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Abstract

The approximate degree of a Boolean function is the minimum degree of real polynomial
that approximates it pointwise. For any Boolean function, its approximate degree serves as a
lower bound on its quantum query complexity, and generically lifts to a quantum communication
lower bound for a related function.

We introduce a framework for proving approximate degree lower bounds for certain oracle
identification problems, where the goal is to recover a hidden binary string x ∈ {0, 1}n given
possibly non-standard oracle access to it. We apply this framework to the ordered search and
hidden string problems, proving nearly tight approximate degree lower bounds of Ω(n/ log2 n)
for each. These new lower bounds are driven by randomized communication upper bounds for
the greater-than and equality functions.

1 Introduction

In an oracle identification problem, there is an unknown string x ∈ {0, 1}n. A query algorithm
is given possibly non-standard oracle access to x, and its goal is to reconstruct x by making a
minimal number of queries to this oracle. More specifically, an oracle identification problem is
specified by a fixed family of Boolean functions a1, . . . , aN . A query algorithm may inspect any
value ai(x) of its choice at the cost of one query, and its goal is to determine x. Many influential
problems in the study of quantum algorithms and complexity can be viewed as oracle identification
problems, including van Dam’s original oracle interrogation problem [vD98], the Bernstein-Vazirani
problem [BV93], combinatorial group testing [AM14, Bel15], symmetric junta learning [Bel15], and
more [BdW99, AIK+04, AIK+07, INRT12, CIG+12, Kot14]. In this work, we study two such oracle
identification problems:

Ordered Search. Consider the following abstraction of the problem of searching an ordered list of
N = 2n elements. Given a list of N bits yi ∈ {0, 1} under the promise that y0 ≤ y1 ≤ · · · ≤ yN−1,
find the (binary encoding of the) minimum index x ∈ {0, 1}n such that yx = 1. Binary search
yields a deterministic algorithm making n queries, and it is not hard to see that this is optimal
for randomized algorithms as well. As for quantum algorithms, it turns out that a constant-factor
speedup is possible [FGGS99, CLP07, BH08], but a lower bound of Ω(n) holds in this model
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as well [BdW99, FGGS98, Amb99, HNS02, CL08]. Ordered search may be viewed as an oracle
identification problem where the query algorithm is given oracle access to y0 = GT0(x), . . . , yN−1 =
GTN−1(x), where each “greater-than” function GTi(x) evaluates to 1 if i ≥ x and to 0 otherwise.

Hidden String. In the hidden string problem, the goal is to reconstruct a hidden string x ∈
{0, 1}n given information about the presence of absence of potential substrings of x. That is, the
goal is to determine x given “substring oracle” access, i.e., oracle access to ys = ϕs(x) for every
binary string s of length at most n, where ϕs(x) evaluates to 1 iff s is a substring of x. Building on a
classical query algorithm of Skiena and Sundaram [SS95], Cleve et al. [CIG+12] gave a 3n/4+ o(n)
quantum query algorithm for this problem, and proved a nearly matching quantum query lower
bound of Ω(n/ log2 n).

The state-of-the-art quantum query lower bounds for both problems are proved via the quan-
tum adversary method, which in its modern formulation [HLS07], characterizes the bounded-error
quantum query complexity of every function up to a constant factor [Rei11]. The other major
technique for proving quantum query lower bounds is the polynomial method [BBC+01], which
lower bounds the quantum query complexity of a function by lower bounding its approximate de-
gree. The approximate degree of a Boolean function is the least degree of a real polynomial that
approximates it pointwise to error 1/3. Since the acceptance probability of a T -query quantum
algorithm is a polynomial of degree 2T , the approximate degree of a function is always at most (half
of its) quantum query complexity, but it can be much smaller [Amb06, ABK16, She20, BKT20].

In this work, we prove lower bounds of Ω(n/ log2 n) on the approximate degree of (decision
variants) of the ordered search and hidden string problems. These lower bounds are nearly optimal,
as the known quantum (indeed, even classical) query algorithms for these problems automatically
yield O(n) upper bounds on their approximate degree. Our lower bound on the approximate
degree of the hidden string problem implies a quantum query lower bound matching the state-of-
the-art [CIG+12].

Approximate degree is a fundamental measure of the complexity of Boolean functions that has
been the subject of extensive study in its own right (see, e.g., [BT22] for a recent survey). And
while nearly tight quantum query lower bounds for these problems were already known, we see two
main quantum motivations for recovering these bounds via approximate degree. First, there are
senses in which approximate degree is a more robust lower bound technique than the adversary
method. For example, via Sherstov’s pattern matrix method [She11], any approximate degree
lower bound for a Boolean function f can be “lifted” to give the same quantum communication
lower bound for a related two-party function F . Such a generic lifting result is not known for
any other general quantum query lower bound technique. Moreover, variants of the polynomial
method are capable of proving lower bounds against zero-, small-, and unbounded-error quantum
algorithms [BBC+01, BCdWZ99], as well as time-space tradeoffs [KSdW07]. In the particular case
of ordered search, Childs and Lee [CL08] explicitly posed the question of investigating approximate
degree lower bounds to circumvent limitations of the adversary method.

Second, we believe that our approximate degree lower bounds shed additional light on what
makes the ordered search and hidden string problems hard, and may be more transparent in this
regard than existing adversary lower bounds. In particular, our lower bounds show that it is not
only hard for quantum algorithms to reconstruct the hidden string x, but even to simply compute
its parity (a decision problem). The other nearly tight lower bounds for the problems we consider
appear to make essential use of the fact that the query algorithm needs to reconstruct all of x, and
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it isn’t clear (at least to us) how to adapt them to hold for their decision variants. We believe that
the technique we introduce, or at the very least the “indirect” method we use to prove our lower
bounds, will be more broadly useful in understanding the approximate degree and quantum query
complexity of other oracle identification problems.

1.1 Techniques

Here we give a brief summary of the ideas behind our lower bound for ordered search. A more
detailed technical overview, including a discussion of how we apply our framework to the hidden
string problem, appears in Section 2. Full proofs appear in Sections 3 and 4.

The first lower bound for quantum ordered search was given by Buhrman and de Wolf [BdW99],
who actually showed an Ω(

√
n) lower bound on its approximate degree. The starting point for the

proof of our lower bound is their ingenious indirect argument, so let us review it here. Recall that
the ability to solve ordered search on inputs y0 ≤ y1 ≤ · · · ≤ yN−1 enables recovering the string x for
which every yi = GTi(x). This, in particular, enables the evaluation of any “hard” Boolean function
of x, e.g., its parity. In light of this, define the partial Boolean function OSN (y0, . . . , yN−1) :=
parity(x) whenever there exists an x for which yi = GTi(x) for every i. Let p : {0, 1}N → R be
a polynomial of degree d approximating OSN . It is known that every polynomial approximating
parity must have degree Ω(n), so the goal now is to use this fact to prove a lower bound on the
degree of p. To do so, we use the additional fact that the functions GTi can each be approximated
by a degree O(

√
n) polynomial qi arising from, say, a variant of Grover search. By making p

“robust to noise” in its input without increasing its degree [BNRdW07, She12a], we get that the
composed polynomial p(q0(x), . . . , qN−1(x)) ≈ parity(x) and has degree O(d

√
n). Now the fact that

the approximate degree of parity is Ω(n) implies that d = Ω(
√
n).

In summary, the lower bound for OSN follows from the fact that we can express the function
parity(x) = OSN (GT0(x), . . . ,GTN−1(x)), where we have a lower bound on the approximate degree
of parity and an upper bound on the approximate degree of GT. However, the lower bound gets
stuck at degree Ω(

√
n) because the functions GTi themselves require nontrivial degree O(

√
n) to

approximate, and this is tight.
To get an improved lower bound of Ω̃(n) on the approximate degree of OSN , we introduce the

following idea to make GT behave as if it were easier to approximate by low degree polynomials,
while preserving the hardness of parity. Given an input x ∈ {0, 1}n, we redundantly encode x as a
longer string Y(x) ∈ {0, 1}m for some m = poly(n). This encoding is chosen so that

• Access to Y(x) instead of just x itself makes each function GTi(x) approximable by a much
lower degree polynomial. That is, for every i, there exists a polynomial qi of degree polylog(n)
such that qi(Y(x)) ≈ GTi(x) for every x.

• Even with access to Y(x), the function parity(x) remains hard to approximate. That is, for
every polynomial p of degree at most n/ polylog(n), we have that p(Y(x)) fails to approximate
parity(x).

We can now obtain our improved lower bound by applying Buhrman and de Wolf’s argument to the
redundantly encoded inputs. Specifically, given a robust polynomial p : {0, 1}N → R of degree d
approximating OSN , we would have p(q0(Y(x)), . . . , qN−1(Y(x))) ≈ OSN (GT0(x), . . . ,GTN−1(x)) =
parity(x) for every x. Our upper bound on the degrees of the qi’s, together with our lower bound on
the degree needed to approximate parity, imply that d polylog n ≥ n/ polylog n, and hence d ≥ Ω̃(n).
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All that remains is to construct the appropriate encoding Y. Our approach is inspired by Nisan’s
classic randomized communication protocol for computing the two-party greater-than function. The
most helpful way to think about this protocol for our purposes is as follows. Suppose Alice and Bob
hold strings a, b ∈ {0, 1}n and their goal is to determine whether the natural number represented
by a is at least that represented by b. They may do so by performing binary search to identify the
minimum index j for which aj ̸= bj , at which point the answer is determined by which of aj or bj is
1. Each step of this binary search can be conducted by testing the equality of a substring of a with
a substring of b. Each equality test, in turn, may be performed (with high success probability) by
comparing the inner products of a and b with a shared random string. The protocol requires log n
steps of binary search, and each equality test should be repeated O(log log n) times to achieve high
success probability, giving an overall communication cost of Õ(log n).

Now let us see how to turn this communication protocol into a polynomial approximating
GTi(x). Think of x as Bob’s input to the communication protocol, and of Bob’s role as passively
computing an encoding Y(x) that consists of many inner products of x with random strings. Now
thinking of i as Alice’s input, she can compute GTi(x) (with high probability) by repeatedly query-
ing Y(x) at the locations that correspond to the appropriate inner products from the protocol
described above. This results in a Õ(log n) randomized query algorithm for computing GTi(x)
from Y(x), the success probability of which is a degree-Õ(log n) polynomial in Y(x).

The final step is to argue that even given Y(x), consisting of many inner products of random
strings with x, the parity function parity(x) remains hard to compute. To see why this is true, note
that a single inner product of x with a random bit string is itself a parity on a random subset of
indices. That is, Y(x) = (parity(x|S1), . . . , parity(x|Sm)) for random subsets S1, . . . , Sm ⊆ [n]. The
key observation then, is that a degree-d polynomial of these random parities is able to approximate
the full parity(x) if and only if some degree-d polynomial of these random parities exactly computes
parity(x), which in turn happens if and only if a symmetric difference of at most d of the sets
S1, . . . , Sm yields the entire set of indices [n]. As a result, as long as neither the degree d nor the
number of random inner products m is too large, we obtain that parity(x) cannot be approximated
using Y(x).1

1.2 Further discussion

One of our initial motivations for studying the approximate degree of ordered search came from
the preliminary version of Chattopadhyay et al. [CKLM17]. They showed that OSN ◦ IPN

m has ran-
domized communication complexity Ω(logN ·m), where IPm is a two-party inner product (mod 2)
gadget on m-bit inputs. This was done via an involved simulation argument, showing how a com-
munication protocol for OSN ◦ IPm could be used to construct a randomized decision tree for OSN .
The techniques were specialized to the both the outer function and the inner function. Subsequent
work [CFK+21] recovered this result using a generic simulation theorem. A direct application of
Sherstov’s pattern matrix method [She11] to our result yields a quantum communication lower
bound of Ω(logN/ log2 logN) on OSN ◦ gN even for a constant-sized gadget g.

Hoza [Hoz17] used ideas conceptually related to ours to nearly recover the known quantum
query (but not approximate degree) lower bound for ordered search. Roughly, he used a Holevo-
information argument to show that if an oracle identification problem specified by functions a1, . . . , aN

1In fact, this argument shows that it is impossible to approximate parity(x) to bounded error, but even to represent
it in sign. This corresponds to a threshold degree lower bound.
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can be solved with T quantum queries, then Q∗(A) · T ≳ n, where A(i, x) = ai(x) and Q∗ is
the bounded-error two-party quantum communication complexity with shared entanglement. His
quantum query lower bound for ordered search follows directly from the fact that the quantum
communication complexity of the two-party greater-than function GT on n-bit inputs is O(log n).
However, without opening up the communication protocol for GT as we do, it is not clear how to
recover an approximate degree lower bound from his construction.

The idea of indirectly proving approximate degree lower bounds by combining a lower bound
for one problem with an upper bound for another also appears in [BBGK18]. They gave a tight
lower bound on the approximate degree of any function of the form f ◦ gn where f is an n-input
symmetric function by combining a known lower bound for parity ◦ gn [She12b] with a quantum
query and approximate degree upper bound for the combinatorial group testing problem [Bel15].

We believe it should be possible to extend our techniques to prove new lower bounds for other
oracle identification problems. A family of special cases of oracle identification is captured by the
symmetric junta learning problem [AM14]. Here, there is a symmetric function h : {0, 1}k →
{0, 1} and each fS takes the form fS(x) = h(x|S). An important instance of this problem is the
combinatorial group testing problem, wherein one takes h = ORk. Belovs gave a tight upper bound
of O(

√
k) [Bel15] for this problem. He also determined the query complexity for h = EXACT−HALF

to be Θ(k1/4) and gave an upper bound of O(k1/4) for h = MAJ. These upper bounds were
also (nearly) recovered algorithmically by Montanaro and Shao [MS20]. Despite its similarity to
EXACT− HALF, no polynomial lower bound is known for the majority function MAJ.

In the counterfeit coin problem, there is a hidden string x ∈ {−1, 1}n with Hamming weight
at most k. A query is parameterized by a balanced (i.e., having an equal number of 1’s and −1’s)
string y ∈ {−1, 0, 1}n, and indicates whether ⟨x, y⟩ is zero or non-zero. Iwama et al. [INRT12] gave
a quantum algorithm making O(k1/4) queries and conjectured this is tight, but no lower bound is
known. Note that the oracle here is quite similar to the EXACT− HALF oracle.

2 Technical ideas

2.1 Our lower bound framework

We begin with a somewhat more abstract description of our framework for proving approximate
degree lower bounds for oracle identification problems. The main idea is to provide additional
information about the hidden input to an oracle identification problem so as to selectively affect
the ability of quantum query algorithms and approximating polynomials to compute the functions
we wish to understand.

Recall that an oracle identification problem is specified by a family of functions a1, . . . , aN .
Given query access to the values a1(x), . . . , aN (x), the goal in our decision problems is to compute
the function parity(x). Suppose that we may identify parity(x) = f(a1(x), . . . , aN (x)) for some
function f . If we can construct a function Y such that:

• Given Y(x), every function ai(x) can be computed by a low-degree polynomial, but

• Given Y(x), computing the parity of x requires a high-degree polynomial,

Then by combining these two statements, we see that the function f(a1, . . . , aN ) itself requires
a high-degree polynomial. We apply this framework taking f to be either the OS function or for
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the “anchored hidden string” AHS function. The latter also implies a lower bound for the original
(decisional) hidden string function HS described in the introduction.

In the following sections, we describe the main technical ideas that go into the proofs of our
lower bounds. In order to provide more intuition about the structure of Y, we describe the steps
of constructing it for OS in detail before returning to the generalized framework.

2.2 Ordered search lower bound

First, notice that OSN has the structure of an oracle identification problem since

OSN (GT0n(x),GT0n−11(x), . . . ,GT1n(x)) = parity(x)

where N = 2n and GTi(x) = 1 if and only if x ≤ i where i, x ∈ {0, 1}n if compared as numbers
written in binary notation.

We want to show that there exists a function Y of x that we think of as revealing partial
information about x such that:

• On one hand, for all i ∈ {0, 1}n there is an algorithm that makes a small number of queries
to Y and can identify the value of GTi(x) with constant probability of success. Note that a
query-efficient algorithm automatically gives rise to a low-degree approximating polynomial.

• On the other hand, approximating the value of parity(x) given Y with a constant probability
of success requires a lot of queries to Y. Let us denote this auxiliary problem by PUR(Y) :=
parity(x).

It is helpful to think of Y itself as an oracle, whose output is given to a polynomial or to a query
algorithm, whose goal is then to compute some other function of x. We describe how we construct
oracle Y through several attempts.

Let us first focus on constructing an oracle Y that meets the first condition. To do so, we can use
the idea behind the O(log n log log n)-bit communication protocol2 for the two-party communication
problem GT to obtain an efficient randomized query algorithm for every function GTi. In the GT
communication problem, Alice and Bob both get a string of n bits and the goal is to decide if the
number represented by Alice’s string is greater than the number represented by Bob’s string.

In this randomized communication protocol for GT, Alice checks if the first halves of the inputs
are equal and depending on the answer, she either recursively continues on the first halves of the
inputs or the second halves. By doing so, she finds the most significant bit where the inputs differ.
To perform each equality check, both Alice and Bob compute the inner products modulo 2 of each
of the inputs with the same set of some α (publicly) random strings, Bob sends his values to Alice,
and Alice compares these values to the values she obtained. If the original values were equal, then
the inner products will be always equal, and otherwise, at least one pair of inner products will be
unequal with high probability for sufficiently large α. This elementary operation (i.e., the ability
to compute inner products with random strings) will be exactly what we want our oracle Y to be
useful for.

2A more efficient O(logn)-bit communication protocol is known and underlies our sharpest result for ordered
search. We discuss it in Sections 2.4 and 3.
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First attempt. We will eventually give a randomized construction of the oracle Y, and to this
end, think of it as taking as input both the hidden string x and a random input r. Let Y(r, x) be a
function that takes a collection of m n-bit strings r ∈ ×i∈[m]({0, 1}n) and x ∈ {0, 1}n, and outputs
m bits, each representing the inner product of ri with x: (Y(r, x))i = ⟨ri, x⟩.

Our first attempt, however, will make no use of randomness at all. Let us consider Y(r, x) where
r consists of all possible strings of length n. That is, the output of the oracle consists of ⟨x, ri⟩ for
every ri ∈ {0, 1}n.

Let us now see how to construct a query algorithm Ci that, given oracle access to Y(r, x),
computes GTi(x) with high probability. This algorithm emulates Alice’s side in the communication
protocol, fixing his input to i. It samples random strings used in the communication protocol, com-
putes the inner products of i with these random strings on its own, and asks the oracle (emulating
Bob) for the inner products of x with the same random strings.

From the correctness of the communication protocol for GT we can conclude that for all x, i ∈
{0, 1}n

Pr
r1...,rα logn

[Ci(Y(r, x)) ̸= GTi(x)] < log n · 2−α

where r1 . . . , rα logn are the strings that Ci sampled during the run, and r is a collection of all n-bit
strings. The number of queries is α log n.

Thus we see that this oracle satisfies the first condition: it helps to compute the GTi efficiently
for every i and x. But now there is a problem with the second condition: parity(x) = PUR(Y) can
be computed easily since parity(x) = PUR(Y(r, x)) = ⟨x, 1n⟩. So there is a 1-query algorithm (and
hence a degree-1 polynomial) that exactly computes PUR(Y(r, x)), violating our second condition.

Second attempt. Our goal now is to reduce the efficacy of the oracle Y in terms of how well
it can be used by low-degree polynomials to approximate PUR. To do this, we instead consider a
distribution over the potential oracles defined by the collection of strings used in the protocol. Let
r denote a sequence of the random strings that could appear in one run of GT protocol described
earlier. Let R̂ denote the set of all such sequences. This allows us to define a distribution of oracles
Y[R̂](r, x), where r ← R̂, and for us to consider a deterministic query algorithm. Let B(r,i) be

a deterministic algorithm that is given access to the Y[R̂](r, x) where r ← R̂ is chosen uniformly
at random, and which has the realization of r and i hardcoded into it. This algorithm is able to
emulate the communication protocol (and the algorithm Ci), but now each time it needs a random
string, it uses one provided in r.

From the correctness of the communication protocol for GT we again can conclude that for all
x, i ∈ {0, 1}n

Pr
r←R̂

[B(r,i)(Y[R̂](r, x)) ̸= GTi(x)] < log n · 2−α.

So, with high probability, B(r,i) computes GTi(x) over the choice of the oracle Y[R̂](r, x) for r ← R̂.
Does this new oracle satisfy the second condition? Now an approximation to PUR[R̂](Y[R̂](r, x))

needs to approximate parity(x) when given a set of random parities from R̂. Indeed, we show this
requires high degree, as a consequence of the fact that high degree polynomial is necessary to
construct the full parity of x from random parities.

7



However, we need to add one more improvement to our structure. For every fixed i, x, the
algorithm B(r,i) when run on Y[R̂](r, x) computes GTi(x) with high probability over r ← R̂. But
we need to switch quantifiers: we want an oracle that is “good” for all possible inputs for GT
simultaneously and, unfortunately, our current construction doesn’t give an algorithm computing
GTi(x) for all i, x ∈ {0, 1}n using the same r ← R̂.

Third (and final) attempt. So, is there a way to fix the source of randomness in a way that
works for all possible inputs? Inspired by Newman’s theorem [New91] on simulating public ran-
domness using private randomness in communication complexity, we show that there is. We show
that by taking t = O( n

δ2
) copies of R̂, denoted R1,R2, . . .Rt, we get a “good base” for the oracle.

Consider a randomized algorithm A(r,i) that, given access to to Y[R′](r, x) with r ← R′ = ×j∈[t]Rj ,
does the following:

• Sample j ← [t] at random.

• Run B(r,i) using the set Rj as the source of randomness.

Following the argument underlying Newman’s theorem, we show that this algorithm computes
GTi(x) with log n · 2−α + δ failure probability. It works for every i and x and it still makes only
α log n queries to the oracle. If we put δ = 1

12 and α = O(log log n) then the probability of this
algorithm failing for some input pair is at most 1

6 with only α log n = O(log n log log n) queries to
the oracle, i.e.,

Pr
r←R′

[A(r,i)(Y[R′](r, x)) ̸= GTi(x)] <
1

6
.

This change also doesn’t increase the “size” of the oracle (i.e., the number of queries it can
answer) too much. This allows us to show that with high probability it is still impossible to
combine the given partial parities to create the full parity using a low-degree polynomial, so the
second condition is also satisfied. So there exists an oracle that allows computing the GT with low-
degree polynomials but requires a high-degree polynomial to compute parity(x) which is exactly
what allows us to prove the lower bound on the approximate degree of OS.

2.3 Technical ideas behind the parity lower bound

Our technique relies on a lower bound on the approximate degree of parity(x), or, more precisely, on
the “Parity Under Randomness R” function PUR[R](Y[R](r, x)) evaluates to to parity(x) on input
Y[R](r, x). We, in fact, prove a more general statement lower bounding the approximate degree of
PUR[R] for a class of potential structures R.

Specifically, we show that the parity function is hard, even to sign-represent, and even given
access to Y[R] consisting of inner products of x with random strings ri where each bit of ri is either
fixed to zero or is an unbiased random bit. The only other restriction we need on Y[R] is that its
“size”, i.e., the number of inner products it provides, is small. The bigger this number is, the worse
our the lower bound becomes.

The proof idea is based on the hardness of sign-representing parity as described in [ABFR91],
combined with the following combinatorial observation: given a set of n-bit strings (corresponding
to samples from R, and in turn to random inner products) where in every string each bit is either
zero or is an unbiased random bit, with high probability no small subset of them adds up to the
all-ones string (which corresponds to the parity function).
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2.4 Improved ordered search and anchored hidden string lower bounds

Our generalized lower bound for approximating PUR[R] allows us to obtain other lower bounds
for oracle identification problems. For example, we give a slightly stronger lower bound for OS
than what is implied by the discussion above. There is, in fact, a more efficient randomized
communication protocol for GT that uses O(log n) bits of communication. This can be converted
into randomized query algorithm and thus into a polynomial of degree O(log n). Moreover, this
more efficient protocol is still based on computing equalities of substrings of inputs, and so the
appropriate Y has a very similar structure to the one described above while still satisfying the
conditions of the generalized lower bound for PUR. Moreover, the necessary “size” of Y barely

blows up at all. Putting everything together gives our improved lower bound of Ω
(

n
log2 n

)
on the

approximate degree of OS.
Using the same framework, we can also obtain a nearly tight lower bound on the approximate

degree of the anchored hidden string problem AHS. In the anchored hidden string problem, the
goal is to determine the parity of x given oracle access to yi,s = ϕi,s(x) for every index i and every
binary string s of length at most n, where ϕi,s(x) = 1 iff the substring of x starting at index i
matches s. This oracle identification problem has the right form for our framework since

AHSN ((ϕi,s(x))i∈[n],s∈{0,1}≤n−i+1) = parity(x).

Moreover, each function ϕi,s(x) simply computes the equality function of s with a substring of x of
length |s| starting from position i. As we have already seen, we can compute the equality function
very efficiently given an oracle Y of the right random structure, and such a Y meets the conditions

of our generalized lower bound for PUR[Y]. This directly implies a lower bound of Ω
(

n
logn

)
on the

approximate degree of AHS.
Finally, the last lower bound described in this work is on the approximate degree of HS. This

lower bound follows via a reduction from AHS. This reduction was first introduced in [CIG+12] in
the quantum query model, but it holds for polynomial approximation as well.

3 Ordered search and generalized lower bound

In this section we give the formal proof of our lower bound on the approximate degree of ordered
search. We show how our framework is used for this function and prove the generalized lower bound
on parity that we later reuse for the hidden string problem.

3.1 Preliminaries

Our lower bounds on the approximate degree of (a decision version) of ordered search and the
hidden string problem require the following definition of polynomial approximations for promise
problems.

Definition 1. Let f : D → {0, 1} where D ⊆ {0, 1}n for some n ∈ N be a partial Boolean function.
For 1

2 > ε > 0, a polynomial p : {0, 1}n → R is an ε-approximation to f if |p(x) − f(x)| ≤ ε for
every x ∈ D and −ε ≤ p(x) ≤ 1 + ε for all x ∈ {0, 1}n. The ε-approximate degree of f , denoted

d̃egε(f) is the the least degree of a polynomial p that ε-approximates f . We use the convention

d̃eg(f) = d̃eg1/3(f) to refer to the “approximate degree of f” without qualification.
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That is, we require a polynomial approximation to a partial function defined on a domain D
to approximate the function on D and remain bounded outside of D. Note that this is the type of
approximation that arises from quantum query algorithms for promise problems.

We also formally define the ordered search function OS and the family of greater-than functions
GT.

Definition 2. For all i ∈ {0, 1}n define the function GTi : {0, 1}n → {0, 1} to be the indicator of
whether the value of the input is smaller than i: GTi(x) = 1 if and only if x ≤ i where i and x are
compared as numbers written in binary notation.

Definition 3. The ordered search function OS2n : {0k12n−k | k ∈ [2n]} → {0, 1} is a partial
function defined the following way: OS2n(0

k12
n−k) = parity(x) where x ∈ {0, 1}n is the binary

representation of k.

3.2 The notion of a good base.

In order to formally define the oracle, i.e. the source of additional information about the input, we
introduce the notion of a “good base” for the oracle. A set R, consisting of tuples of strings, is a
good base if it’s constructed as follows.

Let R′ be a Cartesian product of m′ subsets of {0, 1}n where each subset Rτ is itself defined
by an n-bit string-template τ = τ1τ2 . . . τn ∈ {0, 1}n

Rτ = Sτ1Sτ2Sτ3 . . . Sτn

where S0 = {0} and S1 = {0, 1}.
For example, if τ = 00100010 then Rτ = Sτ1Sτ2Sτ3 . . . Sτn = S0S0S1S0S0S0S1S0 =

{0}{0}{0, 1}{0}{0}{0}{0, 1}{0} = {00000000, 00000010, 00100000, 00100010}.
Let B = {11}×{12}× . . .×{1n} where 1j = 0i−j10n−j is the string that has the value 1 in j-th

position and has the value 0 everywhere else. Let R = B ×R′, and thus R is a Cartesian product
of m = n+m′ subsets of {0, 1}n. Note that every r ∈ R is a m-tuple of n-bit strings:

r = (r1, r2, . . . rm) = (11,12, . . . ,1n−1,1n, rn+1, rn+2, . . . , rn+m′)

where each rj is a string of length n, the first n strings are fixed for all r ∈ R, and the last m′

strings are from some sets Rτ each for some template τ . If r ← R is chosen u.a.r. then each
rj , n < j ≤ m′ is chosen u.a.r. from some Rτ and thus the subsequence of bits of rj corresponding
to ones in τ is a uniformly random string, and the subsequence of bits of rj corresponding to zeros
in τ is the all-zero string.

Any set R with the above structure will be called a good base of size m. Such an R is helpful
for building our oracles as follows.

Let Y[R] : R× {0, 1}n → {0, 1}m be the following function: (Y[R](r, x))j = ⟨rj , x⟩ where rj is
an n-bit string from the collection r ∈ R and the inner product is taken modulo 2. Note that Y[R]
is parameterized by R, so for each good base R the function Y[R] will be different. We will omit
the parameter R later in places where it is clear from context.

Notice the following properties of this function Y[R](r, x) that hold whenever R is a good base:

• For every r ∈ R, the values Y(r, x) completely determine x. Since the first n strings of r are
11, 12, . . ., 1n−1, 1n, the first n bits of Y(r, x) are exactly bits of x.

10



• Given Y(r, x) for r ← R and r itself, one can compute (with some probability of error) if a
subsequence of x specified by some pattern τ agrees with some fixed string s in those indices.
To be more specific, if given (Y(r, x))j = ⟨rj , x⟩ where rj is sampled from Rτ uniformly at
random, and rj itself, then one can check whether the strings x∧ τ (where ∧ denotes bitwise
AND) and s ∧ τ are equal for any s ∈ {0, 1}n with one-sided error probability 1

2 .

So, Y[R](r, x) could be used as an equality oracle for a fixed set of subsequences of x (predefined
by R) when r is chosen uniformly at random from R. Thus, Y[R](r, x) might give more information
about x than x alone and might make some computations on x more efficient.

On the other hand, some functions of x remain “hard” even when given Y(r, x). We will later
show that parity(x) remains hard to compute even with this additional information.

3.3 Approximating polynomials for GTi

We start our proof by showing that for some good base ROS the oracle Y[ROS] could be used to
make the computation of GT functions more efficient.

Claim 4. There exists a good base ROS of size m = O(n2 log log n) such that if r ← ROS is sampled
uniformly at random, then with probability at least 2

3 over the choice of r there exists a family
of 2n polynomials {q(r,i) : {0, 1}m → {0, 1} | i ∈ {0, 1}n}, each of degree at most 2 log n log log n,
such that given Y[ROS](r, x) as the input, each polynomial q(r,i)(Y[ROS](r, x)) approximates the

corresponding GTi(x) with error at most 1
6 . That is,

Pr
r←ROS

[
∃i, x ∈ {0, 1}n :

∣∣q(r,i)(Y(r, x))− GTi(x)
∣∣ > 1

6

]
<

1

3
.

Proof. This proof consists of two parts: constructing a good base ROS and showing that it actually
helps to compute every GTi.

Constructing the good base ROS. We are going to construct ROS based on what random
strings are useful in the communication protocol computing GT of two n-bit strings, x and i.
Intuitively, in this protocol, we first need to check if the first half of i and x are equal using a
randomized communication protocol for equality. To do that we need to compute and compare
⟨x, r⟩ and ⟨i, r⟩, for some number α of random strings r to be determined later, where each r is
sampled from {0, 1}

n
2 {0}

n
2 . If the computed values ⟨i, r⟩ = ⟨x, r⟩ for all r we have considered,

then we repeat this procedure on the second half of x and i, which corresponds to computing and
comparing ⟨x, r⟩ and ⟨i, r⟩ for α random strings r sampled from {0}

n
2 {0, 1}

n
4 {0}

n
4 . If, on the other

hand, the values were not equal then we repeat this procedure on the first half of x and i, which
corresponds to computing and comparing ⟨x, r⟩ and ⟨i, r⟩ for α random strings r sampled from

{0, 1}
n
4 {0}

3n
4 . Since we want our oracle to be useful to emulate this procedure to compute GTi(x),

it should “contain” all the random strings used in this protocol.

Let R̂ = R1n/20n/2×
(
R1n/403n/4 ×R0n/21n/40n/4

)
×. . .×

(
×2k−1

i=0 R
02in/2k+1

1n/2k+1
0n−((2i+1)n/2k+1)

)
×

. . .×
(
×n/2

i=0R02i110n−(2i+1)
)
. See Figure 1 for an illustration.

This R̂ describes all the strings as the source of randomness used in the O(log n log log n)
communication protocol for GT, but each of the strings appears in the structure only once instead
of α times. So, we need to duplicate this structure α times to properly simulate the protocol.
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τ Rτ Structure of Rτ

1
n
2 0

n
2 {0, 1}n

2 {0}n
2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

1
n
4 0

3n
4 {0, 1}n

4 {0} 3n
4 ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0

0
n
2 1

n
4 0

n
4 {0}n

2 {0, 1}n
4 {0}n

4 0 0 0 0 0 0 0 0 ⋆ ⋆ ⋆ ⋆ 0 0 0 0

1
n
8 0

7n
8 {0, 1}n

8 {0} 7n
8 ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
n
4 1

n
8 0

5n
8 {0}n

4 {0, 1}n
8 {0} 5n

8 0 0 0 0 ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0

0
n
2 1

n
8 0

3n
8 {0}n

2 {0, 1}n
4 {0} 3n

8 0 0 0 0 0 0 0 0 ⋆ ⋆ 0 0 0 0 0 0

0
3n
4 1

n
8 0

n
8 {0} 3n

4 {0, 1}n
8 {0}n

8 0 0 0 0 0 0 0 0 0 0 0 0 ⋆ ⋆ 0 0

Figure 1: Structure of R̂. Blue cells with ⋆ represent indices in which either a 0 or a 1 could appear.

To finish the structure, we are going to add two other steps to the structure. First, we are
going to have some number t of individual “prepackaged” copies to be determined later for the
GT protocol. Let R1 = . . . = Rt = ×αR̂. Each of the copies has enough randomness and the
right structure of that randomness to simulate one full run of the GT protocol. Let R′ =×j∈[t]Rj

which allows us to handle t runs. Secondly, we want to be able to obtain the value of any specific
index of x, so we add a set of “basis” strings to the structure: B = {11} × {12} × . . . × {1n} =
{10 . . . 0} × {010 . . . 0} × . . .× {00 . . . 010} × {00 . . . 01}.

The final underlying structure of the oracle will be a Cartesian product of R′ and B: ROS =
B ×R′ = B × (×j∈[t]Rj). See Figure 2 for an illustration.

B R1 R2 Rt−1 Rt

α copies α copies α copies α copies

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

× × × . . . × ×

Figure 2: Structure of ROS. Each Rj consist of α copies of R̂.

We also set the parameters to be α = 2 log (log n), t = 250n ln 2. Notice that this set ROS is a
good base by construction and has size m = n+ αtn = n+ cn2 log (log n) for some constant c.

Constructing the family of approximating polynomials. In order to prove this claim,
we first describe a randomized query algorithm that computes GTi(x) correctly for all i and x with
high probability given Y[ROS](r, x) as input. We then explain how to convert this query algorithm
into a polynomial. The algorithm construction itself consists of two parts. In the first part, for all
j ∈ [t] we show the existence of a deterministic algorithm B(r,i,j) that, given Y(r, x), can compute
GTi(x) for every specific x, i ∈ {0, 1}n with good probability over the choice of r ← ROS, and this
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algorithm is only going to use the parts of the input that correspond to Rj and B. In the second
part, we show that the algorithm A(r,i) that chooses a copy j to use randomly and runs B(r,i,j),
computes GTi(x) correctly for all i and x with high probability given Y(r, x) as input.

For all i ∈ {0, 1}n, j ∈ [t], r ∈ ROS let B(r,i,j)(Y(r, x)) be the following deterministic algorithm.

1. Set ℓ = 0, u = n/2

2. While ℓ < u:

3. Set τ = 0ℓ1u−ℓ0n−u

4. For all indices v ∈ [m] corresponding to n-bit strings drawn from Rτ within the j-th

copy Rj :

5. Compute ⟨i, rv⟩ and compare it to (Y(r, x))v = ⟨x, rv⟩.

6. If for all such v the inner products are equal, i.e., ⟨i, rv⟩ = (Y(r, x))v, then set

tmp = u, u = u+ (u− ℓ)/2, ℓ = tmp and go step 2.

7. Otherwise, set u = (u+ ℓ)/2 and go step 2

8. Compare iℓ = ⟨i,1ℓ⟩ and (Y(r, x))ℓ = ⟨x,1ℓ⟩ = xℓ. If xℓ ≤ iℓ then accept. Otherwise, reject.

The last step is possible specifically because of B in the structure of ROS: rℓ = 1ℓ for all ℓ ≤ n
and for all r ∈ ROS. Notice that this algorithm emulates the randomized communication protocol
for the GT communication problem.

In general, the algorithm emulates the randomized communication protocol for equality on the
first half of the segment [ℓ, u+ (u− ℓ)] in x and i, and depending on the result it splits the inputs
into smaller segments and continues recursively. In the end, if all the runs of equality protocols
were correct, the algorithm finds and compares the most significant bit where x and i differ.

By [Nis93] we know that this algorithm computes GTi(x) with probability at least 1−(log n)2−α =
1− (log n)2−2 log (logn) = 1− 1

logn ≥
11
12 for sufficiently large n independently of the choice of j ∈ [t].

That is, for all j ∈ [t] and for all i, x ∈ {0, 1}n,

Pr
r←ROS

[B(r,i,j)(Y(r, x)) = GTi(x)] ≥
11

12
.

This algorithm makes at most α log n = 2 log n log logn queries to the oracle Y(r, x). Note that
this algorithm needs access to the specific r needed to compute every ⟨i, rv⟩ and we enable this by
“hardcoding” this r into the algorithm and creating a separate algorithm for each possible r.

We have shown that for every fixed i, x ∈ {0, 1}n there are many r ∈ ROS that if used as a
first input for the oracle Y allow B(r,i,j) to compute GTi(x). Unfortunately, this is not enough: our
algorithm should be universal, i.e., we want a single algorithm that with high probability over r
succeeds on all i and x. On the other hand, B(r,i,j) only uses one fixed “package” of random strings,
namely the j-th package.

Let W (i, x, r, j) be the indicator that the j-th package of random strings in r defines a set
of “bad” random strings for (i, x): W (i, x, r, j) = 1 if and only if B(r,i,j)(Y(r, x)) ̸= GTi(x). We
established that B(r,i,j)(Y(r, x)) works well if given a random r ← ROS for every j ∈ [t] and
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the probability of this algorithm outputting an incorrect answer is at most 1
12 . So for all i, x ∈

{0, 1}n, j ∈ [t], we have

Pr
r←ROS

[W (i, x, r, j) = 1] = Er←ROS
[W (i, x, r, j)] ≤ 1

12
.

We can’t immediately get a useful upper bound on the probability of r ← R working out for all i
and x at the same time. To achieve this, we’ll design a new algorithm that uses all t packages of
random strings. Its construction and analysis are inspired by Newman’s classic argument used for
simulating public randomness by private randomness in communication protocols.

For all i ∈ {0, 1}n, r ∈ ROS let A(r,i)(Y(r, x)) be the following randomized algorithm:

• Choose j ← [t] uniformly at random.

• Run B(r,i,j)(Y(r, x)).

Let us now analyse A(r,i). The number of queries that A(r,i) makes to the oracle is the same as
B(r,i,j) which is α log n = 2 log n log logn. We fix a pair (i, x) and evaluate the following probability.

Pr
r←ROS

[
Pr

j←[t]
[B(r,i,j) ̸= GTi(x)] >

1

6

]
= Pr

r←ROS

1
t

∑
j∈[t]

W (i, x, r, j) >
1

6

 .

We established that Er←ROS
[W (i, x, r, j)] ≤ 1

12 and so by Hoeffding’s inequality,

Pr
r←ROS

1
t

∑
j∈[t]

W (i, x, r, j) >
1

12
+

1

12

 ≤ e−2
t

144 ≤ 2−
500n
144 .

By a union bound over all possible i, x ∈ {0, 1}n,

Pr
r←ROS

∃i, x ∈ {0, 1}n :
1

t

∑
j∈[t]

W (i, x, r, j) >
1

6

 ≤ 22n2−
500n
144 ≤ 2−n <

1

3
.

Therefore, we have proven that

Pr
r←ROS

[
∃i, x ∈ {0, 1}n : Pr

j←[t]
[A(r,i)(Y(r, x))) ̸= GTi(x)] >

1

6

]
<

1

3
.

The last step is to convert this family of query algorithms into a family of approximating polyno-
mials. Let q(r,i) denote the acceptance probability of A(r,i). A standard argument (e.g., [BdW02,
Theorem 15]) implies that this is a polynomial of degree at most 2 log n log log n such that

Pr
r←ROS

[
∃i, x ∈ {0, 1}n :

∣∣q(r,i)(Y(r, x))− GTi(x)
∣∣ > 1

6

]
<

1

3
,

which is exactly what we were looking for.
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We successfully converted the most well-known communication protocol for GT that requires
O(log n log log n) bits of communication into a family of polynomials of degree O(log n log log n) that
approximates GTi. It’s known that there is a better communication protocol for GT that requires
only O(log n) bits of communication, as observed by Nisan [Nis93]. The next claim establishes that
this more efficient protocol can be converted into a family of polynomials as well.

Claim 5. There exists a good base ROS++ of size m = O(n3 log n) such that if r ← ROS++ is sam-
pled uniformly at random, then with probability at least 2

3 over the choice of r there exists a family
of polynomials {q(r,i) : {0, 1}m → {0, 1} | i ∈ {0, 1}n}, each of degree at most O(log n), such that
given Y(r, x) as the input, each polynomial q(r,i)(Y[ROS++](r, x)) approximates the corresponding

GTi(x) with error at most 1
6 . That is,

Pr
r←ROS++

[
∃i, x ∈ {0, 1}n :

∣∣q(r,i)(Y(r, x))− GTi(x)
∣∣ > 1

6

]
<

1

3
.

The proof of Claim 5 is similar to the proof of Claim 4 and can be found in Appendix A.

3.4 General lower bound

To complete the framework and to obtain the lower bound for Ordered Search we need to show
why computing the parity is hard even given Y[ROS] or Y[ROS++]. We will show a stronger lower
bound that would allow us to reuse this lower bound for other applications. Specifically, we will
show that computing the parity of input x remains hard given Y[R] for any good base R of small
size.

3.4.1 Combinatorial claim

The hardness of parity in this model is based on the following statement. For every good base R of
small size with high probability over the sample r ← R for every set of n-bit strings taken from the
collection r of size at most O( n

logn), the bitwise parity of these strings is not equal to the all-ones
string.

Claim 6. For every good base R of size m with probability at least 2
3 over the choice of r ← R for

every set of elements T ⊆ [m] of size at most d = n
4 logm − 1, the bitwise parity of n-bit strings ri,

i ∈ T from the collection r ← R is not equal to the all-ones string:

Pr
r←R

[
∀T ⊆ [m], |T | ≤ d :

⊕
i∈T

ri ̸= 1n

]
≥ 2

3
.

Proof. Fix an arbitrary good base R of size m. Fix a set T ⊆ [m] where |T | ≤ d. We want to
bound the probability Prr←R[

⊕
i∈T ri = 1n] that for this r and for this T the strings corresponding

to the indices in T sum up to the string of all ones. Fix a specific index k ∈ [n]. We compute the
probability that index k is set to 1 in

⊕
i∈T ri. To do this we need to understand how the candidate

strings ri, i ∈ T can influence this value.
There are three possible scenarios for each index k:

• (Type I) There is at least one string ri ∈ {0, 1}n with i ∈ T such that it is chosen from
Rτ where τk = 1. Then in each such string, the bit at index k is sampled independently at
random with probability 1

2 . Thus Prr←R[⟨
⊕

i∈T ri,1k⟩ = 1] = 1
2 .
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• (Type II) There are no strings ri, i ∈ T such that ri is chosen from Rτ and τk = 1, but there
is ri, i ∈ T that is chosen from B, such that ri = 1k. Then the value of ⟨

⊕
i∈T ri,1k⟩ is

one since there is exactly one string in this sum with the kth index value set to one. Thus
Prr←R[⟨

⊕
i∈T ri,1k⟩ = 1] = 1.

• (Type III) There are no strings ri, i ∈ T such that ri is chosen from Rτ and τk = 1, and there
is no ri, i ∈ T that is chosen from B, such that ri = 1k. Then for all strings ri the index k is
0, so Prr←R[⟨

⊕
i∈T ri,1k⟩ = 1] = 0.

Index k 1 2 3 4 5 6 7 8
ri1 ⋆ ⋆ ⋆ ⋆ 0 0 ⋆ 0

ri2 ⋆ ⋆ ⋆ 0 0 0 0 0

ri3 ⋆ 0 ⋆ ⋆ 0 0 ⋆ 0

ri4 0 ⋆ 0 0 0 0 0 0

ri5 0 0 1 0 0 0 0 0

ri6 0 0 0 0 1 0 0 0

Type I I I I II III I III
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Prr←R[⟨
⊕

i∈T ri,1k⟩] 1/2 1/2 1/2 1/2 1 0 1/2 0

Figure 3: Example of index types, T = {i1, i2, i3, i4, i5, i6}.

Notice that T fully defines the types of all indices and thus the values of ⟨
⊕

i∈T ri,1k⟩ for k of types
II and III don’t depend on the choice of r ← R. On the other hand, the values of indices of type I
do depend on the choice of r ← R. Each of them is either a parity of independent random bits or
the negation of a parity of independent random bits which is fixed by T too. Thus they behave as
independent bits themselves and therefore the values ⟨

⊕
i∈T ri,1k⟩ are mutually independent for

all indices k.
Denote by nI, nII, nIII the numbers of indices of each type. Notice that nI + nII + nIII = n and

nII ≤ d. Then in this notation

Pr
r←R

[⊕
i∈T

ri = 1n

]
=

(
1

2

)nI

1nII0nIII .

If there exists k ∈ [n] of the third type, the probability Prr←R[
⊕

i∈T ri = 1n] becomes 0, so to
upper bound the probability we may assume all the indices have one of the first two types. And,
since nII ≤ d, to maximize the value we assume that nII = d. Thus we have
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Pr
r←R

[⊕
i∈T

ri = 1n

]
=

(
1

2

)n−nII

1nII ≤ 1d
(
1

2

)n−d
= 2−(n−d).

Since d = n
4 logm − 1 and m ≥ n, we have n− d > n

2 for sufficiently large n. So for a fixed T ,

Pr
r←R

[⊕
i∈T

ri = 1n

]
< 2−

n
2 .

There are
(
m
≤d
)
ways to choose the set T , so by a union bound over the choice of T , the probability

that for some set of size at most d the value
⊕

i∈T ri is equal to the string of all ones is

Pr
r←R

[
∃T ⊆ [m], |T | ≤ d :

⊕
i∈T

ri = 1n

]
≤
(

m

≤ d

)
2−

n
2 = 2−

n
2

d∑
d′=0

(
m

d′

)
≤ 2−

n
2

d∑
d′=0

md′ ≤ 2−
n
2 md+1

= 2−
n
2 m

n
4 logm = 2−

n
2 2

n
4 logm

logm
= 2

n
4
−n

2 = 2−
n
4 <

1

3
.

3.4.2 Lower bound on the degree of PUR[R]

For every good base R and for every fixed r ∈ R define the function PUR[R]r : D[R]r → {0, 1}
where D[R]r = {Y[R](r, x) | x ∈ {0, 1}n} is the subset of {0, 1}m where each domain point
corresponds to one specific x ∈ {0, 1}n and is consistent with the fixed r. This function outputs
the parity of the string encoded by the input: PUR[R]r(Y(r, x)) = parity(x). It is well defined since
parity(x) =

⊕
ri∈B⟨x, ri⟩ =

⊕
i∈[n](Y(r, x))i. Note that both D[R]r and PUR[R] are parameterized

by R and, as with Y[R], we will omit the parameter later in places where the parameter is clear
from the context.

Our goal is to show that PUR[R] is hard to approximate if R is a good base of small size. We
do this by showing that for every good base R of size m if r ← R u.a.r. then every polynomial p of
degree at most d = O( n

logm) is completely uncorrelated with PUR[R]r(Y(r, x)) with high probability
over the choice of r.

Theorem 7. For every good base R of size m if r ← R u.a.r. then with probability at least 2
3

over the choice of r every polynomial p : {0, 1}m → R of degree at most d = n
4 logm − 1 doesn’t

approximate PUR[R]r:

Pr
r←R

[
∀ε < 1

2
, ∀p,deg(p) ≤ d,∃y ∈ D[R]r : |p(y)− PUR[R]r(y)| > ε

]
≥ 2

3

Note that Theorem 7 rules out approximating polynomials that may be unbounded outside of
the domain of PUR[R]r. That is, it asserts that there is no low-degree approximating polynomial
even when that polynomial is permitted to take values outside of [0, 1] on points outside of the
domain of PURr. Note also that since the lower bound applies for all ε < 1/2, it actually entails a
threshold degree lower bound on computing PUR[R].
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Proof. Fix an arbitrary good base R of size m.
For convenience in this proof, let us change notation to consider polynomials approximations

over {−1, 1} instead of over {0, 1}. Define Y ′ : R× {−1, 1}n → {−1, 1}m to be (Y ′(r, x′))i = 1 −
2(Y(r, (1−x

′
1

2 ,
1−x′

2
2 , . . . , 1−x

′
n

2 )))i = 1−2⟨x, ri⟩ where ri is the vector corresponding to ith component

of Y(r, x) and x ∈ {0, 1}n is the vector that corresponds to x′ ∈ {−1, 1}n: xi =
1−x′

i
2 for all i ∈ [n].

Notice that this change of notation satisfies the following: if a ∈ {0, 1} and a′ is the corresponding
value in the new notation a′ ∈ {−1, 1} then a′ = (−1)a.

Let’s also rewrite PURr in this new notation. Let D′r represent the domain of PUR′r: D′r =
{Y ′(r, x′) | x′ ∈ {−1, 1}n} and the function PUR′r : D′r → {−1, 1} be PUR′r(Y ′1,Y ′2, . . . ,Y ′m) =

1− 2PURr(
1−Y ′

1
2 ,

1−Y ′
2

2 , . . . , 1−Y
′
m

2 ).
Note that every polynomial p′ : {−1, 1}m → R that approximates PUR′r to error ε can be

converted by a linear transformation into a polynomial p : {0, 1}m → R of the same degree that
approximates PURr to error ε/2. So it suffices to prove that no polynomial p′ of degree at most d
approximates PUR′r to error ε < 1.

Assume toward a contradiction that there is a polynomial p′ of degree d that approximates
PUR′r. This means that there exists ε < 1 such that for all y′ ∈ D′r,∣∣p′(y′)− PUR′r(y

′)
∣∣ < ε.

Consider the following expression:

1

2n

∣∣∣∣∣∣
∑

y′∈D′
r

PUR′r(y
′)(PUR′r(y

′)− p′(y′))

∣∣∣∣∣∣ ≤ 1

2n

(
max
y′∈D′

r

∣∣p′(y′)− PUR′r(y
′)
∣∣) ∑

y′∈D′
r

∣∣PUR′r(y′)∣∣


<
1

2n
ε|D′r| = ε.

(1)

The last equality holds because Y ′(r, ·) is surjective, and hence |D′r| = 2n. On the other hand,

1

2n

∣∣∣∣∣∣
∑

y′∈D′
r

PUR′r(y
′)(PUR′r(y

′)− p′(y′))

∣∣∣∣∣∣ = 1

2n

∣∣∣∣∣∣
 ∑

y′∈D′
r

PUR′r(y
′)PUR′r(y

′)

−
 ∑

y′∈D′
r

PUR′r(y
′)p′(y′)

∣∣∣∣∣∣
=

1

2n

∣∣∣∣∣∣|D′r| −
 ∑

y′∈D′
r

PUR′r(y
′)p(y′)

∣∣∣∣∣∣ .
(2)

We now show that with high probability the expression above is equal to |D
′
r|

2n .

Claim 8. With probability at least 2
3 over the choice of r ← R, for every polynomial p′ :

{−1, 1}m → R of degree at most d = n
4 logm − 1 we have∑

y′∈D′
r

PUR′r(y
′)p′(y′) = 0.
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Proof. Fix a polynomial p′ of degree at most d = n
4 logm − 1. By linearity it suffices to consider the

case where p′ is a monomial, p′(y′) =
∏

j∈T y′j for some T ⊆ [m], |T | ≤ d. So

∑
y′∈D′

r

PUR′r(y
′)p′(y′) =

∑
x′∈{−1,1}n

∏
i∈[n]

(x′i)

∏
j∈T

(Y ′(r, x′))j

 =
∑

x∈{0,1}n

(
(−1)⟨x,1n⟩

)∏
j∈T

(−1)⟨x,rj⟩


=
∑

x∈{0,1}n
(−1)⟨x,1n⟩(−1)

∑
j∈T ⟨x,rj⟩ =

∑
x∈{0,1}n

(−1)⟨x,1n⟩(−1)⟨x,
⊕

j∈T rj⟩ =
∑

x∈{0,1}n
(−1)⟨x,1

n⊕(
⊕

j∈T rj)⟩

This expression is not zero if and only if
⊕

j∈T rj = 1n. By Claim 6 the probability that such T

exists is at most 1
3 . So the probability over the choice of r for some polynomial p′ : {−1, 1}m → R

of degree at most d = n
4 logm − 1 to have∑

y′∈D′
r

PUR′r(y
′)p′(y′) ̸= 0

is at most 1
3 .

Combining expressions (1) and (2) and Claim 8, we have that with probability at least 2
3 ,

ε >
1

2n

∣∣∣∣∣∣
∑

y′∈D′
r

PUR′r(y
′)(PUR′r(y

′)− p′(y′))

∣∣∣∣∣∣ = 1

2n

∣∣∣∣∣∣|D′r| −
 ∑

y′∈D′
r

PUR′r(y
′)p′(y′)

∣∣∣∣∣∣ = |D
′
r|

2n
= 1.

And so ε > 1 which contradicts our assumption. Thus PUR′r(Y(r, x)) cannot be approximated
by a polynomial of degree at most n

4 logm − 1 with probability at least 2
3 over the choice r ← R

sampled uniformly at random. And therefore PURr(Y(r, x)) cannot be ε-approximated for every
constant ε < 1

2 with a polynomial of degree less than n
4 logm with probability at least 2

3 over the
choice r ← R sampled uniformly at random for any good base R of size m.

3.5 Lower bound for ordered search

Finally, we combine our general lower bound on the approximate degree of PUR with the upper
bound on approximating GTi to conclude our lower bound on the approximate degree of ordered
search. We will use the statement of Claim 5 with a lower degree of polynomials approximating
GTi since, even though its proof is more complicated than the proof of the weaker bound, as it
allows us to obtain a better lower bound on ordered search.

First, we apply Theorem 7 to obtain a lower bound on the approximate degree for PUR[ROS++].

Corollary 9. If r ← ROS++ u.a.r. then with probability at least 2
3 over the choice of r every

polynomial p : {0, 1}m → R of degree at most d = n
16 logn − 1 fails to approximate PUR[ROS++]r:

Pr
r←ROS++

[
∀ε < 1

2
, ∀p,deg(p) ≤ d,∃y ∈ D[ROS++]r : |p(y)− PUR[ROS++]r(y)| > ε

]
≥ 2

3
.
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Proof. The set ROS++ is a good base and has size m = O(n3 log n). By Theorem 7, with probability
at least 2

3 over the choice of r every polynomial p : {0, 1}m → R of degree at most n
4 logm − 1 fails

to approximate PUR[ROS++]r. But since the size of ROS++ is m ≤ n4 for sufficiently large n then
every polynomial of degree at most d = n

16 logn − 1 = n
4 logn4 − 1 ≤ n

4 logm − 1 fails to approximate

PUR[ROS++]r.

By combining Claim 5 and Corollary 9, we obtain the following.

Theorem 10. The approximate degree of ordered search is

d̃eg(OS2n) = Ω

(
n

log2 n

)
.

Proof. Suppose OS2n can be ε-approximated by a bounded polynomial of degree d for some ε > 0.
By [She12a, Theorem 1.1], for every δ > 0, this polynomial can be converted to a polynomial p

of degree O(d+ log 1
δ ) that (ε+ δ)-approximates OS2n and is robust to noise in its inputs. That is:

|OSN (y)− p(y +∆)| < ε+ δ

for all y ∈ {0, 1}N where ∆ ∈ [−1
6 ,

1
6 ]

N and N = 2n. If we put δ = ε = 1
6 , then p is a 1

3 -
approximating polynomial for OS2n with degree O(d). Thus we can assume without loss of gener-
ality that the polynomial is robust to noise.

Note that OS2n(GT0n(x),GT0n−11(x), . . . ,GT1n(x)) = PUR[ROS++]r(Y(r, x)) for every r ∈
ROS++. So by Claim 5, there exists a constant c such that the composed polynomial
p(q(r,0n)(Y(r, x)), q(r,0n−11)(Y(r, x)), . . . q(r,1n)(Y(r, x))) has degree at most deg(p)maxi(deg(q(r,i))) =

cd log n and approximates PUR[ROS++]r(Y(r, x)) to error 1
3 with probability at least 2

3 over the
choice of r ← ROS++. This holds because although the polynomials q(r,i) do not compute the func-
tions GTi exactly, but only approximate them with small error, the outer polynomial p is robust
to this small error in the inputs. Note also that while the composed polynomial is bounded on the
domain of PURr, it may be arbitrarily unbounded on points outside its domain.

On the other hand, by Claim 9, with probability at least 2
3 over the choice of r, the function

PUR[ROS++]r cannot be approximated by a polynomial in Y of degree less than n
16 logn . By a union

bound, with probability at least 1− (1− 2
3)− (1− 2

3) =
1
3 both conditions on r hold simultaneously.

Thus there exists r ∈ ROS++ such that p(q(r,0n)(Y(r, x)), q(r,0n−11)(Y(r, x)), . . . q(r,1n)(Y(r, x))) ap-
proximates PURr(Y(r, x)) and PURr(Y(r, x)) cannot be approximated by a polynomial of degree
less than n

16 logn . So

cd log n ≥ n

16 log n
.

And thus

d = Ω

(
n

log2 n

)
.

Note that by standard error amplification for approximating polynomials (see, e.g., [BNRdW07,

Lemma 1]), d̃egε(OS2n) = Ω(n/ log2 n) for every constant 1
2 > ε > 0.
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4 Anchored hidden string and hidden string

Now let us switch gears and consider the (anchored) hidden string problem, in which the goal is to
reconstruct a string given information about the presence of specific substrings. In the decisional
anchored hidden string (AHS) problem, the information given as input consists of whether each
string s is a substring of the hidden input x starting at position i, for all valid i and s. The goal is
then to compute parity(x).

In order to prove a lower bound for AHS we will follow the same outline as for OS. That is,
first we will introduce a convenient set RAHS of collections of n-bit strings and show that oracle
Y[RAHS] providing the inner products of x with strings from the random sample from RAHS are
useful for computing ϕi,s(x) for all possible queries (i, s) where i ∈ [n], s ∈ {0, 1}≤n−i+1. After
that, we will show that it is hard to compute PUR[RAHS], the parity of x using the oracle Y[RAHS]
with high probability. And finally, we will conclude that computing AHS is hard since composing
an approximating polynomial for AHS with polynomials approximating ϕi,s(x) would allow us to
approximate the PUR[RAHS] function.

4.1 Preliminaries

W define several functions in order to formalize the problem.
Throughout this section, we use the following notation {0, 1}≤n to denote the set of all bit

strings of size at most n: {0, 1}≤n =
⋃n

k=0{0, 1}k.

Definition 11. For all s ∈ {0, 1}≤n define the function χs : {0, 1}n → {0, 1} to be the indicator
of whether the input string x has s as a substring: that is, there exists an integer i such that
xi+k−1 = sk for all 1 ≤ k ≤ |s| then χs(x) = 1 and otherwise χs(x) = 0.

Definition 12. Define the “hidden string” function HSN : {0, 1}N → {0, 1} be the partial function
that takes N = |{0, 1}≤n| = 2n+1 − 1 inputs, each corresponding to a substring s ∈ {0, 1}≤n, and,
given a collection of χs(x) for some fixed x ∈ {0, 1}n as an input, outputs parity(x).

We will also consider a variation of this problem where the additional information is not only
whether a specific substring is present in the hidden string, but if this specific substring is present
at a specific location of the hidden string.

Definition 13. For all i ∈ [n] and s ∈ {0, 1}≤n−i+1 define the function ϕi,s : {0, 1}n → {0, 1} to
be the indicator of whether the input string x has s as a substring starting from position i: that
is, if xi+k−1 = sk for all 1 ≤ k ≤ |s| then ϕi,s(x) = 1 and otherwise ϕi,s(x) = 0.

Definition 14. Let the “anchored hidden string” function AHSN : {0, 1}N → {0, 1} be the partial
function that takes N = |{(i, s) | i ∈ [n], s ∈ {0, 1}≤n−i+1}| = 2n+2 − n − 4 inputs, each corre-
sponding to a pair of i ∈ [n] and s ∈ {0, 1}≤n−i+1, and, given a collection of ϕi,s(x) for some fixed
x ∈ {0, 1}n as an input, outputs parity(x).

4.2 Approximating polynomials for ϕi,s

We start our proof by showing that for some good base RAHS the oracle Y[RAHS] could be used to
make the computation of the functions ϕi,s more efficient.

21



Claim 15. There exists a good base RAHS of size m = O(n3) such that if r ← RAHS is sam-
pled uniformly at random, then with probability at least 2

3 over the choice of r there exists a
family of polynomials {q(r,i,s) : {0, 1}m → {0, 1} | i ∈ [n], s ∈ {0, 1}≤n−i+1} of degree at most 4
such that given Y[RAHS](r, x) as the input, each polynomial q(r,i,s)(Y[RAHS](r, x) approximates the

corresponding ϕi,s(x) with error at most 1
6 . That is,

Pr
r←RAHS

[
∃i ∈ [n], x ∈ {0, 1}n, s ∈ {0, 1}≤n−i+1 :

∣∣q(r,i,s)(Y[RAHS](r, x))− ϕi,s(x)
∣∣ > 1

6

]
<

1

3
.

Proof. The proof of this statement follows the same outline as the proof of Claim 4. First, we
will construct a good base RAHS, and then we will show (in two stages) how to compute ϕi,s given
Y[RAHS].

Constructing the good base RAHS. Our base for the oracle should contain all the strings

needed to check the equality with every substring of x, so let R̂ = R1n ×
(
R1n−101 ×R011n−1

)
×(

R1n−202 ×R011n−101 ×R021n−2
)
× . . .×

(
×k

i=0R
0i1i+k0n−i−k

)
× . . .×

(
×n−1

i=0 R
0i1i+10n−(i+1)

)
. See

Figure 4 for an illustration.

τ Rτ Structure of Rτ

1111 {0, 1}4 ⋆ ⋆ ⋆ ⋆

1110 {0, 1}3{0} ⋆ ⋆ ⋆ 0

0111 {0}{0, 1}3 0 ⋆ ⋆ ⋆

1100 {0, 1}2{0}2 ⋆ ⋆ 0 0

0110 {0}{0, 1}2{0} 0 ⋆ ⋆ 0

0011 {0}2{0, 1}2 0 0 ⋆ ⋆

1000 {0, 1}{0}3 ⋆ 0 0 0

0100 {0}{0, 1}{0}2 0 ⋆ 0 0

0010 {0}2{0, 1}{0} 0 0 ⋆ 0

0001 {0}3{0, 1} 0 0 0 ⋆

Figure 4: Structure of R̂ for n = 4. Blue cells with ⋆ represent places where either 0 or 1 values
could be.

On top of this, we are going to add two other steps to the structure. First, we are going
to have t individual “prepackaged” copies. Let R1 = . . . = Rt = ×αR̂, and R′ =×j∈[t]Rj .

Secondly, we add a set of “basis” strings to the structure: B = {11}×{12}× . . .×{1n−1}×{1n} =
{10 . . . 0}×{010 . . . 0}× . . .×{00 . . . 010}×{00 . . . 01}. The final underlying structure of the oracle
will be a Cartesian product of all t copies and B: R = B ×R′ = B × (×j∈[t]Rj). See Figure 5 for
an illustration. We also set the parameters to be α = 4, t = 1000n ln 2. Notice that this set RAHS

is a good base by construction, and has size m = n+ αtn(n+1)
2 = O(n3).
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B R1 R2 Rt−1 Rt

α copies α copies α copies α copies

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

× × × . . . × ×

Figure 5: Structure of RAHS for n = 4. Each Rj consist of α copies of R̂.

Constructing the family of approximating polynomials. For all i ∈ [n], s ∈ {0, 1}≤n−i+1, j ∈
[t], r ∈ RAHS let B(r,i,s,j)(Y[RAHS](r, x)) be the following deterministic algorithm.

1. Set τ = 0i1|s|0n−|s|−i

2. Set s′ = 0is0n−|s|−i so s′ is an n-bit string

3. For all v ∈ [m] such that v corresponds to n-bit strings drawn from Rτ within the jth copy
Rj :

4. Compute ⟨s′, rv⟩ and compare it to (Y(r, x))v = ⟨x, rv⟩.

5. If for some v the inner products don’t have the same value, ⟨i, rv⟩ ≠ (Y(r, x))v, then reject.

6. Otherwise, accept.

This algorithm determines if s equal to the substring of x of length |s| that starts at the ith
position with probability at least 1 − 2−α = 1 − 2−4 ≥ 11

12 independently of the choice of j ∈ [t].
That is, for all j ∈ [t] and for all i ∈ [n], s ∈ {0, 1}n−i, x ∈ {0, 1}n

Pr
r←RAHS

[B(r,i,s,j)(Y(r, x)) = ϕi,s(x)] ≥
11

12
.

This algorithm makes at most α = 4 queries to the oracle Y(r, x).
We have shown that for every fixed i ∈ [n], s ∈ {0, 1}≤n−i+1, and x ∈ {0, 1}n there are many

r ∈ RAHS that if used as the first input for the oracle Y allow B(r,i,s,j) to compute ϕi,s(x).
Let W (i, s, x, r, j) be the indicator that the j-th “package” of random strings in r defines a set

of “bad” random strings for i, s, x: W (i, s, x, r, j) = 1 if and only if B(r,i,s,j)(Y(r, x)) ̸= ϕi,s(x). We
established that B(r,i,s,j)(Y(r, x)) works well if given a random r ← RAHS for every j ∈ [t] and the

probability of this algorithm outputting an incorrect answer is at most 1
12 . So

Pr
r←RAHS

[W (i, s, x, r, j) = 1] = Er←RAHS
[W (i, s, x, r, j)] ≤ 1

12
.
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Using the same transformation from before (described in detail in the proof of Claim 4), we
design a new family of algorithms that succeeds on all i, s, x simultaneously. For all i ∈ [n], s ∈
{0, 1}≤n−i+1, r ∈ ROS++ let A(r,i,s)(Y(r, x)) be the following randomized algorithm:

• Choose j ← [t] uniformly at random.

• Run B(r,i,s,j)(Y(r, x)).

The number of queries that A(r,i,s) makes to the oracle is the same as B(r,i,s,j) which is α = 4. We
fix arbitrary i, s, x and evaluate the following probability.

Pr
r←RAHS

[
Pr

j←[t]
[B(r,i,s,j) ̸= ϕi,s(x)] >

1

6

]
= Pr

r←RAHS

1
t

∑
j∈[t]

W (i, s, x, r, j) >
1

6

 .

We established that Er←RAHS
[W (i, s, x, r, j)] ≤ 1

12 and so by Hoeffding’s inequality,

Pr
r←RAHS

1
t

∑
j∈[t]

W (i, s, x, r, j) >
1

12
+

1

12

 ≤ e−2
t

144 ≤ 2−
2000n
144 .

And by a union bound,

Pr
r←RAHS

∃i ∈ [n], s ∈ {0, 1}≤n−i+1, x ∈ {0, 1}n :
1

t

∑
j∈[t]

W (i, s, x, r, j) >
1

6

 ≤ 22n+22−
2000n
144 <

1

3
,

since the number of possible pairs of i ∈ [n] and s ∈ {0, 1}≤n−i+1 is
∑n

i=1

∑n−i+1
|s|=1 2|s| ≤ 2n+2. So,

we proved that

Pr
r←RAHS

[
∃i ∈ [n], s ∈ {0, 1}≤n−i+1, x ∈ {0, 1}n : Pr

j←[t]
[A(r,i,s)(Y(r, x))) ̸= ϕi,s(x)] >

1

6

]
<

1

3
.

The last step is to convert this family of query algorithms into a family of approximating
polynomials. Let q(r,i,s) denote the acceptance probability of A(r,i,s) which is a polynomial of
degree at most α = 4 such that

Pr
r←RAHS

[
∃i ∈ [n], s ∈ {0, 1}≤n−i+1, x ∈ {0, 1}n :

∣∣q(r,i,s)(Y[RAHS](r, x))− ϕi,s(x)
∣∣ > 1

6

]
<

1

3

which is exactly what we were looking for.
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4.3 Lower bounds for anchored hidden string and hidden string

Following the same framework, we can combine the general statement about the degree of PUR
proven earlier with the upper bound for approximating ϕi,s to conclude our lower bound on the
approximate degree of anchored hidden string.

First, we apply Theorem 7 to obtain a lower bound on approximate degree for PUR[RAHS].

Corollary 16. If r ← RAHS u.a.r. then with probability at least 2
3 over the choice of r every

polynomial p : {0, 1}m → R of degree at most d = n
16 logn − 1 fails to approximate PUR[RAHS]r:

Pr
r←RAHS

[
∀ε < 1

2
, ∀p,deg(p) ≤ d,∃y ∈ D[RAHS]r : |p(y)− PUR[RAHS]r(y)| > ε

]
≥ 2

3
.

Proof. The set RAHS is a good base and has size m = O(n3). By Theorem 7, with probability at
least 2

3 over the choice of r every polynomial p : {0, 1}m → R of degree at most n
4 logm − 1 fails

to approximate PUR[RAHS]r. But since the size of RAHS is m ≤ n4 for sufficiently large n then
every polynomial of degree at most d = n

16 logn − 1 = n
4 logn4 − 1 ≤ n

4 logm − 1 fails to approximate

PUR[RAHS]r.

By combining Claim 15 and Corollary 16, we obtain the following.

Theorem 17. The approximate degree of AHSN is

d̃eg(AHSN ) = Ω

(
n

log n

)
where N = 2n+2 − n− 4.

Proof. Suppose AHSN can be 1
3 -approximated by a bounded polynomial of degree d.

By the same argument as used in Theorem 10 we can assume without loss of generality that
the polynomial is robust to noise. That is,

|AHSN (y)− p(y +∆)| < 1

3

for all y ∈ {0, 1}N where ∆ ∈ [−1
6 ,

1
6 ]

N .
Note that AHSN ((ϕi,s(x))i∈[n],s∈{0,1}≤n−i+1) = PUR[RAHS]r(Y(r, x)) for every r ∈ RAHS. So

by Claim 15 the polynomial p(q(r,i,s)(Y(r, x))) of degree at most deg(p)maxi,s(deg(q(r,i,s))) = 4d

approximates PUR[RAHS]r(Y(r, x)) to error 1
3 with probability at least 2

3 over the choice of r ←
RAHS. This holds because although the polynomials q(r,i,s) do not compute the functions ϕi,s

exactly, but only approximate them with small error, the outer polynomial p is robust to this small
error in the inputs. Note also that while the composed polynomial is bounded on the domain of
PURr, it may be arbitrarily unbounded on points outside its domain.

On the other hand, by Claim 16, with probability at least 2
3 over the choice of r, the function

PUR[RAHS]r cannot be approximated by a polynomial in Y of degree less than n
16 logn . By a union

bound, with probability at least (1 − (1 − 2
3) − (1 − 2

3)) = 1
3 both conditions on r hold simulta-

neously. Thus there exists r ∈ RAHS such that p(q(r,i,s)(Y(r, x))) approximates PURr(Y(r, x)) and
PURr(Y(r, x)) cannot be approximated by a polynomial of degree less than n

16 logn . So
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4d ≥ n

16 log n
.

And thus

d = Ω

(
n

log n

)
.

This lower bound on the approximate degree of AHSN entails a lower bound on the approximate
degree of HSN . In [CIG+12] the authors gave a reduction between these two problems, showing
that if there exists a quantum query algorithm for HS then there exists a quantum query algorithm
for AHS with a small blow-up in the number of queries. Specifically, they showed how to compute
AHS by applying a query algorithm for HS with a slightly bigger input, where each bit of the
bigger input can be computed using a constant number of queries to the original AHS input. This
argument works just as well to relate the approximate degrees of HS and AHS, giving the following
statement.

Claim 18. If for every n′, there is a polynomial of degree d(n′) approximating HS2n′+1−1 to
some constant error, then for every n there is a polynomial of degree 2d(10n log n) approximating
AHS2n+2−n−4 to the same error.

This allows us to prove a lower bound for HSN as well.

Corollary 19. The approximate degree of HSN is

d̃eg(HSN ) = Ω

(
n

log2 n

)
where N = 2n+1 − 1.

Proof. By Claim 18 if there exists a polynomial of degree d(n′) approximating HS2n′+1−1 then
there exists a polynomial of degree 2d(10n log n) approximating AHS2n+2−n−2. On the other hand,
by Corollary 16 no polynomial of degree less than cn

logn can approximate AHS2n+2−n−2 for some
constant c. Therefore,

2d(10n log n) ≥ cn

log n
.

Set n′ = 10n log n. Then

d(n′) ≥ cn

2 log n
=

cn′

20 log2 n
≥ cn′

20 log2 n′
.

And thus

d̃eg(HS2n′+1−1) = Ω

(
n′

log2 n′

)
.

Note that by standard error amplification for approximating polynomials, d̃egε(HS2n+1−1) =

Ω(n/ log2 n) and d̃egε(AHS2n+2−n−4) = Ω(n/ log n) for every constant 1
2 > ε > 0.
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A Proof of Claim 5

The communication protocol that we use to construct our polynomials itself is based on a result by
[FRPU94] on algorithms in a noisy comparison model. To understand the protocol and to convert
it to the family of polynomials later we need to open up the protocol and state their result.

The following is implicit in [FRPU94]:

Claim 20. Consider the following problem. There is an unknown “key” in [n]. Given the ability
to ask questions of the type “is the unknown key greater than a?” for every a ∈ [n] and get the
correct answer with probability at least 3

4 independently for each question, the algorithm’s goal is
to find the correct location in (0, n] for the key while minimizing the number of questions it asks.

Then there exists an algorithm that finds the correct location in (0, n] for the key by asking at
most c log n questions for some constant c with probability at least 11

12 .

The algorithm basically performs a binary search for the correct location of the key with slight
modifications. We are not going to present the algorithm in detail, but we are going to describe
what questions the algorithm asks along the way. For each interval (a, b] where b − a > 1, the
algorithm seeks answers to the following questions: “is the key > a?”, “is the key > b?” and
“is the key > a+b

2 ?”, each correct with probability 3
4 independently from all other questions, and

the algorithm needs to be able to ask each potential question of each type c log n times for some
constant c. For each interval (a, a+ 1] the algorithm seeks answers to the following questions: “is
the key > a?” and “is the key > a + 1?”, each correct with probability at least 3

4 independently
from all other questions, and the algorithm needs to be able to ask each potential question of each
type 2c2 log2 n times. Note that if the range for the key position is (0, n] then questions “is the key
> 0?” and “is the key > n?” can be omitted by the algorithm since it already knows the correct
answer to them.

The efficient communication protocol for the GT heavily relies on the algorithm above. In the
communication protocol, both Alice and Bob run the algorithm to find the most significant bit
where their inputs differ. Each time the algorithm asks “is the position of the most significant bit
where the inputs differ greater than a?” (or “is the key greater than a?”), Alice and Bob compute
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Interval Questions τ Structure of Rτ

(0, n] “is the key > n
2 ?” 1n/20n/2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

(0, n2 ]
“is the key > n

2 ?” 1n/20n/2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

“is the key > n
4 ?” 1n/403n/4 ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0

(n2 , n]
“is the key > n

2 ?” 1n/20n/2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

“is the key > 3n
4 ?” 13n/40n/4 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0

(0, n4 ]
“is the key > n

4 ?” 1n/403n/4 ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0

“is the key > n
8 ?” 1n/807n/8 ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(n4 ,
n
2 ]

“is the key > n
4 ?” 1n/403n/4 ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0

“is the key > n
2 ?” 1n/20n/2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

“is the key > 3n
8 ?” 13n/805n/8 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0

(n2 ,
3n
4 ]

“is the key > n
2 ?” 1n/20n/2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

“is the key > 3n
4 ?” 13n/40n/4 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0

“is the key > 5n
8 ?” 15n/803n/8 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0

(3n4 , n]
“is the key > 3n

4 ?” 13n/40n/4 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0

“is the key > 7n
8 ?” 17n/80n/8 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0

Figure 6: The structure of random strings used in the communication protocol.

the equality of the first a bits of their inputs to error 1
4 by computing α = 2 inner products of their

inputs with random strings from Rτ where τ = 1a0n−a. See Figure 6 for an illustration. If their
inner products are the same then the answer to the algorithm is “no, the key is not greater than a”
and otherwise, it’s “yes, the key is greater than a”. And at the end of the protocol, Alice and Bob
check who has a greater value in the most significant bit discovered during the procedure. Now we
are ready to prove the claim.

Constructing the good base ROS++. The construction is similar to the construction of ROS.
Let R̂ have the following structure.
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R̂ = R1n/20n/2

×
(
R1n/20n/2 ×R1n/403n/4

)
×
(
R1n/20n/2 ×R13n/40n/4

)
× . . .

×

(
R120n−2 ×R110n−1 ×

(n−4)/2

×
a=1

(
R12a0n−2a ×R12a+20n−2a−2 ×R12a+10n−2a−1

)
×R1n−202 ×R1n−101

)

×

(
×

2c logn

(
R110n−1 ×

n−2

×
a=1

(
R1a0n−a ×R1a+10n−a−1

)
×R1n−101

))

See Figure 7 for an illustration. This R̂ describes all the strings as the source of randomness
needed for the O(log n) communication protocol for GT, but each of the strings appears in the
structure only once instead of αc log n times. So, we need to duplicate this structure αc log n times
to properly simulate the protocol.

As in the proof of Claim 4, we are going to add two other steps to the structure. First, we
are going to have t individual “prepackaged” copies for the GT protocol. Let R1 = . . . = Rt =
×αc lognR̂. Each of the copies has enough randomness and the right structure of that randomness
to simulate one full run of the GT protocol. Let R′ =×j∈[t]Rj , which allows us to handle t runs.

Secondly, we add a set of “basis” strings to the structure: B = {11} × {12} × . . . {1n−1} × {1n} =
{10 . . . 0} × {010 . . . 0} × . . .× {00 . . . 010} × {00 . . . 01}.

The final underlying structure of the oracle will be a Cartesian product of R′ and B: ROS++ =
B ×R′ = B × (×j∈[t]Rj). See Figure 8 for an illustration.

We also set the parameters to be α = 2, t = 250n ln 2. Notice that this set ROS++ is a good
base by construction and has size m ≤ n+ 3αt(cn log n+ 2cn log2 n) = O(n3 log2 n).

Constructing the family of approximating polynomials. The construction will follow the
same outline as the construction of polynomials for ROS++. We construct a family of deterministic
algorithms that work well for every fixed pair of inputs i, x ∈ {0, 1}n, and then construct a family of
algorithms that work for all inputs with high probability at the same time, and then finally explain
how to convert it to a family of approximating polynomials.

For all i ∈ {0, 1}n, j ∈ [t], r ∈ ROS++ let B(r,i,j)(Y(r, x)) be the following deterministic algo-
rithm.

1. Simulate the algorithm from Claim 20.

2. Each time the algorithm asks “is the key > a?”:

3. Set τ = 1a0n−a.

4. For the α indices v ∈ [m] corresponding to n-bit strings drawn from Rτ within the jth

copy Rj that were not already used prior to this step:

5. Compute ⟨i, rv⟩ and compare it to (Y(r, x))v = ⟨x, rv⟩.

6. If for all α indices v the inner products are the same then reply “yes, the key > a”.

Otherwise, reply “no, the key ≤ a”.
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Interval τ Structure of Rτ

(0, 8] 11110000 ⋆ ⋆ ⋆ ⋆ 0 0 0 0

(0, 4]
11110000 ⋆ ⋆ ⋆ ⋆ 0 0 0 0

11000000 ⋆ ⋆ 0 0 0 0 0 0

(4, 8]
11110000 ⋆ ⋆ ⋆ ⋆ 0 0 0 0

11111100 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0

(0, 2]
11000000 ⋆ ⋆ 0 0 0 0 0 0

10000000 ⋆ 0 0 0 0 0 0 0

(2, 4]
11000000 ⋆ ⋆ 0 0 0 0 0 0

11110000 ⋆ ⋆ ⋆ ⋆ 0 0 0 0

11100000 ⋆ ⋆ ⋆ 0 0 0 0 0

(4, 6]
11110000 ⋆ ⋆ ⋆ ⋆ 0 0 0 0

11111100 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0

11111000 ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0

(6, 8]
11111100 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0

11111110 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0

(0, 1] 10000000

{ ⋆ 0 0 0 0 0 0 0 }
repeat 2c log n times. . .

⋆ 0 0 0 0 0 0 0

(1, 2]

10000000

{ ⋆ 0 0 0 0 0 0 0 }
repeat 2c log n times. . .

⋆ 0 0 0 0 0 0 0

11000000

{ ⋆ ⋆ 0 0 0 0 0 0 }
repeat 2c log n times. . .

⋆ ⋆ 0 0 0 0 0 0

. . .
(7, 8] 11111110

{ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 }
repeat 2c log n times. . .

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0

Figure 7: Structure of R̂. Blue cells with ⋆ represent indices where either a 0 or 1 could appear.
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B R1 R2 Rt

cα log n copies cα log n copies cα log n copies

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

. . .

×

. . .

× . . . ×

. . .

Figure 8: Structure of ROS++. Each Rj consists of cα log n copies of R̂.

7. Let k be the output of the algorithm.

8. Compare ik = ⟨i,1k⟩ and (Y(r, x))k = ⟨x,1k⟩ = xk. If xk ≤ ik then accept. Otherwise, reject.

Notice that this algorithm emulates the O(log n) randomized communication protocol for GT com-
munication problem.

This algorithm computes GTi(x) with probability at least 11
12 for all j ∈ [t]. That is, for all

j ∈ [t] and for all i, x ∈ {0, 1}n

Pr
r←ROS++

[B(r,i,j)(Y(r, x)) = GTi(x)] ≥
11

12
.

This algorithm makes at most 3αc log n = 6c log n queries to the oracle Y(r, x). Let W (i, x, r, j) be
the indicator that the j-th package of random strings in r defines a set of “bad” random strings for
(i, x): W (i, x, r, j) = 1 if and only if B(r,i,j)(Y(r, x)) ̸= GTi(x). We established that B(r,i,j)(Y(r, x))
works well if given a random r ← ROS++ for every j ∈ [t] and the probability of this algorithm
outputting an incorrect answer is at most 1

12 . So for all i, x ∈ {0, 1}n, j ∈ [t]

Pr
r←ROS++

[W (i, x, r, j) = 1] = Er←ROS++
[W (i, x, r, j)] ≤ 1

12
.

For all i ∈ {0, 1}n, r ∈ ROS++ let A(r,i)(Y(r, x)) be the following randomized algorithm:

• Choose j ← [t] uniformly at random.

• Run B(r,i,j)(Y(r, x)).

The number of queries that A(r,i) makes to the oracle is the same as B(r,i,j) which is 3αc log n =
6c log n. We fix a pair (i, x) and evaluate the following probability.

Pr
r←ROS++

[
Pr

j←[t]
[B(r,i,j) ̸= GTi(x)] >

1

6

]
= Pr

r←ROS++

1
t

∑
j∈[t]

W (i, x, r, j) >
1

6

 .
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We established that Er←ROS++
[W (i, x, r, j)] ≤ 1

12 and so by Hoeffding’s inequality,

Pr
r←ROS++

1
t

∑
j∈[t]

W (i, x, r, j) >
1

12
+

1

12

 ≤ e−2
t

144 ≤ 2−
500n
144 .

By a union bound over all possible i, x ∈ {0, 1}n,

Pr
r←ROS++

∃i, x ∈ {0, 1}n :
1

t

∑
j∈[t]

W (i, x, r, j) >
1

6

 ≤ 22n2−
500n
144 ≤ 2−n <

1

3
.

Therefore, we have proven that

Pr
r←ROS++

[
∃i, x ∈ {0, 1}n : Pr

j←[t]
[A(r,i)(Y(r, x))) ̸= GTi(x)] >

1

6

]
<

1

3
.

The last step is to convert this family of query algorithms into a family of approximating
polynomials. Let q(r,i) denote the acceptance probability of A(r,i) which is a polynomial of degree
at most 6c log n such that

Pr
r←ROS++

[
∃i, x ∈ {0, 1}n :

∣∣q(r,i)(Y(r, x))− GTi(x)
∣∣ > 1

6

]
<

1

3

which is exactly what we were looking for.
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