with some attacks based on tensor-network contraction (e.g., [49]), and others taking
advantage of noise in the devices (e.g., [13]). Notably, however, the attacks that fully replicate
the Google device’s observed performance, such as that of [49], still have inherently exponential
scaling, and still seem to require an ExaFLOPS supercomputer to match or beat the Google device’s
running time of ∼ 3 minutes. As a rough estimate, the Summit supercomputer uses 13 megawatts,
while Google [12, Appendix H] estimated that the dilution refrigerator for its 53-qubit QC uses ∼ 20
kilowatts. Thus, despite the QC’s extreme need for refrigeration, it still wins by a factor of hundreds
as measured by electricity cost.

For some, the recent quantum supremacy demonstrations were important mostly because they
showcased many of the key ingredients of a future fault-tolerant, scalable quantum computer—and
just as importantly, did not detect any correlated errors of the sort that would render fault-tolerant
quantum computing impossible. For others, however, these experiments have done more: namely,
they’ve inaugurated the era of “NISQ” or Noisy Intermediate Scale Quantum computation, another
term coined by Preskill [52]. The hope of NISQ is that, even before fault-tolerance is achieved, noisy
QCs with up to (say) 1000 qubits might already prove useful for certain practical problems, just like
various analog computing devices were useful even before the invention of the transistor inaugurated
the digital era.

Unfortunately, despite the billions that have by now been invested into NISQ hopes, the lack of
any obvious “killer app” for NISQ devices has emerged as a defining fact of the field.

Perhaps NISQ devices will be useful for simulation of condensed-matter physics or even quantum
chemistry. Alas, while there are exciting proposals for quantum simulations that would need only a
few hundred qubits (e.g., [56]), these proposals invariably have the drawback of requiring thousands
or millions of layers of gates. Unless it can be remedied, this would put them completely out of
reach for NISQ devices. Or perhaps NISQ devices will yield speedups for optimization problems,
via quantum annealing or QAOA [29]. Alas, despite years of intense theoretical and empirical
work, researchers have struggled to show any clear advantage for quantum annealing or QAOA over
classical computing, for any practical optimization problem—let alone an advantage that would be
achievable on a NISQ device.

We should add that, in recent years, there have been striking new ideas for how to demonstrate
quantum supremacy. These include interactive protocols that exploit trapdoor one-way functions
[20, 35], as well as the spectacular result of Yamakawa and Zhandry [63], which gave an exponential
quantum speedup for an NP search problem relative to a random oracle. Alas, pending some
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breakthrough, none of these ideas seem to be implementable on a NISQ device.

1.1 Our Contribution

This paper studies, to our knowledge for the first time, whether current sampling-based supremacy
experiments might themselves have a useful application outside of physics.1 We focus on the
generation of cryptographically certified random bits.

Needless to say, it is easy to use a quantum computer—or for that matter, even a Geiger counter
next to some radioactive material—to generate as many random bits as we like: bits that quantum
mechanics itself predicts will be fundamentally unpredictable. The problem is, how do we convince
a skeptic over the Internet, with no access to our hardware, that the bits were indeed random, and
not secretly backdoored? This is not just a theoretical worry: for example, as a byproduct of the
Edward Snowden revelations in 2013, the world learned that a NIST pseudorandomness standard
known as Dual_EC_DRBG was indeed backdoored by the US National Security Agency.2

Certified randomness has become a significant practical problem—particularly with the rise of
proof-of-stake cryptocurrencies, which notably include Ethereum3 (market cap at time of writing:
$163 billion), following its migration on September 15, 2022. In proof-of-stake systems, lotteries are
continually run to decide which currency holder gets to add the next block to the blockchain. There
is no trusted authority to manage these lotteries, yet the entire system rests on the assumption that
they are conducted honestly and without bias. Other applications of certified randomness include
non-interactive zero-knowledge proofs, and financial and electoral audits.

One approach to the certified-randomness problem uses blockchains themselves as a source of
random bits—with the argument being that anyone who could predict the bits could exploit their
predictability to get rich [19]. Other approaches look to the social or natural worlds for a source of
publicly verifiable entropy: for example, perhaps one could use the least significant digits of the Dow
Jones Industrial Average, or the patterns of granules that form on the surface of the Sun.

More relevant for us, since 2009, an exciting line of work has shown how to use measurements on
entangled particles as a source of physically certified randomness [24, 50, 60, 25, 46, 47]. The idea is
that, if the measurement outcomes are observed to violate the Bell/CHSH inequality, then by that very
fact, the outcomes cannot have been secretly deterministic, unless there was secret communication
between the “Alice” and “Bob” detectors. Furthermore, depending on the experimental setup, this
communication might need to have occurred faster than light. Thus, the outcomes must contain
genuine entropy, which can be fed into a randomness extractor to purify it into nearly-uniform
random bits. The technical part is that, in a Bell/CHSH experiment, the measurement bases must
themselves be unpredictable—and thus, they need to be chosen judiciously if we want an overall
net gain in randomness. This is the problem that the line of works [24, 50, 60, 25, 46, 47] has now
almost completely solved.

Bell/CHSH-based certified randomness protocols have already been experimentally demonstrated
[18], and are even in consideration for practical deployment in the NIST Randomness Beacon [36],
which generates 512 random bits per minute.

The central drawback of these protocols is that a user, downloading allegedly random bits
from the Internet, has no obvious way to verify that the “Alice” and “Bob” detectors were out of
communication—the key assumption needed for security. Indeed, in some Bell/CHSH experiments,

1Some earlier work explored whether BosonSampling might be useful for (e.g.) calculating molecular vibronic
spectra [34] or graph similarity detection [57], but those hopes were killed by efficient classical simulations.

2https://en.wikipedia.org/wiki/Dual_EC_DRBG
3https://en.wikipedia.org/wiki/Ethereum
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“Alice” and “Bob” are mere feet away! But even if they weren’t, how would this be proved?
The central insight of this paper is that sampling-based quantum supremacy experiments provide

an entirely different route to certified randomness—a route that requires only a single quantum
device, while also being practical today. In our protocol, a classical verifier uses a small random
seed to generate n-qubit challenge circuits C1, C2, . . . pseudorandomly. The verifier then submits
these Ci’s one at a time, presumably over the standard Internet, to a quantum computer server.
For each Ci, the server needs to respond quickly—say, in less than one second—with independent
samples s1, . . . , sk from Ci’s output distribution: that is, the distribution over {0, 1}n obtained by
running Ci on the initial state |0n〉 and then measuring in the computational basis.

The verifier, at its leisure, can then calculate the so-called Linear Cross-Entropy Benchmark,

LXEB :=
k∑
j=1

|〈sj |Ci|0n〉|2,

for at least some of the challenge circuits Ci. If the LXEB scores are sufficiently large, our analysis
shows that the verifier can then be confident, under plausible computational assumptions, that there
must be Ω(n) bits of genuine min-entropy in the returned samples.

In other words: even a quantum computer should need exp(n) time to generate samples that
pass the LXEB test and yet are secretly deterministic or nearly-deterministic functions of Ci. For a
typical circuit Ci, an honest sample from the output distribution will contain n−O(log n) bits of
min-entropy. A dishonest quantum computer could somewhat reduce the entropy of the returned
samples—for example, by generating many samples and then returning only those that start with 0
bits. But doing better, by finding (e.g.) the lexicographically first samples that pass the LXEB
test, or the samples that maximize the LXEB score, should be exponentially hard even quantumly,
requiring amplitude amplification or the like (while a subexponential classical algorithm wouldn’t
stand a chance). The purpose of our security reductions, which we will explain in detail in Section 2,
is just to formalize these simple intuitions.

Assuming the returned samples (or enough of them) pass the LXEB test, the last step of our
protocol is to feed them into a classical seeded randomness extractor, to produce output bits that are
exponentially close in total variation distance to uniformly random.

Stepping back, many people have pointed out the close analogy between

1. the Bell/CHSH experiments, which ruled out local hidden-variable theories (and which have
now been recognized with the Nobel Prize in Physics), and

2. sampling-based quantum supremacy experiments, which seek to rule out “classical polynomial-
time hidden-variable theories.”

This paper shows that the analogy goes even further. In both cases, the original purpose of the
experiment was just to demonstrate the reality of some quantum phenomenon, and rule out any
classical explanation—but we then get certified randomness as a “free byproduct” of the demonstration.
In both cases, the entire setup hinges on a numerical inequality—one that any classical explanation
must satisfy, that quantum mechanics predicts can be violated by a large amount, and that realistic
experiments can violate albeit by less than the maximum that quantum mechanics predicts. In both
cases, any violation of the inequality turns out to suffice for the certified randomness application.

We note, lastly, that our protocol inherently requires the use of a quantum computer. This can
be seen as follows: consider any server that’s simulable in classical probabilistic polynomial-time.
Then by definition, there can be no efficient way to distinguish that server from a simulation
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whose randomness has been replaced by the output of a pseudorandom generator. Indeed, if the
pseudorandom generator has an m-bit seed, then the best distinguishing algorithm would be expected
to take exp(m) time—which means that even given the ∼ 2n time that we allow for verification, the
verifier still cannot distinguish an honest server from one with only m bits of true entropy, for any
m� n.

How does our actual quantum protocol evade the above impossibility argument? Simply by
a fact used again and again in quantum complexity theory: namely, that there is no notion of
“pulling the randomness” (or quantumness) out of a quantum algorithm, for example to replace
it with pseudorandomness, analogous to what is possible with classical randomized algorithms.
One could also say: our protocol’s security analysis will depend on a computational assumption,
that the problem of “Long List Quantum Supremacy Verification” is hard for the complexity class
QCAM, whose classical analogue is simply false. The reasons for this, in turn, are closely related to
one of the elemental differences between classical and quantum computation, that PostBPP (BPP
with postselected outputs) is contained in the polynomial hierarchy and can be simulated using
approximate counting, whereas PostBQP = PP can express #P-complete problems.

1.2 Practical Considerations

Our certified randomness protocol could be demonstrated on existing devices, with n = 60 qubits or
some other number in the “quantum supremacy regime.” However, there are practical and even
conceptual issues to be sorted out before deploying the protocol for proof-of-stake cryptocurrency or
any other critical application.

Verification cost. The central drawback of our protocol, as it stands, is that to check the
server’s outputs, the classical verifier needs to calculate a Linear Cross-Entropy score, and this is
expected to take ∼ 2n time—similar to the time needed for classical spoofing. This drawback is
directly inherited from Random Circuit Sampling and all other current approaches to NISQ quantum
supremacy itself.

Because of the verification cost, n, the number of qubits, must be chosen small enough that 2n is
still within range of the most powerful classical supercomputers available. If so, however, the issue
is obvious: 2n would also be within range of a sufficiently dedicated classical spoofer, who could
then predict and control the allegedly random bits.

Nevertheless, we claim that not all hope is lost. The crucial observation is that spoofing, to be
effective, needs to be continual : for example, if the challenge circuits are submitted every second,
then the spoofer needs to run nearly every second as well. Even if a real quantum computer were
used (say) every other second, the outputs would contain a lot of genuine min-entropy, which would
suffice for a secure protocol. The spoofing also needs to be fast—as fast as the QC itself.

One might object that, since most classical algorithms to simulate quantum circuits are highly
parallelizable, spoofing our protocol within some exacting time limit is “merely” a matter of spending
enough money on classical computing hardware. When (say) n = 60, though, we estimate that the
expenditure, to do exp(60) operations per second, would run into billions of dollars, outside the
means of all but corporations and nation-states.

Verification, by contrast, only needs to be occasional. Using a tiny amount of seed randomness,
the verifier can choose O(1) random rounds of the protocol and spot-check only those. Then a
malicious server that spoofed even (say) 10% of the rounds would be caught with overwhelming
probability. Verification can also be done at leisure: so long as the verifier is satisfied to catch the
spoofer after the fact, the verifier could spend hours or days where the spoofer needed to take less
than a second. Indeed, to keep the server honest, arguably the verification need not even be done:
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it’s enough to threaten credibly that it might be done!
Having said that, of course it would be preferable if the verification could be done in nO(1) time,

in some way that retained the protocol’s “NISQiness.”
In our view, whether it’s possible to achieve sampling-based quantum supremacy, on a NISQ

device and with efficient classical verification, has become one of the most urgent open problems in
quantum computing theory, even independently of this work. Our work further underscores the
problem’s importance, by showing how a solution could turn secure, practical certified randomness
into the first real application of quantum computers.

Interactivity. A second practical issue with our protocol is the need for the verifier continually
to generate new challenge circuits that are unpredictable to the quantum computing server. One
could reasonably ask: if the verifier has that ability, then why does it even need the quantum
computer to generate random bits?

The short answer is that our protocol offers an “upgrade” in the level of unpredictability: the
challenge circuits only need to be pseudorandom (for reasons to be explained later, against a QSZK
adversary). So in particular, the verifier can generate all the circuits deterministically from a single
initial random seed. The protocol’s output, by contrast, is guaranteed to be genuinely random.

Indeed, our protocol offers an appealing “forward secrecy” property. Namely, even if we imagine
that the verifier’s pseudorandom generator will be broken in the future, so long as the server can’t
break the PRG at the time the protocol is run, the server is forced to generate truly random bits.
Such bits will of course remain unpredictable, conditioned on anything that doesn’t depend on
themselves, regardless of any future advances in cryptanalysis.

Who verifies the verifier? Still, there remains a difficulty: the verifier checks the QC’s
outputs, but who checks the verifier? If the verifier just wants random bits for its own private use,
then there is no problem: the verifier could use our protocol, for example, to check random bits
output by a QC that was bought from an untrusted manufacturer. But consider an application like
proof-of-stake cryptocurrency, where the certified random bits need to be shared with the world.
Does the world designate some organization to play the role of the verifier? If so, then why couldn’t
that organization be corrupted or infiltrated, as surely as the organization that owns the quantum
computer—bringing us back where we started?

Classical cryptography suggests a variety of potential solutions to this dilemma. For example,
perhaps a dozen or more classical verifiers each generate their own pseudorandom sequences, and
those sequences are then XORed together to produce a single sequence which is used to generate the
challenge circuits to send to the quantum computing server. If even one verifier wants the sequence
to be unpredictable to the server, then it will be, provided that no verifier can see any other verifier’s
sequence before committing to its own.

Again one could ask: if we trust such a XOR protocol, then why not just use its outputs directly,
and skip the quantum computer? Again our answer appeals to the “randomness bootstrap”: provided
we agree that the XOR’ed sequence is unpredictable in practice, for now, the quantum computer’s
output will then be fundamentally unpredictable. Our protocol thus provides an upgrade in the
level of unpredictability.

1.3 Related Work

We are not the first to propose using a quantum computer to generate certified random bits, which are
secure under some computational hardness assumption. Brakerski, Christiano, Mahadev, Vazirani,
and Vidick [20] gave an elegant scheme based on the assumed hardness of the Learning With Errors
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(LWE) problem. In subsequent work, Mahadev, Vazirani, and Vidick [41] showed that the Brakerski
et al. protocol generates Ω(n) random bits per round, which matches our protocol.

The central advantage of the Brakerski et al. protocol over ours is that its outputs can be verified
in classical polynomial time. On the other hand, unlike ours, their protocol seems difficult or
impossible to implement on a NISQ device, because it requires evaluating complicated cryptographic
functions on superpositions of inputs. In addition, their protocol requires the quantum computer
to maintain a coherent superposition state while it interacts with the verifier, presumably over the
Internet. This is currently feasible only with certain hardware platforms, such as trapped ions, and
not for example with superconducting qubits (whose coherence times are measured in microseconds).

More recently, as a byproduct of their breakthrough on an exponential quantum speedup for
NP search relative to a random oracle, Yamakawa and Zhandry [63] gave a different interactive
protocol to certify Ω(log n) random bits, in the random oracle model and also assuming the so-called
Aaronson-Ambainis conjecture [3]. We do not know whether the Yamakawa-Zhandry protocol
remains secure against an entangling adversary, nor whether it accumulates entropy across multiple
rounds. In any case, theirs is again a protocol that evaluates complicated functions on superpositions
of inputs, meaning there is little or no hope of running it on a NISQ device.

In contrast to these earlier works, here we pursue the “minimalist approach” to generating certified
randomness using a quantum computer: we eschew all cryptography done in superposition, and just
examine the output distributions of random or pseudorandom quantum circuits. By taking this
route, we give up on efficient verification, but we gain feasibility on current hardware, as well as a
conceptual unification of certified randomness with sampling-based quantum supremacy itself.

Recently, building on the unpublished announcements by one of us (SA) of the research now
reported in this paper, Bassirian, Bouland, Fefferman, Gunn, and Tal [14] took some first steps
toward analyzing the use of sampling-based quantum supremacy experiments for certified randomness.
Their first result says that, relative to a random oracle, any efficient quantum algorithm for Fourier
Sampling must generate Ω(n) bits of min-entropy as a byproduct of its operation. Their second
result says that Long List Quantum Supremacy Verification (LLQSV), the problem that underlies
our hardness reduction, is neither in BQP nor in PH relative to a random oracle. To prove non-
containment in PH, they build on the breakthrough oracle separation between BQP and PH due to
Raz and Tal [55].

These results are of course closely related to ours, but they fall short of a soundness analysis for
our certified randomness protocol. We go further than [14] in at least four respects:

1. We prove that a plausible hardness assumption about LLQSV implies the generation of certified
random bits. This reduction does not depend on a random oracle.

2. We give black-box evidence for that hardness assumption. (The result of [14], that black-box
LLQSV is not in PH, is interesting and new, but neither necessary nor sufficient for us. As
we’ll explain, we need non-containment in the class QCAM/qpoly.)

3. We prove the accumulation of entropy across multiple rounds.

4. In the black-box setting, we prove security against an entangled adversary.

Our proof techniques are also independent of those in [14].
Lastly, let us mention that Brandão and Peralta [22] have already reported numerical calculations

to find appropriate parameter settings for the protocol described in this paper.
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1.4 This Paper’s History

One of us (SA) conceived the certified randomness protocol, as well as basic elements of its soundness
analysis (e.g., the LLQSV 6∈ QCAM/qpoly hardness assumption), in February 2018. SA then gave
various public talks about the proposal (e.g., [2]), albeit only sketching the analysis. Those talks
influenced subsequent work on quantum supremacy: for example, the Google group cited them as
motivation in its 2019 paper announcing its 53-qubit Sycamore experiment [12].

Alas, the soundness analysis ended up being too involved for SA to complete alone. That and
other factors caused a more than four-year delay in writing up this paper. Here, we not only
complete the analysis that SA announced in 2018: we also prove security, in the random oracle
model, against an adversary who could be arbitrarily entangled with the QC. This goes beyond what
SA claimed in 2018, and indeed addresses one of the central open problems raised at that time.

1.5 Future Directions

Many important problems remain:

• As mentioned before, perhaps the biggest problem is to design a sampling-based quantum
supremacy experiment that both runs on a NISQ device and admits efficient classical verification.
If such an experiment were developed, then based on our results here, we predict that it could
be readily repurposed to get a secure, efficiently-verifiable certified randomness scheme that
runs on existing devices.

• Short of that, it would also be interesting to adapt our randomness protocol from Random
Circuit Sampling (RCS) to other known quantum supremacy proposals, such as BosonSampling
[4] and IQP [23]. With BosonSampling, the problem is that we currently lack a crisp,
quantitative conjecture about the best that a polynomial-time classical algorithm can do
to spoof tests such as the Linear Cross-Entropy Benchmark (LXEB). From 2013 work of
Aaronson and Arkhipov [5], we know that, in contrast to what we conjecture for RCS, efficient
classical algorithms can get some depth-independent, Ω(1) LXEB advantage for BosonSampling,
but how much? Answering this question seems like a prerequisite to designing a certified
randomness protocol, as it would set the lower bound on how well a BosonSampling experiment
has to do before it can be used for such a protocol.

• Of course, it would be great to know more about the truth or falsehood of the central hardness
conjectures on which we base our protocol’s security—e.g., that “Long List Quantum Supremacy
Verification” (LLQSV) lacks a QCAM/qpoly protocol. It would be also great to prove our
protocol’s security under weaker assumptions. Can we at least remove the exponentially long
list of circuits, and use a hardness assumption involving a single circuit?

• In the setting with an entangled adversary, we can currently prove security only in the random
oracle model. Can we state a plausible hardness assumption that suffices for that setting?

• Under some plausible hardness assumption, can we tighten the lower bound on the amount of
min-entropy generated per sample—even up to the maximum of n−O(log n)?4

• Likewise, can we show that more and more min-entropy continues to be generated, even if we
sample with the same circuit C over and over? Clearly there is a limit here: once enough time

4n−O(logn) is the maximum because the quantum computer could always (say) generate nO(1) samples from the
correct distribution until it finds one whose first O(logn) bits are all 0’s.
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has elapsed that a spoofer could have explicitly calculated C’s entire output distribution, and
perhaps even stored it in a giant lookup table, C is no longer secure and needs to be replaced
by a new circuit. But can we at least go up to that limit? To whatever extent we can, our
protocol would become much more efficient in practice—especially once we factor in (e.g.) the
time needed to calibrate a superconducting QC on a new circuit C.

• We know, both from the Haar-random approximation and from extensive numerical evidence,
that an ideal, honest QC does succeed at the Linear Cross-Entropy Benchmark with overwhelm-
ing probability, given a random quantum circuit C as input. And in some sense, since this
fact is never needed in our security analysis, empirical evidence suffices for it! All the same,
it is strange that a rigorous proof of the fact is still lacking, at least for “natural” quantum
circuit ensembles. In Section 3.4.2, we prove the fact in the random oracle model, but can we
prove it outright? Recent advances showing that random quantum circuits yield t-designs
[21, 33] take us part of the way, but an additional idea seems needed.

2 Technical Overview

2.1 Our Basic Result (without entangled adversary)

Throughout this paper, we let C be a quantum circuit acting on n qubits, and we let N = 2n be the
Hilbert space dimension. Let PC be the probability distribution defined by pC(z) = |〈z|C|0n〉|2. It
is well-known that when C ∼ Haar(N), the Haar measure over N ×N unitary matrices, we have

E
C

E
z∼PC

[pC(z)] =
2

N + 1
. (1)

In 2019, Google [12] announced an experiment to show quantum advantage on the following task,
called Linear Cross-Entropy Benchmarking (LXEB).

Problem 1 (Linear Cross-Entropy Benchmarking LXEBb,k(D)). Let D be a probability distribution
over quantum circuits on n qubits. Then the LXEBb,k(D) problem is as follows: given C drawn
from D, output samples z1, . . . , zk ∈ {0, 1}n such that

1

k

k∑
i=1

pC(zi) ≥
b

N
. (2)

We sometimes omit the argument D.

Intuitively, we expect that a polynomial-time classical algorithm should be unable to solve
LXEBb,k for any b = 1 + Ω(1). By contrast, if an ideal quantum computer simply runs C over and
over on the initial state |0n〉, measures in the computational basis, and returns the results, then
approximating C by a random unitary, by (1) we expect the QC to solve LXEBb,k with 1−1/ exp(k)
success probability for any constant b < 2. Meanwhile, a noisy QC could be expected to solve
LXEBb,k for some b greater than 1 but less than 2—and indeed that’s exactly what’s observed
empirically, with (for example) Google’s 2019 experiment achieving b ∼ 1.002.

In this paper, our aim is to show, not merely a quantum advantage over classical in solving
LXEBb,k, but a quantum sampling advantage over any efficient algorithm—quantum or classical—
that returns the same si’s a large fraction of the time when given the same circuit C.

To do this, we’ll use a new and admittedly nonstandard hardness assumption, but one that
strikes us as extremely plausible. Our assumption concerns the following problem:
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Problem 2 (Long List Quantum Supremacy Verification LLQSV(U)). We are given oracle access
to M = O(23n) quantum circuits C1, . . . , CM , each on n qubits, which are promised to be drawn
independently from the distribution U . We’re also given oracle access to M strings s1, , . . . , sM ∈
{0, 1}n. Then the task is to distinguish the following two cases:

1. No-Case: Each si is sampled uniformly and uniformly from {0, 1}n.

2. Yes-Case: Each si is sampled from pCi , the output distribution of Ci.

Our hardness assumption, which we call the Long List Hardness Assumption (LLHAB(U)), now
says the following, for some parameter B < n:

LLQSV(U) /∈ QCAMTIME(2B)/q(2BnO(1)). (3)

Here QCAM, or Quantum Classical Arthur Merlin, is the class of problems that admit an AM
protocols with classical communication and a quantum verifier. QCAMTIME(T ) is the generalization
of QCAM where the verifier can use running time T (the communication is still restricted to be
polynomial). QCAMTIME(T )/q(A) is the same, but where the verifier now receives A bits of
quantum advice that depend only on n.

Our first main result is then the following.

Theorem 2.1 (Single-round analysis, no side information, informal). Let U be a distribution over
n-qubit quantum circuits, and suppose LLHAB(U) holds. Also, let A be a polynomial-time quantum
algorithm that solves LXEBb,k(U) with probability at least q. Then A’s output, s1, . . . , sk, satisfies

Pr
C′∼U

[
Hmin(s1 . . . sk|C = C ′) ≥ B/2

]
≥
(
bq − 1

b− 1
− o(1)

)
, (4)

where Hmin({pi}) := mini log2
1
pi

is the min-entropy.

To illustrate, suppose we set B := 0.49n—the best upper bound that we know, B < n/2, follows
from Grover’s algorithm. Suppose also that b = 1.002, as in Google’s experiment [12], and that k is
chosen large enough so that q ≥ 0.9990 by a large deviation inequality. Then Theorem 2.1 is telling
us that A’s output must contain at least (0.12− o(1))n random bits.

Interestingly, while Theorem 2.1 is stated in terms of min-entropy, and while our eventual
multi-round result will also be stated in terms of min-entropy, as an intermediate step it’s convenient
to switch to Shannon entropy, as this is what entropy accumulation theorems use. Of course, since
Hmin(D) ≤ H(D) for every distribution D, Theorem 2.1 immediately implies the same lower bound
on Shannon entropy. Indeed, since Shannon entropy behaves linearly with respect to expectation,
Theorem 2.1 implies that

H(s1, . . . , sk|C) ≥ B

2
·
(
bq − 1

b− 1
− o(1)

)
. (5)

While LLHAB(U) is admittedly a strong assumption, our next result justifies it by proving that
it holds in the random oracle model:

Theorem 2.2 (Hardness of LLQSV(U), informal). Given a random oracle O, let U be the uniform
distribution over M = 2O(n) quantum circuits C1, . . . , CM , which Fourier-sample disjoint Boolean
functions f1, . . . , fM : {0, 1}n → {−1,+1} respectively defined by A. Then LLHAB(U) holds relative
to O for B = Ω(n).
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Here we outline the proof. First we give a reduction for LLQSV from another problem called
Boolean Function Bias Detection (BFBD). In the latter problem, the algorithm is given access to M
functions sampled from either a distribution D or the uniform distribution. The distribution D can
be described with the following process: First sample a integer r ∈ {0, 1, . . . , N} with probability
N(1− 2r/N)2 ·

(
N
r

)
2−N , sample a random subset R ⊆ {0, 1}n of size r, and finally set f(x) = −1

if and only if x ∈ R. Since both distributions are concentrated around r = N/2, a simple hybrid
argument leads to a basic lower bound for BQP. We then extend the hardness result to interactive
proof systems, specifically, the class QIP[2] of two-message quantum interactive proofs, using a
similar argument: Recall that the prover’s goal is always to convince the verifier that the given
function is sampled from D. From the observation stated above, we can modify a function f ∼ D on
a small number of points to yield a random function. Thus a prover which convinces the verifier to
accept f ∼ D would also convince the verifier to accept a random function. Then by the inclusion
QCAM ⊆ QIP[2], LLQSV is hard for QCAM.

To prove the desired hardness for the non-uniform class QCAM/qpoly (or generalizations of it to
use more queries and more advice), we observe that by Aaronson and Drucker’s exchange theorem
[8], QCAM/qpoly ⊆ QMA/poly, so it suffices to show hardness against the latter class. We then
change the oracle model (and not the problem itself) as follows: The oracle O contains N sections,
each indexed by an n-bit string x. The non-uniform protocol given oracle access to O, input x, and
all the samples (also indexed by x), is challenged to determine whether the sample sx is sampled
from Ox or uniform (see Problem 2).

Clearly any solver for LLQSV can determine whether sx is sampled from Ox for every x ∈ {0, 1}n.
By replacing the classical advice with a random guess, we show that any QMA/poly verifier solving
the problem would imply a NnO(1)-query QMA verifier solving N problems with probability 2−poly(n).
Then we appeal to the strong direct product theorem by Sherstov [58], who showed that even to
achieve success probability 2−Ω(N), computing N independent problems requires Ω(Nd) queries,
where d is the query lower bound of a single problem obtained using the polynomial method. Finally
we derive a contradiction by showing that a single problem has an exponential lower bound.

Building upon the above single-round analysis, the next step is to showk accumulation of entropy
across multiple rounds. We give a simple m-round entropy accumulation process using LXEB1+δ,k

as the verification for m = nO(1)5 and constant 0 < δ < 1. In each round, for γ = O(log n/m),
the verifier sends the same circuit as in the previous round with probability 1 − γ, or samples a
fresh random circuit with probability γ. We define an epoch to be an interval of consecutive rounds
where the same circuit is sent.6 With overwhelming probability, there are at most O(log n) epochs.
The verifier chooses k random samples for each circuit, and checks if the verifier passes LXEB1+δ,k

for 99% of the given circuits. Applying an Entropy Accumulation Theorem (EAT, explained in
Section 2.4), we prove the following statement.

Theorem 2.3 (Entropy accumulation, no side information, informal). For β ∈ [0, 1], if LLHAβn

holds, then for integer k = Ω(n2) and m = Ω(log n), there exists an m-round entropy accumulation
protocol taking k ·m samples such that conditioned on the event Ω of not aborting,

Hmin(Z|C)ρ|Ω ≥ n
((

0.99− 0.01

δ

)
β

2
m−O(

√
m)

)
(6)

for every device solving LXEB1+δ,k, where ρ is the output state, Z is the responses received from the
device, and C is the circuit in each round.

5Potentially m can be exponentially large, but we do not pursue this here.
6Brakerski, Christiano, Mahadev, Vazirani and Vidick [20] used the same concept of “epochs” to analyze their

certified randomness protocol.
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2.2 Entangled Adversary and Ideal Measurements

In the previous section, we assumed that an attacker, Eve, trying to predict the quantum computer’s
outputs had no preshared entanglement with the quantum computer. Now we relax that assumption.

To build intuition, we start with the special case where the quantum computer performs an ideal
measurement—i.e., it “just” applies C to n qubits, followed by a measurement in the standard basis.
The “only” problem is that the qubits might not start in the desired initial state |0n〉, but rather in
some arbitrary state entangled with Eve’s qubits.

We define the following idealized score, called b-XHOG(U).

Problem 3 (b-XHOG(D) [39]). For a distribution D over quantum circuits on n qubits, an algorithm
A given access to C ∼ D is said to solve b-XHOG if it outputs a sample z such that

E
C∼D

[
E

z∼AC
[pC(z)]

]
≥ b

N
. (7)

For an algorithm A which is given access to C and outputs z, we define the “XHOG score” of
A to be the value EC [Ez∼AC [pC(z)]]. This score was first considered by Kretschmer for showing a
Tsirelson bound for random circuit sampling in the oracle model [39]. Recall that with the CHSH
game, a violation of the classical bound 3/4 implies certified randomness. Interestingly, our result
may be interpreted as certified randomness from a violation of the classical XHOG score.

We will proceed with our analysis with b-XHOG first, and show a von Neumann entropy lower
bound Ω(δn) when the device solves (1 + δ)-XHOG. First, the problem itself is linear in the device’s
output distribution: that is, for two devices A with score sA and B with score sB, a third device
that runs A with probability p and B with probability (1− p) has score p · sA + (1− p) · sB. The
linearity condition coincides with the score calculation from violation of Bell’s inequality.

More concretely, recall that to establish certified randomness from a violation of Bell’s inequality,
two devices A and B are asked to play, say, the CHSH game: the verifier sends two questions x, y to
the devices and collecting the responses a, b. The verifier sets the score to 1 if x ∧ y = a⊕ b and 0
otherwise, and the expectation of the score is defined as

ω = E
x,y∼{0,1}

[
E

a,b∼Ax⊗By(ρ)
[1[x ∧ y = a⊕ b]]

]
. (8)

It is well-known that the best achievable expectation is ω = cos2(π/8). For certified randomness, it
was further shown that when the expectation ω ≥ cos2(π/8 + ε), the output of A has von Neumann
entropy lower-bounded by 1− h(sin 4ε) ≈ 1−O(ε), where h(x) := −x log x− (1− x) log(1− x) is
the binary entropy function [11]. Like the XHOG score, here the score ω can be exactly computed
only by taking infinitely many samples from the same devices. With a finite number of samples, we
can only approximate the score.

Proving a conditional min-entropy lower bound from sample statistics, in an m-round sequential
process, amounts to the problem of entropy accumulation. An Entropy Accumulation Theorem
(EAT) for certified randomness is usually stated as follows: In an m-round sequential process, the
verifier randomly selects O(logm) rounds to get an approximation of the score. If the approximation
is sufficiently close to cos2(π/8), the number of extractable random bits is at least Ω(m) times the
von Neumann entropy lower bound established in a single-round analysis.

Without loss of generality, let the entanglement shared between the device and Eve be a pure
state |ψ〉. For every state ρZE classical on Z, we show that the conditional von Neumann entropy
H(Z|CE)ρ ≥ H(Z|C)ρ − χ(Z : CE)ρ, where χ is the Holevo quantity. To see why they they
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must use weak entanglement, we can write |ψ〉 :=
∑

x αx|ψx〉|φx〉 for orthonormal bases {|ψx〉} and
{|φx〉} in the Schmidt decomposition. We show that the device solving b-XHOG for b ≥ 1 + δ,
the amplitude αx must concentrate at a single compoment, say x∗, such that |αx∗ |2 ≥ δ. By the
observation that the Holevo quantity equals the entanglement entropy, we establish an upper bound
O((1− δ)n) on the Holevo quantity.

In this simplified setting, we have already seen that if the device has a large XHOG score, then
they must use weak entanglement to pass the verification. However, the entire analysis relies on the
assumption that the device must perform the ideal measurement.

2.3 A Fully General Device

Next, we consider the setting in which the adversary may share arbitrary entanglement with Eve.
We give an unconditional proof for certified randomness in the random oracle model.

Instead of setting a binary-valued score for each question-answer pair as in Section 2.1, for
question C and response z, the score is set to pC(z). Then, in a single round analysis, we first show
that if the device passes (1 + δ)-XHOG score, then the von Neumann entropy of the joint state is at
least Ω(n).

Theorem 2.4 (Single-round analysis, informal). Every device A that on input the first system of a
bipartite state ρDE and given oracle access to a Haar random C, makes T ≤ 2n/7 queries and solves
(1 + δ)-XHOG must output a state 2−Ω(n)-close to a state ψZE classical on system Z such that

H(Z|CE)ψ ≥ 0.99δn−O(log T ). (9)

Furthermore, there is a single-query device that solves (2− 2−n)-XHOG.

To prove Theorem 2.4, the key observation is that one can approximate, to diamond distance
2−Ω(n), any device A making T queries to a Haar random C by another device F which does not
make any queries, but is given k samples z1, . . . , zk ∼ PC for k = T 2 · 2O(n). For each A, we call
the associated device F the simplified device. With probability 1−O(k2/N), these samples does
not contain any collision. In this event (no collision occurring), F solves (1 + δ)-XHOG implies that
F outputs z ∈ S = {z1, . . . , zk} with probability at least δ − o(1). Intuitively, this robustly certifies
that A’s output must be ε-close to a strategy where the output is prepared by sampling from C for
k times and choosing one of the samples.

From this point of view, a simplified device solving (1 + δ)-XHOG is equivalent to winning the
following game with probability at least δ− o(1): Given k independent samples S from PC , outputs
a string z ∈ S. Though the game looks quite trivial, it yields a sharp lower bound of the von
Neumann min-entropy. By the no-communication theorem, Eve, even if she learns PC , has no
information about the samples given to F , but Eve can potentially control the output distribution
when the device sees a particular set of samples. Since with high probability over C, PC has
min-entropy n−O(log n), we show that averaging over any distribution supported on these samples,
the resulting distribution has von Neumann entropy at least 0.99δn−O(log T ).

Our lower bound in Theorem 2.4 is close to optimal. Consider a device which samples from PC
with probability δ and outputs a uniform string obtained by performing a standard basis measurement
on EPR pairs shared with Eve with probability 1−δ. In the former event, the device solves b-XHOG
for b ≈ 2, whereas in the latter, the output is a uniformly random string, which solves 1-XHOG.
Thus, by linearity, the device solves (1 + δ)-XHOG. The output joint classical-quantum state from
the device is a probabilistic mixture of the two states. Moreover, with overwhelming probability over
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choices of C, the Shannon entropy of PC is n−O(log n). Then by the concavity of von Neumann
entropy, the output has conditional von Neumann entropy δn− o(n).

To accumulate the entropy, we give a sequential process which is very similar to the one introduced
in Section 2.1: The verifier samples t = O(log n) different circuits, and asks for at least k samples
for each circuit. Upon receiving the samples, the verifier chooses k random samples for each circuit,
and checks if the device passes LXEB1+δ,k for a constant δ for 99% of the circuits. We show that
the accumulation process certifies Ω(δmn) bits.

Theorem 2.5 (Entropy accumulation from a general device, informal). For integer k = Ω(n2),
m = Ω(k log n), there exists an entropy accumulation protocol taking m samples such that conditioned
on the event Ω of non-aborting,

Hmin(Z|CE)ρ|Ω ≥ n
(
0.99δm−O(

√
m)
)

(10)

for devices solving LXEB1+δ,k, where ρ is the output state, Z is the samples from the device, C is
the circuits and E is the information held by Eve.

More concretely, taking δ = 0.1, this bound is n · (0.099m−O(
√
m)) by taking m samples from

the device. We note that this bound is seemingly weaker than the bound in Theorem 2.3, but the
number of samples is m (instead of km as in Theorem 2.3). The minimal sample complexities in
the protocols are no different—both are Ω(n2 log n)—for a perfect device to pass the verification
with overwhelming probability. For technical reasons, in the latter protocol, k samples for each
verification are randomly chosen (from all samples sent by the device corresponding to the same
challenge circuit) and received sequentially. In contrast, in the former protocol, in each round the
device is asked to send k samples, and the verifier checks one round for each circuit.

We also note that Theorem 2.3 and Theorem 2.5 are incomparable results. In particular, the
security analysis for Theorem 2.5 heavily relies on the model in which the device is given access to the
circuit and the distribution (the Haar measure) over circuits. In contrast, the security analysis based
on LLHA may still hold when the device is given access to a description of circuits sampled from
other distributions. We leave it as an open question whether there exists a hardness assumption
under which linear cross-entropy benchmarking certifies min-entropy against an entangling adversary
in the plain model.

2.4 Entropy Accumulation

The proof of Theorem 2.5 is based on the entropy accumulation theorem (EAT) by Dupuis, Fawzi
and Renner [28], with modifications explained as follows. Let f be an affine function, called the
min-tradeoff function, such that in a single-round analysis, one can show that H(Z|E)ρ ≥ f(q)
for distribution q = (p, 1− p) and any state ρ whose acceptance probability is p. In an m-round
sequential process, the verifier checks γm rounds (called test rounds) by computing the decision bits
from the samples, and computes an approximate distribution q̃ = (p̃, 1− p̃). The min-entropy round
across the m rounds is then m · f(q̃)−O(

√
m). Thus an EAT reduces a multi-round analysis to a

lower bound on the single-round von Neumann entropy.
Since we adopt the b-XHOG score for a bound of the von Neumann entropy in a single round

analysis, the score obtained from the test rounds is no longer computed from binary random variables.
Thus we define a new min-tradeoff function f ′ which maps the score to a lower bound of the von
Neumann entropy. Then we show that if an approximation of the score, defined as the average of
pCi(zi) is more than s, then the accumulated entropy is at least m · f ′(s)−O(

√
m).
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The entropy accumulation procedure allows for spot checking, that is, in the m-round process,
instead of computing pCi(zi) for every round i ∈ [m], the verifier only computes pCi(zi) for a subset
of indices i of size O(n2 log n). In more details, the verifier changes the circuits for O(log n) times,
and in each epoch the verifier computes the average of k = O(n2) samples. The number of test
rounds is set for the device that takes i.i.d. samples from pC on each circuit C to pass the verification
with overwhelming probability. By Hoeffding’s inequality, a device that samples from pC outputs
k samples whose average score is concentrated above 2−O(1) for a typical C with overwhelming
probability. If the verifier passes LXEBb,k for the epoches of a sufficiently large fraction Ω(1), the
average is above 1 + Ω(1) with overwhelming probability, and by the entropy accumulation theorem,
the conditional min-entropy is Ω(nm).

2.5 Pseudorandomness and Statistical Zero Knowledge

The protocols for certified randomness rely on perfect randomness for generating the challenge circuit.
However, by a counting argument, the challenge space is doubly exponentially large, and it requires
exponentially many random bits to compute a truly random circuit. To produce a net gain in
randomness, we must rely an efficiently computable function which uses polynomially many random
bits and generates pseudorandomness with security level sufficient for our purpose.

However, the standard notion of pseudorandom functions (PRFs) against quantum polynomial-
time adversaries does not seem to be sufficient, since it only guarantees the output of the device is
pseudorandom! Thus for certified randomness, we require a stronger pseudorandom function, when
a truly random function is replaced with which, the output remains statistically indistinguishable
from the uniform distribution.

To provide such a security guarantee, we construct a pseudorandom function indistinguishable
from a truly random function for any QSZK protocols. To see why such a security level is sufficient,
we recall facts about the class QSZK which consists of promise problems that admit a quantum
statistical zero-knowledge protocol. A QSZK protocol is one that consists of a proof system, i.e., a
quantum polynomial-time verifier and an unbounded prover, and an efficient quantum simulator
which simulates the interaction of the proof system without access to a witness.

Watrous showed that QSZK has a natural complete problem called the quantum state distin-
guishability problem (QSD) [61]. In this problem, the instance is a tuple of two efficiently computable
quantum circuits Q0, Q1. For α ∈ (0, 1], the verifier is challenged to determine the trace distance
‖ρ0 − ρ1‖tr is at least α, or at most α2, where ρb is a marginal state obtained by computing Qb
for b ∈ {0, 1}. It is known for this class, there is an amplification procedure, and therefore the
gap can be made exponentially close to 1 [61]. More recently, Menda and Watrous showed that
relative to a random oracle, UP 6⊂ QSZK [44]. Ben-David and Kothari defined a query measure on
statistical zero-knowledge proof, and showed that the positive-weighted adversary method can only
prove suboptimal lower bounds for certain problems [16].

For certified randomness, we define the QSZK-distinguishability between two distributions over
functions, and a similar definition can be extended to distributions over unitaries.

Definition 2.6 (QSZK-distinguishability, informal). Two distributions D0,D1 over functions are
said to be QSZK-distinguishable if there exist a pair of algorithms A,B such that the averaged trace
distance between AF and BF ’s output states has non-neglgigible difference between F ∼ D0 and
F ∼ D1. The distributions are said to be QSZK-indistinguishable if no such algorithms exist.

A QSZK-secure pseudorandom function is defined as one QSZK-indistinguishable from a random
function. We propose an assumption, called pseudorandom function assumption (PRFA), that there
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exists a QSZK-secure pseudorandom function. We justify the assumptions are valid by giving a
construction for algorithms given oracle access to the function.

Theorem 2.7 (Pseudorandom functions, informal). There exists a QSZK-secure pseudorandom
function with key length O(n) relative to a random oracle.

Similarly, we say a pseudorandom unitary is QSZK-secure if it is QSZK-indistinguishable from
a random unitary. We propose a similar assumption, called pseudorandom unitary assumption
(PRUA), that there exists a QSZK-secure pseudorandom unitary, and prove the existence relative to
an oracle with key length O(n).

Under these assumptions, when replacing a random circuit with a pseudorandom one, the
output remains statistical indistinguishable from a uniform distribution, conditioned on Eve’s side
information. To see why, recall that De, Portmann, Vidick, and Renner [26] showed that Trivesan’s
randomness extractor [59] is quantum-proof. That is, the output from the randomness extractor
together with Eve’s side information is a quantum state ρ statistically indistinguishable from σ⊗ ρE ,
where σ is a maximally mixed state and ρE is the marginal state held by Eve. If the device given a
pseudorandom circuit outputs a quantum state that changes the distance by a non-negligible amount
from σ ⊗ ρE , then such a device implies a QSZK protocol that distinguishes a pseudorandom circuit
from a random one.

To see there is a net gain in randomness, the protocol samples O(log n) pseudorandom circuits,
each of which takes O(n) random bits for the keys of the pseudorandom function, and finally it
produces Ω(mn) random bits. For m = poly(n), we have a polynomial expansion.

While we do not know whether a weaker assumption can work for certified randomness, the
security level seems necessary against an entangling adversary. Indeed, if there is no quantum
side information, then all we need is to use a pseudorandom circuit against adversaries solving the
statistical difference from uniform problem. In the purely classical setting, the problem is known
to be complete for NISZK, a subclass of SZK consisting of problems that admits a non-interactive
statistical zero-knowledge protocol [31]. However, in the presence of quantum side information, an
unbounded Eve can prepare any ρE , and security against QSZK seems necessary.

3 Preliminaries

As we said, a circuit C acts on n qubits, and N = 2n. The binary entropy function h : [0, 1]→ R
is defined as h(x) := −x log x− (1− x) log(1− x) and h(0) = h(1) = 0. For matrix A, we denote
by ‖A‖p := tr(|A|p)1/p the Schatten p-norm of A. Furthermore, we denote ‖A‖op the operator

norm and ‖A‖F :=
(∑n

i=1

∑n
j=1 |Aij |2

)1/2
the Frobenius norm of an n× n matrix A. The trace

distance between two quantum states ρ, σ is defined as ‖ρ− σ‖tr := 1
2‖ρ− σ‖1. The fidelity F (ρ, σ)

between two quantum states ρ, σ is defined as ‖ρ1/2σ1/2‖1. The function F is symmetric, i.e.,
F (ρ, σ) = F (σ, ρ). If ρ is a pure state |ψ〉, then the fidelity F (ρ, σ) = 〈ψ|σ|ψ〉.

A quantum processes is completely positive trace preserving (CPTP) map. For integer n,m > 0,
let Φ : Mn(C)→Mm(C) denote a linear transformation from complex-valued n× n matrices Mn(C)
to Mm(C). The diamond norm of Φ is defined as ‖Φ‖� := maxX∈Mn(C):‖X‖1≤1 ‖Φ⊗ 1n(X)‖. The
diamond distance between two quantum processes Φ and Ψ is defined as ‖Φ−Ψ‖�.

For Hilbert space A, we denote S(A) the set of normalized quantum state in A. For Hilbert
spaces A,B, we denote CPTP(A,B) the set of CPTP maps from linear operators on A to linear
operators on B. The set of unitary operators on A be U(A).
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3.1 Complexity Classes

We assume the readers to have the familiarity with standard classical complexity classes and the
class BQP. Here we briefly introduce quantum complexity classes related to our work. The class
QMA (which stands for “Quantum Merlin-Arthur”) is a quantum analogue of MA, defined as follows.

Definition 3.1 (QMA). The complexity class QMA consists of languages L for which there exists a
quantum polynomial-time algorithm V such that the following conditions hold.

• If x ∈ L, there exists a quantum state ρ on poly(|x|) qubits such that Pr[V (x, ρ) accepts] ≥ 2/3.

• If x /∈ L, for every quantum state ρ on poly(|x|) qubits, Pr[V (x, ρ) accepts] ≤ 1/3.

The quantum polynomial-time algorithm V is also called the QMA verifier, and the state ρ can
be thought of as a state sent by a QMA “prover” of unbounded power. The class QCMA is also a
quantum analogue of MA and can be defined similarly as QMA, except that the witness state ρ is
restricted to a classical string. To be specific about the running time or the query complexity of a
QMA verifier, we denote QMA(T ) to be a QMA verifier running in time T or making T queries in a
relativized world. The same notation also applies to other classes.

The class QCAM (which stands for “Quantum-Classical Arthur Merlin”) is a quantum analogue
of AM, and can be defined in terms of a two-message protocol. In the first message, the quantum
polynomial-time verifier sends a random string r of size polynomial in the size of the instance to
the prover Merlin. Merlin then sends a response w (also called the witness) which is also of size
polynomial in the size of the instance. Note that the witness w can arbitrarily depend on the
instance and the random string r. A language is in QCAM if there exists an Arthur which outputs
the correct answer for every instance with probability at least 2/3.

Definition 3.2 (QCAM). The complexity class QCAM consists of languages L for which there
exists a quantum polynomial-time algorithm V (also called Arthur) and a polynomial p such that the
following conditions hold.

• If x ∈ L, then there exist a polynomial q and a classical string w ∈ {0, 1}q(|x|) such that

Pr
r∈{0,1}p(|x|)

[V (x, r, w) accepts] ≥ 2/3. (11)

• If x /∈ L, then for every polynomial q and every string w ∈ {0, 1}q(|x|),

Pr
r∈{0,1}p(|x|)

[V (x, r, w) accepts] ≤ 1/3. (12)

A k-message interactive proof system consists of two algorithms, the computationally unbounded
prover P and a polynomial-time verifier V , and there are k message exchanges between V and P .
We will also say such a protocol is a verifier of length k. The class QIP is an interactive proof system
in which the verifier runs in quantum polynomial time, and each message can be a quantum state.
Such a protocol is also called a quantum interactive proof system.

Definition 3.3 (QIP[k]). The complexity class QIP[k] consists of languages L for which there exists
a quantum polynomial-time algorithm V (also called the verifier) of length k such that the following
conditions hold.
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• If x ∈ L, then there exists a prover P which makes the verifier accepts with probability 2/3.

• If x /∈ L, then for every prover P , the verifier V accepts with probability at most 1/3.

The complexity class QSZK (which stands for “Quantum Statistical Zero-Knowledge) consists of
languages that admit a quantum statistical zero-knowledge protocol, defined by Watrous [61].

Definition 3.4 (QSZK). A quantum statistical zero-knowledge proof system for a language L consists
of an unbounded P (called the honest prover), a quantum polynomial-time verifier V such that the
following holds.

• Completeness and soundness: (V, P ) is a proof system for L.

• Zero-knowledge: there exist a negligible function η and a set of preparable states {σx,i} such
that if x ∈ L1, ‖σx,i − viewV,P (x, i)‖tr ≤ η(|x|). Here viewV,P (x, i) is the verifier’s view after
the i-th round, i.e., the mixed state of the verifier and the message qubits after i-th message
have been sent during an execution of the proof system on input x.

Watrous showed that QSZK has a natural complete problem called Quantum State Distinguisha-
bility (QSD) [61], defined as follows.

Definition 3.5 ((α, β)-QSD). The promise problem (α, β)-QSD = (QSD1,QSD0) for 0 ≤ α < β2 ≤ 1
consists of a pair of quantum circuits (Q0, Q1) such that

• if (Q0, Q1) ∈ QSD1, then ‖ρ0 − ρ1‖tr ≥ β, and

• if (Q0, Q1) ∈ QSD0, then ‖ρ0 − ρ1‖tr ≤ α,

where ρb is obtained by applying Qb on the zero state followed by partial tracing on some of the qubits.

Watrous showed that the complete and soundness parameters (α, β) can be amplified to (2−n, 1−
2−n) by giving a transformation from Qb to a circuit that has size polynomial in n and |Qb| for
b ∈ {0, 1} [61]. Since the parameters do not matter for this problem, we will denote QSD the same
problem with a constant gap.

The problem has a very simple QSZK protocol: The verifier tosses a random coin b, and sends
ρb to the prover. The prover performs the optimal measurement that saturates the trace distance
and outputs a bit b′. The verifier accepts if b = b′. The completeness follows from the fact that the
states’s trace distance is negligibly close to one, and this implies there exists a measurement that
perfectly distinguishes the states. For the soundness, since the states are negligibly close in trace
distance, the prover does not succeed with non-negligibly advantage over random guessing. To show
the protocol is zero-knowledge, the quantum simulator applies the verifier’s quantum operation first.
After receiving the reponse b′ from the prover, it sets b′ = b.

The QSZK-completeness of QSD relativizes. In particular, Menda and Watrous [44] showed that
for oracle A, a problem LA in QSZKA if there exists a reduction from LA to QSDA.

Theorem 3.6 ([44, Theorem 1]). For alphabet Σ,Γ, let L ⊆ Γ∗ be a language and A ⊆ Σ∗ be an
oracle. The language LA is contained in QSZKA if and only if there exists a polynomial-time uniform
family of pairs of relativized quantum circuits (QA0 , Q

A
1 ) with the following properties:

• If x ∈ LA, then (QA0 , Q
A
1 ) ∈ QSDA

1 .

• If x /∈ LA, then (QA0 , Q
A
1 ) ∈ QSDA

0 .
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Ben-David and Kothari [16] studied independently the so-called QSZK complexity of function f ,
denoted QSZK(f), which is defined as the minimum number k made by a pair of query algorithms
A,B given oracle access to x such that for every x such that (i) if f(x) = 1, then ‖Ax−Bx‖tr ≥ 2/3,
and (ii) if f(x) = 0, then ‖Ax − Bx‖tr ≤ 1/3.

3.2 The Polynomial Method

The quantum polynomial method by Beals, Buhrman, Cleve, Mosca, and de Wolf is a standard
technique for proving quantum lower bound of query problems [15]. Specifically, we will use the
degree lower bound by Markov and the strong direct product theorem by Sherstov [58].

Lemma 3.7. Let p : R→ R be a polynomial. For real numbers a, b, if

max
a≤x≤b

|p(x)− p(y)| ≤ H, (13)

then

|p′(x)| ≤ H

b− a
deg(p)2, (14)

where p′ is the first derivative of p and deg(p) is the degree of p.

Theorem 3.8 (Strong direct product theorem [58, Theorem 1.5]). Fix functions f1, . . . , fk :
{−1,+1}m → {−1,+1}. Then solving (f1, . . . , fk) with worst-case probability 2−Ω(k) requires

Ω

(
min

S⊆[k]:|S|=0.99k

(∑
i∈S

deg1/5(fi)

))
, (15)

where degε(f) stands for the least degree of a real polynomial that approximates f within ε pointwise.

3.3 Quantum Information Theory

The amount of extractable randomness is the conditional min-entropy Hmin(Z|E) which describe the
amount of randomness system Z has conditioned on Eve’s information E. The smooth min-entropy
is formally defined as

Hmin(Z|E)ρ = sup
σE

{
− inf

λ

{
λ : ρZE ≤ 2−λ1Z ⊗ σE

}}
. (16)

In the case where both Z and E are classical, they are formally defined as random variables, and
both ρZE and σE are diagonal in the same basis.

We will also consider a smooth version of conditional min-entropy, which relaxes the above notion
by considering an ε-close pair of random variables, in total variation distance:

Hε
min(Z|E)ρ = sup

ρ̃:‖ρ̃ZE−ρZE‖tr≤ε
Hmin(Z|E)ρ. (17)

Another useful quantity in the family of quantum Rényi entropies is the von Neumann entropy.
The von Neumann entropy of a quantum state ρA is defined asH(A)ρ := −tr(ρ log ρ). The conditional
von Nemann entropy of a bipartite state ρAB is defined as H(A|B)ρ = H(AB)ρ −H(B)ρ.

For classical random variable X distributed according to a distribution P , we denote H(X) or
H(P ) the von Neumann entropy of X, and Hmin(X) or Hmin(P ) the min-entropy of X.

The following inequalities for von Neumann entropy will be useful.
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Lemma 3.9. For finite-dimensional Hilbert spaces A,B,C and a tripartite state ρABC on A⊗B⊗C,
it holds that

H(A|B)ρ +H(B|C)ρ ≥ H(A|C)ρ. (18)

Proof. By strong sub-additivity, H(A|BC)ρ ≤ H(A|B)ρ and thus

H(B|C)ρ = H(AB|C)ρ −H(A|BC)ρ

≥ H(A|C)ρ −H(A|B)ρ. (19)

Lemma 3.10. For finite-dimensional Hilbert space A, let ρ, σ be two normalized quantum states on
A. For λ ∈ [0, 1],

H(A)(1−λ)ρ+λσ ≤ (1− λ)H(A)ρ + λH(A)σ + h(λ) (20)

where h is the binary entropy function.

Proof. Define the quantum state

ψBA = (1− λ)|0〉〈0|B ⊗ ρA + λ|1〉〈1|B ⊗ σA. (21)

By definition, the von Neumann entropy of ψ is

H(BA)ψ = −tr((1− λ)ρ log(1− λ)ρ))− tr(λσ log λσ))

= −(1− λ) log(1− λ)− (1− λ)tr(ρ log ρ)− λ log λ− λtr(σ log σ)

= H(A)ρ +H(A)σ + h(λ). (22)

Moreover, since trB(ψ) = (1− λ)ρ+ λσ, H(A)ψ = H(A)(1−λ)ρ+λσ. Since conditional von Neumann
entropy is always non-negative, H(BA)ψ ≥ H(A)ψ, and we conclude the proof.

Lemma 3.11 ([48, Theorem 11.9]). For Hilbert space A, let ρ be a quantum state on A and {Pi} be
a complete set of projective measurements on A. Then the entropy of the post-measurement state
σ =

∑
i PiρPi is at least as great as the original entropy, i.e., H(A)σ ≥ H(A)ρ.

By Lemma 3.10 and concavity of von Neumann entropy, we can lower bound the mutual
information of a probabilistic mixture of states by a convex combination of the mutual information
of each component. Recall that by definition, for Hilbert space A,B and bipartite state ρAB,
I(A : B)ρ = H(A) +H(B)−H(AB).

Lemma 3.12. For finite-dimensional Hilbert space A and B, let ρAB, σAB be a bipatite state. For
λ ∈ [0, 1],

I(A : B)(1−λ)ρ+λσ ≥ (1− λ)I(A : B)ρ + λI(A : B)σ − h(λ).

Proof. By convexity of von Neumann entropy, for X ∈ {A,B},

H(X)(1−λ)ρ+λσ ≥ (1− λ)H(X)ρ + λH(X)σ. (23)

Then by Lemma 3.10,

I(A : B)(1−λ)ρ+λσ = H(A)(1−λ)ρ+λσ +H(B)(1−λ)ρ+λσ −H(AB)(1−λ)ρ+λσ

≥ (1− λ)I(A : B)ρ + λI(A : B)σ − h(λ). (24)
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3.4 Haar Random Unitaries

We will rely one the following facts. For a Haar random unitary C ∈ CN×N , for every i ∈ {0, 1}n,
it holds that the distribution P of density Pz = pC(z) := |〈z|C|0〉|2 is distributed according to the
Dirichlet distribution Dir(1N ) on the probability simplex [27, 39].

3.4.1 The Dirichlet Distributions

Let Dir(α) denote the Dirichlet distribution for concentration hyperparameter α. The moments
for (X1, . . . , XN ) ∼ Dir(α) for α = (α1, . . . , αN ) is well-studied. First, the mean of each random
variable E[Xi] = αi

α0
, where α0 =

∑N
i=1 αi. Moreover,

E

[
N∏
i=1

Xβi
i

]
=
B(α+ β)

B(α)
, (25)

where B(α) := 1
Γ(α0)

∏N
i=1 Γ(αi).

The Dirichlet distribution is the conjugate prior distribution of the categorical distribution and
the multinomial distribution [30]. If the prior distribution is sampled according to the Dirichlet
distribution, the posterior is also a Dirichlet distribution with a different hyperparameter. In
particular, let the data points be z1, . . . , zk ∼ P where P ∼ Dir(α). Then the posterior distribution
P |(z1, . . . , zk) ∼ Dir(α+m), where m is the vector of the number of occurrences for the data points
in each category.

We can sample a probability distribution from the Dirichlet distribution Dir(α) using the
following process: First sample Qi ∼ Γ(αi, 1) independently for i ∈ [N ], where Γ(αi, 1) is the Gamma
distribution with parameters αi, 1. Then compute Q̄ =

∑N
i=1Qi and set Pi = Qi/Q̄ for each i ∈ [N ].

Thus it would be useful to briefly introduce facts about the Gamma function. Recall that the Gamma
distribution Γ(α, β) has pdf

f(x;α, β) =
βαe−βxxα−1

Γ(α)
. (26)

In particular, for α = β = 1, the pdf is f(x; 1, 1) = e−x. This implies that the CDF of Γ(1, 1) is

F (x; 1, 1) = 1− e−x. (27)

Using these facts, we prove a few lemmas which will be useful later. First, the maximum value
of P ∼ Dir(1N ) is O(n)/N in expectation.

Lemma 3.13. Let P ∼ Dir(1N ). Then

E
P∼Dir(1N )

[
max
z
Pz

]
≤ 2 lnN + 7

N
. (28)

and

E
P∼Dir(1N )

[Hmin(P )] ≥ n− log n−O(1). (29)

Proof. Let F (x) = 1 − e−x be the CDF of Γ(1, 1) and Q1, . . . , QN ∼ Γ(1, 1). Also let Q =
(Q1, . . . , QN ). The CDF of maxz Qz is

G(x) = Pr[∀z,Qz ≤ x] = (1− e−x)N . (30)
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Thus the expectation

E
Q∼Γ(1,1)N

[
max
z
Qz

]
=

∫ ∞
0

dx(1− (1− e−x)N )

=

∫ 1

0
dy

1− yN

1− y

=

∫ 1

0
dy(1 + y + y2 + . . . yN−1)

= 1 +
1

2
+ . . .+

1

N
≤ lnN + 1. (31)

As shown in the proof of Lemma 3.14, Q̄ =
∑

z Qz is concentrated:

Pr
Q

[|Q̄−N | ≤ N/2] ≥ 1− 4

N
. (32)

Let Ω := {Q : Q̄ ≥ N/2}. From (32), PrQ∼Γ(1,1)N [Q ∈ Ω] ≥ 1− 4/N . This means that

E
Q∼Γ(1,1)N

[
maxz Qz

Q̄

]
≤ E

Q

[
maxz Qz

Q̄

∣∣∣∣Q ∈ Ω

]
+ Pr[Q /∈ Ω]

≤ 2

N
E
Q

[
max
z
Qz

∣∣∣Q ∈ Ω
]

+
4

N

≤ 2

N

1

Pr[Q ∈ Ω]
E
Q

[
max
z
Qz

]
+

4

N

≤ 2 lnN + 7

N
. (33)

This show that (28) is correct. For (29), by Jensen’s inequality,

E
P∼Dir(1N )

[Hmin(P )] ≥ − log E
P∼Dir(1N )

[
max
z
Pz

]
≥ n− log n−O(1). (34)

In fact, the maximum of P ∼ Dir(1N ) is concentrated around O(n)/N .

Lemma 3.14. It holds that

Pr
P∼Dir(1N )

[
max
z
Pz ≤

4 lnN

N

]
≥ 1− 6

N
. (35)

Proof. Let F (x) = (1− e−x) be the CDF of Γ(1, 1). Thus instead consider

Pr
Q∼Γ(1,1)N

[
max
z
Qz ≤ 2 lnN

]
= Pr

Q∼Γ(1,1)N
[∀z,Qz ≤ 2 lnN ]

= F (2(ln 2)n)N

= (1−N−2)N

≥ 1− 2/N. (36)
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Also Q̄ =
∑

z Qz is concentrated since the mean E[Q̄] = N and the variance σ2 = E[Q̄2]− E[Q̄]2 =
N(E[Q̄2

0]− E[Q̄0]2) = N . By Chebyshev inequality,

Pr
Q

[|Q̄−N | ≤ N/2] ≥ 1− 4

N
. (37)

Combining (36) and (37),

Pr
Q

[
maxz Qz

Q̄
≤ 4 lnN

N

]
≥ 1− 6

N
. (38)

3.4.2 The Performance of a Perfect Device

In this paper, we define a perfect device to be one that is given C, outputs a sample z ∼ pC , where
pC is the distribution defined by pC(z) := |〈z|C|0n〉|2. The first result is well-known and has been
proven using different mathematical tools: a perfect device solves b-XHOG for b ≈ 2. Here we prove
the result using properties of the Dirichlet distribution.

Lemma 3.15. Sampling from z ∼ PC for Haar random C, it holds that

E
C∼Haar(N),z∼PC

[pC(z)] =
2

N + 1
. (39)

Proof. The algorithm A outputs the given sample z. For z ∈ {0, 1}n, let Pz = |〈z|C|0〉|2 be a random
variable for Haar random C, and P = (P0, . . . , PN−1) be a vector of random variables distributed
on the probability simplex. Since P ∼ Dir(1N ), P |z ∼ Dir(m + 1N ), where m = (0, . . . , 0,mz =
1, 0, . . . , 0). The score can be calculated as follows:

E
P∼Dir(1N )

[Pz|m] = E
P∼Dir(m+1N )

[Pz] =
mz + 1

N + 1
. (40)

Thus for z such that mz = 1, and the expectation is 2
N+1 .

In fact, the score for C ∼ Haar(N) is concentrated around 2
N+1 . Thus sampling from C ∼

Haar(N), with overwhelming probability, a perfect device answers with a sample that has score close
to 2

N+1 .

Lemma 3.16 (Concentration of collision probability). Let SC := Ez∼pC [pC(z)]. Then SC is
concentrated in the sense that

Pr
C

[∣∣∣∣SC − 2

N + 1

∣∣∣∣ ≤ ε

N + 1

]
≥ 1−O

(
1

ε2N

)
. (41)

Proof. We consider the moments of the random variable SC =
∑

z pC(z)2 for Haar random C. By
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Lemma 3.15, µ = EC [SC ] = 2
N+1 .

E
C

[S2
C ] = E

C

∑
z,z′

pC(z)2pC(z′)2


= N E

C
[pC(0)4] +N(N − 1)E

C
[pC(0)2pC(1)2]

=
N !4!

(N + 3)!
+N(N − 1)

(N − 1)!2!2!

(N + 3)!

=
20 + 4N

(N + 1)(N + 2)(N + 3)
(42)

Therefore, the variance is

E
C

[S2
C ]− E

C
[SC ]2 =

(4N + 20)(N + 1)− 4(N + 2)(N + 3)

(N + 1)2(N + 2)(N + 3)

=
4(N − 1)

(N + 1)2(N + 2)(N + 3)
= O

(
1

N3

)
. (43)

By Chebyshev inequality,

Pr
C

[
2 + ε

N + 1
≥ SC ≥

2− ε
N + 1

]
= Pr

C

[
|SC − µ| ≤

ε

N + 1

]
≥ 1− 4(N − 1)

ε2(N + 2)(N + 3)
= 1−O

(
1

ε2N

)
. (44)

This implies that with probability 1−O( 1
ε2N

) over C, when SC ≥ (2− ε)/N .

This lemma shows that the collision probability of PC is sharply concentrated around its mean.
That is, for almost every C, if the device samples from PC , the expectation of pC(z) is very close to

2
N+1 . This implies that a device sampling from PC solves LXEBb,k with constant probability for
k = Ω(n2) and b ≥ 1.98.

Lemma 3.17. For integer k, with probability 1−O(1/N) over C ∼ Haar(N), sampling z1, . . . , zk ∼
PC ,

Pr
z1,...,zk∼PC

[
1

k

k∑
i=1

pC(zi) ≥
1.98

N + 1

]
≥ 1− 2−Ω(k/n2). (45)

Proof. By Lemma 3.16 with ε = 0.01,

Pr
C∼Haar(N)

[
SC ≥

1.99

N + 1

]
≥ 1−O(1/N). (46)

Furthermore, by Lemma 3.14, with probability 1−O(1/N), maxz pC(z) ≤ 4n/N . For C satisfying
SC ≥ 1.99/(N + 1) and maxz pC(z) ≤ 4n/N , by Hoeffding’s inequality,

Pr
z1,...,zk∼PC

[
1

k

k∑
i=1

pC(zi) ≤
1.98

N + 1

]
≤ Pr

z1,...,zk∼PC

[∣∣∣∣∣1k
k∑
i=1

pC(zi)− SC

∣∣∣∣∣ ≥ 0.01

N + 1

]
≤ 2e−0.01k/(16n2) = 2e−k/(1600n2). (47)
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Therefore, it suffices to take O(n2) independent samples from O(log n) different circuits.

Lemma 3.18. For integer k, circuit C and a tuple d of k strings in {0, 1}n, let Vk(C, d) be defined
as

Vk(C, d) := 1

[
1

k

k∑
i=1

pC(zi) ≥
1.98

N + 1

]
(48)

for d = (z1, . . . , zk). Then for k = O(n2) and m = Ω(log n), sampling a perfect device A mk times
yields d1, . . . , dm satisfying

Pr
C1,...,Cm∼Haar(N),{di∼A(Ci)}mi=1

[
m∑
i=1

Vk(Ci, di) ≥ 0.99m

]
≥ 1− 1/n. (49)

Proof. By Lemma 3.17, for k = cn2 for sufficiently large constant c,

µ := Pr
C∼Haar(N),d∼A(C)

[V (C, d) = 1] ≥ 0.995. (50)

Then by Hoeffding’s inequality,

Pr
C1,...,Cm∼Haar(N),{di∼A(Ci)}mi=1

[
m∑
i=1

Vk(Ci, di) ≤ 0.99m

]

≤ Pr
C1,...,Cm∼Haar(N),{di∼A(Ci)}mi=1

[∣∣∣∣∣ 1

m

m∑
i=1

Vk(Ci, di)− µ

∣∣∣∣∣ ≥ 0.005

]
≤ 2−2·0.0052m

≤ 1/n (51)

for m = c′ log n for sufficiently large c′.

This implies that sampling from a perfect device mk times to yield an approximation of the
XHOG score close to 1.94/(N + 1). The bound can be improved to 2− c for an arbitrarily small
constant c > 0.

Corollary 3.19. For k = O(n2) and m = Ω(log n), sampling a perfect device A for k times on m
independent circuits sampled from the Haar measure, with probability 1− 1/n,

1

mk

m∑
i=1

k∑
j=1

pCi(zij) ≥
1.94

N + 1
, (52)

where zij denotes the j-th sample from Ci.

Proof. The corollary holds from Lemma 3.18 and the implication that

1

m

m∑
i=1

Vk(Ci, di) ≥ 0.98 =⇒ 1

mk

m∑
i=1

k∑
j=1

pCi(zij) ≥
1.94

N + 1
, (53)

for di = (zi1, . . . , zik).
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4 An Entropy Accumulation Theorem

In this section, we modify the entropy accumulation theorem (EAT) from the one given by Dupuis,
Fawzi, and Renner [28]. Our proof follows closely from that of [28] except with the following
minor changes: In [28], the min-tradeoff function f : P→ R is defined over the set of probability
distributions P. Here our min-tradeoff function f : R≥0 → R, where the input corresponds to the
score of the device. To see the modification does lead to an useful tool that reduces the analysis of
a multi-round entropy accumulation process to single-round analysis of von Neumann entropy, we
formally prove the theorem from scratch.

Recall that for von Neumann entropy, by definition, the chain rule holds:

H(A1A2|B)ρ = H(A1|B)ρ +H(A2|A1B)ρ (54)

for every tripartite state ρA1A2B . However, the same equality does not hold for other Rényi entropies.
Instead, Dupuis, Fawzi, and Renner [28] show the following statement.

Theorem 4.1 ([28, Theorem 3.2]). Let ρA1A2B be a density operator and α ∈ (0,∞). Then

Hα(A1A2|B)ρ = Hα(A1|B)ρ +Hα(A2|A1B)ν , (55)

where

νA1A2B = ν
1/2
A1B

ρA2|A1Bν
1/2
A1B

with νA1B =

(
ρ

1/2
A1B

ρ
1−α
α

B ρ
1/2
A1B

)α
tr

(
ρ

1/2
A1B

ρ
1−α
α

B ρ
1/2
A1B

)α . (56)

Note that νA1A2B is normalized and νA1B is the marginal of νA1A2B obtained by tracing out the
system A2. Though there is a state ν such that the equality in (55) holds, for our purpose, we only
care about some family of states for which an inequality can be derived. In particular, the following
inequality will be useful.

Theorem 4.2 ([28, Theorem 3.3]). Let ρA1B1A2B2 be a density operator and α ∈ (0,∞) such that
the Markov chain condition holds. Then

inf
ν
Hα(A2|B2A1B1)ν ≤ Hα(A1A2|B1B2)ρ −Hα(A1|B1)ρ ≤ inf

ν
Hα(A2|B2A1B1)ν (57)

Theorem 4.2 can be obtained by showing that the Markov chain condition implies thatHα(A1|B1B2)ρ =
Hα(A1|B1)ρ and by Theorem 4.1. We can further represent Theorem 4.2 in terms of quantum
channels.

Theorem 4.3 ([28, Corollary 3.5]). Let ρRA1B1 be a density operator on R ⊗ A1 ⊗ B1, M ∈
CPTP(R,A2B2) and α ∈ (0,∞). IfM(ρRA1B1) satisfies the Markov chain condition A1 ↔ B1 ↔ B2,
then

inf
ω
Hα(A2|B2A1B1)M(ω) ≤ Hα(A1A2|B1B2)M(ρ) −Hα(A1|B1)ρ ≤ sup

ω
Hα(A2|B2A1B1)M(ω),

(58)

where the supremum and infimum range over density operator on R⊗A1 ⊗A2. Moreover, if ρRA1B1

is pure, then it suffices to optimize over pure states ωRA1B1.
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Theorem 4.3 can be obtained by applying Theorem 4.2 and presenting a state ω that saturates
the inequalities. In our case, the Markov chain condition trivially holds since the system Bi is empty.

Let Ẽi−1 be a system isomorphic to Ri−1E and P denote the set of distributions. Adding a
system R̃i−1 is meant to purify the state on Ri−1E so the state ωRi−1ER̃i−1

is pure and its marginal
is any state on Ri−1 input toMi.

We modify the definition of min-tradeoff function from [28], formally stated as follows.

Definition 4.4. A real-valued function on f : R≥0 → R is called a min-tradeoff function forMi if
it satisfies

f(s) ≤ inf
ν∈Σi(G,s)

H(Ai|EẼi−1)ν (59)

where Σi(G, s) := {ρAiRiEẼi−1
= (Mi ⊗ 1ER̃i−1

)(ωRi−1ER̃i−1
) : tr(GρAi) = s}, i.e., the set of states

whose marginal on Ai has score s evaluated using a diagonal, positive semi-definite matrix G.

While the domain of f is the set of non-negative real numbers, we restrict our attention to the
properties of f in the interval [0, 2] for normalization purposes. Let ‖∇f‖∞ be the infinity norm of
∇f restricted to [0, 2], and gmax, gmin be the maximum and the minimum of f over [0, 2], i.e.,

gmax := max
s∈[0,2]

f(s), gmin = min
s∈[0,2]

f(s) (60)

In particular, it holds that 1
2 |gmax − gmin| ≤ ‖∇f‖∞, where ‖∇f‖∞ is the infinite norm of f , by

setting the domain in [0, 2]. Note that the restriction is without loss of generality: given a game
with score in [0, a] with some diagonal G′, we can set G = 2G′/a.

To determine the infimum, it suffices to consider only pure states ωRi−1R̃i−1
since by strong

subadditivity, adding a purification system cannot increase H(Ai|ER̃i−1). For an event Ω ⊆ Am, we
denote

Pr
ρ

[Ω] :=
∑

(a1,...,am)∈Ω

tr(ρE,a1,...,am) (61)

for classical-quantum state ρ classical on Am the trace of the state projected onto the subspace
spanned by |w1, . . . , wm〉 for (w1, . . . , wm) ∈ Ω. For any state ρAm1 Bm1 E classical on Am1 B

m
1 , we

denote the conditional state

ρAmE|Ω :=
1

Prρ[Ω]

∑
(a1,...,am)∈Ω

|a1, . . . , am〉〈a1, . . . , am| ⊗ ρE,a1,...,am . (62)

Clearly, the state is normalized.
The following theorem states it suffices to bound H↑α(Zm|E)Mm◦...◦M1(ρ)|Ω from below.

Proposition 4.5 ([28, Lemma B.10]). For any density operator ρ, and non-negative operator σ any
α ∈ (1, 2], and any ε ∈ (0, 1),

Hε
min(Zm|E)Mm◦...◦M1(ρ)|Ω ≥ H↑α(Zm|E)Mm◦...◦M1(ρ)|Ω −

log(2/ε2)

α− 1
. (63)

To account for the event Ω, we follow the ideas from [28]: First, we introduce systems D1, . . . , Dm

and normalized states {τ(z) : z ∈ Z} such that

H(Di)τ(z) = ḡ − f(Gz), (64)
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where Gz := 〈z|G|z〉 and CPTP maps Di : CPTP(Zi, ZiDi), where

Di(|z〉〈z|) := |z〉〈z| ⊗ τ(z)Di . (65)

Also we define M̄i := Di ◦Mi. This allows us to apply the following proposition due to Metger,
Fawzi, Sutter, and Renner [45].

Proposition 4.6 ([45, Lemma 4.5]). For α > 1 and normalized state ρ,

H↑α(Zm|E)Mm◦...◦M1(ρ)|Ω ≥ H↑α(ZmDm|E)Mm◦...◦M1(ρ)|Ω −max
z∈Ω

Hα(Dm)M̄m◦...◦M̄1(ρ)z . (66)

Let gmin and gmax denote the maximum and minimum of the range of f . Furthermore, let
ḡ := 1

2(gmin + gmax). We say a distribution q is induced by samples z1, . . . , zm if

q(z) =
1

m
|{i : zi = z}|. (67)

For affine f and distribution q induced by the samples z1, . . . , zm,∣∣∣∣ḡ − f( E
z∼q

Gz

)∣∣∣∣ ≤ 1

2
|gmax − gmin| ≤ ‖∇f‖∞. (68)

We next bound each term on the rhs of (66) individually.

Proposition 4.7. For α > 1 and every z = (z1, . . . , zm) ∈ Zm,

Hα(Dm)M̄m◦...◦M̄1(ρ)D,z
≤ m‖∇f‖∞, (69)

Proof. Since each τ(zi)Di is determined from zi, the marginal state is product, i.e.,

M̄m ◦ . . . ◦ M̄1(ρ)D1...Dm = τ(z1)D1 ⊗ . . .⊗ τ(zm)Dm . (70)

Thus

1

m
Hα(Dm)M̄m◦...◦M̄1(ρ) =

1

m

m∑
i=1

Hα(Di)τ(zi)

≤ 1

m

m∑
i=1

H(Di)τ(zi)

=
1

m

m∑
i=1

ḡ − f(Gzi)

= ḡ − f
(

E
z∼q

Gz

)
≤ ‖∇f‖∞. (71)

The first equality holds from (70). The first inequality holds by the monotonicity of Rényi entropyies
in α. The second equality holds from (64). The third equality holds because f is an affine function.
The last inequality holds from (68).

The first term of (66) can be further simplified using the chain rule Theorem 4.3. Note that the
Markov chain trivially holds since in this paper, we only consider the case where each system Bi in
Theorem 4.3 is empty for i ∈ [m].
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Proposition 4.8. For α ∈ (1,∞),

H↑α(ZmDm|E)σ|Ω

≥
m∑
i=1

inf
ωi−1∈S(Ri−1EẼi−1)

Hα(ZiDi|EẼi−1)M̄i(ωi−1) −
α

α− 1
log

(
1

Prσ[Ω]

)
, (72)

where σ :=Mm ◦ · · · ◦M1(ρ) and Ẽi−1 is a system isomorphic to Ri−1E (see Definition 4.4).

Proof. By direct calculation,

H↑α(ZmDm|E)Mm◦...◦M1(ρ)|Ω ≥ Hα(ZmDm|E)Mm◦...◦M1(ρ)|Ω

≥ Hα(ZmDm|E)Mm◦...◦M1(ρ) −
α

α− 1
log

(
1

Prσ[Ω]

)
. (73)

The first inequality holds H↑α(A|B)ρ ≥ Hα(A|B)ρ for any finite-dimensional Hilbert spaces A,B and
bipartite state ρ. The second inequality holds from [28, Lemma B.5].

Next, we apply the chain rule Theorem 4.3 on the first term and have

Hα(ZmDm|E)Mm◦...◦M1(ρ) ≥
m∑
i=1

inf
ωi−1∈S(Ri−1EẼi−1)

Hα(ZiDi|EẼi−1)M̄i(ωi−1), (74)

where we introduce an purifying system Ẽi for each i such that ωi−1 ∈ S(Ri−1EẼi−1) is a pure
state.

Now we bound each term in (72). In fact, the bound will be depend on the dimension of Di.
Recall that each Di is introduce for analysis purposes, and we can choose a sufficient large dimension
dDi = dD := d2‖∇f‖∞e such that (64) can be satisfied for every i ∈ [m]. This implies the following
proposition.

Proposition 4.9. For α ∈ (1, 1 + log(2dZdD + 1)),

Hα(ZiDi|EẼi)M̄i(ωi−1) ≥ H(ZiDi|EẼi)M̄i(ωi−1) − (α− 1)(‖∇f‖∞ + log(2dZ + 1))2. (75)

Proof. By [28, Lemma B.9],

Hα(ZiDi|EẼi)M̄i(ωi−1) ≥ H(ZiDi|EẼi)M̄i(ωi−1) − (α− 1) log2(2dZdD + 1)

≥ H(ZiDi|EẼi)M̄i(ωi−1) − (α− 1)(‖∇f‖∞ + log(2dZ + 1))2. (76)

Combining Proposition 4.8 and Proposition 4.9, we have the following corollary.

Corollary 4.10. For α ∈ (1, 1 + 2/V ),

H↑α(ZmDm|E)Mm◦...◦M1(ρ)|Ω

≥
m∑
i=1

inf
ωi−1∈S(Ri−1EẼi−1)

H(ZiDi|EẼi)M̄i(ωi−1) −m
(
α− 1

4

)
V 2 − α

α− 1
log

(
1

Prσ[Ω]

)
, (77)

where V = 2(log(2dZ + 1) + ‖∇f‖∞).
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Proof. By direct calculation,

H↑α(ZmDm|E)σ|Ω

≥
m∑
i=1

inf
ωi−1∈S(Ri−1EẼi−1)

Hα(ZiDi|EẼi−1)M̄i(ωi−1) −
α

α− 1
log

(
1

Prσ[Ω]

)

≥
m∑
i=1

inf
ωi−1∈S(Ri−1EẼi−1)

H(ZiDi|EẼi)M̄i(ωi−1) −m
(
α− 1

4

)
V 2 − α

α− 1
log

(
1

Prσ[Ω]

)
. (78)

The first inequality holds from Proposition 4.8. The second inequality holds from Proposition 4.9.

Next we simplify the first term in Corollary 4.10.

Proposition 4.11.

H(ZiDi|EẼi)M̄i(ωi−1) ≥ ḡ. (79)

Proof. By direct calculation,

H(ZiDi|EẼi−1)M̄i(ωi−1) = H(Zi|EẼi−1)M̄i(ωi−1) +H(Di|ZiEẼi−1)M̄i(ωi−1)

= H(Zi|EẼi−1)M̄i(ωi−1) +H(Di|Zi)M̄i(ωi−1)

= H(Zi|EẼi−1)M̄i(ωi−1) + E
z∼r

H(Di)τ(z)

= H(Zi|EẼi−1)M̄i(ωi−1) + ḡ − E
z∼r

f(Gz)

= H(Zi|EẼi−1)M̄i(ωi−1) + ḡ − f
(
E
z∼r

Gz

)
≥ ḡ, (80)

where r is the distribution obtained by taking the marginal of M̄i(ωi−1) on Zi. The first equality
holds by the chain rule of von Neumann entropy. The second holds because the marginal state
M̄i(ωi−1)DiZi =

∑
z τi(z)Di ⊗ r(z)|z〉〈z|Zi . The third holds by the definition of conditional von

Neumann entropy and that of r. The fourth holds from (64). The fifth equality holds since
f is affine. The inequality holds since by definition, H(Zi|EẼi−1)M̄i(ωi−1) ≥ f(Ez∼rGz), where
r = M̄i(ωi−1)Zi .

Combining Proposition 4.6, Proposition 4.7, Corollary 4.10, and Proposition 4.11, we have the
following corollary.

Corollary 4.12. For α ∈ (1, 1 + 2/V ),

H↑α(Zm|E)Mm◦...◦M1(ρ)|Ω ≥ mf(s)−m
(
α− 1

4

)
V 2 − α

α− 1
log

(
1

Prσ[Ω]

)
, (81)

where σ :=Mm ◦ · · · ◦M1(ρ), and s := 1
m

∑m
i=1Gzi is the score evaluated by taking the average of

Gzi from each round i ∈ [m].

Proof. By direct calculation,

H↑α(Zm|E)Mm◦...◦M1(ρ)|Ω ≥ H↑α(ZmDm|E)Mm◦...◦M1(ρ)|Ω −m‖∇f‖∞

≥ mḡ −m
(
α− 1

4

)
V 2 − α

α− 1
log

(
1

Prσ[Ω]

)
−m‖∇f‖∞

≥ mf(s)−m
(
α− 1

4

)
V 2 − α

α− 1
log

(
1

Prσ[Ω]

)
. (82)
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The first inequality holds from Proposition 4.6 and Proposition 4.7. The second holds from
Corollary 4.10. The third holds because f(s) ≤ ḡ − ‖∇f‖∞.

Finally, by Proposition 4.5 and Corollary 4.12, we have the following corollary.

Corollary 4.13. For α ∈ (1, 1 + 2/V ),

Hε
min(Zm|E)Mm◦...◦M1(ρ)|Ω ≥ mf(s)−m

(
α− 1

4

)
V 2 − 1

α− 1
log

(
2

ε2 Prσ(Ω)2

)
. (83)

Note that Corollary 4.13 holds for any α ∈ (1, 1 + 2/V ). Thus we optimize the bound by finding
a good α.

Corollary 4.14. For V = 2(log(2dZ + 1) + ‖∇f‖∞),

Hε
min(Zm|E)Mm◦...◦M1(ρ)|Ω ≥ mf(s)−

√
mV

√
log

2

Prσ[Ω]2ε2
(84)

Proof. To optimize the parameter α, we set

m

(
α− 1

4

)
V 2 =

1

α− 1
log

(
2

ε2 Prσ[Ω]2

)
, (85)

which gives

α = 1 +

(
4

mV 2
log

(
2

ε2 Prσ[Ω]2

))1/2

. (86)

This implies that

m

(
α− 1

4

)
V 2 =

√
mV

2

√
log

(
2

ε2 Prσ[Ω]2

)
. (87)

In a spot-checking protocol, the verifier in each round tosses a biased coin Ti ∼ Bernoulli(γ) for
probability γ ∈ [0, 1]. If Ti = 1, then the protocol enters a test round, in which case the verifier
counts the score. Otherwise, if Ti = 0, then the protocol enters a generation round, in which case
the verifier does not calculate the score. Effectively, this sets the score to zero.

To see how spot-checking works with our modification, we follow the idea from [28]. In particular,
we multiply G by the factor γ, i.e., we consider a new linear operator G′ = γG. Furthermore, we
choose a new min-tradeoff function f ′ = 1

γ f . With the new choices G′ and f ′, the above analysis
establishes the same lower bound on the smooth conditional min-entropy.

The change for spot-checking does seem to allow us to choose an arbitrarily small γ. However,
an arbitrarily small γ should not work since taking γ → 0 would imply the entropy accumulation
protocol does not require any verification. Instead, we want to choose γ sufficiently large such that
a good device can satisfy Ω with probability asymptotically close to one. For example, in an entropy
accumulation protocol from a violation of Bell’s inequality, the score is a value in [ωc, ωq], where ωc
and ωq are constants describing the best score achievable from a classical and a quantum device
respectively. By Hoeffding’s inequality, it suffices to take γ = O((logm)/m) for a perfect device to
succeed with probability 1−O(1/m).
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In the following sections of this paper, we are aiming to prove a lower bound on the conditional
min-entropy in an LXEB-based accumulation protocol. In Section 3.4.2, we have shown that the
concentration of the collision probability over choices of C allows us to conclude that it suffices to
verify samples from O(log n) circuits for a perfect device to succeed with probability 1−O(1/n) by
the same reasoning.

5 A General Device with No Side Information

In this section, we consider the following situation where the device does not share an entanglement
with the adversary, but the circuit can be learned. In this setting, we give a protocol in which
conditioned on the event Ω of passing LXEB1+δ,k, the entropy is accumulated, for sufficiently large
δ = Ω(1). More formally, we aim to show Hε

min(Z1 . . . Zm|C1 . . . Cm)ρ|Ω has a lower bound Ω(nm).
In Section 5.1, we define a problem, called the Long List Quantum Supremacy Verification

(LLQSV) problem, which is to determine whether a string s is sampled from a random circuit C, or
it is independently sampled according to the uniform distribution. Our hardness assumption, called
the Long List Hardness Assumption (LLHA), states that LLQSV is hard for QCAM protocols with
access to a quantum advice state. In Section 5.2, we show that if LLHA holds, then any device must
generate min-entropy Ω(n) with probability Ω(1) over choices of C. Since conditional von Neumann
entropy is calculated by taking the expectation, this implies that every device passing LXEB1+δ,k

must establish a conditional von Neumann entropy lower bound Ω(n) on the input circuit.
We state our protocol in Figure 1. In particular, the verifier randomly selects Ω(log n) test

rounds by chossing to verifier each round with probability γ = Ω((log n)/m), in which the verifier
determines whether the device passes LXEB1+δ,k. By the conditional von Neumann entropy lower
bound established in Section 5.1 and the entropy accumulation theorem shown in Section 4, in
Section 5.3, we establish an Ω(nm) lower bound of the smooth conditional min-entropy.

Since LLHA is a seemingly strong assumption, we must justify it. In Section 5.4, we prove that
ralative to a random oracle, the assumption that LLQSV is hard for QCAM protocols with quantum
advice. This implies that there exists a circuit distribution with which LXEB1+δ,k can be used to
certify randomness in a sequential process, if the device is given oracle access to the random circuit.

5.1 The Long List Quantum Supremacy Verification Problem

In this section, we formally define the problem LLQSV, as follows.

Problem 4 (Long List Quantum Supremacy Verification (LLQSV)). Given a list of M = O(N3)
circuit-string tuples {(Ci, si) : i ∈ [M ]}, distinguish the following cases:

• Yes-case: for each i ∈ [M ], Ci ∼ D and si is sampled from Ci, i.e., si ∼ pCi.

• No-case: for each i ∈ [M ], Ci ∼ D and si is sampled uniformly (hence independent of Ci).

We will show that if

LLQSV(D) /∈ QCAMTIME(2BnO(1))/q(2BnO(1)), (88)

then any quantum algorithm that runs in nO(1) time solving LXEBb,k with probability q, must
output s1, . . . , sk of min-entropy at least B with probability bq−1

b−1 over choices of C. Thus the
parameter B determines the min-entropy lower bound. We prove this assuming what we call the
Long List Hardness Assumption (LLHA).
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Assumption 5.1 (LLHAB(D)). There exists no QCAM protocol in which the quantum Arthur
solves LLQSV(D, V ) in time 2BnO(1) given access to a quantum advice of length 2BnO(1). In other
words, LLQSV(D) /∈ QCAMTIME(2BnO(1))/q(2BnO(1)).

5.2 LLHA implies Certified Randomness

In this section, we show that LLHAB(D) implies that any device passing LXEBb,k must output
samples of min-entropy Ω(n) given C ∼ D. Our reduction relies on the Goldwasser-Sipser protocol
for approximate counting [32], explained as follows. Recall that the instance consists of M tuples
(Ci, si) for i ∈ [M ], where Ci ∼ D and si is either sampled from pCi or from the uniform distribution
U . Let V be a quantum-classical Merlin-Arthur protocol running in time 2BnO(1) such that V
accepts at least κ tuples for a yes instance and accepts at most (1 − Ω(ε))κ tuples, both with
probability 1− 2−Ω(n). Then this immediately yields a quantum-classical Arthur-Merlin protocol:

Input: Both Arthur and Merlin receives an instance (C1, s1), . . . , (CM , sM ).

1. Arthur samples a random hash function h : [M ]→ [R] for R determined later.

2. Merlin sends i ∈ [M ] and a proof π.

3. Arthur accepts if V accepts (Ci, si) with witness π and h(i) = y.

The gap of the protocol is Ω(ε2/α), proved as follows.

Lemma 5.2. For real number α > 1 and integer κ, there exists an Arthur-Merlin protocol which
on input the description of a set S, determines ακ ≥ |S| ≥ κ or |S| ≤ (1− ε)κ with gap at least ε2

4α
using a hash function of range size R = 2ακ/ε.

Proof. It suffices to get an tight upper bound and a lower bound of the probability

Pr
h,y

[∃x ∈ S, h(x) = y] (89)

for a random hash function h of range size R. By union bound, an upper bound is
∑

x∈S Prh,y[h(x) =

y] = |S|
R . For a lower bound, by the inclusion-exclusion principle7

Pr
h,y

[∃x ∈ S, h(x) = y] ≥ |S|
R
−

∑
x≤x′,x,x′∈S

Pr
h,y

[h(x) = h(x′) = y]

=
|S|
R
−
(
|S|
2

)
1

R2

=
|S|
R

(
1− |S| − 1

2R

)
>
|S|
R

(
1− |S|

R

)
(90)

In the yes case, ακ ≥ |S| ≥ κ and R = 2ακ/ε, and

Pr
h,y

[∃x ∈ S, h(x) = y] ≥ |S|
R

(
1− |S|

R

)
≥ κ

R

(
1− ακ

R

)
≥ κ

R

(
1− ε

2

)
, (91)

7The principle states that Pr[
∨
iEi] ≥

∑
i Pr[Ei]−

∑
i<j Pr[Ei ∧ Ej ].
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whereas in the no case, |S| ≤ (1− ε)κ, and

Pr
h,y

[∃x ∈ S, h(x) = y] ≤ |S|
R
≤ κ

R
(1− ε). (92)

The gap is at least κε
2R = ε2

4α .

Assume that there is a quantum device A which solves LXEBb,k with probability q over choices
of C, and outputs k tuples (s1, . . . , sk) of min-entropy at most B/2 with probability p such that p
and q satisfy

p >
b

b− 1
(1− q) + ε. (93)

For breaking LLHAB(D), we consider the following random variable Yτ (C, s) for τ ∈ [0, 1]:

Yτ (C, s) :=

{
1 if ∃d = (z1, . . . , zk), Pr[A(C) = d] ≥ τ

2B/2
and s ∈ A(C)

0 otherwise.
(94)

Here s ∈ A(C) means that the samples s ∈ {z1, . . . , zk} for samples (z1, . . . , zk) ∼ A(C). Define

µ1(τ) = E
C∼D,s∼pC

[Yτ (C, s)], µ0(τ) = E
C∼D,s∼U

[Yτ (C, s)], (95)

where U is the uniform distribution over {0, 1}n.
Let p(τ) be the probability that A(C)’s maximum probability is at least τ/2B/2 for C ∼ D, i.e.,

p(τ) := Pr
C∼D

[
max
d

Pr[A(C) = d] ≥ τ

2B/2

]
. (96)

The following lemma shows that the ratio µ1(τ)/µ0(τ) is bounded by b · (p(τ) + q − 1)/p(τ).

Lemma 5.3. For τ ∈ [0, 1], let Yτ be defined as in (94), µ1(τ), µ0(τ) as in (95) and p(τ) as in (96).
Then

µ1(τ)

µ0(τ)
≥ b · p(τ) + q − 1

p(τ)
. (97)

Proof. Note that in each case, we are bounding

E
C∼D,s

[Yτ (C, s)] = Pr
C∼D,(z1,...,zk)∼A(C),s

[
∃d,Pr[A(C) = d] ≥ τ

2B/2
∧ s ∈ {z1, . . . , zk}

]
, (98)

where s ∼ pC in the yes case, or s ∼ U in the no case. Define

Gτ (C) := 1

[
max
d

Pr[A(C) = d] ≥ τ

2B/2

]
. (99)

By (96), p(τ) = EC∼D[Gτ (C)].

• For the yes case,

µ1(τ) = E
C∼D,s∼pC

[Yτ (C, s)]

= Pr
C∼D,O∼A(C),s∼pC

[Gτ (C) ∧ s ∈ O]

≥ Pr
C∼D,O∼A(C),s∼pC

[Gτ (C) ∧ s ∈ O ∧ V (C,O)], (100)
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where V (C,O) = 1 if LXEBb,k accepts O = (z1, . . . , zk), i.e.,

k∑
i=1

pC(zi) ≥
bk

N
(101)

and 0 otherwise. By union bound,

Pr
C∼D,O∼A(C),s∼pC

[Gτ (C) ∧ V (C,O) = 1] ≥ Pr
C∼D

[Gτ (C)] + Pr
C∼D,O∼A(C)

[V (C,O)]− 1

= p(τ) + q − 1. (102)

Furthermore, the conditional probability

Pr
C∼D,O∼A(C),s∼pC

[s ∈ O|Gτ (C) ∧ V (C,O) ] ≥ bk

N
(103)

since if V (C,O) = 1, the probability that Prs∼pC [s ∈ O] =
∑

z∈O pC(z) ≥ bk/N by (101).
Combining (102) and (103),

µ1(τ) =
bk

N
(p(τ) + q − 1). (104)

• For the no case, since s is independently sampled,

µ0(τ) = Pr
C∼D,O∼A(C),s∼U

[Gτ (C) ∧ s ∈ O]

=
k

N
Pr
C∼D

[Gτ (C)] =
k

N
· p(τ). (105)

By (104) and (105), we conclude the proof.

Furthermore, we show that the lower bound is monotonically non-increasing.

Lemma 5.4. The ratio (p(τ) + q − 1)/p(τ) is monotonically non-increasing for τ ∈ [0, 1].

Proof. For 1 ≥ α ≥ β ≥ 0, p(α) ≤ p(β), and

p(β) + q − 1

p(α) + q − 1
≥ p(β)

p(α)
(106)

This implies that p(τ)+q−1
p(τ) is monotonically non-increasing for τ ∈ [0, 1].

Lemma 5.3 and Lemma 5.4 imply that

µ1(τ)

µ0(τ)
≥ µ1(1)

µ0(1)
≥ b · p+ q − 1

p
≥ 1 + ε. (107)

While this seems to give us a sufficient condition for applying the Goldwasser-Sipser protocol, a
caveat is that we do not know how to verify if Yτ accepts (C, s) (in particular, Y1) in time 2BnO(1).
The reason is that the condition that A(C) outputs a string d with probability greater than τ/2B

cannot be efficiently verified, even when a witness d is given. The next step is to show that for
sufficiently large T , there exists j ∈ [T ] such that for τ = 1/2 + j/T , µ1(τ) ≥ (1 + ε/2)µ0(τ − 1/T ).
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Lemma 5.5. Let µ1 and µ0 be defined as in (95). Assume that (93) holds. Then for T ≥ 8
ε log(Nε ),

there exists j ∈ [T ] such that

µ1(1/2 + j/T ) ≥ (1 + ε/2)µ0(1/2 + (j − 1)/T ). (108)

Proof. We prove the lemma by contrapositive. Suppose that for every j ∈ [T ],

µ1(1/2 + j/T ) < (1 + ε/2)µ0(1/2 + (j − 1)/T ). (109)

Then expanding the ratio into a telescoping product,

µ1(1/2)

µ1(1)
=

T∏
j=1

µ1(1/2 + j/T )

µ1(1/2 + (j + 1)/T )

≥ (1 + ε/2)−T
T∏
j=1

µ1(1/2 + j/T )

µ0(1/2 + j/T )

≥
(

1 + ε

1 + ε/2

)T
≥ (1 + ε/4)T . (110)

The first inequality holds by (109). The second holds by (107). The third holds by the inequality
1 + ε− (1 + ε/2)(1 + ε/4) = ε/4 · (1− ε/2) ≥ 0 for ε ≤ 2. Taking T ≥ 8

ε log(n/ε),

µ1(1/2) > (1 + ε/4)T · µ1(1)

≥ k

N
· ε(1 + ε/4)T

≥ k

N
· εeεT/8

≥ k. (111)

This contradicts the fact that µ1(1/2) ≤ 1.

With the gap, we can consider the following Merlin-Arthur protocol which verifies that s ∼ pC
in time 2B · T 2 · nO(1):

Both Arthur and Merlin are given access to a circuit C and a string s ∈ {0, 1}n.

1. Merlin sends d = (z1, . . . , zk).

2. Arthur gets K + 1 samples d1, . . . , dK , O ∼ A(C) for integer K determined later. Arthur
accepts if

1

K
|{` : d` = d}| ≥

(
τ − 1

2T

)
2−B/2, (112)

and s ∈ O, and rejects otherwise.

This quantum-classical Merlin-Arthur protocol solves the problem that either (C, s) is accepted by
Yτ , or rejected by Yτ−1/T .
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Lemma 5.6. For τ ∈ [1/2, 1], η = O(1/N2) and K ≥ 4T 22Bn, the above process satisfies the
following conditions:

1. If Yτ accepts (C, s), then Arthur accepts with probability 1− η, and

2. if Yτ−1/T rejects (C, s), then Arthur rejects with probability 1− η.

Proof. If Yτ accepts (C, s), then there exists d = (z1, . . . , zk) such that Pr[A(C) = d] ≥ τ/2B and
s ∈ {z1, . . . , zk}. By Hoeffding’s inequality, the fraction ν̃ in (112) no more than (τ − 1

2T )2−B/2

occurs with probability at most

Pr

[
|ν̃ − Pr[A(C) = d]| > 1

2T
2−B/2

]
≤ 2e

−2 K

4T22B ≤ 2e−2n. (113)

If Yτ−1/T rejects (C, s), then for every d such that s is contained in d, Pr[A(C) = d] <

(τ − 1/T )/2B/2. Again, by Hoeffding’s inequality, (112) occurs with probability at most 2e−2n.

ForM ≥ N3, the quantum-classical Merlin-Arthur protocol accepts more tuples in an yes instance
than a no instance, with overwhelming probability.

Lemma 5.7. For M ≥ N3 and η′ = 2−Ω(N), there exists an integer κ ∈ [M ] such that with
probability at least 1 − η′, Arthur accepts at least κ tuples in an yes instance and accept at most
κ′ = (1− ε/5 +O(ε2))κ tuples in a no instance.

Proof. Recall that µ1(τ) = EC∼D,s∼pC [Yτ (C, s)]. Since each tuple is independently sampled both in
the yes instance and in the no instance, by Lemma 5.6, Authur accepts each sample with probability
at most µ0(τ) + η. Thus by Hoeffding’s inequality, for κ′ = (µ0(τ) + η)(1 + ε/8)M ,

Pr
C1,...,CM∼D,s1,...,sM∼U

[Arthur accepts more than κ′ tuples] ≤ 2e−Mε2(µ0(τ)+η)2/32

= 2e−Ω(Mε2k2p2/N2)

≤ 2e−Ω(Mε4k2/N2), (114)

since by (93), µ0(τ) = p(τ)k/N ≥ pk/N ≥ εk/N . Taking M ≥ N3, the upper bound is 2e−Ω(N).
Similarly, for κ = (µ1(τ)− η)(1− ε/8)M ,

Pr
C1,...,CM∼D,si∼pCi

[Arthur accepts fewer than κ tuples] ≤ 2e−Mε2(µ1(τ)−η)2/32

≤ 2e−Ω(Mε2p2k2/N2), (115)

since η = O(1/N2) and µ1(τ)− η = Ω(µ1(τ)) = Ω(µ0(τ)) = Ω(pk/N).
It remains to give an upper bound of the ratio: Since η = o(ε),

κ′

κ
≤ µ0(τ) + η

µ1(τ)− η
1 + ε/8

1− ε/8

≤ µ0(τ) + η

µ1(τ)− η
1

1− ε/4

≤ 1

1 + ε/4−O(η)

≤ 1

1 + ε/5

≤ 1− ε/5 +O(ε2). (116)
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We have proved all the statements needed for proving our main theorem in this section. Now
we describe the quantum-classical Arthur-Merlin protocol.

Both Merlin and Arthur are given access to (C1, s1), . . . , (CM , sM ) and advice strings including
integers T , j ∈ [T ] and R.

1. Arthur chooses a random hash function h : [M ]→ [R] and y uniformly from [R].

2. Merlin sends i and d = (z1, . . . , zk).

3. For K ≥ 4T 22Bn, Arthur takes K + 1 samples d1, . . . , dK , O ∼ A(Ci). He accepts if

(a) 1
K |{` : d` = d}| ≥

(
τ − 1

2T

)
2−B/2, where τ = 1/2 + j/T ,

(b) si ∈ O, and

(c) h(i) = y.

We prove the main theorem in this section.

Theorem 5.8. If there exists a device A which runs in quantum polynomial time and satisfies (93),
then there is a quantum-classical Arthur-Merlin protocol which on input an O(n)-bit advice string,
solves LLQSVB(D). In other words, LLQSVB(D) ∈ QCAMTIME(2BnO(1))/O(n).

Proof. We show that the above protocol solves LLQSVB(D) with a constant gap. By Lemma 5.7,
κ′ ≤ (1−ε/6)κ with probability 1−2−Ω(N). Then by Lemma 5.2, for R = 12ακ/ε, since α = 1+O(ε),
the gap is Ω(ε). Thus running an (1/ε)O(1)-fold parallel repetition of the above protocol yields a
constant gap. For the length of the advice string, since 1/ε = nO(1), T = nO(1) and R ≤M and it
suffices to choose M = N3, the total length is O(n).

As a corollary, if LLHAB(D) is true, then

p ≤ b

b− 1
(1− q) + n−ω(1). (117)

Corollary 5.9. For integer n, assume that LLHAB(D) holds for distribution D over circuit acting
on n qubits. Then for every device A passes LXEBb,k with probability q over choices of C ∼ D,

Pr
C∼D

[Hmin(A(C)) ≥ B/2] ≥ bq − 1

b− 1
− n−ω(1). (118)

Since min-entropy is the smallest quantity in the family of Rényi entropies, we establish a lower
bound on the von Neumann entropy.

Theorem 5.10. For integer n, assume that LLHAB(D) holds for distribution D over circuits acting
on n qubits. Then for any device which on input a circuit C, outputs a classical state ψ over {0, 1}nk
solving LXEBb,k with probability q, it holds that

H(Z|C)ψ ≥
B

2

(
bq − 1

b− 1
− n−ω(1)

)
. (119)
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Proof. By Corollary 5.9, since min-entropy is the smallest quantity in the family of Rényi entropies,

Pr
C∼D

[
H(Z)ψC ≥ B/2

]
≥ bq − 1

b− 1
− n−ω(1)

where ψC is the distribution output by the device conditioned on C. Since for every C, the von
Neumann entropy is non-negative, by definition of conditional von Neumann entropy, we conclude
the proof.

5.3 Entropy Accumulation

To apply the EAT we showed in Section 4, we must give a min-tradeoff function f such that for
devices outputting a classical state ψ and solving LXEBb,k with probability q, H(Z|C)ψ ≥ f(q).
From Theorem 5.10, the affine function can be defined as

f(q) :=
bq − 1

b− 1

B

2
− c, (120)

for c = n−ω(1) independent of q.
For spot checking, by Lemma 3.18, we change the circuit Ω(log n) times so that a perfect device

can pass the verification with overwhelming probability. With the parameters, we are ready to give
our protocol in Figure 1.

We prove that the entropy accumulates. In the following theorem, let D = D1 . . . Dm denote
the responses received from the device, C = C1 . . . Cm denote the circuit sent from the device, and
T = T1 . . . Tm the flags indicating whether a test round is executed (see Figure 1).

Theorem 5.11. Assume that LLHAB(D) holds for distribution D. Conditioned on the event Ω that
the verifier does not abort in the protocol in Figure 1,

Hε
min(D|CT )ρ|Ω ≥ n

(
(0.99− 0.01/δ)βm−O

(√
m
)
·
√

log
2

p2ε2

)
, (123)

where β = B
2n , ρ is the output state, and p is the probability of non-aborting. Furthermore, there

exists a device which solves LXEB2,k for k = O(n2) with probability 1− o(1).

Proof. Let f be as defined in (120). To apply Corollary 4.14, we set dZ = N and ‖∇f‖∞ = b
b−1

B
2 ,

and therefore V ≤ (n+ 1) + b
b−1

B
2 . For b = 1 + δ and q ≥ 0.99,

bq

b− 1
≥ (1 + δ)0.99− 1

δ
≥ 0.99− 0.01/δ. (124)

This implies a lower bound

(0.99− 0.01/δ)Bm/2−
√
m((n+ 1) + (1/δ + 1)B/2)

√
2

p2ε2

= n

(
(0.99− 0.01/δ)βm−

√
m · (1 + 1/n+ (1/δ + 1)β)

√
2

p2ε2

)
≥ n

(
(0.99− 0.01/δ)βm−O(

√
m) ·

√
2

p2ε2

)
, (125)

where β = B
2n .
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Input: security parameter n, a distribution D over circuits on n qubits, the threshold constant
b ∈ [1, 2], the number of samples k = O(n2) per iteration, the number of rounds m, and the fraction
γ = O((log n)/m) of circuit updates.

The protocol:

1. For i = 1, . . . ,m, run the following steps:

(a) The verifier samples Ti ∼ Bernoulli(γ). If Ti−1 = 1 (when i > 1) or i = 1, the device
samples Ci ∼ D. Otherwise, the device sets Ci = Ci−1. The verifier sends Ci to the
device (and keeps Ti secret).

(b) The device returns k samples di = (z1, . . . , zk).

(c) If Ti = 1, the verifier sets

Wi = 1

[
1

k

k∑
i=1

pC(zi) ≥
b

N
∧ Ei

]
. (121)

where Ei = 0 if there exist distinct `, `′ ∈ {j : Cj = Ci} such that the samples d` =
(z`1, . . . , z`k) and d`′ = (z`′1, . . . , z`′k) are not all distinct. (This check is used to prevent
the device repeats responses for any two rounds using the same challenge circuit.) If
Ti = 0, the verifier sets Wi = ⊥.

2. Let t = |{i : Ti = 1}| be the number of test rounds. The verifier computes

W =
∑
i:Ti=1

Wi. (122)

If W ≥ 0.99t, then the verifier accepts and outputs (d1, . . . , dm) to the quantum-proof
randomness extractor.

Figure 1: The entropy accumulation protocol based on LLHA.
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5.4 LLHA Relative to a Random Oracle

Now, we turn our attention to justifying Assumption 5.1 relative to a random oracle. Given access
to a random function f : {0, 1}n → {+1,−1}, there is a simple algorithm which samples from the
Fourier spectrum:

|0n〉 H⊗n7−−−→
∑

x∈{0,1}n
|x〉

Of7−−→
∑

x∈{0,1}n
f(x)|x〉 H⊗n7−−−→

∑
y∈{0,1}n

f̂(x)|x〉, (126)

where f̂(x) := 1
N

∑
y∈{0,1}n(−1)x·yf(y) is the Fourier coefficient of f . Given oracle access to M

random Boolean functions and the samples, we defined a black-box version of the LLQSV problem.
For concreteness, the algorithm is given access to a unitary O : |i, x〉 7→ fi(x)|i, x〉, where i ranges
from 1 to M and f1, . . . , fM are random functions sampled from the uniform distribution Fn over
n-bit Boolean functions. The black-box version of LLQSV is formally defined as follows.

Problem 5 (Black-box LLQSV). For M = 2O(n), given access to strings s1, . . . , sM ∈ {0, 1}n and
to functions f1, . . . , fM ∼ Fn through the unitary O : |i, x〉 7→ fi(x)|i, x〉, determine whether, in the
yes case, si ∼ |f̂i|2, or, in the no case, each si is sampled from the uniform distribution (hence
independent of fi).

The proof is organized in the following steps. We prove LLQSV is not in QIP[2], the class of
problems which admits a two-message quantum interactive proof system, relative to a random oracle.
The proof is closely related to the black-box LLQSV lower bound for BQP by Bassirian, Bouland,
Fefferman, Gunn, and Tal [14], which also uses a hybrid argument [17], but here we strengthen the
hardness to QIP[2]. Thus the problem is not in QCAM.

However, the hybrid argument does not immediately lead to hardness for QCAM/qpoly. By
Aaronson and Drucker’s exchange theorem, QCAM/qpoly ⊆ QMA/poly, and thus it suffices to show
hardness for the latter. We then give a query lower bound using the polynomial method, and appeal
to the strong direct product theorem by Sherstov [58].

5.4.1 Two-message quantum interactive proofs

To show LLHA holds relative to O, we first provide intuition. If the algorithm is not given access to
O, then for both cases, s1, . . . , sM are uniform. Thus, alternatively, we can view O as a distribution
which may or may not depend on uniform s1, . . . , sM . This fact is stated in the following lemma.

Lemma 5.12. Let Fn be the uniform distribution over n-bit Boolean functions {0, 1}n → {+1,−1}
and Un be the uniform distribution over n-bit strings. The following two sampling processes are
equivalent, i.e. their output distributions are identical:

• Sample f ∼ Fn and then s ∼ |f̂ |2. Output (f, s).

• Sample s ∼ Un and then f ∼ Gn,s, where Gn,s(f) = Fn(f) · |f̂(s)|2 ·N . Output (f, s).

Proof. Let the probability density of the first distribution be µ(f, s) = Fn(f) · |f̂(s)|2. The marginal

µ(s) =
∑
f

Fn(f) · |f̂(s)|2

= E
f

[|f̂(s)|2]

=
1

N
. (127)
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It remains to calculate µ(f |s):

µ(f |s) =
µ(f, s)

µ(s)

= Fn(f) · |f̂(s)|2 ·N. (128)

We then define the following promise problem, called Boolean Function Bias Detection (BFBD).

Definition 5.13 (Boolean Function Bias Detection (BFBD)). The Boolean Function Bias Detection
problem is to distinguish between the follow cases:

• Yes-case: For each i ∈ [M ], sample f ∼ Gn, where Gn is the probability distribution of density
Gn(f) := N(1− 2∆(f))2Fn(f), where ∆(f) is the fraction of elements that evaluates to −1,
i.e., ∆(f) := 1

N |{x : f(x) = −1}|.

• No-case: For each i ∈ [M ], sample the distribution f ∼ Fn.

For function f , we will also call ∆(f) the distance of f . We now prove that BFBD reduces to
LLQSV, and thus it suffices to establish a lower bound for BFBD.

Lemma 5.14. BFBD reduces to LLQSV.

Proof. The reduction works as follows: Sample s1, . . . , sM uniformly and simulate the oracle
Q : |i, x〉 7→ (−1)si·x|i, x〉. Run the protocol for LLQSV using the oracle QO, and effectively
the protocol is given oracle access to the function gi = χsi · f , where χsi(x) := (−1)si·x for each
i ∈ [M ]. To see why the reduction works, it suffices to show that each oracle distributed identically
as the associated case for LLQSV. In the no case, the distribution of χs · f for uniform s and f is
distritubed uniformly and independently of s. In the yes case, let g = χs · f : the density µ of g can
be calculated as follows:

µ(g|s) = N(1− 2∆(g · χs))2 · Fn(g · χs)
= N(1− 2∆(g · χs))2 · Fn(g). (129)

The second equality holds since Fn is uniform. It remains to show that ĝ(s) = 1− 2∆(g · χs):

ĝ(s) =
1

N

∑
x

χs(x)f(x)

=
1

N

∑
x:χs(x)f(x)=1

χs(x)f(x)− 1

N

∑
x:χs(x)f(x)=−1

χs(x)f(x)

= 1− 2∆(g · χs). (130)

Though our purpose is to show LLQSV, or equivalently BFBD, is not in QCAM, here we prove a
stronger result: BFBD is not in QIP[2]. First, we observe that each distribution can be sampled by
choosing the distance ∆ first, and then sampling a function f according to the uniform distribution
among all functions of distance ∆. More formally, BFBD is equivalent to the following problem:
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• No-case: For each i ∈ [M ], sample Di ∼ Binomial(N, 1/2), the binomial distribution with N
trials and bias 1/2, and set ∆i = Di/N , i.e., the density is

p0(∆i) =

(
N

N∆i

)
2−N . (131)

Then sample fi ∼ H∆i , the uniform distribution over all functions g of distance ∆(g) = ∆i.

• Yes-case: For each i ∈ [M ], sample ∆i according to the distribution p1 of density

p1(∆i) := p0(∆i) ·N(1− 2∆i)
2. (132)

Then sample fi ∼ H∆i .

Then we show that for each distribution, ∆ is concentrated around 1/2, this allows us to only
consider the event that ∆ is sufficiently close to 1/2.

Lemma 5.15. For b ∈ {0, 1} and α > 0,

Pr
∆1,...,∆M∼pb

[
∃i, |∆i − 1/2| ≥ α√

N

]
≤ 2MNe−2α2

. (133)

Proof. In the no case, since each element of f is a fair coin, by Hoeffding’s inequality and union
bound,

Pr
∆1,...,∆M∼p0

[
∃i, |∆i − 1/2| ≥ α√

N

]
≤ 2Me−2α2

. (134)

In the yes case,

Pr
∆1,...,∆M∼p1

[
∃i, |∆i − 1/2| ≥ α√

N

]
≤M Pr

∆∼p1

[
|∆− 1/2| ≥ α√

N

]
≤ 2MNe−2α2

. (135)

The second inequality holds since for p1(∆) ≤ N · p0(∆) and by Hoeffding’s inequality.

For each distribution, consider the event Ω that |∆− 1/2| ≤ t, where t = ((lnMN2)/N)1/2 =
O((n/N)1/2). By Lemma 5.15, conditioned on Ω, the gap decreases by at most O(1/N). Then
for (∆1, . . . ,∆M ) ∈ Ω, we are dealing with the function distributed from H∆i for each i. Since H∆

can be obtained by flipping |∆− 1/2|N bits of f ∼ H1/2, we can use BBBV to give a query lower
bound.

Before we give the proof, let us characterize the behavior of a two-message quantum interactive
proof system for distinguishing two distributions D1 and D0. In a two-message protocol, the verifier
first makes T1 queries to f either sampled from D1 or D0 and computes a bipartite quantum state
σAB . The verifier sends the first system A to the (unbounded) prover, which performs an arbitrary
quantum process P ∈ CPTP(A,A′) and returns a second quantum message τA′ . Let the resulting
state be τA′B := P ⊗ 1B(σAB). Then the verifier continues making T2 queries on input τA′B and
outputs a decision bit. A T -query protocol is defined to be one making T = T1 + T2 queries. The
protocol is said to solve the problem if the verifier outputs b given Db with probability at least 2/3.

Our goal is to determine b, given access to M samples ∆1, . . . ,∆M ∼ pb, encoded as the oracle
O. To show that no protocol can solve the problem, we start with any verifier which outputs 1 with
probability at least 2/3 for an yes instance. We prove that when given a no instance, there is a
prover who convinces the verifier with probability at least 2/3− η for negligible η. More concretely,
we make random modifications from an yes instance to a no instance, in the following steps:
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1. Given f1, . . . , fM , for i ∈ [M ], compute ∆i = ∆(fi) and Si = {x : fi(x) = −1}. Also let
S̄i = {0, 1}n\Si.

2. Sample ∆′1, . . . ,∆
′
M ∼ p0. For i ∈ [M ], if ∆′i ≥ ∆i, choose a random subset R of Si such

that |R| = ∆′i − ∆i. Set gi(x) = fi(x) · (−1)1R(x), where 1R is the indicator function for
set R ⊆ {0, 1}n; otherwise, choose a random subset R of S̄i such that |R| = ∆i − ∆′i. Set
gi(x) = fi(x) · (−1)1R(x).

3. Output g1, . . . , gM .

We then prove that the modification yields a no instance.

Lemma 5.16. The following two processes are equivalent, i.e., their output distributions are identical:

1. Output g1, . . . , gM ∼ Fn.

2. Sample f1, . . . , fM ∼ Gn and perform the modification in the above. Output g1, . . . , gM .

Proof. It suffices to show that for every ∆1, . . . ,∆M , performing the modification on the product
distribution H∆1 × . . . × H∆M

yields the distribution Fn since Gn is a probabilistic mixture of
H∆1 × . . .×H∆M

for ∆1, . . . ,∆M ∼ p0. For each i ∈ [M ], recall that fi ∼ H∆i is a random subset
of size ∆iN . If ∆′i ≥ ∆i, removing ∆′i −∆i elements from Si yields a random subset of size ∆′i.
The other case follows similarly.

We provide intuition on why there exists a cheating prover for every o((N/n)1/4)-query QIP[2]
protocol. By Lemma 5.15, with probability O(1/N) over choices of functions sampled from Gn,
|∆i − 1/2| ≤ O((n/N)1/2) for every i ∈ [M ]. Again by Lemma 5.15, with probability O(1/N1/2),
sampling ∆′1, . . . ,∆

′
M ∼ p0, |∆′i − 1/2| ≤ O((n/N)1/2). This implies that randomly flipping∑M

i=1 |∆′i −∆i|N = O(
√
nNM) elements from a set of at least NM(1/2− o(1)) elements yields a

no instance. By BBBV’s hybrid argument [17], solving BFBD must make O((N/n)1/4) queries.

Theorem 5.17. Every QIP[2] protocol solving BFBD must make Ω((N/n)1/4) queries.

Proof. Let V be any verifier which outputs 1 for an yes instance with proabability p ≥ 2/3. Starting
from an yes instance f1, . . . , fM ∼ Gn, by Lemma 5.16, we perform the random modification to yield
a function g1, . . . , gM . Let ∆i = ∆(fi) and ∆′i = ∆(gi). By Lemma 5.15, with probability O(1/N),
|∆i − 1/2| and |∆′i − 1/2| are bounded by O((n/N)1/2). Conditioned on this event happening,
|∆i −∆′i| ≤ O((n/N)1/2).

For every functions F = (f1, . . . , fM ), let the prover be a quantum channel PF ∈ CPTP(A,A′).
Given access to O = O(F ) which encodes F , let V(1)

O and V(2)
O be the unitary channels performed by

the verifier in the first step and the second step of the protocol respectively. For c ∈ {1, 2}, we can
without loss of generality write

V
(c)
O = U

(c)
Tc
O . . . U (c)

1 OU
(c)
0 , (136)

and VO(ρ) = VOρV
†
O. The cheating prover proves to the verifier that it is given oracle access to

f1, . . . , fM ∼ Gn, but the verifier is given access to O(G) encoding G = (g1, . . . , gM ) obtained from
the above modification. The overall quantum channel TF is defined V(2)

O(G) ◦ PF ◦ V
(1)
O(G) under a

random modification. Without loss of generality, by introducing a purifying system E inaccessible
to the verifier, we can assume that PF ∈ CPTP(AE,A′E′) is a unitary channel for some system E′

also inaccessible to the verifier.
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Our goal is to show V(2)
O(F ) ◦ PF ◦ V

(1)
O(F ) is close to TF . By triangle inequality,

η :=
∥∥∥E
G
V(2)
O(G) ◦ PF ◦ V

(1)
O(G)(|0〉〈0|)− V

(2)
O(F ) ◦ PF ◦ V

(1)
O(F )(|0〉〈0|)

∥∥∥
tr

≤ E
G

∥∥∥V(2)
O(G) ◦ PF ◦ V

(1)
O(G)(|0〉〈0|)− V

(2)
O(G) ◦ PF ◦ V

(1)
O(F )(|0〉〈0|)

∥∥∥
tr

+ E
G

∥∥∥V(2)
O(G) ◦ PF ◦ V

(1)
O(F )(|0〉〈0|)− V

(2)
O(F ) ◦ PF ◦ V

(1)
O(F )(|0〉〈0|)

∥∥∥
tr

≤ E
G

∥∥∥V(1)
O(G)(|0〉〈0|)− V

(1)
O(F )(|0〉〈0|)

∥∥∥
tr

+ E
G

∥∥∥V(2)
O(G)(ρF )− V(2)

O(F )(ρF )
∥∥∥

tr
, (137)

where ρF := PF ◦ V(1)
O(F )(|0〉〈0|) is a quantum state independent of the random modification. Thus

it suffices to give an upper bound on the second term, and an upper bound for the first follows using
a similar argument since the zero state is also a state independent of the random modification.

Let |ψF 〉 be a purification of any quantum state ρF independent of the random modification.
For c ∈ {1, 2}, consider the sequence of states:

|φGTc〉 = U
(c)
T2
O(F )U

(c)
T2−1O(F ) . . . U

(c)
1 O(F )U

(c)
0 |ψF 〉,

|φGTc−1〉 = U
(c)
T2
O(G)U

(c)
T2−1O(F ) . . .O(F )U

(c)
1 O(F )U

(c)
0 |ψF 〉,

...

|φG1 〉 = U
(c)
T2
O(G)U

(c)
T2−1O(G) . . .O(G)U

(c)
1 O(F )U

(c)
0 |ψF 〉,

|φG0 〉 = U
(c)
T2
O(G)U

(c)
T2−1O(G) . . .O(G)U

(c)
1 O(G)U

(c)
0 |ψF 〉. (138)

The Euclidean distance between the first and the last hybrids can be bounded by bounding the
distance between two adjacent hybrids:

‖|φGT1〉 − |φ
G
0 〉‖ ≤ 2

T−1∑
i=0

‖1W |ψt〉‖, (139)

where |ψt〉 := UtO(F )Ut−1 . . . U1O(F )U0|ψF 〉 is the intermediate state after t queries and the set
W := {(i, x) : gi(x) 6= fi(x)}. Note that |ψt〉 is independent of W . Recall that we fix F and produce
G by flipping random elements, by (139), taking the expectation over W yields

E
W
‖V(2)
O(G)(ρF )− V(1)

O(F )(ρF )‖tr ≤ 2 E
W
‖|φGT1〉 − |φ

G
0 〉‖

≤ 4T1‖Q‖1/2op , (140)

where Q := EW 1W . Since the modification picks a random subset of size |W | =
∑M

i=1 |∆i −
∆′i|N = O(M(nN)1/2) on a set of size at least M(N/2−O((nN)1/2)), ‖Q‖ ≤ O((n/N)1/2). Thus
η ≤ O(T (n/N)1/4). Thus the verifier accepts the no case with probability at least p−η−O(1/N) >
1/3.

The statement in Theorem 5.17 can be further strengthened to QIP = QIP[3] using a similar
hybrid argument, but since we will not need this result, we do not pursue this further. By the
equivalence of BFBD and LLQSV shown in Lemma 5.14 and Theorem 5.17, we immediately have
the following corollary.

Corollary 5.18. There exists a constant c > 0 such that LLQSV /∈ QIP[2](c(N/n)1/4) relative to a
random oracle.
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5.4.2 Strengthen the hardness

The final step is to “lift” from a lower bound against a uniform complexity class like QIP[2] or
its subclass QMA, to a lower bound against the nonuniform complexity class QCAM/qpoly (or its
generalization to use more time and more advice).

As a first observation, QCAM = BP · QCMA, and the BP· operator can be simulated by polynomial-
size classical advice using Adleman’s trick. Thus QCAM/poly = QCMA/poly and QCAM/qpoly =
QCMA/qpoly. As a second observation, Aaronson and Drucker [8] proved that QCMA/qpoly ⊆
QMA/poly. Furthermore, all of these results relativize.

We apply the strong direct product theorem (SDPT) by Sherstov [58] to lift the hardness to
QMA/poly. Recall that Sherstov showed that the query complexity obeys SDPT when the query
lower bound of a single instance is proved using the polynomial method [15].

In the first step, we give an oracle separation coNP 6⊂ QMA/poly, and the proof for LLQSV /∈
QMA/poly will basically follow the same ideas with minor modifications.

Warmup: coNP 6⊂ QMA/poly. To give an oracle separation, the oracle F encodes N = 2n instances
of the problem. The oracle F contains N sections, and each section Fx ∈ {0, 1}N is indexed by an
n-bit string x. Let an yes instance be the all-one function, i.e., f0(x) = 1 for every x ∈ {0, 1}n. The
no instance is obtained by flipping εN points for ε ≥ η and η = 100/N . Each section Fx is either
the yes case or the no case, with probability 1/2. The task is on input x, determine in which case
Fx is. The problem is clearly in coNP, and therefore the proof of the following theorem is devoted
to showing that the problem is not in QMA/poly.

Theorem 5.19. There exists an oracle relative to which coNP 6⊂ QMA/poly.

Proof. Let Dx denote equal mixture of the yes case and the no case for each x ∈ {0, 1}n. For
x ∈ {0, 1}n, let F−x denote all the sections but Fx and similarly for D−x. Let f0 = 1N denote the yes
instance and ρF,x be the witness states given oracle access to F and input x. For a sufficiently small
constant c, η = 100/N , T = o((1/η)1/2/n) and S = cN , our idea is to show that a set of witness
states {ρx : x ∈ {0, 1}n} that convince any QMA(T )/S verifier V with probability at least 2/3 when
Fx = f0 can be used to convince the same verifier to accept a no instance for some x ∈ {0, 1}n with
probability more than 1/3. Thus the V does not solve the problem.

Suppose toward contradiction that it is not the case. Then V accepts when Fx = f0 with
probability at least 2/3, i.e.,

Pr
Fx=f0,F−x∼D−x

[
V F (wF , x, ρx) = 1

]
≥ 2/3, (141)

where wF ∈ {0, 1}S is a classical advice that depends on F . Furthermore, when the modification is
applied to Fx, the verifier can detect the change with the aid of the advice. More concretely, for
y ∈ {0, 1}n, let My denote a probabilistic algorithm applied F to change Fy = f0 to a no instance,
i.e., My(F )x is a no case if x = y and My(F )x = Fx otherwise. By the assumption we make, with
the modification, for every x ∈ {0, 1}n,

Pr
Fx=f0,F−x∼D−x,Mx(F )=G

[
V G(wG, x, ρx) = 0

]
≥ 2/3. (142)

Note that the advice can be sensitive to the change. Since the witness state does not depend on the
modification, we effectively remove the witness out of picture.
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Let D1 denote the distribution of the yes case and D0 denote the distribution of the no case.
Applying a witness-preserving amplification [42], let V ′ be the QMA(c′Tn)/S protocol which solves
the problem with probability at least 1 − 1/N2 for a sufficient large constant c′. Then we can
construct an QMA(c′TnN)/S verifier Ṽ which solves N problems: The prover sends the witness
state ρ :=

⊗
x∈{0,1}n ρx in one message, and the verifier runs V ′ on every x ∈ {0, 1}n, ρx and the

given advice wF , i.e., Ṽ F (wF , ρ) :=
⊗

x∈{0,1}n(V ′)F (wF , x, ρx). By a union bound, with probability
at least 1− 1/N , Ṽ outputs the correct N -bit string, i.e.,

Pr
b∼UN ,F∼Db

[
Ṽ F (wF , ρ) = b

]
≥ 1− 1/N, (143)

where UN denote the uniform distribution over N -bit strings and Db denote the distribution
×x∈{0,1}n Dbx .

Now we replace the advice wF with a random string (independent of F ), and by (143), this yields

Pr
b∼Un,F∼Db,r∼US

[
Ṽ F (r, ρ) = b

]
≥ 1− 1/N

2S
≥ 1

2S+1
. (144)

This effectively yields a c′TnN -query algorithm solving N problems with probability at least 2−S−1.
For each problem, let p denote the real polynomial that approximates the AND function to error
1/3. Thus the constraints we have are (i) p(0) ≥ 2/3, and (ii) p(ε) ≤ 1/3 for every 1 ≥ ε ≥ η and
εN is an integer. By Lemma 3.7, deg(p) ≥ Ω(

√
1/η). Now by Theorem 3.8, for a sufficiently small

constant c and S = cN , solving N independent problems with probability 2−S−1 requires 2cN
√

1/η
queries. Thus it must hold that c′TnN ≥ 2cN

√
1/η queries and T = Ω(

√
1/η/n).

LLQSV /∈ QMA/poly. The proof for LLQSV /∈ QMA/poly basically follows the idea for coNP 6⊂
QMA/poly, with the following modifications. First, the distribution D1 does not describe a fixed
function; instead, we replace it with the yes case in BFBD (Definition 5.13). For this, we basically
apply an averaging argument. Second, by Lemma 5.15, the no case of BFBD is obtained by
modifying the yes case on a random subset of size O(

√
n/N) with probability at least 1− 1/N . The

QMA/poly verifier is no longer required to solve the problem for every ε ≥ η, which is essential for a
lower bound using the polynomial method. We show that via a reduction, we can get sufficiently
many constraints to get a tight lower bound.

Here we describe the problem LLQSV relative to the following oracle: The oracle F contains N
sections, each indexed by an n-bit string x. Each section Fx is sampled uniformly from n-bit Boolean
functions, and the sample sx is either sampled from |F̂x|2, or a uniform n-bit string (independent of
Fx). On input x, the protocol is challenged to determine sx is sampled from |F̂x|2 in the yes case or
the uniform distribution in the no case.

Theorem 5.20. There exists a constant c > 0 such that LLQSV /∈ QMA(c(N/n)1/4/n)/(cN) relative
to a random oracle.

Proof. The proof basically follows that of Theorem 5.19. First by Lemma 5.14, let D1 and D0

denote the distributions in the yes and the no cases of BFBD (Definition 5.13) respectively. In this
picture, each section of the oracle is either sampled from D1 or from D0. Let D denote the equal
mixture of D1 and D0.

The idea is to show that for T = o((N/n)1/4/n), any set of witness states {ρF,x : F ∈
{0, 1}N×N , x ∈ {0, 1}n} that convince any QMA(T )/S verifier V with probability 2/3 when Fx ∼ D1

can be used to convince the verifier that Fx ∼ D0 for some x ∈ {0, 1}n with probability more than
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1/3. Suppose toward contradiction that for every x, when Fx ∼ D0, V accepts with probability
at most 1/3. Let the modification denote Mx to change any Fx such that Mx(Fx) is distributed
according to D0, and other sections are unchanged. By an averaging argument, for every x ∈ {0, 1}n,
there exists a function Fx and a random modification of size rx = O(

√
nN) such that the verifier

detects if the modification has been applied with probability at least 2/3− o(1). Then by random
self-reducibility, there exists a verifier which outputs the correct answer on every modification of size
rx with probability at least 2/3− o(1) as well.

By a witness-preserving amplification, there is a QMA(O(Tn))/S verifier which detects if there
is a random modification of size rx with probability at least 1− 1/N2 on every x. The assumption
implies that there is a QMA(O(TNn))/S verifier Ṽ which solves N problems (i.e., Ṽ determines if
there is a modification of size rx for every x ∈ {0, 1}n) with probability at least 1−O(1/N) on the
witness state ρF :=

⊗
x∈{0,1}n ρF,x independent of the modifications. Now we replace the advice

string with a random string, and yield a O(TNn)-query QMA verifier which is given the witness
state ρF and solves N problems with probability at least 2−S−1 on the witness ρF . Then we apply
Theorem 3.8 to get deg(p) = O(Tn) for any real polynomial p that approximate the function to
compute to error 1/5 for S = cN for a sufficiently small constant c.

It remains to show that every T ′-query algorithm detecting modifications on a random subset R
of size r ≤ O(

√
nN) in a set Q of size q = Ω(N) implies that a T ′-query algorithm which detects a

random modification R′ ⊆ Q′ for |R′| ∈ {1, 2, . . . , |Q′|} and |Q′| = Ω(q/r). Thus we can use the
polynomial method to conclude that every T ′-query algorithm solving the problem must satisfy
2T ′ = deg(p), for any polynomial p satisfying the following constraints: (i) p(0) ≥ 2/3 and (ii)
p(i) ≤ 1/3 for i ∈ {1, 2, . . . , |Q′|}. By Lemma 3.7, deg(p) = Ω(

√
|Q′|) = Ω((N/n)1/4) and thus

T = Ω(T ′/n) = Ω((N/n)1/4/n).
Without loss of generality, let Q = [q] and R be a random subset of size r. For every function

f0 : [q] → {0, 1}, we define the problem Pq,r as follows: In the yes case, the algorithm is given
access to f = f0, and in the no case, the algorithm is given access to f(x) := f0(x) ⊕ 1[x ∈ R]
for a random subset R of size r. Thus from the previous paragraph, our goal is to show that an
algorithm solving Pq,r implies an algorithm solving Pη,` for η = bq/rc and every ` ∈ {1, 2, . . . , η}
using the same number of queries. First we can stretch the parameters η, ` by a factor α ≥ 1 to
yield an instance g in Pαη,α`: Define g̃ : [αη] → {0, 1}, g̃(x) := f(((x − 1) mod η) + 1), and the
function g(x) := g̃ ◦ π(x) for a random permutation π on [αη]. Second, we can pad a function with
β elements to yield a reduction from Pη,` to Pη+β,`: Let g̃ : [η+ β]→ {0, 1}, g̃(x) = f(x) for x ∈ [q]
and g̃(x) = 0 for x > η, and the function g := g̃ ◦ π for a random permutation π on [η + β]. For
problem Pη,`, first we apply a stretch to yield Pηr/`,r, followed by a padding with q − ηr/` elements
to yield Pq,r.

When combining powerful quantum complexity classes with quantum advice, one needs to be
even more careful. For example, Raz [53] showed that QIP/qpoly = ALL (ALL being the class of
all languages), and Aaronson [2] likewise showed that PDQP/qpoly = ALL, where PDQP is the
generalization of BQP to allow multiple non-disturbing measurements [6]. Our proof based on a
strong direct product theorem can be used to further strengthen our result to LLQSV /∈ QMA/qpoly,
thereby giving a new proof for QMA/qpoly 6= ALL relative to a random oracle. Previously, Aaronson
proved that QMA/qpoly ⊆ PSPACE/poly [1].

We note that the proof technique does not allow us to prove the problem is not in QIP[2]/qpoly =
ALL, because there is no generic rewinding procedure to restore the quantum advice for another
use.

In any case, the above suffices to establish the following.
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Theorem 5.21. Relative to a random oracle, LLQSV /∈ QCAM(cn)/q(cn), for some constant
1 < c < 2.

6 A Device Performing the Ideal Measurement

In this section, we consider a device which does the following: the device may share an arbitrary
entanglement ψDE with Eve before receiving a Haar-random circuit. After receiving C ∼ Haar(N),
the device A performs the ideal measurement, i.e., it runs the circuit C on system D of ρDE , and
performs a standard basis measurement to output strings. On the other hand, the eavesdropper
Eve may learn information about the device’s output by applying an arbitrary quantum operation
on the second system E, but it has no direct access to A’s system and output. In the following
discussion, we will also call such a device A a semi-honest device.

6.1 A single-round analysis

In general, the first system is a Hilbert space D ∼= C2d for d ≥ n. Without loss of generality,
we can only consider the case where D ∼= CN , i.e., d = n. The reason is that for d ≥ n, we
can decompose D = D′ ⊗ D′′ such that HD′ ∼= CN is the system the circuit C acts on, and let
E′ = D′′⊗E. In this case, it suffices to find a lower bound ofH(D′|E′)ρ sinceH(D|E)ρ ≥ H(D′|E′)ρ
and Hmin(D|E)ρ ≥ Hmin(D′|E′)ρ, where ρ = ACD ⊗ 1E(ψ) is the classical-quantum state after the
ideal measurement is performed when C is chosen by the verifier. Thus in the following analysis, we
assume D ∼= CN and AC is the unitary channel of C on D.

6.1.1 The Holevo Information

By linearity of quantum operations, without loss of generality, we can consider the special case where
the device and the eavesdropper share a pure state in Schmidt decomposition

|ψ〉 =
∑

i∈{0,1}n

√
λi|φi〉D|ψi〉E , (145)

where each λi ≥ 0 is real for every i and {|φi〉} and {|ψi〉} are twe sets of orthonormal vectors. We
also denote ψ := |ψ〉〈ψ|.

Lemma 6.1. For any algorithm A, let σ = AC(ψ) be the classical-quantum state obtained by
performing a projective measurement depending on C on the first system D. Then the Holevo
information of σ, denoted χ(D : E)σ = H(λ), where H(λ) is the Shannon entropy of the distribution
λ.

Proof. We consider the unitary U :=
∑

i |φi〉〈i| and let Uij = 〈i|U |j〉 be the element of matrix
U . Also let Ū =

∑
ji Uji|ψi〉〈ψj |, ρ =

∑
i λ|i〉〈i| and ρ̄ =

∑
i λi|ψi〉〈ψi|. Since {|ψi〉} is a set of

orthonormal vectors, Ū is also a unitary acts on the space span{|ψi〉}. The entanglement |ψ〉 can
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be written in the standard basis:

|ψ〉 =
∑
i

√
λiU |i〉|ψi〉

=
∑
ij

√
λiUji|j〉|ψi〉

=
∑
ij

√
λi|j〉|ψi〉〈ψi|Ū |ψj〉

=
∑
j

|j〉Dρ̄1/2Ū |ψj〉E . (146)

We define the subnormalized pure state

σi := ρ̄1/2Ū |ψi〉〈ψi|Ū †ρ̄1/2, (147)

and compute the Holevo information:

χ(D : E)AC(ψ) = H(E)∑
i σi
−
∑
i

αiH(E)σi/αi

= H(λ). (148)

where H(λ) is the Shannon entropy of λ and αi := tr(σi). The second equality in (148) holds since∑
i

σi = ρ̄, (149)

and H(E)ρ̄ = H(λ). Moreover, since 1
αi
σi is a normalized pure state, H(E)σi/αi = 0. Note that∑

i σi is independent of Ū , so the Holevo information does not change if a different measurement is
performed on the first system D. Therefore for every C, the Holevo information is H(λ).

Next, we show that if the device solves (2−ε)N
N+1 -XHOG, then the Holevo information is at most

εn+ 1. This observation can be used to estabilish a lower bound of the conditional von Neumann
entropy.

6.1.2 High XHOG Score Implies Small Holevo Information

Previously, we have shown the Holevo information can be explicitly computed if the Schmidt
decomposition is known. In this section, we establish the connection between the Holevo information
and the score of any semi-honest device.

First, we introduce a useful technical lemma.

Lemma 6.2. Let p be a distribution p over finite set X of N elements such that there exists x ∈ X ,
p(x) ≥ 1− ε. Then the Shannon entropy H(p) ≤ εn+ 1.

Proof. Let p(x) = 1− γ for γ ≤ ε and q be the conditional distribution on the event that y 6= x i.e.,
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q(y) = p(x)/γ for y 6= x. By definition,

H(p) = −p(x) log p(x)−
∑
y 6=x

p(y) log p(y)

= −(1− γ) log(1− γ)− γ
∑
y 6=x

q(y)(log q(y) + log γ)

= −(1− γ) log(1− γ)− γ log γ − γ
∑
y 6=x

q(y) log q(y)

= h(γ) + γH(q), (150)

where h is the binary entropy function satisfying h(γ) ≤ 1 for γ ∈ [0, 1]. Since q is a distribution
over N − 1 elements, it Shannon entropy is upper bounded by log(N − 1) ≤ n.

By Lemma 6.2, to prove the Holevo information is small, it suffices to show that when the XHOG
score is high, the distribution λ must be concentrated on a single point.

Lemma 6.3. The Holevo information of the classical-quantum state obtained from any semi-honest
device solves (2−ε)N

N+1 -XHOG is at most εn+ 1.

Proof. We analyze the XHOG score of a device on input a standard basis vector |i〉:

Si := E
C∼Haar(N)

[∑
z

qC,i(z)pC(z)

]
. (151)

where qC,i(z) = |〈z|C|i〉|2. For i = 0, qC,0 = pC the score is 2
N+1 . For i 6= 0, the distribution of

pC(z) and qC,i(z) can be seen as two distinct elements of P ∼ Dir(1N ). These facts imply

Si = N · E
P∼Dir(1N )

[P0Pi]

=
1 + δi0
N + 1

. (152)

By definition, the XHOG score using |ψ〉 is

S = E
C

[∑
z

pC(z)〈ψ|(C†|z〉〈z|C)⊗ 1|ψ〉

]
=
∑
i

Si · 〈ψi|Ū †ρ̄Ū |ψi〉. (153)

Let τ̄ := Ū †ρ̄Ū and τ̄ ′ be the state obtained by measuring τ̄ in basis {|ψi〉}. If S ≥ 2−ε
N+1 ,

2− ε
N + 1

≤
∑
i

Siτ̄
′
ii

=
1 + τ̄ ′00

N + 1
. (154)

This implies that τ̄ ′00 ≥ 1− ε. By Lemma 6.1, the Holevo information can be upper bounded:

χ(D : E)AC(ρ) = H(E)τ̄ ≤ H(E)τ̄ ′ ≤ εn+ 1. (155)

Since τ̄ ′ is obtained by performing a projective measurement {|ψi〉} on τ , by Lemma 3.11, H(E)τ̄ ≤
H(E)τ̄ ′ . The second inequality holds by Lemma 6.2. Moreover, the inequality saturates when Ū is
the identity matrix, i.e., {|ψi〉} is the standard basis.
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We note that the bound in Lemma 6.3 is nearly optimal: Consider the case where the entanglement
shared by the device and Eve be the quantum state

|ψ〉DE = (1− ε)1/2|0, 0〉+

(
ε

N − 1

)1/2∑
x 6=0

|x, x〉. (156)

The the Holevo information by Lemma 6.1 is ε log(N − 1) + h(ε).

6.1.3 A Single-Round Analysis

Now we show small Holevo information implies large conditional von Neumann entropy. We apply
the idea from [11] and [10]. Let D and E denote the device’s output random variable and Eve’s
quantum register, repectively. By definition, the Holevo information

χ(D : E)AC(ρ) = H(E)AC(ρ) −H(E|D)AC(ρ), (157)

where H denotes the von Neumann entropy. The following theorem shows a linear lower bound of
the von Neumann entropy when the device solves b-XHOG for b ≈ (2− ε).
Theorem 6.4. For any device AC that given access to C and performs the ideal measurement on
the first system D of any bipartite quantum state ρDE and solves b-XHOG for b ≥ (2−ε)N

N+1 ,

Pr
C∼Haar(N)

[
H(D|E)AC(ρ) ≥ (0.99− ε)n

]
≥ 1−O

(
1

N0.02

)
. (158)

Proof. Let AC be any device that performs an ideal measurement to yield ψCDE := AC(ρ) and
outputs a random variable D. We observe that

H(D|E)ψC = H(DE)ψC −H(E)ψC

= H(D)ψC +H(E|D)ψC −H(E)ψC

= H(D)ψC − χ(D : E)ψC . (159)

The first term in the third line of (159), i.e., H(D)ψC , denotes the von Neumann entropy of the
device’s output, when Eve’s system E is empty. To lower bound the first term in (159), recall that
qC,i(z) = |〈z|C|i〉|2 = pCXi(z). From (44) and right translational invariance of the Haar measure,
for every i,

Pr
C∼Haar(N)

[H(pCXi) ≥ 0.99n+ 1] ≥ Pr
C

[
SC ≤ N−0.99/2

]
≥ 1−O

(
1

N1.02

)
. (160)

By the union bound,

Pr
C∼Haar(N)

[
min

i∈{0,1}n
H(pCXi) ≥ 0.99n+ 1

]
≥ 1−O

(
1

N0.02

)
. (161)

Now by the convexity of Shannon entropy and the definition that qC(z) = Ei∼τ̄ ′ [qC,i(z)],

Pr
C∼Haar(N)

[H(qC) ≥ 0.99n+ 1] ≥ Pr
C∼Haar(N)

[
E
i∼τ̄ ′

[H(pCXi)] ≥ 0.99n+ 1

]
≥ Pr

C∼Haar(N)

[
min
i
H(pCXi) ≥ 0.99n+ 1

]
≥ 1−O

(
1

N0.02

)
. (162)
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Input: security parameter n, the number of rounds m, the score parameter δ ∈ [0, 1] and the fraction
of test rounds γ.

The protocol:

1. The verifier samples C ∼ Haar(N). For i = 1, . . . ,m, run the following steps:

(a) The verifier sends C to the device. (This step may be omitted.)

(b) The device returns a sample zi.

2. Let t = |{i : Ti = 1}| be the number of test rounds. The verifier computes

s =
1

t

∑
i:Ti=1

pC(zi). (166)

If s ≥ (1 + δ)/N , then the verifier accepts and outputs (z1, . . . , zm) to the quantum-proof
randomness extractor.

Figure 2: The entropy accumulation protocol for a device performing the ideal measurement.

Thus since H(D)ψC = H(qC),

Pr
C∼Haar(N)

[
H(D)ψC ≥ 0.99n+ 1

]
≥ 1−O

(
1

N0.02

)
. (163)

In Lemma 6.3, we have shown that for every C, χ(D : E)ψC ≤ εn+ 1. Then by (163),

Pr
C∼Haar(N)

[
H(D|E)ψC ≥ (0.99− ε)n

]
≥ 1−O

(
1

N0.02

)
. (164)

We denote the output state ψ = EC∼Haar(N)

[
|C〉〈C| ⊗ ψC

]
, and

H(D|CE)ψ := E
C∼Haar(N)

[
H(D|E)ψC

]
. (165)

The following corollary concludes our single-round analysis for this ideal setting.

Corollary 6.5. Let A be any device performing an ideal measurement solving (1 + δ)-XHOG and ψ
be its output. Then H(D|CE)ψ ≥ (δ − 0.01)n− o(1).

Proof. By definition and Theorem 6.4, H(D|CE)ψ ≥ (δ − 0.01)n−O(N−0.02).

6.2 Entropy Accumulation

We present our entropy accumulation protocol for any device which performs the ideal measurement
in Figure 2. Note that since the von Neumann entropy lower bound holds for almost every C, the
verifier may reuse the circuit in every round.
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Theorem 6.6. Let A1, . . . ,Am be nO(1)-query sequential processes given access to the first system
of a bipartite state ρDE and outputting z1, . . . , zm solving LXEB1+δ,m with probability p. Then with
probability 1− 2−Ω(n) over the choices of C,

Hε
min(Zm|E)Am◦...A1(ρ)|Ω ≥ n

(
(δ − 0.01)m− c

√
m− o(1)

)
(167)

where Ω denotes the event that the output z1, . . . , zm solves LXEB1+δ,m, i.e.,

Ω :=

{
(z1, . . . , zm) :

1

m

m∑
i=1

P (z) ≥ 1 + δ

N

}
. (168)

The parameter c := 4.01(1 + log( 1
pε))

1/2.

Proof. We apply the EAT shown in Section 4. In particular, we choose G := N
∑

z |z〉〈z|P (z).
By Corollary 6.5, we choose f(δ) = (δ − 0.01)n − o(1). This gives ‖∇f‖∞ = n. Then we have
V = 2(log(2dZ + 1) + ‖∇f‖∞) = 2(log(2N + 1) + n) = 4n+O(1/N) ≤ 4.01n. Now we have

Hε
min(Zm|E)Am◦...◦A1(ρ)|Ω ≥ n

(
(δ − 0.01)m− o(1/n)− 4.01

√
m

√
log

2

Prσ[Ω]2ε2

)
. (169)

As a side note, the same analysis in Section 6.1 and Section 6.2 also applies to a Fourier sampling
circuit, i.e., C describes the unitary transformations in (126) under a random n-bit Boolean functions
f . In this case, an ideal devices solves b-XHOG for b ≈ 3 [39], and any device solving (1 + 2δ)-
XHOG has a lower bound Ω(δn) on the conditional von Neumann entropy. Applying the entropy
accumulation theorem, an m-round protocol also accumulates Ω(δmn) conditional min-entropy.

The analysis in Section 6 is meant to provide an intuition on why LXEB can be used to generate
randomness in a simplified setting. In particular, for entropy accumulation, the channels A1, . . . ,Am
are the ideal unitary channel of C, so this setting is far from full device-independence. In the next
section, we provide an analysis for a fully general device where the channels A1, . . . ,Am are not
necessarily ideal.

7 A Fully General Device

In this section, we give an analysis for a general device. Before we prove our main result, first we
provide some intuition. Let ρDE be an entangled state shared between the device and Eve, and
AC(ρDE) be the quantum algorithm that the device performs given access to the first subsystem D
and the circuit C. Without loss of generality, AC(ρDE) outputs a classical-quantum state in the
form

∑
z p(z)|z〉〈z|D′ ⊗ ξE(z) (this also implies that AC is a quantum channel of type D → D′ for

Hilbert spaces D and D′) for normalized quantum states ξE(z). The classical part, i.e., the random
variable z is sent to the verifier, and the quantum information ξE(z) can be used as the input to the
next round of interaction. In an m-round protocol, the device and the verifier repeat the message
exchanges m times, and the verifier outputs a decision bit indicating accept or abort. If the verifier
accepts, then the output of the device is fed into a quantum-proof randomness extractor.

We consider any device given oracle access to C, and show that if the device passes LXEBb,k,
the output must has a min-entropy lower bound. First, applying the rotational invariance of a
Haar random unitary, we formally define an input model in which the device is given access to:
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the verifier samples a circuit C ∼ Haar(N) and two unitaries V,W . The first unitary V is a
random phase unitary of the form

∑
z e

iθz |z〉〈z|, where each θz is independently sampled from the
uniform distribution over [0, 2π). The second unitary W is a Haar random unitary on the subspace
{|x〉 : x ∈ {0, 1}n\{0n}}. The device is then given oracle access to C ′ = V CW , and by definition, it
is clear that pC = pC′ , where pC(z) := |〈z|C|0〉|2 is the density of pC . Also, C and C ′ are identically
distributed (according to the Haar measure). We will say an efficient device is given oracle access
to C if it can apply C ′ on any subset of its system D of the same size.

The symmetrization allows us to analyze a von Neumann entropy lower bound. In particular, we
show that the conditional von Neumann entropy on C is equal to the von Neumann entropy on pC
in this query model. Since C is distributed over an infinite set, we define the von Neumann entropy
H(Z|CE)ψ := EC

[
H(Z|E)ψC

]
, where ψC is the classical-quantum state output by the device A

when A is given access to C. In the following discussion, we use capitalized PC to emphasize that
the distribution is a vector of complex-valued random variables over the probability simplex. In
particular, for C ∼ Haar(N), PC is distributed according the the Dirichlet distribution Dir(1N ) (see
Section 3.4 for details).

Theorem 7.1. For Haar random C and every device A which on input the first system of a bipartite
state ρDE and outputs a classical-quantum state ψ given oracle access to C. Then H(Z|CE)ψ =
H(Z|PCE)ψ, where PC(z) := |〈z|C|0n〉|2 is distributed according to the Dirichlet distribution Dir(1N ).

Proof. For every distribution P , we let SP be the set of unitaries such that PC = P . For each P ,
let CP denote a representative in the set SP . Then for C ∈ SP , there exists a diagonal unitary
V ′ and a unitary W ′ on the subspace span{|x〉 : x 6= 0n} such that C = V ′CPW

′. This implies
that one can simulate a query to C ∈ SP using one query to CP . More precisely, for C ∈ SP ,
we denote σP = ψC = ψCP . This implies that H(Z|E)ψC = H(Z|E)σP . By the definition of
conditional von Neumann entropy and the fact that pC is distributed according the distribution
Dir(1N ), H(Z|CE)ψ = EP∼Dir(1N )[H(Z|E)σp ] = H(Z|PE)ψ.

Our analysis proceeds in the following steps. First, we show that for every T -query A and ρDE ,
there is another quantum algorithm B which on input the first system D of ρDE and k i.i.d. random
variables z1, . . . , zk sampled according to PC for Haar-random C such that∥∥∥∥EC AC(ρDE)− E

C,z1,...,zk∼PC
B(ρDE , z1, . . . , zk)

∥∥∥∥
tr

≤ 2−Ω(n), (170)

for k = T 2 · 2−Ω(n). Thus without loss of generality, we may consider the behavior of B.
Next, we show that B’s score can be easily calculated using the probability that the out-

put z ∈ {z1, . . . , zk}. More specifically, we show that B’s score is negligibly close to 1
N+k ·

(1 + Pr[z ∈ {z1, . . . , zk}]). Thus, when B’s score is 1+δ
N+k , potentially the device and the eavesdropper

can coordinate in a way such that the conditional von Neumann entropy using ρDE with probability
negligibly close to δ; otherwise, since the eavesdropper has no information about z1, . . . , zk, and each
zi is sampled from PC , the conditional von Neumann entropy can be bounded by the min-entropy of
PC . Then since with overwhelming probability over C, PC ’s min-entropy is n− log n−O(1), A’s
output must have high conditional von Neumann entropy when it wins the prototol for a “typical”
C.

7.1 Simulation of a Haar Random Unitary Given Sample Access

In this section, we show that any T -query algorithm for T = 2O(n) outputs a classical-quantum state
whose conditional von Neumann entropy is δn− o(n), provided it solves the (1 + δ)-XHOG problem.
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We show that one can simulate an oracle-access algorithm using a sample-access one. For this, we
rely on the ideas from Ambainis, Rosmanis and Unruh [9] and from Kretschmer [39].

7.1.1 From a Circuit Oracle to a State-Preparation Oracle

For state |ψ〉, let Cψ be a random unitary such that Cψ|0〉 = |ψ〉 and Cψ is Haar random for the
subspace orthogonal to |0〉, and Oψ be a reflection about |ψ⊥〉 = |ψ〉−|⊥〉√

2
, i.e., it sends |ψ〉 7→ |⊥〉

and |⊥〉 7→ |ψ〉 and acts trivially for states orthogonal to states in span{|ψ〉, |⊥〉}.
The first step is to show one can approximate every T -query algorithm given access to Cψ

using an O(T )-query algorithm given access to Oψ for every |ψ〉. We prove the following theorem,
improving the constant factor of [39, Theorem 19].

Theorem 7.2 (cf. [39, Theorem 19]). For every quantum state |ψ〉, every T -query algorithm ACψ

can be approximated by a (2T )-query quantum algorithm BOψ such that∥∥∥∥BOψ − E
Cψ

[ACψ ]

∥∥∥∥
�
≤ 4T

2n/2
. (171)

Proof. It suffices to give a simulation of Cψ using oracle access to Oψ. The crucial idea from
Kretschmer [39] is that if we have access to Oψ⊥ for any state |ψ⊥〉 orthogonal to |ψ〉, and can
prepare |ψ⊥〉 with any unitary V ψ⊥ |0〉 = |ψ⊥〉, then

|0n〉 V ψ
⊥

7−−−→ |ψ⊥〉 O
ψ

7−−→ |ψ⊥〉 O
ψ⊥

7−−−→ |⊥〉 O
ψ

7−−→ |ψ〉. (172)

Then we consider another unitary W = |0〉〈0| ⊕C ′ where C ′ is a Haar random unitary on the Hilbert
space span{|x〉 : x 6= 0}. The sequence of unitaries

|0n〉 W7−→ |0〉 V ψ
⊥

7−−−→ |ψ⊥〉 O
ψ

7−−→ |ψ⊥〉 O
ψ⊥

7−−−→ |⊥〉 O
ψ

7−−→ |ψ〉, (173)

|x〉 O
ψOψ⊥OψV ψ⊥W7−−−−−−−−−−−−→ |ψx〉, x 6= 0, (174)

satisfying |ψx〉 is a Haar random unitary over spaces spanned by states orthogonal to |ψ〉 (and of
course |⊥〉). Setting Cψ := OψOψ⊥OψV ψ⊥W satisfies all the requirements as desired.

However, since we do not know |ψ〉, we have no access to |ψ⊥〉, V ψ⊥ and Oψ⊥ , thus the above
maps may not be implemented (without using a large number of queries to Oψ). Instead, if we
sample a Haar random state |ϕ〉, Pr|ϕ〉[|〈ϕ|ψ〉| ≥ γ] ≤ e−nγ

2 ; thus with high probability they are
nearly orthogonal. Given the observation, we can sample a haar random state |ϕ〉, and use |ϕ〉 in
place of |ψ⊥〉 for our simulation of Cψ. Since the state |ϕ〉 is sampled uniformly instead of a fixed
quantum state, we must consider the quantum channel

Φψ(ρ) := E
|ϕ〉

[
OψOϕOψV ϕρ(OψOϕOψV ϕ)†

]
. (175)

and show that Φψ is close to Cψ(ρ) := Cψρ(Cψ)† in diamond norm.
Let Vϕ be the unitary channel of V ϕ. To show they are close, by triangle inequality,

‖Φψ − Cψ‖� ≤
∥∥∥∥E|ϕ〉Vϕ − Vψ⊥

∥∥∥∥
�

+

∥∥∥∥E|ϕ〉Oϕ −Oψ⊥
∥∥∥∥
�
. (176)
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Since all state |ψ⊥〉 behaves equally well for the simulation purpose (i.e., every |ψ⊥〉 orthogonal to
|ψ〉 can be used simulates Cψ exactly), in (176) our choice of |ψ⊥〉 can be made to actually depend
on |ϕ〉. More explicitly, we define |ψ⊥〉 ∈ span{|ψ〉, |ϕ〉} to be the unique orthogonal state to |ψ〉 (up
to a phase). In this case, the diamond norm ‖Vϕ−Vψ⊥‖� ≤ 2|〈ψ|ϕ〉|. Since OϕOψ⊥ is a rotation by
angle 2α for α = arccos(cos2(θ/2)), the eigenvalues are ei2α, e−i2α, 1, and

‖Oϕ −Oψ⊥‖� ≤ 2 sinα

= 2
√

1− cos4(θ/2)

= 2

√√√√1−

(
1 +

√
1− |ε|2
2

)2

≤ 2|ε|, (177)

where ε = 〈ϕ|ψ〉. The last equality in (177) holds since
√

1− x2 ≤ 1 for x ∈ [0, 1]. By (176) and a
hybrid argument,

‖Φψ − Cψ‖� ≤ 4 E
|ϕ〉

[|〈ψ|ϕ〉|]

≤ 4 E
|ϕ〉

[|〈ϕ|ψ〉|2]1/2

=
4

2n/2
. (178)

Now let ACψ be a quantum algorithm given access to Cψ and BOψ = AΦψ . By triangle inequality
and (178), ‖ACψ − BOψ‖� ≤ 4T

2n/2
. Also from (175), BOψ makes 2T queries to Oψ.

In the above analysis, note that the definition of |⊥〉 is not unique: every state |⊥〉 orthogonal to
span{|z〉 : z ∈ {0, 1}n} can be used. In particular, we can replace |⊥〉 with eiθ|⊥〉, and the analysis
will still go through. Let Oψθ be a map eiθ|⊥〉 7→ |ψ〉, |ψ〉 7→ eiθ|⊥〉 and acts as the identity for states
orthogonal to |ψ〉 and |⊥〉. The observation leads to the following corollary.

Corollary 7.3. Let |⊥〉 be a fixed state orthogonal to span{|z〉 : z ∈ {0, 1}n}. For θ ∈ [0, 2π), every
quantum state |ψ〉 and every T -query algorithm ACψ , there exists a (2T )-query algorithm B such that∥∥∥∥BOψθ − E

Cψ
[ACψ ]

∥∥∥∥
�
≤ 4T

2n/2
. (179)

7.1.2 From Canonical State Preparation Oracles to Resource States

In this section, we apply the idea from Ambainis, Rosmanis and Unruh [9] to show that given
resource states that depend on the Haar random state, one can approximate any algorithm given
access to the canonical state preparation oracle.

Theorem 7.4 ([9, Theorem 3], paraphrased). Let |ψ〉 be a quantum state and Oψ be a reflection about
1√
2
(|ψ〉 − |⊥〉). Let O be an oracle and ρ be a quantum state. Let |Rψ〉 = |ψ`〉 ⊗ |αψ1 〉 ⊗ . . .⊗ |α

ψ
m〉,

where |αψi 〉 = cos( iπ2k )|ψ〉+ sin( iπ2m)|⊥〉. For every quantum state ρ and algorithm B that on input ρ
and makes T -query to Oψ, there exists an algorithm G that on input ρ, |R〉 makes the same number
of queries to O as B such that

‖BOψ ,O(ρ)− GO(ρ, |Rψ〉)‖tr ≤ O
(
T

(
1√
m

+
1√
`

))
. (180)
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Moreover, (180) holds when |ψ〉, O and ρ are not independent.

For a detailed proof, see [9]. Here we provide some intuition. Let S be the left cyclic shift operator
and |R̃ψ〉 = |αψ1 〉⊗. . .⊗|α

ψ
m〉. One application of S on |⊥〉|R̃ψ〉 yields S|⊥〉|R̃ψ〉 = |R̃ψ〉|⊥〉 ≈ |ψ〉|R̃ψ〉

since the fidelity

|〈ψ, R̃ψ|S|⊥, R̃ψ〉|2 = cos
( π

2k

)k
≥
(

1− π2

4k2

)k
≥ 1− π2

4k
(181)

implies that the trace distance is O(k−1/2). Furthermore, with an ideal resource state where k →∞,
one can give rise to a reflection about 1√

2
(|ψ〉 − |⊥〉) using control-S, if the reflection R about |ψ〉

can be implemented. Since |ψ〉 is unknown, it is not known how to implement R exactly. However,
with ` copies of |ψ〉, we can approximate R to diamond distance O(`−1/2): Let V be the space of
(`+1)-partite states invariant under permutations andM be the projection onto V . For |Φ〉 = |φ〉|T 〉
where |T 〉 = |ψ〉⊗`, if |φ〉 = |ψ〉, 〈Φ|M |Φ〉 = 1; for |φ〉 orthogonal to |ψ〉, 〈Φ|M |Φ〉 ≤ O(1/`). Thus
a reflection 1 − 2M approximates R to diamond distance O(1/

√
`), and after the measurement,

the state is disturbed to trace distance O(`−1/2). Finally, since there are T queries, by a hybrid
argument, the overall diamond distance is O(T (m−1/2 + `−1/2)).

For every state |ψ〉, let the state |Rψθ 〉 be the same as |Rψ〉 except that |⊥〉 is replaced with
eiθ|⊥〉, i.e.,

|Rψθ 〉 := |ψ`〉 ⊗
k⊗
i=1

(
cos

(
iπ

2m

)
|ψ〉+ sin

(
iπ

2m

)
eiθ|⊥〉

)
(182)

Since Theorem 7.4 holds if every occurrence of |⊥〉 is replaced by eiθ|⊥〉, we have the following
corollary:

Corollary 7.5. Let |ψ〉 be a quantum state and Oψθ be a reflection about 1√
2
(|ψ〉 − eiθ|⊥〉). Let O be

an oracle and ρ be a quantum state. Let |Rψθ 〉 be defined as in (182). For θ ∈ [0, 2π), quantum state
ρ and every algorithm B that on input ρ and makes T -query to Oψθ , there exists an algorithm G that
on input ρ, |Rψθ 〉 makes the same number of queries to O as B such that

‖BO
ψ
θ ,O(ρ)− GO(ρ, |Rψθ 〉)‖tr ≤ O

(
T

(
1√
m

+
1√
`

))
. (183)

Moreover, (183) holds when |ψ〉, O and ρ are not independent.

Combining Corollary 7.3 and Corollary 7.5, the following corollary holds.

Corollary 7.6. For quantum state |ψ〉 and every quantum algorithm A making T queries to Cψ,
there exists a quantum algorithm G given access to |Rψθ 〉 for uniform θ ∈ [0, 2π) such that∥∥∥∥ E

Cψ

[
ACψ

]
− G

(
E
θ
[|Rψθ 〉〈R

ψ
θ |]
)∥∥∥∥
�
≤ O(Tk−1/2) +

4T

N1/2
. (184)

Proof. By Corollary 7.3, for every θ ∈ [0, 2π) and T -query algorithm ACψ , there exists BO
ψ
θ such

that their diamond distance is at most 4TN−1/2. By Corollary 7.5, for every θ ∈ [0, 2π) and T -query
algorithm BO

ψ
θ , there exists G(|Rψθ 〉) such that their diamond distance is at most O(Tm−1/2) (we

set m = ` = k/2 to simplify the expression).
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By triangle inequality,∥∥∥∥ E
Cψ

[
ACψ

]
− E

θ
[G(|Rψθ 〉〈R

ψ
θ |)]
∥∥∥∥
�
≤ E

θ

∥∥∥∥ E
Cψ

[
ACψ

]
− BO

ψ
θ

∥∥∥∥
�

+ E
θ

∥∥∥BOψθ − G(|Rθ〉〈Rθ|)
∥∥∥
�

≤ O(Tk−1/2) +
4T

N1/2
. (185)

By linearity of quantum operations, Eθ
[
G
(
|Rψθ 〉〈R

ψ
θ |
)]

= G
(
Eθ
[
|Rψθ 〉〈R

ψ
θ |
])

.

7.1.3 From Resource States to Samples

Now we go from resource states to samples. For random |ψ〉, we write the state

|ψ〉 = (
√
P0e

iΘ0 , . . . ,
√
PN−1e

iΘN−1), (186)

where P = (P0, . . . , PN−1) ∼ Dir(1N ) and each component Θi of Θ = (Θ0, . . . ,ΘN−1) are indepen-
dent random phases, i.e., each Θi is sampled according to the uniform distribution over [0, 2π). For
every distribution P , we denote |P 〉 := (

√
P0, . . . ,

√
PN−1) and |ψP 〉 = W |P 〉 for a random diagonal

phase matrix W = diag(W0, . . . ,WN−1) := eidiag(Θ). For every |ψ〉, let |RP,Wθ 〉 be the associated
resource state. In matrix form,

|RP,Wθ 〉 = |ψP,W 〉⊗` ⊗
m⊗
j=1

|αP,Wi,θ 〉, (187)

where |αP,Wi,θ 〉 := cos( πi2k )|ψP,W 〉+ sin( πi2k )eiθ|⊥〉.

Let W̃ = W + eiθ|⊥〉〈⊥|. The state |RP,Wθ 〉 can be written as

|RP,W̃ 〉 := |RP,Wθ 〉 = (W̃ |P 〉)⊗` ⊗
k⊗
j=1

(W̃ |Pi〉) (188)

We will use the following lemma from [39].

Lemma 7.7 ([39, Lemma 15], paraphrased). There is an algorithm which prepares

σP := Ẽ
W

[
|RP,W 〉〈RP,W |

]
(189)

by measuring (k + `) copies of |ψ〉 in the standard basis.

Let CP be the following random circuit: Let V |0〉 = (
√
P0, . . . ,

√
PN−1), C ′ be a Haar random

matrix on span{|z〉 : z ∈ {1, . . . , N − 1}} and CP = WV C ′ for random diagonal phase matrix W .
We then prove the following theorem.

Theorem 7.8. For every distribution P , let CP be a random circuit sampled from the above process.
For every algorithm A making T queries to CP , there exists a quantum algorithm F given access to
k samples drawn from P such that∥∥ĀP − F̄P∥∥� ≤ O(Tk−1/2) +

4T

N1/2
, (190)

where ĀP := ECP [ACP ] and F̄P := Ez1,...,zk∼P F(z1, . . . , zk).
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Proof. Let |ψP 〉 = W̃ |P 〉 for random phase matrix W̃ on span{|0〉, . . . , |N − 1〉, |⊥〉}. The channel

E
CP

[
ACP

]
= E

W̃ ,Cψ

[
ACψ

]
. (191)

Let the quantum process in Lemma 7.7 be Φ, the process

Ẽ
W

[
G(|RP,W̃ 〉〈RP,W̃ |)

]
= G

(
Ẽ
W
|RP,W̃ 〉〈RP,W̃ |

)
= G(σP ) = E

z1,...,zk∼P
G ◦ Φ(z1, . . . , zk). (192)

Now let F = G ◦ Φ. By triangle inequality and Corollary 7.6,∥∥∥∥ E
CP

[
ACP

]
− E
z1,...,zm∼P

F(z1, . . . , zk)

∥∥∥∥
�
≤ E

W

∥∥∥∥ E
Cψ

[
ACψ

]
− G

(
E
θ
|Rψθ 〉〈R

ψ
θ |]
)∥∥∥∥
�

≤ O(Tk−1/2) +
4T

N1/2
. (193)

7.2 A Single-Round Analysis

In this section, we prove our main result in Section 7. We show that with probability 1−N−Ω(1)

over the choice of PC for Haar random C, the conditional von Neumann entropy of any T -query
device’s output on Eve’s information is at least Ω(δn), provided that T = 2O(n) and the device solves
b-XHOG for b ≈ 1 + δ.

First, we consider a simplified device F which is only given sample access to PC and solves
b-XHOG. We show this game is equivalent to the following protocol: The verifier samples a
distribution P ∼ Dir(1N ), z1, . . . , zk ∼ P . The verifier sends z1, . . . , zk to the device. Without loss
of generality, we may assume that P is revealed to Eve but not all the samples. The device is
challenged to return a string z and the verifier accepts if z ∈ {z1, . . . , zk}. Recall that if C is Haar
random, PC is distributed according to Dir(1N ). A detailed description of the protocol is given in
Figure 3.

The simplified protocol is equivalent to solving XHOG in the following sense: If the device solves
(2− ε′)-XHOG, then the device is accepted in the protocol described in Figure 3 with probability
at least 1 − ε′ for ε′ = ε + O(k3/N). Then, we show that for every device in Figure 3 wins the
protocol with probability 1− ε′, the conditional von Neumann entropy is at least (1− ε′)n− o(n).
This implies that the protocol in Figure 3 also certifies the conditional von Neumann entropy.

By Theorem 7.8, any T -query algorithm A can be well approximated by an algorithm F that
is given only sample access to PC to diamond distance δ = O(Tk−1/2). Furthermore, we will also
show that if A solves (2− ε)-XHOG, then F solves b′-XHOG for b′ = 2− ε− δ. Combining these
results completes our single-round analysis.

7.2.1 A Simplified Device

In this section, we show that for any algorithm F given k samples drawn from P , the only way
that F has high score is to output one of the given samples. Thus the proof system in Figure 3 is
equivalent to solving XHOG.

First, we prove a technical lemma which will be useful later.
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Input: security parameter n and number of samples k.
The protocol:

1. Eve and the device F share an arbitrary entangled state ρDE .

2. The verifier samples a distribution P ∼ Dir(1N ) (where N = 2n) and samples z1, . . . , zk ∼ P
which is sent to the device F (but not to Eve). Moreover, P may be revealed to Eve (but not
to the device).

3. The device sends a string z.

4. The verifier accepts if z ∈ {z1, . . . , zk}.

Figure 3: A simplified protocol.

Lemma 7.9. For P ∼ Dir(1N ) and z1, . . . , zk ∼ P , let m = (m0, . . . ,mN−1) be the frequency vector
with mz = |{i ∈ [k] : zi = z}|. Then m is distributed according to Φ(N, k), the uniform distribution
over frequency vectors that has N elements summing to k.

Proof. Recall that the probability density function (pdf) of Dir(1N ) is f(p) = Γ(N), where p =
(p0, . . . , pN−1) is any element in the probability simplex. Given a probability distribution p, the
probability density that k samples form a frequency vector m is

f(m|p) = pm0
0 . . . p

mN−1

N−1

Γ(k + 1)

Γ(m0 + 1) . . .Γ(mN−1 + 1)
. (194)

Since the posterior disrbitution is Dir(1N +m), the probability density

f(p|m) = pm0
0 . . . p

mN−1

N−1

Γ(N + k)

Γ(m0 + 1) . . .Γ(mN−1 + 1)
. (195)

Thus the probability density of m is

f(m) =
f(m|p)f(p)

f(p|m)
=

Γ(k + 1)Γ(N)

Γ(N + k)
=

(
N + k − 1

k

)−1

. (196)

This means that m is distributed according to the uniform distribution over frequency vectors that
has N elements summing to k.

The following theorem says that any algorithm F given k independent samples drawn according to
P and solves (2−ε)N

N+k -XHOG, F must output a given sample with probability at least 1−ε−O(k3/N).

Theorem 7.10. For every quantum channel F , let F̄P (ρ) := Ez1,...,zk∼P [F(ρ, z1, . . . , zk)]. If

E
P∼Dir(1N )

E
z∼F̄P (ρ)

[Pz] ≥
2− ε
N + k

, (197)

then

Pr
P∼Dir(1N ),z1,...,zk∼P

[F(ρ, z1, . . . , zk) ∈ {z1, . . . , zk}] ≥ 1− ε−O
(
k3

N

)
. (198)
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Proof. For each tuple of samples (z1, . . . , zk), let m = (m0, . . . ,mN−1) be the frequency vector.
Since there are k samples, ‖m‖1 = k. Let Φ(N, k) be the uniform distribution over possible
frequency vectors.

Sampling m ∼ Φ(N, k) can be done with the following process: sample P ∼ Dir(1N ) and
z1, . . . , zk ∼ P ; output the frequency vector m. By Lemma 7.9, the frequency vector has infinity
norm 1, i.e., maxzmz = 1, with probability

Pr
m∼Φ(N,k)

[‖m‖∞ = 1] =

(
N
k

)(
N+k−1

k

)
=

N !(N − 1)!

(N − k)!(N + k − 1)!

=
(N − 1) . . . (N − k + 1)

(N + k − 1) . . . (N + 1)

≥
(

1− k

N

)k−1

= 1− O(k2)

N
. (199)

The first equality holds by Lemma 7.9 and the fact that the number of frequency vector that has
norm 1 is

(
N
k

)
. The rest follows by direct calculation.

For every F that learns (z1, . . . , zk), the posterior distribution P |m ∼ Dir(1N + m). That is,
seeing these samples, the distribution of P to F is distributed according to Dir(1N +m). Thus the
expectation

E
P∼Dir(1N )

[Pz|m] = E
P∼Dir(m+1N )

[Pz]

=
mz + 1

N + k
. (200)

Without loss of generality, the output of any algorithm F(z1, . . . , zk, ρ) can be described with
a distribution Q(m) that only depends on the frequency vector m. For each m, the score of the
algorithm is

E
z∼Q(m)

E
P∼Dir(1N+m)

[Pz] = E
z∼Q(m)

[
mz + 1

N + k

]
. (201)

For each m such that ‖m‖∞ = 1,

E
z∼Q(m)

E
P∼Dir(1N+m)

[Pz] =
1

N + k

(
1 + Pr

z∼Q(m)
[mz > 0]

)
. (202)

Let γ be the probability that ‖m‖∞ > 1 for m ∼ Φ(N, k). From (199), γ = O(k2/N). The score of
F can be calculated with the expectation

E
m∼Φ(N,k)

E
z∼Q(m)

E
P∼Dir(1N+m)

[Pz]

≤ (1− γ)
1

N + k

(
1 + Pr

m∼Φ(N,k),z∼Q(m)
[mz > 0]

)
+ γ

k + 1

N + k

≤ 1

N + k
+

1

N + k
Pr

m∼Φ(N,k),z∼Q(m)
[mz > 0] +

O(k3)

N(N + k)
. (203)
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Thus if the score is at least 2−ε
N+k ,

Pr
m∼Φ(N,k),z∼Q(m)

[mz > 0] ≥ 1− ε− O(k3)

N
. (204)

For every P , if F outputs one of the given samples in the protocol in Figure 3, then it is not
difficult to see the von Neumann entropy of F ’s output conditioned on Eve’s side information is
at least Hmin(P ) up to an O(log k) additive loss. We show that the entropy lower bound scales
linearly in the probability that F outputs one of the given samples.

Theorem 7.11. For distribution P over {0, 1}n, let F be any algorithm given access to z1, . . . , zk ∼ P
and the first subsystem of any bipartite state ρDE and F̄(ρ) = Ez1,...,zk∼P [F(ρ, z1, . . . , zk)]. If

Pr
z1,...,zk∼P

[F(ρ, z1, . . . , zk) ∈ {z1, . . . , zk}] = 1− δ, (205)

then

H(Z|E)F̄(ρ) ≥ (1− δ)(Hmin(P )− 2 log k)− 2. (206)

Proof. We give a lower bound on the von Neumann entropy H(Z|E)F̄P (ρ) for random variable
Z ∈ {Z1, . . . , Zk} and Z1, . . . , Zk ∼ P . Here we use uppercase Z1, . . . , Zk to denote the registers or
the random variables describing these samples, and lowercase z1, . . . , zk to denote a particular event.
We define the classical-quantum state

ψZ1...ZkZE =
∑
z1,...zk

P (z1) . . . P (zk)|z1, . . . , zk〉〈z1, . . . , zk|Z1...Zk ⊗F(ρ, z1, . . . , zk)ZE . (207)

By definition, F̄P (ρ) = trZ1...Zk(ψ), and thus H(Z|E)F̄P (ρ) = H(Z|E)ψ.
Applying Lemma 3.9 with A = Z1 . . . Zk, B = Z and C = E,

H(Z|E)ψ ≥ H(Z1 . . . Zk|E)ψ −H(Z1 . . . Zk|Z)ψ. (208)

Since the register Z is disjoint from Z1 . . . ZkE,

trZ(ψ) =
∑

z1,...,zk

P (z1) . . . P (zk)|z1, . . . , zk〉〈z1, . . . , zk|Z1...Zk ⊗ ρE , (209)

which is product state. Thus we have H(Z1 . . . Zk|E)ψ = H(Z1 . . . Zk)ψ, and therefore

H(Z|E)ψ ≥ H(Z1 . . . Zk)ψ −H(Z1 . . . Zk|Z)ψ

= I(Z : Z1, . . . , Zk)ψ. (210)

This means that it suffices to bound the mutual information between Z and Z1, . . . , Zk. Now we
give a lower bound on H(Z)ψ: Recall that ψ is a quantum state of the form

ψ =
∑

z1,...,zk

P (z1) . . . P (zk)|z1, . . . , zk〉〈z1, . . . , zk| ⊗
∑
z

Q(z|z1, . . . , zk)|z〉〈z|, (211)
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for some conditional distribution Q(·|z1, . . . , zk) which may depend on P . We decompose each
distribution

Q(z|z1, . . . , zk) = Q1(z|z1, . . . , zk) +Q0(z|z1, . . . , zk) (212)

into two subnormalized distributions Q1(·|z1, . . . , zk) and Q0(|z1, . . . , zk) such that the support
supp(Q1(·|z1, . . . , zk) ⊆ {z1, . . . , zk} and supp(Q0(·|z1, . . . , zk)) ∩ {z1, . . . , zk} = ∅. Let δz1,...,zk =∑

z Q0(z|z1, . . . , zk). By definition, Ez1,...,zk∼P [δz1,...,zk ] = δ. Furthermore, for b ∈ {0, 1}, let the
normalized distribution

Q̄b(z|z1, . . . , zk) =
1

pb,z1,...,zk
Qb(z|z1, . . . , zk), (213)

where p1,z1,...,zk = 1− δz1,...,zk and p0,z1,...,zk = δz1,...,zk . Now let (p0, p1) = (δ, 1− δ). For b ∈ {0, 1},
define

ψb :=
1

pb

∑
z1,...,zk

pb,z1,...,zkP (z1) . . . P (zk)|z1, . . . , zk〉〈z1, . . . , zk| ⊗
∑
z

Q̄b(z|z1, . . . , zk)|z〉〈z|. (214)

We have ψ = p0ψ0 + p1ψ1. By Lemma 3.12 and non-negativity of quantum mutual information,

I(Z : Z1 . . . Zk)ψ ≥ p0I(Z : Z1 . . . Zk)ψ0 + p1I(Z : Z1 . . . Zk)ψ1 − h(δ)

≥ (1− δ)I(Z : Z1 . . . Zk)ψ1 − 1. (215)

It suffices to give a lower bound on I(Z : Z1 . . . Zk)ψ1 .
Let σ1 := trZ1...Zk(ψ1). By definition,

σ1 =
1

1− δ
∑

z1,...,zk

(1− δz1,...,zk)P (z1) . . . P (zk)
∑
z

Q̄1(z|z1, . . . , zk)|z〉〈z|

≤ 1

1− δ
∑

z1,...,zk

(1− δz1,...,zk)P (z1) . . . P (zk)
∑
z

1[z ∈ {z1, . . . , zk}]|z〉〈z|

≤ 1

1− δ
∑

z1,...,zk

(1− δz1,...,zk)P (z1) . . . P (zk)
∑
z

k∑
i=1

1[z = zi]|z〉〈z|. (216)

Thus for every z ∈ {0, 1}n,

〈z|σ1|z〉 ≤
∑
i

1− δ(i)
z

1− δ
P (z), (217)

where δ
(i)
z := Ez1,...,zi−1,zi+1...,zk∼P [δz1,...,zk ]. By definition, δ(i)

z ∈ [0, 1], and thus 〈z|σ1|z〉 ≤
k

1−δ maxz P (z). This implies that

H(Z)ψ1 ≥ Hmin(Z)σ1 ≥ Hmin(P )− log k + log(1− δ). (218)

Next we consider the quantity H(Z|Z1 . . . Zk)ψ1 : By definition,

H(Z|Z1 . . . Zk)ψ1 =
1

1− δ
∑

z1,...,zk

(1− δ1,z1,...,zk)P (z1) . . . P (zk)H(Q̄1(·|z1, . . . , zk)) (219)
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Since Q̄1(·|z1, . . . , zk) has support in {z1, . . . , zk}, for every z1, . . . , zk,

S(Q̄1(·|z1, . . . , zk)) ≤ log k. (220)

This gives

H(Z|Z1 . . . Zk)ψ1 ≤ log k. (221)

Combining (210), (215), (218) and (221),

H(Z|E)ψ ≥ (1− δ)I(Z : Z1 . . . Zk)ψ1 − 1

≥ (1− δ)(Hmin(P )− 2 log k) + (1− δ) log(1− δ)− 1

≥ (1− δ)(Hmin(P )− 2 log k)− 2. (222)

The last inequality holds since −(1− δ) log(1− δ) ≤ h(δ) ≤ 1.

Theorem 7.11 says that the von Neumann entropy depends on the probability that the device’s
output z ∈ {z1, . . . , zk}. For P ∼ Dir(1N ), by Lemma 3.14, with overwhelming probability,
Smin(P ) ≥ n− log n−O(1). We now use the notation

H(Z|PE)ψ := E
P∼Dir(1N )

[
H(Z|E)F̄P (ρ)

]
, (223)

where ψ is the joint output classical-quantum state, defined by

ψ = E
P∼Dir(1N )

[
|P 〉〈P | ⊗ F̄P (ρ)

]
, (224)

even though P is not sampled from a finite set. We then show the following theorem.

Corollary 7.12. For P ∼ Dir(1N ), let F be any algorithm given access to z1, . . . , zk ∼ P and the
first subsystem of any bipartite state ρDE, and F̄P (ρ) = Ez1,...,zk∼P [F(ρ, z1, . . . , zk)]. If

Pr
P∼Dir(1N ),z1,...,zk∼P

[F(ρ, z1, . . . , zk) ∈ {z1, . . . , zk}] ≥ 1− ε, (225)

then

H(Z|PE)ψ ≥ (1− ε)n− log n− 2 log k −O(1), (226)

where ψ is the state defined in (224).

Proof. The corollary is a direct consequence of Theorem 7.11. Let the error probability for P be εP .
By Theorem 7.11,

H(Z|E)F̄P (ρ) ≥ (1− εP )Hmin(P )− 2 log k

≥ Hmin(P )− εPn− 2 log k. (227)

By Lemma 3.13,

H(Z|PE)ψ ≥ E
P∼Dir(1N )

[Hmin(P )]− E
P

[εP ]n− 2 log k

≥ (1− ε)n− log n− 2 log k −O(1). (228)
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Combining Theorem 7.10 and Corollary 7.12, we conclude that any F̄ solving (1 + δ)-XHOG has
conditional von Neumann entropy n− o(n).

Corollary 7.13. Let F be any device given access to k samples from P = PC for C ∼ Haar(N). If
F solves (1 + δ)-XHOG, then

H(Z|PE)ψ ≥
(
δ −O(k3/N)

)
n− log n− 2 log k −O(1). (229)

7.2.2 The Analysis of a General Device

Given the analysis of the protocol in Figure 3 and the closeness of a general device and the simplified
device, we show that any device must exhibit a von Neumann entropy lower bound if it solves
XHOG.

Theorem 7.14. For every T -query device A that solves b-XHOG, there exists a device F given
access to k samples such that F solves b′-XHOG for b′ ≥ b−O(nTk−1/2).

Proof. For every AP , by Theorem 7.8, there exists FP such that∣∣∣∣ E
z∼ĀP (ρ)

[Pz]− E
z∼F̄P (ρ)

[Pz]

∣∣∣∣ =

∣∣∣∣∣∑
z

Pz(pA(z)− pF (z))

∣∣∣∣∣
≤ max

z
Pz
∑
z

|pA(z)− pF (z)|

≤ max
z
Pz · ‖ĀP (ρ)− F̄P (ρ)‖tr

≤ max
z
Pz · (O(Tk−1/2) +O(TN−1/2)). (230)

Taking the expectation over P ∼ Dir(1N ), the upper bound is at most O(nT (k−1/2 +N−1/2)/N) by
Lemma 3.13. This implies that if A solves b-XHOG, then F solves (b−O(nTk−1/2 + nTN−1/2))-
XHOG.

Theorem 7.14 shows that the score of any device A and its simplified version F must be close if
F is given sufficiently many samples. Given this fact, we prove the following theorem.

Theorem 7.15. Let A be any algorithm making T queries to a Haar random unitary C. If A solves
(1 + δ)-XHOG, then there exists a state ψ which is O(Tk−1/2)-close to A’s output classical-quantum
state such that

H(Z|CE)ψ ≥
(
δ −O(k3/N)−O(nTk−1/2 + nTN−1/2)

)
n− log n− 2 log k −O(1). (231)

Proof. By Theorem 7.8, for every T -query A, there exists F given access to k samples (drawn
according to P ∼ Dir(1N )) such that ‖ĀP − F̄P ‖� ≤ O

(
Tk−1/2

)
. Also by Theorem 7.14, F solves

b-XHOG for b = 1 + δ −O(nTk−1/2). By Corollary 7.13,

H(Z|PE)ψ ≥
(
δ −O(k3/N)−O(nTk−1/2 + nTN−1/2)

)
n− log n− 2 log k −O(1), (232)

where ψZPE is F ’s output state defined in (224) and is O(Tk−1/2)-close to A’s output. Finally, by
Theorem 7.1, we conclude the proof.
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Input: security parameter n, the number of rounds m, the score parameter δ ∈ [0, 1], the fraction of
circuit updates γ = O((log n)/m), and the fraction of test rounds η = O((n2 log n)/m).

The protocol:

1. For i = 1, . . . ,m, run the following steps:

(a) The verifier samples Ti ∼ Bernoulli(γ), and Fi ∼ Bernoulli(η). If Ti−1 = 1 or i = 1, the
device chooses a fresh circuit Ci ∼ Haar(N). Otherwise, if Ti−1 = 0 and i > 1, then the
device sets Ci = Ci−1 to be the circuit used in the previous round. The verifier sends Ci
to the device.

(b) The prover returns a sample zi.

2. Let the number of epoches, i.e., the set of consecutive rounds i such that the same circuit
Ci = C is used, be t. For each epoch Ej , let tj = |{i ∈ Ej : Fi = 1}| denote the number of test
rounds in this epoch. The verifier computes

sj =
1

tj

∑
i∈Ej :Ti=1

pCi(zi). (234)

If 1
t

∑t
j=1 δ[sj ≥ (1 + δ)/N ] ≥ 0.99, then the verifier accepts and outputs (z1, . . . , zm) to the

quantum-proof randomness extractor.

Figure 4: The entropy accumulation protocol.

By Theorem 7.15, for constant δ, every algorithm solving (1 + δ)-XHOG outputs a sample of
conditional von Neumann entropy o(n) must make NΩ(δ) queries. For devices making poly(n)
queries, Theorem 7.15 implies the following corollary.

Corollary 7.16. For T = poly(n), δ = Ω(1), and η ∈ (0, 1], every algorithm T -query algorithm
which solves (1 + δ)-XHOG must output a sample Z satisfying

H(Z|CE)ψ ≥ (1− η)δn−O(log n), (233)

where ψ is a quantum state N−Ω(δη)-close to A’s output state.

Proof. By Theorem 7.15, choosing k = T 2N δη, Tk−1/2 = N−δη/2 and k3/N = nO(1) ·N−1+3δη. This
implies the von Neumann entropy has lower bound (1− η)δn−O(log n).

7.3 Entropy Accumulation

We present our entropy accumulation protocol in Figure 4. By the entropy accumulation theorem
shown in Section 4, we prove the following lower bound on the conditional min-entropy.

Theorem 7.17. Let A1, . . . ,Am be nO(1)-query sequential processes given access to the first system
of a bipartite state ρDE and outputting z1, . . . , zm solving LXEB1+δ,k with probability p. Then

Hε+mε′

min (Zm|CmTmE)Am◦...A1(ρ)|Ω ≥ n
(
0.99δm− c

√
m− o(1)

)
(235)
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where ε′ = 2−Ω(n) and Ω denotes the event of non-aborting. The parameter c := 3.99(1 + log( 1
pε))1/2.

Proof. We apply the entropy accumulation theorem shown in Section 4. In particular, we choose
G := N

∑
z |z〉〈z|P (z). By Corollary 7.16, we choose f(δ) = (1− η)δn−O(log n) for η = 0.01 for

concreteness. This gives ‖∇f‖∞ = 0.99n. Then we have

V = 2(log(2dZ + 1) + ‖∇f‖∞)

= 2(log(2N + 1) + 0.99n)

= 3.98n+O(1)

≤ 3.99n. (236)

Now we have

Hε+mε′

min (Zm|CmTmE)Am◦...◦A1(ρ)|Ω ≥ n

(
0.99δm−O

(
log n

n

)
− 3.99

√
m

√
log

2

Prσ[Ω]2ε2

)
. (237)

8 Pseudorandomness and Statistical Zero-Knowledge

To produce a net gain in randomness, we must derandomize the challenge circuits in our protocols
Figure 1 and Figure 4. However, existing quantum-secure pseudorandom function was not known
to be secure for certified randomness since the security only holds against quantum polynomial-time
adversaries. In Section 8.1, we define a stronger security notion for pseudorandom functions sufficient
for certified randomness, and show there exists a construction relative to a random oracle. Then in
Section 8.3, with the pseudorandom function, polynomial expansion can be achieved.

In this section, we show that a pseudorandom function against quantum statistical zero-knowledge
protocols is sufficient for certified randomness. The same argument also applies to pseudorandom
unitaries.

By Theorem 3.6 with an extension to oracle distributions, two oracle distributions D0,D1 are said
to be QSZK-distinguishable if there exists a pair of algorithms A,B such that if EF∼D0 ‖AF −BF ‖tr
and EF∼D1 ‖AF − BF ‖tr are far apart.

Definition 8.1 (QSZK-distinguishability). Two oracle distributions are said to be QSZK-distinguishable
if there exist a pair of algorithms A,B and a polynomial p such that∣∣∣∣ E

F∼D0

‖AF − BF ‖tr − E
F∼D0

‖AF − BF ‖tr
∣∣∣∣ > 1

p(n)
. (238)

If no such algorithms exist, then the distributions are said to be QSZK-indistinguishable.

Definition 8.1 strengthens the definition against BQP adversaries by Zhandry [64]: Two oracle
distributions D0,D1 are said to be distinguishable if there exists an algorithm A which outputs one
with probability far apart, i.e.,∣∣∣∣ Pr

F∼D0

[AF = 1]− Pr
F∼D1

[AF = 1]

∣∣∣∣ > 1

poly(n)
. (239)

For clarity, in this paper, we will say D0,D1 are standard-distinguishable if there exists A such that
(239) holds. To see why Definition 8.1 is a stronger definition, we prove the following theorem.
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Theorem 8.2. If two oracle distributions D0,D1 are standard-distinguishable, then they are QSZK-
distinguishable.

Proof. Since D0,D1 are standard-distinguishable, there exists A which outputs a single bit such that
(239) holds. Then consider a trivial algorithm B which outputs 0 with probability 1. This implies
that

E
F∼Db

‖AF − BF ‖tr = Pr
F∼Db

[AF = 1], (240)

and (238) holds.

8.1 Pseudorandom Functions

It is known that there is a construction of a pseudorandom function standard-indistinguishable
from a random function. As we do not know if the converse of Theorem 8.2 holds, we propose the
following assumption.

Assumption 8.3 (Pseudorandom function assumption). Let κ ∈ N be the security parameter and `,m
be polynomially bounded functions. There exists a keyed function F : {0, 1}`(κ) ×{0, 1}m(κ) → {0, 1}
such that the following conditions hold.

• F (k, x) can be computed in polynomial time for every k ∈ {0, 1}`(κ) and x ∈ {0, 1}m(κ).

• For every pair of quantum algorithms A,B, it holds that∣∣∣∣ E
k∼K`(κ)

‖AFk − BFk‖tr − E
F∼Fm(κ)

‖AF − BF ‖tr
∣∣∣∣ ≤ negl(κ) (241)

for sufficiently large κ, where Fm is the uniform distribution over m-bit Boolean functions and
K` is the uniform distribution over {0, 1}`.

In this section, we prove that Assumption 8.3 holds relative to a random oracle: For κ = n,
m(n) = n, let O : {0, 1}`+n → {0, 1} be a random function and Ok(x) := O(k, x) for k ∈ {0, 1}`
and x ∈ {0, 1}n. The key length ` is to be determined later. We show that for every pair of
poly(n)-query algorithms A and B, O,Ok for uniform k ∈ {0, 1}` is indistinguishable from O, H for
random H : {0, 1}n → {0, 1}.

Recall that for a random function H : {0, 1}n → {0, 1} and x ∈ {0, 1}n, H(x) is a fair coin
independent from H(x′) for every x′ 6= x. We will also say a distribution D over n-bit Boolean
functions is a ε-biased random function if for F ∼ D, the random variables in {F (x) : x ∈ {0, 1}n} are
independent, and for each x ∈ {0, 1}n, the marginal distribution of F on x satisfies |PrF∼D[F (x) =
1]− 1/2| ≤ ε. First we prove the following lemma which states that for the uniform distribution U`
over {0, 1}` and every x ∈ {0, 1}n, Ek∼U` Ok(x) is weakly biased under uniform k.

Lemma 8.4. For integer m, let Fm be the uniform distribution over functions {0, 1}m → {0, 1}.
Then

Pr
O∼F`+n

[
∀x ∈ {0, 1}n,

∣∣∣∣ E
k∼U`

Ok(x)− 1/2

∣∣∣∣ ≤ ε] ≥ 1− 2 · 2Ne−Lε2 . (242)
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Proof. By Hoeffding’s inequality, for every x,

Pr
O∼F`+n

[∣∣∣∣ E
k∼U`

Ok(x)− 1/2

∣∣∣∣ ≤ ε] ≥ 1− 2e−Lε
2
. (243)

By a union bound, we conclude the proof.

Fix a function O that satisfies this likely event. Since for each k ∈ {0, 1}`, {Ok(x) : x ∈ {0, 1}n}
are independent, Ok under uniform k is an ε-biased random function. The following lemma shows
that no pair of T -query algorithms can distinguish a slightly biased random function from a random
function with advantage O(T

√
ε) for the difference in biases ε.

Lemma 8.5. Let A and B be two T -query algorithms given access to an oralce sampled from either
D0 or D1 such that for every x ∈ {0, 1}`, |PrF∼D0 [F (x) = 1]− PrF∼D1 [F (x) = 1]| ≤ ε. Then∣∣∣∣ E

F∼D0

‖AF −BF ‖tr − E
F∼D1

‖AF − BF ‖tr
∣∣∣∣ ≤ 16T

√
ε. (244)

Proof. For b ∈ {0, 1} and x ∈ {0, 1}n, let pb(x) := PrF∼Db [F (x) = 1]. By definition, ε(x) :=
p0(x)− p1(x) satisfies |ε(x)| ≤ ε. Then we consider the following hybrid distribution R defined as
follows: For each x, let

Pr
F∼R

[F (x) = 1] =
min{p0(x), p1(x)}

1− |ε(x)|
. (245)

Also for b ∈ {0, 1}, define the following difference distributions Tb

Pr
F∼Tb

[F (x) = 1] =


1 if pb(x) > p1−b(x)
0 if pb(x) < p1−b(x)
1/2 otherwise.

(246)

For every x ∈ {0, 1}n,

Pr
F∼Db

[F (x) = 1] = (1− |ε(x)|) Pr
F∼R

[F (x) = 1] + |ε(x)| Pr
F∼Tb

[F (x) = 1]. (247)

That is, sampling F ∼ Db can be done using the following process: For each x ∈ {0, 1}n, first sample
X ∈ {0, 1} according to the distribution Pr[X = 1] = PrF∼R[F (x) = 1]. Then with probability
1− |ε(x)|, outputs X; with probability |ε(x)|, output 1 with probability PrF∼Tb [F (x) = 1]. Thus
Db can be viewed as the distribution R with modification on each x with probability at most |ε(x)|.

Thus the rest of the proof is devoted to showing that for b ∈ {0, 1},∣∣∣∣ E
F∼Db

‖AF −BF ‖tr − E
F∼R

‖AF − BF ‖tr
∣∣∣∣ ≤ 8T

√
ε. (248)

For every T -query algorithm A given oracle access to F ∼ Db described by unitaries U0, . . . , UT ,
we use the above sampling process to get F = F0 ⊕∆ where F0 ∼ R and ∆ is a biased random
function where for each x ∈ {0, 1}n, ∆(x) = 1 with probability at most |ε(x)|. For b ∈ {0, 1}, let
the distribution of ∆ be Pb. For every F0,∆ : {0, 1}n → {0, 1}, consider the following hybrids:

|φ∆
T 〉 = UTO(F0)UT−1O(F0) . . .O(F0)U1O(F0)U0|0〉,

|φ∆
T−1〉 = UTO(F )UT−1O(F0) . . .O(F0)U1O(F0)U0|0〉,

...

|φ∆
0 〉 = UTO(F )UT−1O(F ) . . .O(F )U1O(F0)U0|0〉,
|φ∆

0 〉 = UTO(F )UT−1O(F ) . . .O(F )U1O(F )U0|0〉. (249)
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That is, the state |φxt 〉 is obtained by making t queries to F0 followed by T − t queries to F . Also let
|ψ0
t 〉 = UtO(F0) . . . U1O(F0)U0|0〉, which is independent of ∆.
For every function ∆ : {0, 1}n → {0, 1}, let P∆ denote the projector onto the subspace {x :

∆(x) = 1}. By triangle inequality,

‖|φ∆
0 〉 − |φ∆

T 〉‖ ≤
T−1∑
t=0

‖O(F )|ψ0
t 〉 − O(F0)|ψ0

t 〉‖

= 2
T−1∑
t=0

‖P∆|ψ0
t 〉‖. (250)

Since ∆(x) = 1 with probability at most ε, E∆ P∆ ≤ ε1, and

E
∆∼Pb,F0∼R

‖AF0⊕∆ −AF0‖tr ≤ 2 E
∆∼Pb,F0∼R

‖|φ∆
0 〉 − |φ∆

T 〉‖

≤ 4T E
F0∼R

‖Q‖1/2op

≤ 4T
√
ε. (251)

where Q = E∆ P∆. Since the same bound holds for B,∣∣∣∣ E
F∼Db

‖AF − BF ‖tr − E
F∼R

‖AF − BF ‖tr
∣∣∣∣

=

∣∣∣∣ E
F∼R

(
E

∆∼Pb
‖AF⊕∆ − BF⊕∆‖tr − ‖AF − BF ‖tr

)∣∣∣∣
≤ E

F∼R

(
E

∆∼Pb
‖AF⊕∆ −AF ‖tr + E

∆∼Pb
‖BF⊕∆ − BF ‖tr

)
≤ 8T

√
ε. (252)

The first inequality holds by triangle inequality, and the second holds from (251).

Combining Lemma 8.4 and Lemma 8.5, we prove the following theorem.

Theorem 8.6. For ` ≥ 2n, L = 2`, and every pair of T -query algorithms A,B,

Pr
O∼F`+n

[∣∣∣∣ E
k∼U`

‖AO,Ok − BO,Ok‖tr − E
H∼Fn

‖AO,H − BO,H‖tr
∣∣∣∣ > 16TN−1/4

]
≤ 2−Ω(N), (253)

where U` is the uniform distribution over {0, 1}` and Fm is the uniform distribution over {0, 1}m →
{0, 1}.

Proof. For ` ≥ 2n, L = 2`, and ε = N−1/2, L ≥ N2 and 2 · 2Ne−Lε2 = 2 · 2Ne−L/N ≤ 2−Ω(N). By
Lemma 8.5,

Pr
O∼F`+n

[∣∣∣∣ E
k∼U`

‖AO,Ok − BO,Ok‖tr − E
H∼Fn

‖AO,H − BO,H‖tr
∣∣∣∣ ≤ 16TN−1/4

]
≥ Pr
O∼F`+n

[
∀x ∈ {0, 1}n,

∣∣∣∣Ek Ok(x)− 1/2

∣∣∣∣ ≤ N−1/2

]
≥ 1− 2 · 2Ne−L/N

≥ 1− 2−Ω(N). (254)
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By the Borel-Cantelli Lemma, every pair of poly(n)-query algorithms breaks the conditions in
Assumption 8.3 infintely often with probability 0.

Corollary 8.7. Assumption 8.3 holds relative to a random oracle with probability 1.

8.2 Pseudorandom Unitaries

Similarly, we assume that there exists a pseudorandom unitary and give a construction relative to
an oracle. The construction is the same as the one given by Kretschmer [38], and we strengthen the
hardness to QSZK.

Assumption 8.8 (Pseudorandom unitary assumption). Let κ ∈ N be the security parameter, `,m
be polynomially bounded functions. There exists a family of keyed unitaries {Uk ∈ U(2m(κ)) : k ∈
{0, 1}`(κ)} such that the following conditions hold.

• There exists a polynomial-time quantum algorithm G that implements Uk on input k ∈ {0, 1}`(κ),
i.e., on input k and quantum state |ψ〉 ∈ S(2m(κ)), G(k, |ψ〉) = Uk|ψ〉.

• For every pair of quantum algorithms A,B that makes poly(κ) queries, it holds that∣∣∣∣ E
k∼K`(κ)

‖AUk − BUk‖tr − E
U∼Haar(2m(κ))

‖AU − BU‖tr
∣∣∣∣ ≤ negl(κ). (255)

We give a construction relative to the following oracle: Let κ = n, N = 2n, L = 2`, and
O =

∑
k∈{0,1}` |k〉〈k|⊗Ok where Ok ∈ U(N) is a Haar random unitary for every k ∈ {0, 1}`. Also let

µ = Haar(N)L denote the measure of O. We show that every pair of algorithms A,B distinguishes
O,Ok under uniform k from O, U for Haar random U must make exponentially many queries in `.
This implies that for ` = Ω(n), the construction satisfies the conditions in Assumption 8.8.

Let (P1 = P, P0 = 1 − P ) be any binary measurement and f(U) := tr(AUP ) denote the
probability that measuring AU ’s output state yields an outcome 1. We apply the following lemma
by Kretschmer [38].

Lemma 8.9 ([38, Lemma 18], paraphrased). Let AU be any T -query algorithm and f(U) = tr(AUP )
for 0 ≤ P ≤ 1. Then f(U) is a 2T -Lipschitz function in the Frobenius norm.

We skip the proof of Lemma 8.9 and only sketch the ideas. For a detailed proof, see [38,
Lemma 18]. For unitaries U, V satisfying ‖U − V ‖F = d, their unitary channels have diamond
distance at most 2d. Thus by triangle inequality, ‖AU − AV ‖� ≤ 2Td = 2T‖U − V ‖F and thus
f(U) is 2T -Lipschitz.

For our purpose, we show that that for every k and U and pairs of T -query algorithms A and B,
the function

f(O, k, U) := ‖AO,Ok − BO,Ok‖tr − ‖AO,U − BO,U‖tr (256)

is a 2T -Lipschitz function of O.

Lemma 8.10. For every pair of T -query algorithms A,B, k ∈ [L], and U ∈ U(N), f(O, k, U) as
defined in (256) is 8T -Lipschitz.
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Proof. It suffices to show that for each k, ‖AO,Ok − BO,Ok‖tr is a Lipschitz function of O, and a
similar argument applies to the second term in (256). To see why, we observe that

‖AO,Ok − BO,Ok‖tr = max
0≤P≤1

(
tr(AO,OkP )− tr(BO,OkP )

)
. (257)

By Lemma 8.9, for every P , tr(AO,OkP ) − tr(BO,OkP ) is 4T -Lipschitz, and so is the left side of
(257). Since for every k ∈ {0, 1}` and U ∈ U(N), f(O, k, U) is a summation of two 4T -Lipschitz
functions, it is 8T -Lipschitz.

Lemma 8.10 implies that the advantage we aim to upper bound, i.e.,

adv(O) := E
k∼U`,U∼Haar(N)

f(O, k, U)

= E
k∼U`

‖AO,Ok − BO,Ok‖tr − E
U∼Haar(N)

‖AO,U − BO,U‖tr (258)

is 8T -Lipschitz.
Next, we prove a search lower bound, formally stated in Lemma 8.12, for showing that the

average EO adv(O) is bounded with overwhelming probability over choices of O. We denote F0

the all-zero `-bit Boolean function and Fx denote the function whose only 1-preimage is x, i.e.,
Fx(y) = 1[x = y]. The following lemma will be useful later.

Lemma 8.11. Let A be a T -query algorithm, D be the uniform distribution over {Fx : x ∈ {0, 1}`},
and F0 be the zero function. Then

E
F∼D
‖AF −AF0‖tr ≤ 4TL−1/2. (259)

Proof. Let the query algorithm be described with T + 1 unitaries UT , . . . , U0, i.e.,

AF |0〉 = UTO(F ) . . . U1O(F )U0|0〉. (260)

where O(F ) :=
∑

z(−1)F (z)|z〉〈z| is the oracle. Let Fx denote the function whose only one-preimage
is x.

Consider the sequence of states

|φxT 〉 = UTO(F0)UT−1O(F0) . . .O(F0)U1O(F0)U0|0〉,
|φxT−1〉 = UTO(Fx)UT−1O(F0) . . .O(F0)U1O(F0)U0|0〉,

...
|φx0〉 = UTO(Fx)UT−1O(Fx) . . .O(Fx)U1O(F0)U0|0〉,
|φx0〉 = UTO(Fx)UT−1O(Fx) . . .O(Fx)U1O(F0)U0|0〉. (261)

That is, the state |φxt 〉 is obtained by making t queries to F0 followed by T − t queries to Fx. Also
let |ψ0

t 〉 = UtO(F0) . . . U1O(F0)U0|0〉, which is independent of x.
Let Px = |x〉〈x| denote the projection onto |x〉. By triangle inequality,

‖|φxT 〉 − |φx0〉‖ ≤
T−1∑
t=0

‖O(Fx)|ψ0
t 〉 − O(F0)|ψ0

t 〉‖

≤ 2
T−1∑
t=0

‖Px|ψ0
t 〉‖. (262)
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Note that

E
F∼D
‖AF −AF0‖tr ≤ 4

T−1∑
t=0

E
x∼Un

‖Px|ψ0
t 〉‖

≤ 4

T−1∑
t=0

(
E
x
〈ψ0

t |Px|ψ0
t 〉
)1/2

≤ 4T · L−1/2. (263)

The first inequality holds by the fact that ‖|ψ〉〈ψ|− |φ〉〈φ|‖tr ≤ 2‖|ψ〉− |φ〉‖ for two normalized states
|ψ〉 and |φ〉. The second inequality holds by Cauchy-Schwarz inequality, and the third holds since
Ex Px = 1/L.

Next, we use Lemma 8.11 to prove the following search lower bound.

Lemma 8.12. Let A,B be two T -query algorithms, D be the uniform distribution over {Fx : x ∈
{0, 1}`}, and F0 be the zero function. Then∣∣∣∣ E

F∼D
‖AF − BF ‖tr − ‖AF0 − BF0‖tr

∣∣∣∣ ≤ 8TL−1/2. (264)

Proof. By Lemma 8.11,

E
F∼D
‖AF −AF0‖tr ≤ 4TL−1/2, (265)

and a similar statement holds for B. Then for each F = Fx for x ∈ {0, 1}`,

‖AF − BF ‖tr − ‖AF0 − BF0‖tr ≤ ‖AF − BF −AF0 + BF0‖tr
≤ ‖AF −AF0‖tr + ‖BF − BF0‖tr. (266)

Since the above inequality is symmetric with repect to the exchange of F and F0, we also have

‖AF0 − BF0‖tr − ‖AF − BF ‖tr ≤ ‖AF −AF0‖tr + ‖BF − BF0‖tr. (267)

Thus we have

E
F∼D

[∣∣‖AF − BF ‖tr − ‖AF0 − BF0‖tr
∣∣] ≤ 8TL−1/2. (268)

The rest of the proof follows from the triangle inequality.

With Lemma 8.12, we are ready to prove that the average of adv(O) is exponentially small
in `. Then we apply a concentration inequality to show |adv(O)| is sharply concentrated around
|EO∼µ adv(O)|.

Lemma 8.13. For every pair of T -query algorithms A,B, |EO∼µ adv(O)| ≤ 8TL−1/2.

Proof. We prove the lemma by contrapositive. Assume that there exist two algorithms A,B

E
O∼µ

adv(O) = E
O∼µ,k∼U`

‖AO,Ok − BO,Ok‖tr − E
O∼µ,U∼Haar(N)

‖AO,U − BO,U‖tr > 8TL−1/2. (269)
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Then we construct another pair of algorithms Ã, B̃ which break the bound in Lemma 8.12. Given
access to F which is either the zero function or Fx for uniform x ∈ {0, 1}`, Ã samples U0, . . . , UL ∼
Haar(N), and sets V = U0 and O =

∑
k∈[L] |k〉〈k| ⊗ Vk, where Vk = Uk if F (k) = 0 and Vk = U0 if

F (k) = 1. The algorithm Ã runs AO,V , and each query to O takes one query to F . If F = 0, then
ÃF outputs EO∼µ,U∼Haar(N) |O, U〉〈O, U | ⊗AO,U for independent O, U ; if F = Fk, then ÃF outputs
EO∼µ,k∼U` |O, k〉〈O, k| ⊗ AO,Ok . The algorithm B̃ runs exactly the same algorithm except that A is
replaced with B. With Ã, B̃, we get a bound that violates Lemma 8.12.

Now we have shown that EO∼µ adv(O) ≤ 8TL−1/2. The same argument can be used to prove
−EO∼µ adv(O) ≤ 8TL−1/2, and thus we conclude the proof.

We have shown that adv(O) is a 8T -Lipschitz function and the absolute value of the average
|EO∼µ adv(O)| is O(TL−1/2). Now we apply the following concentration inequality to show that
with overwhelming probability over choices of O, |adv(O)| ≤ O(TL−1/2).

Theorem 8.14 ([38, Theorem 11] and [43, Theorem 5.17]). For N1, . . . , Nk ∈ N, let X = U(N1)⊕
. . .⊕U(Nk). Let µ = Haar(N1)× . . .Haar(Nk) be the product of the Haar measure on X. Suppose
that f : X → R is K-Lipschitz in the Frobenius norm. Then for every t > 0,

Pr
O∼µ

[
f(O) ≥ E

P∼µ
f(P) + t

]
≤ exp

(
−(N − 2)t2

24K2

)
, (270)

where N = min{N1, . . . , Nk}.

Since O =
∑

k∈{0,1}` |k〉〈k| ⊗ Ok where Ok ∼ Haar(N) for each k ∈ {0, 1}`, adv(O) is a function
of {Ok}k∈{0,1}` , and thus the concentration inequality can be applied.

Theorem 8.15. For ` = dn− log ne and L = 2`, PrO∼µ[|adv(O)| ≥ 16TL−1/2] ≤ 2−Ω(n).

Proof. By Theorem 8.14,

Pr
O∼µ

[adv(O) ≥ 16TL−1/2] ≤ exp

(
−(N − 2)

1536L

)
. (271)

For ` = dn− log ne, the upper bound is 2−Ω(n). The same argument can be used to show the event
−adv(O) ≥ 16TL−1/2 occurs with probability 2−Ω(n). Applying a union bound, we conclude the
proof.

Applying the Borel-Cantelli Lemma, for ` = dn−log ne, the event that every pair of poly(n)-query
algorithms breaks the conditions in Assumption 8.8 occurs infinitely often with probability 0.

Corollary 8.16. There exists an oracle relative to which Assumption 8.8 holds with probability 1.

8.3 Randomness Expansion

Under the assumptions introduced in Section 8.1, we can reduce the input entropy to the device for
any certified randomness protocol, and meanwhile, the output remains close to uniform. To see
why, we recall the definition of quantum-proof randomness extractor [37, 26].
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Definition 8.17 (Quantum-proof strong extractor [26, Definition 3.2]). A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is a quantum-proof (k, ε)-stronger extractor with uniform seed if for all state ρXE
classical on X with Hmin(X|E) ≥ k, and for uniform Y ,

‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε, (272)

where ρUm is the uniform distribution over {0, 1}m.

If alternatively we only have the guarantee that Hδ
min(X|E) ≥ k, for sufficiently small but nonzero

δ, the extractor still outputs a distribution close enough to the uniform distribution conditioned on
the side information E by triangle inequality.

Lemma 8.18 ([26, Lemma 3.5]). If Ext : {0, 1}n×{0, 1}d → {0, 1}m is a quantum-proof (k, ε)-strong
extractor, then for any ρXE and δ > 0 with Hδ

min(X|E)ρ ≥ k,

‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε+ 2δ. (273)

If E is restricted to a classical state, then we say an extractor that satisfies Definition 8.17 a
classical-proof (k, ε)-strong extractor. Furthermore, if Definition 8.17 holds in the special case that
E is empty, we call such an extractior a (k, ε)-stronger extractor.

In the same paper, De, Portmann, Vidick, and Renner [26] showed that Trevisan’s extractor [59]
is a quantum-proof strong extractor. We take relevant definitions from [26].

Definition 8.19 (Weak design [26, Definition 4.1]). For integer d, the family of sets S1, . . . , Sm ⊂ [d]
is a weak (t, r)-design if

1. For every i ∈ [m], |Si| = t.

2. For every i ∈ [m],
∑i−1

j=1 2|Si∩Sj | ≤ rm.

Definition 8.20 (Trevisan’s extractor [26, Definition 4.2][59]). For a one-bit extractor C : {0, 1}n ×
{0, 1}t → {0, 1}, which uses a (not necessarily uniform) seed of length t, and for a weak (t, r)-design,
S1, . . . , Sm ⊂ [d], an m-bit extractor ExtC : {0, 1}n × {0, 1}d → {0, 1}m is defined as

ExtC(x, y) := C(x, yS1) . . . C(x, ySm). (274)

The integer d in Definition 8.19 is the length of the seed of the extractor ExtC and depends on t,
the size of the seed of the 1-bit extractor C. The size of the seed will always be d = poly(log n)
if the error ε = poly(1/n) [26]. In the same paper, it is also proved that that a single-bit strong
extractor is also a quantum-proof strong extractor.

Theorem 8.21 ([26, Theorem 4.7]). Let C : {0, 1}n → {0, 1}t → {0, 1} be a (k, ε)-strong extractor
with an s-bit seed—i.e., the seed needs at least s bits of min-entropy—and S1, . . . , Sm ⊂ [d] a
weak (t, r)-design. Then the extractor defined in Definition 8.20 is a quantum proof (k + rm +
log(1/ε), 6m

√
ε)-strong extractor for any seed with min-entropy d− (t− s− log 1

3
√
ε
).

Furthermore, there exists a (k, ε)-strong extractor by Raz, Reingold and Vadhan [54], and the
input seed has length poly log(n).

Theorem 8.22 ([26, Proposition 5.2]). For any ε > 0 and n ∈ N, there exists a (k, ε)-strong extractor
with uniform seed Extn,ε : {0, 1}n × {0, 1}t → {0, 1} with t = O(log(n/ε)) and k = 3 log(1/ε).
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Combining the fact that there exists a quantum-proof strong extractor and Assumption 8.3, we
prove the following theorem.

Theorem 8.23. Assume that Assumption 5.1 and Assumption 8.3 holds. There exists a randomness
expansion protocol for a device which solve LXEBb,k for 99% of the given circuits and achieves
polynomial expansion for b = 1.02 and k = O(n2), where n is the number of qubits each circuit acts
on.

Proof. In our m-round randomness expansion protocol in Figure 1 using a random circuit, we change
the circuits at least γm = O(log n) times, and each can be replaced with pseudorandom circuits that
can be computed using ` = poly(n) bits as input (used for generating the key of the pseudorandom
function). The protocol generates a distribution (ε+ 2ε′ + negl(n))-close to an Ω(m)-bit uniform
distribution for devices solving LXEB1+δ,k for constant δ and k = O(n2), using an input of O(` log n)
uniformly random bits. Setting m = `c for c ≥ 2, the protocol accumulates net entropy.

Applying the same reasoning as in the proof of Theorem 8.23, we conclude that Assumption 8.8
implies that there exists a randomness expansion protocol.

Theorem 8.24. Assume that Assumption 8.8 holds. There exists a randomness expansion protocol
for a device that is given oracle access to a pseudorandom unitary and solves LXEBb,k for 99% of
the given circuits and achieves polynomial expansion for b = 1.02 and k = O(n2), where n is the
number of qubits each circuit acts on.
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