
Some Lower Bounds Related to the Missing

String Problem

Joseph Zalewski

Kansas State University

Abstract

We prove that the O(k log k)-probe algorithm for k-Missing String pre-
sented in Williams and Vyas’ paper [VW23] is asymptotically optimal
among a certain class of algorithms for this problem. The best lower
bound we are aware of for the general case is Ω(k).

1 Preliminaries

Let an instance of the k-Missing String problem for positive k be an array of
bits of width N and height ≤ kN , that is, a mapping T × H → {0, 1} where
|T | = N, |H| ≤ kN . We will use ‘string’ to refer to mappings T → {0, 1}, and
call T,H the horizontal and vertical index sets of L. An instance L contains
a string x if for some j ∈ H, L(·, j) = x. An algorithm is said to solve the
Missing String problem if, given an instance L of width N that does not contain
all strings of length N , it outputs an N -bit string that is not a row of L.

Let a l-probe-per-bit algorithm A for Missing String be an algorithm which
takes an instance L : T × H → {0, 1} and an index i ∈ T , and returns a bit,
such that the string A(L) = i 7→ A(L, i) is not a row of L, and such that a run
of A(L, i) queries ≤ l bits of L.

Let P be a partition of the index set T of size N . Let B ∈ P . Say that a
bit position (i, j) ∈ T ×H is in block B if its column index i is in B.

Let a block algorithm (A,P) for Missing String be a mapping P which takes
finite index sets T to partitions of T , together with an algorithm A which, given
an instance L : T×H → {0, 1}, a block B ∈ P (T), and an index i ∈ B, computes
a bit, probing only bit positions in B, such that the string i 7→ A(L,Bi, i) is
not a row of L (where Bi denotes the block of P (T) containing i). A block
algorithm performs l probes per column if, for every block B ∈ P (T), the size of
the set of entries in T×H where L is queried by some run of A(L,B, i) for i ∈ B
is no more than l. We will sometimes write P (L) instead of P (T). If (A,P) is
a block algorithm, for each block B ∈ P (L), define A∗(L,B) = [i 7→ A(L,B, i)]
for each i ∈ B. In other words, A∗ computes the portion of the output string
A(L) indexed by B.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 27 (2023)

The state-of-the-art algorithm presented in [VW23] is a block algorithm,
and it makes the same number of probes per bit as it makes probes per column,
since it computes all the output bits for block B in a batch, using O(k log k)
bits from columns in B. This algorithm is asymptotically optimal in probes per
output bit among algorithms of the same general type.

Theorem 1. Let (A,P) be a block algorithm solving k-Missing String. Then
for every input L, there is some B ∈ P (L) such that A probes Ω(k log k) bits in
B.

2 Lemmas

Lemma 1. Let T be a set of indices and f be any function from T×H instances
to strings indexed by T . There are at least |H| − 2|T | rows j ∈ H such that, for
some instance L, f(L)[i] = L[i][j], i.e. f(L) is the j-th row of L.

Proof. Let c = |T |. If |H| ≤ 2c the lemma is vacuously true. Otherwise one of
the following is true:

(1) there is some set of 2c − 1 rows J such that for all L, for all j ∈ J , f(L)
is different from the j-th row of L; or

(2) for every set of 2c − 1 rows J , there is some L for which, for some one of
the j ∈ J , f(L) is the j-th row of L.

[(2) is the logical negation of (1).]
Case (1): Consider all rows k ̸∈ J , of which there are |H| − 2c + 1. Choose

any string x indexed by T and let X be the set of 2c − 1 strings indexed by T
that differ from x. Let L be an instance in which the rows in J contain all the
strings in X. Then f(L) = x. Now let L′ be the instance obtained from L by
replacing row k with x. So, f(T ′) is the k-th row of T ′.

Case (2): Suppose there are fewer than |H| − 2c + 1 rows k such that for
some L, f(L) matches the k-th row of L. Then there is a set of 2c − 1 rows J
violating (2), a contradiction.

Let a row index j be called open for block B ∈ P (T) (and row index set H)
relative to block algorithm (A,P) if there is some T ×H-instance L such that
A∗(L,B) equals the j-th row of L. This concept will be used in the succeeding
proofs.

Lemma 2. For any block algorithm (A,P) and index set T , if {Bi} are the
blocks of P (T) and {ci} are their sizes, (A,P) solves the k-Missing String prob-
lem for inputs of horizontal index T only if

∑
i 2

ci ≥ k|T |.

Proof. Let
∑

i 2
ci < k|T |. By lemma 1, each column has at most 2ci non-open

rows, so the rows that are non-open in some block are no more than
∑

i 2
ci .

Therefore if this sum is < k|T |, then for an instance with a vertical index H
of size k|T |, there is some row j which is open in every block. If we let LB be
such that A∗(LB) is the j-th row of LB , for each B ∈ P (T), then the instance
L obtained by L[i][j] = LBi

[i][j] is such that A(L) is the j-th row of L, which
is not a missing string, a contradiction.

2

Corollary 1. If (A,P) is a correct block algorithm for k-Missing String, then
for large enough |T |, P (T) contains a block of size Ω(log k).

Proof. Let k > 1. Suppose for arbitrarily large |T |, P (T) contains only blocks of
size ≤ 1/2 log k. Since there are no more than |T | blocks,

∑
i 2

c
i ≤ |T |21/2 log k =

|T |
√
k < k|T |, contradicting the lemma.

The algorithm in [VW23], incidentally, achieves the above lower bound as
well.

Lemma 3. Let {ci} be a set of positive numbers whose sum is N , and let ci ≤ b
for all i. Let d be a positive integer such that db ≥ N . Then

∑
i 2

ci ≤ d2b.

Proof. Note that 2x, as a function of a real variable, is positive, continuous and
upward-convex, i.e. its derivative is positive and strictly increasing on positive
x. We prove the lemma for all such functions f . It suffices to prove it for the case
when N = db. Proof of claim: Let N < db. For any values of ci, there is a set
with one additional member c∗ = db−N , so that

∑
i f(ci) ≤

∑
i f(ci)+f(c∗) ≤

df(b).
When a > b are positive, and 0 < x ≤ b, f(a+ x) + f(b− x) > f(a) + f(b)

(1). Proof of claim (1):

f(a+ x) + f(b− x) =

f(a) + f(b) +

∫ a+x

a

f ′(y)dy −
∫ b

b−x

f ′(y)dy

and the first integral is larger than the second because f ′ is strictly increasing
and the intervals of integration are the same length.

Consider the function
∑

i f(ci) on variables ci, and its maximal points in
the set S defined by

∑
i ci = N, 0 ≤ ci ≤ b. This set is compact and f is

continuous, so there exists a maximal point. Let a ‘b-solution’ be a point at
which all the ci are b or 0. Every point that is not a b-solution is not maximal
(2), therefore some b-solution is maximal. But

∑
i f(ci) takes the same value

at all b-solutions, so all of them are maximal.
Proof of claim (2): Let ⟨ci⟩ not be a b-solution. Then there is some 0 < ci <

b, and there are in fact at least two such variables, otherwise
∑

i ci would not
be an integer multiple of b. Call them ci, cj and let ci ≥ cj . Let 0 < x ≤ cj and
x ≤ b − ci. The point obtained by setting ci = ci + x, cj = cj − x is in S and∑

i f(ci) is greater there, by inequality (1), so ⟨ci⟩ is not maximal.

Lemma 4.
(

n
n/k

)
∈ Θ((

√
1/n)bnk) for constant k, where bk → 1 as k → ∞.

Proof. This analysis is legitimate because
(

n
n/k

)
exists infinitely often. Let q =

(k−1)/k.
(

n
n/k

)
= n!/(qn)!(n/k)! ∈ Θ(

√
n(n/e)n)/Θ(

√
qn(qn/e)qn)Θ(

√
n/k(n/ke)n/k),

by Stirling’s formula, and this is

Θ(
√
n(n/e)n/[

√
qn(qn/e)qn

√
n/k(n/ke)n/k]) =

3

Θ(
√
n/(qn)(n/k) ∗ (1/q)qn ∗ k(1/k)n) =

Θ(
√
1/n ∗ [(1/q)q ∗ k(1/k)]n)

The function x1/x approaches 1 as x goes to 1 or infinity, and 1/q → 1 as
k → ∞, so the base of the exponential factor goes to 1 as k → ∞.

Lemma 5. For any b > 1, there is a constant c such that, if |T | is large enough
and |H| ≥ b|T |, there is no algorithm that computes Missing String on T ×H-
instances, and probes fewer than |H|/c bits per output bit.

Proof. Let t, h = |T |, |H|. Assume for contradiction that there is an algorithm
making fewer than h/c probes. For any constant d, we can choose c large
enough that there are no more than h/d rows on which more than t/d output
bits depend. Proof of claim: choose c > d2. The number of pairs of a row and
an output bit depending on that row is no more than ht/c. Let r be the number
of rows upon which more than t/d output bits depend. Then there are at least
rt/d such pairs, so rt/d ≤ ht/c, so r ≤ hd/c < h/d.

So let this condition hold of d. Say that an output bit i ∈ T is influenced
by a row j ∈ H on input L if the algorithm A(L, i) queries a bit in row j. For
each input L, there are ≥ (d − 1)h/d ≥ (d − 1)/d ∗ bt rows that are related
to few (≤ t/d) output bits. For each such row j, pick out the least (in some
order) set of t/d output bits containing all the bits influenced by j. (Without
loss of generality, assume t is divisible by d.) By lemma 4, there are O(btd) such
sets, where for large d, bd is less than b. Assume d is large enough for this.
Thus, by the counting pigeonhole principle, there is some set of t/d output bits
X and set of rows R such that R influences only bits in X (on input L) and
|R| ∈ Ω((b/bd)

t). Finally assume d is large enough that 2(1/d) < (b/bd), possible
because bd → 1 for large d.

Let x be the output of A on L. Consider the instances obtained by replacing
rows in R with arbitrary strings that match x on the indices i not in X. On
all these instances, A produces a string that differs from x only on indices in
X, because other output bits are not influenced by rows in R. Since R contains
more rows than 2(1/d)t, there is such an input for which every assignment of bits
to the indices in X occurs in some row in R, and therefore the output of A is a
row in R, contradicting the correctness of A.

Corollary 2. For instances of arbitrary height |H| < 2|T |, the Missing String
problem has a lower bound of Ω(|H|) probes per bit.

Proof. ‘Instances of arbitrary |H|’ certainly include the case |H| > 1.5|T |, which
require |H|/c probes for some c.

3 Main Results

Recall Theorem 1:

4

Theorem 1. Let (A,P) be a block algorithm solving k-Missing String. Then
for every T , there is some B ∈ P (T) such that A probes Ω(k log k) bits in B in
the worst case.

Proof. Among the blocks of P (T), call those containing no more than 1/2 log k
bits ‘small’ blocks and the others ‘large.’ If (A,P) is a correct algorithm,
there are no rows which are open for every block. And in each small block,
no more than 21/2 log k =

√
k rows are non-open, by Lemma 1, and there are

no more than |T | small blocks, so the number of rows that are non-open in
some small block is ≤

√
k|T |. For sufficiently large k,

√
k < 1/2 k, so at least

kN/2 rows are non-open in some large block. However, there are no more than
N/(1/2 log k) large blocks, so by the pigeonhole principle, one of them contains
at least (kN/2)/[N/(1/2 log k)] = 1/4 k log k non-open rows. But a row which is
not probed is open, therefore A probes at least 1/4 k log k bits in this block.

For block algorithms in which every output bit within a given block depends
on all bits probed in that block, such as the one in [VW23], this theorem shows
a k log k lower bound on probes per output bit. But we might imagine a block
algorithm that does not work that way, and we can prove the same lower bound
as long as the blocks are narrow.

Theorem 2. Let (A,P) be a block algorithm computing k-Missing String, such
that all blocks are of size O(log k). Then for large enough |T |, there is some
output bit i ∈ T such that in the worst case A(·, Bi, i) probes Ω(k log k) bits.

Proof. As in the last proof, find a block B that contains at least 1/4 k log k
non-open rows. Let c be the constant implicit in the block size O(log k). So
there are ≤ c log k columns in B. Let J be the set of these 1/4 k log k rows,
and R the set of all rows, and consider the Missing String problem on instances
indexed by B × J . All rows in J are non-open, so for every B × J instance L,
and any extension L′ to a B ×R instance, A(L′) does not match any row of L.
Therefore, by arbitrarily extending L to a B×R instance and then applying A,
we have an algorithm for Missing String on B × J instances.

For large enough k, 1/4 k log k > k = 2log k = (21/c)c log k, so by Lemma 5,
there is a constant c′ (determined by b = 21/c) such that our B × J algorithm
probes at least 1/4 k log k/c′ bits to compute some output bit i. Therefore, A
probes at least that many bits in rows J to compute i.

4 Conclusions

We have shown that for a natural kind of algorithm, the k-Missing String prob-
lem cannot be solved with (asymptotically) fewer probes per bit than the current
state of the art. The problem for general algorithms remains open.

Since it is trivially impossible to find a Missing String with fewer that Ω(|H|)
probes overall [VW23], it is trivially impossible to use fewer than Ω(|H|/|T |)
probes per output bit. If h ≥ h′, An algorithm achieving the trivial lower
bound for instances where |H| ≤ h(|T |) also achieves it for |H| ≤ h′(|T |), so

5

lower bounds will be easiest to prove for very tall instances. Our Lemma 5 is
such a result for the exponential-height regime, the naive lower bound being
Ω(|H|/ log |H|) and our lower bound being Ω(|H|). The proof used there does
not generalize to, e.g., polynomial height.

We conclude that more general lower bounds will require new techniques.

References

[VW23] Nikhil Vyas and Ryan Williams. “On Oracles and Algorithmic Meth-
ods for Proving Lower Bounds”. In: 14th Innovations in Theoreti-
cal Computer Science Conference (ITCS 2023). Ed. by Yael Tau-
man Kalai. Vol. 251. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023, 99:1–99:26. doi: 10.4230/LIPIcs.ITCS.2023.99.
url: https://drops.dagstuhl.de/opus/volltexte/2023/17602.

6

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

