
A proof complexity conjecture and the

Incompleteness theorem

Jan Kraj́ıček

Faculty of Mathematics and Physics
Charles University∗

Abstract

Given a sound first-order p-time theory T capable of formalizing syn-
tax of first-order logic we define a p-time function gT that stretches all
inputs by one bit and we use its properties to show that T must be in-
complete. We leave it as an open problem whether for some T the range
of gT intersects all infinite NP sets (i.e. whether it is a proof complexity
generator hard for all proof systems).

A propositional version of the construction shows that at least one of
the following three statements is true:

1. there is no p-optimal propositional proof system (this is equivalent
to the non-existence of a time-optimal propositional proof search
algorithm),

2. E ̸⊆ P/poly,

3. there exists function h that stretches all inputs by one bit, is com-
putable in sub-exponential time and its range Rng(h) intersects all
infinite NP sets.

1 Introduction

We investigate the old conjecture from the theory of proof complexity genera-
tors1 that says that there exists of a generator hard for all proof systems. Its
rudimentary version can be stated without a reference to notions of the theory
as follows:

• There exists a p-time function g : {0, 1}∗ → {0, 1}∗ stretching each input
by one bit, |g(u)| = |u|+ 1, such that the range Rng(g) of g intersects all
infinite NP-sets.

∗Sokolovská 83, Prague, 186 75, The Czech Republic, krajicek@karlin.mff.cuni.cz
ORCID: 0000-0003-0670-3957

1We are not going to use anything from this theory but the interested reader may start
with the introduction to [6] or with [4, 19.4].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 30 (2023)

We present a construction of a function gT (p-time and stretching) based on
provability in a first-order theory T that is able to formalize syntax of first-order
logic. Function gT has the property, assuming that T is sound and complete,
that it intersects all infinite definable subsets of {0, 1}∗. As that is clearly absurd
(since {0, 1}∗ \ Rng(G) is infinite and definable) this offers a proof of Gödel’s
First Incompleteness theorem. We leave it as an open problem (Problem 2.4)
whether gT for some T satisfies the conjecture above.

We then give a propositional version of the construction and use it to show
that at least one of the following three statements has to be true:

1. there is no p-optimal propositional proof system,

2. E ̸⊆ P/poly,

3. there exists function h that stretches all inputs by one bit, is computable

in sub-exponential time 2O((logn)log log n) and its range Rng(h) intersects
all infinite NP sets.

We assume that the reader is familiar with basic notions of logic and of compu-
tational and proof complexity (all can be found in [4]).

2 The construction

We take as our basic theory S1
2 of Buss [1] (cf. [4, 9.3]), denoting its language

simply L. The language has a canonical interpretation in the standard model
N. The theory is finitely axiomatizable and formalizes smoothly syntax of first-
order logic. Language L allows to define a natural syntactic hierarchy Σb

i of
bounded formulas that define in N exactly corresponding levels Σp

i , for i ≥ 1,
of the polynomial time hierarchy.

An L-formula Ψ will be identified with the binary string naturally encoding
it and |Ψ| is the length of such a string. An L-theory T is thus a subset of {0, 1}∗,
a set of L-sentences, and it makes sense to say that it is p-time. It is well-known
(and easy) that each r.e. theory has a p-time axiomatization (Craig’s trick).

If u, v are two binary strings we denote by u ⊆e v the fact that u is an initial
subword of v. The concatenation of u and v will be denoted simply by uv. Both
these relation and function are definable in S1

2 by both Σb
1 and Πb

1 formulas that
are (provably in S1

2) equivalent. We shall assume that no formula is a proper
prefix of another formula.

Let T ⊇ S1
2 be a first-order theory in language L that is sound (i.e. true in

N) and p-time. Define function gT as follows:

1. Given input u, |u| = n, find an L formula Φ ⊆e u with one free variable x
such that |Φ| ≤ log n. (It is unique if it exists.)

• If no such Φ exists, output gT (u) := 0 ∈ {0, 1}n+1.

2

• Otherwise go to 2.

2. Put c := |Φ|+ 1. Going through all w ∈ {0, 1}c+1 in lexicographic order,
search for a T -proof of size ≤ log n of the following sentence Φw:

∃y∀x > y Φ(x) → ¬(w ⊆e x) . (1)

• If a proof is found for all w output gT (u) := 0 ∈ {0, 1}n+1.

• Otherwise let w0 ∈ {0, 1}c+1 be the first such w such that no proof
is found. Go to 3.

3. Output gT (u) := w0u0 ∈ {0, 1}n+1, where u = Φu0.

Lemma 2.1 Function gT is p-time, stretches each input by one bit, and the
complement of its range is infinite.

Theorem 2.2 Let A ⊆ {0, 1}∗ be an infinite L-definable set and assume that
for some definition Φ of A theory T proves all true sentences Φw as in (1), for
w ∈ {0, 1}c+1 where c = |Φ|. Then the range of function gT intersects A.

Proof :
Assume A and Φ satisfy the hypothesis of the theorem. As A is infinite some

prefix w has to appear infinitely many times as a prefix of words in A and hence
some sentence Φw is false. By the soundness of T it cannot be provable in the
theory.

Assuming that T proves all true sentences Φw let ℓ be a common upper
bound to the size of some T -proofs of these true sentences. Then the algorithm
computing gT (u) finds all of them if n ≥ 2ℓ.

Putting this together, for n ≥ 2ℓ the algorithm finds always the same w0

and this w0 does indeed show up infinitely many times in A. In particular, if
v ∈ {0, 1}n+1 ∩A is of the form v = w0u0 and n ≥ 2ℓ, then v = gT (Φu0).

q.e.d.

Applying the theorem to A := {0, 1}∗\Rng(g) (and using Lemma 2.1) yields
the following version of Gödel’s First Incompleteness theorem.

Corollary 2.3 No sound, p-time T ⊇ S1
2 is complete.

Note that the argument shows that for each formula Φ defining the comple-
ment, some true sentence Φw as in (1) is unprovable in T . The complement of
Rng(gT) is in coNP and that leaves room for the following problem.

Problem 2.4 For some T as above, can each infinite NP set be defined by some
L-formula Φ such that all true sentences Φw as in (1) are provable in T?

3

The affirmative answer would imply by Theorem 2.2 that Rng(gT) intersects all
infinite NP sets and hence gT solves the proof complexity conjecture mentioned
at the beginning of the paper, and thus NP ̸= coNP. Note that, for each T , it
is easy to define even as simple set as

{1u | u ∈ {0, 1}∗}

by a formula Φ such that T does not prove that no string in it starts with 0. But
in the problem we do not ask if there is one definition leading to unprovability
but whether all definitions of the set lead to it.

3 Down to propositional logic

The reason why the algorithm computing gT searches for T -proofs of formulas
Φw rather than of ¬Φw which may seem more natural is that NP sets can
be defined by Σb

1-formulas Φ and for those, after substituting a witness for
y, Φw becomes a Πb

1-formula. Hence one can apply propositional translation
(cf. [2] or [4, 12.3]) and hope to take the whole argument down to propositional
logic, replacing the incompleteness by lengths-of-proofs lower bounds. There are
technical complications along this ideal route but we are at least able to combine
the general idea with a construction akin to that underlying [3, Thm.2.1]2

and to prove the following statement.

Theorem 3.1 At least one of the following three statements is true:

1. there is no p-optimal propositional proof system,

2. E ̸⊆ P/poly,

3. there exists function h that stretches all inputs by one bit, is computable in

sub-exponential time 2O((logn)log log n) and its range Rng(h) intersects all
infinite NP sets.

Note the first statement is by [5, Thm.2.4] equivalent to the non-existence of a
time-optimal propositional proof search algorithm.

Before starting the proof we need to recall a fact about propositional trans-
lations of Πb

1-formulas. For Φ(x) ∈ Σb
1, c := |Φ| and w ∈ {0, 1}c+1, and n ≥ 1

let φn,w be the canonical propositional formula expressing that

(|x| = n+ 1 ∧ Φ(x)) → ¬w ⊆e x .

We use the qualification canonical because the formula can be defined using
the canonical propositional translation || . . . ||n+1 (cf. [4, 12.3] or [2]) applied to
Φw after instantiating first y by 1(n). Formula φn,w has n + 1 atoms for bits

2That theorem is similar in form to Theorem 3.1 but with 2) replaced by E ̸⊆ Size(2o(n))
and 3) replaced by NP ̸= coNP.

4

of x and nO(1) atoms encoding a potential witness to Φ(x) together with the
p-time computation that it is correct. For any fixed Φ the size of φn,w (with
w ∈ {0, 1}c+1) is polynomial in n and, in fact, the formulas are very uniform
(cf. [4, [19.1]). We shall need only the following fact.

Lemma 3.2 There is an algorithm transl that upon receiving as inputs a Σb
1-

formula Φ, w ∈ {0, 1}c+1 where c := |Φ| and 1(n), n ≥ 1, outputs φn,w such
that

(|x| = n+ 1 ∧ Φ(x)) → ¬w ⊆e x .

is universally valid iff φn,w is a tautology. In addition, for any fixed Φ the
algorithm runs in time polynomial in n, for n > |Φ|.

Proof of Theorem 3.1:
We shall prove the theorem by contradiction: assuming that statements 1)

and 2) fail we construct function h satisfying statement 3). Our strategy is akin
in part to that of the proof of [3, Thm.2.1].

For a fixed Φ assume that formulas φn,w are valid for n ≥ n0. By Lemma
3.2 they are computed by transl(Φ, w, 1(n)) in p-time. Hence we can consider
the pair 1(n), w to be a proof (in an ad hoc defined proof system) of φn,w for
n ≥ n0

Assuming that statement 1) fails and P is a p-optimal proof system we get
a p-time function f that from 1(n), w, n ≥ n0, computes a P -proof f(1(n), w)
of φn,w. Let |f(1(n), w)| ≤ nℓ where ℓ is a constant (depending on Φ). The
function that from n,w, i, with i ≤ nℓ, computes the i-th bit of f(1(n), w) is in
the computational class E.

We would like to check the validity of φn,w by checking the P -proof f(1(n), w)
but we (i.e. the algorithm that will compute h) cannot construct f from Φ.
Here the assumption that statement 2) fails too, i.e. that E ⊆ P/poly, will
help us. By this assumption f(1(n), w) is the truth-table tt(D) (i.e. the lexico-
graphically ordered list of values of circuit D on all inputs) of some circuit with
log n+c+ℓ log n ≤ (2+ℓ) log n inputs and of size |D| ≤ (log n)O(ℓ). In particular,
for all ℓ (i.e. for all Φ ∈ Σb

1) we have3 |D| ≤ (log n)log logn for n >> 1. Hence it
is enough to look for P -proofs among tt(D) for circuits of at most this size.

We can now define function hP in a way analogous to the definition of
function gT . Namely:

1. Given input u, |u| = n, find a Σb
1-formula Φ ⊆e u with one free variable x

such that |Φ| ≤ log n. (It is unique if it exists.)

• If no such Φ exists, output hP (u) := 0 ∈ {0, 1}n+1.

• Otherwise go to 2.

2. Put c := |Φ|+ 1. Going through all w ∈ {0, 1}c+1 in lexicographic order,
do the following.

3Note that the function log logn bounding ℓ can be replaced by any ω(1) time-constructible
function, making the time needed to compute function h closer to quasi-polynomial.

5

Using transl compute formula φn,w. If the computation does not halt in
time ≤ nlogn stop and output hP (u) = 0 ∈ {0, 1}n+1. Otherwise search
for a P -proof of formula φn,w by going systematically through all circuits
D with ≤ log n · log log n inputs and of size ≤ (log n)log logn until some
tt(D) is a P-proof of φn,w.

• If a proof is found for all w ∈ {0, 1}c+1 output hP (u) := 0 ∈
{0, 1}n+1.

• Otherwise let w0 ∈ {0, 1}c+1 be the first such w such that no P -proof
is found. Go to 3.

3. Output hP (u) := w0u0 ∈ {0, 1}n+1, where u = Φu0.

It is clear from the construction that function hP stretches each input by one
bit (and hence the complement of its range is infinite) and that

Rng(hP) ∩ {x ∈ {0, 1}n+1 | Φ(x)} ≠ ∅

for any Φ(x) ∈ Σb
1 and n >> 1.

The time needed for the computation of hP (u) is O(n) for step 1 and for
step 2 it is bounded above by

2c+1 · nlogn · 2(logn)log log n

· 2O((logn)log log n) ≤ 2O((logn)log log n) .

The first factor bounds the number of w, the second bounds the time needed to
compute φn,w, the third bounds the number of circuits D and the fourth one
bounds the time needed to compute tt(D) and to check wether it is a P -proof
of φn,w (this is p-time in |tt(D)|).

q.e.d.

Acknowledgments: Section 3 owns its existence to J.Pich (Oxford) who
suggested I include some propositional version of the construction.

References

[1] S. R. Buss, Bounded Arithmetic. Naples, Bibliopolis, (1986).

[2] S. A. Cook, Feasibly constructive proofs and the propositional calculus, in:

Proc. 7th Annual ACM Symp. on Theory of Computing (STOC), (1975),
pp. 83-97. ACM Press.

[3] J. Kraj́ıček, Diagonalization in proof complexity, Fundamenta Mathemati-
cae, 182, (2004), pp.181-192.

[4] J. Kraj́ıček, Proof complexity, Encyclopedia of Mathematics and Its Appli-
cations, Vol. 170, Cambridge University Press, (2019).

6

[5] J. Kraj́ıček, Information in propositional proofs and proof search, J. Sym-
bolic Logic, 87(2), (2022), pp.852-869.

[6] J. Kraj́ıček, On the existence of strong proof complexity generators,
preprint 2022. DOI: https://doi.org/10.48550/arXiv.2208.11642

7

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

