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Abstract

Strong (resp. weak) average-case hardness refers to the properties of a computational problem
in which a large (resp. small) fraction of instances are hard to solve. We develop a general
framework for proving hardness self-amplification, that is, the equivalence between strong and
weak average-case hardness. Using this framework, we prove hardness self-amplification for
popular problems, such as matrix multiplication, online matrix-vector multiplication, triangle
counting of Erdős–Rényi random graphs, and the planted clique problem. As a corollary, we
obtain the first search-to-decision reduction for the planted clique problem in a high-error regime.
Our framework simplifies, improves, and unifies the previous hardness self-amplification results.

Our approach uses a one-query upward self-reduction, that is, a reduction that maps a
small instance to a large instance. We demonstrate that this reduction yields hardness self-
amplification if the bipartite graph, whose left and right vertices correspond to small and large
instances, respectively, has an expansion property. Our key technical contribution is to show
the expansion property of the bipartite graph naturally constructed from the planted clique
problem by using the coupling method of Markov chains.
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1 Introduction

The theory of average-case complexity aims to analyze what fraction of instances of a problem
can (or cannot) be solved efficiently. Depending on the fraction of hard instances, we obtain two
different notions of average-case complexity. We say that a function f is δ-weakly average-case
hard if any efficient algorithm fails to compute f on a δ-fraction of inputs for a small parameter
δ > 0. We say that a function f : {0, 1}n → {0, 1}m is ϵ-strongly average-case hard if no efficient
algorithm can compute f on more than a (2−m + ϵ)-fraction of inputs for a small parameter ϵ > 0.
Note that there is a trivial algorithm that computes f on a 2−m-fraction of inputs by outputting
a uniformly random element of {0, 1}m; thus, the strong average-case hardness indicates that no
efficient algorithm can compute f significantly better than random guessing.

Strong average-case hardness has had fundamental impacts on the construction of crypto-
graphic primitives and derandomization. To transform a weakly average-case hard problem f
to a strongly average-case hard problem g, proof techniques, known as hardness amplification, have
been developed. For instance, the direct product theorem [Yao82; GNW11] states that for any
function f : {0, 1}n → {0, 1}, the k-wise direct product g := fk : ({0, 1}n)k → {0, 1}k defined as
fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) is strongly average-case hard if f is weakly average-case hard.
However, the resulting function g is often highly artificial, as the main concern in the traditional
line of research of hardness amplification is to obtain better trade-offs of parameters (e.g., [Yao82;
Imp95; IW97; ODo04; HVV06; IJK09b; IJK09a; IJKW10; GNW11]).

Recently, two sets of authors developed two different frameworks for showing hardness self-
amplification for natural problems f , i.e., the equivalence between the weak average-case hardness
of f and the strong average-case hardness of f .

1. Asadi, Golovnev, Gur, and Shinkar [AGGS22] considered the matrix multiplication, i.e., the

function Mult :
(
Fn×n
p

)2 → Fn×n
p that takes two matrices A,B ∈ Fn×n

p and outputs A · B.
They showed that if Mult can be solved by an algorithm running in time T (n) on an ϵ-fraction

of inputs, then there exists a randomized 2O(log5(1/ϵ)) · T (n)-time algorithm that solves Mult
on every input.1 (The equivalence between the worst-case hardness and weak average-case
hardness of Mult is due to Blum, Luby, and Rubinfeld [BLR93].)

2. Hirahara and Shimizu [HS22] considered the problem ⊕TriangleTripartite of computing the
parity of the number of triangles in a random tripartite graph, and showed that ϵ-strong
average-case hardness of ⊕TriangleTripartite is equivalent to δ-weak average-case hardness of
⊕TriangleTripartite for any constants ϵ, δ > 0. More generally, they proved that if there exists
a circuit of size s that computes ⊕TriangleTripartite on a (1/2 + ϵ)-fraction of inputs, then
there exists a circuit of size s′ that computes ⊕TriangleTripartite on a (1 − δ)-fraction of
inputs, where s′ = 2−poly(1/ϵ,1/δ) · s. (In particular, by the equivalence between the worst-case
and weak average-case hardness [BBB21; Gol20]2, the strong average-case hardness and the
worst-case hardness are also equivalent.)

Their proof techniques are very different. On one hand, the framework of [AGGS22] is based on
mathematically deep results of additive combinatorics, and relies on the probabilistic version of the
quasi-polynomial Bogolyubov–Ruzsa lemma [San12]. The quasi-polynomial overhead 2O(log5(1/ϵ)) of
the reduction can be improved to poly(1/ϵ) if the (probabilistic version of) polynomial Bogolyubov–
Ruzsa conjecture holds — a major open problem in additive combinatorics. On the other hand, the

1When the size p of the field is large, their algorithm runs in time O((1/ϵ)4 · T (n)).
2Although [BBB21; Gol20] focused on Erdős–Rényi graph as the input distribution, their techniques also work for

the random tripartite graph.
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framework of [HS22] is based on the generalization of the hard-core lemma of Impagliazzo [Imp95],
which is one of the most fundamental tools in the literature of hardness amplification.

This state of affairs raises a couple of natural questions. Can we improve the quasi-polynomial
overhead of the reduction of [AGGS22] without resolving the polynomial Bogolyubov–Ruzsa con-
jecture? Can we improve the exponential overhead of [HS22] to a polynomial overhead? Is there a
unified framework that enables us to show the hardness self-amplification results for both Mult and
⊕TriangleTripartite? Can we prove hardness self-amplification for other popular problems, such as
the planted clique problem?

In this paper, we answer all the questions affirmatively. We develop a general framework that
improves and unifies the previous hardness self-amplification results of [AGGS22; HS22]. Our
proofs are substantially simpler than the previous ones. Moreover, our framework enables us to
show the hardness self-amplification theorem for the planted clique problem and gives the first
search-to-decision reduction in a high-error regime. We proceed to describe our results in detail.

1.1 Our Results

Our new framework enables us to establish hardness self-amplification theorems for matrix multipli-
cation, online matrix-vector multiplication, triangle counting of Erdős–Rényi random graphs (not
only for tripartite random graphs), and the planted clique problem. We believe that our framework
is versatile and will be used to show hardness self-amplification for other problems in the future.
Here, we focus on the four specific problems and, for each problem, we explain its context and our
results in the sequel.

1.1.1 Planted Clique

The planted clique problem is one of the most popular average-case problems. To introduce the
problem, let Gn,1/2 be the distribution of the Erdős–Rényi graph, namely, the distribution of an n-
vertex random graph where each possible edge is placed independently with probability 1/2. For a
parameter k = k(n), let Gn,1/2,k be the distribution of an n-vertex graph obtained by first sampling
a graph according to Gn,1/2, selecting a uniformly random k subset from n vertices, and thereafter
placing the k-clique in the selected k vertices. In the decision version of the planted clique problem,
an algorithm is given a graph G from either G ∼ Gn,1/2 or G ∼ Gn,1/2,k and is asked to decide
whether G comes from Gn,1/2 or Gn,1/2,k. The search version of the planted clique problem asks to
find the planted clique of size k, given a random graph G ∼ Gn,1/2,k as input.

The Planted Clique Conjecture [Jer92; Kuč95] postulates that there is no polynomial-time
algorithm that solves (some version of) the planted clique problem on n-vertex graphs when
2 log n ≪ k ≪

√
n. This conjecture serves as a key hardness hypothesis in a broad range of

fields, including cryptography [JP00; ABW10], the densest subgraph problem [HWX15; MRS21],
approximating a Nash equilibrium [HK11], distribution testing [AAKMRX07], submatrix detection
[MW15], compressed sensing [KZ14], and the sparse principal component analysis (PCA) [BR13;
BBH18].

Note that “the” Planted Clique Conjecture is, in fact, not a single conjecture; rather, it should
be considered as a family of conjectures. For each variant of planted clique problems, one may
consider corresponding hardness conjectures. For example, Hazan and Krauthgamer [HK11] used
a search version of the planted clique conjecture to give evidence that there exists no polynomial-
time algorithm that finds the best Nash equilibrium of a two-player game. Brennan, Bresler,
and Huleihel [BBH18] used a decision version of the planted clique conjecture to obtain evidence
of the intractability of numerous average-case problems. Moreover, we obtain different versions
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of planted clique conjectures depending on the success probability of average-case algorithms. For
example, the strong average-case hardness of planted clique problems is desirable for a cryptographic
purpose [JP00]. It is evident that strong average-case hardness implies weak average-case hardness,
and that the decision version of the planted clique problem reduces to its search version. The
converse was proved in a low-error regime by Alon, Andoni, Kaufman, Matulef, Rubinfeld, and Xie
[AAKMRX07]. Specifically, they showed that if the decision variant of the planted clique problem
can be efficiently solved on a (1−1/n3)-fraction of n-vertex graphs, then the search version can also
be solved efficiently. Apart from this search-to-decision reduction, the relationship among different
versions of the planted clique conjecture is not well understood.

We prove that decision and search versions of the planted clique problem admit hardness self-
amplification, thereby showing that the planted clique conjecture is robust. In particular, we
obtain the first search-to-decision reduction for the planted clique problem in a high-error regime.
This is given by combining the search-to-decision reduction of [AAKMRX07] with the following
decision-to-decision hardness self-amplification for the planted clique problem.

Theorem 1.1. For any constants δ, ϵ > 0, there exists a constant c = c(δ, ϵ) that satisfies the
following. Let k = k(n) ≥ 3 log n. If there exists a polynomial-time algorithm M that satisfies

Pr
G∼Gcn,1/2,k

[M(G) = 1]− Pr
G∼Gcn,1/2

[M(G) = 1] ≥ ϵ,

then, there exists a polynomial-time randomized algorithm M′ that satisfies

Pr
G∼Gn,1/2,k

[M′(G) = 1]− Pr
G∼Gn,1/2

[M′(G) = 1] ≥ 1− δ.

In other words, if it is weakly average-case hard to detect a k-clique in an n-vertex random
graph, then it is strongly average-case hard to detect a k-clique in an N -vertex graph, where
N = O(n).

Theorem 1.1 makes the planted clique conjecture robust in the sense that different versions of
planted clique conjectures can be unified. For example, the hypothesis of [BR13, Hypothesis BPC]
states that for any ϵ > 0, for any randomized polynomial-time algorithm M and k < n1/2−ϵ,

Pr
G∼Gn,1/2,k

[M(G) = 1]− Pr
G∼Gn,1/2

[M(G) = 1] < 1− δ, (Hypδ)

where δ ∈ (0, 1) is a parameter. Theorem 1.1 shows that for any constant δ ∈ (0, 1), (Hypδ) is
equivalent to the hypothesis of [MW15; GMZ17] that states

Pr
G∼Gn,1/2,k

[M(G) = 1]− Pr
G∼Gn,1/2

[M(G) = 1] ≤ 1

3
.

For simplicity, Theorem 1.1 is stated only for constant error parameters; however, it can be
extended to a high-error regime of δ(n), ϵ(n) = o(1), at the cost of increasing N . By combining
this hardness self-amplification with the search-to-decision reduction of [AAKMRX07], we obtain
a search-to-decision reduction in a high-error regime, that is, even if the decision algorithm distin-
guishes Gn,1/2,k from Gn,1/2 with small advantage ϵ(n).

Theorem 1.2. Let ϵ = ϵ(n) = n−1/2+c0 be a function for a constant c0 > 0. Let c be any constant
that satisfies c > 3

2c0
and k = k(n) be any function that satisfies k ≥ 108c log n. Suppose there

exists a polynomial-time algorithm M such that for every n and k′ ≥ k(n)/3,

Pr
G∼Gnc,1/2,k′

[M(G) = 1]− Pr
G∼Gnc,1/2

[M(G) = 1] ≥ ϵ(nc).
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Then, there exists a randomized polynomial-time algorithm M′ that satisfies

Pr
G∼Gn,1/2,k

[M′(G) outputs a k-clique in G] ≥ 1−O(1/n).

For example, for c0 = 1/4, this search-to-decision reduction shows that if it is weakly average-
case hard to find a clique of size k(n) = 648 log n on n-vertex random graphs, then it is strongly
average-case hard to distinguish Gn,1/2 from Gn,1/2,k′ with advantage ϵ(n) = n−1/4 for some k′ ≥
3 log n.

1.1.2 Triangle Counting

Subgraph counting is a fundamental task of graph algorithms, and its average-case complexity has
been recently investigated actively [GR18; BBB21; DLW20; Gol20; HS21; HS22]. Boix-Adserà,
Brennan, and Bresler [BBB21] studied counting k-clique in an Erdős–Rényi graph and presented
the following worst-case to average-case reductions in a low-error regime.

Theorem 1.3 (Informal; [BBB21]). Let 0 < p < 1 be a constant.

1. Suppose there exists a T (n)-time algorithm M that counts k-clique for an (1−1/ polylog(n))-
fraction of G ∼ Gn,p. Then, there exists a T (n) · polylog(n)-time randomized algorithm M′

that counts k-clique for every G.

2. Suppose there exists a T (n)-time algorithm M that computes the parity of the number of
k-clique for a (1 − c)-fraction of G ∼ Gn,p, where c = c(k, p) is some constant. Then, there
exists an O(T (n))-time randomized algorithm M′ that computes the parity of the number of
k-clique for every G.

Whether the reductions of Theorem 1.3 can be extended to a high-error regime has received
significant attention, and partial progress has been made in [GR18; Gol20; HS21; HS22]. However,
even in the special case of k = 3, whether the strong average-case hardness of computing the parity
of the number of triangles is equivalent to its worst-case hardness is open. The aforementioned
work of [HS22] comes close to resolving this, but slightly falls short of it: The input distribution
of the problem ⊕TriangleTripartite, for which they proved the hardness self-amplification, is the
tripartite variant of the Erdős–Rényi random graph.

Using our framework, we extend the result of [HS22] to the (standard) Erdős–Rényi ran-
dom graph, thereby resolving the open question for nonuniform algorithms. Moreover, we im-
prove the exponential overhead 2(1/ϵ)

O(1)
to a polynomial (1/ϵ)O(1) overhead. Let #Triangle(G)

(resp. ⊕Triangle(G)) denote the function that maps a graph G to the number (resp. parity) of
triangles contained in G.

Theorem 1.4. Let p > 0 be a constant. For any ϵ > 0, there exists k = O(ϵ−2 log(1/ϵ)) that
satisfies the following: If there exists a T (kn)-time algorithm M that computes ⊕Triangle(G) for
a (1/2 + ϵ)-fraction of G ∼ Gkn,p, then, there exists an O(T (kn) · ϵ−2 log(1/ϵ))-time nonuniform
algorithm that computes ⊕Triangle(G) for any n-vertex G.

Shaltiel and Viola [SV10] showed a lower bound ϵ−2 on the query complexity of any standard
proof of hardness amplification of a Boolean function to ϵ-strong average-case hardness. In other
words, the overhead ϵ−2 of the running time in Theorem 1.5 is indispensable; thus, our hardness
self-amplification achieves the minimum overhead up to a factor of O(log(1/ϵ)).

We also obtain a hardness self-amplification for counting the number of triangles in an Erdős–
Rényi random graph for errorless algorithms [BT06a]. We say that an algorithm M is errorless
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for a function f if M(x) ∈ {f(x),⊥}. In other words, an errorless algorithm outputs either the
correct value f(x) or a special symbol ⊥ to indicate “I don’t know”. Combining our hardness
self-amplification with Item 1 of Theorem 1.3, we obtain the equivalence between the worst-case
hardness of counting the number of triangles in an Erdős–Rényi random graph and its strong
errorless average-case hardness.

Theorem 1.5. Let p > 0 be a constant. Suppose there exists a T (n)-time errorless algorithm M
that computes #Triangle(G) for an ϵ-fraction of G ∼ Gn,p. Then, for some k = polylog(n), there
exists an O(T (kn)·ϵ−1 polylog(n))-time nonuniform errorless algorithm that computes #Triangle(G)
for any n-vertex graph G.

1.1.3 Matrix Multiplication

Matrix multiplication is a fundamental computational task. A state-of-the-art worst-case algorithm
multiplies two n×n matrices in time O(nω) with ω < 2.3728596 [AW21]. We consider the average-
case complexity of the matrix multiplication over the uniform distribution. Using an unexpectedly
simple proof technique, we significantly improve the previous worst-case to average-case reduction
of [AGGS22].

Theorem 1.6. Let R be a finite ring. Suppose there exists a T (n)-time algorithm M that computes
AB for an ϵ-fraction of A,B ∼ Rn×n. Then, there exists a randomized O(T (n) · ϵ−1 polylog(1/ϵ))-
time algorithm M′ that computes AB for any A,B ∈ Rn×n.

This result improves the quasi-polynomial overhead 2O(log5(1/ϵ)) of [AGGS22] to a nearly linear
Õ(1/ϵ), without resolving the polynomial Bogolyubov–Ruzsa conjecture. Moreover, our reduction
works for matrices over a finite ring, while [AGGS22] works for matrices over a finite field because
their proof relies on the Gaussian elimination. Surprisingly, we achieve this by using the k-wise
direct product theorem in a black-box way — one of the most fundamental and standard proof
techniques in the literature of hardness amplification. We present a proof sketch of Theorem 1.6 in
Section 2.1.

1.1.4 Online Matrix-Vector Multiplication

In the online matrix-vector multiplication problem (OMv), the goal is to construct a data structure
π from a given matrix M so that Mv can be computed efficiently on a given query vector v using
the preprocessed data π. The OMv Conjecture [HKNS15] states that any data structure on an
n × n matrix over the Boolean semiring cannot answer a query in time O(n2−c) for any constant
c > 0. This conjecture serves as a hypothesis that implies the (worst-case) fine-grained hardness of
numerous dynamic problems [HKNS15; BKS17; LMNT15].

Recent progress has been made on the average-case complexity of OMv [AGGS22; HLS22;
HS22], where the input matrix M and query vector v are uniformly random (we refer to Section 6
for the formal framework). Based on the idea of [BLR93], Henzinger, Lincoln, and Saha [HLS22]
presented a worst-case to average-case reduction for OMv over a finite ring in a low-error regime.
Asadi, Golovnev, Gur, and Shinkar [AGGS22] presented a reduction for OMv over a finite field

that works for a high-error regime, where the running time overhead is 2O(log5(1/ϵ)). Hirahara and
Shimizu [HS22] obtained a hardness self-amplification result for a slightly different variant known
as online vector-matrix-vector multiplication over F2 [HKNS15]. We improve the quasi-polynomial

overhead 2O(log5(1/ϵ)) of [AGGS22] and present a worst-case to average-case reduction for OMv over
a finite ring R in a high-error regime.
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Theorem 1.7 (Informal). Suppose there exists a data structure algorithm M with query time T (n)
that succeeds on an ϵ-fraction of M ∼ Rn×n and v ∼ Rn. Then, there exists a randomized data
structure algorithm M′ with query time T (n) · poly(1/ϵ) that succeeds on any M ∈ Rn×n, v ∈ Rn.

1.2 A General Framework for Hardness Self-Amplification

Our general framework is based on the expansion property of a “query graph” — a graph con-
structed from a one-query reduction. Consider a randomized one-query reductionR from a problem
f to another problem g. Given an instance x of f , the reduction R produces a query q, obtains the
answer g(q) from the oracle, and outputs f(x) with high probability over the internal randomness
of R. Such a one-query reduction naturally induces the query graph as follows: The query graph
G of a reduction R is a weighted bipartite graph whose left vertex set consists of the instances of
f and right vertex set consists of the instances of g. An edge (x, q) with weight p is placed in G if
the reduction R makes the query q on input x with probability p.

For example, in order to show hardness self-amplification for the decision version of the planted
clique problem f , we consider a simple upward self-reduction for f — a one-query reduction R from
f to f itself that takes a graph G of n vertices as input and queries a larger graph G′ of N vertices,
where N ≫ n. Here, the graph G′ is constructed by embedding G into an N -vertex Erdős–Rényi
random graph at a random position. We require an average-case solver that succeeds with low
success probability 1

2 + ϵ to solve the planted clique problem on the large graph G′. Intuitively,
since G′ is larger than the original instance G, solving the planted clique problem on G′ becomes
“more average-case hard.” This is a high-level idea of how to amplify weak avergae-case hardness
of f to strong average-case hardness of f . We make this idea formal when the query graph has a
good expansion property, which is encapsulated in the following.

Theorem 1.8 (A special case of Theorem 4.1). Let R be a one-query randomized reduction from
f to g whose query graph is a λ-expander. If M is a randomized algorithm for g that succeeds on
a (1/2 + ϵ)-fraction of inputs and λ ≤ δϵ2/100, then

Pr
x

[
Pr
R

[
RM(x) = f(x)

]
≥ 1

2
+

ϵ

2

]
≥ 1− δ.

Here, we say that a bipartite graph is a λ-expander if the second-largest singular value of its
edge-weight matrix is bounded by λ. Theorem 1.8 shows that for a (1 − δ)-fraction of instances
x of f , the majority vote of the output of the reduction RA(x) is the correct output f(x), under
the assumption that λ is sufficiently small. The most technical part of this paper is to show the
expansion property of the query graph of the reduction for the planted clique problem. We present
a proof sketch in Section 2.4.

2 Techniques and Proof Overview

2.1 Matrix Multiplication and Direct Product Theorem

We start with a simple error-tolerant worst-case to average-case reduction for matrix multiplication
(Theorem 1.6). This hardness self-amplification can be explained without using a general frame-
work. Let M be an algorithm that computes AB for an ϵ-fraction of pairs (A,B) ∼ (Rn×n)2, where
ϵ > 0 is a small parameter. Our goal is to construct an efficient algorithm that computes AB for
every A and B. The approach is to use the k-wise direct product theorem in a black-box way.

Let k = O(log(1/ϵ)) and let d = n/k. For simplicity, we assume that d is an integer. We
partition given matrices A and B into submatrices A1, . . . , Ak and B1, . . . , Bk as shown in Figure 1.
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Specifically, Ai ∈ Rd×n is the submatrix of A consists of the ((i− 1)d+ 1)-th to id-th row vectors
of A and Bj ∈ Rn×d is the submatrix of B consists of the ((j− 1)d+1)-th to jd-th column vectors
of B. Then, the product AB can be divided into k × k blocks such that each (i, j)-block is equal
to AiBj .

A1

Ak

B1 Bk

A1B1

AkBk

=

Figure 1: A1, . . . , Ak and B1, . . . , Bk.

Suppose M(A,B) correctly computes AB. Then, by looking at the diagonal blocks, we obtain
AiBi for all i = 1, . . . , k. Moreover, if A,B ∼ Rn×n, then the k pairs (A1, B1), . . . , (Ak, Bk) can be
regarded as k independent samples from the uniform distribution over Rd×n × Rn×d. Therefore,
usingM, we can compute the multiplication of the k pairs of matrices (Ai, Bi) for an ϵ-fraction of the
k-tuple of pairs. In other words, we can compute the k-wise direct product of the rectangular matrix
multiplication. Then, by the direct product theorem (and Freivalds’ verification algorithm [Fre79]),
we can multiply two matrices X ∈ Rd×n and Y ∈ Rn×d for a 0.99-fraction of (X,Y ) ∼ Rd×n×Rn×d.
This gives a hardness self-amplification for the matrix multiplication.

Combining this algorithm with the random self-reduction of Blum, Luby, and Rubinfeld [BLR93]
we obtain a randomized worst-case algorithm that multiplies any two rectangular matrices, X ∈
Rd×n and Y ∈ Rn×d. This algorithm can be converted into an algorithm that multiplies two square
matrices by partitioning given A,B ∈ Rn×n into A1, . . . , Ak and B1, . . . , Bk as in Figure 1 and
using the worst-case algorithm to compute all AiBj . The running time of the reduction is at most
O(ϵ−1poly(k)), where the O(ϵ−1) factor comes from the direct product theorem. Note that this
dependence on ϵ−1 significantly improves the quasi-polynomial dependence of [AGGS22] with a
much simpler proof.

Similar proof ideas can be used to show the hardness self-amplification for the online matrix-
vector multiplication problem (Theorem 1.7). Details can be found in Section 6.

We mention in passing that the idea of applying the direct product theorem to show a connection
between weakly and strongly average-case hardness for matrix multiplication was also used in
[GC20]. They used a reduction somewhat similar to ours, and proved that the weak average-
case hardness of Mult with respect to a uniformly random matrix implies the strong average-case
hardness of Mult with respect to a random block-diagonal matrix, which is far from the uniform
distribution.

2.2 General Framework: Query Graph and Sampler

To extend the described idea to a broader class of problems, we further analyze the proof of the
direct product theorem, where we consider the following reduction: Given an instance x, sample
k independently random instances x1, . . . , xk of f and set x = (x1, . . . , xi−1, x, xi+1, . . . , xk) for
a random i ∼ [k]. Run the average-case solver M for the k-wise direct product fk and obtain
(z1, . . . , zk) := M(x). If f(x) = zi, then output zi. (here we assume that we can efficiently check
whether f(x) = z for given x and z.)

In general, the reduction of the direct product theorem can be seen as a one-query randomized
reduction RM(x), where M is supposed to be an average-case solver with success probability ϵ.
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Given an input x, RM(x) produces a random query y and determines the output using M(y).
(In the proof of the direct product theorem, y = x̄.) Let P (x, y) be the probability that R(x)
will produce y, where the probability is over the internal randomness of R. This results in an
edge-weighted bipartite graph G = (X,Y,W ), where X and Y denote the input spaces of x and
y, associated with input distributions µ ∈ [0, 1]X and ν ∈ [0, 1]Y , respectively. For each (x, y) ∈
X × Y , the edge weight of (x, y) is defined to be W (x, y) := µ(x)P (x, y). Note that W specifies a
distribution over X × Y as

∑
(x,y)W (x, y) = 1. We refer to G as the query graph of the reduction.

We always assume µW = ν, meaning that the distribution of the random query y produced by
R(x) for random input x ∼ µ is ν.

In a traditional study on hardness amplification, Impagliazzo, Jaiswal, and Kabanets [IJK09b]
and Impagliazzo, Jaiswal, Kabanets, and Wigderson [IJKW10] showed that an expansion property
of the query graph yields hardness amplification results. They constructed (artificial) bipartite
graphs with good expansion properties, and used these graphs to present simplified, optimized, and
derandomized direct product theorems. The present paper (and its title) is largely inspired by their
work. The key technical contribution of our work is to show that the proof techniques of [IJK09b;
IJKW10] are applicable to natural problems by showing expansion properties of the corresponding
query graphs.

We now explain the expansion property of edge-weighted bipartite graphs. Consider an edge-
weighted bipartite graph Q = (X,Y,W ) associated with distributions µ ∈ [0, 1]X and ν ∈ [0, 1]Y .
We say thatQ is a (δ, c)-sampler for density ϵ if for any ϵ-dense subset Y ′ ⊆ Y (i.e.,

∑
y∈Y ′ ν(y) ≥ ϵ),

a (1 − δ)-fraction of vertices x0 ∼ µ satisfies Pr[y ∈ Y ′|x0] ≥ (1 − c)ϵ, where Pr[·|x0] refers to the
probability over (x, y) ∼ W conditioned on x = x0.

Suppose the query graph is a (δ, c)-sampler for density ϵ and let M be the algorithm that
succeeds on an ϵ-fraction of inputs in Y . Then, the set of instances on which M succeeds is ϵ-
dense. By the sampler property, we have that for a (1 − δ)-fraction of x ∈ X, the algorithm M
succeeds on at least (1−c)ϵ-fraction of neighbors of x. Therefore, by repeatedly running RM(x) for
given x, we obtain a list of values such that approximately a (1− c)ϵ-fraction of them is the correct
answer with high probability. If we can efficiently verify the correctness of the output, then we can
identify the correct one. For example, in the case of matrix multiplication, we can use the Freivalds’
verification algorithm [Fre79]. Similarly, if ϵ = 1/2+ ϵ0 for some ϵ0 (e.g., in decision problems, such
as the parity of triangle counting), then setting c = ϵ0/3 (which implies (1− c)ϵ ≥ 1/2 + ϵ0/2) and
taking the majority vote of the values in the list, we may compute the correct answer with high
probability.

2.3 Triangle Counting

We now explain how to prove hardness self-amplification for the problem ⊕Triangle of computing
the parity of the number of a random graph. Let M be an algorithm that computes ⊕Triangle(G)
for a (1/2 + ϵ)-fraction of G ∼ Gn,p, where 0 < p < 1 is a constant.

We consider the following one-query reduction RO(G): Let G be a given n-vertex graph and
t ∈ N be a parameter. Sample G ∼ Gtn,p and let V (G) = V1 ∪ · · · ∪ Vt be a partition of the vertex
set such that |Vi| = n for each i ∈ [t]. Sample i ∼ [t] and replace the induced subgraph G[Vi] with
G (Figure 2). Query the graph G to the oracle. We observe that the query distribution is Gkn,p if
the input G is drawn from Gn,p.

To complete the description of the reduction, we need to compute ⊕Triangle(G) from the answer
⊕Triangle(G) from the oracle. To this end, we use nonuniform advice in a way similar to the proof
of [HS22] that ⊕TriangleTripartite admits a computational design. We color each edge e ∈ E(G)
red if e is contained in the embedded graph G[Vi] = G, and blue otherwise (Figure 2). We say that
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V1
V2
V3
V4

G i ∼ [4]

G

Figure 2: Reduction for triangle counting. Edges in the original graph are red and others are blue.
We can compute ⊕Triangle(G) from ⊕Triangle(G) and nonuniform advice.

a triangle is red if all the three edges in the triangle are red. Our goal is to count red triangles,
for which it suffices to count non-red triangles, as the parity ⊕Triangle(G) of the number of all
the triangles is known to the reduction. Observe that any non-red triangle contains at least two
blue edges. We count the blue triangles (whose edges are all blue) and the triangles that contain
exactly two blue edges separately. Since blue edges are independent of the input G, we may fix
these edges as nonuniform advice. Once blue edges are fixed, the number of blue triangles can
be given as advice. Moreover, the number of triangles that contain exactly two blue edges can be
counted by using the number of blue uv-paths of length 2 for each u, v ∈ V (G), which can be given
as an advice string of length O(n2). Therefore, we can compute ⊕Triangle(G) in time O(n2) from
the nonuniform advice and ⊕Triangle(G).

Since the query G is the graph obtained by combining k independent random graphs with
random edges, the expansion property of the query graph follows by the same argument with the
proof of the direct product theorem given by [IJK09b; IJKW10]. See Lemma 7.6 for details.

2.4 Planted Clique

Finally, we explain how to prove the hardness self-amplification for the search version of the planted
clique problem. For simplicity, we assume that parameters δ and ϵ are constants. Let k = ω(log n)
be the size of a planted clique.

We consider the following upward self-reduction that takes as input a random graph G ∼ Gn,1/2,k

with a planted k-clique U and queries a large graph G to the oracle. Select an Erdős–Rényi graph
G0 ∼ GN,1/2 and a uniformly random injection ϕ : [n] → [N ]. We define G to be the graph

constructed by replacing G0[ϕ([n])] with G in G0; see Figure 3. The reduction queries the graph
G to the oracle and obtains a k-clique U ′ in G. If U ′ is contained in ϕ([n]), then the reduction
outputs ϕ−1(U ′). It is not hard to see that if N = nO(1) and k = ω(log n), then the k-clique in the
graph G is very likely to be unique. This ensures the correctness of our reduction: If the oracle
returns a k-clique in the N -vertex graph G, then the k-clique clique is the one planted in G with
high probability, i.e., ϕ−1(U ′) = U .

To prove the hardness self-amplification theorem, it suffices to show that the query graph of
the reduction is indeed a sampler. We present two approaches for showing it.

Birthday Paradox and Pairwise Independence. LetQ = (X,Y,W ) be the query graph of the
reduction associated with input distributions µ = Gn,1/2,k and ν = GN,1/2,k. Let Q∗ = (Y,X,W⊤)
be the graph obtained by swapping X and Y in Q. It is not hard to see that if Q∗ is a sampler
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G = ([n], E)

G = ([N], E)

U

ϕ(G)

ϕ(U)
ϕ

Figure 3: We embed G into a large random graph G randomly and run an average-case solver on
G. If G and ϕ are given, then we can write G as G = ϕ−1(G[ϕ([n])]).

then so does Q with a slight loss of parameters.
We show that Q∗ is a sampler. Take a δ-dense subset X ′ ⊆ X. Let P ∗ ∈ [0, 1]Y×X be the matrix

defined by P ∗(G,G) = µ(G)P (G,G)
ν(G) so that the weight of an edge (y, x) of Q∗ can be written as

W⊤(y, x) = µ(x)P (x, y) = ν(y)P ∗(y, x). For an instance G ∈ Y , a random neighbor G ∼ P ∗(G, ·)
of G on Q∗ is given by ϕ−1(G[ϕ([n])]) (Figure 3), where ϕ : [n] → [N ] is a uniformly random
injection conditional on the event that ϕ([n]) contains a k-clique (for simplicity, we assume that G
contains a unique k-clique). Let ϕ1, ϕ2 be such independent random injections. By the argument of

Birthday Paradox, with probability at least 1− 2n2

N over the choice of ϕ1, ϕ2, the vertex sets ϕ1([n])
and ϕ2([n]) are disjoint except for the k-clique. Therefore, for random G ∼ GN,1/2,k, the number

Z of the neighbors of G ∈ Y in X ′ can be expressed as the sum of random variables such that at
least (1 − 2n2/N)-fraction of pairs are pairwise independent. This bounds the variance of Z. By
the Chebyshev inequality, we obtain that the query graph is a sampler if N ≫ n2.

The drawback of the argument above is that it requires a quadratic blow-up in N . We need to set

N ≥ Ω
(

n2

c3δ2ϵ

)
to ensure that the query graph is a (δ, c)-sampler for density ϵ. In other words, this

reduces the task of finding a k-clique in an n-vertex random graph to the task of finding a k-clique
in a 1000n2-vertex random graph. This suffices to show Theorem 1.2, but not for Theorem 1.1, in
which we need a linear blow-up in N .

Spectral Bounds from Coupling. For the matrix P of the one-query reduction, define its
spectral by λ(P ) := max{

√
|γ| : γ ̸= ±1 is an eigenvalue of PP ∗}. It is not hard to see that, for

any c, ϵ > 0, the query graph Q is a
(
λ(P )2

c2ϵ
, c
)
-sampler for density ϵ.

To bound λ(P ), we recall the coupling method, which is a standard technique to show the rapid
mixing of Markov chains (see, e.g., [LP17]). Recall that a coupling of two distributions D1 and D2

over the space Ω is a pair of random variables (Z1, Z2) such that the marginal distribution of each
Zi is Di. Let R ∈ [0, 1]Ω×Ω be a stochastic matrix3 associated with a metric space (Ω, dist(·, ·)).
For z ∈ Ω, we denote by R(z, ·) ∈ [0, 1]Ω the distribution that assigns x ∈ Ω a weight R(z, x). For
θ ∈ [0, 1] and z1, z2 ∈ Ω, a θ-shrinking coupling for z1 and z2 is a coupling (Z1, Z2) of R(z1, ·) and
R(z2, ·) such that E[dist(Z1, Z2)] ≤ θ · dist(z1, z2). We use Chen’s theorem [Che98], which states
that λ(R) ≤ θ if there exists a θ-shrinking coupling for any z1, z2 ∈ Ω.

Our plan is to apply Chen’s theorem to the stochastic matrix R = PP ∗. For this purpose, we

3A matrix A ∈ [0, 1]n×n is a stochastic matrix if all rows sum up to 1.
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G = ([n], E)

G = ([N], E)

U

ϕ([n])

ϕ(U)

G′ = ([n], E′ )

ϕ′ −1([n])

ϕ

ϕ′ −1

Figure 4: Sampling G′ ∼ PP ∗(G, ·) can simulated by using a random injection ϕ to embed G =
([n], E) into a large random graph G and thereafter using another random injection ϕ′ to extract
an n-vertex graph G′ randomly from G. The graphs G and G′ share n2/N vertices on average.

construct an n
N -shrinking coupling for the stochastic matrix PP ∗ ∈ [0, 1]X×X and carefully define

a metric dist(·, ·). Let G1, G2 ∈ X be the initial n-vertex graphs. We assume that Gi contains a
unique k-clique Ui ⊆ [n] (i = 1, 2). Let π : [n] → [n] be a permutation such that (i) if U1 = U2, then
π is the identity map, and (ii) otherwise, π is any permutation that maps U2 to U1. Our coupling
simulates the transition of PP ∗(G1, ·) and PP ∗(π(G2), ·) with the same random seed. Let G′

1, G
′
2

be the graphs obtained by the coupling starting from G1, G2. The metric dist(·, ·) is defined by
dist(G1, G2) = ∞ if U1 ̸= U2, and dist(G1, G2) = dham(G1, G2) otherwise, where dham denotes the
Hamming distance. To prove E[dist(G′

1, G
′
2)] ≤ n

N dist(G1, G2), we observe that the distribution
PP ∗(G, ·) can be sampled by first embedding G into an N -vertex graph G and thereafter randomly
extracting an n-vertex graph from it (Figure 4). Thus, if G1 and G2 contain the same k-clique, then
on average a (1 − n

N )-fraction of vertices in G will be replaced by new vertices from G, implying
that G′

1 and G′
2 share the same edges incident to the new vertices. This reduces the Hamming

distance. See Section 8.2 for details.

2.5 Related Work

A random self-reduction reduces the evaluation of f on a worst-case input to that on an average-case
input. A prototypical example is the permanent of a matrix over a large finite field. Lipton [Lip91]
obtained a random self-reduction for the permanent in a low-error regime where the average-case
solver must compute the permanent for a (1−o(1/n))-fraction of matrices. Subsequent works [FL92;
GS92; CPS99] have improved the error regime. In particular, Cai, Pavan, and Sivakumar [CPS99]
obtained a random self-reduction with a high-error regime of 1 − 1/poly(n). Blum and Micali
[BM84] obtained a random self-reduction for the discrete log function in the literature on pseudo-
random generators. Goldreich and Rothblum [GR18] obtained a random self-reduction for counting
k-cliques in a high-error regime, although the input distribution is artificial owing to the reduction.
Boix-Adserà, Brennan, and Bresler [BBB21] and subsequent papers [Gol20; HS21; DLW20; HS22]
obtained random self-reductions for subgraph counting problems in an Erdős–Rényi random graph
in a low-error regime. Ball, Rosen, Sabin, and Vasudevan [BRSV17] obtained a random self-
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reduction for functions that are closely related to popular problems in fine-grained complexity.
Bogdanov and Trevisan [BT06b] showed that there is no randomized nonadaptive polynomial-

time reduction from NP-complete problems to an average-case variant of NP unless the Polynomial
Hierarchy collapses. Thus, it is unlikely that the planted clique problem can be reduced from its
worst-case variant, i.e., the maximum clique problem.

Samplers and relevant notions have a wide range of applications including randomness-efficient
algorithms [BR94; BGG93; Zuc97], error-correcting codes [DHKNT21], and PCP theorem [DR06;
GS00]. We refer interested readers to Goldreich [Gol11] for explicit constructions of samplers. In
the literature of hardness amplification, Impagliazzo et al. [IJK09b; IJKW10] observed that the
direct product theorem follows from the sampler property of the query graph of the well-known
reduction.

2.6 Future Direction

This work presents a general framework for hardness self-amplification based on the expansion
property of upward self-reductions. Using this framework, we obtain hardness self-amplification for
natural problems over natural distributions. We leave several interesting open questions.

Improved Reductions for Planted Clique Problem. In Theorem 1.2, we presented the
first search-to-decision reduction for the planted clique problem in a high-error regime. A natural
direction is to improve the blow-up of N = N(n), e.g., N = n1+o(1). This is of particular interest
in the literature on the computational limits of statistical problems (e.g., [BBH18]), where we often
assume the hardness of distinguishing Gn,1/2,n1/2−ϵ and Gn,1/2.

We mention that the restriction in Theorem 1.2 that ϵ(n) ≫ n−1/2 can be removed. We omit
the details in this version.

Uniform Reductions for Triangle Counting. In Theorems 1.4 and 1.5, we presented a
nonuniform hardness self-amplification for triangle counting over an Erdős–Rényi random graph.
This improves the error tolerance of the previous uniform random self-reduction for clique count-
ing of [BBB21], which is an important open question of the fine-grained average-case complexity of
subgraph counting [BBB21; Gol20]. A natural question is whether we can relax the nonuniformity
and errorless assumption in Theorem 1.5. Another interesting direction is to obtain a hardness
self-amplification result for general subgraph counting (such as k-clique and k-cycle).

2.7 Organization

The remainder of this paper is organized as follows: In Section 3, we introduce the framework of
average-case complexity and samplers. In Section 4, we present a general framework of hardness
amplification based on samplers. Sections 5 to 8 are independent of each other; the readers may read
them in any order. In Section 5, we consider the matrix multiplication and prove Theorem 1.6.
In Section 6, we introduce the notion of the data structure algorithms and consider the online
matrix-vector multiplication. Then we prove Theorem 1.7. In Section 7, we consider the triangle
counting and prove Theorems 1.4 and 1.5. In Section 8, we consider the planted clique problem
and prove Theorems 1.1 and 1.2.
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3 Preliminaries

For n ∈ N, we write [n] = {1, . . . , n}. We use x ∼ µ to denote that x is drawn from a distribution
µ. For a finite set S, we also use x ∼ S to denote that x is drawn uniformly at random from S.
For a distribution µ, let supp(µ) = {x : µ(x) > 0} denote the support of µ. We invoke some basic
inequalities:

Lemma 3.1 (The Chebyshev inequality). Let X be a random variable with finite mean and vari-
ance. Then, for any r > 0,

Pr[|X −E[X]| > r
√
Var[X]] ≤ 1

r2
.

Lemma 3.2 (The Chernoff inequality). Let X1, . . . , Xk ∈ [0, 1] be independent random variables
and X =

∑
i∈[k]Xi. Then, for any 0 < c < 1,

Pr[X < (1− c)E[X]] ≤ exp

(
−c2

2
E[X]

)
,

Pr[X > (1 + c)E[X]] ≤ exp

(
−c2

3
E[X]

)
.

3.1 Computational Complexity

We identify a problem with a function f : {0, 1}∗ → {0, 1}∗. (The only exception in this paper is the
planted clique problem.) In this paper, we usually fix the input size n and consider the complexity
of computing f(x) for x ∼ µ, where µ is a distribution over the set of all inputs of size n (e.g.,
Gn,1/2). We call such pair (f, µ) a distributional problem.

Definition 3.1. A randomized algorithm M solves a problem f if PrM[M(x) = f(x)] ≥ 2/3
for any input x. A randomized algorithm M solves a distributional problem (f, µ) with success
probability ϵ if Prx∼µ[PrM[M(x) = f(x)] ≥ 2/3] ≥ ϵ.

The constant 2/3 above can be arbitrary by repetition. Specifically, we sometimes use the
following standard result.

Claim 3.3. If there exists a T (n)-time M that solves (f, µ) with success probability ϵ, then, for
any 0 < γ < 1, there exists a O(T (n) log(1/γ))-time algorithm M′ that satisfies Prx∼µ,M[M(x) =
f(x)] ≥ (1− γ)ϵ.

Throughout the paper, we implicitly assume that the complexity of computing parameters ϵ, δ
is negligible (or equivalently, we assume that an algorithm M is given the parameters as input).

3.2 Markov Operator of Bipartite Graphs

Let Q = (X,Y,W ) be an edge-weighted bipartite graph whose weights are given by a matrix
W ∈ [0, 1]X×Y . We assume that W is normalized such that

∑
x,y W (x, y) = 1, which specifies a

distribution over X ×Y . This distribution induces marginal distributions µ ∈ [0, 1]X , ν ∈ [0, 1]Y as
follows:

µ(x) =
∑
y∈Y

W (x, y), ν(y) =
∑
x∈X

W (x, y).
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Let L2(X) = (RX , ⟨·, ·⟩X) be a space RX associated with the inner product defined by

⟨v1, v2⟩X = E
x∼µ

[v1(x)v2(x)] =
∑
x∈X

µ(x)v1(x)v2(x).

Let ∥ · ∥X be the norm induced by the inner product. Let 1X ∈ L2(X) be the all-one vector. For
v ∈ L2(X), we use the standard notation for the mean E[v] = ⟨v,1X⟩X and variance Var[v] =
E[v2] − E[v]2, where v2 ∈ L2(X) denotes the component-wise square of v (i.e., v2(x) = v(x)2 for
all x ∈ X). We also define the inner product space L2(Y ) = (RY , ⟨·, ·⟩Y ) in the same way as the
definition of L2(X). Similarly, we consider the mean E[w] and variance Var[w] for w ∈ L2(Y ). We
sometimes omit the subscript if it is clear from the context (e.g., we use ⟨·, ·⟩ and 1).

Let P ∈ [0, 1]X×Y , P ∗ ∈ [0, 1]Y×X be matrices defined by

P (x, y) = µ(x)W (x, y), P ∗(y, x) = ν(y)W⊤(y, x).

We view P, P ∗ as Markov operators4 P : L2(Y ) → L2(X) and P ∗ : L2(X) → L2(Y ) by considering

Pw(x) = E
y∼P (x,·)

[w(y)], P ∗v(x) = E
x∼P ∗(y,·)

[v(x)].

In this sense, P ∗ is the adjoint operator of P . Note that ⟨Pw, v⟩ = ⟨w,P ∗v⟩ for v ∈ L2(X) and
w ∈ L2(Y ). In particular, E[Pw] = ⟨Pw,1⟩ = ⟨w,1⟩ = E[w].

Definition 3.2. For a Markov operator P : L2(Y ) → L2(X), let

λ(P ) = sup
w∈L2(Y ) :

⟨w,1⟩=0,w ̸=0

∥Pw∥
∥w∥

.

We also define λ(P ∗) for P ∗ : L2(X) → L2(Y ) in the same way.

Claim 3.4. For a Markov operator P : L2(Y ) → L2(X) and w ∈ L2(Y ), Var[Pw] ≤ λ(P )2Var[w].

Proof. Let w0 = w−E[w]1. Note that Pw0 = Pw−E[w]1. Since the variance does not change by
shift and ⟨w0,1⟩ = 0, we haveVar[Pw] = Var[Pw0] = ∥Pw0∥2 ≤ λ(P )2∥w0∥2 = λ(P )2Var[w].

Lemma 3.5 (Claim 2.7 of [DK17]). For a Markov operator P : L2(Y ) → L2(X) and its adjoint
operator P ∗ : L2(X) → L2(Y ), it holds that λ(PP ∗) = λ(P )λ(P ∗) = λ(P )2.

Definition 3.3 (λ-expander). An edge-weighted bipartite graph (X,Y,W ) is a λ-expander if the
associated Markov operator P : L2(X) → R2(Y ) satisfies λ(P ) ≤ λ.

3.3 Sampler

We consider an edge-weighted bipartite graph Q = (X,Y,W ) associated with inner product spaces
L2(X),L2(Y ) and the Markov operator P : L2(X) → L2(Y ). A measure is a [0, 1]-valued function.
A measure w ∈ [0, 1]Y is ϵ-dense if E[w] ≥ ϵ (we also define the density of a measure over X).
One can think of a measure as the continuous relaxation of an indicator function. Note that
Var[w] = E[w2]−E[w]2 ≤ E[w](1−E[w]) for any measure.

4A Markov operator M : A → B is a linear operator that is nonnegative and M1A = 1B .
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Definition 3.4 (Sampler). For 0 < c < δ, we say that Q is a (δ, c)-sampler for density ϵ if, for
any ϵ-dense measure w ∈ [0, 1]Y ,

Pr
x∼µ

[Pw(x) ≤ (1− c)E[w]] ≤ δ.

Lemma 3.6. If Q = (X,Y,W ) is a λ-expander, then, for any r > 0 and w ∈ L2(Y ),

Pr
x∼µ

[
|Pw(x)−E[w]| ≥ r

√
Var[w]

]
≤ λ2

r2
.

In particular, for any c, ϵ > 0, Q is a
(

λ2

c2ϵ
, c
)
-sampler for density ϵ.

Proof. Let v = P ∗w. Note that E[v] = E[w] and Var[v] ≤ λ2Var[w] by Claim 3.4. By the
Chebyshev inequality, we have

Pr
x∼µ

[
|Pw(x)−E[w]| ≥ r

√
Var[w]

]
≤ Pr

x∼µ

[
|v(u)−E[v]| ≥ r

λ

√
Var[v]

]
≤ λ2

r2
.

In particular, if w is an ϵ-dense measure, Var[w] ≤ E[w]. If Var[w] > 0, by setting r = cE[w]√
Var[w]

,

we have

Pr
x∼µ

[Pw(x) ≤ (1− c)E[w]] ≤ Pr
x∼µ

[
|Pw(x)−E[w]| ≥ r

√
Var[w]

]
≤ λ2Var[w]

c2E[w]2
≤ λ2

c2ϵ
.

If Var[w] = 0, then w = E[w] · 1 and the claim is clear.

Let Q∗ = (Y,X,W⊤) be the bipartite graph obtained by swapping X and Y . Note that the
associated Markov operator is P ∗.

Lemma 3.7. Let Q = (X,Y,W ) be an edge-weighted bipartite graph. If Q∗ is an (ϵ′, c′)-sampler for

density δ, then, for any c, ϵ that satisfy 0 < c < ϵ and (1−c′)
(
1− ϵ′

ϵ

)
≥ 1−c, Q is a (δ, c)-sampler

for density ϵ. In particular, Q is a (δ, c)-sampler for density ϵ if Q∗ is a (cϵ/2, c/2)-sampler for
density δ.

Proof. The “in particular” part directly follows from the former claim by setting c′ = c/2 and
ϵ′ = cϵ/2. For any δ-dense measure v′ ∈ [0, 1]X , let S′ = {y ∈ Y : Pv′(y) ≤ (1 − c′)E[v′]}. For
any measure w′ ∈ [0, 1]Y ,

∑
y ̸∈S′ ν(y)w′(y) = E[w′] −

∑
y∈S′ ν(y)w′(y) ≥ E[w′] − ϵ′ since Q∗ is a

sampler. Therefore, for any δ-dense measure v′ ∈ [0, 1]X and any measure w′ ∈ [0, 1]Y , we have

⟨Pv′, w′⟩ ≥
∑
y ̸∈S′

Pv′(y)ν(y)w′(y) > (1− c′)E[v′](E[w′]− ϵ′). (1)

Let w ∈ [0, 1]Y be an ϵ-dense measure and S = {x ∈ X : P ∗w(x) ≤ (1− c)E[w]}. Consider the
indicator v = 1S of S. Note that

⟨v, P ∗w⟩ =
∑
x∈S

µ(x)P ∗w(x) ≤ (1− c)E[w]E[v]

Our goal is to prove Prx∼µ[x ∈ S] = E[v] < δ. Suppose for contradiction that E[v] ≥ δ. Then, v is
a δ-dense measure and by (1) and we have

⟨v, P ∗w⟩ = ⟨Pv,w⟩ > (1− c′)E[v](E[w]− ϵ′) ≥ (1− c′)(1− ϵ′/ϵ)E[w]E[v].

Therefore, we have (1− c′)
(
1− ϵ′

ϵ

)
< 1− c, which contradicts the assumption on ϵ, c
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4 Hardness Amplification

4.1 Framework

Definition 4.1. Let (f, µ) and (g, ν) be distributional problems, where µ (resp. ν) is a distribution
of inputs of size n (resp. m). A one-query reduction from (f, µ) to (g, ν) is a randomized oracle
algorithm RO that satisfies the following conditions:

• Given x ∼ µ, RO(x) produces a random query y that is an instance of g. Moreover, the
distribution of y is ν (over the random seed of R and choice of x ∼ µ).

• For any x, Pr[Rg(x) = f(x)] ≥ 2/3 where the randomness is over the random seed of R.

Remark 1. A reduction making k non-adaptive instances q1(x), . . . , qk(x) of (g, ν) can be seen as
a one-query reduction to another problem (gk,D) for some the distribution D of (q1(x), . . . , qk(x))
for x ∼ µ.

Let X = supp(µ) (resp. Y = supp(ν)) be the set of all possible inputs of f (resp. g).

Definition 4.2. For a randomized one-query reduction R from (f, µ) to (g, ν), the query graph
is the edge-weighted bipartite graph QR = (X,Y,W ) associated with the edge weight given by
W (x, y) = µ(x) · PrR[R(x) produces a query y].

We simply write Q instead of QR if the reduction R is clear from the context.

Theorem 4.1. Let RO be a randomized reduction from (f, µ) to (g, ν) whose query graph Q is a
(δ, c)-sampler for density ϵ. If M is a randomized algorithm that satisfies

Pr
y∼ν,M

[M(y) = g(y)] ≥ ϵ,

then

Pr
x∼µ

[
Pr
R

[
RM(x) = f(x)

]
≥ (1− c)ϵ

]
≥ 1− δ.

Proof. The reduction RM(x) is divided into two parts: the query-making part Rquery that produces
a random query y ∼ Rquery(x) and the decision-making part Rdecide(x, a) that determines the
output given x and a = M(y).

Let w ∈ [0, 1]Y be the measure defined by w(y) = Pr[M(y) = g(y)] (the probability is over
the random seed of M). By assumption of M, w is ϵ-dense and thus E[w] ≥ ϵ. Consider the
Markov operator P associated with the query graph Q. Then, P (x, y) = Pr[Rquery(x) = y] is the
probability that the query-making part produces y. Since Q is a sampler, we have

Pr
x∼µ

[
E

y∼Rquery(x)
[w(y)] > (1− c)ϵ

]
= Pr

x∼µ
[Pw(x) > (1− c)ϵ] ≥ 1− δ.

Note that Ey∼Rquery(x)[w(y)] = PrM,y∼Rquery(x)[M = g(y)] = PrR[RM(x) = f(x)].

Corollary 4.2. Suppose there exist (i) a randomized T (n)-time one-query reduction R from (f, µ)
to (g, ν) whose query graph is a (δ, c)-sampler for density (1/2+ϵ) for c ≤ ϵ/4, and (ii) a T ′(n)-time
randomized algorithm M for (g, ν) with success probability 1/2+ϵ. Then, there exists a randomized

O
(
T (n)+T ′(n) log(1/ϵ)

ϵ2

)
-time algorithm for (f, µ) with success probability 1− δ.

Proof. By Claim 3.3, we have a O(T ′(n) log(1/ϵ))-time algorithm N that satisfies Pry∼ν,N [N (y) =
g(y)] ≥ 1/2 + ϵ/2. Run RN (x) for ℓ := ⌈512/ϵ2⌉ times and take the majority of the outputs (note
that the time complexity of computing ϵ is negligible). At each iteration, for a (1 − δ)-fraction of
x ∼ µ, RN (x) = f(x) with probability (1/2 + ϵ/2)(1− c) ≥ 1/2 + ϵ/8. By the Chernoff inequality
(Lemma 3.2), the majority is f(x) with probability at least 1− exp(−ℓϵ2/256) ≥ 2/3.
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4.2 Example: Direct Product

For a distributional problem (f, µ) with X = supp(µ) and k ∈ N, consider the k-wise direct
product (fk, µk), where fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) and µk(x1, . . . , xk) =

∏
i∈[k] µ(xi). Let

Y = Xk. Consider the following well-known reduction for the direct product problem ([IW97;
Imp95; GNW11]).

Reduction RO from (f, µ) to (fk, µk)� �
Given input x ∈ X, sample i ∈ [k] and (x1, . . . , xk) ∼ Lk. Let x = (x1, . . . , xi−1, x, xi+1, . . . , xk)
be a query. Given (y1, . . . , yk) = O(x), output yi.� �

Lemma 4.3 (Direct Product Lemma). The query graph of the reduction R is a (δ, c)-sampler for
density ϵ for any ϵ, δ, c that satisfy 2 exp(−kc2δ/8) ≤ cϵ.

Proof. Let Q be the query graph associated with the Markov operator P . It follows from [IJK09b,
Lemma2.5] that the reversed graph Q∗ is a sampler. Indeed, let P ∗ be the Markov operator
associated with Q∗. If v′ ∈ [0, 1]X is a δ-dense measure, then, for a fixed y = (x1, . . . , xk) ∈ Xk, we
have P ∗v′(y) = 1

k

∑
i∈[k] v

′(xi). For y ∼ Xk, by the Chernoff bound (Lemma 3.2), we have

Pr
y∼Xk

[
P ∗v′(y) < (1− c′)E[v′]

]
≤ exp

(
−kc′2δ

2

)
.

Therefore, Q∗ is a (ϵ′, c′)-sampler for density δ if exp(−0.5kc′2δ) ≤ ϵ′. We obtain the claim by
Lemma 3.7 (where we set ϵ′ = 0.5cϵ and c′ = 0.5c).

5 Matrix Multiplication

We prove Theorem 1.6. Let R be a finite ring. Let Mult be the function that maps two matrices
A,B over R to the product AB. Let Un1,n2,n3 be the uniform distribution over Rn1×n2 × Rn2×n3 .
Our computational model is the O(log |R|)-word RAM and thus basic arithmetic operations on R
can be performed in a unit of time. We assume that we can sample a uniformly random element
of R in a unit of time. We also assume that each algorithm takes at least time Ω(n2) to scan the
entire input, which allows us to write O(T (n)) instead of O(T (n) + n2).

For v ∈ Rn and I ⊆ [n], we denote by vI ∈ R|I| the subvector of v restricted on the index set
I. Similarly, for a matrix M ∈ Rn1×n2 and non-empty I ⊆ [n1], J ⊆ [n2], we use MI,J ∈ R|I|×|J | to
denote the submatrix of M restricted on the row set I and column set J .

5.1 Auxiliary Results

We recall the following worst-case to average-case reduction for matrix multiplication by Blum,
Luby, and Rubinfeld [BLR93].

Lemma 5.1. If there exists a T (n,m)-time algorithm M that solves (Mult,Un,m,n) with suc-
cess probability ϵ, then, there exists a randomized algorithm M′ that satisfies PrM′ [M′(A,B) =
Mult(A,B)] ≥ 4ϵ− 3 for all (A,B) ∈ Rn×m ×Rm×n.

Proof. Let (A,B) be the input. Sample (X1, Y1) ∼ Un,m,n and let X2 = A − X1 and Y2 =
B − Y1. Note that the marginal distribution of each (Xi, Yj) is Un,m,n. By the union bound,
A correctly computes all XiYj with probability 4ϵ − 3. If this holds, the algorithm A′ outputs∑

i,j∈[2]A(Xi, Yj) = AB.
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We also recall the randomized verification algorithm for Mult by Freivalds [Fre79].

Lemma 5.2 ([Fre79]). There exists an O(nm+n2)-time randomized algorithm that, given matrices
A ∈ Rn×m, B ∈ Rm×n, C ∈ Rn×n, decides AB = C correctly with probability 2/3.

We say that a function f is t(n)-time verifiable if there exists a t(n)-time randomized algorithm
that, given x, y, decides f(x) = y correctly with probability 2/3. Note that we can amplify the
constant 2/3 arbitrarily through repetition. Lemma 5.2 implies that Mult is O(nm + n2)-time
verifiable.

Lemma 5.3 (Direct Product Theorem for Verifiable Function). Let (f, µ) be a distributional prob-
lem such that f is t(n)-time verifiable. Let k ∈ N, δ > 0, ϵ > 0 be such that ϵ ≥ 4 exp(−δk/32). If
there exists a T (n)-time algorithm M for (fk, µk) with success probability ϵ, then, there exists an
O(ϵ−1(T (n)+ t(n)))-time randomized algorithm M′ that solves (f, µ) with success probability 1− δ.

Proof. By the condition of k, δ, ϵ and Lemma 4.3, the direct product problem (fk, µk) has a re-
duction RO whose query graph is a (δ, 1/2)-sampler for density ϵ. For given input x ∼ µ, run the
reduction RA(x) for ℓ = ⌈20/ϵ⌉ times using A as oracle. At each iteration, check the correctness
of the output by the t(n)-time verifier. This runs in time O(ϵ−1(T (n) + t(n))).

From Theorem 4.1, for a (1 − δ)-fraction of x ∼ µ, at each iteration, RA(x) = f(x) with
probability 0.5ϵ. For such x, with probability at least 1 − (1 − ϵ/2)ℓ ≥ 0.99, RA(x) = f(x) at
least once during the iteration. We can detect this correct output with probability 0.99 using the
verifier.

5.2 Proof of Theorem 1.6

Lemma 5.4. Let ϵ > 0, k ∈ N be such that ϵ ≥ 4 exp(−k/3200). Suppose there exists a T (n)-time
algorithm M that solves (Mult,Un,n,n) with success probability ϵ. Let d = ⌊n/k⌋. Then, there exists
an O(ϵ−1T (n))-time randomized algorithm M′ that solves (Mult,Ud,n,d) with success probability
0.98.

Proof. For i ∈ [k], let Ii = {(i− 1)d+1, . . . , id}. Let Ai := AIi,[n] ∈ Rd×n and Bi := B[n],Ii ∈ Rn×d

be submatrices of A and B, respectively. Note that (AB)Ii,Ij = AiBj ∈ Rd×d for every i, j ∈ [k]
(Figure 1).

If (A,B) ∼ Un,n,n, then, the pairs (Ai, Bi) ∼ Ud,n,d are independent. If M(A,B) = AB, then
we have AiBi for all i ∈ [k]. Therefore, there exists an O(T (n))-time algorithm B satisfying

Pr
(A1,B1),...,(Ak,Bk)∼Ud,n,d

[B(A1, B1, . . . , Ak, Bk) = (A1B1, . . . , AkBk)] ≥ ϵ.

Then, from Lemma 5.3 (with setting δ = 0.01), we obtain the algorithm M′ of the claim.

Proof of Theorem 1.6. Let A,B ∈ Rn×n be the input. Let k = ⌈100 log(1/ϵ)⌉. By padding zeros to
A,B, we may assume that k divides n. Divide A,B into A1, . . . , Ak ∈ Rd×n and B1, . . . , Bk ∈ Rn×d

as in Figure 1. Repeat the algorithm of Lemma 5.4 for O(log k) times to amplify the suc-
cess probability from 0.98 to 1 − 0.01/k2. By the union bound over i, j ∈ [k], we can com-
pute all AiBj correctly with probability 0.99. This can be done in time O(k2 · ϵ−1T (n) log k) =
O(ϵ−1T (n) log2(1/ϵ) log log(1/ϵ)).
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6 Online Matrix-Vector Multiplication

We introduce the notion of data structure algorithms and prove Theorem 1.7. Consider a pair
M = (Mpre,Mans) of algorithms. The preprocessing algorithm Mpre(x) takes x as input and
returns a string π ∈ {0, 1}∗ in polynomial time, representing the memory of a data structure. The
algorithm Mπ

ans is given oracle access to π and outputs M(x; q) := Mπ(q) for a given query q. We
call this pair M a data structure algorithm. The query time of M is defined as the running time
of Mans. Unlike Yao’s cell-probe model [Yao81], we measure the running time by the number of
arithmetic operations and queries.

Let R be a finite ring. For M ∈ Rm×n and v ∈ Rn, let OMv(M,v) = Mv and Um,n be the
uniform distribution over Rm×n × Rn. We extend the notion of the success probability (Defini-
tion 3.1) as follows: A data structure algorithm M solves (OMv,Um,n) with success probability
ϵ if Pr(M,v)∼Um,n

[M(M ; v) = Mv] ≥ ϵ. The main result of this section is the following random
self-reduction for OMv:

Theorem 6.1 (formal statement of Theorem 1.7). Suppose there exists a data structure algorithm
M with query time T (n) that solves (OMv,Un,n) with success probability ϵ. Then, there exists
a randomized data structure algorithm M′ with query time O(ϵ−2T (n) log4(1/ϵ) log log(1/ϵ)) that
solves OMv.

6.1 Auxiliary Results

We observe that OMv is efficiently verifiable in the data structure setting based on the Freivalds’
algorithm (Lemma 5.2).

Lemma 6.2. There exists a randomized data structure algorithm M = (Mpre,Mans) such that,
given any matrix M ∈ Rm×n and vectors v ∈ Rn, w ∈ Rm, M(M ; v, w) decides in query time O(tn)
whether Mv = w correctly with probability 1− 2−t (over the randomness of M). Moreover, M has
a one-sided error (it outputs “Yes” whenever Mv = w).

Proof. For two vectors u, v ∈ Rn, let ⟨u, v⟩ =
∑

i∈[n] u(i)v(i). The preprocess Mpre samples t

independent random vectors r1, . . . , rt ∼ {0, 1}n and returns ui := r⊤i M and ri for each i ∈ [t]
as a data structure π. In the query phase, for given v, w ∈ Rn, Mπ

ans(u, v) outputs “No” if
⟨ui, v⟩ ≠ ⟨ri, w⟩ for some i ∈ [t] and outputs “Yes” otherwise. If the given v, w ∈ Rn satisfies
Mv = w, then ⟨ui, v⟩ = r⊤i Mv = r⊤i w = ⟨ri, w⟩; thus Mπ

ans(v, w) always outputs “Yes”. Otherwise,
for each i ∈ [t], we have Pr[⟨ui, v⟩ ≠ ⟨ri, w⟩] ≥ 1/2; thus Mans outputs “No” with probability at
least 1− 2−t.

We also observe that the standard random self-reduction of Blum, Luby, and Rubinfeld [BLR93]
works for the data structure algorithm. We do not use Lemma 6.3 directly but use the same idea
in the reduction.

Lemma 6.3. Suppose there exists a data structure algorithm M = (Mpre,Mans) with query time
T (m,n) that solves (OMv,Um,n) with success probability ϵ. Then, there exists a randomized data
structure algorithm M′ = (M′

pre,M′
ans) with query time O(T (m,n)) that satisfies PrM′ [M′(M ; v) =

Mv] ≥ 4ϵ− 3 for any M ∈ Rm×n, v ∈ Rn.

Proof. Let M′ be as follows: In the preprocessing phase, for a given M , sample R1 ∼ Rm×n and
let R2 := M − R1. Run Mpre(R1) and Mpre(R2) and obtain two data structures π1, π2. Then,
return (π1, π2) as a data structure. In the query phase, for a given v, sample s1 ∼ Rn and let
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s2 := v − s1. Compute wi,j := Mπi
ans(sj) for each i, j ∈ [2] and output

∑
i,j∈[2]wi,j . By the union

bound, with probability 4ϵ− 3, we have wi,j = Risj for all i, j ∈ [2]. If this occurs, then the output∑
i,j wi,j = (R1 +R2)(s1 + s2) = Mv is correct.

Remark 2. One may consider the following algorithm: Repeat the algorithm of Lemma 6.3 and use
the verifier of Lemma 6.2 to check the correctness at each iteration. Unfortunately, this argument
works only for ϵ > 3/4.

Lemma 6.4 (Reverse Markov’s inequality). Let X be a [0, 1]-valued random variable and µ =
E[X] ∈ (0, 1). Then, Pr[X ≥ µ/2] ≥ µ/2.

Proof. From Markov’s inequality, for any c ∈ (0, 1),

Pr[X ≤ c] = Pr[1−X ≥ 1− c] ≤ 1− µ

1− c
≤ 1− (µ− c).

We obtain the claim by substituting c = µ/2.

6.2 Proof of Theorem 6.1

Fix a data structure algorithm M with query time T (n) that solves (OMv,Un,n) with success
probability ϵ. Let k ∈ N be such that ϵ > exp(−Ck) where C > 0 is an appropriate small constant
(say, C = 10−5). Suppose k divides n and let d = n/k. We say that a vector v ∈ Rn is good if
PrM∼Rn×n [M(M ; v) = Mv] ≥ ϵ/2.

Lemma 6.5. At least 0.5ϵ|Rn| good vectors exist in Rn.

Proof. For v ∼ Rn, let X = PrM [M(M ; v) = Mv] be the fraction of M on which M(M ; v)
succeeds. Note that Ev[X] ≥ ϵ. Thus, from the reverse Markov inequality (Lemma 6.4), we have
Prv∼Rn [v is good] ≥ Pr[X ≥ E[X]/2] ≥ ϵ/2.

=v

M1

M4

M2

M3

Figure 5: Mv is the concatenation of Miv for i ∈ [k].

Lemma 6.6. There exists a randomized data structure algorithm M1 with query time O(ϵ−1T (n))
that satisfies PrM∼Rd×n [PrM1 [M1(M ; v) = Mv] ≥ 0.99] ≥ 0.99 for every n that is divisible by k
and every good v ∈ Rn.

Proof. Note that d = n/k since k divides n. For i ∈ [k], let Ii = {(i − 1)d + 1, . . . , id} and
Mi = MIi,[n] ∈ Rd×n. The vector Mv ∈ Rn can be obtained by concatenating Miv ∈ Rd for
i ∈ [k] (Figure 5). Thus, for every fixed good v, we can compute the function (M1, . . . ,Mk) 7→
(M1v, . . . ,Mkv) correctly on at least (ϵ/2)-fraction of M1, . . . ,Mk. We view this function as the
k-wise direct product of the function Rd×n ∋ M 7→ Mv ∈ Rd and apply the direct product theorem
Lemma 5.3.
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Specifically, in the preprocessing phase, M1 runs as follows: For a given matrix M ∈ Rd×n,
sample k independent random matrices M1, . . . ,Mk ∼ Rd×n and index i ∼ [k]. Construct a random
matrix M ∈ Rn×n by aligning M1, . . . ,Mi−1,M,Mi+1, . . . ,Mk. We repeat this for ℓ = O(1/ϵ) times
to create ℓ independent copies M1, . . . ,M ℓ of M and i1, . . . , iℓ of i ∼ [k]. Also, run the preprocess
of M for each M ℓ and the preprocess of Lemma 6.2. Output all of them as a data structure π.

In the query phase, M1 runs as follows: Let v ∈ Rn be the given query that is supposed to be
good. For each j ∈ [ℓ], we simulate Mπ

ans(v) and obtain a vector w = M(M j ; v). Let w1, . . . , wk

be the subvector of w where each wi ∈ Rd consists of the ((i − 1)d + 1)-st to id-th elements of w.
Then, use Lemma 6.2 to check whether M jv = w. If so, output wij . If the algorithm does not halt
while iterating over j, output an arbitrary string. This runs in time O(ℓT (n)). The correctness of
M1 follows from the proof of Lemma 5.3.

Corollary 6.7. There exists a randomized data structure algorithm M2 with query time T2(n) that
satisfies PrM2 [M2(M ; v) = Mv] ≥ 0.98 for every n that is divisible by k(n), M ∈ Rd×n and good
v ∈ Rn, where T2(n) = O

(
ϵ−1T (n)

)
.

Proof. We combine Lemma 6.6 and the reduction based on the idea of Lemma 6.3. Specifically, for
a given M ∈ Rn×n, sample R1 ∼ Rn×n and let R2 = M−R1. Use the data structure algorithm M1

of Lemma 6.6 and output M1(R1; v) + M1(R2; v). By the union bound, this algorithm succeeds
with probability 0.98 for any good v.

Lemma 6.8. There exists a randomized data structure algorithm M3 with query time T3(n) that
satisfies Prv∼Rd [PrM3 [M3(M ; v) = Mv] ≥ 0.99] ≥ 0.99 for every n that is divisible by k and
M ∈ Rd×d, where T3(n) = O(ϵ−2T (n)).

Remark 3. Note that the algorithm M3 of Lemma 6.8 runs in time T3(n) to compute Mv for a
slightly smaller matrix M ∈ Rd×d and a vector v ∈ Rd.

=
v

v1

v3

v4

0M0 0
Mv

Figure 6: M ′v = Mv where M ∈ Rd×d and v ∈ Rd is embedded in the second block (i = 2).

Proof of Lemma 6.8. Let S ⊆ (Rd)k be the set of k-tuple of vectors (v1, . . . , vk) such that the
concatenation (v1, . . . , vk) ∈ Rn is good. From Lemma 6.5, |S| ≥ (ϵ/2)|Rd|k. For a vector v ∈ Rd,
sample v1, . . . , vk ∼ Rd and i ∼ [k] and thereafter let v = (v1, . . . , vi−1, v, vi+1, . . . , vk) ∈ Rn. Let
H = {v ∈ Rd : Pr[v ∈ S] ≥ 0.25ϵ}. From Lemma 4.3 (with letting δ = 0.01, c = 0.5, γ = 2), we
have |H| ≥ 0.99|Rd|.

In the query phase, the algorithm M3 repeats the following for O(1/ϵ) times: Suppose that a
given query v is in H. Then, v is good with probability 0.25ϵ. Suppose v is embedded in the i-th
block of v. If v is good, the data structure algorithm M2 of Corollary 6.7 computes Nv in query
time O(ϵ−1T (n)) for any matrix N ∈ Rd×n. Let M ′ ∈ Rd×n be the matrix such that M ′

[d],Ii
= M
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and the other elements are set to zero, where Ii = {(i− 1)d+1, . . . , id} (we store M ′ for all i ∈ [k]
in the preprocessing phase). Note that M2(M

′; v) = M ′v = Mv if v is good (Figure 6). Use
Lemma 6.2 to check whether M2(M

′; v) = Mv. If so (which occurs with probability 0.25ϵ over the
choice of v for any v ∈ H), output Mv and terminate. Otherwise, sample v and repeat.

If v ∈ H, with probability 0.99 (over the choice of v), this algorithm terminates within O(1/ϵ)
iterations. The total running time of M3 is O(ϵ−1T2(n)) = O(ϵ−2T (n)).

Corollary 6.9. There exists a randomized data structure algorithm M4 with query time T4(n)
that satisfies PrM4 [M4(M ; v) = Mv] ≥ 0.98 for every n that is divisible by k(n), M ∈ Rd×d and
v ∈ Rd, where T4(n) = O(ϵ−2T (n)).

Proof. The proof is almost identical to that of Corollary 6.7. Specifically, at the query phase, for a
given v ∈ Rd, M4 samples r1 ∼ Rd and set r2 = v−r1. Then, M4 runs M3(M ; r1) and M3(M ; r2)
and then outputs the sum of the two outputs. By the union bound, with probability 0.98, these
two outputs are Mr1 and Mr2 and thus we have Mr1 +Mr2 = Mv.

=
M1,1

M4,4

v1

v4

Figure 7: Mi,j and vj for k = 4

Proof of Theorem 6.1. We may assume that k divides n (by padding). For given M ∈ Rn×n

and v ∈ Rn, divide them into Mi,j ∈ Rd×d and vi ∈ Rd as in Figure 7. Specifically, write
Si = {(i − 1)d + 1, . . . , id} and let Mi,j = MSi,Sj and vi = vSi . For each i, j ∈ [k], repeat running
the data structure algorithm M4(Mi,j ; vi) of Corollary 6.9 for O(log k) times to obtain Mi,jvj
with probability 1 − 0.01/k2. Then, by the union bound, with probability 0.99, we have Mi,jvj
for all i, j ∈ [k]. Then, compute Mv by (Mv)Ii =

∑
j∈[k]Mi,jvj . This algorithm runs in time

O(T4(n) · k2 log k) = O(ϵ−2T (n) log2(1/ϵ) log log(1/ϵ)) (recall k = O(log(1/ϵ))).

7 Triangle Counting

In this section, we prove Theorems 1.4 and 1.5. For a graph G, let V (G) and E(G) denote the vertex
and edge sets, respectively. For a vertex subset S ⊆ V , let G[S] = (S,E ∩

(
S
2

)
) denote the induced

subgraph on S. To clarify the input size, we identify the problem #Triangle (resp. ⊕Triangle) with
the family of functions #Triangle = (#Trianglen)n∈N (resp. ⊕Triangle = (⊕Trianglen)n∈N) where
each #Trianglen (resp. ⊕Trianglen) is the function that maps an n-vertex graph G to the number
(resp. parity) of triangles in G.

7.1 Nonuniform and Errorless Algorithm

Definition 7.1. An algorithm M for a problem f is errorless if M(x) ∈ {f(x),⊥} for all input
x. A nonuniform algorithm is an algorithm M that takes x and an auxiliary input α called advice
as input, where the string α depends only on the size of x.
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An algorithm for problem f can output a string that is not f(x) for input x. In contrast, an
errorless algorithm is an algorithm that never outputs an incorrect answer but it may sometimes
output ⊥ to indicate “I do not know”.

It is well known that nonuniform algorithms can be derandomized by fixing random seeds as
advice.

Lemma 7.1. Let (f, µ) be a distributional problem and M(x; r) be a randomized algorithm that is
given an input x and a random seed r and satisfies Prx∼µ[Prr[M(x; r) = f(x)] ≥ p1] ≥ p2. Then,
for every n ∈ N, there exists advice αn such that Prx∼µ[M(x;αn) = f(x)] ≥ p1p2.

Proof. For every n, M satisfies Prx∼µ,r[M(x; r) = f(x)] ≥ p1p2 and thus there exists r such that
Prx[M(x; r) = f(x)] ≥ p1p2 by averaging. We use such αn = r as our advice.

7.2 Auxiliary Results

We invoke the worst-case to average-case reduction of [BBB21].

Lemma 7.2 (Theorem 2.8 of [BBB21]). Let 0 < p < 1 be any constant. If there exists a T (n)-time

algorithm M that solves (#Trianglen,Gn,p) with success probability 1−O
(

1
log7 n

)
, then, there exists

a T (n) polylog n-time randomized algorithm M′ that solves #Trianglen.

Remark 4. Actually, Boix-Adserà, Brennan, and Bresler [BBB21] reduced computing #Trianglen(G)
to solving (#Triangle3n,G3n,p) with success probability 1− 1/polylog(n), which can be done in time
T (3n). In other words, the sizes of queries are larger than the original input. This issue can be
easily handled with the following lemma, which implies Lemma 7.2.

Lemma 7.3. Suppose there exists a T (n)-time algorithm that solves #Trianglen. Then, for any
ℓ ∈ N, there exists an O(T (⌈n/ℓ⌉) · ℓ3 log ℓ)-time algorithm that solves #Trianglen. The same holds
for ⊕Trianglen.

We prove Lemma 7.3 in Appendix A. Our reduction crucially relies on the following observation.

Lemma 7.4. For an N -vertex graph G = (V ,E) and nonempty V ⊆ V , let G = G[V ] and

G′ =
(
V ,E \

(
V
2

))
be the graph obtained by removing edges inside V from G. Let A′ be the adjacency

matrix of G′. Then, #Trianglen(G) = #TriangleN (G)−#TriangleN (G′)−
∑

{u,v}∈E(G)A
′2
uv.

Proof. We prove #TriangleN (G) = #TriangleN (G′) + #Trianglen(G) +
∑

e∈E(G)A
′2
uv. Let C =

{u, v, w} be a triangle in G. Then, C is in one of the following three cases: (i) If C forms a
triangle in G′, then #TriangleN (G′) counts such a triangle. (ii) If C forms a triangle in G, then
#Trianglen(G) counts such a triangle. (iii) Otherwise, C consists of an edge uv ∈ E(G) and a
2-path (a path of length 2) uwv for w ̸∈ V . As this 2-path is contained in G′, A′2

uv counts such a
triangle. Therefore, we obtain the claim.

7.3 Proof of Theorem 1.5

Lemma 7.5. Let 0 < p < 1 be a constant. Let k ∈ N, δ, ϵ > 0 be such that

4 exp

(
−kδ

32

)
≤ ϵ. (2)
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If there exists a T (kn)-time errorless algorithm M that solves (#Trianglekn,Gkn,p) with success
probability ϵ, then, there exists an O(T (kn)ϵ−1 log(1/δ))-time nonuniform errorless algorithm M′

that solves (#Trianglen,Gn,p) with success probability 1− 2δ.

Proof of Theorem 1.5. Let δ = C log7 n for a sufficiently large constant C > 0. We may assume
ϵ ≥ n−3 (otherwise, we can solve #Trianglen in time O(n3) = O(ϵ−1)). Then, the condition (2)
holds for some k = polylog(n). From Lemmas 7.2 and 7.5, we obtain an O(T (kn)ϵ−1 log(1/δ))-time
randomized algorithm that solves #Trianglen.

The remainder of this subsection is devoted to proving Lemma 7.5.

Definition 7.2. For k vertex-disjoint graphs G1 = (V1, E1), . . . , Gk = (Vk, Ek), let ⟨G1, . . . , Gk⟩ be
the random graph H obtained by using the following procedure.

1. Start from H := (V1 ∪ · · · ∪ Vk, E1 ∪ · · · ∪ Ek).

2. For each u ∈ Vi, v ∈ Vj with 1 ≤ i < j ≤ k, add the edge {u, v} to H with probability p
independent of any other pairs. Then, return H.

Note that, if G1, . . . , Gk are i.i.d. samples from Gn,p, then ⟨G1, . . . , Gk⟩ is a sample of Gkn,p. We
consider the following reduction.

Randomized Reduction RO(G)� �
We expect O to be an errorless algorithm. For i ∈ [k], let Vi = {(i− 1)n+ 1, . . . , in} ⊆ [kn].

1. Sample i ∼ [k] and G1, . . . , Gk ∼ Gn,p independently. We assume that the vertex set of
Gi is Vi.

2. Let G = ⟨G1, . . . , Gi−1, G,Gi+1, . . . , Gk⟩, where G is supposed to have vertex set Vi. This
graph is the query.

3. let G′ =
(
[kn], E(G) \

(
Vi
2

))
and A′ be the adjacency matrix of G′.

4. If O(G) ̸= ⊥, output O(G)−#TriangleN (G′)−
∑

uv∈E(G)A
′2
uv. Otherwise, output ⊥.� �

The correctness (i.e., R#Trianglekn(G) = #Trianglen(G)) follows from Lemma 7.4. The query G has
the same flavor of the reduction in the direct product theorem (cf. Lemma 4.3). We prove that the
query graph of this reduction is a sampler using the same argument as the proof of Lemma 4.3.

Lemma 7.6. The query graph of the reduction RO above is a (δ, c)-sampler for density ϵ for any
δ, ϵ, c > 0 that satisfies

2 exp

(
−kc2δ

8

)
≤ cϵ.

Proof. Let Q = (X,Y,W ) be the query graph associated with the Markov operator P , where X
(resp. Y ) is the set of all n-vertex (resp. kn-vertex) graphs. Write µ = Gn,p and ν = Gkn,p. Our
plan is to show that Q∗ = (Y,X,W⊤) is a sampler and then apply Lemma 3.7.

For G ∈ X and G ∈ Y , let e(G,G) = |{i ∈ [k] : G[Vi] = G}|. Then, we have P (G,G) =
e(G,G)

k · ν(G)
µ(G) and thus the adjoint operator P ∗ is given by P ∗(G,G) = e(G,G)

k . In other words,

P ∗(G, ·) is the distribution of G[Vi] for i ∼ [k]. Let v ∈ [0, 1]X be a δ-dense measure. For
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G ∈ Y , P ∗v(G) = EG|G[v(G)] = 1
k

∑
i∈[k] v(G[Vi]). If G ∼ ν, then the graphs G[V1], . . . , G[Vk] are

i.i.d. sampled from Gn,p. Therefore, by Lemma 3.2, we have that Q∗ is an (ϵ′, c′)-sampler for density
δ for any δ, ϵ′, c′ > 0 that satisfy ϵ′ ≥ exp(−0.5c′2δk). From Lemma 3.7 and setting ϵ′ = 0.5cϵ and
c′ = 0.5c, we obtain the claim.

Unfortunately, the running time of RO is O(T (kn) + (kn)ω) since we compute #Trianglekn(G
′)

and A′2 at Step 4. To avoid the running time of O((kn)ω), we observe that #Trianglekn(G
′) and

A′2 are independent of the input. Thus, we can give these to RO as advice. We show how to use
this advice to simulate RO in time O(T (kn) + (kn)2).

Proof of Lemma 7.5. By Lemma 7.6 and the assumption (2), the query graph of RO is a (δ, 1/2)-
sampler for density ϵ. Note that M solves (#Trianglekn,Gkn,p) with success probability ϵ. Then,
from Theorem 4.1, RM is an errorless algorithm that computes #Trianglen(G) with probability
ϵ/2 (over the random seed of R) for a (1 − δ)-fraction of G ∼ Gn,p. We begin by considering

the following algorithm N : Run RM(G) for ℓ = O
(
log(1/δ)

ϵ

)
times. Whenever RM(G) ̸= ⊥, N

outputs it and terminates. If N did not terminate during the iteration, N outputs ⊥. Note that
N satisfies PrG[PrN [N (G) = #Trianglen(G)] ≥ 1 − δ] ≥ 1 − δ. Then, by Lemma 7.1, we can
fix the randomness of N as advice and obtain a nonuniform errorless algorithm N ′ that satisfies
PrG∼Gn,p [N ′(G;αn) = #Trianglen(G)] ≥ (1− δ)2 ≥ 1− 2δ. Here, the advice αn consists of ℓ graphs
G′

1, . . . , G
′
ℓ and ℓ indices i1, . . . , iℓ ∈ [k]. Since G′

1, . . . , G
′
ℓ are graphs that do not depend on the

input graph G, we can also provide N ′ with the adjacency matrices A′
1, . . . , A

′
ℓ of G

′
1, . . . , G

′
ℓ, their

squares A′2
1 , . . . , A

′2
ℓ , and the values #Trianglekn(G

′
1), . . . ,#Trianglekn(G

′
ℓ) as advice. Using this as

advice, our nonuniform algorithm M′ runs as follows.

Nonuniform Errorless algorithm M′(G)� �
Let ℓ :=

⌈
2 log(1/δ)

ϵ

⌉
. As advice, M′ is given ℓ graphs G′

1, . . . , G
′
ℓ (as adjacency matrices

A′
1, . . . , A

′
ℓ), indices i1, . . . , iℓ ∈ [k], #Trianglekn(G

′
1), . . . ,#Trianglekn(G

′
ℓ) ∈ N, and matrices

A′2
1 , . . . , A

′2
ℓ ∈ Nkn×kn. Here each G′

j is some kn-vertex graph over the vertex set V := [kn].
For i ∈ [k], let Vi = {(i − 1)n + 1, . . . , in}. We assume G′

j does not contain any edges inside
Vj . The input is an n-vertex graph G.

1. For each j ∈ [ℓ]:

(a) Let G0 = G′
j and replace G0[Vij ] with G. Let G be the resulting graph.

(b) If M(G) ̸= ⊥, output M(G)−#Trianglekn(G
′
j)−

∑
uv∈E(G)(A

′2
j )uv and terminate.

2. Output ⊥ and terminate.� �
Note that M′ runs in time O(ℓ(T (kn) + kn2)) = O(ℓT (kn)). The correctness of M′ folllows from
the correctness of the ideal algorithm N ′, which succeeds on a (1− 2δ)-fraction of G ∼ Gn,p.

7.4 Proof of Theorem 1.4

We first invoke the following worst-case to average-case reduction.

Lemma 7.7 (Theorem 2.9 of [BBB21]). Let 0 < p < 1 be any constant. There exists a universal
constant c > 0 that satisfies the following: If there exists a T (n)-time algorithm M that solves
(⊕Trianglen,Gn,p) with success probability 1− c, then, there exists a randomized O(T (n) log n)-time
randomized algorithm M′ that solves ⊕Trianglen.
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Remark 5. In the special case of p = 1/2, Goldreich [Gol20, Theorem 2] gave a linear time
reduction from ⊕Triangle to (⊕Trianglen,Gn,1/2) with a constant error tolerance.

Lemma 7.8. Let 0 < p < 1 be a constant. Let k ∈ N, ϵ > 0, δ > 0 be such that

16 exp

(
−kϵ2δ

128

)
≤ ϵ. (3)

Suppose there exists a T (kn)-time algorithm M that solves (⊕Trianglekn,Gkn,p) with success prob-
ability 1/2 + ϵ. Then, there exists an O(T (kn)ϵ−2 log(1/ϵ))-time nonuniform algorithm M′ that
solves (⊕Trianglen,Gn,p) with success probability 1− δ.

Proof of Theorem 1.4. Set δ = c, where c is the constant from Lemma 7.7. Then, (3) holds for
some k = O(ϵ−2 log(1/ϵ)). From Lemmas 7.7 and 7.8, we obtain the claim.

Proof of Lemma 7.8. Consider the following randomized reduction:

Randomized Reduction RO(G)� �
For i ∈ [k], let Vi = {(i− 1)n+ 1, . . . , in} ⊆ [kn].

1. Sample i ∼ [k] and k independent random graphs (G1, . . . , Gk) ∼ (Gn,p)
k where each Gi

is supposed to have vertex set Vi.

2. Let G = ⟨G1, . . . , Gi−1, G,Gi+1, . . . , Gk⟩, where G is supposed to have vertex set Vi. This
graph is the query.

3. let G′ be the graph obtained from G by removing all edges inside Vi. Let A′ be the
adjacency matrix of G′.

4. Output O(G)−⊕Triangle(G′)−
∑

uv∈E(G)A
′2
uv (over F2).� �

The correctness of the reduction follows from Lemma 7.4. By Lemma 7.6 and (3), the query
graph is a (δ, ϵ/4)-sampler for density 1/2+ ϵ. By Corollary 4.2, there is an O(T (kn)ϵ−2 log(1/ϵ)+
ϵ−2(kn)ω)-time algorithm that solves (⊕Triangle(G),Gn,p) with success probability 1 − δ. We can
shave off the term (kn)ω in the running time using nonuniform advice by the same way as in
the previous subsection. Specifically, by Lemma 7.1, we give the adjacency matrix A′ of G′ as
advice (instead of the random seed). We also give ⊕Triangle(G′) and A′2 as advice to shave off the
O((kn)ω) term. Then, we obtain a nonuniform O(T (kn)ϵ−2 log(1/ϵ))-time algorithm.

8 Planted Clique

For a pair (H,C) of a graph H = (V,E) and a subset C ⊆ V , let HC = (V,E∪
(
C
2

)
). For parameters

n, k ∈ N, let Gn,1/2,k be the distribution of HC for H ∼ Gn,1/2 and C ∼
([n]
k

)
. In this section, n

denotes the input size, N = N(n) denotes the size of a query of the reduction that we consider5,
k = k(n) denotes the clique size, and ϵ = ϵ(N) denotes the success probability of an average-case
solver M (over the input distribution GN,1/2,k). Our goal is to present an algorithm M′ that
solves the planted clique problem over Gn,1/2,k with success probability 1 − δ(n). Note that ϵ is a
function on N . For example, an O(T (n)/ϵ(N))-time algorithm runs in time O(T (n)/ϵ(N(n))) on
an n-vertex graph. We write V := [n] and V := [N ] to denote the vertex sets of the input and

5We always assume N = poly(n) because we are interested in polynomial-time reductions.
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query, respectively. It is widely known that Gn,1/2,k contains a unique clique with high probability.

Lemma 8.1. For any n, k ∈ N,

Pr
G∼Gn,1/2,k

[G contains a unique k-clique] ≥ 1− 2kn2−k/2.

This result directly follows from the proof of [Jer92, Theorem 4] but for completeness we prove
it in Appendix A. We encourage the readers to think of k as being k ≫ log n in which case the
2kn2−k/n term is negligible everywhere. We consider the following reduction.

Reduction RO(G)� �
1. Pick up a uniformly random injection ϕ : V → V .

2. Initialize G = (V , ∅).

3. For every edge {u, v} ∈ E, add the edge {ϕ(u), ϕ(v)} to E(G).

4. For each {u, v} ∈
(
V
2

)
\
(
ϕ(V )
2

)
, add the edge {u, v} to G with probability 1/2 independent

to any other pairs.

5. Output O(G).� �
Note that, if G ∼ Gn,1/2,k, then the distribution of the graph G generated by RO(G) is GN,1/2,k.

Lemma 8.2. For a (1− 2
√
kN2−k/4)-fraction of G ∼ Gn,1/2,k, the N -vertex graph G produced by

Steps 2–4 of RO(G) contains a unique k-clique with probability 1−
√
2kN2−k/4.

Proof. For G ∼ Gn,1/2,k, let Z = PrR[G has a unique k-clique] be a random variable. Note that

E[Z] ≥ 1− γ for γ = 2kN2−k/2 by Lemma 8.1. Then, by the Markov inequality, we have Pr[Z ≤
1−√

γ] ≤ E[1− Z]/
√
γ ≤ √

γ =
√
2kN2−k/4.

Suppose that G is very likely to contain a unique k-clique. By Lemma 8.2, if O(G) detects some
k-clique C, then the clique is most likely to be the one planted in G. Therefore, the planted clique
can be recovered using ϕ−1(C).

8.1 Sampler Property of RO

Lemma 8.3. For any 0 < c < 1, the query graph of RO is a
(

n
c2ϵN

− 4kn2−k/2, c
)
-sampler for

density ϵ.

To prove Lemma 8.3, we need more notations. A marked graph is a pair H = (G,C) of a graph
G and a vertex subset C ⊆ V (G) such that the induced subgraph G[C] forms a clique. We call G
underlying graph and C mark. Let X (resp. Y ) be the set of all n-vertex (resp. N -vertex) marked
graphs with a mark of size k. Let µ ∈ [0, 1]X (resp. ν ∈ [0, 1]Y ) be the uniform distributions over
X (resp. Y ). We can sample x ∼ µ by selecting C ∼

(
V
k

)
and G ∼ Gn,1/2 and thereafter setting

x = (GC , C). Therefore, we can sample Gn,1/2,k by taking the underlying graph of x ∼ X. We

consider the following auxiliary reduction RO
1 .
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Auxiliary Reduction RO
1 (x)

� �
Given a marked graph x = (G,C) ∈ X, let G = (V,E) be the underlying graph and do the
following:

1. Pick up a uniformly random injection ϕ : V → V .

2. Initialize G = (V , ∅).

3. For every edge {u, v} ∈ E, add {ϕ(u), ϕ(v)} to G.

4. For each {u, v} ∈
(
V
2

)
\
(
ϕ(V )
2

)
, add the edge {u, v} to G with probability 1/2 independent

to any other pairs.

5. Let (G,ϕ(C)) ∈ Y be the query.� �
Lemma 8.4. If the query graph of RO

1 is a (δ, c)-sampler for density ϵ, then the query graph of
RO is a (δ − 4kn2−k/2, c)-sampler for density ϵ.

Proof. For an n-vertex graph G, we denote by EG|G[·] the expectation over the random query

G generated by RO(G). Similarly, for a marked graph H ∈ X, we use EH|H [·] to denote the

expectation over the query H of RO
1 (H). Fix any ϵ-dense measure w over the support of GN,1/2,k.

We say that an n-vertex graph G is good if EG|G[w(G)] ≥ (1− c)ϵ. Our goal is to show that G is

good for a (1− δ − 4kn2−k/2)-fraction of G ∼ Gn,1/2,k.

Define the measure ν1 ∈ [0, 1]Y by ν1(H) = ν(G), where G is the underlying graph of H. Then,
ν1 is ϵ-dense since EG[ν(G)] = EH∼Y [ν1(H)]. We say that H is good if EH|H [ν1(H)] ≥ (1 − c)ϵ.

Since Q1 is a sampler, a (1− δ)-fraction of H ∼ X is good.
Let U be the set of n-vertex graphs G containing a unique k-clique. By Lemma 8.1, we have

PrG∼Gn,1/2,k
[G ∈ U ] ≥ 1 − 2kn2−k/2. Let U1 be the set of marked graphs H ∈ X such that the

underlying graph contains a unique k-clique. Then, there is a one-to-one correspondence between
U and U1: A graph G ∈ U corresponds to a marked graph (G,C) ∈ U1, where C is the unique
k-clique of G. Conversely, the marked graph (G,C) ∈ U1 corresponds to the underlying graph
G ∈ U . From this correspondence, G ∈ U is good if and only if H ∈ U1 is good, and we have

Pr
G∼Gn,1/2,k

[G is good] ≥ Pr
G∼Gn,1/2,k

[G is good|G ∈ U ] Pr
G∼Gn,1/2,k

[G ∈ U ]

≥ Pr
H∼X

[H is good|H ∈ U1]− Pr
G
[G ̸∈ U ]

≥ Pr
H∼X

[H is good]− Pr
H∼X

[H ̸∈ U1]− Pr
G∼Gn,1/2,k

[G ̸∈ U ]

≥ 1− δ − 4kn2−k/2.

In this paper, we present two results that demonstrate the sampler property of the query graph
of RO

1 .

Proposition 8.5. For any 0 < c < 1, 0 < ϵ < 1, the query graph of RO
1 is a

(
4n√
c3Nϵ

, c
)
-sampler

for density ϵ.

Lemma 8.6. For any 0 < c < 1 and 0 < ϵ < 1, the query graph of RO
1 is a

(
n

c2ϵN
, c
)
-sampler for

density ϵ.

28



For example, if δ, ϵ are constants, then Lemma 8.6 implies that the query graph of RO
1 is a

(δ, c)-sampler for some N = O(n), while Proposition 8.5 implies the same for some N = O(n2).
Although there is a cost of a quadratic blow-up in N , there is a simple proof of Proposition 8.5 (we
defer this to Appendix A).

The key tool to prove Lemma 8.6 is the spectral bound from a shrinking coupling [Che98].
Recall that a coupling of two distributions D1,D2 is a pair of random variables (X1, X2) where the
marginal distribution of Xi is Di for i = 1, 2.

Lemma 8.7 (Theorem 13.1 of [LP17]). Let (V,dist(·, ·)) be a metric space and P ∈ [0, 1]V×V be a
reversible Markov operator. If for every x1, x2 ∈ V there exists a coupling (x′1, x

′
2) of P (x1, ·) and

P (x2, ·) that satisfies E[dist(x′1, x
′
2)] ≤ θ · dist(x1, x2), then, λ(P ) ≤ θ.

Proof of Lemma 8.6. Let Q = (X,Y,W ) be the query graph of RO
1 associated with the Markov

operator P . We apply Lemma 8.7 to obtain an upper bound on λ(PP ∗) and thereafter combine
Lemmas 3.5 and 3.6, where P ∗ denotes the adjoint of P . Consider the following sampling procedure
S(H) that is given a marked graph H ∈ Y .

Sampling Procedure S(H)� �
Given a marked graph H = (G,C), select an injection ϕ′ : V → V uniformly at random
conditioned on ϕ′(V ) ⊇ C. Then, output H ′ = (G′, C ′) ∈ X for G′ = ϕ′−1(G[ϕ′(V )]) and
C ′ = ϕ′−1(C).� �

Claim 8.8. For the sampling procedure S above, PrS [S(H) outputs H] = P ∗(H,H).

Proof. Let Inj(V, V ) be the set of all injections from V to V . An embedding from G to G is an
injection ϕ : V → V that preserves the adjacency (i.e., {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈
E(G)). For H = (G,C) ∈ X and H = (G,C) ∈ Y , let EMB(H,H) be the set of embeddings ϕ

from G to G such that ϕ(C) = C. Let emb(G,G) = |EMB(G,G)|
|Inj(V,V )| .

Fix H = (G,C) ∈ X and H = (G,C) ∈ Y . By the definition of RO, we have

P (H,H) = emb(H,H) · (1/2)(
N
2 )−(

n
2) = emb(H,H) ·

(
N
k

)(
n
k

) · ν(H)

µ(H)
.

Thus P ∗(H,H) = emb(H,H) · (
N
k )
(nk)

= emb(H,H) · (Nn)
(N−k
n−k)

. By the definition of S, we have

Pr[S(H) = H] = Pr
ϕ′∼Inj(V,V )

[ϕ′ ∈ EMB(H,H)|ϕ′(V ) ⊇ C]

=
emb(H,H)

Prϕ′∼Inj(V,V )[ϕ
′(V ) ⊇ C]

= emb(H,H) ·
(
N
n

)(
N−k
n−k

)
= P ∗(H,H).
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To apply Lemma 8.7, we define a metric dist : X ×X → R by

dist(H1, H2) =

{
dham(H1, H2) if H1 and H2 have the same mark,

∞ otherwise.

where dham(·, ·) denotes the Hamming distance.6 We construct a coupling satisfying the condition
of Lemma 8.7 for the metric dist(·, ·).

Let S ′ be the composition of RO
1 and S (see Figure 4). Namely, S ′(H) runs the query-making

part of RO
1 (H) to produce a query H ∈ Y and then output H ′ = S(H). By Claim 8.8, S ′(x)

samples the distribution PP ∗(x, ·). For H = (G,C) ∈ X and a permutation π over V , let π(H) =
(π(G), π(C)) ∈ X. Note that, for any fixed π, S ′(π(x)) also samples the distribution PP ∗(x, ·).
Consider the following coupling:

Coupling� �
Let H1 = (G1, C1) and H2 = (G2, C2) be inputs.

1. If C1 = C2, let π be the identity permutation. Otherwise, take any permutation π over
V such that π(C1) = C2.

2. Sample a random seed r for S ′.

3. Output (H ′
1, H

′
2) = (S ′(π(H1); r),S ′(H2; r)). Here, we use the common random seed r

for S ′.� �
Claim 8.9. For the output (H ′

1, H
′
2) of the coupling above, E[dist(H ′

1, H
′
2)] ≤ n

N dist(H1, H2).

Proof. Write Hi = (Gi, Ci) and H ′
i = (G′

i, C
′
i). Consider two cases:

Case 1: C1 ̸= C2. Note that C ′
1 = C ′

2 regardless of C1 ̸= C2 or not; thus, we have dist(x1, x2) = ∞
and dist(x′1, x

′
2) ≤

(
n
2

)
. Therefore, the statement holds.

Case 2: C1 = C2. Let ∆(H1, H2) := (E(G1) \ E(G2)) ∪ (E(G2) \ E(G1)) be the symmetric
difference of the underlying graphs. We aim to show E[|∆(H ′

1, H
′
2)|] ≤ n

N |∆(H1, H2)|. Let H i =
(Gi, Ci) be the random query generated by RO

1 (Hi). By assumption, the permutation π of Step 1
is the identity and thus C1 = C2.

Since RO
1 (x1) and RO

1 (x2) share the random seed, we have ∆(H1, H2) = {{ϕ(u), ϕ(v)} : {u, v} ∈
∆(H1, H2)}, where ϕ ∈ Inj(V, V ) is the random injection used in RO

1 . Fix {a, b} ∈ ∆(H1, H2) and
consider Pr[{a, b} ∈ ∆(H ′

1, H
′
2)]. Let ϕ′ ∈ Inj(V, V ) be a random injection used in S to construct

H ′
1 and H ′

2. Note that {a, b} ̸⊆ C1 (since C1 = C2); thus we may assume a ̸∈ C1. Then,

Pr[{a, b} ∈ ∆(H ′
1, H

′
2)] ≤ Pr

ϕ′
[{a, b} ⊆ ϕ′(V )] ≤ Pr

ϕ′
[a ∈ ϕ′(V )] ≤ n

N

and we obtain E[|∆(H ′
1, H

′
2)|] ≤ n

N |∆(H1, H2)|.

Now, we return to the proof of Lemma 8.6. By Lemma 8.7 and Claim 8.9, λ(PP ∗) ≤ n
N . By

Lemma 3.5, the query graph Q1 is a
√

n
N -expander. Then, by Lemma 3.6, for any c, ϵ > 0, Q1 is a(

n
c2ϵN

, c
)
-sampler for density ϵ.

Proof of Lemma 8.3. Combine Lemmas 8.4 and 8.6.
6The proof works even if we replace ∞ with a sufficiently large number, say, 2n.
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8.2 Search Problem

For a randomized algorithm M, we say that M(G) finds a k-clique if M(G) outputs a k-clique in
G with probability at least 2/3 over the internal randomness of M. In this subsection, we assume
that M knows the clique size k.

Theorem 8.10. Let k = k(n), N = N(n), δ = δ(n), ϵ = ϵ(N) be functions that satisfy Nϵ ≥ 4nδ−2

and ϵ ≥ 6
√
2kN2−k/4. Suppose there exists a T (N)-time algorithm M that satisfies

Pr
G∼GN,1/2,k

[M(G) finds a k-clique] ≥ ϵ.

Then, there exists a randomized algorithm M′ than runs in time O(T (N)/ϵ) on an n-vertex graph
G and satisfies

Pr
G∼Gn,1/2,k

[
M′(G) finds a k-clique

]
≥ 1− δ −

√
2kN2−k/4.

Proof. Let RO be the reduction given at the beginning of Section 8. Our algorithm M′(G) runs
RM(G) for ℓ := ⌈10ϵ−1⌉ times. During the iteration, once M(G) outputs a k-clique C ⊆ ϕ(V ),
then output ϕ−1(C) and terminate. If the algorithm does not terminate during the reduction,
then output ⊥. Let U be the event that the large graph G contains a unique k-clique. If U
occurs and M′(G) outputs a k-clique, then the clique must be the planted one in G; thus M′(G)
succeeds. By Lemmas 8.2 and 8.3 (with setting c = 1/2), for a (1 − δ −

√
2kN2−k/4))-fraction of

G ∼ Gn,1/2,k, PrG[U occurs and M(G) finds a k-clique] ≥ ϵ/2 −
√
2kN2−k/4 ≥ ϵ/3. Therefore, for

such G, M′(G) outputs a k-clique of G with probability 1− (1− ϵ/6)10ℓ ≥ 2/3.

8.3 Decision Problem

In the decision version of the planted clique, we consider the following two notions:

Definition 8.1. Let M be a randomized algorithm that outputs either 0 or 1 and D1,D2 be two
input distributions.

• We say that M has a predicting advantage θ on D1 and D2 if

Pr
x∼D1
M

[M(x) = 1] ≥ 1 + θ

2
, Pr

x∼D2
M

[M(x) = 1] ≤ 1− θ

2
.

• We say that M has a distinguishing advantage η on D1 and D2 if

Pr
x∼D1
M

[M(x) = 1]− Pr
x∼D2
M

[M(x) = 1] ≥ η.

Clearly, the predicting advantage implies the same distinguishing advantage. Indeed, the con-
verse holds at a cost of a small overhead in running time. We prove this in Appendix A.

Lemma 8.11. Suppose there exists a T (n)-time algorithm M with a distinguishing advantage γ

on Gn,1/2,k and Gn,1/2. Then, there exists an O
(
log3 n
γ2 · T (n)

)
-time randomized algorithm B that

has a predicting advantage γ/4−n−ω(logn) on Gn,1/2,k and Gn,1/2 without knowing the clique size k.

The main aim of this subsection is to boost the distinguishing advantage on Gn,1/2,k and Gn,k.
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Theorem 8.12. Let k = k(n),N = N(n), δ = δ(n), ϵ = ϵ(N) be functions satisfying Nϵ2 ≥
36n
δ2

and ϵ ≥ 6
√
2kN2−k/4. Suppose there exists a T (N)-time randomized algorithm M with a

distinguishing advantage ϵ on GN,1/2,k and GN,1/2. Then, there exists a randomized algorithm M′

with a predicting advantage 1−2δ−8kN2−k/2 on Gn,1/2,k and Gn,1/2 that runs on an n-vertex graph

in time O
(
log3(n) log(1/δ)

ϵ4
· T (N)

)
.

Remark 6. By inspecting the proof, we may assume that the algorithm M′ is not necessarily given
the clique size k as input. We will use this feature in Section 8.4.

Proof. Since the planted clique can be solved in time nO(logn), we may assume that ϵ ≥ n−O(logn).
Consider the reduction RO given at the beginning of Section 8. By Lemma 8.11, there exists a

randomized O
(
log3 n
ϵ2

· T (n)
)
-time algorithm B with a predicting advantage ϵ/4 − n−ω(logn) ≥ ϵ/5

(for sufficiently large n). Our algorithm M′ repeats RB(G) for O(ϵ−2 log(1/δ)) times and then
outputs the majority.

To see the correctness of M′, we consider two cases: G ∼ Gn,1/2,k and G ∼ Gn,1/2. Our plan is
to show that the query graphs of these two cases are samplers. We then apply the Chernoff bound
which implies the claim.

Case 1: G ∼ Gn,1/2,k. By Lemma 8.3, the query graph of RO is a
(

2n
c2N

− 4kN2−k/2, c
)
-sampler

for density 1
2 +ϵ. Note that M outputs 1 for a (1/2+ϵ/2)-fraction of GN,1/2,k. Set c = ϵ/3 and thus

2n
c2N

≤ δ
2 . For a (1− δ/2− 4kN2−k/2)-fraction of G ∼ Gn,1/2,k, we have RB(G) = 1 with probability

(1−c)(1+ϵ)
2 ≥ 1+ϵ/3

2 over the internal randomness of RB. By the Chernoff bound (Lemma 3.2),

PrM′ [M′(G) = 1] ≥ 1 − δ/2 for a (1 − δ/2 − 4kN2−k/2)-fraction of G ∼ Gn,1/2,k. Therefore, we

have PrG,M′ [M′(G) = 1] ≥ 1− δ − 4kN2−k/2.

Case 2: G ∼ Gn,1/2. Consider the auxiliary reduction RO
1 (in Section 8.1) for k = 0. Then the

query graphs of RO and RO
1 are isomorphic. Therefore, from Lemma 8.6 (note that we do not make

any assumption on k in Lemma 8.6), we have that the query graph of RO is a
(

2n
c2N

, c
)
-sampler for

density 1
2 + ϵ. (Note that we can identify a graph G with the marked graph (G, ∅) with the empty

mark and thus the query graphs of RO and RO
1 are isomorphic.) Using the same argument as in

Case 1, we have PrG,M′ [M′(G) = 0] ≥ 1− δ − 4kN2−k/2 for a sufficiently large n.
From Cases 1 and 2, we can conclude that M′ has a distinguishing advantage 1− δ on Gn,1/2,k

and Gn,1/2.

Proof of Theorem 1.1. Let δ, ϵ be constants and apply Theorem 8.12. Note that N = O(n) and
thus k ≥ 3 logN = 3 log n+O(1). In this case, kn2−k/2 = n−Ω(1) is negligible.

8.4 Search-to-Decision

We consider a slightly different setting in which our average-case solver M is supposed to have a
distinguishing advantage on Gn,1/2 and Gn,1/2,k′ for all k′ ≥ k without knowing the clique size k′.
In this setting, Alon et al. [AAKMRX07] presented the following search-to-decision reduction for
the planted clique. For completeness, we present a proof sketch in Appendix A.

Lemma 8.13. Let k ≥ 108 log2 n. Suppose there exists a T (n)-time algorithm M with a predicting
advantage 1− 1/n2 on Gn,1/2,k′ and Gn,1/2 for all k′ ≥ k/3 without knowing k′. Then, there exists
an O(nT (n))-time algorithm M′ that finds a k-clique for a (1−O(1/n))-fraction of G ∼ Gn,1/2,k.
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By combining Lemma 8.13 with Theorem 8.12, we obtain the following search-to-decision re-
duction:

Theorem 8.14. Let k = k(n), N = N(n), δ = δ(n), ϵ = ϵ(N) be functions that satisfy Nϵ2 ≥ 36n
δ

and k ≥ 108 log2 n. Suppose there exists a T (n)-time randomized algorithm M with a distinguishing

advantage ϵ on GN,1/2,k′ and GN,1/2 for all k′ ≥ k. Then, there exists an O
(
n log3(n)

ϵ4
· T (N)

)
-time

randomized algorithm M′ that finds a k-clique for a (1−O(1/n))-fraction of G ∼ Gn,1/2,k.

Proof. By Lemma 8.11, there exists an algorithm B with a predicting advantage ϵ/4 on Gn,1/2,k′

and Gn,1/2 for all k′ ≥ k (note that B of Lemma 8.11 works without knowing k′). Let RO be the

reduction provided at the beginning of this section and let M′ be the algorithm that runs RB(G) for
ℓ = O(log(1/δ)/ϵ2) times and then outputs the majority. Since the query graph of RO is a sampler
in the both cases of G ∼ Gn,1/2 and G ∼ Gn,1/2,k′ (from Cases 1 and 2 in the proof of Theorem 8.12),
we have that M′ has a predicting advantage 1 − δ in distinguishing between Gn,1/2,k′ and Gn,1/2.
Set δ = 1/n2. By Lemma 8.13, we obtain the desired algorithm.

Proof of Theorem 1.2. Apply Theorem 8.14. Note that the condition on N in Theorem 8.10 can
be rewritten as N2c0 ≥ 36n3; thus, N = nc for c > 5

4c0
satisfies this condition.
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A Deferred Proof

Lemma 7.3. Suppose there exists a T (n)-time algorithm that solves #Trianglen. Then, for any
ℓ ∈ N, there exists an O(T (⌈n/ℓ⌉) · ℓ3 log ℓ)-time algorithm that solves #Trianglen. The same holds
for ⊕Trianglen.

Proof. For simplicity, we assume that 3ℓ divides n. Let G = (V,E) be a given n-vertex graph and
write V = {v1, . . . , vn}. Let G′ = (V1 ∪ V2 ∪ V3, E

′) be the 3n-vertex tripartite graph defined as:

• Each Vi = {v(i)1 , . . . , v
(i)
n } is a copy of V .

• The edge set is given by E′ = E12 ∪ E23 ∪ E13, where

Eij = {{v(i)k , v
(j)
ℓ } : k < ℓ, {vk, vℓ} ∈ E}.

Note that #Trianglen(G) = #Triangle3n(G
′) (and thus ⊕Trianglen(G) = ⊕Triangle3n(G

′)) because

a triangle vivjvk in G with i < j < k corresponds to a triangle v
(1)
i v

(2)
j v

(3)
k in G′ (and vice versa).

For each i ∈ [3], let U
(i)
1 , . . . , U

(i)
3ℓ ⊆ Vi be a partition of Vi such that |U (i)

1 | = · · · = |U (i)
3ℓ |. For

i, j, k ∈ [3ℓ], let Gijk = G′[U
(1)
i ∪ U

(2)
j ∪ U

(3)
k ] be the induced subgraph. Then, each Gijk has n/ℓ

vertices and

#Trianglen(G) =
∑

i,j,k∈[ℓ]

#Trianglen/ℓ(Gijk).

Since we can compute each #Trianglen/ℓ(Gijk) using an O(T (n) log ℓ)-time randomized algorithm

M with probability 1− O(1/ℓ3) (over the random seed of M), we can compute #Trianglen(G) in
time O(ℓ3T (n) log ℓ).

Lemma 8.1. For any n, k ∈ N,

Pr
G∼Gn,1/2,k

[G contains a unique k-clique] ≥ 1− 2kn2−k/2.

Proof. We may assume kn2−k/2 ≤ 1
2 , since otherwise, the RHS of the expression would be negative.

Let C be the k-clique planted in Gn,1/2,k. The expected number of k-cliques S ⊆ V such that

|S ∩C| = t is
(
n−k
k−t

)(
k
t

)
2−(

k
2)+(

t
2). The summation of this term over 0 ≤ t ≤ k− 1 implies the claim.

Specifically, the probability that G ∼ Gn,1/2,k contains a k-clique other than C is at most

k−1∑
i=0

(
n− k

k − t

)(
k

t

)
2−(

k
2)+(

t
2) ≤

k−1∑
t=0

(
kn2−k/2

)k−t

≤ kn2−k/2 ·
∞∑
t=0

(1/2)t

≤ kn2−k/2+1.
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Proposition 8.5. For any 0 < c < 1, 0 < ϵ < 1, the query graph of RO
1 is a

(
4n√
c3Nϵ

, c
)
-sampler

for density ϵ.

Proof. Let Q = (X,Y,W ) be the query graph of RO
1 associated with the Markov operator P .

By Lemma 3.7, it suffices to show that Q∗ = (Y,X,W⊤) is an
(

8n2

c2δ2N
, c2

)
-sampler for density

δ. Let v ∈ [0, 1]X be a δ-dense measure over X. For a random H = (G,C) ∼ Y , consider the
random variable Z := EH|H [v(H)] = Eϕ[v(Hϕ)], where ϕ denotes a uniformly random injection

from V to V conditioned on ϕ(V ) ⊇ C, and Hϕ = (H,C) ∈ X denotes the marked graph given by
H = ϕ−1(H[ϕ(V )]) and C = ϕ−1(C) (i.e., Hϕ is drawn from the distribution P ∗(H, ·)).

We show Pr[Z ≤ (1−0.5c)E[v]] ≤ 8n2

c2δ2N
by the Chebyshev inequality (Lemma 3.1). Fix a mark

C and take ϕ, ϕ′ randomly conditioned on ϕ(V ) ⊇ C and ϕ′(V ) ⊇ C. We denote by Eϕ,ϕ′|C [·] the
expectation over such ϕ, ϕ′. Conditioned on ϕ(V )∩ϕ′(V ) = C, we observe that the random variables
Hϕ and Hϕ′ are independent of G (here, G is selected by making the fixed mark C clique and then
drawing random edges outside C). This implies EG[v(Hϕ)v(Hϕ′)] = EG[v(Hϕ)]EG[v(Hϕ′)]. Then,
we have

E[Z2] = E
H,ϕ,ϕ′

[
v(Hϕ)v(Hϕ′)

]
= E

C

[
E

ϕ,ϕ′|C

[
E
G
[v(Hϕ)v(Hϕ′)]

]]

≤ E
C

[
E

ϕ,ϕ′|C

[
E
G
[v(Hϕ)]E

G
[v(Hϕ′)]

]]
+E

C

[
Pr

ϕ,ϕ′|C
[ϕ(V ) ∩ ϕ′(V ) ̸= C]

]

≤ (E[Z])2 +
2n2

N
.

Here, note that ϕ(V ) \ C and ϕ′(V ) \ C are independent random subset; thus, for any fixed C,

Pr
ϕ,ϕ′|C

[ϕ(V ) ∩ ϕ′(V ) ̸= C] = 1−
(
N−n
n−k

)(
N−k
n−k

) ≤ 2n2

N
.

Therefore, we have Var[Z] ≤ 2n2

N and thus

Pr[Z ≤ (1− c/2)E[v]] ≤ 4Var[Z]

c2E[v]2
≤ 8n2

c2δ2N
.

This completes the proof.

Lemma 8.11. Suppose there exists a T (n)-time algorithm M with a distinguishing advantage γ

on Gn,1/2,k and Gn,1/2. Then, there exists an O
(
log3 n
γ2 · T (n)

)
-time randomized algorithm B that

has a predicting advantage γ/4−n−ω(logn) on Gn,1/2,k and Gn,1/2 without knowing the clique size k.

Proof. Let

p = Pr
x∼D1,M

[M(x) = 1], q = Pr
x∼D2,M

[M(x) = 0].
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For ℓ = O
(
log3 n
γ2

)
, let G1, . . . , Gℓ ∼ Gn,1/2 and q̂ = 1

ℓ

∑
i∈[ℓ]M(Gi). We use q̂ as an estimate of q.

By the Chernoff bound, |q − q̂| ≤ 0.01γ with probability 1− n−Ω(log2 n). Let p̂ = 1 + γ − q̂.
By the assumption, p+q ≥ 1+γ and thus p ≥ p̂−0.01γ. Consider three cases: (i) If |p̂−q̂| ≤ 0.2γ,

then M has a predicting advantage 0.39γ. (ii) Suppose p̂ > q̂ + 0.2γ. For a parameter ξ ∈ (0, 1),
consider the algorithm Bξ(x) that samples the binary random variable c ∈ {0, 1} of Pr[c = 1] = ξ
and thereafter returns min(c,M(x)). If we set ξ = 1

1+p̂−q̂ , a straightforward calculation shows that

Pr
x∼D1,M

[Bξ(x) = 1] = pξ ≥ 1

2
+

0.49γ

2 + γ − 2q̂
≥ 1

2
+ 0.16γ,

Pr
x∼D2,M

[Bξ(G) = 0] = q + (1− q)(1− ξ) ≥ ξp̂− 0.02γ ≥ 1

2
+ 0.48γ.

(iii) The case in which p < q − 0.2γ is symmetrical. Consider the algorithm B′
ξ′(x) that outputs

max(c′,M(x)) for a binary random variable c′ ∈ {0, 1} with Pr[c′ = 1] = 1−ξ′. If we set ξ′ = 1
1+q̂−p̂ ,

then the same argument implies that B′
ξ′ has an advantage 0.16γ.

Our algorithm B(G) runs as follows: Compute p̂ and q̂. If |p̂ − q̂| ≤ 0.2γ, output M(G). If
p̂− q̂ > 0.2γ, output Bξ(G) for ξ = 1

1+p̂−q̂ . If p̂− q̂ < −0.2γ, output B′
ξ′(G) for ξ′ = 1

1+q̂−p̂ . Then,
B has a predicting advantage at least γ/10. Note that B does not use the value k.

Lemma 8.13. Let k ≥ 108 log2 n. Suppose there exists a T (n)-time algorithm M with a predicting
advantage 1− 1/n2 on Gn,1/2,k′ and Gn,1/2 for all k′ ≥ k/3 without knowing k′. Then, there exists
an O(nT (n))-time algorithm M′ that finds a k-clique for a (1−O(1/n))-fraction of G ∼ Gn,1/2,k.

We refer to [AAKMRX07, Section 4.3.3] for the detailed proof (the algorithm we present here
is slightly different).

Proof Sketch. Let G = (V,E) be an input graph. We assume that G contains at most one k-clique,
which occurs with probability 1 − n−ω(1) in both cases of G ∼ Gn,1/2 and G ∼ Gn,1/2,k. For a
vertex v ∈ V , let Γ(v) be the set of vertices adjacent to v. Let Hv be the graph obtained by
resampling random edges inside v ∪Γ(v) (i.e., the graph obtained by replacing G[v ∪Γ(v)] with an
independent sample of an Erdős–Rényi random graph of the same size). Our algorithm M′ outputs
S := {v ∈ V : M(Hv) = 0}.

Suppose G ∼ Gn,1/2,k. If v is in the unique k-clique, then v ∪ Γ(v) contains the clique and
thus Hv ∼ Gn,1/2. Therefore, v ∈ S with probability 1 − O(1/n2). If v is not in the unique k-
clique, then Hv ∼ Gn,1/2,k′ , where k′ is a random variable such that k′ ≥ k/3 with probability
1− exp(−k/54) > 1−n−2 over the choice of G. For such G, with probability 1−O(1/n2), we have
v ̸∈ S. By the union bound over v ∈ V , with probability 1−O(1/n), S is the planted clique.
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