A proof complexity conjecture and the Incompleteness theorem

Jan Krajíček
Faculty of Mathematics and Physics
Charles University*

Abstract

Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function g_{T} that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of g_{T} intersects all infinite NP sets (i.e. whether it is a proof complexity generator hard for all proof systems).

A propositional version of the construction shows that at least one of the following three statements is true: 1. there is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm), 2. $E \nsubseteq P /$ poly, 3. there exists function h that stretches all inputs by one bit, is computable in sub-exponential time and its range $R n g(h)$ intersects all infinite NP sets.

1 Introduction

We investigate the old conjecture from the theory of proof complexity generators ${ }^{1}$ that says that there exists of a generator hard for all proof systems. Its rudimentary version can be stated without a reference to notions of the theory as follows:

- There exists a p-time function $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ stretching each input by one bit, $|g(u)|=|u|+1$, such that the range $\operatorname{Rng}(g)$ of g intersects all infinite NP-sets.

[^0]We present a construction of a function g_{T} (p-time and stretching) based on provability in a first-order theory T that is able to formalize syntax of first-order logic. Function g_{T} has the property, assuming that T is sound and complete, that it intersects all infinite definable subsets of $\{0,1\}^{*}$. As that is clearly absurd (since $\{0,1\}^{*} \backslash \operatorname{Rng}(G)$ is infinite and definable) this offers a proof of Gödel's First Incompleteness theorem. We leave it as an open problem (Problem 2.4) whether g_{T} for some T satisfies the conjecture above.

We then give a propositional version of the construction and use it to show that at least one of the following three statements has to be true:

1. there is no p-optimal propositional proof system,

2. $E \nsubseteq P /$ poly,

3. there exists function h that stretches all inputs by one bit, is computable in sub-exponential time $2^{O\left((\log n)^{\log \log n}\right)}$ and its range $R n g(h)$ intersects all infinite NP sets.

We assume that the reader is familiar with basic notions of logic and of computational and proof complexity (all can be found in [4]).

2 The construction

We take as our basic theory S_{2}^{1} of Buss [1] (cf. [4, 9.3]), denoting its language simply L. The language has a canonical interpretation in the standard model \mathbf{N}. The theory is finitely axiomatizable and formalizes smoothly syntax of firstorder logic. Language L allows to define a natural syntactic hierarchy Σ_{i}^{b} of bounded formulas that define in \mathbf{N} exactly corresponding levels Σ_{i}^{p}, for $i \geq 1$, of the polynomial time hierarchy.

An L-formula Ψ will be identified with the binary string naturally encoding it and $|\Psi|$ is the length of such a string. An L-theory T is thus a subset of $\{0,1\}^{*}$, a set of L-sentences, and it makes sense to say that it is p-time. It is well-known (and easy) that each r.e. theory has a p-time axiomatization (Craig's trick).

If u, v are two binary strings we denote by $u \subseteq_{e} v$ the fact that u is an initial subword of v. The concatenation of u and v will be denoted simply by $u v$. Both these relation and function are definable in S_{2}^{1} by both Σ_{1}^{b} and Π_{1}^{b} formulas that are (provably in S_{2}^{1}) equivalent. We shall assume that no formula is a proper prefix of another formula.

Let $T \supseteq S_{2}^{1}$ be a first-order theory in language L that is sound (i.e. true in $\mathbf{N})$ and p-time. Define function g_{T} as follows:

1. Given input $u,|u|=n$, find an L formula $\Phi \subseteq_{e} u$ with one free variable x such that $|\Phi| \leq \log n$. (It is unique if it exists.)

- If no such Φ exists, output $g_{T}(u):=\overline{0} \in\{0,1\}^{n+1}$.
- Otherwise go to 2 .

2. Put $c:=|\Phi|+1$. Going through all $w \in\{0,1\}^{c+1}$ in lexicographic order, search for a T-proof of size $\leq \log n$ of the following sentence Φ^{w} :

$$
\begin{equation*}
\exists y \forall x>y \Phi(x) \rightarrow \neg\left(w \subseteq_{e} x\right) . \tag{1}
\end{equation*}
$$

- If a proof is found for all w output $g_{T}(u):=\overline{0} \in\{0,1\}^{n+1}$.
- Otherwise let $w_{0} \in\{0,1\}^{c+1}$ be the first such w such that no proof is found. Go to 3 .

3. Output $g_{T}(u):=w_{0} u_{0} \in\{0,1\}^{n+1}$, where $u=\Phi u_{0}$.

Lemma 2.1 Function g_{T} is p-time, stretches each input by one bit, and the complement of its range is infinite.

Theorem 2.2 Let $A \subseteq\{0,1\}^{*}$ be an infinite L-definable set and assume that for some definition Φ of A theory T proves all true sentences Φ^{w} as in (1), for $w \in\{0,1\}^{c+1}$ where $c=|\Phi|$. Then the range of function g_{T} intersects A.

Proof :
Assume A and Φ satisfy the hypothesis of the theorem. As A is infinite some prefix w has to appear infinitely many times as a prefix of words in A and hence some sentence Φ^{w} is false. By the soundness of T it cannot be provable in the theory.

Assuming that T proves all true sentences Φ^{w} let ℓ be a common upper bound to the size of some T-proofs of these true sentences. Then the algorithm computing $g_{T}(u)$ finds all of them if $n \geq 2^{\ell}$.

Putting this together, for $n \geq 2^{\ell}$ the algorithm finds always the same w_{0} and this w_{0} does indeed show up infinitely many times in A. In particular, if $v \in\{0,1\}^{n+1} \cap A$ is of the form $v=w_{0} u_{0}$ and $n \geq 2^{\ell}$, then $v=g_{T}\left(\Phi u_{0}\right)$.
q.e.d.

Applying the theorem to $A:=\{0,1\}^{*} \backslash \operatorname{Rng}(g)$ (and using Lemma 2.1) yields the following version of Gödel's First Incompleteness theorem.

Corollary 2.3 No sound, p-time $T \supseteq S_{2}^{1}$ is complete.
Note that the argument shows that for each formula Φ defining the complement, some true sentence Φ^{w} as in (1) is unprovable in T. The complement of $\operatorname{Rng}\left(g_{T}\right)$ is in coNP and that leaves room for the following problem.

Problem 2.4 For some T as above, can each infinite NP set be defined by some L-formula Φ such that all true sentences Φ^{w} as in (1) are provable in T?

The affirmative answer would imply by Theorem 2.2 that $\operatorname{Rng}\left(g_{T}\right)$ intersects all infinite NP sets and hence g_{T} solves the proof complexity conjecture mentioned at the beginning of the paper, and thus NP $\neq \mathrm{coNP}$. Note that, for each T, it is easy to define even as simple set as

$$
\left\{1 u \mid u \in\{0,1\}^{*}\right\}
$$

by a formula Φ such that T does not prove that no string in it starts with 0 . But in the problem we do not ask if there is one definition leading to unprovability but whether all definitions of the set lead to it.

3 Down to propositional logic

The reason why the algorithm computing g_{T} searches for T-proofs of formulas Φ^{w} rather than of $\neg \Phi^{w}$ which may seem more natural is that NP sets can be defined by Σ_{1}^{b}-formulas Φ and for those, after substituting a witness for y, Φ^{w} becomes a Π_{1}^{b}-formula. Hence one can apply propositional translation (cf. [2] or $[4,12.3]$) and hope to take the whole argument down to propositional logic, replacing the incompleteness by lengths-of-proofs lower bounds. There are technical complications along this ideal route but we are at least able to combine the general idea with a construction akin to that underlying [3, Thm.2.1] ${ }^{2}$
and to prove the following statement.
Theorem 3.1 At least one of the following three statements is true:

1. there is no p-optimal propositional proof system,
2. $E \nsubseteq P /$ poly,
3. there exists function h that stretches all inputs by one bit, is computable in sub-exponential time $2^{O\left((\log n)^{\log \log n}\right)}$ and its range Rng (h) intersects all infinite NP sets.

Note the first statement is by [5, Thm.2.4] equivalent to the non-existence of a time-optimal propositional proof search algorithm.

Before starting the proof we need to recall a fact about propositional translations of Π_{1}^{b}-formulas. For $\Phi(x) \in \Sigma_{1}^{b}, c:=|\Phi|$ and $w \in\{0,1\}^{c+1}$, and $n \geq 1$ let $\varphi_{n, w}$ be the canonical propositional formula expressing that

$$
(|x|=n+1 \wedge \Phi(x)) \rightarrow \neg w \subseteq_{e} x
$$

We use the qualification canonical because the formula can be defined using the canonical propositional translation $\|\ldots\|^{n+1}$ (cf. [4, 12.3] or [2]) applied to Φ^{w} after instantiating first y by $1^{(n)}$. Formula $\varphi_{n, w}$ has $n+1$ atoms for bits

[^1]of x and $n^{O(1)}$ atoms encoding a potential witness to $\Phi(x)$ together with the p-time computation that it is correct. For any fixed Φ the size of $\varphi_{n, w}$ (with $w \in\{0,1\}^{c+1}$) is polynomial in n and, in fact, the formulas are very uniform (cf. [4, [19.1]). We shall need only the following fact.

Lemma 3.2 There is an algorithm transl that upon receiving as inputs a Σ_{1}^{b} formula $\Phi, w \in\{0,1\}^{c+1}$ where $c:=|\Phi|$ and $1^{(n)}, n \geq 1$, outputs $\varphi_{n, w}$ such that

$$
(|x|=n+1 \wedge \Phi(x)) \rightarrow \neg w \subseteq_{e} x
$$

is universally valid iff $\varphi_{n, w}$ is a tautology. In addition, for any fixed Φ the algorithm runs in time polynomial in n, for $n>|\Phi|$.

Proof of Theorem 3.1:

We shall prove the theorem by contradiction: assuming that statements 1) and 2) fail we construct function h satisfying statement 3). Our strategy is akin in part to that of the proof of [3, Thm.2.1].

For a fixed Φ assume that formulas $\varphi_{n, w}$ are valid for $n \geq n_{0}$. By Lemma 3.2 they are computed by $\operatorname{transl}\left(\Phi, w, 1^{(n)}\right)$ in p-time. Hence we can consider the pair $1^{(n)}, w$ to be a proof (in an ad hoc defined proof system) of $\varphi_{n, w}$ for $n \geq n_{0}$

Assuming that statement 1) fails and P is a p-optimal proof system we get a p-time function f that from $1^{(n)}, w, n \geq n_{0}$, computes a P-proof $f\left(1^{(n)}, w\right)$ of $\varphi_{n, w}$. Let $\left|f\left(1^{(n)}, w\right)\right| \leq n^{\ell}$ where ℓ is a constant (depending on Φ). The function that from n, w, i, with $i \leq n^{\ell}$, computes the i-th bit of $f\left(1^{(n)}, w\right)$ is in the computational class E.

We would like to check the validity of $\varphi_{n, w}$ by checking the P-proof $f\left(1^{(n)}, w\right)$ but we (i.e. the algorithm that will compute h) cannot construct f from Φ. Here the assumption that statement 2) fails too, i.e. that $E \subseteq \mathrm{P} /$ poly, will help us. By this assumption $f\left(1^{(n)}, w\right)$ is the truth-table $\operatorname{tt}(D)$ (i.e. the lexicographically ordered list of values of circuit D on all inputs) of some circuit with $\log n+c+\ell \log n \leq(2+\ell) \log n$ inputs and of size $|D| \leq(\log n)^{O(\ell)}$. In particular, for all ℓ (i.e. for all $\Phi \in \Sigma_{1}^{b}$) we have ${ }^{3}|D| \leq(\log n)^{\log \log n}$ for $n \gg 1$. Hence it is enough to look for P-proofs among $\operatorname{tt}(D)$ for circuits of at most this size.

We can now define function h_{P} in a way analogous to the definition of function g_{T}. Namely:

1. Given input $u,|u|=n$, find a Σ_{1}^{b}-formula $\Phi \subseteq_{e} u$ with one free variable x such that $|\Phi| \leq \log n$. (It is unique if it exists.)

- If no such Φ exists, output $h_{P}(u):=\overline{0} \in\{0,1\}^{n+1}$.
- Otherwise go to 2 .

2. Put $c:=|\Phi|+1$. Going through all $w \in\{0,1\}^{c+1}$ in lexicographic order, do the following.
[^2]Using transl compute formula $\varphi_{n, w}$. If the computation does not halt in time $\leq n^{\log n}$ stop and output $h_{P}(u)=\overline{0} \in\{0,1\}^{n+1}$. Otherwise search for a P-proof of formula $\varphi_{n, w}$ by going systematically through all circuits D with $\leq \log n \cdot \log \log n$ inputs and of size $\leq(\log n)^{\log \log n}$ until some $\operatorname{tt}(D)$ is a P-proof of $\varphi_{n, w}$.

- If a proof is found for all $w \in\{0,1\}^{c+1}$ output $h_{P}(u):=\overline{0} \in$ $\{0,1\}^{n+1}$.
- Otherwise let $w_{0} \in\{0,1\}^{c+1}$ be the first such w such that no P-proof is found. Go to 3 .

3. Output $h_{P}(u):=w_{0} u_{0} \in\{0,1\}^{n+1}$, where $u=\Phi u_{0}$.

It is clear from the construction that function h_{P} stretches each input by one bit (and hence the complement of its range is infinite) and that

$$
\operatorname{Rng}\left(h_{P}\right) \cap\left\{x \in\{0,1\}^{n+1} \mid \Phi(x)\right\} \neq \emptyset
$$

for any $\Phi(x) \in \Sigma_{1}^{b}$ and $n \gg 1$.
The time needed for the computation of $h_{P}(u)$ is $O(n)$ for step 1 and for step 2 it is bounded above by

$$
2^{c+1} \cdot n^{\log n} \cdot 2^{(\log n)^{\log \log n}} \cdot 2^{O\left((\log n)^{\log \log n}\right)} \leq 2^{O\left((\log n)^{\log \log n}\right)}
$$

The first factor bounds the number of w, the second bounds the time needed to compute $\varphi_{n, w}$, the third bounds the number of circuits D and the fourth one bounds the time needed to compute $\operatorname{tt}(D)$ and to check wether it is a P-proof of $\varphi_{n, w}$ (this is p-time in $|\boldsymbol{t t}(D)|$).
q.e.d.

Acknowledgments: Section 3 owns its existence to J.Pich (Oxford) who suggested I include some propositional version of the construction.

References

[1] S. R. Buss, Bounded Arithmetic. Naples, Bibliopolis, (1986).
[2] S. A. Cook, Feasibly constructive proofs and the propositional calculus, in: Proc. $7^{\text {th }}$ Annual ACM Symp. on Theory of Computing (STOC), (1975), pp. 83-97. ACM Press.
[3] J. Krajíček, Diagonalization in proof complexity, Fundamenta Mathematicae, 182, (2004), pp.181-192.
[4] J. Krajíček, Proof complexity, Encyclopedia of Mathematics and Its Applications, Vol. 170, Cambridge University Press, (2019).
[5] J. Krajíček, Information in propositional proofs and proof search, J. Symbolic Logic, 87(2), (2022), pp.852-869.
[6] J. Krajíček, On the existence of strong proof complexity generators, preprint 2022. DOI: https://doi.org/10.48550/arXiv.2208.11642

[^0]: *Sokolovská 83, Prague, 186 75, The Czech Republic, krajicek@karlin.mff.cuni.cz ORCID: 0000-0003-0670-3957
 ${ }^{1}$ We are not going to use anything from this theory but the interested reader may start with the introduction to [6] or with $[4,19.4]$.

[^1]: ${ }^{2}$ That theorem is similar in form to Theorem 3.1 but with 2) replaced by $\mathrm{E} \nsubseteq \operatorname{Size}\left(2^{o(n)}\right)$ and 3) replaced by NP \neq coNP.

[^2]: ${ }^{3}$ Note that the function $\log \log n$ bounding ℓ can be replaced by any $\omega(1)$ time-constructible function, making the time needed to compute function h closer to quasi-polynomial.

