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Abstract

A long line of work in the past two decades or so established close connections between several
different pseudorandom objects and applications, including seeded or seedless non-malleable ex-
tractors, two source extractors, (bipartite) Ramsey graphs, privacy amplification protocols with
an active adversary, non-malleable codes and many more. These connections essentially show
that an asymptotically optimal construction of one central object will lead to asymptotically
optimal solutions to all the others. However, despite considerable effort, previous works can get
close but still lack one final step to achieve truly asymptotically optimal constructions.

In this paper we provide the last missing link, thus simultaneously achieving explicit, asymp-
totically optimal constructions and solutions for various well studied extractors and applications,
that have been the subjects of long lines of research. Our results include:

• Asymptotically optimal seeded non-malleable extractors, which in turn give two source
extractors for asymptotically optimal min-entropy of O(log n), explicit constructions of K-

Ramsey graphs on N vertices with K = logO(1)N , and truly optimal privacy amplification
protocols with an active adversary.

• Two source non-malleable extractors and affine non-malleable extractors for some linear
min-entropy with exponentially small error, which in turn give the first explicit construc-
tion of non-malleable codes against 2-split state tampering and affine tampering with
constant rate and exponentially small error.

• Explicit extractors for affine sources, sumset sources, interleaved sources, and small space
sources that achieve asymptotically optimal min-entropy of O(log n) or 2s+O(log n) (for
space s sources).

• An explicit function that requires strongly linear read once branching programs of size
2n−O(logn), which is optimal up to the constant in O(·). Previously, even for standard
read once branching programs, the best known size lower bound for an explicit function is
2n−O(log2 n).
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1 Introduction

This paper studies a wide range of pseudorandom objects and applications. We first briefly survey
each of them, and then state our main results.

Randomness Extractors. Through decades of study, randomness extractors have become fun-
damental objects in the area of pseudorandomness, with intimate connections to other areas such
as cryptography, complexity theory, combinatorics and graph theory, and so on. The original mo-
tivation of randomness extractors comes from bridging the gap between uniform random strings
required in many applications, and poor quality random sources available in practice. We use
the following standard definition, where the min-entropy of a random variable X is defined as
H∞(X) = minx∈supp(X) log2(1/Pr[X = x]). For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, or
an H∞(X)-source when n is clear from context, and we say X has entropy rate H∞(X)/n.

The goal is to extract almost uniform random bits from weak random sources. Unfortunately,
no deterministic extractor can exist when the input is a single general weak random source even
with min-entropy k = n−1. Hence, the study of randomness extractors has been focusing on several
relaxed models. For example, Nisan and Zuckerman [84] introduced the notion of seeded extractors,
where the extractor has access to an additional independent short uniform random seed. Typically,
we require the seeded extractor to be strong in the sense that the output of the extractor is close
to uniform even conditioned on the seed. It can be shown that there exist strong seeded extractors
with excellent parameters, and we now have almost optimal constructions (e.g., [82, 60, 49, 48])
after a long line of research.

Although seeded extractors have proven to be quite useful, in certain applications (e.g., cryp-
tography) even the short uniform random seed is undesirable, thus another relaxed model is to
put more restrictions on the weak source, and construct deterministic or seedless extractors for a
certain class of weak sources. We have the following definition.

Definition 1.1. Let X be a family of distribution over {0, 1}n. A function Ext : {0, 1}n → {0, 1}m
is a deterministic extractor for X with error ε if for every distribution X ∈ X , we have

Ext(X) ≈ε Um,

where Um stands for the uniform distribution over {0, 1}m, and ≈ε means ε close in statistical
distance. We say Ext is explicit if it is computable by a polynomial-time algorithm.

Historically, the most well studied class of sources is the class of two (or more) independent
sources. Here, a simple probabilistic argument shows that there exist two source extractors for
(n, k) sources with k = log n + O(1), which is optimal up to the constant O(1); and the first
explicit construction of two source extractors was given by Chor and Goldreich [29] more than
35 years ago, which achieves k > n/2. Due to their connections to explicit Ramsey graphs, and
applications in distributed computing and cryptography with general weak random sources [64, 63],
such extractors have also been the subject of extensive study [29, 7, 8, 88, 14, 86, 9, 71, 74, 76, 75,
78, 32, 36, 26, 79, 40, 19, 33, 10, 37, 38, 80, 81, 70]. The ultimate goal is to construct explicit two
source extractors for k = log n+O(1), which would also imply an (strongly) explicit Ramsey graph
on N vertices with no clique or independent set of size O(logN), solving a long standing open
problem proposed by Erdős [52] in his seminal paper that inaugurated the probabilistic method.
Previously, the best explicit construction of two source extractors in terms of entropy is that of
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[81], which achieves k = O(log n · log logn
log log logn) and gives an explicit Ramsey graph on N vertices with

no clique or independent set of size (logN)
O( log log log N

log log log log N
)
.

Deterministic extractors for many other classes of sources have been studied. These include
for example bit fixing sources [30, 66, 55, 87], which are sources that are obtained by fixing some
unknown bits of a uniform random string; affine sources [54, 15, 87, 98, 11, 91, 72, 79, 17], which
generalize bit-fixing sources and are the uniform distributions over some unknown affine subspaces
of a vector space; samplable sources [94, 96], which are sources that are generated by small circuits
or efficient algorithms; interleaved sources [89, 25], which are a generalization of independent sources
where the bits of the sources are mixed in some arbitrary order; and small-space sources [65], where
the sources are generated by a small width branching program. Deterministic extractors for these
sources have applications in areas such as exposure-resilient cryptography [30, 66], Boolean circuit
lower bounds [42, 53], and best-partition communication complexity lower bound [89].

In [20], Chattopadhyay and Li introduced the model of sumset sources, which is the sum of
two (or more) independent weak random sources. This model generalizes many of the previously
studied models, such as independent sources, bit fixing sources, affine sources, interleaved sources,
and small space sources. For clarity we defer the formal definitions of these sources to later chapters.
Thus, improved constructions of explicit extractors for sumset sources may also lead to improved
explicit extractors for many of the above sources. While [20] only constructed explicit extractors
for the sum of a constant number of (n, k) sources with k = logO(1) n, a recent improvement by
Chattopadhyay and Liao [22] gives explicit extractors for the sum of two independent (n, k) sources
with k = O(log n log log n log log log3 n). This in turn implies explicit extractors for affine sources
and interleaved two sources with the same entropy. By an improved reduction from small space
sources to sumset sources in [22], this also gives explicit extractors for space s-sources with min-
entropy k = 2s+O(log n log logn log log log3 n). These are the previously best known constructions
for each corresponding class of sources in terms of entropy.1 We note that non-explicitly, one can
show that with high probability random functions are extractors for affine sources and interleaved
two sources with entropy k = O(log n), and for space s-sources with min-entropy k = 2s+O(log n).
Interestingly, it is not clear if a random function is an extractor for the sum of two independent
(n, k) sources. However, since sumset sources are a generalization of two independent sources, the
entropy lower bound of log n+O(1) for two source extractors also implies an entropy lower bound
of log n/2 +O(1) for the sum of two independent sources.

Non-malleable extractors. Motivated from cryptographic applications, an important variant
of seeded/seedless extractors known as non-malleable extractors has been the focus of much study
in the past 15 years or so. Here, one or more inputs to the extractor are tampered with by an
adversary, and the goal is to guarantee that the output of the extractor on the original inputs is
still close to uniform even conditioned on the output of the extractor on the tampered inputs. To
discuss non-malleable extractors, we start by defining tampering functions.

Definition 1.2 (Tampering Function). For any function f : S → S, We say f has no fixed points
if f(s) 6= s for all s ∈ S. For any n > 0, let Fn denote the set of all functions f : {0, 1}n → {0, 1}n.
Any subset of Fn is a family of tampering functions.

It is clear that if the tampering function is the identity function, then non-malleability is im-
possible. Thus, without loss of generality, for non-malleable extractors we only consider tampering

1We focus on affine sources over the field F2. For larger fields there are constructions with better parameters.
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functions with no fixed points (the more general definition is given in Definition 2.12). Depending
on what the tampering function acts on, there are different models of non-malleable extractors. If
the tampering acts on the seed of a seeded extractor, we get the notion of seeded non-malleable
extractors, introduced by Dodis and Wichs [46]:

Definition 1.3 ([46]). A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded non-
malleable extractor for min-entropy k and error ε if the following holds: For any (n, k) source X
and tampering function A : {0, 1}d → {0, 1}d with no fixed points, we have

|snmExt(X,Ud) ◦ snmExt(X,A(Ud)) ◦ Ud − Um ◦ snmExt(X,A(Ud)) ◦ Ud| < ε,

where Um is independent of Ud and X.

Alternatively, if the tampering function acts on the inputs to a seedless extractor, then we
get the notion of seedless non-malleable extractors. This was first introduced by Cheraghchi and
Guruswami [28] for the model of two independent sources:

Definition 1.4 ([28]). A function nmExt : ({0, 1}n)C → {0, 1}m is a (k, ε)-seedless non-malleable
extractor for C independent sources, if it satisfies the following property: Let X1, · · · , XC be C
independent (n, k) sources, and f1, · · · , fC : {0, 1}n → {0, 1}n be C arbitrary tampering functions
such that there exists an fi with no fixed points, then

|nmExt(X1, · · · , XC) ◦ nmExt(f1(X1), · · · , fC(X2))− Um ◦ nmExt(f1(X1), · · · , fC(X2))| < ε.

Chattopadhyay and Li [21] adapted the definition to affine sources and affine tampering, thus
leading to affine non-malleable extractors:

Definition 1.5 ([21]). A function anmExt : {0, 1}n → {0, 1}m is a (k, ε) affine non-malleable
extractor if for any affine source X with entropy at least k and any affine function f : {0, 1}n →
{0, 1}n with no fixed point, we have

|anmExt(X) ◦ anmExt(f(X))−Um ◦ anmExt(f(X))| ≤ ε.

Using the probabilistic method, one can prove the existence of all these non-malleable extractors
with excellent parameters. For example, [46] showed that seeded non-malleable extractors exist
when k > 2m + 2 log(1/ε) + log d + 6 and d > log(n − k + 1) + 2 log(1/ε) + 5. [28] showed that
two source non-malleable extractors exist for (n, k) sources when k ≥ m + 3

2 log(1/ε) + O(1) and
k ≥ log n + O(1). Similarly, it can be also shown that affine non-malleable extractors exist for
entropy k ≥ 2m+ 2 log(1/ε) + log n+O(1).

However, constructing explicit non-malleable extractors turns out to be significantly harder than
constructing standard extractors, despite considerable effort [45, 39, 73, 74, 18, 34, 35, 19, 21, 33, 37,
38, 80, 81]. Previously, the best explicit seeded non-malleable extractors are due to Li [80, 81], which

achieve k ≥ C(log log n + a log(1/ε)), d = O(log n) + log(1/ε)2O(a(log log(1/ε))
1
a ) and output length

Ω(k), for some constant C > 1 and any integer a ∈ N; or k ≥ C(log log n + log log(1/ε) log(1/ε))
and d = O(log n + log log(1/ε) log(1/ε)) for some constant C > 1. For two source non-malleable
extractors, the best explicit constructions are due to Li [81] and Chung, Obremski, Aggarwal [31].
The former achieves k ≥ (1 − γ)n with error 2−Ω(n log logn/ logn) and output length Ω(n), for some
constant γ ∈ (0, 1); while the latter achieves k1 ≥ (4

5 + γ)n for the first source, k2 ≥ C log n for

the second source, with some constants C > 1, γ ∈ (0, 1), error 2−min(k1,k2)Ω(1)
, and output length

Ω(min(k1, k2)). The only known explicit affine non-malleable extractor is given in [21], which

achieves entropy k ≥ n− nδ for some constant δ ∈ (0, 1), error 2−n
Ω(1)

and output length nΩ(1).
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Privacy amplification with an active adversary. The basic problem of privacy amplification
was introduced by Bennett, Brassard, and Robert [12]. The situation arises where two parties
with local (non-shared) uniform random bits aim to convert a shared secret weak random source
X into shared secret uniform random bits. This is achieved by a communication protocol, which
is watched by an adversary with unlimited computational power. Such protocols are important
in various applications such as quantum key distribution. While standard strong seeded extractors
provide optimal one-round protocols for a passive adversary (i.e., an adversary who can only see the
communications but cannot change them), they fail badly for an active adversary (i.e., an adversary
who can arbitrarily change, delete and reorder messages). The main goal for the latter case is to
design a protocol that uses as few number of interactions and as few bits of communications as
possible, and achieves a shared uniform random string R which is as long as possible. In this
context, the difference between H∞(X) and the length of the output is defined as the entropy loss,
together with a security parameter s, which ensures that the probability that any active adversary
can successfully cause the two parties to output two different strings without being detected is at
most 2−s. On the other hand, the two parties should achieve a shared secret string that is 2−s-close
to uniform, if the adversary remains passive. We refer the reader to [45] for a formal definition.

A long line of work has been devoted to this problem [83, 43, 46, 90, 67, 16, 45, 39, 73, 74,
77, 18, 34, 35, 19, 33, 37, 80, 81]. In contrast to a passive adversary, here one round protocol can
only exist when the entropy rate of X is bigger than 1/2, and the protocol has to incur a large
entropy loss. For a source X with entropy rate smaller than 1/2, [46] showed that any protocol
needs at least two rounds with entropy loss at least Ω(s), and communication complexity at least
Ω(log n + s). Achieving a two-round protocol that asymptotically match these parameters for all
possible security parameters s is thus the ultimate goal (note that s can be at most Ω(k) where
k = H∞(X)). Previously, the best known protocol is due to Li [81], which achieves two rounds

with entropy loss O(log log n+ s), with communication complexity O(log n) + s2O(a(log s)
1
a ) for any

constant integer a ≥ 2 and s up to Ω(k); or communication complexity O(log n+ s log2 s) for s up
to Ω(k/ log log k).

Non-malleable codes. Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs
[51], are a generalization of standard error correcting codes to handle much larger classes of tam-
pering. Informally, such a code is defined with respect to a specific family of tampering functions
F . The code consists of a randomized encoding function E and a deterministic decoding function
D, such that on any modified codeword f(E(x)) obtained from some function f ∈ F and some
message x, the decoded message x′ = D(f(E(x))) is either the original message x, or ε-close to
a completely unrelated message. The formal definition is given in Section 7.3. [51] shows that
non-malleable codes have applications in tamper-resilient cryptography, and most notably, they
can provide security guarantees even if the adversary can completely overwrite the codeword.

Even with this relaxation, it can be seen that no non-malleable codes can exist if F is completely
unrestricted. However, such codes do exist for many broad families of tampering functions. By
now the study of non-malleable codes has grown into a large field with numerous publications, and
we only survey some of the most related previous works here. One of the most natural and well
studied families of tampering functions is the so called split-state model, where a k-bit message x
is encoded into t parts of messages y1, · · · , yt, each of length n, so the rate of the code is k/(tn).
The adversary is then allowed to arbitrarily tamper with each yi independently.

This model arises in many natural applications, for example when the yi’s are stored in different
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parts of memory. Non-malleable codes in this model are also used in various non-malleable secret
sharing schemes [57]. Obviously, the case of t = 1 corresponds to unrestricted tampering functions,
and it is not possible to construct non-malleable codes. Thus the case of t = 2 is the most general
and interesting setting. [51] first proved the existence of non-malleable codes in the split-state
model, while Cheraghchi and Guruswami [27] showed that the optimal rate of non-malleable codes in
the 2-split-state model is 1/2. Following a long line of research [50, 3, 2, 1, 24, 18, 80, 68, 59, 81, 5, 4],
Li [81] gave the first explicit construction in the 2-split-state model with constant rate and constant

error ε, while Aggarwal and Obremski [5] improved the error to be negligible ε = 2−k
Ω(1)

. The

current best construction is due to [4], which achieves rate 1/3 and error ε = 2−k/ log3 k.
In [21], Chattopadhyay and Li studied the model where the tampering function is any arbitrary

affine function on the entire codeword (instead of acting on 2 parts of the codeword independently).

They give an explicit non-malleable code with rate k−Ω(1) and error 2−k
Ω(1)

, which remains the best
known construction to date.

Hardness against read-once linear branching program. Branching programs are natural
models to measure the space complexity of computation. A standard branching program is a
directed acyclic graph with one source and two sinks (labeled by 1 and 0), where each non-sink
node is marked with an index of an input bit and has out-degree 2. One outgoing edge is labeled by
0 and the other is labeled by 1. For any input, the computation of the branching program follows
the natural path from the source to one sink, by reading the corresponding bits and going through
the corresponding edges, and the input is accepted if the path ends in the sink with label 1. The
size of the branching program is defined as the number of its nodes, which roughly corresponds to
2O(s) for space s computation.

Unfortunately, proving non-trivial size lower bounds of explicit functions for general branching
programs (e.g., those that can separate P from LOGSPACE) seems beyond the reach of current
techniques, hence essentially almost all research has been focusing on restricted models. Among
these, the most well studied model is that of read once branching program, or ROBP for short. In
this model, in any computational path, each bit of the input is read at most once. Non-explicitly,
an optimal lower bound of size Θ(2n−logn) is known [6]. Explicitly, several previous works gave
exponential lower bounds [97, 99, 47, 61, 69, 93, 85, 56, 13, 6, 62]. However, the best known
lower bound for an explicit function, due to Andreev, Baskakov, Clementi and Rolim [6], is only

2n−O(log2 n), and the bound of 2n−O(logn) is only known for a function in DTIME(2O(log2 n))∩P/poly.
Recently, motivated by strengthening tree-like resolution refutation lower bounds and average

case lower bounds for parity decision trees, Gryaznov, Pudlák, and Talebanfard [58] introduced
the model of read once linear branching programs (ROLBP for short), where the queries on each
computational path are generalized to be linear functions. To enforce the read once property, [58]
defined two kinds of ROLBPs: a strongly ROLBP requires that at any node, the span of the linear
queries on all paths leading to this node has no non-trivial intersection with the span of the linear
queries on all paths starting from this node, while a weakly ROLBP only requires that the linear
query at any node is not in the span of the linear queries on all paths leading to this node. It can
be seen that both kinds of ROLBPs are generalizations of standard ROBPs.

[58] gave an explicit function which requires strong ROLBPs of size Ω(2n/3), which was subse-

quently improved by Chattopadhyay and Liao [23] to 2n−logO(1) n.2

2In fact, these results also give average-case hardness for strongly ROLBPs.
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1.1 Our Results

We improve all of the above results, achieving asymptotically optimal constructions in almost all
cases (except seedless non-malleable extractors, and the error and output length of seedless extrac-
tors). We list our main results according to the order of the areas that appear in the introduction.

Seedless extractors. Our results for seedless extractors can be summarized as follows.

Theorem 1.6. For every constant ε > 0 there exists a constant c > 1 and an explicit extractor
TExt : {0, 1}2n → {0, 1} with error ε, for the interleaving of two independent (n, k) sources such
that k ≥ c log n.

Theorem 1.7. For every constant ε > 0 there exists a constant c > 1 and an explicit extractor
SumsetExt : {0, 1}n → {0, 1} with error ε, for the sum of two independent (n, k) sources such that
k ≥ c log n, or an affine source on n bits with entropy k ≥ c log n.

Theorem 1.8. For every constant ε > 0 there exists a constant c > 1 such that for every s > 0
there exits an explicit extractor SpExt : {0, 1}n → {0, 1} with error ε, for space-s sources on n bits
with min-entropy k ≥ 2s+ c log n.

All of the above theorems achieve asymptotically optimal entropy in the corresponding models.
In addition, Theorem 1.6 immediately gives the following corollary about explicit Ramsey graphs.

Corollary 1.9. There is a constant c > 1 such that for every integer N there exists a (strongly)
explicit Ramsey graph on N vertices with no clique or independent set of size K = logcN .

Non-malleable extractors. Our results for non-malleable extractors are summarized as follows.

Theorem 1.10. For any constant γ > 0 there is a constant C > 0 such that for any 0 < ε < 1
with k ≥ C log(d/ε) and d = C log(n/ε), there is an explicit strong seeded non-malleable extractor

for (n, k) sources with seed length d, error ε and output length (1−γ)k
2 .

This theorem achieves asymptotically optimal parameters in all aspects. In fact, we can also
extend it to the stronger notion of t-non-malleable seeded extractors. See Section 7.2 for details.
Next we have seedless non-malleable extractors.

Theorem 1.11. There exists a constant C > 1 such that for any constant 0 < γ < 1 and k ≥
C log n, there exists an explicit construction of a ((2

3 + γ)n, k, 2−Ω(k)) two-source non-malleable
extractor with output length Ω(k).

This theorem improves both constructions in [81] and [31]. Specifically, like in [31], we can also
handle the case where the second source only has logarithmic min-entropy, while we improve the
entropy rate of the first source from 4/5 + γ in [31] and 1 − γ in [81] to 2/3 + γ. Simultaneously,

the error is also improved to an optimal 2−Ω(k), from 2−k
Ω(1)

in [31] and 2−Ω(k log log k/ log k) in [81].
We note that for applications in non-malleable codes, we don’t really need such small entropy (any
linear entropy suffices), but such two source non-malleable extractors have applications in privacy
amplification with tamperable memory, see [31] for details.

Theorem 1.12. There exists a constant 0 < γ < 1 such that for any n ∈ N, there exists an explicit
construction of a ((1− γ)n, 2−Ω(n)) affine non-malleable extractor with output length Ω(n).
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Privacy amplification. Combining our optimal seeded non-malleable extractor with the proto-
col in [46], we get the following theorem.

Theorem 1.13. There exists a constant 0 < α < 1 such that for any n, k ∈ N, there is an explicit
two-round privacy amplification protocol in the presence of an active adversary, that achieves any
security parameter s ≤ αk, entropy loss O(log log n+s), and communication complexity O(log n+s).

Our two-round protocol achieves asymptotically optimal parameters in all aspects, for security
parameter up to s = Ω(k). The O(log log n) term is the best possible if using the two-round protocol
in [46]. This follows from the use of a message authentication code (MAC) that authenticates the
seed of a strong seeded extractor with security parameter s, which has at least Ω(log n) bits. Thus
the MAC requires a key of length at least log log n+ s. See [46] for more details.

Non-malleable codes. Using our seedless non-malleable extractors, we also get new construc-
tions of non-malleable codes.

Theorem 1.14. For any n ∈ N there exists a non-malleable code with efficient encoding and
decoding against 2-split-state tampering, which has message length k, block length 2n, rate k/(2n) =
Ω(1) and error 2−Ω(k).

Theorem 1.15. For any n ∈ N there exists a non-malleable code with efficient encoding and
decoding against affine tampering, which has message length k, block length n, rate k/n = Ω(1) and
error 2−Ω(k).

Both theorems are asymptotically optimal. Theorem 1.14 achieves a smaller constant rate than
the rate 1/3 construction in [4], but improves the error from 2−k/ log3 k to 2−Ω(k). Theorem 1.15

significantly improves the construction in [21], with rate only k−Ω(1) and error 2−k
Ω(1)

.

Hardness against read once linear branching program. Our sumset extractor directly gives
a hard function for strongly ROLBPs (in fact with any constant average-case hardness). We have

Theorem 1.16. There is an explicit function SumsetExt : {0, 1}n → {0, 1} that requires strongly
read once linear branching program of size 2n−O(logn).

Our result improves the results of Ω(2n/3) in [58] and 2n−logO(1) n in [23]. Clearly, it also gives
the first explicit function that requires standard ROBPs of size 2n−O(logn), improving the previously
best known result of 2n−O(log2 n) in [6]. By the Θ(2n−logn) bound for standard ROBPs [6], our result
is optimal up to the constant in O(.). We remark that our affine extractor also directly gives an
asymptotically optimal 2n−O(logn) size lower bound for DNF circuits with a bottom layer of parity
gates, by the result in [41].

1.2 Overview of the Techniques

Before explaining our new ideas, we first recall the connections and reductions established in previ-
ous works. This allows us to reduce all the problems to a couple of central pseudorandom objects.
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Connections between different pseudorandom objects and applications. Non-malleable
extractors have direct motivations and applications in cryptography. For example, [46] shows
that an optimal seeded non-malleable extractor gives an optimal two-round privacy amplification
protocol with an active adversary. Similarly, [27] and [21] show that good two-source and affine non-
malleable extractors give non-malleable codes against 2-split state tampering and affine tampering.
The idea is simple: the encoding function is to uniformly sample a pre-image of the message under
the extractor function, and the decoding function is the extractor itself. Reducing the average
case error of the extractor to the worst case guarantee of the code blows up the error ε to 2mε
where m is the output length of the extractor. Thus, to achieve a constant rate it is crucial to
have an exponentially small error ε = 2−Ω(n), while it is enough to work for any linear entropy
k = Ω(n). For hardness against strongly ROLBPs, [23] observed that, just like a standard ROBP,
if one conditions on an internal node, then the programs before and after this node correspond to
two independent sources. Hence this reduces the question of finding a hard function to the question
of constructing a good extractor for the sum of two independent sources.

Yet, previous works also established more surprising, and unexpected connections between non-
malleable extractors and standard seedless extractors, which have been the underlying source of
most of the recent progress on extractor theory. Specifically, the first such connection was established
between seeded non-malleable extractors and two-source (and more generally independent source)
extractors by Li [73, 76, 75], where he showed sufficiently good seeded non-malleable extractors
imply improved two source extractors. Using techniques from non-malleable extractors, this has
led to Li’s construction of the first explicit extractor for three independent (n, k) sources with

k ≥ logO(1) n, output length Ω(k) and error 2−k
Ω(1)

[75]. The construction uses two sources to
produce a somewhere random source with nO(1) rows, such that there exist a large fraction of
(almost) uniform rows, and these rows are almost t-wise independent for some t = logO(1) n. The
third source is then used to extract random bits from this somewhere random source.

Chattopadhyay and Zuckerman [26] further formalized this connection, and brought in another
key improvement by applying a resilient function directly to the somewhere random source, thus
giving the first two source extractor for k ≥ logO(1) n with error n−Ω(1). Afterwards, a series of
works [79, 40, 19, 33, 10] improved the reduction and eventually, [10] establishes that an optimal
seeded non-malleable extractor3 would give a two source extractor for entropy O(log n). Later,
Li [80] further established a connection between two source non-malleable extractors and seeded
non-malleable extractors, which roughly says the following: a two source non-malleable extractor
for any constant (less than 1) entropy rate with error 2−Ω(n) would give an optimal seeded non-
malleable extractor. Again, it is crucial here to have an exponentially small error of 2−Ω(n), while the
entropy rate can be any constant less than 1. Finally, these connections have been roughly extended
to extractors for the sum of two independent sources in [23].4 In summary, by the established
connections, all the problems can be reduced to constructing explicit two-source and affine non-
malleable extractors for any constant (less than 1) entropy rate with error 2−Ω(n).

Our new ideas. Most of the above connections have been known for a while, yet the goal of
constructing two-source non-malleable extractors with error 2−Ω(n) has been elusive so far. Indeed,
more and more sophisticated techniques were developed in [19, 33, 37, 40, 38, 80, 81], only resulting

3More accurately, a seeded non-malleable extractor against multiple tampering.
4[23] actually reduces extractors for sumset sources to good correlation breakers, which are building blocks in

two-source non-malleable extractors. We ignore these technical details here.
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in the construction in [81] which achieves error 2−Ω(n log logn/ logn). The bottleneck comes from the
fact that all these constructions are based on some kind of alternating extraction using an advice
string. To get error ε the length of the advice string is provably at least log(1/ε), while the
alternating extraction appears to need at least some growing function f(log(1/ε)) number of steps,
where each step needs at least log(1/ε) entropy. This result in a total entropy of f(log(1/ε)) log(1/ε).
Since the total entropy is < n and f is a growing function, this falls short of achieving error 2−Ω(n).

Luckily, there is one previous work by Chattopadhyay and Zuckerman [24] which does achieve
error 2−Ω(n). Their constsruction relies on techinques from additive combinatorics, and does not use
alternating extraction. However, their construction (CZExt for short) only gives a non-malleable
extractor that requires 10 independent (n, k) sources with k ≥ (1−γ)n for some constant γ > 0. In
addition, the tampering function has to act independently on each of the 10 sources, thus it is not
a prior clear that this can give us anything for two source non-malleable extractors. Nevertheless,
this construction is our starting point to provide the last missing link in the complete picture.

Essentially, we show how to get some kind of independence from just one weak source and an
arbitrary function tampering with this source. To illustrate the basic idea, it helps to start with
the example where X is a uniform random string over {0, 1}n, while f : {0, 1}n → {0, 1}n is any
linear tampering function. Let us divide X evenly into ` blocks X = X1 ◦ · · · ◦X`, where each Xi

has m = n/` bits. Consider the tampered input X ′ = f(X) = X ′1 ◦ · · · ◦X ′`. It is easy to see that
there are linear functions {f ij}i,j∈[`] such that for any i ∈ [`], X ′i =

∑
j∈[`] f

ij(Xj). If for some

i ∈ [`] there exists a j ∈ [`], j 6= i such that H(f ij(Xj)) ≥ δm for any constant δ > 0, then since Xi

and Xj are independent, we have H(Xi ◦X ′i) ≥ H(Xi) +H(f ij(Xj)) ≥ (1 + δ)m. This implies that
the conditional entropy H(Xi|X ′i) is at least (1 + δ)m −m = δm. In this case, we can apply an
affine extractor for any linear entropy in [15, 98, 72], so that the output on Xi is close to uniform
conditioned on the output on X ′i. This already achieves some kind of non-malleable extractor.

On the other hand, if for any i ∈ [`] and any j ∈ [`], j 6= i, we have H(f ij(Xj)) < δm, then we
can fix all f ij(Xj) where i 6= j. Note that conditioned on this fixing, the Xi’s are still independent,
and furthermore the fixing does not cause any Xi to lose much entropy. Specifically, each Xi still
has entropy at least (1− `δ)m. Most importantly, with this fixing, each X ′i is now a deterministic
function of Xi! Thus, as long as `δ is small, we have obtained ` independent weak sources {Xi}
with ` tampering functions acting on each Xi independently. Taking ` = 10 for example, at this
point we can apply the function CZExt to the Xi’s, and the output will again be close to uniform
even conditioned on the output on the X ′i’s. Thus, if we combine the outputs in both cases, we get
a somewhere random source with `+1 rows such that one row is close to uniform conditioned on the
corresponding row in the tampered output. We call this a non-malleable somewhere random source.
With this object, it is now relatively easy to finish our construction using existing techniques.

In summary, the high level key new idea of our constructions can be roughly stated as the
following result of dichotomy, which leads to a “win-win” situation: divide a weak source X with
sufficiently high entropy into ` blocks X = X1 ◦ · · · ◦ X`, and consider the tampered version
X ′ = f(X) = X ′1 ◦ · · · ◦ X ′`. Then either (1) (in the case where f “mixes” the Xi’s well) there
exists an i ∈ [`] such that Xi|X ′i has large entropy, or (2) (in the case where f doesn’t mix the
Xi’s well) X1 ◦ · · · ◦X` can be viewed as independent sources and f can be viewed as ` functions
f = g1 ◦ · · · ◦ g` where each gi acts on Xi independently.

However, making this idea formally work requires non-trivial techniques in both the construc-
tions and the analysis. We now explain more technical details below.
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Affine non-malleable extractors. The previous analysis about a uniform random string X can
be relatively easily adapted to a high entropy affine source with slight modifications. Specifically,
given an affine source on n bits with entropy k = (1− γ)n for some small constant γ > 0, we now
divide it into say `+ 1 blocks X = X1 ◦ · · · ◦X` ◦X`+1, where each Xi for i ∈ [`] has 3γn bits and
X`+1 has (1 − 3γ`)n bits. Since ` = 10 is a constant, we can choose a small constant γ and make
sure the size of X`+1 is much larger than the Xi’s. The plan is to use X1 ◦ · · · ◦X` to generate the
non-malleable somewhere random source, and then use X`+1 to extract random bits. However, one
issue here is that X1 ◦ · · · ◦X` may be the same as X ′1 ◦ · · · ◦X ′`, in which case it is impossible to
generate the non-malleable somewhere random source. To fix this, as in previous works, we need
to first generate a small advice string α from X such that α 6= α′ with probability 1− 2Ω(n), where
α′ is the advice string generated from X ′. We also need to keep the entropy of X and the structure
of an affine source conditioned on the generation of the advice strings. This turns out to be even
trickier than the case of two-source non-malleable extractors, and we end up using two more blocks
from X and an improved advice generator for affine tampering based on that in [21]. To explain
our main ideas we ignore these technical issues here, and refer the reader to Section 3 for details.

Now assume that we have already generated the advice string α, and X still has entropy (1−γ)n.
The blocks of X are no longer independent in general, but we show it is a convex combination of
independent sources. Specifically, we view X as the uniform random string subject to γn affine
constraints. Conditioned on the fixing of the corresponding part of each constraint in each block,
all blocks become independent. We can now do the same analysis as before. If for some i ∈ [`] there
exists a j ∈ [`+ 1], j 6= i such that H(f ij(Xj)) is large, then H(Xi|X ′i) is also large. Otherwise, we
can fix all the f ij(Xj)’s with i ∈ [`], j ∈ [`+ 1] and i 6= j. Conditioned on this fixing, the Xi’s are
still independent with high entropy, and now all the X ′i’s with i ∈ [`] are deterministic functions
of the Xi’s. Thus we can apply an affine extractor to each Xi with i ∈ [`] and apply CZExt to
{Xi ◦ α}i∈[`] (the concatenation with α ensures no fixed points with high probability). Combining
all the outputs, we get a non-malleable somewhere random source R with a constant number of
rows, where each row has Ω(n) bits with error 2−Ω(n).

Note that R and the tampered version R′ are deterministic functions of {Xi}i∈[`] and {X ′i}i∈[`].
As long as X`+1 has large enough entropy compared to the total size of {Xi}i∈[`] and {X ′i}i∈[`], a
standard argument shows that there is an affine source A contained in X`+1 which is independent
of {Xi}i∈[`] and {X ′i}i∈[`], and one can use linear seeded extractors to do alternating extraction
between R and X`+1 to break the correlations. Indeed we apply an affine correlation breaker, such
as those developed in [79, 22] to X`+1 and each row of R, using the index of the corresponding
row as the advice string, and finally take the XOR of all outputs. We argue that the output is
non-malleable as follows. Without loss of generality assume that the first row of R (denoted by
R1) is close to uniform conditioned on the first row of R′ (denoted by R′1). We first fix R′1 and all
the outputs produced in the affine correlation breaker with X ′`+1 and R′1. By using linear seeded
extractors appropriately and keeping the output length to be small, we can ensure that (1) the affine
structure of the sources is preserved, (2) A still has high entropy and is independent of {Xi}i∈[`]

and {X ′i}i∈[`], and (3) R1 is still close to uniform. Now the affine correlation breaker guarantees
that the output from (X`+1, R1) is close to uniform given all the other outputs from (X`+1, R) and
(X ′`+1, R

′). Therefore once we take the XOR of the outputs, the string produced from X is close to
uniform conditioned on the string produced from X ′. The key point is that R only has a constant
number of rows, thus the index of each row only has a constant number of bits, and R1 and X`+1

has Ω(n) entropy. Hence, we can achieve error 2−Ω(n) with output length Ω(n).
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Two-source non-malleable extractors. The case of two-source non-malleable extractors is
more complicated, as here we don’t have the nice structure of affine sources. Again, we ignore the
issue of generating advice strings, and assume that we are given an advice string α ∈ {0, 1}Ω(n) such
that α 6= α′ with probability 1− 2Ω(n), where α′ is the advice string generated from the tampered
inputs. We refer the reader to Section 6 for details.

We show how to use a single source and the advice string to generate a non-malleable somewhere
high entropy source, which is a source R with a constant number of rows, each row with Ω(n) bits,
and there exists a row i such that H∞(Ri|R′i) ≥ Ω(n) (again R′ is the tampered version). We call
this function a non-malleable somewhere condenser with advice. This is similar in spirit to, and can
be viewed as the non-malleable analogue of the reduction given in [8], which shows how to turn an
independent source extractor into a somewhere condenser, that converts any weak random source
with any linear entropy into a constant number of rows such that one row has entropy rate 0.9.

Specifically, given an (n, k) source X with k ≥ (1 − β)n for some small constant β > 0, let us
again divide X evenly into ` = 10 blocks X = X1 ◦ · · · ◦X` where each Xi has m = n/` bits. The
non-malleable somewhere condenser produces a random variable R with `+ 1 rows, where for each
i ∈ [`], Ri = Xi, and R`+1 = CZExt(X1 ◦ α, · · · , ◦X` ◦ α).

The analysis is more subtle and relies on carefully dividing X into a convex combination of
subsources. Let X ′ = X ′1 ◦ · · · ◦ X ′` be the tampered input. Without loss of generality assume
X is the uniform distribution on a set S ⊆ {0, 1}n with size 2(1−β)n. Similar to [8], for each
i ∈ [`], we define Hi to be the set which contains heavy elements in the support of (Xi, X

′
i), e.g.,

Hi = {(y, y′) ∈ {0, 1}2m : Pr[(Xi, X
′
i) = (y, y′)] ≥ 2−(1+3β)m}. We divide S into two subsets:

S′ = {x ∈ S : ∃i, (xi, x′i) /∈ Hi} and S′′ = {x ∈ S : ∀i, (xi, x′i) ∈ Hi} = S \ S′. If either S′

or S′′ is small, e.g., has size at most 2(1−β)n−βm, then we can safely ignore it since it only has
probability mass at most 2−βm. Otherwise we consider S′ and S′′ separately, since X is just a
convex combination of the uniform distributions over S′ and S′′.

S′ is relatively easy to handle. Given that |S′| ≥ 2(1−β)n−βm, if we divide S′ into disjoint
subsets by grouping all x ∈ S′ with the same smallest index i such that (xi, x

′
i) /∈ Hi together, then

on average each subset has size roughly 2(1−β)n−βm/`. Since all elements in the subset are light
elements, the uniform distribution over the subset has min-entropy at least (1+3β)m−βm−log ` >
(1 + β)m. This means that if we consider the subsource corresponding to the uniform distribution
over each subset, then roughly H∞(Xi|X ′i) ≥ βm = Ω(n).

Taking care of S′′ is much trickier. In this case, we want to argue that somehow, X1, · · · , X` can
be viewed as independent sources and the tampering function f can be viewed as f = g1 ◦ · · · ◦ g`
where each gi acts on Xi independently. Note that in this case, for any x ∈ S′′ and any i ∈ [`], we
have (xi, x

′
i) ∈ Hi. Our first step is to remove those elements x ∈ S′′ such that there exists an i ∈ [`]

and too many y′ ∈ {0, 1}m (say > 2βn+6βm such y′’s) where (xi, y
′) ∈ Hi. Intuitively, these are the

strings where the tampering function f mixes too much entropy from the blocks {Xj , j 6= i} into X ′i,
and thus are bad for our purpose. By definition of Hi, for any i we have |Hi| ≤ 2(1+3β)m. Hence the
number of such x’s cannot be too large, and is at most `2(1+3β)m/2βn+6βm · 2(`−1)m < 2(1−β)n−2βm.
Thus, removing these strings only cause X to lose probability mass at most 2−2βm.

Let S∗ be the subset of S′′ after removing the bad strings. It is clear that S∗ still has a large
size, i.e., |S∗| ≥ (1 − 2−βm)2(1−β)n−βm > 2n−2`βm. We now consider X∗, the uniform distribution
over S∗, and X ′∗ = f(X∗). Let Si be the support of X∗i . The large size of S∗ guarantees that each
Si also has large size, in fact |Si| ≥ 2(1−2`β)m. We now consider the sources (Y1, Y2, · · · , Y`) where
each Yi is the independent uniform distribution over Si. To construct the functions g1, · · · , g`, for
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any y ∈ Si we define the set W y
i = {y′ ∈ {0, 1}m : y ◦ y′ ∈ Hi}. Since we have removed the

bad x’s, we now have |W y
i | ≤ 2βn+6βm for any i and any y ∈ Si. We now consider a random

function g = (g1, g2, · · · , g`) where for any i ∈ [`] and any y ∈ Si, let gi(y) be a random element
independently uniformly chosen from W y

i . For all other y ∈ {0, 1}m let gi(y) = 0m.
With the random functions, for any x ∈ S∗ we have Pr[(x, x′) = (x, g(x))] ≥ (2−`(βn+6βm)) ≥

2−7`βn by the independence of the gi’s. Now by linearity of expectation, there exists a subset V ⊆ S∗
with |V | ≥ 2−7`βn|S∗| ≥ 2−O(`βn)Πi∈[`]|Si| such that for any x ∈ V , (x, x′) = (x, g(x)). We can now

remove the set V from S∗ and repeat the above process. As long as there are at least 2−βn|S∗|
strings left, the same argument will give us a new set V ⊆ S∗ with |V | ≥ 2−O(`βn)Πi∈[`]|Si| and a

new function g = (g1, g2, · · · , g`) such that for any x ∈ V , (x, x′) = (x, g(x)). Repeat this process
until there are less than 2−βn|S∗| strings left, and we have divided S∗ into large disjoint subsets
{Vq ⊆ {0, 1}n, q ∈ Q} with `-split state tampering functions {gq : ({0, 1}m)` → ({0, 1}m)`, q ∈ Q},
and a small subset left with less than 2−βn|S∗| strings.

Observe that X∗ is 2−βn-close to a convex combination of the uniform distributions on {Vq, q ∈
Q}, while each subset Vq has large density in the set Πi∈[`]Si. Since each Si itself is large, with an
appropriate choice of parameters, we can ensure that for any q ∈ Q, CZExt(Y1 ◦α, Y2 ◦α, · · · , Y` ◦α)
is close to uniform conditioned on CZExt(gq(Y1) ◦ α′, gq(Y2) ◦ α′, · · · , gq(Y`) ◦ α′). We then show by
Lemma 2.26 that conditioned on the event (Y1, Y2, · · · , Y`) ∈ Vq, CZExt(Y1 ◦ α, Y2 ◦ α, · · · , Y` ◦ α)
is close to having min-entropy Ω(n) conditioned on CZExt(gq(Y1) ◦ α′, gq(Y2) ◦ α′, · · · , gq(Y`) ◦ α′).
This takes care of S′′.

Ignoring the error (which is 2−Ω(n)) and the issue of convex combination of subsources, we have
now obtained a non-malleable somewhere condenser. The rest of the construction and analysis
is relatively straightforward. In the actual construction, we will divide X into more blocks, for
example X = X1 ◦ · · · ◦ X` ◦ X`+1 where each Xi has Ω(n) bits, but X`+1 has much larger size
compared to the previous blocks. We use (X1, · · · , X`) to obtain the non-malleable somewhere
high entropy source with a constant number of rows. Then, using sum-product theorem based
condensers in [8, 88, 100], we can boost the conditional min-entropy rate from Ω(1) to 0.9, while
only increasing the number of rows by a constant factor. At this point we apply an extractor
by Raz [88] to each row and the second source Y , which effectively converts the non-malleable
somewhere high entropy source into a non-malleable somewhere random source. Fix (X1, · · · , X`)
and (X ′1, · · · , X ′`), we argue that X and Y are still independent, and X`+1 has enough entropy left.
We can now use the non-malleable somewhere random source and a standard correlation breaker
to extract uniform random bits from X`+1, thus achieving a two-source non-malleable extractor by
a similar argument as that of the affine non-malleable extractor. Again, the key point is that the
somewhere random source only has a constant number of rows, and each row and X`+1 has Ω(n)
entropy. Hence, we can achieve error 2−Ω(n) with output length Ω(n).

The above gives a two-source non-malleable extractor for entropy rate 1 − β with some small
constant β > 0. We can decrease the entropy of the first source to k1 ≥ (2/3 +γ)n and the entropy
of the second source to k2 ≥ O(log n) by first taking a slice of the first source with size n/3, then
applying the sum-product theorem based condensers in [8, 88, 100], Raz’s extractor [88] to the
second source, and a strong seeded extractor (e.g., those in [60]) to the first source to boost the
entropy rate. This will result in a constant number of rows in both sources such that there exists one
row where both sources have very high entropy rate. We can then apply the advice generator, our
new two-source non-malleable extractor for entropy rate 1− β, and finally the correlation breaker
and taking the XOR of the outputs. See Section 6 for details.
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Efficiently sampling the pre-image. For applications in non-malleable codes, we need to
design efficient algorithms to sample uniformly from the pre-image of any output of our seedless
non-malleable extractors. Thus we appropriately modify our extractors, roughly following the same
approach as in [80]. However, to achieve error 2−Ω(n), we can no longer use a Reed-Solomon code in
the advice generator, since this only achieves error 2−Ω(n/ logn). Instead, we use an asymptotically
good linear binary code whose dual code is also asymptotically good. This implies that for some
constant η > 0, any η fraction of columns in the generator matrix are linearly independent.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In section 2 we give some preliminaries and previous
works we use. In section 3 we give our affine non-malleable extractor. In section 4, 5 and 6 we
give our non-malleable somewhere condenser, non-malleable correlation breaker, and two-source
non-malleable extractor. In section 7 we give various applications where most of them achieve
asymptotically optimal parameters. We conclude with some open problems in section 8.

2 Preliminaries

We use capital letters for random variables and corresponding small letters for their instantiations.
We use letters with prime for the tampered version. Let |S| denote the cardinality of the set S. For
` a positive integer, U` denotes the uniform distribution on {0, 1}`. When used as a component in
a vector, each U` is independent of the other components. All logarithms are to the base 2.

2.1 Probability Distributions

Definition 2.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) =

1

2

∑
s∈S
|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a set S
and a function h : S → T , let h(D) denote the distribution on T induced by choosing x according
to D and outputting h(x).

Lemma 2.2. For any function α and two random variables A,B, ∆(α(A), α(B)) ≤ ∆(A,B).

2.2 Somewhere Random Sources and Extractors

Definition 2.3 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (t × r) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 2.4 (subsource). Let X be an n-bit source in some probability space. We say that an
event A is determined by X if there exists a function f : {0, 1}n → {0, 1} such that A = {f(X) = 1}.
We say X0 is a subsource of X if there exists an event A that is determined by X such that
X0 = (X|A).
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Definition 2.5. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), where some
Xi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-k-sources.

Definition 2.6. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-somewhere-condenser
if for every k-source X, the vector (C(X, y)y∈{0,1}d) is ε-close to a somewhere-l-source. When
convenient, we call C a rate-(k/n→ l/m, ε)-somewhere-condenser.

Definition 2.7. (Seeded Extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

(Ext(X,Y ), Y ) ≈ε (Um, Y ).

Definition 2.8. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong two source extractor
for min-entropy k1, k2 and error ε if for every independent (n1, k1) source X and (n2, k2) source Y ,

|(TExt(X,Y ), X)− (Um, X)| < ε

and

|(TExt(X,Y ), Y )− (Um, Y )| < ε,

where Um is the uniform distribution on m bits independent of (X,Y ).

2.3 Average Conditional Min Entropy

Definition 2.9. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W

[
2−H∞(X|W=w)

])
.

Lemma 2.10 ([44]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

Lemma 2.11 ([44]). If a random variable B has at most 2` possible values, then H̃∞(A|B) ≥
H∞(A)− `.

2.4 Seedless Non-Malleable Extractors

Definition 2.12 (Seedless Non-Malleable Extractor).

copy(x, y) =

{
x if x 6= same?

y if x = same?

A function nmExt : {0, 1}n → {0, 1}m is a (k, ε)-seedless non-malleable extractor with respect
to a class X of sources over {0, 1}n and a class F of tampering functions acting on {0, 1}n, if for
every X ∈ X with min-entropy k and every f ∈ F , there is a distribution D over {0, 1}m∪{same?}
such that for an independent Y sampled from D, we have

(nmExt(X), nmExt(f(X))) ≈ε (Um, copy(Y, Um)),

where the second Um is the same random variable as the first one.
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The following is a generalization of the connection shown by Cheraghchi and Guruswami [28].

Theorem 1. Let nmExt : {0, 1}n → {0, 1}m be a polynomial time computable seedless non-
malleable extractor that works for min-entropy n with error ε with respect to a class of tampering
functions F acting on {0, 1}n. Further suppose there is a sampling algorithm Samp that on any
input z ∈ {0, 1}m runs in time poly(n) and samples from a distribution that is ε′-close to uniform
on the set nmExt−1(s).

Then there exists an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε+ ε′.

The non-malleable code is define in the following way: For any message s ∈ {0, 1}m, the encoder
of the non-malleable code outputs Samp(s). For any codeword c ∈ {0, 1}n, the decoder outputs
nmExt(c).

In this paper we will mainly consider the classes of 2-split state tampering and affine tampering.

2.5 Linear Error Correcting Codes

Definition 2.13. An [n, k, d] code C is a dimension k linear subspace of the vector space Fn2 , such
that any non-zero codeword in C has Hamming weight (the number of 1’s) at least d. Thus, the
encoding function for any message x ∈ Fk2 is y = xG for some matrix G ∈ Fk×n2 . We say G is the
generator matrix of C, and C is explicit if G can be constructed in time poly(n). The dual code
of C, C⊥, is defined to be the linear subspace of Fn2 orthogonal to C, i.e., C⊥ = {z ∈ Fn2 : ∀y ∈
C, 〈z, y〉 = 0}.

2.6 Prerequisites from Previous Work

Sometimes it is convenient to talk about average case seeded extractors, where the source X has
average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should be uniform
given Z as well. The following lemma is proved in [44].

Lemma 2.14. [44] For any δ > 0, if Ext is a (k, ε) extractor then it is also a (k + log(1/δ), ε+ δ)
average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor con-
structed in [60].

Theorem 2.15 ([60]). For every constant α > 0, and all positive integers n, k and any ε > 0,
there is an explicit construction of a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n+ log(1/ε)) and m ≥ (1− α)k. In addition, for any ε > 2−k/3 this gives a strong (k, ε)
average case extractor with m ≥ k/2.

We need the following “invertible” extrator from [80].

Theorem 2.16 ([80]). There exists a constant 0 < α < 1 such that for any n ∈ N and 2−αn < ε < 1
there exists a linear seeded strong extractor IExt : {0, 1}n×{0, 1}d → {0, 1}0.3d with d = O(log(n/ε))
and the following property. If X is a (n, 0.9n) source and R is an independent uniform seed on
{0, 1}d, then

|(IExt(X,R), R)− (U0.3d, R)| ≤ ε.

Furthermore for any s ∈ {0, 1}0.3d and any r ∈ {0, 1}d, |IExt(·, r)−1(s)| = 2n−0.3d.
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We will also use a sampler in our construction.

Definition 2.17 (Averaging sampler [95]). A function Samp : {0, 1}r → [n]t is a (µ, θ, γ) averaging
sampler if for every function f : [n]→ [0, 1] with average value 1

n

∑
i f(i) > µ, it holds that

Pr
i1,...,it←Samp(UR)

[
1

t

∑
i

f(i) < µ− θ

]
≤ γ.

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all distinct.

Theorem 2.18 ([95]). Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp : {0, 1}r → [n]t is an (µ, θ, γ)
averaging sampler with distinct samples for µ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ). Then for
every δn-source X on {0, 1}n, the random variable (Ur, XSamp(Ur)) is (γ+2−Ω(τn))-close to (Ur,W )
where for every a ∈ {0, 1}r, the random variable W |Ur=a is (δ − 3τ)t-source.

Theorem 2.19 ([95]). For every 0 < θ < µ < 1, γ > 0, and n ∈ N, there is an explicit (µ, θ, γ)
averaging sampler Samp : {0, 1}r → [n]t that uses

• t distinct samples for any t ∈ [t0, n], where t0 = O( 1
θ2 log(1/γ)), and

• r = log(n/t) + log(1/γ)poly(1/θ) random bits.

Theorem 2.20 ([29]). For every 0 < m < n there is an explicit two-source extractor IP : {0, 1}n×
{0, 1}n → {0, 1}m based on the inner product function, such that if X,Y are two independent (n, k1)
and (n, k2) sources respectively, then

(IP(X,Y ), X) ≈ε (Um, X) and (IP(X,Y ), Y ) ≈ε (Um, Y ),

where ε = 2−
k1+k2−n−m−1

2 .

Theorem 2.21 ([88]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δmin[n1/8, k2/40]− 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1 × {0, 1}n2 →
{0, 1}m for min-entropy k1, k2 with error 2−1.5m.

Theorem 2.22 ([8, 88, 100]). For any constant β, δ > 0, there is an efficient family of rate-
(δ → 1 − β, ε = 2−Ω(n))-somewhere condensers Cond : {0, 1}n → ({0, 1}m)D where D = O(1) and
m = Ω(n).

We need the following explicit construction of seedless non-malleable extractors in [24].

Theorem 2.23. There exists a constant γ > 0 and an explicit (k, ε)-seedless non-malleable extrac-
tor for 10 independent sources CZExt : ({0, 1}n)10 → {0, 1}m with k = (1 − γ)n, ε = 2−Ω(n) and
m = Ω(n).
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The following standard lemma about conditional min-entropy is implicit in [84] and explicit in
[83].

Lemma 2.24 ([83]). Let X and Y be random variables and let Y denote the range of Y . Then for
all ε > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε.

Lemma 2.25 ([100]). The statistical distance of a random variable X to the closest k-source is∑
s max(X(s)− 2−k, 0).

We need the following lemma.

Lemma 2.26. Let X,Y,X ′ be random variables such that X,X ′ have the same support, X ′ has
min-entropy k and is independent of Y , and (X,Y ) ≈2−r (X ′, Y ). Let Y denote the range of Y .
Let E be an event such that Pr[E] ≥ 2−t. Then for all ε > 0, (X,Y )|E is ε+ 2t−r-close to another
distribution (X̃, Ỹ ), such that for every y ∈ supp(Ỹ ), X̃|Ỹ = y is a k − t− log(1/ε) source.

Proof. For any x ∈ supp(X) and y ∈ supp(Y ), let ∆x,y = |Pr[X = x, Y = y]− Pr[X ′ = x, Y = y]|.
Thus we have

∑
x∈supp(X),y∈supp(Y ) ∆x,y ≤ 2−r, and Pr[X = x, Y = y] ≤ Pr[X ′ = x, Y = y]+∆x,y ≤

2−k Pr[Y = y] + ∆x,y. Then

Pr[X = x|(Y = y,E)] =
Pr[X = x, Y = y,E]

Pr[Y = y,E]
≤ Pr[X = x, Y = y]

Pr[Y = y,E]

Define the following set: B = {y ∈ Y : Pr[Y = y|E] < εPr[Y = y]}.
We have

Pr[(Y |E) ∈ B] =
∑
y∈B

Pr[Y = y|E] <
∑
y∈B

εPr[Y = y] ≤ ε.

Whenever (Y |E) /∈ B, we have Pr[Y = y|E] ≥ εPr[Y = y]. Therefore for any x ∈ supp(X),

Pr[X = x|(Y = y,E)] ≤ Pr[X = x, Y = y]

Pr[Y = y,E]
≤ 2−k Pr[Y = y] + ∆x,y

Pr[Y = y,E]

=
2−k Pr[Y = y]

Pr[Y = y|E] Pr[E]
+

∆x,y

Pr[Y = y|E] Pr[E]

≤ 2−k+t/ε+
2t∆x,y

Pr[Y = y|E]
.

Thus by Lemma 2.25, there exists a k−t−log(1/ε) source Zy such that the statistical distance of

X|(Y = y,E) to Zy is at most
∑

x∈supp(X)
2t∆x,y

Pr[Y=y|E] . Now let (X̃, Ỹ ) be the following distribution:

first sample Ỹ = y according to Y |(E, Y /∈ B), and then sample X̃ as Zy. Notice that this

distribution is ε +
∑

x∈supp(X),y∈Y\B
2t∆x,y

Pr[Y=y|E] · Pr[Y = y|E] ≤ ε + 2t−r-close to (X,Y )|E. On the

other hand, for every y ∈ supp(Ỹ ), conditioned on Ỹ = y, X̃ is a k − t− log(1/ε) source.

We also need the following lemma.
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Lemma 2.27. [75] Let (X,Y ) be a joint distribution such that X has range X and Y has range Y.
Assume that there is another random variable X ′ with the same range as X such that |X−X ′| = ε.
Then there exists a joint distribution (X ′, Y ) such that |(X,Y )− (X ′, Y )| = ε.

We need the following theorem due to Guruswami [92], about binary linear codes such that
both the code and its dual are asymptotically good.

Theorem 2.28. [92] For every integer i ≥ 1 there is a [ni, ni/2, di] code where ni = 42 · 8i+1 and
di ≥ ni/30. Moreover, the generator matrix can be constructed in poly(ni) time, and the dual of
this linear code is a [ni, ni/2, d

′
i] code where d′i ≥ ni/30.

This immediately gives the following theorem.

Theorem 2.29. For any n ∈ N there is an explicit construction of the generator matrix of an
[n′, n, d] code with n′ = O(n), d = Ω(n) that satisfies the following property: any d columns in the
generator matrix are linearly independent.

3 Affine Non-Malleable Extractor

We use this section to construct affine non-malleable extractors. First we define affine sources and
recall the definition of affine non-malleable extractors.

Definition 3.1. (affine source over F2) A distribution X over Fn2 is an (n, k) affine source if X is
the uniform distribution over some affine subspace of Fn2 with dimension k.

Definition 3.2. A function anmExt : {0, 1}n → {0, 1}m is a (k, ε) affine non-malleable extractor if
for any affine source X with entropy at least k and any affine function f : {0, 1}n → {0, 1}n with
no fixed point, we have

|anmExt(X), anmExt(f(X))−Um, anmExt(f(X))| ≤ ε.

We need the following definitions and lemmas about correlation breakers.

Definition 3.3 (Correlation breaker with advice). [18, 34] A function

AdvCB : {0, 1}n × {0, 1}n′ × {0, 1}a → {0, 1}m

is called a (k, k′, ε)-correlation breaker with advice if the following holds. Let X,X ′ be n-bit random
variables with H∞(X) ≥ k, Y, Y ′ be n′-bit random variables with H∞(Y ) ≥ k′, such that (X,X ′)
is independent of (Y, Y ′). Then, for any pair of distinct a-bit strings α, α′,

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′)) ≈ε (Um,AdvCB(X ′, Y ′, α′)).

In addition, we say that AdvCB is strong if

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′), Y, Y ′) ≈ε (Um,AdvCB(X ′, Y ′, α′), Y, Y ′).

The following definition generalizes the definition of affine correlation breakers in [22].
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Definition 3.4. A function AffineAdvCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m is a t-affine cor-
relation breaker for entropy k with error ε (or a (t, k, ε)-affine correlation breaker for short) if for
every distributions X,X1, · · · , Xt, A,A1, · · · , At, B,B1, · · · , Bt ∈ {0, 1}n, Y, Y1, · · · , Yt ∈ {0, 1}d
and strings α, α1, · · · , αt ∈ {0, 1}a such that

• X = A+B, and for any i ∈ [t], Xi = Ai +Bi,

• H∞(A) ≥ k and Y is uniform,

• (A,A1, · · · , At) is independent of (B,B1, · · · , Bt, Y, Y1, · · · , Yt),

• ∀i ∈ [t], α 6= αi,

it holds that

(AffineAdvCB(X,Y, α), {AffineAdvCB(Xi, Yi, αi)}i∈[t]) ≈ε (Um, {AffineAdvCB(Xi, Yi, αi)}i∈[t]).

We say AffineAdvCB has degree t, and AffineAdvCB is strong if

(AffineAdvCB(X,Y, α), {AffineAdvCB(Xi, Yi, αi), Yi}i∈[t]) ≈ε (Um, {AffineAdvCB(Xi, Yi, αi), Yi}i∈[t]).

The following theorem can be proved by using essentially the same proof as in [22] for the
special case of X = X1 = · · · = Xt.

Theorem 3.5 ([22]). Let C be a large enough constant. Suppose that there exists an explicit

(d0, d0, ε)-strong correlation breaker with advice AdvCB : {0, 1}n×{0, 1}d0×{0, 1}a → {0, 1}C log2(t+1) log(n/ε)

for some n, t ∈ N. Then there exists an explicit strong t-affine correlation breaker AffineAdvCB :
{0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m with error O(tε) for entropy k = O(td0 + tm + t2 log(n/ε)),
where d = O(td0 +m+ t log3(t+ 1) log(n/ε)).

To apply this transformation, we use a standard correlation breaker with advice from [81].

Theorem 3.6 ([81]). There exists an explicit (standard) (d, d, ε) correlation breaker with advice

{0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m, where d = O(m+ log(n/ε) · log(a)
log log(a)).

Combining the above two theorems we have the following theorem.

Theorem 3.7. For any t ∈ N there exists an explicit strong t-affine correlation breaker AffineAdvCB :
{0, 1}n×{0, 1}d×{0, 1}a → {0, 1}m with error O(tε) for entropy k = O(tm+ t log(n/ε) · log(a)

log log(a) +

t2 log(n/ε)), where d = O(tm+ t log(n/ε) · log(a)
log log(a) + t log3(t+ 1) log(n/ε)).

We also need the following affine extractor.

Theorem 3.8 ([15, 72, 98]). For any constant δ > 0 there is an explicit affine extractor AExt :
{0, 1}n → {0, 1}m for entropy k ≥ δn, with m = Ω(n) and error 2−Ω(n).

Lemma 3.9 (Affine Conditioning [72]). Let X be any affine source on {0, 1}n. Let L : {0, 1}n →
{0, 1}m be any affine function. Then there exist independent affine sources A,B such that:

• X = A+B

• For every b ∈ Supp(B), L(b) = c for some c ∈ {0, 1}m.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n such that
A = L−1(L(A)).
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3.1 The Extractor Construction

Our affine non-malleable extractor is given below.

Algorithm 1 anmExt(x)

Input: x ∈ {0, 1}n — two n bit strings.
Output: w ∈ {0, 1}m — a string with length m = Ω(n).

Sub-Routines and Parameters:

Let 0 < γ < α < 1/1000 be two constants to be chosen later.
Let AExt be the affine extractor from Theorem 3.8.
Let IExt be the invertible linear seeded extractor form Theorem 2.16.
Let Enc be the encoding function of the linear code from Theorem 2.29.
Let Samp be the average sampler from Theorem 2.19.
Let CZExt be the non-malleable extractor from Theorem 2.23.
Let AffineAdvCB be the t-affine correlation breaker with advice from Theorem 3.7, for t = 20.

1. Divide x into x = x0 ◦ x1 ◦ x2, where x0, x1 each has 2γn bits, and x2 has n′ = (1 − 4γ)n
bits.

2. Compute z0 = AExt(x0) and z1 = AExt(x1), each outputs Ω(γn) bits.

3. Let x = Enc(x2). For each i = 0, 1, use zi and Samp to sample s = Ω(n) ≤ γn distinct bits
from x, let the resulted string be x̃i.

4. Let α̃ = x0 ◦x1 ◦ x̃0 ◦ x̃1. Divide x2 into x3 ◦x4 ◦ · · · ◦x13 ◦x14 ◦ x̂ such that xi has αn bits for
any 3 ≤ i ≤ 12, x13 has 30αn bits, x14 has 100αn bits, while x̂ has n− 140αn− 4γn ≥ 2n/3
bits.

5. For each i ∈ [10], compute vi = AExt(xi+2) with δ = γ in Theorem 3.8. Compute v11 =
CZExt(x3 ◦ α̃, · · · , x12 ◦ α̃). All outputs will have Ω(n) ≤ γn bits.

6. For each i ∈ [11], compute ri = AffineAdvCB(x13, vi, i) with degree t = 20, which outputs
s = Ω(n) ≤ γn bits, and r = ⊕i∈[11]ri.

7. Finally compute w = IExt(x14, r) which outputs s = Ω(n) ≤ γn bits.

To analyze the algorithm we first have the following lemma.

Lemma 3.10. Let X be an affine source over n bits with entropy n − r, and X = X1 ◦ · · · ◦ Xt

where each Xi has ni bits, so
∑

i ni = n. Then X is a convex combination of affine sources Xj,

where for each j and Xj = Xj
1 ◦ · · · ◦X

j
t , the {Xj

i }i∈[t]’s are independent affine sources, and each

Xj
i has entropy at least ni − r.

Proof. We view X = X1 ◦ · · · ◦ Xt as the uniform random string over {0, 1}n, subject to r affine
constraints. Each constraint corresponds to a linear equation with the bits of X, thus for each Xi

we can fix the corresponding linear part within Xi to a specific bit. Conditioned on these fixings,
the Xi’s are still independent, and each of them is an affine source with entropy at least ni− r.

We now have the following theorem.
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Theorem 3.11. There exists a constant 0 < γ < 1 such that for any n ∈ N, there exists an explicit
construction of a ((1− γ)n, 2−Ω(n)) affine non-malleable extractor with output length Ω(n).

Proof. We use capital letters with prime to denote the corresponding random variables produced
from the tampered input. By Lemma 3.10, without loss of generality we can assume X = X0 ◦X1 ◦
X3 ◦ · · · ◦X13 ◦X14 ◦ X̂, where each part is an independent affine source with entropy deficiency
γn. In particular, X0 and X1 both have entropy at least γn.

We now argue that α̃ 6= α̃′ with high probability. First note that if X0 6= X ′0 or X1 6= X ′1,
then we are done. Otherwise, we must have X2 6= X ′2. Note that X ′2 is an affine function of
X = X0 ◦X1 ◦X2. Let L0, L1 : {0, 1}2γn → {0, 1}(1−4γ)n be the affine functions that correspond to
the contributions of X0, X1 in X ′2, respectively. We now have two cases.

Case 1. H(L0(X0)) ≤ γn/2. We fix X1, X2, and L(X0), and conditioned on this fixing, X0 = X ′0
still has entropy at least γn/2. Therefore by Theorem 3.8, Z0 ≈2−Ω(n) UΩ(n). Note that

Enc(X2) + Enc(X ′2) = Enc(X2 +X ′2),

and under the fixings, X2+X ′2 is also fixed to be a non-zero string. Therefore, by Theorem 2.29

and Theorem 2.19, X̃0 6= X̃0
′

with probability 1− 2−Ω(n) over the further fixing of X0.

Case 2. H(L0(X0)) > γn/2. We fix X2, and conditioned on this fixing, X ′2 = L0(X0)+L1(X1)+a
for some a ∈ {0, 1}(1−4γ)n. Notice that

Enc(X2) + Enc(X ′2) = Enc(X2 +X ′2) = Enc(L0(X0)) + Enc(L1(X1)) + b,

for some b ∈ {0, 1}O(n). Therefore, we have

X̃1 + X̃1
′
= Samp(Enc(L0(X0)), Z1) + Samp(Enc(L1(X1)) + b, Z1).

By Theorem 3.8, Z1 ≈2−Ω(n) UΩ(n) and is independent of X0. Note that H(Enc(L0(X0))) =

H(L0(X0)) > γn/2. Thus by Theorem 2.18, with probability 1−2−Ω(n) over the fixing of Z1,
we have that Samp(Enc(L0(X0)), Z1) is an affine source with entropy γn/4. We can now fix
Z1, X1. Note that conditioned on the fixing of Z1, Samp(Enc(L0(X0)), Z1) is a deterministic
function of X0, thus further fixing X1 does not affect Samp(Enc(L0(X0)), Z1), but this fixes

Samp(Enc(L1(X1)) + b, Z1). Therefore, in this case we have X̃1 6= X̃1
′

with probability at
least 1− 2−γn/4 = 1− 2−Ω(n) over the further fixing of X0.

We now condition on a particular fixing of (X0, X
′
0, X1, X

′
1, X̃0, X̃1, X̃0

′
, X̃1

′
) such that α̃ 6= α̃′.

Note that all these are linear functions ofX, and the total size is at most 12γn. Thus by Lemma 3.10,
we can view the remaining blocks of X as independent affine sources with entropy deficiency at
most 12γn. Since X ′ is an affine function of X, for any i, j ∈ N with 3 ≤ i, j ≤ 14, we use Lij to
denote the affine function that corresponds to the contribution of Xj in X ′i, and use L̂i to denote
the affine function that corresponds to the contribution of X̂ in X ′i. Thus we have for any i,

X ′i =
∑

3≤j≤14

Lij(Xj) + L̂i(X̂).

We now again have two cases.
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Case 1. There exists an i with 3 ≤ i ≤ 12, and some j 6= i such that H(Lij(Xj)) ≥ 13γn, or
H(L̂i(X̂)) ≥ 13γn. Then we have H(Xi) +H(X ′i) ≥ αn− 12γn+ 13γn ≥ αn+ γn. Since X ′i
is on αn bits, for any x′i ∈ {0, 1}αn we have H(Xi|X ′i = x′i) ≥ γn. Therefore by Theorem 3.8
we have

(Vi−2, V
′
i−2) ≈2−Ω(n) (UΩ(n), V

′
i−2).

Case 2. Otherwise, we can fix all the Lij(Xj) with 3 ≤ i ≤ 12, i 6= j and L̂i(X̂). Conditioned on
these fixings, the blocks of X are still independent affine sources, and any Xi with 3 ≤ i ≤ 12
has entropy at least αn − 12γn − 10 · 13γn = αn − 142γn. Moreover, conditioned on these
fixings, each X ′i with 3 ≤ i ≤ 12 is a deterministic function of Xi. By Theorem 2.23, as long
as α is large enough compared to γ, we now have

(V11, V
′

11) ≈2−Ω(n) (UΩ(n), V
′

11).

Therefore, in summary, there exists an i ∈ [11] such that (Vi, V
′
i ) ≈2−Ω(n) (UΩ(n), V

′
i ).

Without loss of generality assume i = 1. Note that (V, V ′) is a deterministic function of
{Xi, X

′
i}3≤i≤12, and X13 has entropy at least 30αn − 12γn. Let L be the affine function that

corresponds to the contribution of X13 in {X ′i}3≤i≤12. Thus by Lemma 3.9, there exist indepen-
dent affine sources A,B such that X13 = A + B and L(A) = 0. Therefore, A is independent of
(B, {Xi, X

′
i}3≤i≤12) (since the blocks of X are independent), and H(A) ≥ 30αn−12γn−2 ·10αn =

10αn−12γn. Further fix the linear contribution of X14 and X̂ in {X ′i}3≤i≤13. Since both X14 and X̂
have large size, this fixing does not cause them to lose much entropy. Moreover, conditioned on this
fixing, X ′13 is a deterministic affine function of {Xi}3≤i≤13. Therefore we can write X ′13 = A′ +B′,
where A′ is an affine function of A and B′ is an affine function of (B, {Xi}3≤i≤12). Thus (A,A′)
is independent of (B,B′, {Xi, X

′
i}3≤i≤12, V, V

′). We now fix V ′1 , and this fixing does not affect the
previous property. Next, by adjusting parameters and always using a strong linear seeded extractor
in the t-affine correlation breaker when extracting from X13 as in [22], and noticing t = 20, we can
fix R′1 = AffineAdvCB(X ′13, V

′
1 , 1) by gradually fixing at most αn bits of random variables, while

preserving the previous property and ensuring that H(A) ≥ 10αn−12γn−αn = 9αn−12γn. Note
that V1 ≈2−Ω(n) UΩ(n), by Theorem 3.7, we have

(R1, {Ri}2≤i≤11, {R′i}2≤i≤11) ≈2−Ω(n) (UΩ(n), {Ri}2≤i≤11, {R′i}2≤i≤11).

Therefore we also have (R,R′) ≈2−Ω(n) (UΩ(n), R
′).

Finally, notice that (R,R′) is a deterministic function of {Xi, X
′
i}3≤i≤13, and X14 has entropy

at least 100αn − 12γn. Thus as long as α is large enough, by Lemma 3.9, the fact that IExt is a
strong linear seeded extractor, and using a similar argument as above, we have that

(W,W ′) ≈2−Ω(n) (UΩ(n),W
′).

3.2 Efficiently Sampling the Pre-image

We now show that given any output of the non-malleable affine extractor in Algorithm 1, one can
efficiently uniformly sample from the pre-image. We have the following lemma.

22



Lemma 3.12. Given any arbitrary fixing of ({Xi}0≤i≤13,W ), there is an efficient procedure to
uniformly sample from the pre-image X. Moreover, for any fixing of ({Xi}0≤i≤13,W ), the pre-
image has the same size.

Proof. Given ({Xi}0≤i≤13,W ) = ({xi}0≤i≤13, w), we sample from the corresponding (X14, X̂) as
follows. First we compute the corresponding z0, z1, and use them to sample from x2 = Enc(x2) to
get α̃ = x0 ◦ x1 ◦ x̃0 ◦ x̃1. Next, we compute {vi}i∈[11], {ri}i∈[11], and r =

∑
i∈[11] ri. Now note that

w = IExt(x14, r), therefore by Theorem 2.16 we can efficiently and uniformly sample the pre-image
of w, which is X14, by inverting a system of linear equations. Also, Theorem 2.16 guarantees that
for any (r, w) the pre-image has the same size.

With X14 sampled, we continue to sample X̂ according to the linear constraints imposed by
the linear code: X̃0 = x̃0 and X̃1 = x̃1. This gives us 2s ≤ 2γn linear equations, with X̂ being the
variables. Furthermore, the length of X̂ is n′ = (1−4γ)n. Thus, the linear equations correspond to
a n′×2s submatrix in the generator matrix of the linear code. By Theorem 2.29, as long as γ is small
enough, the 2s columns are linearly independent. Hence, we can efficiently sample X̂ by inverting
the system of linear equations, and moreover for any fixing of ({Xi}0≤i≤14,W ) = ({xi}0≤i≤13, w)
the pre-image always has the same size.

We now have the following theorem.

Theorem 3.13. Given any output W = w of the non-malleable affine extractor, there is an efficient
procedure to uniformly sample from the pre-image.

Proof. The sampling procedure is as follows. We first uniformly randomly generate ({Xi}0≤i≤13,W ),
then we use Lemma 3.12 to generate X. By Lemma 3.12, for any fixing of ({Xi}0≤i≤13,W ), the
pre-image has the same size. Thus this procedure indeed uniformly samples from the pre-image X
of W = w.

4 Non-Malleable Somewhere Condenser

In this section we present out non-malleable somewhere condenser.

Definition 4.1 (non-malleable somewhere condenser with advice). A function

advSRcond : {0, 1}n × {0, 1}a → ({0, 1}m)t

is called a (k, k′, ε) non-malleable somewhere condenser with advice if the following holds. Let X,X ′

be n-bit random variables such that H∞(X) ≥ k. Then, for any pair of distinct a-bit strings α, α′,
we have that (advSRcond(X,α), advSRcond(X ′, α′)) is ε-close to a convex combination of random
variables (Zi, Z ′i) ∈ ({0, 1}m)t × ({0, 1}m)t such that for any i, there exists j ∈ [t] so that for any
z ∈ supp(Z ′ij ), we have Zij |(Z ′ij = z) is a k′-source.

We have the following lemma.

Lemma 4.2. Suppose for some constants ` ∈ N, γ > 0 there is an explicit construction of an
`-source non-malleable extractor for min-entropy (1− γ)n , with output length m = Ω(n) and error
ε = 2−Ω(n), then there is a constant β > 0 and an explicit construction of a ((1− β)n, βm, 2−Ω(n))
non-malleable somewhere condenser with advice advSRcond : {0, 1}n×{0, 1}βn → ({0, 1}m)`+1 with
m = n/`.
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Let nmLExt be the `-source non-malleable extractor. Our construction of the non-malleable
somewhere condenser with advice is simple, as follows.

Algorithm 2 advSRcond(x, α)

Input: x ∈ {0, 1}n — an n bit string; α ∈ {0, 1}a, a given advice string; ` ∈ N, a given parameter.
Output: z ∈ ({0, 1}m)`+1 — a matrix with `+ 1 bit strings of length m, where m = n/`.

Sub-Routines and Parameters:
Let nmLExt be an `-source non-malleable extractor.

1. Divide x evenly into ` blocks x = x1 ◦ · · · ◦ x`, where each block has m = n/` bits.

2. For any i ∈ [`], let zi = xi.

3. Let z`+1 = nmLExt(x1 ◦ α, · · · , x` ◦ α), padding 0’s to make the length n/` if necessary.

Proof of Lemma 4.2. We show the function given above is such a non-malleable somewhere con-
denser with advice.

Given an (n, (1−β)n) source X with β > 0, and X = X1◦X2◦· · ·◦X`, without loss of generality
we can assume that X is the uniform distribution over a set S ⊆ {0, 1}n with |S| = 2(1−β)n, and X ′

is a deterministic function of X (we can fix any additional randomness), i.e., X ′ = f(X). Consider
X ′ = X ′1 ◦ X ′2 ◦ · · · ◦ X ′`. For i ∈ [`] define Hi = {(y, y′) ∈ {0, 1}2m : Pr[(Xi, X

′
i) = (y, y′)] ≥

2−(1+3β)m}, which corresponds to the heavy elements in (Xi, X
′
i). Notice that this implies for every

i, |Hi| ≤ 2(1+3β)m. Let τ = 2−βm. We define the following sets.

1. S′ = {x ∈ S : ∃i, (xi, x′i) /∈ Hi}.

2. For any x ∈ S′, define I(x) to be the smallest i such that (xi, x
′
i) /∈ Hi, and Ti = {x ∈ S′ :

I(x) = i}. Let B = {i ∈ [`] : |Ti| < 2(1−β)n−βm}, and define S̃ = S′ \ (∪i∈BTi). Note that
| ∪i∈B Ti| ≤ `τ |S|.

3. S′′ = {x ∈ S : ∀i, (xi, x′i) ∈ Hi} = S \ S′.

Note that for any x ∈ S̃, we have I(x) /∈ B. Let X̃ be the uniform distribution over S̃, and
X̃ ′ = f(X̃). For any i ∈ [`] \ B, conditioned on I(X̃) = i, i.e., X̃ ∈ Ti, we have that for any
(xi, x

′
i) ∈ supp(X̃i, X̃

′
i),

Pr[(X̃i, X̃
′
i) = (xi, x

′
i)] = Pr[(Xi, X

′
i) = (xi, x

′
i)|X ∈ Ti] ≤

Pr[(Xi, X
′
i) = (xi, x

′
i)]

Pr[X ∈ Ti]

≤ 2−(1+3β)m

2−βm
= 2−(1+2β)m.

Thus (X̃i, X̃
′
i) has min-entropy at least (1 + 2β)m. By Lemma 2.24, with probability at least

1− 2−βm over the fixing of X̃ ′i, the min-entropy of X̃i is at least (1 + 2β)m−m− βm = βm.
We now have two cases.
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Case 1. Pr[X ∈ S′] ≥ 1− τ . In this case, notice that X̃ is `τ + τ = (`+ 1)τ -close to X. Further
conditioning on the events of I(X̃) = i and that the min-entropy of X̃i given X̃ ′i is at least βm,
we see that advSRcond(X) satisfies the conditions of the non-malleable somewhere condenser with
error (`+ 2)τ = 2−Ω(n).

Case 2. Pr[X ∈ S′′] ≥ τ . In this case, notice that |S′′| ≥ τ |S| = 2(1−β)n−βm.
For each i ∈ [`], define the following set

Vi = {y ∈ {0, 1}m : ∃ > 2βn+6βm strings y′ ∈ {0, 1}m such that y ◦ y′ ∈ Hi}.

Note that this implies |Vi| < |Hi|/2βn+6βm ≤ 2(1−3β)m−βn. Define the set

V = {x ∈ S′′ : ∃i such that xi ∈ Vi},

and notice |V | < `2(1−3β)m−βn2(`−1)m = `2(1−β)n−3βm < 2(1−β)n−2βm. Hence |V |/|S′′| < 2−βm.
Let S∗ = S′′ \ V and X∗ be the uniform distribution over S∗, let X ′∗ = f(X∗). Then

|S∗| ≥ (1− 2−βm)2(1−β)n−βm > 2n−2`βm.

For any i ∈ [`], let Si be the support of X∗i . Notice that S∗ is a subset of Πi∈[`]Si, thus we have

Πi∈[`]|Si| = |S1 × S2 × · · · × S`| ≥ |S∗|.

Hence for any i ∈ [`],

|Si| ≥ |S∗|/2(`−1)m > 2n−2`βm/2(`−1)m > 2(1−2`β)m.

On the other hand, notice that

|S1 × S2 × · · · × S`| ≤ 2`m ≤ 22`βm|S∗|.

We now have the following claim.

Claim 4.3. There exists a finite set Q, a family of sets {Vq ⊆ {0, 1}n, q ∈ Q}, and a family of
functions {gq : {0, 1}n → {0, 1}n, q ∈ Q} such that the following holds:

• For any q ∈ Q, gq = (g1
q ◦ g2

q ◦ · · · ◦ g`q), where each giq is a deterministic function from {0, 1}m
to {0, 1}m.

• For any q ∈ Q, |Vq| ≥ 2−10`βnΠi∈[`]|Si|.

• For any q ∈ Q, (Vq, gq(Vq)) ⊆ supp(X∗, X ′∗). Furthermore, for any q1 6= q2 ∈ Q, (Vq1 , gq1(Vq1))∩
(Vq2 , gq2(Vq2)) = ∅.

• |(S∗, f(S∗)) \ ∪q∈Q(Vq, gq(Vq))| ≤ 2−βn|S∗|.

Proof of the claim. For any i ∈ [`] and any y ∈ Si, define W y
i = {y′ ∈ {0, 1}m : y ◦ y′ ∈ Hi}. By

definition we have that for any i ∈ [`] and any y ∈ Si, |W y
i | ≤ 2βn+6βm. We construct the sets

{Vq, q ∈ Q} and the functions {gq, q ∈ Q} as follows.
Initially set Ŝ = (S∗, f(S∗)) = supp(X∗, X ′∗). As long as |Ŝ| > 2−βn|S∗|, consider a random

function g = (g1 ◦ g2 ◦ · · · ◦ g`) where for any i ∈ [`] and any y ∈ Si, let gi(y) be a random element
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independently uniformly chosen from W y
i . For all other y ∈ {0, 1}m let gi(y) = 0m. Notice now we

have that for any x ∈ S∗ and any i ∈ [`], xi ∈ Si and (xi, x
′
i) ∈ Hi. Thus for any x ∈ S∗ we have

Pr[(x, x′) = (x, g(x))] ≥ (2−`(βn+6βm)) ≥ 2−7`βn.

Thus, by linearity of expectation, there exists a function g and a set V ⊆ {0, 1}n with |V | ≥
2−7`βn|Ŝ| ≥ 2−8`βn|S∗| ≥ 2−10`βnΠi∈[`]|Si| such that (V, g(V )) ⊆ Ŝ ⊆ supp(X∗, X ′∗). Add this

function and the set V to the family {gq} and {Vq}, let Ŝ ← Ŝ \ (V, g(V )) and repeat the process.
It is easy to see that the process terminates in a finite number of steps, and the sets (Vq, gq(Vq))

are disjoint. When the process terminates, the final set Ŝ = (S∗, f(S∗)) \ ∪q∈Q(Vq, gq(Vq)) has size
at most 2−βn|S∗|.

We now consider the sources (Y1, Y2, · · · , Y`) where each Yi is the independent uniform distri-

bution over Si. Notice that the entropy rate of each (Yi ◦ α) is at least (1−2`β)m
m+βn ≥ (1 − 3`β). By

our assumption of the `-source non-malleable extractor, as long as 3`β ≤ γ, for any q ∈ Q,

(nmLExt(Y1 ◦ α, Y2 ◦ α, · · · , Y` ◦ α), nmLExt(gq(Y1) ◦ α′, gq(Y2) ◦ α′, · · · , gq(Y`) ◦ α′))
≈ε′(Um′ , nmLExt(gq(Y1) ◦ α′, gq(Y2) ◦ α′, · · · , gq(Y`) ◦ α′)),

for some m′ = Ω(m) and ε′ = 2−Ω(m). Now for any q ∈ Q, let Xq be the uniform distribu-
tion over Vq, and X ′q = f(Xq) = gq(Xq). Since |Vq| ≥ 2−10`βnΠi∈[`]|Si| for any q ∈ Q, by

Lemma 2.26, for any ε > 0 we have that ((advSRcond(Xq, α), (advSRcond(X ′q, α
′)) is ε + 210`βnε′-

close to a distribution (Zq, Z
′
q) such that for any z ∈ supp(Z ′q), Zq|(Z ′q = z) has min-entropy

m′ − 10`βn− log(1/ε). Thus, by taking ε = 2−Ω(n) to be large enough and β to be a small enough
constant, ((advSRcond(Xq, α), (advSRcond(X ′q, α

′)) is 2−Ω(n)-close to a distribution (Zq, Z
′
q) such

that for any z ∈ supp(Z ′q), Zq|(Z ′q = z) has min-entropy βm. If m′ < m, then we pad 0’s at the
end to increase the length to m without affecting the property of conditional entropy.

Finally, notice that X is `τ + 2−βm + 2−βn = 2−Ω(n)-close to a convex combination of X̃ and
{Xq, q ∈ Q}. Thus the lemma also holds in this case.

Combined with Theorem 2.23, this immediately gives the following theorem.

Theorem 4.4. There is a constant β > 0 and an explicit construction of a ((1− β)n, βm, 2−Ω(n))
non-malleable somewhere condenser with advice advSRcond : {0, 1}n × {0, 1}βn → ({0, 1}m)11 with
m = n/10.

5 Non-Malleable Correlation Breaker with Advice

With the previous construction of a non-malleable somewhere condenser, we can now construct a
non-malleable correlation breaker with advice (Definition 3.3).

We construct a correlation breaker with advice such that X,X ′, Y, Y ′ are all d-bit random
variables with H∞(X) ≥ 0.9d and H∞(Y ) ≥ 0.9d. The construction is given below.
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Algorithm 3 AdvCB(x)

Input: x, y ∈ {0, 1}d — two d bit strings; α ∈ {0, 1}a, a given advice string.
Output: z ∈ {0, 1}m — a string with length m = Ω(d).

Sub-Routines and Parameters:

Let IP be the two source extractor from Theorem 2.20, set up to extract from two 0.35d-bit
sources and output 0.1d bits.
Let advSRcond be the non-malleable somewhere condenser with advice from Theorem 4.4.
Let Raz be the two source extractor from Theorem 2.21.
Let Cond be the somewhere condenser from Theorem 2.22, which converts a weak source with
entropy rate β to a somewhere rate 0.8 source, where β is the constant in Theorem 4.4.
Let AffineAdvCB be the t-affine correlation breaker with advice from Theorem 3.7, for some
constant t to be chosen later.

1. Let x1 be a slice of x with length 0.35d, and y1 be a slice of y with length 0.35d. Compute
v = IP(x1, y1).

2. Compute r = (r1, · · · , r`) = advSRcond(v, α) where ` = 11.

3. For each i ∈ [`], compute Cond(ri) which outputs D = O(1) rows with length Ω(d). Let s
be the concatenation of all the rows from all the outputs, that is, s consists of D` rows.

4. For each j ∈ [D`], compute wj = Raz(y, sj) and output m′ = Ω(d) ≤ 0.01d bits.

5. For each j ∈ [D`], compute zj = AffineAdvCB(x,wj , j) with t = 2(D` − 1) and output
m = Ω(d) ≤ 0.1d bits. Finally output z = ⊕jzj .

We now have the following lemma.

Lemma 5.1. There exists a constant C > 1 such that for any 0 < ε < 1/2 and any a, d ∈ N with
d ≥ C(a + log(1/ε)), there is an explicit construction of a (0.9d, 0.9d, ε) strong correlation breaker
with advice AdvCB : {0, 1}d × {0, 1}d × {0, 1}a → {0, 1}Ω(d).

Proof. Consider X,X ′ and Y, Y ′ as in the definition of the correlation breaker. Note that the slice
X1 and Y1 each has min-entropy at least 0.25d. Thus by Theorem 2.20, we have

(V, Y1) ≈2−Ω(d) (U0.1d, Y1).

We now fix (Y1, Y
′

1). Conditioned on this fixing, (X,X ′) is still independent of (Y, Y ′), and now
(V, V ′) are deterministic functions of (X,X ′) respectively, thus they are independent of (Y, Y ′).
Moreover, with probability 1 − 2−Ω(d) over this fixing, we have V ≈2−Ω(d) U0.1d, and further by
Lemma 2.24, Y has min-entropy at least 0.9d− 2 · 0.35d− 0.05d = 0.15d.

We proceed as if V is uniform, since this only adds 2−Ω(d) to the final error. Now by The-
orem 4.4, as long as a ≤ β(0.1d) where β is the constant in Theorem 4.4, we have that (R =
advSRcond(V, α), R′ = advSRcond(V ′, α′)) is 2−Ω(d)-close to a convex combination of random vari-
ables (Ri, R′i) ∈ ({0, 1}0.01d)11 × ({0, 1}0.01d)11 such that for any i, there exists j ∈ [11] so that for
any rij ∈ supp(R′ij ), we have Rij |(R′ij = rij) has min-entropy at least 0.01βd. We now ignore the error
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and slightly abuse notation by treating (R,R′) to have this property, since this only adds 2−Ω(d) to
the final error.

Without loss of generality assume j = 1, i.e., for any r1 ∈ supp(R′1), we have R1|(R′1 = r1) has
min-entropy at least 0.01βd. We first fix R′1. Conditioned on this fixing, R1 still has min-entropy
at least 0.01βd. By Theorem 2.22, one of the rows in S, without loss of generality assume S1, has
entropy rate 0.8. Since R′1 is fixed, S′1 is also fixed. Next we fix W ′1 = Raz(Y ′, S′1). Notice that
at this point W ′1 is a deterministic function of Y ′, thus conditioned on this fixing, (X,X ′) is still
independent of (Y, Y ′). Furthermore, by Lemma 2.24, with probability 1− 2−0.04d over this fixing,
Y has min-entropy at least 0.15d− 0.04d− 0.01d = 0.1d. Therefore by Theorem 2.21, we have

(W1, S1) ≈2−Ω(d) (Um′ , S1).

Now fix S1, and conditioned on this fixing, (X,X ′) is still independent of (Y, Y ′); moreover
W1 is now a deterministic function of Y , thus independent of (X,X ′). We can now further fix
(V, V ′). Since these are deterministic functions of (X,X ′), fixing them does not affect the above
property. At the same time, by Lemma 2.24, with probability 1 − 2−Ω(d) over this fixing, X still
has min-entropy at least 0.9d− 2 · 0.1d− 0.1d = 0.6d.

Ignoring all the errors for now, we have that conditioned on all these fixings, W1 = Um′ with
m′ = Ω(d), W ′1 is fixed, and all the other {Wj ,W

′
j}j 6=1 are deterministic functions of (Y, Y ′). We

now fix Z ′1. Notice it is now a deterministic function of X ′, therefore conditioned on this fixing,
(X,X ′) is still independent of (Y, Y ′); moreover, by Lemma 2.24, with probability 1− 2−Ω(d) over
this fixing, X still has min-entropy at least 0.6d−0.1d−0.1d = 0.4d. Finally, notice that the degree
t in the affine correlation breaker we need is t = 2(D`− 1) = O(1), and the advice length there is
log(D`) = O(1). Thus by Theorem 3.7, and noticing that independent sources are a special case of
the sources that satisfy Definition 3.4, we have

(Z1, {Zj , Z ′j}j 6=1,W1, {Wj ,W
′
j}j 6=1) ≈2−Ω(d) (Um, {Zj , Z ′j}j 6=1,W1, {Wj ,W

′
j}j 6=1).

Since conditioned on all the {Wj ,W
′
j}j∈[D`] (W ′1 is already fixed), {Zj , Z ′j}j∈[D`] are deterministic

functions of (X,X ′), and Z ′1 is already fixed, by adding back all the errors we also have

(Z,Z ′, Y, Y ′) ≈2−Ω(d) (Um, Z
′, Y, Y ′).

Thus we only need ε ≥ 2−Ω(d) and a ≤ β(0.1d), which holds as long as d ≥ C(a+log(1/ε)) for some
constant C > 1.

We also have the following theorem.

Theorem 5.2. There exists a constant C > 1 such that for any 0 < ε < 1/2 and any a, d ∈ N with
d ≥ C(a + log(n/ε)), there is an explicit construction of a (d, d, ε) strong correlation breaker with
advice AdvCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}Ω(d).

Sketch. Given an (n, k) source and a uniform random seed, we first take a small slice from the
seed and convert the source into an almost uniform random string using an optimal strong seeded
extractor (e.g., the one from Theorem 2.15). Now conditioned on the fixing of the small slice and
the slice of the tampered seed, we have two independent sources, both with high min-entropy rate.
Applying Lemma 5.1 now gives the theorem.
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6 Two Source Non-Malleable Extractor

Here we construct our two-source non-malleable extractors. First we recall the definition below.

Definition 6.1 (Two-Source Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}n →
{0, 1}m is a (k1, k2, ε) two-source non-malleable extractor, if the following holds: Let X,Y be two
independent sources on n bits with min-entropy k1 and k2 respectively, and f, g : {0, 1}n → {0, 1}n
be two arbitrary tampering functions such that either f or g has no fixed points, then

|nmExt(X,Y ) ◦ nmExt(f(X), g(Y ))− Um ◦ nmExt(f(X), g(Y ))| ≤ ε.

If k1 = k2 = k then we say the extractor is a (k, ε) two-source non-malleable extractor.

6.1 The Extractor Construction

The two-source non-malleable extractor is roughly the same as the construction in [80], except that
we replace the correlation breaker there with our new construction from Lemma 5.1, and use the
new code in Theorem 2.29 for generating the advice.

Algorithm 4 nmExt(x, y)

Input: x, y ∈ {0, 1}n — two n bit strings.
Output: w ∈ {0, 1}m — a bit string with length m = Ω(n).

Sub-Routines and Parameters:

Let 0 < α < η < 1/100 be two constants to be chosen later.
Let IP be the two source extractor from Theorem 2.20.
Let AdvCB be the correlation breaker with advice from Lemma 5.1.
Let IExt be the invertible linear seeded extractor form Theorem 2.16.
Let Enc be the encoding function of the linear code from Theorem 2.29.
Let Samp be the average sampler from Theorem 2.19.

1. Divide x into x = (x1, x2) such that x1 has n1 = αn bits and x2 has n2 = (1 − α)n bits.
Similarly divide y into y = (y1, y2) such that y1 has n1 bits and y2 has n2 = (1− α)n bits.

2. Compute z = IP(x1, y1) which outputs r = Ω(n) ≤ αn/2 bits.

3. Let x2 = Enc(x2) and y2 = Enc(y2).

4. Use z and Samp to sample s = Ω(n) ≤ αn/2 distinct bits from x2, let the resulted string be
x̃2. Similarly, use z to sample s distinct bits from y2 and obtain a binary string ỹ2.

5. Let α̃ = x1 ◦ y1 ◦ x̃2 ◦ ỹ2. Divide x2 into x2 = (x3, x4, x5) such that x3 has n3 = ηn bits, x4

has n4 = 30ηn bits and x5 has n5 = (1 − α − 31η)n bits. Similarly divide y2 = (y3, y4, y5)
such that y3 has n3 bits, y4 has n4 bits and y5 has n5 bits.

6. Compute v = AdvCB(x3, y3, α̃) which outputs d = Ω(n3) = Ω(n) ≤ ηn/10 bits.

7. Finally compute w = IExt(y4, v) which outputs Ω(d) < d/2 bits.

We now have the following theorem.
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Theorem 6.2. There exists a constant 0 < γ < 1 such that for any n ∈ N, there exists an explicit
construction of a ((1− γ)n, 2−Ω(n)) two-source non-malleable extractor with output length Ω(n).

Proof. We show that the above construction is such a two-source non-malleable extractor. As
usual, we use letters with prime to denote random variables produced from (X ′, Y ′). Without loss
of generality we assume X 6= X ′. The case where Y 6= Y ′ can be handled by symmetry.

First we argue that with probability 1− 2−Ω(n), we have that α̃ 6= α̃′. To see this, note that if
X1 6= X ′1 or Y1 6= Y ′1 then α̃ 6= α̃′. Otherwise, since X 6= X ′ we must have X2 6= X ′2. Thus by the

property of our code from Theorem 2.29, X2 and X
′
2 must differ in Ω(n) bits. Also, since X1 = X ′1

and Y1 = Y ′1 we have Z = Z ′. Now if α ≥ 3γ then both X1 and Y1 have min-entropy rate at least
2/3, thus by Theorem 2.20 we have

(Z,X1) ≈2−Ω(n) (Ur, X1).

We can now fix X1, and conditioned on this fixing, (X,X ′) is still independent of (Y, Y ′).
Moreover Z is a deterministic function of Y , thus independent of X2. Therefore now we can use Z
to sample from X2. If Z is uniform then by Theorem 2.19 we know that

Pr[X̃2 6= X̃ ′2] ≥ 1− 2−Ω(r) = 1− 2−Ω(n).

Thus the total probability that α̃ 6= α̃′ is at least 1− 2−Ω(n) − 2−Ω(n) = 1− 2−Ω(n).
Moreover, by choosing α < η/50, we can ensure that r ≤ αn/2 < ηn/50. Now by Lemma 2.24 we

know that conditioned on the fixing of (α̃, α̃′), with probability 1−2−Ω(n), we have that H∞(X3) ≥
ηn− γn− αn− 3r ≥ 0.9ηn and similarly H∞(Y3) ≥ 0.9ηn. Moreover (X,X ′) and (Y, Y ′) are still
independent.

Now we use Lemma 5.1. Note that the length of the advice string is a = 2αn+ 2r ≤ 3αn, and
X3, Y3 each has ηn bits. Thus by choosing the error ε = 2−Ω(n) appropriately we can ensure that

ηn ≥ C(log a+ log(1/ε)),

where C is the constant in Lemma 5.1. When this condition holds, by Lemma 5.1 we have that

(V, V ′, Y3, Y
′

3) ≈ε (Ud, V
′, Y3, Y

′
3).

We now fix (Y3, Y
′

3), and conditioned on this fixing, (X,X ′) is still independent of (Y, Y ′). Note
that now, (V, V ′) is a deterministic function of (X,X ′), and thus independent of (Y, Y ′). Moreover
the average conditional min-entropy of Y4 is at least n4−γn−αn−2r− ηn ≥ n4−3αn− ηn. Note
that n4 = 30ηn. Thus by choosing α < η/50 we can ensure that (by Lemma 2.24) with probability
1− 2−Ω(n), Y4 has min-entropy rate at least 0.95.

Now we can fix V ′ and then W ′, and conditioned on this fixing, (X,X ′) is still independent
of (Y, Y ′). Note that now, V is still close to uniform, and independent of Y4. Furthermore since
the length of W ′ is at most d/2 ≤ ηn/20, again by Lemma 2.24 we have that with probability
1− 2−Ω(n), Y4 has min-entropy rate at least 0.9. Thus now by Theorem 2.16 we have that

(W,V ) ≈2−Ω(n) (UΩ(n), V ).

Note that conditioned on the fixing of V , W is a deterministic function of Y . Since we have
already fixed (V ′,W ′), by adding back all the errors we get that
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(W,W ′, X,X ′) ≈2−Ω(n) (UΩ(n),W
′, X,X ′).

Although not necessary for our applications, we can in fact reduce the entropy requirement of
the above non-malleable two source extractor. Specifically, we have the following theorem.

Theorem 6.3. There exists a constant C > 1 such that for any constant 0 < γ < 1, any n ∈ N,
and any k ≥ C log n, there exists an explicit construction of a ((2/3 + γ)n, k, 2−Ω(k)) non-malleable
two-source extractor with output length Ω(k).

Sketch. Let X be the (n, (2/3 + γ)n) source and Y be the (n, k) source. The construction is as
follows. First, take a slice X1 of length n/3 from X, apply the somewhere condenser Cond and
output a constant number D of rows s.t. one row has entropy rate at least 0.8. Using each row as
a seed and apply the extractor Raz from Theorem 2.21 to Y , and get a constant number of outputs
{Vi}i∈[D] with size m = Ω(k). For each Vi, take a small slice Wi with size Ω(m) and use it as a
seed to apply an optimal strong seeded extractor Ext from Theorem 2.15 to X, extracting Ti which
has m bits. Thus, we now have {Vi}i∈[D] and {Ti}i∈[D]. Take a larger slice W̃i with size Ω(m) from

each Vi, and a slice T̃i with the same size from each Ti. Compute Hi = IP(W̃i, T̃i), use Hi to sample
Ω(k) bits from an asymptotically good binary encoding of X and Y , and concatenate these strings

with W̃i ◦ T̃i to get an advice string αi. Next, compute Ri = nmExt(Vi ◦ αi, Ti ◦ αi) which outputs
Ω(k) bits. Finally, for each i ∈ [D], compute AffineAdvCB(Y,Ri, i) with t = 2(D − 1) and output
Ω(k) bits, then take the XOR of all these outputs.

For the analysis, consider the tampered version (X ′, Y ′). As usual, we gradually fix a sequence
of random variables, while maintaining the property that (X,X ′) is independent of (Y, Y ′), and
(X,Y ) each has enough min-entropy left. To do this, first note that X1 has min-entropy at least γn,
and thus one row of the output of Cond has entropy rate at least 0.8. Therefore by Theorem 2.21,
some Vi (without loss of generality assume V1) is close to uniform. Next fix (X1, X

′
1), and now

{Vi}i∈[D], {V ′i }i∈[D] are deterministic functions of (Y, Y ′). Moreover the average conditional min-
entropy of X left is at least γn. Thus by Theorem 2.15, (T1,W1) ≈2−Ω(k) (Um, V1). Now fix all
the {Wi,W

′
i}i∈[D], then {Ti}i∈[D], {T ′i}i∈[D] are deterministic functions of (X,X ′). By limiting the

size of each Wi, V1 still has high min-entropy. Therefore we can take a larger slice W̃1, T̃1 and use
H1 = IP(W̃1, T̃1) to sample the advice. This ensures α1 6= α′1 with probability 1−2−Ω(k). Now fix all

{W̃i, T̃i}i∈[D], {W̃ ′i , T̃ ′i}i∈[D] and the sampled bits, again by limiting their sizes, T1 and V1 still have
high min-entropy rate. Now by Theorem 6.2, (R1, R

′
1, V1, V

′
1) ≈2−Ω(k) (U,R′1, V1, V

′
1). Further fix all

{Vi}i∈[D], {V ′i }i∈[D], now the {Ri}i∈[D], {R′i}i∈[D] are deterministic functions of X, and Y still has
enough min-entropy left (by limiting the size of each Vi). Now, as in the analysis of Theorem 6.2,
we can first fix R′1 and the output AffineAdvCB(Y,R′1, 1) without causing Y to lose much entropy,
and the correlation breaker AffineAdvCB from Theorem 3.5 guarantees that the output from (X,Y )
is close to uniform given the output from (X ′, Y ′). Since D = O(1) we can afford to use outputs of
size Ω(k) in all computations, and thus the final output is Ω(k) and the final error is 2−Ω(k).

Remark 6.4. The above non-malleable two source extractor can also handle sources with uneven
lengths, since the extractor Raz from Theorem 2.21 can do so. We omit the details here.
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6.2 Efficiently Sampling the Pre-image

We now show that given any output of the non-malleable two-source extractor in Algorithm 4, one
can efficiently uniformly sample from the pre-image. We have the following lemma.

Lemma 6.5. Given any arbitrary fixing of (X1, X̃2, X3, Y1, Ỹ2, Y3,W ), there is an efficient procedure
to uniformly sample from the pre-image (X,Y ). Moreover, for any fixing of (X1, X̃2, X3, Y1, Ỹ2, Y3,W ),
the pre-image has the same size.

Proof. Given (X1, X̃2, X3, Y1, Ỹ2, Y3,W ) = (x1, x̃2, x3, y1, ỹ2, y3, w), we sample from the correspond-
ing (X4, X5, Y4, Y5) as follows. First we compute z = IP(x1, y1) and use it to sample from x2 =
Enc(x2) and y2 = Enc(y2). Next, we compute v = AdvCB(x3, y3, α̃) where α̃ = x1 ◦ y1 ◦ x̃2 ◦ ỹ2.
Now note that w = IExt(y4, v), therefore by Theorem 2.16 we can efficiently and uniformly sample
the pre-image of w, which is Y4, by inverting a system of linear equations. Also, Theorem 2.16
guarantees that for any (v, w) the pre-image has the same size.

With Y4 sampled, we continue to sample (X4, X5, Y5) according to the linear constraints imposed
by the linear code: Ỹ2 = y2 and X̃2 = x2. Consider the Y part. Note that Ỹ2 = y2 gives us
r ≤ αn/2 < n/4 equations, and that (Y1, Y3, Y4) are fixed, with Y5 being the variables in the linear
equations. Furthermore, the length of Y5 is n5 = n− αn− ηn− 30ηn > 2n/3 (as α < η < 1/100).
Thus, the linear equations correspond to a n5 × r submatrix in the generator matrix of the linear
code. By Theorem 2.29, as long as α is small enough, the r columns must be linearly independent.
Hence, we can efficiently sample Y5 by inverting the system of linear equations, and moreover for
any fixing of (X1, X̃2, X3, Y1, Ỹ2, Y3,W ) = (x1, x̃2, x3, y1, ỹ2, y3, w) the pre-image always has the
same size.

The argument for sampling the X part is exactly the same, except now X has more free variables
(X4, X5) than Y .

We now have the following theorem.

Theorem 6.6. Given any output W = w of the non-malleable two-source extractor, there is an
efficient procedure to uniformly sample from the pre-image (X,Y ).

Proof. The sampling procedure is as follows. We first uniformly randomly generate (X1, X̃2, X3, Y1, Ỹ2, Y3),
then we use Lemma 6.5 to generate (X,Y ). By Lemma 6.5, for any fixing of (X1, X̃2, X3, Y1, Ỹ2, Y3,W ),
the pre-image has the same size. Thus this procedure indeed uniformly samples from the pre-image
(X,Y ) of W = w.

7 Applications

In this section we give various applications of our constructions in previous sections.

7.1 Extractors and Ramsey Graphs

Two source non-malleable extractors can be conveniently converted to seeded non-malleable ex-
tractors, as shown in [80]. Here we prove a slightly different version than that in [80]. First we
define seeded non-malleable extractors against multiper tampering.
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Definition 7.1. A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a seeded t-non-malleable
extractor for min-entropy k and error ε if the following holds : If X is an (n, k) source and
A1, · · · ,At : {0, 1}d → {0, 1}d are t arbitrary tampering functions with no fixed points, then

|snmExt(X,Ud) ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud − Um ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud| < ε

where Um is independent of Ud and X.

We now have the following theorem.

Theorem 7.2. Suppose there is a constant β > 0 and an explicit non-malleable 2-source extractor
for (n, (1 − β)n) sources with error 2−Ω(n) and output length Ω(n). Then for any constant γ > 0
there is a constant C > 0 such that for any 0 < ε < 1 with k ≥ Ct3 log(d/ε) and d = Ct3 log(n/ε),
there is an explicit strong seeded t-non-malleable extractor for (n, k) sources with seed length d,

error O(tε) and output length (1−γ)k
t+1 .

To prove the theorem we first need the following lemma from [80].

Lemma 7.3 ([80]). Suppose that there exists a constant β > 0 and an explicit construction of a
strong two-source non-malleable extractor nmExt : ({0, 1}n)2 → {0, 1}m for (n, (1 − 2β)n) sources
which outputs Ω(n) bits with error 2−Ω(n). Then given any t ∈ N there is an explicit function
AdvCB : ({0, 1}n)2 × {0, 1}a → {0, 1}m with m = Ω(a) with the following property.

Let X,Y be 2 independent uniform strings on n bits, and α, α1, · · · , αt be t + 1 strings on
a bits such that ∀j ∈ [t], α 6= αj. Let {Xj}j∈[t] and {Y j}j∈[t] be random variables on n bits
such that (X, {Xj}j∈[t]) and (Y, {Y j}j∈[t]) are independent. Let Z = AdvCB(X,Y, α) and Zj =
AdvCB(Xj , Y j , αj) for any j ∈ [t]. Then as long as n ≥ 2(t+ 1)2a/β, we have that,∣∣(Z, {Zj}j∈[t], Y, {Y j}j∈[t])− (Um, {Zj}j∈[t], Y, {Y j}j∈[t])

∣∣ ≤ t2−Ω(a).

Proof of Theorem 7.2. Let X be an (n, k) source and Y be a uniform random seed. The construc-
tion of the seeded non-malleable extractor is as follows.

• Let Ext be the optimal seeded extractor from Theorem 2.15.

• Let Samp be the average sampler from Theorem 2.18.

• Let Enc be the encoding function of the binary code in Theorem 2.29.

• Let Raz be the strong two source extractor from Theorem 2.21.

1. Take a small slice Y ′ of Y with length d1 = O(log(n/ε)) and compute Z = Ext(X,Y ′) and
output s = O(t log(d/ε)) bits.

2. Take a small slice Z1 of Z with length d2 = O(log(d/ε)), and compute Y1 = Samp(Enc(Y ), Z1)
with d2 bits.

3. Let the advice string be α = Z1◦Y1. Take a larger slice Z2 of Z with length d3 = O(t log(d/ε)),
and a larger slice Y2 of Y of length d4 = O(t log(n/ε)). Compute W = Raz(Z2, Y2) which
outputs d2 bits.

4. Compute Z̃ = Ext(X,W ) and Ỹ = Ext(Y,W ), each outputs d5 = O(t2 log(d/ε)) bits.
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5. Compute V1 = AdvCB(Ỹ , Z̃, α) which outputs Ω(d2) bits.

6. Compute V2 = Ext(Y, V1) and output d1 bits.

7. Compute V = Ext(X,V2) and output m = (1−γ)k
t+1 bits.

For the analysis, again we will gradually fix a sequence of random variables and maintaining that
(X, {Xj}j∈[t]) and (Y, {Y j}j∈[t]) are independent, and argue that X and Y has enough entropy. For
simplicity we omit the first condition in the following argument. First note that by Theorem 2.15,
(Z, Y ′) ≈ε (Us, Y

′). Thus we can fix all (Y ′, {Y ′j}j∈[t]). Conditioned on this fixing, the Z, {Zj}j∈[t]

are deterministic functions of (X, {Xj}j∈[t]).

If for any j ∈ [t] we have Z1 6= Zj1 , then we also have α 6= αj . Otherwise, by Theorem 2.29 and
Theorem 2.19, we have α 6= αj with probability 1− ε. Thus by a union bound, we have α 6= αj for
all j ∈ [t] with probability 1− tε. We now proceed conditioned on the event that this happens, and
fix all the (Z1, {Zj1}j∈[t]) and (Y1, {Y j

1 }j∈[t]). Conditioned on this fixing, X and Y still has enough
entropy left.

By adjusting the size of Z2 and Y2, they both have entropy rate at least 2/3. Thus by Theo-
rem 2.21, we have (W,Z2) ≈ε (Ud2 , Z2) and (W,Y2) ≈ε (Ud2 , Y2). Thus, conditioned on the fixing of
(Z2, {Zj2}j∈[t]), W is close to uniform and is a deterministic function of X, hence by Theorem 2.15

we have (Ỹ ,W ) ≈ε (Ud2 ,W ). Similarly, we also have (Z̃,W ) ≈ε (Ud2 ,W ). Now we can fix all
(Z2, {Zj2}j∈[t]) and (Y2, {Y j

2 }j∈[t]). Now (Z̃, {Z̃j}j∈[t]) and (Ỹ , {Ỹ j}j∈[t]) are deterministic func-
tions of (X, {Xj}j∈[t]) and (Y, {Y j}j∈[t]) respectively, so they are independent. Note that α has
length O(d2) = O(log(d/ε)). Thus as long as d5 = O(t2 log(d/ε)), by Lemma 7.3 we have that

(V1, {V j
1 }j∈[t], Z̃, {Z̃j}j∈[t]) ≈O(tε) (Ud2 , {V

j
1 }j∈[t], Z̃, {Z̃j}j∈[t]).

Fixing Z̃, {Z̃j}j∈[t], we have V1, {V j
1 }j∈[t] are deterministic functions of (X, {Xj}j∈[t]). By a

standard argument, and Theorem 2.15, we now have

(V2, {V j
2 }j∈[t], V1, {V j

1 }j∈[t]) ≈ε (Ud1 , {V
j

2 }j∈[t], V1, {V j
1 }j∈[t]).

Further fix V1, {V j
1 }j∈[t], we have V2, {V j

2 }j∈[t] are deterministic functions of (Y, {Y j}j∈[t]). Thus
again by a standard argument, and Theorem 2.15, we now have

(V, {V j}j∈[t], V2, {V j
2 }j∈[t]) ≈ε (Um, {V j}j∈[t], V2, {V j

2 }j∈[t]).

Adding back all the errors, and noticing that conditioned on the fixing of V2, {V j
2 }j∈[t], we have

V, {V j}j∈[t] are deterministic functions of (X, {Xj}j∈[t]). Thus we have

(V, {V j}j∈[t], Y, {Y j}j∈[t]) ≈ε (Um, {V j}j∈[t], Y, {Y j}j∈[t]).

The entropy requirement is that k ≥ (t + 1)m + O(td5) and d ≥ O(td5 + td4 + d1). Thus it is
enough to have k ≥ Ct3 log(d/ε) and d = Ct3 log(n/ε) for some constant C > 1.

Combined with Theorem 6.2, this gives the following theorem.

Theorem 7.4. For any constant γ > 0 there is a constant C > 0 such that for any 0 < ε < 1 with
k ≥ Ct3 log(d/ε) and d = Ct3 log(n/ε), there is an explicit strong seeded t-non-malleable extractor

for (n, k) sources with seed length d, error O(tε) and output length (1−γ)k
t+1 .
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By using improved somewhere random condensers as samplers and following the framework in
[26], [10] proved the following theorem.

Theorem 7.5 ([10]). Suppose there is a function f and an explicit strong seeded t-non-malleable
extractor for (n, k′) sources with seed length and entropy requirement d ≥ f(t, ε), k′ ≥ f(t, ε), then
for every constant ε > 0 there exist constants t = t(ε), c = c(ε) and an explicit two source extractor
TExt : {0, 1}n × {0, 1}n → {0, 1} for min-entropy k ≥ f(t, 1/nc) with error ε.

Combined with Theorem 7.4, we immediately get the following theorem.

Theorem 7.6. For every constant ε > 0 there exists a constant c > 1 and an explicit two-source
extractor TExt : {0, 1}n × {0, 1}n → {0, 1} for min-entropy k ≥ c log n, with error ε.

A standard argument then gives the following construction of Ramsey graphs.

Corollary 7.7. There exists a constant c > 1 such that for every integer N there exists a (strongly)
explicit construction of a K-Ramsey graph on N vertices with K = logcN .

We now define sumset sources, interleaved sources, and small space sources.

Definition 7.8 (sumset source). A source X is a (n, k, C)-sumset source if there exist C indepen-
dent (n, k)-sources {Xi}i∈[C] such that X =

∑C
i=1Xi.

Definition 7.9 (interleaved source). Let X1 be a (n, k1)-source, X2 be a (n, k2)-source independent
of X1 and σ : [2n]→ [2n] be a permutation. Then (X1 ◦X2)σ is a (n, k1, k2)-interleaved source, or
a (n, k)-interleaved source if k1 = k2 = k.

Definition 7.10. [65] A space s source X is generated by taking a random walk on a branching
program of length n and width 2s, where each edge of the branching program is labelled with a
transition probability and a bit. Thus a bit of the source is generated for each step taken on the
branching program, and the source X is the concatenation of all the bits.

Following the work of Chattopadhyay and Li on extractors for sumset sources [20], Chattopad-
hyay and Liao [22] generalized the above reductions for two-source extractors to the sum of two
independent sources. Specifically, the prove the following theorem.

Theorem 7.11 ([22]). There exists a constant C0 > 1 such that the following holds. Suppose there
is a function f and an explicit (t, k′, ε)-affine correlation breaker for advice strings of length a, with
seed length and entropy requirement d ≥ f(t, ε, a), k′ ≥ f(t, ε, a), then for every constant ε > 0 there
exist constants t = t(ε), c = c(ε) such that if there exist k̄, C ∈ N satisfying the following conditions:

• k̄ ≥ f(Ct, 1/nc, c log n+ logC),

• C ≥ C0 log2 k
logn ,

then there exists an explicit extractor SumsetExt : {0, 1}n → {0, 1} for the sum of two independent
(n, k) sources with k = O(Ctk̄ + log n) and error ε.

To get the desired (t, k, ε)-affine correlation breaker, we combine Theorem 3.5 with our new
standard correlation breaker, Theorem 5.2. Thus we have
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Theorem 7.12. For any t, there exists an explicit strong t-affine correlation breaker AffineAdvCB :
{0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m with error O(tε) for entropy k = O(ta + tm + t2 log(n/ε)),
where d = O(ta+ tm+ t log3(t+ 1) log(n/ε)).

Combining the above theorem with Theorem 7.11, and noticing that for any constant ε > 0,
t = t(ε), c = c(ε) are both constants, thus by choosing m = 1, k̄ ≥ c log n for a large enough
constant c > 1 and C to be a large enough constant, we get the following theorem.

Theorem 7.13. For every constant ε > 0 there exists a constant c > 1 and an explicit extractor
SumsetExt : {0, 1}n → {0, 1} for the sum of two independent (n, k) sources with min-entropy k ≥
c log n, and error ε.

Note that affine sources and interleaved sources are special cases of sumset sources, thus we
have the following corollaries.

Corollary 7.14. For every constant ε > 0 there exists a constant c > 1 and an explicit affine
extractor AExt : {0, 1}n → {0, 1} for entropy k ≥ c log n, with error ε.

Corollary 7.15. For every constant ε > 0 there exists a constant c > 1 and an explicit extractor
ITExt : {0, 1}2n → {0, 1} for the interleaving of two independent (n, k) sources with min-entropy
k ≥ c log n, and error ε.

Chattopadhyay and Liao [22] also showed an improved reduction from small space sources to
sumset extractors. Specifically, they prove

Lemma 7.16. Every space-s source X ∈ {0, 1}n with min-entropy at least k = k1 + k2 + 2s +
2 log(n/ε) is 3ε-close to a convex combination of sources of the form X1 ◦ X2 which satisfy the
following properties:

• X1 is independent of X2

• H∞(X1) ≥ k1, H∞(X2) ≥ k2

• X2 is a space-s source.

Thus we also have the following corollary.

Corollary 7.17. For every s > 0 and every constant ε > 0 there exists a constant c > 1 and an
explicit extractor SpExt : {0, 1}n → {0, 1} for space-s sources with min-entropy k ≥ 2s + c log n,
and error ε.

7.2 Privacy Amplification with an Active Adversary

Taking t = 1 in Theorem 7.4, we get an optimal standard seeded non-malleable extractor.

Theorem 7.18. For any constant γ > 0 there is a constant C > 0 such that for any 0 < ε < 1
with k ≥ C log(d/ε) and d = C log(n/ε), there is an explicit strong seeded non-malleable extractor

for (n, k) sources with seed length d, error ε and output length (1−γ)k
2 .

Combined with the protocol in [46], we get an optimal two-round privacy amplification protocol
with an active adversary.

Theorem 7.19. There exists a constant 0 < α < 1 such that for any n, k ∈ N, there is an explicit
two-round privacy amplification protocol in the presence of an active adversary, that achieves any
security parameter s ≤ αk, entropy loss O(log log n+s), and communication complexity O(log n+s).
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7.3 Non-Malleable Codes

Formally, non-malleable codes are defined as follows.

Definition 7.20. [1] Let NMk denote the set of trivial manipulation functions on k-bit strings,
which consists of the identity function I(x) = x and all constant functions fc(x) = c, where
c ∈ {0, 1}k. Let E : {0, 1}k → {0, 1}m be an efficient randomized encoding function, and D :
{0, 1}m → {0, 1}k be an efficient deterministic decoding function. Let F : {0, 1}m → {0, 1}m be
some class of functions. We say that the pair (E,D) defines an (F , k, ε)-non-malleable code, if for
all f ∈ F there exists a probability distribution G over NMk, such that for all x ∈ {0, 1}k, we have

|D(f(E(x)))−G(x)| ≤ ε.
Remark 7.21. The above definition is slightly different form the original definition in [51]. How-
ever, [1] shows that the two definitions are equivalent.

We will mainly be focusing on the following family of tampering functions in this paper.

Definition 7.22. Let S2
n denote the tampering family in the 2-split-state-model, where the adver-

sary applies 2 arbitrarily correlated functions h1, h2 to 2 separate, n-bit parts of string. Each hi
can only be applied to the i-th part individually. Let Saffine denote the family of affine tampering
functions.

We remark that in S2
n, even though the functions h1, h2 can be correlated, their correlation

is independent of the codewords. Thus, they are actually a convex combination of independent
functions, applied to each part of the codeword. Therefore, without loss of generality we can assume
that each hi is a deterministic function, which acts on the i-th part of the codeword individually.

Cheraghchi and Gursuswami [28] showed that the relaxed two source non-malleable extractor 6.1
implies the general definition of non-malleable two-source extractor according to Definition 2.12
with a small loss in parameters. Specifically, we have

Lemma 7.23 ([28]). Let nmExt be a (k− log(1/ε), ε)-non-malleable two-source extractor according
to Definition 6.1. Then nmExt is a (k, 4ε)-non-malleable two-source extractor with the general
definition.

Thus, by Theorem 1, Theorem 6.2, and Theorem 6.6, we have the following theorem.

Theorem 7.24. For any n ∈ N there exists a non-malleable code with efficient encoding and
decoding against 2-split-state tampering, which has message length k, block length 2n, rate k/(2n) =
Ω(1) and error 2−Ω(k).

Similarly, Chattopadhyay and Li [21] also showed the relaxed affine non-malleable extractor 3.2
implies the general definition of affine non-malleable extractor according to Definition 2.12 with a
small loss in parameters. Specifically, we have

Lemma 7.25 ([21]). Let nmExt be a (k− `, ε)-non-malleable extractor for affine sources, according
to Definition 3.2. Then nmExt is a (k, ε + (n + 1)2−`)-non malleable extractor for affine sources
with the general definition.

Thus, by Theorem 1, Theorem 3.11, and Theorem 3.13, we have the following theorem.

Theorem 7.26. For any n ∈ N there exists a non-malleable code with efficient encoding and
decoding against affine tampering, which has message length k, block length n, rate k/n = Ω(1) and
error 2−Ω(k).
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7.4 Hardness against Read Once Linear Branching Programs

Chattopadhyay and Liao [23] showed the following theorem about the hardness against strongly
read once linear branching programs.

Theorem 7.27. Let SumsetExt : {0, 1}n → {0, 1} be a (k1, k2, ε)-sumset extractor. Then any
strongly read once linear branching program with size at most 2n−k1−k2−2 cannot compute SumsetExt
correctly on more than 1

2 + 9ε fraction of inputs.

Together with Theorem 7.13, this gives the following theorem.

Theorem 7.28. There is an explicit function SumsetExt : {0, 1}n → {0, 1} that requires strongly
read once linear branching program of size 2n−O(logn).

8 Conclusion and Open Problems

Our results partially finish several long lines of research projects, which are contributed by numerous
researchers and publications. The connections discovered in these projects are amazingly broad.
Indeed the techniques that culminated in our main results span areas like pseudorandomness,
additive combinatorics, Fourier analysis, cryptography, coding theory and so on.

There are still interesting and important open problems left. For example, one natural open
question is to improve the output length and error of the seedless extractors. Currently for asymp-
totically optimal entropy, our constructions can only output 1 bit (or a constant number of bits
by the techniques in [79]) with constant error, while it is desirable to achieve negligible, or ex-
ponentially small error in cryptographic applications. Interestingly, improving the error may also
lead to an improvement in output length by the techniques in [79]. As observed in previous works,
one possible approach is to design t-non-malleable extractors with better dependence on t, which
appears to be a challenging problem. One could also ask if we can construct explicit two-source
extractors with entropy log n+O(1), which would give optimal Ramsey graphs. For non-malleable
codes it would be interesting to improve the rates of our codes to optimal. Finally, it is always
interesting to find other applications of the pseudorandom objects studied in this paper.

9 Acknowledgements

We thank Songtao Mao for pointing out an inaccuracy in an earlier version, and Venkat Guruswami
for pointing us to the construction of explicit binary linear codes such that both the code and its
dual are asymptotically good in [92].

References

[1] D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski. Non-malleable reductions and ap-
plications. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing,
2015.

[2] Divesh Aggarwal. Affine-evasive sets modulo a prime. Technical Report 2014/328, Cryptology
ePrint Archive, 2014.

38



[3] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
2014.

[4] Divesh Aggarwal, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, Maciej Obremski,
and Sruthi Sekar. Rate one-third non-malleable codes. In Stefano Leonardi and Anupam
Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 1364–1377. ACM, 2022.

[5] Divesh Aggarwal and Maciej Obremski. A constant rate non-malleable code in the split-state
model. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 1285–1294. IEEE, 2020.

[6] Alexander E. Andreev, Juri L. Baskakov, Andrea E. F. Clementi, and José D. P. Rolim. Small
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