
An Algorithmic Approach to Uniform Lower Bounds

Rahul Santhanam
University of Oxford

Abstract

We propose a new family of circuit-based sampling tasks, such that non-trivial algorithmic solutions
to certain tasks from this family imply frontier uniform lower bounds such as “NP not in uniform ACC0”
and “NP does not have polynomial-size depth-two threshold circuits”. Indeed, the most general versions
of our sampling tasks have implications for central open problems such as NP vs P and PSPACE vs P.

We argue the soundness of our approach by showing that the non-trivial algorithmic solutions we
require do follow from standard cryptographic assumptions. In addition, we give evidence that a version
of our approach for uniform circuits is necessary in order to separate NP from P or PSPACE from P. We
give an algorithmic characterization for the PSPACE vs P question: PSPACE 6= P iff either E has sub-
exponential time non-uniform algorithms infinitely often or there are non-trivial space-efficient solutions
to our sampling tasks for uniform Boolean circuits.

We show how to use our framework to capture uniform versions of known non-uniform lower bounds,
as well as classical uniform lower bounds such as the space hierarchy theorem and Allender’s uniform
lower bound for the Permanent. We also apply our framework to prove new lower bounds: NP does
not have polynomial-size uniform AC0 circuits with a bottom layer of MOD 6 gates, nor does it have
polynomial-size uniform AC0 circuits with a bottom layer of threshold gates.

Our proofs exploit recently defined probabilistic time-bounded variants of Kolmogorov complexity
[LOZ22, GKLO22, LO22].

1 Introduction

1.1 Background and Motivation

The NP vs P problem [Coo71, For09] is the central problem in theoretical computer science. Despite much
effort over the years, we seem to be quite far from a solution. Theoretical computer science has had many
successes over the years, but as far as NP vs P is concerned, it has been hard even to come up with viable
approaches to the problem.

When the problem first received attention in the 1970s, a natural approach to it was to explore analogies
with computability theory, and use simulation and diagonalization techniques to achieve a separation. For
example, the uncomputability of the Halting Problem is a foundational result in computability theory proved
using diagonalization. A time-bounded version of the Halting Problem for non-deterministic machines is
NP-complete, so it makes sense to try resource-bounded variants of diagonalization to separate NP and
P. However, all approaches using simulation and diagonalization have been fruitless so far, and a major
reason for this was identified by Baker, Gill and Solovay [BGS75] in their paper on the relativization barrier.
Classical techniques in computability theory relativize, meaning that they continue to hold relative to an
arbitrary oracle, but no solution to the NP vs P can relativize - there is an oracle A such that NP = P
relative to A, and another oracle B such that NP 6= P relative to B [BGS75].

After the relativization barrier was identified, attention shifted to the non-uniform version of the NP vs P
problem. The non-uniform version asks if NP has polynomial-size Boolean circuits. A negative answer implies
NP 6= P, since all problems in P have polynomial-size Boolean circuits. The hope in studying Boolean circuits
was that they might be easier to analyze and understand using combinatorial and algebraic techniques than

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 28 (2023)

is the case for uniform algorithms. Indeed, the hope was fed by a spate of results in the 1980s showing super-
polynomial lower bounds against weak circuit classes, including AC0 circuits [Ajt83, FSS84, Yao85, H̊as86] ,
AC0[p] circuits for prime p [Raz87, Smo87] and monotone circuits [Raz85].

This spate of lower bound results slowed down to a trickle in the 1990s, and even the question of prov-
ing super-polynomial lower bounds against constant-depth circuits with composite modular gates remained
unsolved. In an attempt to explain the stalled progress, Razborov and Rudich [RR97] identified a further
barrier: the Natural Proofs barrier. While the relativization barrier applies to traditional simulation and
diagonalization approaches, the Natural Proofs barrier applies to combinatorial and algebraic techniques
that were the main source of hope for showing non-uniform lower bounds. The Natural Proofs barrier rules
out constructive approaches to circuit lower bounds that involve identifying a complexity measure that is
easy to compute, low for functions with small circuits and high for random functions, assuming standard
cryptographic conjectures. Essentially all known non-uniform lower bound techniques at the time involved
identifying such complexity measures, and so the Natural Proofs barrier did help to explain why progress
was stalled.

Since the Natural Proofs barrier was identified, there has been pessimism about the prospect of proving
lower bounds in the near future, and few promising lower bound approaches have been identified. The
ambitious Geometric Complexity Theorey program of Mulmuley and Sohoni [MS01, Mul11] seeks to solve
the Permanent vs Determinant problem, which is an algebraic analogue of NP vs P, by using representation
theory and algebraic geometry to analyze symmetries of the Determinant and Permanent. A version of their
approach also applies to the NP vs P problem. While Geometric Complexity Theory has led to significant
new insights in algebraic complexity theory, the original approach has also faced some obstacles [BIP16],
and Mulmuley himself believes that it is likely to take a very long time for NP vs P to be solved using this
approach [For09].

A rare success in the theory of lower bounds over the past couple of decades is the algorithmic method
[Wil10, Wil11] of Ryan Williams. Somewhat paradoxically, Williams proposed to attack the question of
circuit lower bounds, i.e., proving that no efficient non-uniform algorithms exist for some task, by finding
improved algorithms for a different task. To be more specific, if we wish to prove that NEXP does not have
polynomial-size C-circuits for some circuit class C with natural closure properties, then all we need to do is to
solve the Satisfiability problem for C-circuits in barely non-trivial time, i.e., in time 2npoly(m)/nω(1), where
m is the circuit size and n is the number of variables. Note that the trivial brute force search algorithm
for Satisfiability takes time 2npoly(m), so what is required is just a super-polynomial improvement over this
trivial algorithm.

One might wonder whether an algorithmic approach via improved algorithms for Satisfiability is feasible
if we are interested in lower bounds for general Boolean circuits. Perhaps no non-trivial improvement over
brute force search is possible for Circuit Satisfiability? This potential objection is addressed in [Wil10] by
showing that circuit lower bounds hold even if we can estimate the acceptance probability of a C-circuit
in barely non-trivial time. This acceptance probability estimation task is known to be doable in sub-
exponential time under circuit lower bound assumptions, by using ideas from the theory of derandomization
[NW94, BFNW93]. Thus, in a sense, the algorithmic approach is without loss of generality when it comes
to circuit lower bounds for NEXP.

In a breakthrough, Williams showed how to solve a frontier question in circuit lower bounds using the
algorithmic method. He showed that NEXP 6⊆ ACC0 [Wil11], by designing algorithms for ACC0 Satisfiability
that beat brute-force search. Since then, several other lower bounds for restricted classes of circuits have been
shown using the algorithmic method [Wil14, Wil18, AC19, Che19, CLW20, MW20, CR20, BHPT20]. What
is particularly appealing about the algorithmic method is that humans seem more suited to constructive
algorithmic thinking than to proving impossibility results, and so the reformulation of a lower bound task
as an algorithmic task is likely to stimulate progress.

The original formulation of the algorithmic method [Wil10] gave a connection between non-trivial Sat-
isfiability algorithms and circuit lower bounds for NEXP. While NEXP lower bounds are interesting from
a derandomization perspective, what we desire most in complexity theory is super-polynomial size lower
bounds for NP. Murray and Williams [MW20] show how to scale down the algorithmic method to derive

2

lower bounds for NQP (non-deterministic quasi-polynomial time) against polynomial-size C-circuits and lower
bounds for NP against fixed polynomial size C-circuits (where the running time of the NP algorithm depends
on the size lower bound) from circuit analysis algorithms for C. However, their techniques do not seem to
be useful in deriving super-polynomial size lower bounds for NP - it is unclear what a corresponding circuit
analysis task would be.

It seems very challenging even to prove that NP does not have polynomial-size ACC0 circuits, and no
approaches to this question are known. But what if we weaken our goal to lower bounds against polynomial-
size uniform ACC0 circuits? Note that from the perspective of making progress toward NP 6= P, uniform
lower bounds are just as good as non-uniform ones. However, we do not have any cases so far of super-
polynomial uniform lower bounds for NP against a class C of circuits where a corresponding non-uniform
lower bound is unknown. We also don’t have any plausible approaches toward showing such uniform lower
bounds.

This raises the following question, which is at the core of our work.

Question: Is there an algorithmic approach1 to long-standing open questions about uniform lower bounds?

To make this question more precise, we state a couple of criteria that we require from an “algorithmic
approach”. First, we would like our algorithmic task to be as close to a conventional algorithmic task as
possible - a task that takes an input and produces output that satisfies some desired property. For example,
cryptographic pseudo-random generators imply NP 6= P, but we do not consider the construction of such
generators as a standard algorithmic task, just as the construction of complexity-theoretic pseudo-random
generators does not count as an algorithmic approach toward circuit lower bounds for EXP. Second, we
would like our approach to be sound, meaning that there should be some evidence that the algorithmic task
is indeed feasible. Note that an infeasible algorithmic task, such as designing polynomial-time algorithms
for an EXP-complete problem, would imply anything at all, and in particular would imply NP 6= P.

When trying to design an algorithmic approach to uniform lower bounds, it is useful to keep in mind an
informal but fundamental distinction between two regimes of lower bounds - the complexity-theoretic regime
and the cryptographic regime. The complexity-theoretic regime refers to situations where we are trying to
show a lower bound C 6⊆ D for complexity classes C and D, and C has enough computational resources
to simulate D. For example, the case of NEXP 6⊆ SIZE(poly) falls into the complexity-theoretic regime,
since exponential-time machines can simulate polynomial-size circuits. The cryptographic regime refers to
situations where C does not have the resources to simulate D. The case of super-polynomial size uniform
circuit lower bounds for NP falls into the cryptographic regime, since we are trying to show that a fixed
problem in NP does not have uniform circuits of arbitrary polynomial size, and so the NP machine does not
have enough resources to simulate the circuits against which a lower bound is sought.

The common feature to all known applications of the algorithmic method [Wil10, Wil11, MW20] is that
the corresponding lower bounds fall in the complexity-theoretic regime. The reason is that the proof tech-
nique for establishing the connection between algorithms and lower bounds involves indirect diagonalization,
culminating in an application of hierarchy theorems. Since hierarchy theorems require the class for which
we are showing a lower bound to have more resources than the class against which we are showing a lower
bound, it seems unlikely that the algorithmic method can be directly adapted to the cryptographic regime
of lower bounds.

In this work, we present a new family of circuit-based sampling tasks such that solutions to tasks in this
family imply uniform circuit lower bounds in the cryptographic regime for classes such as NP and PSPACE.
Since these algorithmic tasks have not been considered before, there isn’t a clear path yet to solving them
for general Boolean formulas or circuits. As such, this is not yet a full-fledged approach to strong uniform
circuit lower bounds such as NP 6= P or PSPACE 6= P. Nevertheless, our approach does allow us to recover
state-of-the-art uniform lower bounds and to prove a couple of new ones, and we believe it might be useful

1Note that we are interested in this paper only in algorithmic approaches to lower bounds. We hold the conventional belief
that NP 6= P and wish to show this using an algorithmic approach. Of course, if one wishes to show that NP = P, an algorithmic
approach is completely natural, i.e., designing and analyzing a polynomial-time algorithm for SAT.

3

to attack frontier uniform lower bound questions such as separating NP from uniform ACC0 or uniform TC0
2.

Moreover, we believe that the connection from algorithms to lower bounds is interesting in itself, and hope
that it will stimulate further research on the sampling tasks we define.

We now proceed to describe our approach.

1.2 The Approach

We describe our approach to lower bounds for PSPACE first. Suppose we seek to prove uniform lower
bounds for PSPACE against some class C of circuits. The only requirement we will make of C is that it can
be simulated by general Boolean circuits. In order to describe the algorithmic tasks in our approach, we first
introduce some terminology.

Given a C-circuit C on n variables of size poly(n), we say that C is dense if C accepts at least a 2/3
fraction of all inputs of length n. We are interested in the problem of sampling satisfying assignments of
C. Satisfying assignments of C are plentiful, so a trivial randomized algorithm works with high probability,
but it might not be easy for a deterministic algorithm to find satisfying assignments. In our setting, we will
allow the use of randomness in the algorithm.

In order not to make the task trivial, we will require that the algorithm outputs a fixed satisfying
assignment with probability at least nk/2n for some large enough constant k. This requirement is related to
the notion of pseudo-deterministic search defined by Gat and Goldwasser [GG11]. A pseudo-deterministic
algorithm is a randomized algorithm for a search problem that outputs a fixed solution with high probability,
say 2/3. In contrast, we only require that a fixed assignment is output with probability poly(n)/2n, which
is barely non-trivial.

It is not hard to see that this task is easy if the algorithm is given full access to C and is able to simulate
C. The key restriction we impose is that the algorithm does not have enough resources to simulate C, though
it does have full access to C. The algorithm is given random access to the representation of C, and must
run in some fixed polynomial space bound nd, where d is independent of the size of C. This restriction turns
out to be enough to imply lower bounds for PSPACE against uniform C-circuits.

We say that there is space-efficient non-trivial sampling for dense C-satisfiability if the task described
above is feasible, namely if for some large enough constant2 k, there is a constant d and a probabilistic
algorithm A running in space nd such that, given an input C-circuit C on n variables of size poly(n) accepting
at least a 2/3 fraction of all inputs, A outputs a fixed satisfying assignment y of C with probability at least
nk/2n. Our main result for PSPACE shows that feasibility of this task implies lower bounds for PSPACE
against uniform C-circuits, where the notion of uniformity is LOGSPACE-uniformity.

Theorem 1. (Informal Statement) Let C be any class of circuits that can be simulated by Boolean circuits of
polynomial size. If there is space-efficient non-trivial sampling for dense C-satisfiability, then PSPACE does
not have uniform C-circuits of polynomial size.

As a corollary, when C is the class of general Boolean circuits, space-efficient non-trivial sampling for
dense C − SAT implies that PSPACE 6= P. Thus a solution to a purely algorithmic task separates PSPACE
from P. We find this connection surprising, even if it’s not apparent what sorts of algorithmic ideas might
be useful in solving our task.

We note that the requirements of our algorithmic task are fairly relaxed in many ways. We are interested
in randomized algorithms, while it is still open to derive non-uniform circuit lower bounds for NEXP from
randomized algorithms for CircuitSAT. A trivial linear-time randomized algorithm for our task simply samples
a random y ∈ {0, 1}n and outputs it - each satisfying assignment is output with probability 2−n by this
algorithm. We only require a fixed polynomial advantage in sampling probability over this trivial algorithm.

However, the restriction that the algorithm must operate in space a fixed polynomial independent of the
circuit size of C is indeed a fairly strong requirement. Essentially, what this restriction means is that we can’t
simulate the circuit C when trying to solve our algorithmic task. Thus, in order to solve our algorithmic

2Our proof shows that k > 3 suffices, and we suspect that k > 1 might suffice if we optimise our parameters.

4

task, we need to have a rich structural understanding of C-circuits accepting at least a 2/3 fraction of their
inputs.

We argue heuristically that some such restriction on white-box access is necessary to derive lower bounds
for PSPACE. Consider the case where C is just the class of general Boolean circuits. Suppose we were able
to derive PSPACE 6= P from the success of some algorithmic task T that is defined with a Boolean circuit C
as input, and suppose we had full white-box access to C. If T is solvable in PSPACE, then if PSPACE = P,
T should be solvable efficiently. Since the efficient solvability of T implies NP 6= P, we get that PSPACE 6= P
unconditionally!

Of course it is possible that T is not solvable in PSPACE, but rather (say) in EXP. However, in this case,
there might not be sufficient reason to believe T is solvable efficiently, and using T to derive a lower bound
might not be a sound algorithmic approach.

We would like to emphasize the point made by the argument above: the restriction that the algorithm
for our task cannot simulate the circuit C is not just an artifact or weakness of our approach. Rather, it
seems unavoidable for any white-box task in the cryptographic regime, since the lower bound we are trying
to show is quantitatively stronger than the upper bound.

Indeed, as mentioned before, if we have full white-box access to C, we can unconditionally solve the
algorithmic task we propose, by repeatedly sampling strings of length n and outputting the lexicographically
smallest string accepted by C. Theorem 31 in Section 4 establishes this formally. The ability of the algorithm
to read the description of C as well as to simulate C makes this argument work.

Now suppose we wish to extend the approach of Theorem 1 to uniform lower bounds for NP. We can define
an analogous notion of time-efficient non-trivial sampling for dense C-satisfiability, and prove a connection
similar to Theorem 1 where the consequence is a lower bound for NP. However, this notion of time-efficient
non-trivial sampling is very restrictive, as the sampling algorithm will not even be able to read the entire
input circuit, let alone simulate it. Ideally, we would like the sampling algorithm to be able to read the entire
input, even if it isn’t able to perform a simulation, as in our setting for PSPACE.

Therefore, we consider a succinct version of our algorithmic task. Our input now is 1n together with a
C-circuit C of size at most n which is a compressed representation of a larger C-circuit C ′ of size poly(n) on
n variables. Here, by saying that C is a compressed representation of C ′, we mean that we can recover any
specific bit in the representation of C ′ by evaluating C on some input. Alternatively, one can think of C as
a circuit for the direct connection language of C ′.

We say that there is efficient non-trivial sampling with PH oracle for the succinct version of dense C-
satisfiability if for some large enough constant k, there is a constant d and a probabilistic algorithm A
running in time nd with a PH oracle such that, given 1n and C-circuit C as input, where C is a compressed
representation of a C-circuit C ′ of size poly(n) on n variables accepting at least a 2/3 fraction of inputs, A
outputs some fixed satisfying assignment y of C ′ with probability at least nk/2n. The notion of uniformity
we use for all of our results on lower bounds for NP is LOGTIME-uniformity [BIS90].

Theorem 2. (Informal Statement) Let C be any class of circuits that can be simulated by Boolean circuits
of polynomial size. If there is efficient non-trivial sampling with PH oracle for the succinct version of dense
C-satisfiability, then NP does not have uniform C-circuits of polynomial size.

Note that we allow the sampling algorithm oracle access to an arbitrary PH oracle in the hypothesis.
This is intended to make the algorithmic task easier to solve.

Now we justify our claim that our algorithmic approach fulfils the two criteria we stated in Section 1.1.
The first criterion is that the relevant algorithmic task should be a conventional one. This is true in our case
since the algorithmic task we consider is that of efficiently sampling, with non-trivial probability, a fixed
satisfying assignment to a circuit with many satisfying assignments. We observe that the second criterion
holds as well, under standard cryptographic assumptions.

Theorem 3. (Informal Statement) If one-way functions secure against super-polynomial size circuits exist,
then there is efficient non-trivial sampling for the succint version of dense Circuit-satisfiability.

We show Theorem 3 by using cryptographic pseudo-random generators to give an efficient non-trivial
sampling algorithm for the succinct version of dense Circuit-satisfiability. Note that the sampling algo-

5

rithm yielded by the assumption does not need access to a PH oracle. Also, an efficient non-trivial sam-
pling algorithm for the succinct version of dense Circuit-satisfiability trivially implies a space-efficient non-
trivial sampling algorithm, therefore Theorem 3 additionally evidences the feasibility of the approach toward
PSPACE 6= P.

One might still wonder if the algorithmic approach we present is far stronger than is actually necessary for
uniform lower bounds. We show that under plausible complexity assumptions (which seem morally weaker
than the lower bounds we are trying to prove), a uniform version of our approach3 is in fact necessary in
that the algorithmic tasks we propose become feasible.

Our ideas give an unconditional algorithmic characterization of PSPACE 6= P.

Theorem 4. (Informal Statement) PSPACE 6= P iff E has circuits of size 2o(n) on infinitely many in-
put lengths, or if there is a space-efficient non-trivial algorithm for the uniform version of dense Circuit-
satisfiability.

In other words, a central uniform lower bound question in complexity theory reduces to either showing
surprising non-uniform algorithms exist for E, or to solving our sampling task for general uniform Boolean
circuits in a space-efficient non-trivial way. While there are such algorithmic characterizations of lower
bounds for NEXP in the complexity-theoretic regime [IKW02, Wil10, Wil16], the characterization above
seems to the first one in the cryptographic regime.

While the results above indicate that our approach is sound, it is unclear a priori whether our algorithmic
approach is feasible, i.e., if it has any hope of yielding new lower bounds in the near future. We do believe
that the connection from algorithms to uniform lower bounds is interesting in itself, but we would like the
framework to be capable at least of proving some known uniform lower bounds.

We show that the framework does indeed have this capability. On the one hand, we use known uncon-
ditional results about hitting set generators for weak circuit classes to observe that our sampling tasks are
solvable for these circuit classes. On the other hand, we show that our framework can be used to give alter-
native proofs of well-known uniform lower bounds such as versions of the space hierarchy theorem [SHL65]
and Allenders’ lower bound for Permanent [All99]. This evidences the flexibility of the framework - it accom-
modates techniques exploiting specific properties of circuit classes as well as techniques based on simulation
and diagonalization.

Finally, we use our approach to prove a couple of new lower bounds, and hope that even stronger lower
bounds will follow using more sophisticated algorithmic ideas.

Theorem 5. (Informal Statement) NP does not have uniform polynomial-size AC0 circuits with a bottom
layer of Modm gates for any positive integer m, not does it have uniform polynomial-size AC0 circuits with
a bottom layer of threshold gates.

We note that it is a longstanding open problem to prove non-uniform super-polynomial size lower bounds
in NP against AC0 circuits with a bottom layer of Mod6 gates or a bottom layer of threshold gates, despite
much effort4. We show that uniformity can be exploited to prove lower bounds for these classes. As far as
we are aware, this is the first case of a super-polynomial circuit lower bound for NP that holds for a uniform
circuit class but is not known to hold for the corresponding non-uniform circuit class5.

1.3 Discussion

In this sub-section, we discuss various features of our approach. Some of these have been mentioned before,
but it might be useful for the reader to see them discussed together.

Another Algorithmic Approach to Lower Bounds Our work is the latest in the line of works which

3By this we mean that our algorithmic task is only required to be feasible on uniform sequences of circuits.
4However, such lower bounds are known for non-deterministic quasi-polynomial time NQP [Wil14, MW20], in the complexity-

theoretic regime. We are interested here in lower bounds in the cryptographic regime.
5Allender’s lower bound for Permanent is another example of this phenomenon, but Permanent is neither known nor believed

to be in NP

6

apply algorithmic approaches to lower bound problems. However, it is the first to apply an algorithmic
approach to lower bound problems in the cryptographic regime, and in particular with relevance to problems
such as NP vs P and PSPACE vs P. The algorithmic method of [Wil10, Wil11] shows that non-trivial algo-
rithms for CircuitSAT and Circuit Acceptance Probability Estimation imply super-polynomial circuit lower
bounds for NEXP. Building on [FK09, KKO13], Oliveira and Santhanam [OS17] showed that non-trivial ran-
domized learning algorithms with membership queries over the uniform distribution for a class C of circuits
implies lower bounds in BPEXP against polynomial-size C-circuits.

Previous works on algorithmic approaches require a non-trivial upper bound on the running time of
the algorithm to derive lower bound consequences. In our case, in contrast, while it is important that the
algorithm is efficient, what matters more is the probability of sampling some fixed solution - we need this
to be non-trivial. Another difference between our work and previous works is that previous works all rely
ultimately on hierarchy theorems. In contrast, we do not use hierarchy theorems, and this enables us to deal
with the cryptographic regime of lower bounds.

Exploiting the Power of NP As mentioned in Section 1.1, there are several works beginning in the 1980s
that establish super-polynomial circuit lower bounds for weak circuit classes using various combinatorial and
algebraic techniques. An interesting feature of these results is that in most cases, the best lower bounds we
know are for problems that are in P. For example, the strongest lower bounds we know for constant-depth
circuits are for the Parity function, which is easily seen to be solvable by linear-size circuits. Clearly, any
lower bound technique that yields lower bounds for problems in P is not capable of proving super-polynomial
lower bounds for general Boolean circuits. Our approach, in contrast, uses the power of NP, and perhaps
this suggests that the approach, or variants in it, might be useful in the long run to prove strong lower bounds.

The Importance of Uniformity Historically, there has been a divide in complexity theory between ap-
proaches to non-uniform lower bounds and approaches to uniform lower bounds. Approaches to non-uniform
lower bounds are often tailored to the circuit class of interest, identifying a structural weaknesses of the cir-
cuit class (such as being simplified by random restrictions or being approximable by low-degree polynomials)
and then exploiting the weakness mathematically or algorithmically. Approaches to uniform lower bounds
tend to be more generic, employing clever combinations of simulation and diagonalization techniques. Our
work bridges this divide to an extent in that it identifies stand-alone algorithmic tasks such that solutions
for these tasks have implications for uniform lower bounds. The hope is that these algorithmic tasks can be
solved efficiently and non-trivially by exploiting properties of the circuit class.

Generality of the Approach Our algorithmic approach is general in multiple respects. First, it is relevant
to lower bounds for any circuit class C contained in the class of Boolean circuits. We do not even require even
weak closure properties of the circuit classes. In particular, this makes our approach potentially relevant to
frontier lower bounds against fixed-depth classes, eg., the class of depth-two threshold circuits.

Secondly, our approach can be adapted to lower bounds for uniform classes other than NP, simply by
modifying the resource requirements of the algorithm. Theorem 1 illustrates how this works in the context of
lower bounds for PSPACE. The approach is also capable of being adapted to lower bounds for other problems
such as Permanent, as shown in Sections 3 and 5.

White-Box Algorithmic Tasks in the Cryptographic Regime Our approach puts the spotlight on
white-box circuit-based algorithmic tasks in the cryptographic regime, where the algorithm does not have
the resources to simulate the circuit it gets as input. To the best of our knowledge, these kinds of algorithms
have not been considered before. We are specifically interested in sampling algorithms, and the extent to
which sampling can outperform simulation. There are some known results about the power of low-complexity
samplers, such as the work of Applebaum, Ishai and Kushilevitz[AIK04] using the technique of randomizing
polynomials to show that in many contexts, NC1-samplable distributions can be replaced by NC0-samplable
distributions, and the work of Viola [Vio12] initiating a line of research on the complexity of distributions.
Perhaps ideas from these works or related works could be useful in approaching our algorithmic tasks.

7

Relevance to Known Barriers Several previous attempts to attack NP vs P and related problems have
run into one or the other of various complexity barriers, including the relativization barrier [BGS75], the
Natural Proofs barrier [RR97] and the algebrization barrier [AW08]. So it is important to examine how our
approach fares against these barriers. As of now, we envision our approach as relevant mostly to frontier
questions such as separating NP from uniform ACC0 and uniform TC0

2. It does not seem as though the
relativization and algebraization barriers are relevant to such weak circuit classes, as existing lower bounds
for weak circuit classes exploit weaknesses of the gate sets, and hence don’t work when oracle gates with
large fan-in occur in the circuit. The natural proofs barrier is not known to have any relevance to uniform
circuit lower bounds. Indeed, even in the case of non-uniform circuit lower bounds against these classes, the
natural proofs barrier would only be operative if there are pseudo-random functions in ACC0 or TC0

2, and no
compelling evidence exists for the existence of such low-complexity pseudo-random functions.

1.4 Proof Ideas

We discuss here the ideas behind our approach and sketch the proofs of the connections from algorithms to
lower bounds. We first discuss the proof ideas behind Theorem 2, and then the ideas behind Theorem 1.

Recall that our goal is to develop an algorithmic approach to uniform lower bounds for NP and PSPACE.
We would like our algorithmic approach to involve a conventional algorithmic task, and for there to be
complexity-theoretic evidence that the algorithmic task is feasible. Ideally, the algorithmic task should
require only a marginal improvement over known algorithms.

Our starting point is an elegant idea of Hirahara [Hir20]. Hirahara was interested in the problem of
proving uniform lower bounds for the problem RKt of determining whether an input string x has high Kt
complexity. Recall that the Kt complexity of a string is the minimum of |p| + log(t) over programs p and
time bounds t such that U t(p, ε) = x, i.e., a universal machine halts within t steps on input p and outputs x.
RKt is known to be EXP-complete [ABK+06] but only with respect to non-uniform truth-table reductions or
NP Turing reductions. It is a long-standing open problem whether RKt is in P. Hirahara showed that RKt

does not have P-uniform ACC0 circuits of polynomial size.
His idea is as follows: suppose that there is a non-trivial algorithm for satisfiability for a circuit class

C. Namely, we can find a satisfying assignment y of length n for a satisfiable C-circuit C on n variables
in deterministic time 2n/nω(1). Then it is not too hard to show that y has Kt complexity n − ω(log(n))
conditioned on C. Now, if C itself were a uniform circuit generated by an efficient procedure given input 1n,
that implies that Kt(C) = O(log(n)), and by first generating C and then generating y conditioned on C, we
get that y has Kt complexity n− Ω(log(n)).

We can use this to derive a contradiction to the assumption that RKt has P-uniform C-circuits. We
consider the uniform circuit ACC0 Cn assumed to solve RKt. The satisfying assignments of Cn are precisely
the hard Kt strings, and in particular we can assume that every satisfying assignment has Kt complexity
n − Ω(log(n)). But then the argument in the previous para yields a contradiction, since y is a satisfying
assignment to Cn and has Kt complexity n− ω(log(n)).

Since we know that satisfiability of ACC0 circuits can be solved in non-trivial time [Wil11], we derive a
P-uniform ACC0 lower bound for RKt. This is still quite far from the desired result showing RKt 6∈ P, but it
constitutes some progress. Hirahara uses similar ideas to show that the set of Kt-random strings is not in P
for any super-polynomial t.

While the idea of the proof is novel, the lower bound result for RKt is still in the complexity-theoretic
regime of lower bounds, since we are trying to prove uniform super-polynomial lower bound for a language
that is known to be complete for exponential time. However, we observe that this isn’t intrinsic to the
approach; rather it depends on which notion of resource-bounded Kolmogorov complexity we analyze. In this
case, we analyzed Kt complexity, but in principle we could analyze some other resource-bounded Kolmogorov
complexity measure.

8

In particular, let us imagine trying to upper-bound the Kpoly complexity of satisfying assignments to
circuits. Our reason for doing this is that the language of hard Kpoly strings is in NP, hence if we are able to
carry through an argument analogous to Hirahara’s argument, we might be able to show a uniform circuit
lower bound for NP. One obstacle that presents itself is that it is unclear what sort of algorithm we need
to analyze in order to upper bound the Kpoly complexity of solutions. Another obstacle is that it is unclear
even why there should be a solution of low Kpoly complexity.

Let us try to address the second obstacle first, and come up with an algorithmic task where there are
likely to be solutions of non-trivial Kpoly complexity. Here we make a crucial observation: Hirahara considers
the Satisfiability problem for general circuits, but in fact we can consider the Satisfiability problem for dense
circuits instead. The reason is that if we are going to use the argument on a circuit that is presumed to
decide the set of hard Kpoly strings correctly, the circuit will have many accepting inputs, since a random
string is likely to be Kpoly-hard.

Considering Dense Circuit Satisfiability makes our approach more plausible, since if we make crypto-
graphic derandomization assumptions, we are at least likely to have solutions with low Kpoly complexity
conditioned on the circuit. However, the first obstacle remains - it is not clear how to analyze Kpoly com-
plexity of solutions for any natural algorithmic task.

Our idea is to use probabilistic notions of time-bounded Kolmogorov complexity. Several notions of
probabilistic time-bounded Kolmogorov complexity have recently been defined and studied in [Oli19, LOS21,
GKLO22, LOZ22, LO22]. A notion that is ideal for our purposes is the notion of pKpoly [GKLO22, LOZ22].
Intuitively, a string x has low pKpoly string if for most random strings r of a given polynomial length, there
is a small description pr from which x can be reconstructed in polynomial time given r. This notion of
probabilistic Kolmogorov complexity has two very appealing features. First, pKpoly complexity turns out to
be closely tied to a very natural algorithmic task, namely sampling solutions of search problems. This allows
us to define a natural algorithmic task that makes no reference to Kolmogorov complexity notions. Second,
pKpoly complexity has a so-called Optimal Coding Theorem, which implies that strings sampled efficiently
with probability p have pKpoly complexity very close to log(1/p). This allows us to define an algorithmic task
that involves just a non-trivial improvement in success probability over existing efficient algorithms.

The price we pay is that the language of hard pKpoly strings is no longer in NP. However, we can define
a promise version of the language of hard strings which is in AM, and this turns out to be sufficient for our
purposes, by using an additional idea.

However, our assumption in Theorem 2 is for the succinct version of Dense Circuit Satisfiability. In order
to use this version, we observe that we use the assumption of feasibility of algorithmic tasks only on uniform
circuits, which are succinctly representable. In fact, when we are arguing by contradiciton, we can efficiently
recover a succinct description of the circuit, where the description itself belongs to the class of circuits that
are being described. This additional step allows us to complete the proof of Theorem 2.

To extend this proof idea to lower bounds for PSPACE in Theorem 1, we show that it is enough to simply
change the resource requirements of the algorithmic tasks to a fixed polynomial space bound rather than a
fixed polynomial time bound. The natural idea for analyzing this would be to consider a notion of space-
bounded Kolmogorov complexity, but our argument by contradiction finds a short-cut. We use an argument
by contradiction again to observe that if indeed PSPACE had small uniform circuits, then PSPACE = P. This
implies that our small-space sampling algorithm can be simulated by a time-efficient sampling algorithm,
and then we can use the same machinery as in Theorem 2 to complete the proof.

For Theorem 3, we use the fact [HILL99] that one-way functions imply the existence of cryptographic
pseudo-random generators (PRG) with seed length nε for any ε > 0. A cryptographic PRG can be used to
solve our sampling task efficiently by simply outputting a random element in the range of the PRG, which
can be done in time a fixed polynomial in n. By the pseudo-randomness property, most elements of the
range will be satisfying assignments of the dense circuit on which we are solving the sampling task, and each
such element will be output with probability 2−n

ε

, which is non-trivial. Note that we do not even need to
look at the circuit on which we are solving the sampling task.

For the algorithmic characterization of PSPACE 6= P, we use certain properties of the set of strings
L = MKSP[

√
n] of Kolmogorov space-bounded complexity at most

√
n. It follows from [ABK+06] that L is

9

hard on average for polynomial time in a zero-error sense if PSPACE 6= BPP, and it can be shown using ideas
in [San20] that the hardness on average of L implies the existence of a crytographic hitting-set generator
against polynomial size circuits. A cryptographic hitting-set generator can be used to solve our sampling
task space-efficiently using the observations in the previous paragraph. To complete our characterization, we
use a standard result from derandomization [IW97], namely that either E has circuits of size 2o(n) infinitely
often or BPP = P.

The proof of Theorem 5 proceeds by designing efficient non-trivial sampling algorithms with PH oracle
for the succinct version of Dense C Satisfiability for C = AC0 ◦ (Modm) and C = AC0 ◦ Thr.

Several recent works in various areas of complexity theory, including learning theory, pseudorandomness,
cryptography, structural complexity and proof complexity, have developed and exploited ideas from meta-
complexity, i.e., the complexity of complexity. We refer to [All20] for a recent survey. The ideas of our
proof are another illustration of this phenomenon. Like the recent work of Hirahara [Hir21] on average-case
hardness of NP from exponential worst-case assumptions, our results use meta-complexity as a catalyst: the
results make no reference to meta-complexity, yet the proofs use meta-complexity crucially.

2 Preliminaries

2.1 Standard Complexity Notions

The textbook by Arora and Barak [AB09] is an excellent reference for basic notions in complexity theory.
Here we recall a few that are especially relevant to this paper.

Computational problems are typically modelled as decision problems, where each input is either accepted
or rejected. Occasionally we are interested in promise problems, where the set of accepted inputs is disjoint
from the set of rejected inputs, but some inputs might not belong to either category. Formally, a promise
problem Γ over {0, 1} is a pair (ΓY ES ,ΓNO) where ΓY ES ,ΓNO ⊆ {0, 1}∗ and ΓY ES ∩ ΓNO = ∅. The
complement of a promise problem (ΓY ES ,ΓNO) is the promise problem (ΓNO,ΓY ES). We say that a language
L is consistent with a promise problem Γ = (ΓY ES ,ΓNO) if ΓY ES ⊆ L and ΓNO ⊆ L̄.

We will need to be careful about which Turing machine model we consider, since we are often interested
in computations that run in sub-linear time. We will use the random access Turing machine model, where
each tape of a multi-tape Turing machine has a corresponding address tape. When the address tape for tape
k has index i written on it, and the machine enters a special tape, the contents of the i’th tape cell of the
k’th tape can be accessed in unit time. We also consider oracle Turing machines, where the random access
Turing machine is provided with a separate oracle tape, on which queries to the oracle can be made, and
answered in unit time.

We will be considering various standard circuit classes, including the class AC0
d of constant-depth circuits

of depth d with AND and OR gates, the class AC0
d[p] of constant-depth circuits of depth d with AND, OR and

MOD p gates for prime p, the class ACC0 of constant-depth circuits of depth d with AND, OR and modular
gates, the class TC0

d of depth-d threshold circuits, the class Formula of Boolean formulas, and the class Circuit
of Boolean circuit. By default, whenever we refer to a circuit class, we will mean the non-uniform version
of the circuit class. However, as is standard terminology, NC1 will refer to LOGTIME-uniform circuits of
logarithmic depth. We will occasionally abuse notation and use the name of a circuit class to refer to the
circuit class as well as to the class of languages decided by the circuit class.

We will mainly be using two standard notions of uniformity for circuits: LOGTIME-uniformity and
LOGSPACE-uniformity. We refer to [BIS90] for precise definitions of these notions as well as a detailed
discussion on motivation. Briefly, LOGTIME-uniformity means that the direct connection language of a
sequence {Cn} of circuits, encoding types of gates and connections between them in a natural way, is decidable
in time logarithmic in the size of the circuit. LOGSPACE-uniformity means that the direct connection
language of {Cn} is decidable in logarithmic space; equivalently, a description of Cn can be computed in
logarithmic space given 1n as input. The main property we will require of LOGTIME-uniformity is that any
given bit of the description of a LOGTIME-uniform circuit C can be computed in time logarithmic in the size
of the circuit. This is the case when a circuit is represented in a standard way, i.e., as a list of gate types

10

and connections between gates in some pre-determined order.
We won’t formally define direct connection languages, since the details depend on the circuit classes of

interest, and we consider a wide variety of circuit classes. However, in each case, we will be able to answer
questions about the gate type, about whether the i’th child of a gate is a certain other gate, and about
whether a gate has more than i inputs using a single query to the direct connection language. Things get a
bit subtle when considering circuits where the gates have weights, eg., threshold gates which check whether
an integer-weighted sum of inputs is at least some integer value, or modular gates which check whether
integer-weighted sums of the inputs belong to some set of values modulo a given integer. Indeed, we consider
AC0 circuits with a bottom layer of Modm or Thr gates in Section 5, and we assume there that the gates
are irredundant, i.e., that the weights aren’t unnecessarily large. In particular, we assume that the weights
for any Modm gate are at most m, and that the weights for a threshold gate on n inputs are at most nO(n).
Indeed, it is easy to see that any Modm gate is equivalent to one where the weights are at most m, and it is
known that any threshold gate is equivalent to one where the weights are at most nO(n)[Mur71]. Using our
assumption, the weights can be extracted using a fixed polynomial number of queries to the direct connection
language - this will be crucial in the proofs of our new lower bounds.

We will also refer to POLYLOG-uniformity, where the direct connection language is decidable in time
poly-logarithmic in the size of the circuit.

We say that a circuit class C is polynomially simulatable if there is a polynomial-time algorithm which,
given a circuit C from C and an input x to C, computes C(x).

Proposition 6. Suppose a circuit class C is polynomially simulatable, and let L be a language that has
LOGTIME-uniform (resp. LOGSPACE-uniform) C-circuits of polynomial size. Then L has LOGTIME-uniform
(resp. LOGSPACE-uniform) Boolean circuits of polynomial size.

Proof. Suppose C is polynomially simulatable, and let M be a Turing machine that, given a C-circuit of
size m on n variables and an input x to C, runs in time md and computes C(x), where d is a constant.
Let L be a language that has LOGTIME-uniform C-circuits of polynomial size, and let {Cn} be a sequence
of LOGTIME-uniform C-circuits of size nc deciding L, where c is a constant. We derive LOGTIME-uniform
Boolean circuits of polynomial size deciding L as follows. By the standard simulation of polynomial time
by polynomial size, we have that the computation of M can be represented by LOGTIME-uniform circuits
of size m2d that take C and x as input. By fixing C to Cn, we derive LOGTIME-uniform circuits {Dn} of
size n2cd that take x as input and correctly compute L(x). The fact that the direct connection language of
{Dn} is in LOGTIME follows from the fact that the direct connection language of the circuits simulating M
is in LOGTIME, together with the LOGTIME-uniformity of {Cn}. �

Recall that CH [Wag86, PS88] is the counting hierarchy, whose first level CH1 = PP and i’th level
CHi = PPCHi−1 . We will also need Toda’s theorem [Tod91].

Theorem 7. [Tod91] PH ⊆ PPP = P#P.

2.2 Meta-Complexity

Here we define various notions of Kolmogorov complexity that will be needed in this work.
Throughout, we fix a time-efficient universal Turing machine U . Notions of Kolmogorov complexity are

defined relative to this universal machine U , but since the notions and results we use are robust to the precise
choice of the universal machine, we suppress the dependence on U .

Given a string x, the Kolmogorov complexity K(x) is defined to be the size of the smallest program p
such that U(p, ε)) = x. Given a time bound t : N → N and a string x, the t-time bounded Kolmogorov
complexity of x is defined as follows: Kt(x) is the size of the smallest program p such that U t(|x|(p, ε) = x,
where UT means that that the universal machine is restricted to run for at most T steps.

K and Kt are deterministic notions of Kolmogorov complexity, in that a string is recovered from its
compressed representation by a deterministic program. We require a probabilistic notion of Kolmogorov
complexity recently introduced in [GKLO22].

11

Given a time bound t : N → N, a string x and a number ρ ∈ [0, 1], we say that x has ρ-confidence
pKt complexity at most k if for at least ρ fraction of random strings r of length t(|x|), there is a program
pr, |pr| 6 k, for which U t(|x|)(pr, r) = x.

Proposition 8. For any time bound t : N → N, non-negative integers n, k and ρ ∈ [0, 1], at most 2k+1/ρ
strings have ρ-confidence pKt-complexity at most k.

Proof. Assume, for the sake of contradiction, there are more than 2k+1/ρ strings of length n with ρ-confidence
pKt complexity at most k. Call this set of strings Xk; by assumption |Xk| > 2k+1/ρ. We obtain a con-
tradiction by counting program-randomness pairs (p, r) that witness membership in Xk, where |p| 6 k and
|r| = t(n). Since each member of Xk corresponds to at least ρ2t(n) distinct such pairs (by definition of
ρ-confidence pKt complexity), we have that the number of such witnessing pairs for Xk is greater than
2k+t(n)+1. However, note that there are at most 2k+1 programs of length at most k, hence the number of
distinct (p, r) pairs where |p| 6 k and |r| = t(n) is at most 2k+1+t(n). Hence we reach a contradiction to our
assumption. �

Let t : N → N be a time bound. Given a complexity parameter s : N → N and real numbers ρ, δ ∈
[0, 1] such that δ < ρ, we define the meta-complexity promise problem RpKt [s, ρ, δ] = (ΓY ES ,ΓNO), with

ΓY ES ,ΓNO ⊆ {0, 1}∗ and ΓY ES ∩ΓNO = ∅, as follows. A string x ∈ ΓNO if the ρ-confidence pKt complexity
of x is at most s(|x|). A string x ∈ ΓY ES if the δ-confidence pKt complexity of x is not at most s(|x|).

Proposition 9. RpKt [s, ρ, δ] ∈ coAM. Moreover, if s(n) + log(1/δ) < n − 2 for each n ∈ N, then ΓY ES
contains at least a 3/4 fraction of all strings of length n.

Proof. We give an Arthur-Merlin protocol for the complement of RpKt [s, ρ, δ]. In order to certify that a

string x has ρ-confidence pKt complexity at most s(|x|), Arthur sends Merlin a random string r of length
t(|x|) and Merlin sends back a program pr of size at most s(|x|). Arthur accepts iff U t(|x|)(pr, r) = x. Clearly
this protocol accepts with probability at least ρ iff x has ρ-confidence pKt complexity at most s(|x|). Thus
the protocol has acceptance probability at least ρ on YES instances and at most δ on NO instances, which
means that there is a gap between acceptance probabilities on YES and NO instances, as desired.

The fact that ΓY ES contains at least a 3/4 fraction of all strings of length n follows from Proposition 8.
�

2.3 One-Way Functions and Pseudorandomness

We need the standard cryptographic notion of a non-uniformly secure one-way function. In fact, we define
the length-preserving variant of the notion, which is without loss of generality.

Definition 10. Let s : N→ N. A function f = {fn}, fn : {0, 1}n → {0, 1}n is said to be an s(·)-secure one-
way function if for each sequence of circuits {Dn} of size poly(s(n)), we have that Prx∼{0,1}n [f(D(f(x))) =

f(x)] = 1/nω(1).

Next we define the notion of a cryptographic pseudo-random generator. For ease of application, we define
the notion slightly differently than the standard notion, with the computability of the PRG measured as a
function of the output size.

Definition 11. Let ` : N→ N be a function such that `(n) 6 n for all n ∈ N. A cryptographic pseudo-random
generator with seed length ` is a function G = {Gn}, Gn : {0, 1}`(n) → {0, 1}n computable in time poly(n)
such that for any algorithm D running in time poly(n), |Pry∈{0,1}n D(y)−Prz∈{0,1}`(n) D(G(z))| = 1/nω(1).

One of the foundational result in cryptography is that cryptographic pseudo-random generators with
small seed length can be based on the existence of one-way functions with super-polynomial hardness.

Theorem 12. [HILL99] Suppose there is an nω(1)-secure one-way function. Then there is a cryptographic
pseudo-random generator with seed length no(1).

12

We will also need the notion of a cryptographic hitting set generator useful against a circuit class C.

Definition 13. Let ` : N → N be a function such that `(n) 6 n for all n ∈ N, and let C be a circuit class.
A cryptographic hitting set generator with seed length ` against C is a function G = {Gn}, Gn : {0, 1}`(n) →
{0, 1}n computable in time poly(n) such that for any sequence of C-circuits {Cn} such that Cn accepts at
least a 1/n fraction of n-bit inputs for large enough n, there exists a sequence {yn} with yn ∈ {0, 1}`(n) for
each n such that C(Gn(yn)) = 1.

2.4 Search Problems and Samplers

The algorithmic tasks we consider will involve solving search problems. We first define the notion of a
promise search problem.

Definition 14. A promise search problem S is a pair (R,X) where R ⊆ {0, 1}∗ is a polynomial-time
computable binary relation and X ⊆ {0, 1}∗ is a subset of inputs. A solution to the search problem S on
input x is any string y such that (x, y) ∈ R. We say that an algorithm A solves the promise search problem
S if for each x ∈ X, A outputs a solution to S on x if one exists.

We will be interested in a specific promise search problem where the task is to find satisfying assignments
of circuits that accept most of their inputs.

Definition 15. Let C be a circuit class. The promise search problem Dense − C − SAT is defined by the
following binary relation R and input set X. R consists of all pairs (C, x), where C is (the encoding of) a
C-circuit, and x is a satisfying assignment of C. X consists of all C-circuit C such that C accepts at least a
2/3 fraction of its inputs.

For technical reasons, we will also need the notion of a sampler. Note that our notion of sampler simply
models an algorithm that samples a distribution, and is not related to the notion of sampler in the theory
of randomness extraction.

Definition 16. A sampler is a polynomial-time randomized algorithm which, given 1n as input for n ∈ N,
samples a distribution on n-bit outputs.

3 From Algorithms to Uniform Lower Bounds

In this section, we prove our main results about connections from circuit sampling tasks to uniform lower
bounds for NP, PSPACE and Permanent.

3.1 An Algorithmic Approach to Uniform Lower Bounds for NP

We first define the algorithmic task we will consider in this sub-section.

Definition 17. Given circuits C and C ′, we say that C encodes C ′ if the Boolean function computed by C
is the direct connection language of C ′.

Definition 18. Let C be a circuit class. We say that there is efficient non-trivial sampling (resp. efficient
non-trivial sampling with PH oracle) for the succinct version of Dense− C− SAT if for every k > 0 there is
a probabilistic algorithm A (resp. probabilistic algorithm A with PH oracle) which, given 1n and a C-circuit
C of size at most n, where C encodes a C-circuit C ′ of size at most nb on n variables accepting at least a
2/3 fraction of its inputs, runs in time nd (for some constant d independent of b) and outputs some fixed
satisfying assignment y to C ′ with probability at least nk/2n.

The following is a version of the Optimal Coding Theorem for pKt in [LOZ22] with slightly improved
parameters6 that are important in our application.

6Specifically, the coding theorem in [LOZ22] involves an additive term that is logarithmic in the time bound of the sampler,
while the additive term in our bound is logarithmic in the input length of the sampler

13

Lemma 19. Let S be a sampler that runs in time ns on input of length n, where s > 0 is a constant. There

is a constant β such that if S samples some y ∈ {0, 1}n with probability p, then y has 3/4-confidence pKn
βs

complexity at most log(1/p) + 3 log(n).

Proof. We follow the proof strategy in [LOZ22]. Let S be a sampler that runs in time ns and samples some
y ∈ {0, 1}n with probability p. The idea is to choose a random hash function h mapping log(1/p)+O(1) bits
to ns bits, and show that with high probability there exists a choice of input x for h such that S produces y
when run with randomness h(x). This argument is a simple probabilistic argument, but it is not sufficient
to bound the pKpoly complexity of y, since the randomness used to describe the hash function is exponential.
We show instead that a pseudo-random hash function describable with poly(n) bits can be used instead, by
showing that the test that h is a “good” hash function can be performed in AC0, and then using known
unconditional pseudo-random generators against AC0.

In more detail, let h be a random function from log(1/p) + C bits to ns bits, for some constant C to
be chosen later. Given random string R ∈ {0, 1}ns , let S(R) denote the output of the sampler S when
using randomness R. We say h is good for S and y if there is an x of size log(1/p) + log log(n) such that
S(h(x)) = y. We upper bound the probability that h is not good for S and y. The probability that a random
R does not satisfy S(R) = y is at most 1 − p, hence by a union bound the probability that no string R in

the range of h satisies h(R) = y is at most (1− p)2C/p < 0.01 for C chosen large enough.
Next we show that the test that h is good for S and x can be implemented by AC0 circuits of size 2poly(n).

We represent h by a concatenation of the values of h for all inputs in lexicographic order, i.e., a string of
length O(2n+ns). Note that we can assume p > 1/2n, otherwise the statement of the Lemma is trivially true

since each string y of length n has pKn
2s

complexity at most n+O(1).
Indeed, to check that h is good, we just need to take an OR over all strings x in the range of h of the

condition that S(h(x)) = y, which can be checked by CNFs of size 2O(ns). Thus, the test that h is good
can be implemented by depth-3 circuits of size 2O(ns). Now we use known constructions of pseudo-random
generators against AC0 [Nis91, NW94] which provide a PRG G with seed length nαs for some fixed constant
α > 0, such that the i’th bit of G(z) can be computed in time poly(z, log(i)) for z ∈ {0, 1}nαs . This yields a
collection H of hash functions indexed by the seed of G and evaluatable in polynomial time. The probability
that h ∈ H is good for S and y is close to the probability that a random h is good, since G is a PRG, and in
particular we have that for each y sampled with probability p, G(z) ∈ H is good for S and y with probability
at least 3/4 over choice of z.

To show that y has pKn
βs

complexity at most log(1/p) + 3 log(n), we describe y as follows. Let β > 0

be a constant to be determined later. Given r ∈ {0, 1}nβs , we use the nαs-bit prefix z of r to index into H
and pick out a specific hash function h = G(z). We have that with probability at least 3/4 over the choice
of r, h is good for S and y. For good h, we describe y by the string x of length log(1/p) + O(1) such that
S(h(x)) = y, together with 2 log(n) bits to describe n as well as O(1) bits to specify a program that given
n and x, runs S on input 1n and randomness h(x) to obtain y. We choose β large enough so that the time
taken to reconstruct y is at most nβs - such a constant β exists by the polynomial-time evaluability of G

and the polynomial-time bound on S. This implies that the 3/4-confidence pKn
βs

complexity of y is at most
log(p) + 3 log(n) for large enough n ∈ N.

�

In fact it can be shown for any search problem that sampling of a fixed solution to the search problem
with non-trivial probability is equivalent to the existence of solutions that have non-trivial conditional pKpoly

complexity, for an appropriately defined notion of conditional pKpoly complexity. We do not pursue this
direction here to avoid detracting from the focus of the paper on approaches to uniform lower bounds.

We need an easy lemma to allow us to deal with the issue of promise problems.

Lemma 20. Let Γ be a promise problem in coAM. If NP = P, then there is a language LΓ consistent with
Γ such that LΓ ∈ P.

14

Proof. Let Γ = (ΓY ES ,ΓNO) be a promise problem in coAM, with ΓY ES ,ΓNO ⊆ {0, 1}∗ and ΓY ES ∩ΓNO =
∅. Since coAM ⊆ Πp

2 [BM88]7, there is a Π2 machine M running in polynomial time that accepts on all
instances in ΓY ES and rejects on all instances in ΓNO. Let LΓ ∈ Πp

2 be the language decided by M . Since
M accepts all instances in ΓY ES and rejects all instances in ΓNO, we have that LΓ is consistent with Γ. If
NP = P, then the Polynomial Hierarchy collapses to P and hence Πp

2 = P, which implies that LΓ ∈ P. �

We are now ready to establish the main result of this sub-section. The following is a more formal version
of Theorem 2.

Theorem 21. Let C be a polynomially simulatable circuit class. Suppose that there is efficient non-trivial
sampling with PH oracle for the succinct version of Dense − C − SAT. Then NP does not have LOGTIME-
uniform C-circuits of polynomial size.

Proof. Suppose that there is efficient non-trivial sampling with PH oracle for the succinct version of Dense−
C− SAT, and assume for the sake of contradiction that NP has LOGTIME-uniform C-circuits of polynomial
size. Since C is polynomially simulatable, it follows from Proposition 6 that NP has LOGTIME-uniform
Boolean circuits of polynomial size, and hence that NP = P.

Suppose that the efficient sampling algorithm A for the succinct version of Dense−C−SAT uses as oracle
some language O ∈ PH. Since NP = P, we have that PH = P, and hence O ∈ DTIME(nc) for some constant
c. Let d be a constant such that the oracle algorithm A runs in time nd on any C-circuit C of size poly(n) on
n variables. Since A runs in time nd, it can make at most nd oracle queries each of size at most nd, and since
O ∈ DTIME(nc), each of these oracle queries can be simulated in time at most ncd, yielding an equivalent
algorithm A′ which does not need access to the oracle and runs in time at most nq, where q = cd+ d.

Let β be the constant from Lemma 19. We now consider the promise problem Γ = R
pKn

2βq [n−5, 3/4, 1/4].

By Proposition 9, this problem is in coAM, and ΓY ES contains at least a 3/4 fraction of strings of length
n. Since NP = P, we have by Lemma 20 that there is a language L ∈ P that is consistent with Γ. By the
definition of consistency, all YES instances of Γ are YES instances of L and hence L accepts at least 3/4
fraction of inputs of length n, for large enough n ∈ N.

By assumption, NP has LOGTIME-uniform C-circuits of polynomial size, and since L ∈ P, we have that
L has LOGTIME-uniform circuits of size n` for some constant ` > 0. Let {Cn} be a sequence of LOGTIME-
uniform C-circuits of size n` on n variables deciding L. Note that since {Cn} decides L correctly, we have
that Cn accepts at least a 3/4 fraction of inputs of length n for each large enough n ∈ N.

We use the assumed efficient non-trivial sampling algorithm A′ for the succinct version of Dense−C−SAT
to define a sampler S that runs in polynomial time. The sampler S operates as follows given input 1n. It
first computes n in binary.

Next consider the LOGTIME-uniform sequence {Cn} of circuits for L, where Cn is of size n`. We consider
the succinct version of the direct connection language Ldc of {Cn}, where n as well as gate indices and
types are represented in binary in the input to the language. Since Ldc is decidable in time O(log(n)), it is
decidable in linear time as a function of its input. Since by assumption P has LOGTIME-uniform C-circuits
of polynomial size, we have that there are polylog(n) size C-circuits for Ldc, and by the uniformity condition,
these circuits can be computed in polylog(n) time. S computes the corresponding circuit Dn of size polylog(n)
that decides the direct connection language of Cn, and feeds (1n, Dn) to the algorithm A′. Note that Dn

encodes a C-circuit Cn of size poly(n) on n variables as required, and that Cn accepts at least a 3/4 fraction
of inputs of length n. Note also that the size of Dn is at most n.

Hence A′ does indeed perform efficient non-trivial sampling when given (1n, Dn) as input, and this implies
that S halts in time O(nq) and outputs some fixed satisfying assignment y of Cn with probability at least
nk/2n, where k is a constant we are free to choose.

By Lemma 19, we have that y has 3/4-confidence pKn
2βq

complexity at most n − k log(n) + 3 log(n),
which for k > 3 and large enough n is at most n− 5. We use this to derive a contradiction.

7This simulation is usually stated for languages, but holds also for promise problems.

15

The upper bound on the pKn
2βq

complexity of y implies that y is a NO instance of Γ. Since L is consistent
with Γ, y is a NO instance of L as well, and since Cn decides L correctly, y is rejected by Cn. However, by
assumption on A′, y is a satisfying assignment of Cn, which yields a contradiction.

�

Theorem 21 is very general in that there are no constraints on the circuit class C apart from polynomial
simulatability, and in particular we do not require any closure properties of C. We immediately obtain the
following corollaries. The first two corollaries concern frontier questions in complexity theory, and the last
two concern two of the central problems in the area.

Corollary 22. Suppose that for any d ∈ N there is efficient non-trivial sampling with PH oracle for the
succinct version of Dense − ACC0

d − SAT. Then NP does not have LOGTIME-uniform ACC0-circuits of
polynomial size.

Corollary 23. Suppose that there is efficient non-trivial sampling with PH oracle for the succinct version
of Dense− TC0

2 − SAT. Then NP does not have LOGTIME-uniform TC0
2-circuits of polynomial size.

Corollary 24. Suppose that there is efficient non-trivial sampling with PH oracle for the succinct version
of Dense− Formula− SAT. Then NP 6= NC1.

Corollary 25. Suppose that there is efficient non-trivial sampling with PH oracle for the succinct version
of Dense− Circuit− SAT. Then NP 6= P.

3.2 An Algorithmic Approach to Uniform Lower Bounds for PSPACE

Theorem 21 gives an algorithmic approach to showing uniform lower bounds for NP. It is natural to ask if
there is a similar algorithmic approach involving an easier algorithmic task toward showing uniform lower
bounds for larger classes such as PSPACE. We provide an affirmative answer in this sub-section.

We begin by defining a space-efficient notion of sampling.

Definition 26. Let C be a circuit class. We say that there is space-efficient non-trivial sampling for Dense−
C− SAT if for every k > 0 there is a d > 0 and a probabilistic algorithm A such that for every b > 0, when
A is given an instance C of Dense − C − SAT, where C is of size m = nb on n variables, A has space and
randomness complexity nd for some fixed constant d, and outputs some fixed satisfying assignment y to C
with probability at least nk/2n.

We would like to show that space-efficient non-trivial sampling for Dense−C−SAT leads to lower bounds
for PSPACE against LOGSPACE-uniform C-circuits of polynomial size. A natural strategy to achieve this is
to define a new notion of probabilistic space-bounded Kolmogorov complexity and work in analogy to Section
3.2. But in fact we can short-circuit this process and adapt the argument in Section 3.2 more directly, while
still working with time-bounded Kolmogorov complexity. We simply exploit the fact that our argument works
by contradiction, and our initial assumption implies that PSPACE = P, which means that the space-bounded
and time-bounded notions of Kolmogorov complexity essentially coincide.

The following is a more formal version of Theorem 1 from the Introduction.

Theorem 27. Let C be a polynomially simulatable circuit class, and suppose that there is space-efficient
non-trivial sampling for Dense − C − SAT. Then PSPACE does not have LOGSPACE-uniform C-circuits of
polynomial size.

Proof. Suppose that there is space-efficient non-trivial sampling for Dense − C − SAT, and assume for the
sake of contradiction that PSPACE has LOGSPACE-uniform C-circuits of polynomial size. Since C is polyno-
mially simulatable, it follows from Proposition 6 that PSPACE has LOGSPACE-uniform Boolean circuits of
polynomial size, and hence that PSPACE = P.

We now consider the promise problem Γ = R
pKn

2βq
[n−5,3/4,1/4]

, as in the proof of Theorem 21, where q is

a constant to be determined later. By Proposition 9, this problem is in coAM, and ΓY ES contains at least

16

a 3/4 fraction of strings of length n. Since PSPACE = P and since coAM is trivially contained in PSPACE,
we have that there is a language L ∈ P that is consistent with Γ. By the definition of consistency, all YES
instances of Γ are YES instances of L and hence L accepts at least 3/4 fraction of inputs of length n, for
large enough n ∈ N.

By assumption, PSPACE has LOGSPACE-uniform C-circuits of polynomial size, and since L ∈ P, we have
that L has LOGSPACE-uniform circuits of size n` for some constant ` > 0. Let {Cn} be a sequence of
LOGSPACE-uniform C-circuits of size n` on n variables deciding L. Note that since {Cn} decides L correctly,
we have that Cn accepts at least a 3/4 fraction of inputs of length n for each large enough n ∈ N.

By assumption, we have a probabilistic algorithm A that, given any C-circuit C of size poly(n) on n
variables that accepts at least a 2/3 fraction of its inputs, has space and randomness complexity bounded
by nd for some fixed constant d > 0, and outputs some fixed satisfying assignment y of C with probability
nk/2n, where k > 0 is a constant we are free to choose. We use A to define a sampler S that runs in fixed
polynomial space as follows. Given input 1n, S first computes n` in binary - this can be done in space
O(log(n)). It then simulates the operation of algorithm A′ on input Cn, without computing Cn explicitly.
Whenever A′ requires some bit of the description of Cn (which it specifies by writing on the random access
tape), S computes this bit in space O(` log(n)) = O(log(n)) by using the LOGSPACE-uniformity of Cn. Thus
the simulation can be done in space O(nd+ log(n)), which is at most n2d for large enough n and d > 1. If A′

halts after outputting a string of length n, S halts after outputting the same string; if A′ does not output a
string or outputs a string of length other than n, S halts after outputting 0n. Note that if A′ outputs some
satisfying assignment y of C with probability at least p, so does S.

Thus we have a sampler S running in space n2d sampling a distribution over n-bit outputs. Now we use
the fact that PSPACE = P again to obtain an equivalent polynomial-time sampler S′. Let q be a constant
such that S′ runs in time nq.

Since Cn accepts at least a 3/4 fraction of all its inputs, Cn is a valid instance of Dense−C−SAT. Hence
A, on input Cn, outputs some fixed satisfying assignment y of Cn with probability at least nk/2n. So we
have that S′ outputs y with probability at least nk/2n. By Lemma 19, we have that y has 3/4-confidence

pKn
2βq

complexity at most n− k log(n) + 3 log(n), which for k > 3 and large enough n is at most n− 5. We
use this to derive a contradiction.

The upper bound on the pKn
4q

complexity of y implies that y is a NO instance of Γ. Since L is consistent
with Γ, y is a NO instance of L as well, and since Cn decides L correctly, y is rejected by Cn. However, by
assumption on A, y is a satisfying assignment of Cn, which yields a contradiction. �

We immediately obtain the following corollary, which concerns a long-standing open problem in complex-
ity theory . Note that analogues of Corollaries 22, 23, 24 are known to hold unconditionally for PSPACE by
the space hierarchy theorem [SHL65].

Corollary 28. Suppose that there is space-efficient non-trivial sampling for Dense − Circuit − SAT. Then
PSPACE 6= P.

There are a couple of differences in the hypothesis of Theorem 27 as compared to Theorem 21. The first
is that the sampling algorithm isn’t given access to an oracle. However, this is an insignificant difference.
Given a space-efficient sampling algorithm access to a PSPACE oracle doesn’t really increase its power, as
PSPACE is closed under polynomial-space reductions.

The second is that the sampling algorithm is given the entire circuit as input rather than a succinct
representation of it. At first sight, this looks more like a hypothesis about a white-box algorithm rather than
about a restricted white-box algorithm. But in fact, the hypothesis isn’t fully white box, as the sampling
algorithm doesn’t have enough space to simulate the input circuit in general. The input circuit can be of
size an arbitrary polynomial in n, while the sampling algorithm needs to run in space a fixed polynomial in
n.

We could consider the succinct version of the sampling problem here too, and the connection would still
go through, just as in the proof of Theorem 21. This would yield our desired conclusion under a weaker
hypothesis, as space-efficient non-trivial sampling implies space-efficient non-trivial sampling for the succinct

17

version. Indeed, suppose we have a space-efficient non-trivial sampling algorithm for the succinct version,
where we are given a circuit C of size at most n encoding a circuit C ′ on n variables for which we want to
sample a satisfying assignment. We could simulate any query to C ′ in the non-succinct version by running
C in the succinct version, which costs at most a fixed polynomial overhead in space.

Our reason for stating the weaker result here (by using a stronger hypothesis) is that in some situations
the stronger hypothesis seems more natural to attack, because it feels more similar in flavour to the white-box
version. Indeed, when we reprove versions of the space hierarchy theorem using our approach in Section 5,
we do establish the stronger hypothesis for the circuit class of interest there.

An analogue of the stronger hypothesis could also be defined and considered in the setting of uniform
lower bounds for NP, but feels less achievable there, as it would involve solving the sampling task without
even reading the entire input circuit. This might still be possible for weak circuit classes, such as depth-two
circuits, but coming up with algorithmic approaches to the hypothesis for stronger circuit classes might
be hard. In contrast, when considering the stronger hypothesis in the setting of uniform lower bounds for
PSPACE, we are allowed to read the entire input circuit, just not to use a large amount of space when trying
to sample from it.

An algorithmic approach to the problem of showing that Permanent is not in NC1 can be developed
along very similar lines to Theorem 21 and Theorem 27. Here Permanent is the problem of computing the
permanent of a Boolean matrix over the integers, encoded in a standard way as a decision problem.

Theorem 29. Let C be a polynomially simulatable circuit class that is closed under projections. Suppose
that there is efficient non-trivial sampling with CH oracle for the succinct version of Dense−C− SAT. Then
Permanent does not have LOGTIME-uniform C-circuits of polynomial size.

Proof. Suppose that there is efficient non-trivial sampling with CH oracle for the succinct version of Dense−
C − SAT, and suppose for the sake of contradiction that Permanent has LOGTIME-uniform C-circuits of
polynomial size. Let {Cn} be this sequence of circuits, where Cn is of size nb for some constant b and has n
input variables. The second assumption implies that Permanent ∈ P. By Theorem 7 and the completeness of
the Permanent for #P [Val79], we have that PP = P, and hence CH = P. This means that we can eliminate
the CH oracle for the sampling algorithm, to obtain an efficient non-trivial sampling algorithm A′ for the
succinct version of Dense− C− SAT. Let q be a constant such that A′ runs in time at most nq.

We proceed as in Theorem 21 to analyze the meta-complexity problem Γ = R
pKn

2βq [n−5, 3/4, 1/4], where

β is the constant in the statement of Lemma 19. Using Theorem 7 again, we have that PH ⊆ PPP = P. Since
Γ ∈ PH, this implies that there is a language L ∈ P consistent with Γ that accepts at least a 3/4 fraction of
inputs of each large enough input length.

We use the assumed efficient non-trivial sampling algorithm A′ for the succinct version to define a sampler
S. The sampler S operates as follows given input 1n. It first computes n in binary.

Next consider the LOGTIME-uniform sequence {Cn} of circuits for L that exist by assumption, where Cn
is of size nb for some constant b and has n input variables. We consider the succinct version of the direct
connection language Ldc of {Cn}, where n as well as gate indices and types are represented in binary in the
input to the language. Since Ldc is decidable in time O(log(n)), it is decidable in linear time as a function
of its input. Since Permanent is hard for NP under LOGTIME-uniform projections, and C is closed under
projections, the existence of LOGTIME-uniform poly-size C-circuits for Permanent implies the existence of
such circuits for NP and hence for P. Thus we have that there are polylog(n) size C-circuits for Ldc, and by
the uniformity condition, these circuits can be computed in polylog(n) time. S computes the corresponding
circuit Dn of size polylog(n) that decides the direct connection language of Cn, and feeds (1n, Dn) to the
algorithm A′. Note that Dn encodes a C-circuit Cn of size poly(n) on n variables as required, and that Cn
accepts at least a 3/4 fraction of inputs of length n. Note also that the size of Dn is at most n.

Hence A′ does indeed perform efficient non-trivial sampling when given (1n, Dn) as input, and this implies
that S halts in time O(nq) and outputs some fixed satisfying assignment y of Cn with non-trivial probability.
This can be used to derive a contradiction just as in the proof of Theorem 21 by applying Lemma 19.

�

18

4 Soundness of the Approach

4.1 Solving the Algorithmic Tasks under Standard Cryptographic Assumptions

As discussed, one of the most important criteria for an algorithmic approach to a lower bound problem is
that the approach should be sound, i.e., there should ideally be evidence that the relevant algorithmic task
is feasible. We begin by providing cryptographic evidence that the algorithmic tasks discussed in Section 3
are feasible. The following is a more formal version of Theorem 3.

Theorem 30. Suppose there is an nω(1)-secure one-way function. Let C be any circuit class that is poly-
nomially simulatable. Then there is efficient non-trivial sampling for Dense − C − SAT. Indeed, there is a
probabilistic algorithm A which, given a C-circuit C of size m = nb on n variables accepting at least 2/3 of
its inputs, runs in time nd (where d is independent of b) and outputs some fixed satisfying assignment of C

with probability 2−n
o(1)

.

Proof. Suppose there is an nω(1)-secure one-way function. By Theorem 12, there is a pseudo-random gener-
ator G with seed length no(1). Consider the algorithm A that runs as follows given input C of size m = nb

on n variables. It ignores its input C, instead running Gn on a random seed z and outputting Gn(z). Since
G is computable in time nd for some fixed d, A runs in time nd and is hence efficient. The non-trivial
sampling property follows from the pseudo-randomness of G. Since C is polynomially simulatable, there is
some polynomial-size Boolean circuit C ′ equivalent to C. By the pseudo-randomness of G, the probability
that C ′ accepts on a random output of G is close to the probability that C ′ accepts on a random input
of length n. Since at least a 2/3 fraction of inputs of C ′ are accepted, most outputs of G are satisfying
assignments to C and therefore also to C. Since G has seed length no(1), each output of G is produced with

probability at least 2−n
o(1)

by the algorithm A, and in particular there is a satisfying assignment y of C that

is produced with probability at least 2−n
o(1)

, as claimed. �

Note that the algorithm A in the proof of Theorem 30 is oblivious: it does not consult its input. Thus
the standard cryptographic assumption of the existence of one-way functions implies an oblivious solution
to our algorithmic task, while we only require a constrained white-box solution.

It turns out that if we are interested in a white-box solution to the algorithmic tasks that is not con-
strained, i.e., the algorithm is not required to be efficient, then the task is indeed solvable with non-trivial
probability by a sampling argument.

Theorem 31. Let C be any polynomially simulatable circuit class. For each k > 0 there is a probabilistic
algorithm A which, given a C-circuit Cof size poly(n) on n variables accepting at least 2/3 fraction of its
inputs, runs in time poly(n) and outputs a fixed satisfying assignment y of C with probability at least nk/2n

for large enough n ∈ N.

Proof. We define a probabilistic algorithm A operating as follows given C-circuit C as input. It samples
independently and uniformly at random nk+2 strings yi, i ∈ [nk+2] each of length n. It checks for each yi
in polynomial time whether yi is a satisfying assignment of C, using the polynomial simulatability of C. If
none of the strings yi is satisfying, A simply outputs 0n and halts, otherwise it outputs the lexicographically
smallest satisfying assignment yi.

We argue that this algorithm outputs some satisfying assignment y of C with probability at least nk/2n.
Indeed, we will argue that with probability close to 1, A outputs some assignment from the set of 2n/nk+1

lexicographically smallest satisfying assignments of C. Note that C has at least this many satisfying as-
signments since it accepts at least a 2/3 fraction of all inputs of length n. Let S be this set of 2n/nk+1

lexicographically smallest satisfying assignments.
A randomly chosen y of length n is in S with probability at least 1/nk+1, hence the probability that

none of the sampled strings yi is in S is at most (1− 1/nk+1)n
k+2

, which is 2−Ω(n). Note that if at least one
of the strings yi ∈ S, then the output of the algorithm belongs to S. Thus we have that the output of the
algorithm belongs to S with probability at least 1− 2−Ω(n), which means some string y ∈ S is output with
probability at least 1/(2|S|) for large enough n, which is at least nk/2n for large enough n. �

19

4.2 Necessity of the Approach

We have argued that our algorithmic approach is sound, but could it be that what we require algorithmically
is much stronger than what is needed? Next we show that under plausible complexity-theoretic assumptions,
a version of our algorithmic approach to lower bounds for NP and PSPACE is in fact necessary. Specifically,
we define a uniform version of our algorithmic approach, where efficient non-trivial sampling is only required
for each uniform sequence of circuits, rather than for circuits given as input to an algorithm. We observe
that our proofs in Section 3 go through if the uniform version is feasible, and then show that under our
complexity assumptions, NP 6= P and PSPACE 6= P actually imply the feasibility of the uniform versions of
our assumptions.

We need a standard complexity-theoretic derandomization assumption, as well as an additional assump-
tion about NP-hardness of a meta-complexity problem in the case of uniform lower bounds for NP. We
discuss the case of uniform lower bounds for NP first, and then move on to the case of uniform lower bounds
for PSPACE. First we define a uniform version of our algorithmic approach for NP.

Definition 32. Let C be a circuit class. We say that there is efficient non-trivial sampling for the uniform
version of Dense − C − SAT if for every k > 0 and every LOGTIME-uniform sequence {Cn} of C-circuits
of size poly(n) on n variables such that Cn accepts at least 2/3 fraction of inputs of length n, there is a
probabilistic algorithm A which, given input 1n, runs in time nd (for some constant d independent of the
exponent in the size of Cn) and outputs some fixed satisfying assignment y to Cn with probability at least
nk/2n.

Next we require a standard derandomization result.

Theorem 33. [IW97] Suppose E requires exponential-size Boolean circuits. Then BPP = P.

We need to define the meta-complexity problem MCSP and what it means for this problem to be average-
case hard and to be hard to approximate.

Definition 34. Given a size function s : N→ N where s(N) 6 N for each positive integer N , we define the
problem MCSP[s] as follows. YES instances of MCSP[s] are strings y of length N where N = 2n for some
integer n and fy has Boolean circuits of size at most s(N), where fy is the Boolean function whose truth
table is y.

We say that MCSP[s] is zero-error easy on average over the uniform distribution if there is a deterministic
polynomial-time algorithm which, given input y, always outputs 0, 1 or ’?’; always correctly classifies y with
respect to MCSP[s] when it outputs a Boolean value; and outputs a non-’?’ value with probability at least
1/poly(N) over y ∼ {0, 1}N . We say that MCSP[s] is zero-error hard on average over the uniform distribution
if it is not zero-error easy on average over the uniform distribution.

Given a function γ : N → N, we say that MCSP is γ-hard to approximate (resp. γ-hard to approximate
probabilistically) if there is no polynomial time algorithm (resp. probabilistic polynomial time algorithm)
solving the following promise problem Γ. ΓY ES consists of tuples (y, 1s) such that y is the truth table of a
function with Boolean circuits of size at most s. ΓNO consists of tuples (y, 1s) such that y is the truth table
of a function with no Boolean circuits of size at most γ(|y|)s.

We say that it is NP-hard to γ-approximate MCSP if there is a polynomial-time reduction from SAT to
the promise problem Γ described above.

We will use the following approximation to average-case reduction of Hirahara [Hir18].

Theorem 35. [Hir18] Suppose that MCSP is N1−ε-hard to approximate probabilistically for each ε > 0.
Then for each δ > 0, MCSP[Nδ] is zero-error average-case hard over the uniform distribution.

Now we are ready to prove our result about necessity of the uniform version of our algorithmic approach
in the case of uniform lower bounds for NP.

Theorem 36. Suppose that E requires exponential-size Boolean circuits, and moreover that MCSP is NP-
hard to N1−ε-approximate for each ε > 0. Then NP 6= P iff there is efficient non-trivial sampling for the
uniform version of Dense− Circuit− SAT.

20

Proof. We observe that the only circuits C for which we use sampling in the proof of Theorem 21 are uniform
circuits, hence the conclusion of Theorem 21 holds even if the algorithmic assumption is that there is efficient
non-trivial sampling for the uniform version of Dense− Circuit− SAT. This shows the backward implication
in the statement of Theorem 36. We will use the assumptions to argue the forward implication.

The proof is in several steps. We give a road-map and then show how to implement each step. We will
first use the assumption that MCSP is NP-hard to approximate together with the assumption that NP 6= P
to show that MCSP is hard to approximate by polynomial-time algorithms. Then we use Theorem 35 to
argue that MCSP is hard on average over the uniform distribution. Next we use a lemma from [San20] to
argue that there are hitting set generators against polynomial time with small seed length. Finally we show
how hitting set generators with small seed length imply efficient non-trivial sampling for the uniform version
of Dense− Circuit− SAT.

By the assumption that it is NP-hard to N1−ε-approximate MCSP, and since NP 6= P, we have immedi-
ately that MCSP is N1−ε-hard to approximate. Since E requires exponential-size Boolean circuits, and by
using Theorem 33, we have that MCSP is N1−ε-hard to approximate probabilistically. By applying Theorem
35, we infer that for each δ > 0, MCSP[Nδ] is zero-error average-case hard over the uniform distribution.

By Proposition 10 in [San20], this implies that for each δ > 0, there is a hitting set generator Hδ with seed
length Nδ against polynomial time that is computable in time at most N2 8. Here a hitting set generator
against polynomial time is a function whose range intersects with any dense set in P, i.e., any set containing
at least a 1/NO(1) fraction of strings of length N for each N . Now consider the set L ∈ P such that y ∈ L
iff y is a satisfying assignment of C|y|. This set is dense because CN accepts at least 2/3 fraction of length
N . Hence the range of the hitting set generator intersects L.

We define an algorithm Aδ which, given input 1N , samples a random element y of length N in the range

of Hδ, and outputs it. Note that each element in the range of Hδ is output with probability at least 2−N
δ

.
Since some element y in the range of Hδ is accepted by CN , we have that some satisfying assignment y of

CN is output with probability at least 2−N
δ

. The algorithm Aδ uses fixed polynomial time independent of
the size of CN . Hence efficient non-trivial sampling for the uniform version of Dense− Circuit− SAT holds.

�

Given that the uniform version of the algorithmic approach suffices to show NP 6= P, one might ask why
we do not highlight this version in Section 3. The reason is that this algorithmic task is not very naturally
defined, since it has a unary input and refers to a uniform circuit family. We find the algorithmic tasks
defined and studied in Section 3 more natural, in that an arbitrary circuit from the class C is provided as
input.

Next we tackle the generality question for our algorithmic approach to lower bounds for PSPACE. We
first define a uniform version of the algorithmic approach.

Definition 37. Let C be a circuit class. We say that there is space-efficient non-trivial sampling for the
uniform version of Dense − C − SAT if for every k > 0 and every LOGTIME-uniform sequence {Cn} of
C-circuits of size poly(n) on n variables such that Cn accepts at least 2/3 fraction of inputs of length n, there
is a probabilistic algorithm A which, given input 1n, has space and randomness complexity at most nd (for
some constant d independent of the exponent in the size of Cn) and outputs some fixed satisfying assignment
y to Cn with probability at least nk/2n.

We require the notion of KS complexity and the corresponding meta-complexity problem MKSP.

Definition 38. The KS complexity of a string x is defined as follows, relative to some space-efficient universal
Turing machine U . KS(x) is the minimum over |p|+ s such that U(p, ε) halts and outputs x using space at
most s.

8The N2 upper bound on time for computing the hitting set generator is not argued explicitly in [San20] but follows from
the proof, since the seed of the hitting set generator is a circuit represented by Nδ bits on log(N) inputs and the output is the
truth table of length N of the function computed by this circuit

21

Given a function s : N → N, MKSP[s] is the set of strings x such that KS(x) 6 s(|x|). We say that
MCSP[s] is zero-error easy on average over the uniform distribution if there is a deterministic polynomial-
time algorithm which, given input y, always outputs 0, 1 or ’?’; always correctly classifies y with respect to
MCSP[s] when it outputs a Boolean value; and outputs a non-’?’ value with probability at least 1/poly(n)
over y ∼ {0, 1}n. We say that MCSP[s] is zero-error hard on average over the uniform distribution if it is
not zero-error easy on average over the uniform distribution.

We will use the following result which establishes that MKSP is PSPACE-hard even on average.

Theorem 39. [ABK+06] If PSPACE 6= BPP, then for each constant δ > 0, MKSP[nδ] is zero-error hard on
average under the uniform distribution.

Finally we are ready to show our result in the case of uniform lower bounds for PSPACE.

Theorem 40. Suppose that E requires exponential-size Boolean circuits. Then PSPACE 6= P iff there is
space-efficient non-trivial sampling for the uniform version of Dense− Circuit− SAT.

Proof. We observe that the only circuits C for which we use sampling in the proof of Theorem 27 are uniform
circuits, hence the conclusion of Theorem 27 holds even if the algorithmic assumption is that there is space-
efficient non-trivial sampling for the uniform version of Dense − Circuit − SAT. This shows the backward
implication in the statement of Theorem 40. We will use the assumptions to argue the forward implication.

The proof of the forward implication is roughly analogous to the proof of Theorem 36.
First we use the circuit lower bound assumption to argue that BPP = P by applying Theorem 33. Since

PSPACE 6= P, we have by Theorem 39 that for each δ > 0, MKSP[nδ] is zero-error hard on average over the
uniform distribution.

The proof of Proposition 10 in [San20] generalizes to show, based on the average-case hardness of MKSP,
that for each δ > 0, there is a hitting set generator Hδ with seed length nδ against polynomial time that is
computable in space O(nδ). Now consider the set L ∈ P such that y ∈ L iff y is a satisfying assignment of
C|y|. This set is dense because CN accepts at least a 2/3 fraction of strings of length n. Hence the range of
the hitting set generator intersects L.

We define a space–efficient algorithm Aδ which, given input 1n, that samples a random element y of
length n in the range of Hδ and outputs it. Note that each element in the range of Hδ is output with

probability at least 2−n
δ

. Since some element y in the range of Hδ is accepted by Cn, we have that some

satisfying assignment y of Cn is output with probability at least 2−n
δ

. The algorithm Aδ uses space only
O(nδ). Hence space-efficient non-trivial sampling for the uniform version of Dense−Circuit− SAT holds. �

As an easy corollary of Theorem 40, we derive an algorithmic characterization of PSPACE 6= P. We
show that separating PSPACE and P, which is a lower bound question, is equivalent to the existence of at
least one of two kinds of algorithms: a sub-exponential time non-uniform algorithm for E that works on
infinitely many input lengths, or a space-efficient non-trivial sampling algorithm for the unfiorm version of
Dense− Circuit− SAT.

The following is a re-statement of Theorem 4.

Corollary 41. PSPACE 6= P iff E has circuits of size 2o(n) infinitely often or there is space-efficient non-
trivial sampling for the uniform version of Dense− Circuit− SAT.

Proof. The forward direction follows directly from Theorem 40.
We next prove the backward direction. Suppose E has circuits of size 2o(n) infinitely often. Then we have

by the Karp-Lipton theorem for E that E is in space 2o(n) infinitely often. This implies that PSPACE 6= P,
as otherwise we would have that E is in time 2o(n) infinitely often by a padding argument, which contradicts
the time hierarchy theorem.

On the other hand, if there is space-efficient non-trivial sampling for the uniform version of Dense −
Circuit− SAT, PSPACE 6= P follows as observed in the proof of the backward direction of Theorem 40.

�

22

5 Feasibility of the Approach

In this section, we argue for the feasibility of our approach. We first show that uniform versions of most
super-polynomial circuit lower bounds for NP can be captured within the framework, and then that some
of the best-known uniform lower bounds proved using diagonalization, such as the space hierarchy theorem
and Allender’s lower bound for the Permanent, can be reproved using our approach. Then we show how to
prove a couple of new lower bounds: NP does not have uniform polynomial-size AC0 circuits with a bottom
layer of Mod m gates, for any composite m, nor uniform polynomial-size AC0 circuits with a bottom layer
of threshold gates.

5.1 Capturing Known Lower Bounds

Complexity theorists have had success proving super-polynomial circuit lower bounds for NP against a variety
of weak circuit classes, such as AC0 and AC0[p] (for primes p). We observe that the proofs of these lower
bounds imply efficient non-trivial sampling for the corresponding circuit classes, and hence our framework
applies. Of course our framework only yields uniform lower bounds, which are weaker than the non-uniform
lower bounds already known for these classes. However our hope is that the framework might be useful even
for stronger circuit classes where non-uniform lower bounds in NP are not known, and in order for this to be
credible, the framework should at least apply in cases where lower bounds are known.

We use the fact that super-polynomial size lower bounds for NP against AC0 and AC0[p] yield crypto-
graphic hitting set generators against these classes with non-trivial seed length.

Theorem 42. [Nis91, All01, FSUV13, HS17] There is a cryptographic hitting set generator with seed length
polylog(n) useful against AC0 and, for any prime p, a cryptographic hitting set generator with seed length
n−
√
n useful against AC0[p].

In fact the work of [Nis91, All01, FSUV13, HS17] gives cryptographic pseudo-random generators rather
then just cryptographic hitting-set generators, but the weaker hitting property satisfies for our application.

Corollary 43. There is efficient non-trivial sampling for the succinct versions of Dense − AC0 − SAT and
Dense− AC0[p]− SAT.

The corollary follows from Theorem 42 by just sampling a random output of the generator, which can be
done in fixed polynomial time in n independent of the size of the circuit on n bits for which we are solving
the sampling problem. Note that by the hitting property, at least one of the outputs of the generator will
satisfy the circuit, and each such output is sampled with probability 2−`(n), where `(n) is the seed length of
the generator, which is non-trivial by Theorem 42.

We next show that versions of some of the classical results on uniform lower bounds in the literature,
shown using direct or indirect diagonalization, can be shown using our framework. First, we consider versions
of the space hierarchy theorem.

Theorem 44. Let C be the class of branching programs of polynomial size. There is space-efficient non-trivial
sampling for Dense− C− SAT.

Proof. Let C be the class of polynomial-size branching programs. To show space-efficient non-trivial sampling
for C, we use the approach in the proof of Theorem 31. Let C ∈ C be a branching program of size poly(n) on
n variables that accepts at least a 2/3 fraction of assignments. Fix an integer k > 0. We define an algorithm
A with space and randomness complexity at most nk+O(1) that samples a fixed satisfying assignment of C
with probability at least nk/2n.

As in the proof of Theorem 31, A samples independently and uniformly at random nk+2 strings yi, i ∈
[nk+2] each of length n. It checks for each yi whether yi is a satisfying assignment of C. If none of the strings
yi is satisfying, A simply outputs 0n and halts, otherwise it outputs the lexicographically smallest satisfying
assignment yi.

The argument that A outputs a fixed satisfying assignment with probability at least nk/2n is the same as
in the proof of Theorem 31. We need to argue in addition that A uses fixed polynomial space and randomness,

23

independent of the size of C. Indeed, the randomness required to generate nk+2 uniformly random n-bit
strings is nk+3. In terms of space complexity, these strings can be stored in space nk+3. Crucially, the check
for any fixed yi that yi satisfies C costs space O(log(n)), since we only need to maintain the current state
of the branching program. Maintaining the current index i also only costs space O(log(n)), and so too the
index j (initialised to 0) of the lexicographically smallest satisfying assignment so far. Thus the total space
required is nk+O(1). �

Corollary 45. [SHL65] PSPACE 6= LOGSPACE.

Corollary 45 follows from Theorem 44 by applying Theorem 27, since the class of branching programs of
polynomial size is polynomially simulatable.

We remark that the standard proof of the space hierarchy theorem is a fairly simple direct diagonalization,
so the proof of Corollary 45 does not have any advantage in terms of simplicity. In addition, Corollary 45
does not give the tight parameters of the space hierarchy theorem, i.e., separating space S from space S′

for any space-constructible bounds S, S′ where S = o(S′). The reason that Theorem 27 does not give the
tight space hierarchy is that tighter separations correspond to simulation of circuit classes C that are not
known to be polynomially simulatable, i.e., branching programs of super-polynomial size. However, the tight
space hierarchy can be recovered using the ideas of the proof of Theorem 27, by defining and applying an
appropriate space-bounded version of Kolmogorov complexity. We omit the details, as we do not see how to
obtain a new result on space hierarchies using these ideas.

Next, we show how to rederive Allender’s celebrated uniform lower bound for the Permanent using our
approach [All99]. To show the efficient non-trivial sampling required to derive this lower bound, we need a
lemma about the evaluation of succinctly described threshold circuits. For convenience, we will work with
Majority circuits instead, and then use the fact that uniform depth d threshold circuits can be simulated by
uniform depth d+ 1 Majority circuits.

For any positive integer d, define the language Succinct-Maj0d-Eval to be the set of pairs < C, x >, where
C is a Majd circuit of size n encoding a Majd circuit C ′ on n variables, and x is an input of length n, satisfying
the condition that C ′(x) = 1.

Lemma 46. Let d be any positive integer. Succinct-Majd-Eval is in CH.

Proof. We show how to solve Succinct-Maj0d-Eval efficiently on a threshold Turing machine [PS88] with a
constant number of thresholds. It is shown in [PS88] that L ∈ CH iff L can be solved efficiently on a
threshold Turing machine with a constant number of thresholds. A threshold Turing machine is defined
analogously to an alternating Turing machine, but instead of designated existential (resp. universal) states
which are accepting if at least one succeeding configuration is accepting (resp. all succeeding configurations
are accepting), we have a designated threshold state, which are accepting iff a certain number m (stored on
a separate write-only threshold tape) of succeeding configurations are accepting. The number of succeeding
configurations at any point when the machine is in a threshold state is specified by a position of the head
on a special tape known as the guess tape - this head position can change in each deterministic transition
just as with a regular Turing machine. The machine is said to have a constant number of thresholds if on
any computation, the threshold state is only entered a constant number of times.

Threshold Turing machines clearly generalize alternating Turing machines. It will be more convenient for
us to work with the equivalent model of majority Turing machines, where instead of a single threshold state,
we have a majority state and a minority state, with the majority state (resp. the minority state) accepting
iff a majority (resp. a minority) of succeeding configurations are accepting. Note that we can simulate the
majority state (resp. a minority state) on a threshold Turing machine by existentially guessing a number m
that is at least K/2 (resp. less than K/2), where K is the number of succeeding configurations, writing m
on the threshold state, and moving into the threshold state. Here, and later, we use the fact that existential
guesses can be simulated by a single threshold.

Let C be a Majd circuit of size n encoding a Majd circuit C ′ on n inputs, and x be an input of length
n. It will not be important for us that C is a Majd circuit, but it will be important that C ′ is. The idea is
to simulate C ′ in a top-down manner on input x. We do not have time to write C ′ down as our machine

24

needs to operate in fixed polynomial time in n, while C ′ could be of arbitrary polynomial size, or even of
size 2O(n). So we will use C to efficiently obtain information about the local structure of the circuit C ′, and
the majority states of our majority Turing machine M to simulate the gates of C.

We first show how M simulates the output gate of C ′, and then describe how it recursively simulates
other gates of the circuit.

M first existential guesses the index of the output gate g0 of C ′, and verifies this guess by running C
on the appropriate tuple of the direct connection language for C ′. The existential guessing requires a single
threshold in the computation of M , and the verification can be done in time quasi-linear in the size of C, and
therefore in time O(n2). M runs C to determine whether g0 is a majority gate or a minority gate, setting
a bit b to 1 if the former is the case and to 0 otherwise. M then computes the number of children k0 of
g0, again by guessing this number exisentially, and running C to verify the guess. Let p0 = dlog(k0)e. M
moves the head of its guess tape to the p0’th cell, indicating that there will be 2p0 successor configurations,
and moves into a Majority state if b = 1 and into a Minority state otherwise. By the rules of operation of
threshold Turing machines [PS88], any given successor configuration is encoded by a bit-string y of length
p0 written on the guess tape at this point. M will interpret the successor configuration corresponding to y
as follows. If y represents a number k(y) in binary such that k(y) 6 k0, M simulates the k(y)’th child of g0.
If y represents a number k(y) such that k(y) > k0, M rejects immediately if k0 − k(y) is odd, and accepts if
k0 − k(y) is even.

To simulate a child g1 of g0, M repeats the process above for g1 in case g1 is a gate, while if g1 is an
input bit xi, M reads xi and accepts iff xi = 1. Note that the depth of recursion of the process above is at
most the depth of the circuit C ′, which is a constant d. Each recursion step requires a constant number of
thresholds, and takes time O(n2) (corresponding to a constant number of invocations of C and other simple
computations that can be done very efficiently). Thus, the threshold complexity of M is indeed constant,
and its running time is O(n2). It can be seen inductively that M does correctly simulate any given gate g
of C ′, and hence outputs the correct answer for C ′ on x. �

Theorem 47. Let d be any positive integer.There is efficient non-trivial sampling with CH oracle for the
succinct version of Dense−Majd − SAT.

Proof. As in the proofs of Theorems 31 and 44, the idea is to sample several independently random strings,
and output the lexicographically first one that satisfies the succinctly represented Majd circuit.

Let k be any positive integer. We show that there is an algorithm A with CH oracle and a constant c > 0
such that for all constants b > 0 the following holds: Given a Majd circuit C of size at most n that encodes
a TC0 circuit C ′ of size nb on n variables accepting at least a 2/3 fraction of assignments, A outputs some
fixed satisfying assignment of C ′ with probability at least nk/2n in time O(nc).

A generates uniformly random strings x1, . . . , xt for t = nk+2, each of length n. For each i ∈ [t], A
makes an oracle call to Succinct-Majd-Eval to evaluate C ′ on xi, and receives an answer bi. A outputs the
lexicographically smallest xi such that bi = 1, and the string 0n otherwise. The argument that A outputs
a fixed satisfying assignment with probability at least nk/2n is the same as in the proof of Theorem 31.
Clearly A runs in time O(nk+3), and by setting c = k + 3, independent of b, we complete the proof.

�

Corollary 48. [All99] Permanent does not have LOGTIME-uniform TC0 circuits of polynomial size.

Proof. If Permanent has LOGTIME-uniform TC0
d circuits of polynomial size for some constant depth d, then

Permanent has LOGTIME-uniform Majd+1 circuits of polynomial size [Hof96, GK98]. Since the class of Majd+1

circuits of polynomial size is polynomially simulatable and closed under projections, we can apply Theorem
29 with the sampling algorithm given by Theorem 47, and derive a contradiction. �

We explain briefly how the proofs of Corollary 45 and Corollary 48 differ from the standard proofs.
The standard proof of the space hierarchy [SHL65] combines two ingredients: (i) The existence of a space-
efficient universal Turing machine U that can simulate any Turing machine M with at most a constant factor

25

overhead in space, and (ii) The idea of directly diagonalizing against all Turing machines operating in a given
space bound by mapping inputs x to Turing machines Mx in a surjective way and doing the opposite of Mx

on x. The proof of Corollary 45 replaces the simulation ingredient (i) with the existence of a non-trivial
space-efficient sampling algorithm, and the direct diagonalization part (ii) with a different diagonalization
argument based on resource-bounded Kolmogorov complexity.

The standard proof of Allender’s lower bound [All99] is an indirect diagonalization argument with the
following parts: (i) A time hierarchy theorem for threshold Turing machines proved in an analogous way to
the space hierarchy theorem, with a simulation step and a direct diagonalization step, and (ii) An inductive
argument showing that if the Permanent has small uniform threshold circuits, so does every level of the
counting hierarchy; then combining (i) and (ii) to derive a contradiction. The proof of Corollary 48 still uses
the ingredient (ii), but replaces the simulation step of (i) with a sampling step, and the direct diagonalition
step with a diagonalization argument based on resource-bounded Kolmogorov complexity.

The broader point we wish to make is that our framework is capable of capturing both direct and
indirect diagonalization arguments, since the sampling condition we require seems weaker than the simulation
conditions in previous diagonalization arguments, and hence potentially capable of proving a broader class
of lower bounds. This is related to Theorem 31, which shows that efficient non-trivial sampling exists
unconditionally in a white box setting.

5.2 New Lower Bounds

Ideally, we would like to be able to use our new approach to attack frontier open problems in uniform circuit
lower bounds, such as separating NP from LOGTIME-uniform ACC0 and separating NP from LOGTIME-
uniform TC0

2. While we are unable to do this, we are able to show lower bounds in NP against interesting
subclasses of these circuit classes, namely against LOGTIME-uniform AC0 circuits with Modm gates at the
bottom (for an arbitrary positive integer m), and against LOGTIME-uniform AC0 circuits with Thr gates at
the bottom. To show lower bounds in NP against the non-uniform versions of these classes is a longstanding
open problem (though we do know lower bounds in NQP [Wil14, MW20]), and to the best of our knowledge,
lower bounds in NP against the uniform versions have also been open so far.

Theorem 49. Let d,m be any positive integers. NP does not have polynomial-size LOGTIME-uniform
AC0

d ◦ (Modm) circuits.

Proof. Let C be the class of AC0
d ◦ (Modm) circuits of polynomial size. We will show that there is efficient

non-trivial sampling for the succinct version of Dense − C − SAT, and then apply Theorem 21, since C is
polynomially simulatable. This implies that for each d, NP does not have LOGTIME-uniform AC0

d ◦ (Modm)
circuits of polynomial size.

Our efficient non-trivial sampling algorithm employs the same idea and proof as in Theorem 47, of picking
several independently random assignments and outputting the lexicographically first one that satisfies the
succinctly represented circuit. Thus our task reduces to giving a PH algorithm for Succinct-C-Eval, analogous
to Lemma 46.

Let C be an AC0
d ◦ (Modm) circuit of size n encoding an AC0

d ◦ (Modm) circuit C ′ on n input bits that
accepts at least 2/3 of its satisfying assignments, and x be an input of length n. We define an alternating
Turing machine M running in time poly(n) which, on input < C, x >, accepts iff C ′ accepts x.

M simulates C ′ implicitly in a top-down fashion, as in the proof of Lemma 46. To verify that C ′(x) is
1, M first existentially guesses the index of the top gate g of C ′, and verifies this guess by simulating C in
time O(n2). It then runs C again to determine whether g is an AND or OR gate, setting a bit b to 1 if the
gate is AND and to 0 otherwise. It then finds the arity of g by guessing a number k such that the k’th input
to g is defined but the k + 1’th input is not - this guess can be verified using 2 simulations of C. If b = 1, it
universally guesses a j ∈ [k] and verifies recursively that the j’th input gate of g (whose index it can identify
by another simulation of C) evaluates to 1. If b = 0, it existentially guesses a j ∈ [k] and verifies recursively
that the j’th input gate of g evaluates to 1.

The evaluation of any gate proceeds in the same way as for the top gate, as long as the gate is not a
Modm gate. For Modm gates, which are only found in the bottom layer, we proceed differently. By our

26

definition of Modm gates, any such gate g is of the form Σni=1aixi ∈ S modulo m, where each 0 6 ai < m,
and S ⊆ {0, 1, . . . ,m− 1}. By our assumption on uniformity of Modm gates, the numbers ai and the set S
can all be determined by O(n) simulations of C, and hence in time O(n3). Once this information has been
determined, M simply evaluates g on x, which can be done in time O(n2).

The number of alternations on any computation of M is at most the depth of C ′, i.e., d, and the time
taken by M is O(n3). It is straightforward to verify inductively that M does indeed accept x iff C ′ does.

�

Examining the proof of Theorem 49, the only fact we used about the bottom layer of gates is that they
can be evaluated in fixed polynomial time in n. Hence the same proof also gives the following result.

Theorem 50. Let d be any positive integer. NP does not have polynomial-size LOGTIME-uniform AC0
d ◦Thr

circuits.

Theorems 49 and 50 above together capture the content of Theorem 5 from the Introduction.
We note that the simulation arguments used for the non-trivial sampling in the proofs of Theorem 49

and Theorem 50 are fairly generic. This leads us to believe that there might be alternate proofs of these
results using a more standard indirect diagonalization approach. However, these results already seem new,
and exploiting the fact that we only need sampling rather than simulation to apply Theorem 21 might lead
to even stronger lower bounds.

6 Future Work

We describe here some directions for future work.
The main direction is to develop new algorithmic ideas for the sampling problems we consider, and use

these to prove new lower bounds. In particular, it would be interesting to explore if the ideas and techniques
of [AIK04] and [Vio12] are useful here. A particular circuit class of interest is the class of quasi-polynomial
size SYM+ circuits, i.e., depth-two circuits with a top symmetric gate and polylogarithmic fan-in AND
gates at the bottom. Efficient non-trivial sampling for the succinct version of this class would imply that
NP does not have LOGTIME-uniform ACC0 circuits of polynomial size.

Another question is whether there is an analogous approach to separating NP and PSPACE from prob-
abilistic uniform classes. For example, are there natural sampling tasks or similar tasks such that efficient
solutions imply NP 6⊆ BPP?

While we provide one potential algorithmic approach to uniform lower bounds, there might be others.
It would be interesting to look into this, especially if these other approaches are more feasible with the
algorithmic techniques we have at present.

7 Acknowledgments

I am grateful to Eric Allender, Arkadev Chattopadhyay, Hanlin Ren, Zhenjian Lu, Igor Oliveira, Ronen
Shaltiel and Srikanth Srinivasan for useful discussions.

References

[AB09] S. Arora and B. Barak. Complexity Theory: A Modern Approach. Cambridge University Press,
Cambridge, 2009.

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM Journal on Computing, 35(6):1467–1493, 2006.

27

[AC19] Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle. In 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, pages 1034–1055.
IEEE Computer Society, 2019.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In 45th Sym-
posium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy,
Proceedings, pages 166–175. IEEE Computer Society, 2004.

[Ajt83] Miklos Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48, 1983.

[All99] Eric Allender. The permanent requires large uniform threshold circuits. Chic. J. Theor. Comput.
Sci., 1999, 1999.

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov complexity.
Foundations of Software Technology and Theoretical Computer Science, 21, 2001.

[All20] Eric Allender. The new complexity landscape around circuit minimization. In Language and
Automata Theory and Applications - 14th International Conference, LATA 2020, volume 12038
of Lecture Notes in Computer Science, pages 3–16. Springer, 2020.

[AW08] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC ’08), 2008.
To appear.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318,
1993.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question. SIAM
Journal on Computing, 4(4):431–442, 1975.

[BHPT20] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from rectangu-
lar pcps or: Hard claims have complex proofs. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, pages 858–869. IEEE, 2020.

[BIP16] Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No occurrence obstructions in geomet-
ric complexity theory. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, pages 386–395. IEEE Computer Society, 2016.

[BIS90] David Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1. Journal
of Computer and System Sciences, 41, 1990.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.

[Che19] Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits. In
David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, pages 1281–1304. IEEE Computer Society, 2019.

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from non-
trivial derandomization. In 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, pages 1–12. IEEE, 2020.

[Coo71] Stephen Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, pages 151–158, 1971.

28

[CR20] Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial derandomization.
In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 1327–1334. ACM, 2020.

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower bounds.
Journal of Computer and System Sciences, 75(1):27–36, 2009.

[For09] Lance Fortnow. The status of the P versus NP problem. Communications of the ACM, 52(9):78–
86, 2009.

[FSS84] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hier-
archy. Mathematical Systems Theory, 17(1):13–27, April 1984.

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the hybrid
argument. Theory Comput., 9:809–843, 2013.

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their
cryptographic applications. Electron. Colloquium Comput. Complex., TR11-136, 2011.

[GK98] Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority circuits.
SIAM J. Comput., 27(1):230–246, 1998.

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor Carboni Oliveira. Probabilistic
kolmogorov complexity with applications to average-case complexity. In 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of
LIPIcs, pages 16:1–16:60. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th
Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 247–258.
IEEE Computer Society, 2018.

[Hir20] Shuichi Hirahara. Unexpected hardness results for kolmogorov complexity under uniform reduc-
tions. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, pages 1038–1051. ACM, 2020.

[Hir21] Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness assump-
tions. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,, pages
292–302. ACM, 2021.

[Hof96] Thomas Hofmeister. A note on the simulation of exponential threshold weights. In Jin-yi Cai and
C. K. Wong, editors, Computing and Combinatorics, Second Annual International Conference,
COCOON ’96, Hong Kong, June 17-19, 1996, Proceedings, volume 1090 of Lecture Notes in
Computer Science, pages 136–141. Springer, 1996.

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its
variants. In Ryan O’Donnell, editor, 32nd Computational Complexity Conference, CCC 2017,
July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

29

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on the Theory
of Computing, pages 220–229, 1997.

[KKO13] Adam R. Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing hard functions
using learning algorithms. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, pages 86–97. IEEE Computer Society, 2013.

[LO22] Zhenjian Lu and Igor Carboni Oliveira. Theory and applications of probabilistic kolmogorov
complexity. Bull. EATCS, 137, 2022.

[LOS21] Zhenjian Lu, Igor Carboni Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms and
the structure of probabilistic time. In STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 303–316. ACM, 2021.

[LOZ22] Zhenjian Lu, Igor Carboni Oliveira, and Marius Zimand. Optimal coding theorems in time-
bounded kolmogorov complexity. In 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
92:1–92:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[MS01] Ketan Mulmuley and Milind Sohoni. Geometric complexity theory I: an approach to the P vs.
NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.

[Mul11] Ketan Mulmuley. On p vs np and geometric complexity theory: dedicated to sri ramakrishna.
Journal of the Association of Computing Machinery, 58(2), 2011.

[Mur71] Saburo Muroga. Threshold logic and its applications. Wiley, 1971.

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70, 1991.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

[Oli19] Igor Carboni Oliveira. Randomness and intractability in kolmogorov complexity. In 46th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2019, volume 132 of
LIPIcs, pages 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In 32nd Computational Complexity Conference, CCC
2017, volume 79 of LIPIcs, pages 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[PS88] Ian Parberry and Georg Schnitger. Parallel computation with threshold functions. J. Comput.
Syst. Sci., 36(3):278–302, 1988.

[Raz85] Alexander Razborov. Lower bounds for the monotone complexity of some boolean functions.
Soviet Mathematics Doklady, 31:354–357, 1985.

[Raz87] Alexander Razborov. Lower bounds on the size of bounded-depth networks over the complete ba-
sis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR, 41(4):333–
338, 1987.

[RR97] Alexander Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

30

[San20] Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In 11th Inno-
vations in Theoretical Computer Science Conference, ITCS 2020, volume 151 of LIPIcs, pages
68:1–68:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[SHL65] Richard Stearns, Juris Hartmanis, and Philip Lewis. Hierarchies of memory limited computa-
tions. In Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and Logical
Design, pages 179–190. IEEE, 1965.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit com-
plexity. In Proceedings of the 19th Annual Symposium on Theory of Computing, pages 77–82,
1987.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865–
877, 1991.

[Val79] Leslie Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[Vio12] Emanuele Viola. The complexity of distributions. SIAM J. Comput., 41(1):191–218, 2012.

[Wag86] Klaus W. Wagner. The complexity of combinatorial problems with succinct input representation.
Acta Informatica, 23(3):325–356, 1986.

[Wil10] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. In Proceed-
ings of the 42nd Annual ACM Symposium on Theory of Computing, pages 231–240, 2010.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th Annual IEEE
Conference on Computational Complexity, pages 115–125, 2011.

[Wil14] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 194–202, 2014.

[Wil16] R. Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529,
2016.

[Wil18] Richard Ryan Williams. Limits on representing boolean functions by linear combinations of
simple functions: Thresholds, relus, and low-degree polynomials. In 33rd Computational Com-
plexity Conference, CCC 2018, volume 102 of LIPIcs, pages 6:1–6:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary ver-
sion). In 26th Annual Symposium on Foundations of Computer Science, pages 1–10. IEEE
Computer Society, 1985.

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

