
Range Avoidance for Constant-Depth Circuits:

Hardness and Algorithms

Karthik Gajulapalli ∗ Alexander Golovnev † Satyajeet Nagargoje ‡

Sidhant Saraogi §

Abstract

Range Avoidance (Avoid) is a total search problem where, given a Boolean circuit
C : {0, 1}n → {0, 1}m, m > n, the task is to find a y ∈ {0, 1}m outside the range of C. For
an integer k ≥ 2, NC0

k-Avoid is a special case of Avoid where each output bit of C depends
on at most k input bits. Ren, Santhanam, and Wang (FOCS 2022) and Guruswami, Lyu, and
Wang (RANDOM 2022) proved that explicit constructions of functions of high circuit com-
plexity, rigid matrices, optimal linear codes, Ramsey graphs, and other combinatorial objects
reduce to NC0

4-Avoid, thus establishing conditional hardness of the NC0
4-Avoid problem. On

the other hand, NC0
2-Avoid admits polynomial-time algorithms, leaving the question about the

complexity of NC0
3-Avoid open.

We give the first reduction of an explicit construction question to NC0
3-Avoid. Specifically,

we prove that a polynomial-time algorithm (with an NP oracle) for NC0
3-Avoid for the case of

m = n + n2/3 would imply an explicit construction of a rigid matrix, and, thus, a super-linear
lower bound on the size of log-depth circuits.

We also give deterministic polynomial-time algorithms for all NC0
k-Avoid problems for

m ≥ nk−1/ log(n). Prior work required an NP oracle, and required larger stretch, m ≥ nk−1.

∗Georgetown University. Email: kg816@georgetown.edu.
†Georgetown University. Email: alexgolovnev@gmail.com.
‡Georgetown University. Email: satyajeetn2012@gmail.com.
§Georgetown University. Email: ss4456@georgetown.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 21 (2023)

1 Introduction

The Range Avoidance (Avoid) problem is: given a Boolean circuit C : {0, 1}n → {0, 1}m for some
stretch m > n, find an element y ∈ {0, 1}m outside the range of C. By the pigeonhole principle, such
a y always exists. This problem was first introduced by Kleinberg, Korten, Mitropolsky, and Pa-
padimitriou [KKMP21] as a complete problem for the class APEPP (Abundant Polynomial Empty
Pigeonhole Principle). Informally, APEPP contains total search problems where the existence of a
solution follows via the union bound (such as Shannon’s classical proof that most functions require
circuits of exponential size).

Korten [Kor22] proved that a deterministic algorithm for Avoid would imply explicit construc-
tions of objects that are central to the field of computational complexity, and would resolve several
long-standing open problems. Such objects include functions of high circuit complexity, rigid ma-
trices, pseudorandom generators, and Ramsey graphs. The key idea is that there is a succinct
way to encode all “easy” objects (such as descriptions of functions of low circuit complexity) in the
input space of a small circuit that acts as a decoder. Then a solution to the Avoid problem yields a
“hard” object (such as a function of high circuit complexity), implying an explicit construction. In
fact, the aforementioned works [KKMP21, Kor22] showed that even a deterministic algorithm with
an NP oracle solving Avoid in polynomial time would lead to breakthrough results in complexity
theory.

The only known deterministic algorithm for Avoid is the trivial brute force algorithm running
in time 2n ·poly(n, |C|).1 No better algorithms are known for Avoid even if the algorithm is allowed
to use an NP oracle. On the other hand, using both an NP oracle and randomness, one can solve
Avoid in polynomial time: Pick a random string y ∈ {0, 1}m, and simply check if y ∈ Range(C)
using the NP oracle. This shows that Avoid ∈ FZPPNP, and, using the standard trick of simulating
randomness by non-uniformity, Avoid ∈ FPNP/Poly.2 Interestingly, for the class of polynomial-
time algorithms with an NP oracle, the Avoid problem is equally hard for all values of stretch
n+ 1 ≤ m ≤ poly(n) [KKMP21].

For a class of circuits C, the C-Avoid problem is a special case of Avoid where each output
is computed by a circuit from C. Recent works by Ren, Santhanam, and Wang [RSW22] and
Guruswami, Lyu, and Wang [GLW22] proved that efficient algorithms for C-Avoid even for certain
simple circuit classes C would be sufficient for getting various explicit constructions. Later, Chen,
Huang, Li, and Ren [CHLR23] re-derived the best known lower bounds against ACC0 circuits from
an efficient algorithm for a certain C-Avoid problem. While this suggests that designing efficient
algorithms for Avoid problems is a promising approach to various explicit construction questions,
the work of Ilango, Li, and Williams [ILW23] proves barriers for designing such algorithms.

Let NC1 denote the class of Boolean fan-in-2 circuits of depth O(log(n)), and NC0
k denote

the class of Boolean functions where each output depends on at most k inputs for a constant k.
[RSW22] used perfect encodings of [IK00, IK02, AIK06] to reduce NC1-Avoid to NC0

4-Avoid in
polynomial time. Consequently, [GLW22] reduced most of the aforementioned explicit construc-
tions in [Kor22] (and several new ones!) to NC1-Avoid, and, thus, to NC0

4-Avoid. In particular,

1This trivial algorithm is (conditionally) tight for a related problem studied in [KKMP21], where the range of
C has size much smaller than 2n+1, and is given by a circuit computing a function from [N] to [M]. [KKMP21]
gives a deterministic reduction from SAT on n variables to Avoid for a circuit C : [2n] → [2n + 2o(n)] running in
subexponential time. Thus, under the Exponential Time Hypothesis [IPZ98, IP99], this problem does not admit
deterministic (and randomized) algorithms running in time 2o(n).

2Here, the complexity classes FP,FE,FZPP are simply the functional analogs of the decision classes P,E,ZPP.

1

polynomial-time deterministic algorithms (even with an NP oracle) for NC0
4-Avoid would now imply

breakthrough results in complexity theory.
[GLW22] gave a polynomial-time algorithm solving NC0

2-Avoid for any stretch m ≥ n+ 1. As
mentioned above, NC0

4-Avoid might be hard to solve efficiently. This leaves the question about the
complexity of NC0

3-Avoid open.

Open Problem 1 ([GLW22]). Can we reduce explicit construction problems to solving NC0
3-Avoid?

Or can we solve NC0
3-Avoid in polynomial time?

Unlike the case of the general Avoid problem, NC0
k-Avoid may be much easier for large values

of the stretch m. Indeed, on one hand, NC0
k-Avoid for small stretch m = n + o(n) is capable of

encoding hard explicit construction problems [RSW22, GLW22]. On the other hand, NC0
k-Avoid for

m = Ω(nk) is easily solvable in polynomial time: since the number of distinct functions depending
on at most k out of n inputs is O(nk), every such instance of the problem must have two outputs
computing identical functions. Assigning different values to these outputs solves NC0

k-Avoid.
[GLW22] presented an algorithm solving NC0

k-Avoid for stretch m ≥ Ω(nk−1) in polynomial
time with an NP oracle.3 This improvement on the trivial algorithm suggests a natural question of
whether one can solve NC0

k-Avoid for even smaller values of stretch m.

Open Problem 2. Design a polynomial-time algorithm (with an NP oracle) solving NC0
k-Avoid

with n inputs and stretch m = o(nk−1) for k ≥ 3.

1.1 Our Results

The classical result of Shannon [Sha49] shows that most Boolean functions of n variables require
Boolean circuits of exponential size. Despite that, the best known lower bound on the size of a circuit
(or even a circuit of logarithmic depth, i.e., NC1) for a function in P (or even ENP) is 3.1n − o(n)
proven by Li and Yang [LY22]. A central problem in circuit complexity is to prove a super-linear
lower bound on the number of gates of NC1 circuits computing an explicit function [Val77, AB09,
Frontier 3].

Similarly, for the class of linear NC1 circuits—NC1 circuits where each gate computes an XOR
(or its negation) of its two inputs—no super-linear lower bound on the complexity of an explicit
linear map M ∈ Fn×n

2 is known. The best lower bound against linear circuits is 3n − o(n) proven
by Chashkin [Cha94].

In our first result (Theorem 3.2), we answer Open Problem 1 by showing that a polynomial-
time algorithm for NC0

3-Avoid would imply an explicit construction of a map requiring linear NC1

circuits of super-linear size (thus, demonstrating the hardness of NC0
3-Avoid).

Theorem 1. An FP (resp. FPNP) algorithm for NC0
3-Avoid with stretch m = n+O(n2/3) implies

an explicit construction of a linear map in FP (resp. FPNP) that cannot be computed by linear NC1

circuits of size o(n log log(n)).

Our proof of Theorem 1 first reduces an explicit construction of a rigid matrix to NC0
3-Avoid

(Theorem 3.2). A matrix M ∈ Fn×n
2 is called (r, s)-rigid if it cannot be written as a sum M =

L + S of a rank-r matrix L and a matrix S with at most s non-zeros per row. In a seminal

3The algorithm of [GLW22] does not use the full power of FPNP: it outputs a hitting set H ⊆ {0, 1}m such that
for every NC0

k function C, at least one point y ∈ H is outside the range of C. Only then the algorithm looks at the
input function and finds a solution y ∈ H using the NP oracle.

2

work, Valiant [Val77] introduced an approach for proving super-linear lower bounds on the size
of linear NC1 circuits via matrix rigidity. Valiant proved that an (εn, nε)-rigid matrix M ∈ Fn×n

2

for any constant ε > 0 requires linear NC1 circuits of size Ω(n log log(n)). Theorem 1 now follows
straightforwardly as a corollary of Theorem 3.2.

The best known constructions of rigid matrices do not yet achieve the parameters sufficient
for Valiant’s circuit lower bound. [Fri93, PR94, SSS97] construct an

(
r,Ω

(
n
r log(

n
r)
))
-rigid matrix

in polynomial time, [GT16] gives an
(
r,Ω

(
n2

r2 log(n)

))
-rigid matrix in time 2O(n) for r ≥

√
n, and

[AC19, BHPT20] give (2ε log(n)/ log log(n),Ω(n))-rigid matrices in polynomial time with an NP oracle.
However, even an FPNP algorithm for NC0

3-Avoid with stretch m = n + n4/5−ε for any constant
ε > 0 would already improve on these known constructions of rigid matrices.

In fact, we reduce the problem of constructing explicit rigid matrices to a problem that we call
degree-2-Avoid, where each output computes a degree-2 polynomial of the inputs. Following Ren,
Santhanam, and Wang’s approach [RSW22], this problem can be reduced to NC0

3-Avoid using the
perfect encoding scheme of Applebaum, Ishai, and Kushilevitz [AIK06].4

On the algorithmic side, we make partial progress towards resolving Open Problem 2. We first
give a simple deterministic polynomial-time algorithm for NC0

3-Avoid for stretch m ≥
(
n
2

)
/3 + 2n

(presented in Appendix A). This algorithm already improves on the best known algorithm for NC0
3,

as it does not use an NP oracle. Then, in Theorem 4.5 we extend this algorithm to solve NC0
k-Avoid

for all constant k. Recall that the current best algorithms for this problem solve the case where
m ≥ Ω(nk−1) in polynomial time using an NP oracle [GLW22]. We improve this result in two
directions: our algorithm does not use an NP oracle, and it works in polynomial time for stretch
m ≥ nk−1/ log(n).

Theorem 2. There is a deterministic polynomial-time algorithm that solves the NC0
k-Avoid prob-

lem with n inputs and stretch m for every k ≥ 3 and m ≥ nk−1/ log(n).

1.2 Proof Overview

Hardness of NC0
3-Avoid. Valiant [Val77] proved that linear NC1 circuits with a linear number

of gates can only compute non-rigid linear maps M ∈ Fn×n
2 , i.e., maps M that can be written as

a sum M = Q + S, where rank(Q) ≤ εn and each row of S has at most nδ ones in it. For the
rest of the section, our non-rigid matrices can be written as the sum of a matrix with rank ≤ n/10
and a matrix with row sparsity at most n0.1. Therefore, constructing a rigid matrix would imply a
super-linear lower bound on the size of linear NC1 circuits computing it.

To reduce an explicit construction of an n×n rigid matrix to solving an instance of NC0
3-Avoid,

we design an NC0
3 function f : {0, 1}p(n) → {0, 1}n2

, for some polynomial p(n) < n2, such that for
every non-rigid matrix M ∈ {0, 1}n×n, there exists x ∈ {0, 1}p(n) satisfying f(x) = M . Now, any
solution M ′ ∈ {0, 1}n×n to the NC0

3-Avoid problem for the function f must be a rigid matrix.

Before constructing such an NC0
3 function f , we first design a function g : Fn2/2

2 → Fn2

2 , where
each output bit of g is a degree-2 polynomial of the inputs, and the range of g contains all non-rigid
matrices. A solution to the degree-2-Avoid problem for the function g would give us a rigid matrix.
Following [RSW22], we can then apply a perfect encoding scheme [IK00, IK02, AIK06] to g, and

4Ren, Santhanam, and Wang use the following definition of perfect encodings: A function f̂ is a perfect encoding of
a function f if there exists a polynomial time algorithm Dec such that for all x, y: Dec(y) = f(x) ⇐⇒ ∃r, y = f̂(x, r).

3

obtain an NC0
3 function f , as required (see Lemma 2.7). Effectively, this reduces solving Avoid

on g to solving Avoid on f .

Now we construct a degree-2 function g : Fn2/2
2 → Fn2

2 whose inputs encode all non-rigid matri-

ces, i.e., for every non-rigid matrix M , there is an x ∈ {0, 1}n2/2 such that f(x) = M . A non-rigid

matrix M can be written as M = LR + S, where L,RT ∈ Fn×n/10
2 , and each row of S contains at

most n0.1 ones. The first n2/5 inputs of the function g will correspond to the elements of L and R.
Note that every entry of LR is a degree-2 function of the entries of L and R since it just computes
the inner product of a row in L and a column in R. Now, for each n0.1-sparse row of S, we show
how to encode it using n0.6 inputs and a degree 2 function. Repeating this procedure for each row
of S will finish the proof.

We interpret the n0.1-sparse row with n entries as a
√
n×
√
n matrix A. Since A has at most n0.1

non-zero entries, rank(A) ≤ n0.1. It can be written as a product A = BC where B,CT ∈ F
√
n×n0.1

2 .
Therefore, there is a degree-2 function h that takes as input B,C of size 2n0.6 and outputs the
sparse matrix A.

The presented encoding of s-sparse vectors in Fn
2 is only non-trivial for s <

√
n (as otherwise

the number of inputs of h exceeds the number of outputs). As a result, we cannot encode the
entire matrix S as an n1.1-sparse vector in Fn2

2 . However, for Valiant’s approach of proving circuit
lower bounds, we can assume that S is n0.1-row sparse. Thus, we can separately encode each row
of S using only O(n0.6) inputs to obtain an encoding of S in O(n1.6) bits. In Lemma 3.1, we will
demonstrate how to accommodate slightly better sparsity parameter when we are allowed higher
(but still constant) degree d for the encoding function.

Simple algorithm for NC0
3-Avoid. We start with a short description of a simple deterministic

polynomial-time algorithm for NC0
3-Avoid for stretch m ≥

(
n
2

)
/3 + 2n (presented in Appendix A).

This algorithm already improves on the best known algorithm for NC0
3-Avoid, as our algorithm

does not use an NP oracle.
If we had a #SAT oracle, then we could solve NC0

3-Avoid even for stretch m = n + 1. Our
algorithm would iteratively find constant assignments to each of the first n outputs to minimize the
number of inputs that map to the current (partial) output assignments. Throughout our exposition,
we say such inputs are consistent with the (partial) output assignments. Before we describe our
algorithm, it is important to note that we always fix circuit outputs to constant assignments. At
each iteration, we would use the #SAT oracle to find the output assignment that reduces the
size of the input set by at least a factor of two. After fixing the first n outputs, we still have at
least m − n ≥ 1 unassigned outputs, and only one input point x ∈ Fn

2 that is consistent with the
previously assigned output bits. This allows us to find an assignment of the (n+ 1)-th output bit
such that the string specified by the output bits lies outside the range of the circuit.

Unfortunately, solving #SAT (even approximately) is hard for this class of multi-output circuits.
In the absence of an efficient #SAT algorithm, our algorithm maintains an affine subspace S that
contains all inputs from Fn

2 that are consistent with the current partial assignment (S may also
contain inputs that are not consistent with the current partial assignment). We carefully set output
values so that at each iteration, we reduce the dimension of S by at least one. This way, after n+1
steps we will find a solution to the NC0

3-Avoid problem. However, our algorithm can only work
when the stretch is m ≥ Ω(n2).

Without loss of generality, we assume that each output reads exactly three input bits. At
each iteration the number of currently unassigned outputs is >

(
n
2

)
/3. This allows us to find

4

a pair of outputs y1 and y2 that share a pair of input variables.5 Say, y1 = f1(x1, x2, x3) and
y2 = f2(x2, x3, x4). We will find a constant assignment to y1 and y2 that reduces the dimension of
the affine subspace S.

Note that there are 16 assignments to (x1, x2, x3, x4) and four different values of (y1, y2). There-
fore, there is a way to assign y1 = c1, y2 = c2 such that at most four points (x1, x2, x3, x4) map
to these values of the outputs. Note that there always exists a hyperplane H containing any four
points in F4

2. Let H be the affine subspace obtained by extending H to all n inputs. Then, S ∩ H
gives us an affine subspace containing all inputs consistent with the assignment y1 = c1, y2 = c2.

If S ⊈ H, then we have an assignment of two outputs that reduces the dimension of our
affine subspace as dim(S ∩ H) < dim(S). Otherwise, if S ⊆ H, then instead of considering all 16
assignments to the inputs (x1, x2, x3, x4), we can restrict our attention to at most 8 such assignments
that belong to H, which makes the problem only easier (as we show in Theorem A.1).

Better algorithm for NC0
k-Avoid. The main bottleneck of this simple algorithm is that it

maintains an affine subspace that must contain all consistent inputs. While affine subspaces are easy
to work with, they are not expressive enough to accurately describe all inputs that are consistent
with an arbitrary partial assignment. In order to improve the previous algorithm, we will maintain
a more expressive structure than an affine subspace—a union of affine subspaces. Below we sketch
our approach to solving NC0

3-Avoid with stretch m ≥ Ω(n2/ log(n)). Theorem 4.5 generalizes this
to solving NC0

k-Avoid problems with stretch m ≥ Ω(nk−1/ log(n)) for all values of k.
Again, without loss of generality, we assume that each output depends on exactly three inputs.

Consider a bipartite graph, where the left vertices correspond to n inputs, the right vertices cor-
respond to m outputs, and an input-output pair (xi, yj) is connected by an edge if the output yj
depends on the input xi. First we select t = 3n2/m highest-degree inputs I = {x1, . . . , xt}. Their
neighborhood must contain at least 3n distinct outputs O = {y1, . . . , y3n}.6 Let C be the sub-circuit
defined on outputs from O and their corresponding inputs. Now, we will find a y ∈ F3n

2 outside
Range(C).

First, consider all 2t assignments to the inputs in I = {x1, . . . , xt}, resulting in circuits
C1, . . . ,C2t . Since every output in O is connected to at least one input from I, fixing an as-
signment to the inputs I reduces each Ci to an NC0

2 circuit. In a way, we have reduced NC0
3-Avoid

to an OR of 2t instances of NC0
2-Avoid: we need to find a y ∈ {0, 1}3n outside the ranges of all

the Ci’s. For each circuit Ci, we will maintain an affine subspace Si containing all inputs consistent
with the current partial assignment of the outputs.

Our algorithm works by iteratively fixing the output bits from {y1, . . . , y3n} such that at each
step the total number of points in the (disjoint) union of the affine subspaces Si is reduced by a
constant factor, eventually making all the subspaces empty. We observe (in Lemma 4.3) that for
any affine subspace Si, one of the assignments yi = 0 or yi = 1 always reduces the dimension of Si
by one. Therefore, by picking the “best” assignment yi = c across all the subspaces Si, we can
reduce the size of the union of such affine subspaces by a constant factor of 4/3. Repeating this
procedure for log4/3(2

n) + 1 < 3n steps finishes the proof.

5Each output sees 3 pairs of input bits, giving a total of 3m >
(
n
2

)
pairs. By the pigeonhole principle, at least one

pair of inputs appears in two outputs.
6Since the number of outputs is m, and each output has degree 3, the number of edges in the graph is 3m, and

the average degree of an input is 3m/n. The t highest-degree inputs then have total degree 3mt/n, and must be
connected to at least mt/n = 3n distinct outputs.

5

1.3 Open Problems

Our work motivates several natural questions about the complexity of NC0
3-Avoid and

degree-2-Avoid. We reduce explicit constructions of rigid matrices to solving degree-2-Avoid,
and then NC0

3-Avoid, with appropriate stretch.

Open Problem 3. Can other explicit construction questions be reduced to NC0
3-Avoid or

degree-2-Avoid?

Particularly, we suspect that the construction of linear and list-decodable codes with optimal
parameters [GLW22] might be good candidates for these reductions.

Using the encoding of [AIK06] in the reduction from degree-2-Avoid to NC0
3-Avoid almost

always decreases the required stretch to m = n+ o(n) (as highlighted in Section 3). It would also
be interesting to find a more efficient encoding or reduction from degree-2-Avoid to NC0

3-Avoid.
This could potentially increase the stretch for NC0

3-Avoid required to obtain explicit constructions
thereby making the problem easier.

Open Problem 4. Can we construct a more efficient reduction from degree-2-Avoid to NC3
0-

Avoid?

We believe degree-2-Avoid might be of independent interest since it allows for a larger stretch.
For example, for improved constructions of rigid matrices, it suffices to solve degree-2-Avoid for
super-linear stretch m ≥ n4/3−ε for a constant ε > 0. In fact, degree-2-Avoid is easy to solve when
the stretch is m ≥ n2. Note that there are at most

(
n
2

)
unique degree-2 monomials on n variables.

If m ≥ n2, then we can replace each unique monomial with a new variable. As a result, we will
have m linear functions in < m variables. We can solve Avoid on this linear function instance by
a dimension reduction strategy similar to the one outlined in the previous section.

Open Problem 5. Are there algorithmic techniques to solve degree-2-Avoid that do not use a
reduction to NC0

3-Avoid?

For the NC0
3-Avoid problem, our algorithm runs in deterministic time 2O(n2/m) for any stretch

m ≥ n+ 1. In particular, this recovers the exponential-time brute force algorithm for the hardest
case of m = n + 1. It would be interesting to obtain matching conditional lower bounds for
deterministic algorithms for NC0

3-Avoid.

Open Problem 6. Is there a conditional lower bound of 2Ω(n2/m) on the complexity of deterministic
algorithms without an NP oracle for NC0

3-Avoid?

Finally, it is natural to ask if algorithms with NP oracles can solve NC0
3-Avoid more efficiently.

Open Problem 7. Do there exist polynomial-time algorithms with NP oracles that solve NC0
3-

Avoid for stretch m = o(n2/ log(n))?

1.4 Structure

The rest of the paper is organized as follows. In Section 2, we give all necessary background
material, including a reduction from degree-d-Avoid to NC0

d+1-Avoid in Section 2.3. In Section 3,
we reduce the problem of constructing explicit rigid matrices to NC0

3-Avoid. In Section 4, we
give deterministic algorithms solving NC0

k-Avoid in polynomial time for stretch m ≥ nk−1/ log(n).
Finally, Appendix A contains an alternative deterministic polynomial-time algorithm for NC0

3 for
the case where stretch m ≥ Ω(n2).

6

2 Preliminaries

For every a ∈ Fn
2 and subspace L of Fn

2 , we can define an affine subspace A ⊆ Fn
2 where A =

{a + v | v ∈ L}. The dimension of the affine subspace dim(A) is the same as the dimension of
the linear subspace L that defines it. Equivalently, the set of points that lie on a specified set of
hyperplanes over Fn

2 also characterize an affine subspace of Fn
2 . The hyperplanes can be written as

a system of linear equations Ax = b, and the dimension of the corresponding affine subspace A can
be calculated as dim(A) = n− rank(A).

The circuits and algorithms in this paper generally work over the boolean hypercube {0, 1}n.
We work with multi-output circuits C : {0, 1}n → {0, 1}m where m > n and m is called the stretch
of the circuit. A partial output assignment, y ∈ {0, 1, ∗}m, is a fixing of a subset of the output bits
of the circuit to constants. For an input x ∈ {0, 1}n to the circuit, we say x is consistent with a
partial output assignment y ∈ {0, 1, ∗}m, if C(x) agrees with y on the fixed bits. When specified,
the input (resp. output) space of a circuit might instead be viewed as the vector space Fn

2 (resp.
Fm
2) over the finite field F2.
The complexity classes FP,FPNP,FE, and FENP are classes of search problems analogous to the

classes of decision problems P,PNP,E, and ENP. For example, the class FP contains all functions
that can be computed by deterministic polynomial-time Turing machines.

2.1 Circuits and Matrix Rigidity

In this paper, we work with circuit classes NC0
k and NC1, which we define below.

Definition 2.1. (NC Circuits) The circuit class NCi contains multi-output Boolean circuits on n
inputs of depth O(logi(n)) where each gate has fan-in 2. We are particularly concerned with the
following classes of circuits:

• For every constant k ≥ 1, NC0
k is the class of circuits where each output depends on at most

k inputs.

• NC1 is the class of circuits of depth O(log(n)) where all gates have fan-in 2.

• Linear NC1 circuits are circuits of depth O(log(n)) where every gate has fan-in 2 and computes
an affine function, i.e., an XOR of its two inputs or its negation.

It is a long-standing open problem in circuit complexity to prove super-linear lower bounds on
the size of (linear) NC1 circuits computing an n-output function from FP or even FENP [Val77, AB09,
Frontier 3]. Valiant [Val77] suggested an approach for proving super-linear lower bounds for linear
NC1 circuits using the notion of matrix rigidity.

Definition 2.2 (Matrix Rigidity). For r, s ∈ Z+, a matrix M ∈ Fn×n
2 is (r, s)-rigid if M cannot

be written as a sum

M = L+ S ,

where L, S ∈ Fn×n
2 , L is low rank, i.e., rank(L) ≤ r, and S is row sparse, i.e., every row of S has at

most s non-zero entries.

7

Valiant [Val77] proved that a linear operator given by a sufficiently rigid matrix requires linear
NC1 circuits of size at least Ω(n log log(n)), but there are still no known constructions of such rigid
matrices even in FENP.

Theorem 2.3 ([Val77]). If a family of matrices (Mn)n≥1, Mn ∈ Fn×n, is (εn, nδ)-rigid for constant
ε, δ > 0, then the linear map x 7→Mx requires linear NC1 circuits of size Ω(n log log(n)).

2.2 Range Avoidance for Circuits

In the range avoidance problem, given a circuit C with n inputs and m outputs, m > n, the goal is
to find an m-bit string outside the range of C.

Definition 2.4 (Avoid). In the Avoid problem, given a description of a circuit C : {0, 1}n →
{0, 1}m for m > n, the task is to find a y ∈ {0, 1}m such that ∀x ∈ {0, 1}n : C(x) ̸= y.

The function m = m(n) is called the stretch of the multi-output circuit C. Note that Avoid
is a total search problem, i.e., there always exists such a y ∈ {0, 1}m since m > n. We focus on
a more restricted problem where there is an additional promise that the input circuit C is from a
fixed circuit class C.

Definition 2.5 (C-Avoid). In the C-Avoid problem, given a description of a circuit C : {0, 1}n →
{0, 1}m for m > n, where C ∈ C, the task is to find a y ∈ {0, 1}m such that ∀x ∈ {0, 1}n : C(x) ̸= y.

In particular, we are concerned with NC1-Avoid and NC0
k-Avoid for constant k ≥ 1. We will

also consider the class of functions where each output is a multivariate polynomial of the inputs of
degree at most d over F2.

Definition 2.6 (degree-d-Avoid). In the degree-d-Avoid problem, given a description of a function
C : Fn

2 → Fm
2 for m > n, where each output can be computed by a polynomial of degree ≤ d in

the n inputs, the task is to find a y ∈ Fm
2 such that ∀x ∈ Fn

2 : C(x) ̸= y.

2.3 Low Degree and Low Locality

Perfect randomized encodings were introduced by [AIK06] for various cryptographic applica-
tions. We are interested in the following property of perfect encodings: For a Boolean function
f : {0, 1}n → {0, 1}m and its encoding f̂ : {0, 1}n+ℓ → {0, 1}m+ℓ, there exists a polynomial-time
decoding algorithm, Dec: {0, 1}m+ℓ → {0, 1}m, such that for all y ∈ {0, 1}m+ℓ and x ∈ {0, 1}n
satisfying Dec(y) = f(x), there exists r ∈ {0, 1}ℓ such that y = f̂(x, r). This property can be used
in Avoid reductions as follows. Given a solution to the Avoid problem for the function f̂ , i.e.,
y ̸∈ Range(f̂), one can find a solution to the Avoid problem for the function f in polynomial time
by simply computing Dec(y) ̸∈ Range(f).

[AIK06] first encode NC1 functions as degree-3 functions. Then, they encode every degree-d
function as an NC0

d+1 function. Composing these two encodings provides an encoding of NC1

functions in NC0
4. Using this encoding, [RSW22] provides a polynomial time reduction from NC1-

Avoid to NC0
4-Avoid. We use only one part of the result from [AIK06]: there is a polynomial time

reduction from degree-d-Avoid to NC0
d+1-Avoid. For completeness, we include the proof here.

Lemma 2.7. Let d ≥ 2 be a constant, and f : Fn
2 → Fm

2 be a multi-output function where
every output computes a sum of k monomials of degree ≤ d. Then there exists a function

8

f̂ : {0, 1}n+(2k−1)m → {0, 1}2km computed by an NC0
d+1 circuit and a polynomial time algorithm

Dec: {0, 1}2km → {0, 1}m such that for all x, y, if Dec(y) = f(x), there exists an r ∈ {0, 1}(2k−1)m

such that f̂(x, r) = y.

Proof. We follow the encoding constructed in [AIK06]. First, we construct an encoding ĝ for
each single output function g of f . Let g(x) = T1(x) + T2(x) + · · · + Tk(x) be a single output
degree-d function where each Ti(x) is a monomial of degree at most d. Consider the encoding of g,
ĝ : {0, 1}n × {0, 1}k × {0, 1}k−1 → {0, 1}2k defined as follows

ĝ(x, r, s) = (T1(x)− r1, T2(x)− r2, . . . Tk−1(x)− rk−1(x), Tk(x)− rk,

r1 − s1, s1 + r2 − s2, . . . sk−2 + rk−1 − sk−1, sk−1 + rk) .

Clearly, each output bit of ĝ can be computed by an NC0
d+1 circuit. We define a polynomial-time

algorithm Decĝ : {0, 1}2k → {0, 1} such that if Decĝ(y) = g(x) then there exist r and s satisfying
ĝ(x, r, s) = y. Given y ∈ {0, 1}2k, Decĝ(y) sums up the bits of y modulo 2.

Suppose Decĝ(y) = g(x) for some x ∈ {0, 1}n, i.e.,

Decĝ(y) =

2k∑
j=1

yj = g(x) =

k∑
j=1

Tj(x) . (1)

We will now show that there exist r and s such that ĝ(x, r, s) = y. For each j ∈ [k], we set
rj = Tj(x) − yj . We also set s1 = r1 − yk+1 and sequentially set sj = sj−1 + rj − yk+j for each
j ∈ {2, . . . , k − 1}. By definition, the first 2k − 1 bits of ĝ(x, r, s) equal the first 2k − 1 bits of y.
For the last bit, note that:

sk−1 + rk =
k∑

i=1

ri −
2k−1∑
i=k+1

yi (by the definition of s)

=

k∑
i=1

Ti(x)−
2k−1∑
i=1

yi (by the definition of r)

= y2k . (by Equation (1))

Therefore, for the constructed r and s, ĝ(x, r, s) = y, as required.
Suppose f(x) = (f1(x), f2(x), . . . , fm(x)), where each fi(x) is a sum of at most k monomials

of degree ≤ d. Let f̂i be the encoding of fi as defined above. Then our encoding of f is simply a
concatenation of the encodings of its individual outputs, f̂ : {0, 1}n+(2k−1)m → {0, 1}2km, where

f̂(x, r(1), r(2), . . . , r(m), s(1), s(2), . . . , s(m)) = (f̂1(x, r
(1), s(1)), . . . , f̂m(x, r(m), s(m))) . (2)

On input y = (y1, y2, . . . , ym) ∈ {0, 1}2km, the decoding algorithm returns

Dec(y) = (Dec
f̂1
(y1), . . . ,Dec

f̂m
(ym)) . (3)

Suppose Dec(y) = f(x) for some x ∈ {0, 1}n. Then Dec
f̂i
(yi) = fi(x) for all i ∈ [m]. By our

proof above, there exists r(i) and s(i) such that yi = f̂i(x, r
(i), s(i)) and, thereby,

y = (y1, . . . , ym) = (f̂1(x, r
(1), s(1)), . . . , f̂m(x, r(m), s(m))) = f̂(x, r(1), s(1), . . . , r(m), s(m)) .

Finally, Dec runs in time O(mk) since it runs m iterations of Dec
f̂i

for each i, each of which

simply computes a sum of 2k bits. Since each f̂i is in NC0
d+1, so is f̂ .

9

Now, following [RSW22], we conclude that there is a polynomial-time reduction from degree-d-
Avoid to NC0

d+1-Avoid.

Corollary 2.8. For every d ≥ 1, if there exists an FP (resp. FPNP) algorithm for NC0
d+1-Avoid,

then there exists an FP (resp. FPNP) algorithm for degree-d-Avoid.

Proof. Let f be an input to a degree-d-Avoid problem with m output bits. Then, each output
bit of f is a sum of at most k = O(nd) monomials of degree d. Let f̂ be the encoding of f in
NC0

d+1 guaranteed by Lemma 2.7. Note that f̂ : {0, 1}n+(2k−1)m → {0, 1}2km. By the assumption

of the Corollary, there is an FP (resp. FPNP) algorithm that returns a y ̸∈ Range(f̂). Then, by
Lemma 2.7, Dec(y) ̸∈ Range(f) and Dec runs in polynomial time. Therefore, there is an FP (resp.
FPNP) algorithm for degree-d-Avoid.

3 Hardness of NC0
3-Avoid

In this section, we reduce the problem of constructing explicit rigid matrices to the algorithmic
task of solving NC0

3-Avoid. First, in Lemma 3.1 we give an explicit degree-2 function f : {0, 1}k →
{0, 1}n, k ≪ n, whose range contains all sparse vectors of length n. Note that such a function f
must have degree at least 2. Indeed, if f was affine and its range contained all vectors of sparsity
at most 1, then its range must have dimension n, and the number of inputs of f would be k ≥ n.

Next, in Theorem 3.2, we apply this lemma, together with the reduction from degree-2-Avoid to
NC0

3-Avoid from Lemma 2.7, to conclude that an efficient algorithm for NC0
3-Avoid would provide

an explicit construction of rigid matrices.

Lemma 3.1. For every d ≥ 1 and every polynomial-time computable s := s(n) < n1−1/d

d , there

exists a polynomial-time computable function f : Fdsn1/d

2 → Fn
2 whose range contains all vectors of

sparsity at most s, and each output of f is a degree-d polynomial.

Proof. Let G be an arbitrary d-uniform hypergraph on ℓ = dn1/d vertices and n hyperedges (such
a graph exists because

(
ℓ
d

)
≥ (ℓ/d)d = n). Fix an ordering {1, . . . , ℓ} of the vertices and {1, . . . , n}

of the edges. Each vertex of G will be labeled by a vector from Fs
2. Our function f : Fsℓ

2 → Fn
2

will take as input the labels of the vertices of G and output n elements corresponding to the n
hyperedges of G: the ith output is the generalized inner product of the labels of the d vertices in the
ith hyperedge. We interpret the input as a matrix X ∈ Fs×ℓ

2 , where the jth column Xj ∈ Fs
2 is the

label corresponding to the jth vertex. Suppose the hyperedge i contains the vertices {j1, . . . , jd}
then the ith output is fi(X) =

∑s
k=1Xk,j1 · · ·Xk,jd . Clearly, f is a degree-d function, it only

remains to show that its output contains all vectors of sparsity ≤ s. For this, we show that for
every vector y ∈ Fn

2 of sparsity ≤ s, there is an input, i.e., a labeling of the vertices of G, such that
f outputs y. Let the s non-zero elements of y correspond to the distinct edges i1, . . . , is in G. For
each vertex j in G we set its label Xj ∈ Fs

2 to be such that (Xj)k = 1 if j ∈ ik and (Xj)k = 0
otherwise.

Consider any edge i = {j1, . . . , jd} and the submatrix Xj1,...,jd of X containing the labels of
these vertices connected by i.

• If i = ik for some k ∈ [s], then yi = 1. The ikth row of Xj1,...,jd contains all 1 entries.
Furthermore, every other row contains at least one zero. Therefore, fi(X) = 1.

10

• If i ̸= ik for all k ∈ [s], then yi = 0 and each row of Xj1,...,jd contains at least one zero.
Therefore, fi(X) = 0.

Equipped with Lemma 3.1, we are ready to show that an efficient algorithm for degree-2-Avoid
or NC0

3-Avoid would imply an explicit construction of rigid matrices.

Theorem 3.2. For every constant 1/2 ≤ δ ≤ 1, an FP (resp. FPNP) algorithm for degree-
2-Avoid with stretch m = 2n2/(1+δ) will provide an FP (resp. FPNP) algorithm for finding an
(nδ/10, nδ−1/2/10)-rigid matrix.

Furthermore, for every 1/2 ≤ δ ≤ 1, an FP (resp. FPNP) algorithm for NC0
3-Avoid with stretch

m = n+O(n2/(2+δ)) will provide an FP (resp. FPNP) algorithm for finding an (nδ/10, nδ−1/2/10)-
rigid matrix.

Proof. Let r = nδ/10 and s = nδ−1/2/10. First, we reduce (in deterministic polynomial time) the
problem of finding an (r, s)-rigid matrix to solving degree-2-Avoid for a function g : F4rn

2 → Fn2

2 .
Suppose M ∈ Fn×n

2 is not (r, s)-rigid. Then, M can be written as a sum M = Q + S, where
rank(Q) ≤ r and S is s-row sparse. Furthermore, Q = L ·R for some matrices L,RT ∈ Fn×r

2 .
We view the input of g as 2rn entries of the matrices L and R, and 2sn3/2 inputs of n copies

of the degree-2 function f from Lemma 3.1 needed to encode the entries of n sparse rows of S.
Then the function g simply outputs all n2 entries of M = L · R + S. Note that each output
of g computes a dot-product of a row of L and a column of R, and adds a degree-2 output of
f . Therefore, we constructed a degree-2 function g whose range contains all non-rigid matrices.
A solution to degree-2-Avoid on input g would therefore give an (r, s)-rigid matrix. The number
of inputs of g is n′ = 2rn + 2sn3/2 = 4rn = 2n1+δ/5, and the stretch of the function g is at least
m′(n′) ≥ 2(n′)2/(1+δ). This concludes the proof of the first part of the theorem.

For the second part, we use the polynomial-time reduction from degree-2-Avoid to NC0
3-Avoid

from Lemma 2.7. By the construction above, we have a degree-2 function g : F4rn
2 → Fn2

2 where
each output bit is the sum of at most t = r+ s ≤ 2r degree-2 monomials. We apply Lemma 2.7 to
reduce Avoid for g to Avoid for an NC0

3 function ĝ : {0, 1}n̂ → {0, 1}m̂, where n̂ = n′ + (2t− 1)n2

and m̂ = 2tn2. This yields a stretch of m̂(n̂) = n̂ + O(n̂2/(2+δ)) for the function ĝ. Therefore, an
algorithm for NC0

3-Avoid for stretch m̂(n) yields an (r, s)-rigid matrix.

We remark that in the regime δ > 1/2, Theorem 3.2 would give matrices that for rank nδ have
higher rigidity than all known constructions of rigid matrices in FP,FPNP and FENP. Therefore,
for every ε > 0, an FPNP algorithm for degree-2-Avoid with stretch n4/3−ε and an FPNP algorithm
for NC0

3-Avoid with stretch n+ n4/5−ε would lead to new rigidity lower bounds. Since the regime
of δ = 1 in Theorem 3.2 is sufficient for Valiant’s program of proving super-linear lower bounds on
the size of linear NC1 circuits (see Theorem 2.3), we have the following corollary.

Corollary 3.3. An FP (resp. FPNP) algorithm for degree-2-Avoid with stretch m = 2n or for
NC0

3-Avoid with stretch m = n + O(n2/3) will provide a linear function in FP (resp. FPNP) that
cannot be computed by linear NC1 circuits of size o(n log log(n)).

4 Algorithms for NC0
k-Avoid

In this section, we describe polynomial-time algorithms for solving NC0
k-Avoid with non-trivial

stretch. More specifically, we provide an algorithm that runs in time 2O(nk−1/m) · poly(n) when the

11

stretch of the input circuit is at least m ≥ Ω(nk−2). First, we describe a useful structural property
of NC0

k circuits, which follows from the following simple graph-theoretic result.

Lemma 4.1. For any constants c ≥ 1 and k ≥ 3, every k-uniform hypergraph G = (V,E) with
n vertices and m ≥ cnk−2 hyperedges contains a subset of vertices V ′ ⊆ V, |V ′| ≤ cnk−1/m and
a subset of hyperedges E′ ⊆ E, |E′| ≥ cn such that each hyperedge in E′ contains at least k − 2
vertices from V ′. Furthermore, there is a polynomial-time algorithm that finds such a V ′ and E′.

Proof. Consider the following bipartite graph H with vertex set A ⊔ B where A = {uS | S ⊆
V, |S| = k − 2} is the set of vertices indexed by the k − 2 sized subsets of V and B = {ve | e ∈ E}
is indexed by the edges of G. Furthermore there is an edge (uS , ve) in H if S ⊆ e, i.e., if all the
vertices in S are contained in the hyperedge e ∈ E. Since each hyperedge e contains k vertices,
the degree of each vertex in B is exactly

(
k

k−2

)
. Then, the average degree of the vertices in A is

|B|(k
k−2)

|A| =
m(k

k−2)
(n
k−2)

. Let A′ ⊆ A be the subset of t vertices with highest degree in A and let N(A′)

be their neighbors in B. Then total degree of vertices in A′ is at least
tm(k

k−2)
(n
k−2)

. Since each vertex

in B has degree
(

k
k−2

)
, |N(A′)| ≥ tm(k

k−2)
(n
k−2)(

k
k−2)

= tm

(n
k−2)

. Therefore, setting t =
cn(n

k−2)
m , V ′ to be the

set of t(k− 2) =
cn(k−2)(n

k−2)
m ≤ cnk−1/m vertices of G contained in the union of the vertex subsets

in A′, and E′ = N(A′) completes our proof.
To find V ′ and E′, we first construct the graph H which has polynomial size, and then find the

vertices in A′ by finding the t vertices in A with maximum degree. It is now straightforward to
construct V ′ from A′ and to find E′ = N(A′).

Corollary 4.2. For any constants c ≥ 1 and k ≥ 3, given an NC0
k circuit C with n inputs and

m ≥ cnk−2 outputs, there exists a subset of outputs O of size |O| ≥ cn, and a subset of inputs I of
size |I| ≤ cnk−1/m, such that for every output bit Ci ∈ O, at least k − 2 of the input bits feeding
into Ci are from I. Furthermore, there is a polynomial-time algorithm that finds such sets I and
O.

Proof. Without loss of generality we assume that each output of C reads exactly k inputs (as if it
reads ℓ < k inputs, we let it additionally read arbitrary k−ℓ inputs and ignore them). Consider the
hypergraph where each vertex corresponds to one of the n inputs {x1, . . . , xn} of C. Each edge of the
hypergraph corresponds to an output Ci, ei = {j | Ci reads xj}. Now, we apply Lemma 4.1 on this
hypergraph and set I = V ′ and O = E′. Note that |I| = |V ′| ≤ cnk−1/m and |O| = |E′| ≥ cn.

This corollary finds a linear number of output bits O of the circuit that mostly depend on a
small number of common input bits I. Our algorithm for NC0

k-Avoid will “branch” on all possible
assignments to the inputs from I. Each such assignment will correspond to an affine subspace
S ⊆ Fn

2 of the input space. Then, our algorithm works by fixing the output bits from O such
that the sum of the dimensions of these affine subspaces is significantly reduced at each step,
eventually making all subspaces empty. Note that by the guarantee of Corollary 4.2, after fixing
the inputs I, each output from O depends on at most two inputs. Thus, we need an efficient way
to reduce the dimension of the affine subspace containing the consistent inputs for the case where
output functions depend on at most two inputs. In Lemma 4.3, we provide such a subroutine
AffineReduce (Algorithm 1).

12

Lemma 4.3. Let S ⊆ Fn
2 be an affine subspace, and f : Fn

2 → F2 be a function that depends on at
most two inputs. The algorithm AffineReduce in deterministic polynomial time finds two affine
subspaces (or empty sets) S0,S1 ⊆ S such that

(1) ∀x ∈ S, b ∈ F2, if f(x) = b, then x ∈ Sb;

(2) |S0|+ |S1| ≤ 3|S|/2.

Proof. Without loss of generality we assume that f(x) depends on (a subset of) x1 and x2. We will
consider three cases depending on the degree of f , and in each case we will find affine subspaces
(or empty sets) S0,S1 ⊆ S such that at least one of them has dimension strictly smaller than the
dimension of S (or at least one of them is an empty set). This will ensure that |S0|+ |S1| ≤ 3|S|/2.

• If f(x) = c for some c ∈ F2 is a constant function, then we set Sc = S and S1−c = ∅. Clearly,
Sc = S and S1−c contain all points x ∈ S that are consistent with f(x) = c and f(x) = 1− c,
respectively.

• If f(x) = a1x1 + a2x2 + c for some constants a1, a2, c ∈ F2 is an affine function, then for
each b ∈ F2 let Hb be the hyperplane defined by a1x1 + a2x2 + c = b, and let Sb = S ∩Hb.
Again, S ∩Hb contains all the inputs in S that are consistent with f(x) = b. Furthermore, if
dim(S0) = dim(S), then S ⊆ H0 and S1 = S ∩H1 = ∅. Therefore, either dim(S0) < dim(S)
or S1 = ∅.

• If f(x) = (x1+ a1)(x2+ a2)+ c for some constants a1, a2, c ∈ F2 is a quadratic function, then
let H be the affine subspace defined by H = {x ∈ Fn

2 | x1 = 1 + a1, x2 = 1 + a2}. Consider
the affine subspace S1−c = S ∩H which contains all points x ∈ S satisfying f(x) = 1− c.

– If dim(S1−c) < dim(S), then we are done as we can take Sc = S

– If dim(S1−c) = dim(S), then S ⊆ H. Then, every point in S satisfies f(x) = 1− c, thus,
setting S1−c = S and Sc = ∅ completes our construction.

In each case, either |S0| ≤ |S|
2 or |S1| ≤ |S|

2 . Therefore, |S0|+ |S1| ≤ 3|S|/2.
The only computation made by AffineReduce is to compute the dimensions of explicitly

given affine subspaces, which can be performed in polynomial time.

A simple application of AffineReduce recovers a polynomial-time algorithm for NC0
2-Avoid

from [GLW22].

Corollary 4.4. There is a deterministic polynomial-time algorithm that, given an NC0
2 circuit

C : {0, 1}n → {0, 1}m, m ≥ n+ 1, finds an element y ∈ {0, 1}m, y ̸∈ Range(C).

Proof. At iteration 1 ≤ i ≤ n + 1, our algorithm will fix the value of the ith output bit yi. The
algorithm also maintains an affine subspace S ⊆ Fn

2 that contains all inputs x ∈ Fn
2 consistent with

the partial output assignments of y1, . . . , yi. By Lemma 4.3, there exists an assignment yi = b, such
that either none of the inputs in Sb are consistent with y or the dimension of S = Sb reduces at least
by one. In the former case, we already find our desired output y (we can just set the unassigned
bits of y to arbitrary values). Otherwise, after fixing the first n outputs, we have dim(S) = 0, i.e.,
S = {x} for some x ∈ Fn

2 . Let b ∈ {0, 1} be the value of the (n + 1)th output bit of C(x). Then
setting yn+1 = 1− b produces our desired output y. This algorithm runs in polynomial time since
it makes at most n calls to AffineReduce and one call to C(x).

13

Algorithm 1 AffineReduce(S, f)
Input: Affine subspace S ⊆ Fn

2 , f : Fn
2 → F2 that may depend only on x1 and x2

Output: S0,S1 ⊆ S
if f(x) = c then

return Sc = S and S1−c = ∅
if f(x) = a1x1 + a2x2 + c then

For b ∈ F2, let Hb = {x ∈ Fn
2 : a1x1 + a2x2 + c = b}

return S0 = S ∩H0 and S1 = S ∩H1

if f(x) = (x1 + a1)(x2 + a2) + c then
Let H = {x ∈ Fn

2 : x1 = 1 + a1, x2 = 1 + a2}
Let S1−c = S ∩H
if dim(S1−c) < dim(S) then

return S1−c and Sc = S
else

return S1−c and Sc = ∅

Finally, equipped with Lemma 4.3, we are ready to present our main algorithm for NC0
k-Avoid.

Theorem 4.5. Given an NC0
k circuit C : {0, 1}n → {0, 1}m, where m ≥ 3nk−2, the algorithm Sub-

spaceUnion finds an element y ∈ {0, 1}m, y ̸∈ Range(C) in deterministic time 2O(nk−1/m) · poly(n).

Proof. First we apply Corollary 4.2 with c = 3 to the circuit C, and select in polynomial time
a subset of inputs I = {x1, . . . , xt} and a set of outputs O = {y1, y2,, y3n} for t ≤ 3nk−1/m.
This ensures that each yi has at most two inputs outside of I. For each of the 2t assignments of
the inputs from I, we consider a circuit where the values of these t inputs are fixed. Namely, for
j ∈ {0, . . . , 2t − 1}, we fix the inputs in I to the bits in the binary representation of j. Then we
restrict the circuit C to the outputs y1, . . . , y3n and all the inputs that feed them, and obtain a
circuit Cj , where each output depends on at most 2 inputs. We’ll find a value y ∈ {0, 1}3n that no
Cj outputs, and this will give us a solution to the original NC0

k-Avoid instance.
Our algorithm will maintain the following invariant. At the ith iteration of the algorithm after

we fix the values of the outputs y1, . . . , yi, we maintain U =
⋃2t−1

j=0 Uj , a disjoint union of 2t affine
subspaces, such that all inputs x ∈ Fn

2 that are consistent with y1, . . . , yi belong to U (and U may
contain points that are inconsistent with y1, . . . , yi, too).

In the beginning of the algorithm, for every 0 ≤ j < 2t, we let Uj be the affine subspace where
the inputs in I are fixed to the bits in the binary representation of j. Then U =

⋃
j Uj = Fn

2 is the
set of all inputs consistent with our initial empty partial assignment.

At every step i, we will show how to find a constant b ∈ {0, 1} such that after fixing yi = b, the
size of our disjoint union |U| reduces by a factor of 4/3. Therefore, after repeating this procedure
for the 3n outputs from O, we will have an empty U , and the constructed partial assignment will
give us a solution to the NC0

k-Avoid problem.
At the ith iteration of the algorithm, we have values of outputs y1, . . . yi−1 fixed, and are to fix

the value of yi. We have two choices: either set yi = 0 or set yi = 1. By Lemma 4.3, we have two
affine subspaces (or empty sets) Uj,0,Uj,1 ⊆ Uj containing all inputs x ∈ Uj mapping to yi = 0 and
yi = 1, respectively. Moreover, Lemma 4.3 guarantees that |Uj,0|+ |Uj,1| ≤ 3|Uj |/2. Summing over

14

all 0 ≤ j < 2t, we get ∑
j

|Uj,0|+
∑
j

|Uj,1| ≤
∑
j

3|Uj |/2 = 3|U|/2 .

Let b ∈ {0, 1} be the value minimizing
∑

j |Uj,b|. In particular, we have that
∑

j |Uj,b| ≤ 3|U|/4.
Therefore, setting yi = b reduces the size of U at least by a factor of 4/3. Repeating this procedure
log4/3(2

n) + 1 ≤ 3n times will result in a partial assignment to the output bits O with no inputs
that map to it.

The algorithm SubspaceUnion maintains 2t affine subspaces of Fn
2 , computes their dimensions

and calls the deterministic polynomial-timeAffineReduce procedure polynomial number of times.
Therefore, this algorithm runs in time 2t · poly(n) = 2O(nk−1/m) · poly(n).

Algorithm 2 SubspaceUnion(C)

Input: NC0
k circuit C : {0, 1}n → {0, 1}m, where m ≥ 3nk−2

Output: y ∈ {0, 1}m, y /∈ Range(C)
Find x1, . . . , xt and y1, . . . , y3n via Corollary 4.2 for t ≤ 3nk−1/m
For 0 ≤ j < 2t, set Uj = {x ∈ {0, 1}n :

∑t
i=1 xi2

i−1 = j}
for i=1 to 3n do

Find function f at yi
For 0 ≤ j < 2t, set Uj,0,Uj,1 ← AffineReduce(Uj , f)
Find b ∈ {0, 1} minimizing

∑
j |Uj,b|

Set yi = b
For 0 ≤ j < 2t, set Uj = Uj,b

Set all remaining yk = 0
return y

We conclude this section with a corollary stating that SubspaceUnion solves NC0
k-Avoid

efficiently for certain non-trivial values of stretch m.

Corollary 4.6. For any constants k ≥ 3 and ε > 0, the algorithm SubspaceUnion solves NC0
k-

Avoid on n inputs and m outputs in deterministic polynomial and deterministic sub-exponential
2O(n1−ε) time for m ≥ nk−1/ log(n) and m ≥ nk−2+ε, respectively.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009. 2, 7

[AC19] Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle.
In FOCS, 2019. 3

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
Journal on Computing, 36(4):845–888, 2006. 1, 3, 6, 8, 9

[BHPT20] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from
rectangular PCPs. In FOCS, 2020. 3

15

[Cha94] Aleksandr V. Chashkin. On the complexity of Boolean matrices, graphs and their
corresponding Boolean functions. Discrete Mathematics and Applications, 4(3):229–
257, 1994. 2

[CHLR23] Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote point,
and hard partial truth table via satisfying-pairs algorithms. In STOC, 2023. 1

[Fri93] Joel Friedman. A note on matrix rigidity. Combinatorica, 13(2):235–239, 1993. 3

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-depth
circuits and connections to pseudorandomness. In RANDOM, 2022. 1, 2, 3, 6, 13

[GT16] Oded Goldreich and Avishay Tal. Matrix rigidity of random Toeplitz matrices. In
STOC, 2016. 3

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, 2000. 1, 3

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via per-
fect randomizing polynomials. In ICALP, 2002. 1, 3

[ILW23] Rahul Ilango, Jiatu Li, and Ryan Williams. Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. In STOC, 2023. 1

[IP99] Russell Impagliazzo and Ramamohan Paturi. The complexity of k-SAT. In CCC, 1999.
1

[IPZ98] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? In FOCS, 1998. 1

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou.
Total functions in the polynomial hierarchy. In ITCS, 2021. 1

[Kor22] Oliver Korten. The hardest explicit construction. In FOCS, 2022. 1

[LY22] Jiatu Li and Tianqi Yang. 3.1n − o(n) circuit lower bounds for explicit functions. In
STOC, 2022. 2

[PR94] Pavel Pudlák and Vojtech Rödl. Some combinatorial-algebraic problems from complex-
ity theory. Discrete Mathematics, 1(136):253–279, 1994. 3

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem
for circuits. In FOCS, 2022. 1, 2, 3, 8, 10

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28:59–98, 1949. 2

[SSS97] Mohammad A. Shokrollahi, Daniel A. Spielman, and Volker Stemann. A remark on
matrix rigidity. Information Processing Letters, 64(6):283–285, 1997. 3

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, 1977.
2, 3, 7, 8

16

A Alternative Algorithm for NC0
3-Avoid

Theorem A.1. Given an NC0
3 circuit C : {0, 1}n → {0, 1}m, where m ≥ 1

3

(
n
2

)
+ 2n, the algorithm

OneSubspace finds an element y ∈ {0, 1}m, y ̸∈ Range(C) in deterministic polynomial time.

Proof. The algorithm maintains an affine subspace S ⊆ Fn
2 over the inputs, and a partial output

assignment y ∈ {0, 1, ∗}m such that S contains all inputs x ∈ Fn
2 consistent with y. Initially,

y = (∗, . . . , ∗) and S = Fn
2 . At each iteration, OneSubspace assigns at most two outputs and

reduces the dimension of S by at least 1. After n steps, S must have dimension 0. Then the
algorithm assigns one more output bit, and terminates with an element y ̸∈ Range(C).

Now, we only need to argue that the algorithm can reduce the dimension of S in each iteration
and that we can perform each step in polynomial time.

First, if there is an output y1 that depends on at most 2 inputs x1, x2, let f be the function
computed at that output: y1 = f(x1, x2). By Lemma 4.3, AffineReduce(S, f) outputs an affine
subspace Sb of lower dimension dim(Sb) < dim(S), containing all inputs consistent with y1 = b.
Thus, in the following we assume that each output depends on exactly 3 inputs.

Since we fix at most 2 bits of the output at each iteration, the number of unassigned outputs
m is always greater than 1

3

(
n
2

)
. Then, there exists a pair of outputs y1, y2 that both depend on the

same pair of inputs x2, x3. Since each output depends on three pairs of inputs, and the number
of such pairs is

(
n
2

)
< 3m, there must be a pair of inputs that feeds into two outputs. Let x1, x4

be the remaining inputs that feed into the outputs y1, y2, respectively: y1 = f1(x1, x2, x3), y2 =
f2(x2, x3, x4).

There exist 4 possible values of (y1, y2) and at most 16 possible values of the input bits
(x1, x2, x3, x4) appearing in S. Then, there exists a pair of constants (b1, b2) ∈ {0, 1}2 such that at
most 4 different assignments A ⊆ {0, 1}4 to (x1, x2, x3, x4) are consistent with the partial assignment
(y1, y2) = (b1, b2). Since |A| ≤ 4, there is a 3-dimensional affine subspace in F4

2 that contains all
points from A. Therefore, there is a hyperplane H ⊆ F4

2 defining this 3-dimensional affine subspace.
Extending H to all n inputs, gives us an affine subspace H′ = {x ∈ Fn

2 : (x1, x2, x3, x4) ∈ H} ⊆ Fn
2

that contains all inputs in Fn
2 consistent with the partial assignment (y1, y2) = (b1, b2).

If S ̸⊆ H′, then setting (y1, y2) = (b1, b2),S = S ∩ H′ reduces the dimension of the affine
subspace S. In the following we assume that S ⊆ H′.

• Suppose there exists (c1, c2) ∈ {0, 1}2 such that for all points (x1, x2, x3, x4) in H′,
(f1(x1, x2, x3), f2(x2, x3, x4)) ̸= (c1, c2). Then we can set (y1, y2) = (c1, c2) and S = ∅ as
no points in S ⊆ H′ can output (c1, c2). In this case we found a y ̸∈ Range(C).

• If there are no such assignments, then since |H| = 8, there must exist an assignment (c1, c2) ∈
{0, 1}2 such that at most two points from H are consistent with (y1, y2) = (c1, c2). These (at
most) two points form a 0- or 1-dimensional affine subspace U ⊆ F4

2, which we extend to all
n inputs U ′ = {x ∈ Fn

2 : (x1, x2, x3, x4) ∈ U} ⊆ Fn
2 .

– If S ̸⊆ U ′, we can set (y1, y2) = (c1, c2) and S = S ∩ U ′, reducing the dimension of S.
– Otherwise, all inputs in S ⊆ U ′ have (y1, y2) = (c1, c2), and we can set (y1, y2) =

(1− c1, c2) to obtain S = ∅.

This algorithm performs n iterations, each of which computes dimensions of a constant number
of explicitly given affine subspaces in polynomial time.

17

Algorithm 3 OneSubspace(C)

Input: NC0
3 circuit C : {0, 1}n → {0, 1}m, where m ≥ 1

3

(
n
2

)
+ 2n

Output: y ∈ {0, 1}m, y /∈ Range(C)
Let S = Fn

2

for i=1 to n do
if S = ∅ then

Set all remaining yk = 0
return y

if ∃y1, x1, x2 s.t. y1 = f(x1, x2) then
S0,S1 = AffineReduce(S, f)
Find b ∈ {0, 1} that minimizes |Sb|, Set y1 = b, S = Sb

else
Find y1, y2, x1, x2, x3, x4 s.t. y1 = f1(x1, x2, x3), y2 = f2(x2, x3, x4)
Find b1, b2 ∈ {0, 1}, s.t.

A = {(x1, x2, x3, x4) ∈ F4
2 : (f1(x1, x2, x3), f2(x2, x3, x4)) = (b1, b2)} and |A| ≤ 4

Let H ⊆ F4
2 be the hyperplane defined by points in A

Let H′ = {x ∈ Fn
2 : (x1, x2, x3, x4) ∈ H}

if S ⊈ H then
Set (y1, y2) = (b1, b2), S = S ∩H′

else
if ∃(c1, c2) s.t. ∀(x1, x2, x3, x4) ∈ H (f1(x1, x2, x3), f2(x2, x3, x4)) ̸= (c1, c2) then

Set S = ∅, (y1, y2) = (c1, c2)
else

Find (c1, c2) s.t.
U = {(x1, x2, x3, x4) ∈ H : (f1(x1, x2, x3), f2(x1, x2, x3)) = (c1, c2)},|U| ≤ 2

Let U ′ = {x ∈ Fn
2 |(x1, x2, x3, x4) ∈ U}

if S ⊈ U ′ then
Set S = S ∩ U ′, (y1, y2) = (c1, c2)

else
S = ∅, (y1, y2) = (1− c1, c2)

return y

18

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

