A proof complexity conjecture and the Incompleteness theorem

Jan Krajíček
Faculty of Mathematics and Physics
Charles University*

Abstract

Given a sound first-order p-time theory T capable of formalizing syntax of first-order logic we define a p-time function g_T that stretches all inputs by one bit and we use its properties to show that T must be incomplete. We leave it as an open problem whether for some T the range of g_T intersects all infinite NP sets (i.e. whether it is a proof complexity generator hard for all proof systems).

A propositional version of the construction shows that at least one of the following three statements is true:

1. there is no p-optimal propositional proof system (this is equivalent to the non-existence of a time-optimal propositional proof search algorithm),
2. $E \not\subseteq P/poly$,
3. there exists function h that stretches all inputs by one bit, is computable in sub-exponential time and its range $Rng(h)$ intersects all infinite NP sets.

1 Introduction

We investigate the old conjecture from the theory of proof complexity generators\(^1\) that says that there exists of a generator hard for all proof systems. Its rudimentary version can be stated without a reference to notions of the theory as follows:

- There exists a p-time function $g : \{0, 1\}^* \rightarrow \{0, 1\}^*$ stretching each input by one bit, $|g(u)| = |u| + 1$, such that the range $Rng(g)$ of g intersects all infinite NP-sets.

\(^{1}\)We are not going to use anything from this theory but the interested reader may start with the introduction to [6] or with [4, 19.4].
We present a construction of a function \(g_T \) (p-time and stretching) based on provability in a first-order theory \(T \) that is able to formalize syntax of first-order logic. Function \(g_T \) has the property, assuming that \(T \) is sound and complete, that it intersects all infinite definable subsets of \(\{0,1\}^* \). As that is clearly absurd (since \(\{0,1\}^* \setminus Rng(G) \) is infinite and definable) this offers a proof of Gödel’s First Incompleteness theorem. We leave it as an open problem (Problem 2.4) whether \(g_T \) for some \(T \) satisfies the conjecture above.

We then give a propositional version of the construction and use it to show that at least one of the following three statements has to be true:

1. there is no p-optimal propositional proof system,
2. \(E \not\subseteq P/poly \),
3. there exists function \(h \) that stretches all inputs by one bit, is computable in sub-exponential time \(2^{O((\log n)\log \log n)} \) and its range \(Rng(h) \) intersects all infinite NP sets.

We assume that the reader is familiar with basic notions of logic and of computational and proof complexity (all can be found in [4]).

2 The construction

We take as our basic theory \(S^2_1 \) of Buss [1] (cf. [4, 9.3]), denoting its language simply \(L \). The language has a canonical interpretation in the standard model \(\mathbb{N} \). The theory is finitely axiomatizable and formalizes smoothly syntax of first-order logic. Language \(L \) allows to define a natural syntactic hierarchy \(\Sigma^b_i \) of bounded formulas that define in \(\mathbb{N} \) exactly corresponding levels \(\Sigma^p_i \), for \(i \geq 1 \), of the polynomial time hierarchy.

An \(L \)-formula \(\Psi \) will be identified with the binary string naturally encoding it and \(|\Psi| \) is the length of such a string. An \(L \)-theory \(T \) is thus a subset of \(\{0,1\}^* \), a set of \(L \)-sentences, and it makes sense to say that it is p-time. It is well-known (and easy) that each r.e. theory has a p-time axiomatization (Craig’s trick).

If \(u, v \) are two binary strings we denote by \(u \subseteq_v v \) the fact that \(u \) is an initial subword of \(v \). The concatenation of \(u \) and \(v \) will be denoted simply by \(uv \). Both these relation and function are definable in \(S^2_1 \) by both \(\Sigma^b_i \) and \(\Pi^b_i \) formulas that are (provably in \(S^2_1 \)) equivalent. We shall assume that no formula is a proper prefix of another formula.

Let \(T \supseteq S^2_1 \) be a first-order theory in language \(L \) that is sound (i.e. true in \(\mathbb{N} \)) and p-time. Define function \(g_T \) as follows:

1. Given input \(u \), \(|u| = n \), find an \(L \) formula \(\Phi \subseteq u \) with one free variable \(x \) such that \(|\Phi| \leq \log n \). (It is unique if it exists.)

 - If no such \(\Phi \) exists, output \(g_T(u) := 0 \in \{0,1\}^{n+1} \).
• Otherwise go to 2.

2. Put $c := |\Phi| + 1$. Going through all $w \in \{0,1\}^{c+1}$ in lexicographic order, search for a T-proof of size $\leq \log n$ of the following sentence Φ^w:

$$\exists y \forall x > y \Phi(x) \rightarrow \neg (w \subseteq x) .$$

(1)

• If a proof is found for all w output $g_T(u) := 0 \in \{0,1\}^{n+1}$.

• Otherwise let $w_0 \in \{0,1\}^{c+1}$ be the first such w such that no proof is found. Go to 3.

3. Output $g_T(u) := w_0u_0 \in \{0,1\}^{n+1}$, where $u = \Phi u_0$.

Lemma 2.1 Function g_T is p-time, stretches each input by one bit, and the complement of its range is infinite.

Theorem 2.2 Let $A \subseteq \{0,1\}^*$ be an infinite L-definable set and assume that for some definition Φ of A theory T proves all true sentences Φ^w as in (1), for $w \in \{0,1\}^{c+1}$ where $c = |\Phi|$. Then the range of function g_T intersects A.

Proof : Assume A and Φ satisfy the hypothesis of the theorem. As A is infinite some prefix w has to appear infinitely many times as a prefix of words in A and hence some sentence Φ^w is false. By the soundness of T it cannot be provable in the theory.

Assuming that T proves all true sentences Φ^w let ℓ be a common upper bound to the size of some T-proofs of these true sentences. Then the algorithm computing $g_T(u)$ finds all of them if $n \geq 2^\ell$.

Putting this together, for $n \geq 2^\ell$ the algorithm finds always the same w_0 and this w_0 does indeed show up infinitely many times in A. In particular, if $v \in \{0,1\}^{n+1} \cap A$ is of the form $v = w_0u_0$ and $n \geq 2^\ell$, then $v = g_T(\Phi u_0)$.

q.e.d.

Applying the theorem to $A := \{0,1\}^* \setminus Rng(g)$ (and using Lemma 2.1) yields the following version of Gödel's First Incompleteness theorem.

Corollary 2.3 No sound, p-time $T \supseteq S^1_2$ is complete.

Note that the argument shows that for each formula Φ defining the complement, some true sentence Φ^w as in (1) is unprovable in T. The complement of $Rng(g_T)$ is in coNP and that leaves room for the following problem.

Problem 2.4 For some T as above, can each infinite NP set be defined by some L-formula Φ such that all true sentences Φ^w as in (1) are provable in T?
The affirmative answer would imply by Theorem 2.2 that $Rng(g_T)$ intersects all infinite NP sets and hence g_T solves the proof complexity conjecture mentioned at the beginning of the paper, and thus NP \neq coNP. Note that, for each T, it is easy to define even as simple set as

$$\{1u \mid u \in \{0,1\}^*\}$$

by a formula Φ such that T does not prove that no string in it starts with 0. But in the problem we do not ask if there is one definition leading to unprovability but whether all definitions of the set lead to it.

3 Down to propositional logic

The reason why the algorithm computing g_T searches for T-proofs of formulas Φ^w rather than of $\neg\Phi^w$ which may seem more natural is that NP sets can be defined by Σ^b_1-formulas Φ and for those, after substituting a witness for y, Φ^w becomes a Π^b_1-formula. Hence one can apply propositional translation (cf. [2] or [4, 12.3]) and hope to take the whole argument down to propositional logic, replacing the incompleteness by lengths-of-proofs lower bounds. There are technical complications along this ideal route but we are at least able to combine the general idea with a construction akin to that underlying [3, Thm.2.1]2 and to prove the following statement.

Theorem 3.1 At least one of the following three statements is true:

1. there is no p-optimal propositional proof system,

2. $E \not\subseteq P/poly$,

3. there exists function h that stretches all inputs by one bit, is computable in sub-exponential time $2^{O((\log n)\log \log n)}$ and its range $Rng(h)$ intersects all infinite NP sets.

Note the first statement is by [5, Thm.2.4] equivalent to the non-existence of a time-optimal propositional proof search algorithm.

Before starting the proof we need to recall a fact about propositional translations of Π^b_1-formulas. For $\Phi(x) \in \Sigma^b_1$, $c := |\Phi|$ and $w \in \{0,1\}^{c+1}$, and $n \geq 1$ let $\varphi_{n,w}$ be the canonical propositional formula expressing that

$$([x] = n + 1 \land \Phi(x)) \rightarrow \neg w \subseteq x.$$

We use the qualification *canonical* because the formula can be defined using the canonical propositional translation $\lfloor \ldots \rfloor^{n+1}$ (cf. [4, 12.3] or [2]) applied to Φ^w after instantiating first y by $1^{(n)}$. Formula $\varphi_{n,w}$ has $n + 1$ atoms for bits

2That theorem is similar in form to Theorem 3.1 but with 2) replaced by $E \not\subseteq \text{Size}(2^{o(n)})$ and 3) replaced by NP \neq coNP.
of \(x \) and \(n^{O(1)} \) atoms encoding a potential witness to \(\Phi(x) \) together with the p-time computation that it is correct. For any fixed \(\Phi \) the size of \(\varphi_{n,w} \) (with \(w \in \{0,1\}^{c+1} \)) is polynomial in \(n \) and, in fact, the formulas are very uniform (cf. [4, [19.1]]). We shall need only the following fact.

Lemma 3.2 There is an algorithm transl that upon receiving as inputs a \(\Sigma_1^p \)-formula \(\Phi \), \(w \in \{0,1\}^{c+1} \) where \(c := |\Phi| \) and \(1^{(n)} \), \(n \geq 1 \), outputs \(\varphi_{n,w} \) such that

\[
(|x| = n + 1 \wedge \Phi(x)) \rightarrow \neg w \subseteq_c x.
\]

is universally valid iff \(\varphi_{n,w} \) is a tautology. In addition, for any fixed \(\Phi \) the algorithm runs in time polynomial in \(n \), for \(n > |\Phi| \).

Proof of Theorem 3.1:

We shall prove the theorem by contradiction: assuming that statements 1) and 2) fail we construct function \(h \) satisfying statement 3). Our strategy is akin in part to that of the proof of [3, Thm.2.1].

For a fixed \(\Phi \) assume that formulas \(\varphi_{n,w} \) are valid for \(n \geq n_0 \). By Lemma 3.2 they are computed by \(\text{transl}(\Phi, w, 1^{(n)}) \) in p-time. Hence we can consider the pair \(1^{(n)}, w \) to be a proof (in an ad hoc defined proof system) of \(\varphi_{n,w} \) for \(n \geq n_0 \).

Assuming that statement 1) fails and \(P \) is a p-optimal proof system we get a p-time function \(f \) that from \(1^{(n)}, w, n \geq n_0 \), computes a \(P \)-proof \(f(1^{(n)}, w) \) of \(\varphi_{n,w} \). Let \(|f(1^{(n)}, w)| \leq n^\ell \) where \(\ell \) is a constant (depending on \(\Phi \)). The function that from \(n, w, i, \) with \(i \leq n^\ell \), computes the \(i \)-th bit of \(f(1^{(n)}, w) \) is in the computational class \(E \).

We would like to check the validity of \(\varphi_{n,w} \) by checking the \(P \)-proof \(f(1^{(n)}, w) \) but we (i.e. the algorithm that will compute \(h \)) cannot construct \(f \) from \(\Phi \). Here the assumption that statement 2) fails too, i.e. that \(E \subseteq P/poly \), will help us. By this assumption \(f(1^{(n)}, w) \) is the truth-table \(\text{tt}(D) \) (i.e. the lexicographically ordered list of values of circuit \(D \) on all inputs) of some circuit with \(\log n + c + \ell \log n \leq (2 + \ell) \log n \) inputs and of size \(|D| \leq (\log n)^{O(\ell)} \). In particular, for all \(\ell \) (i.e. for all \(\Phi \in \Sigma_1^p \)) we have\(^3 |D| \leq (\log n)^{\log \log n} \) for \(n >> 1 \). Hence it is enough to look for \(P \)-proofs among \(\text{tt}(D) \) for circuits of at most this size.

We can now define function \(h_P \) in a way analogous to the definition of function \(g_T \). Namely:

1. Given input \(u \), \(|u| = n \), find a \(\Sigma_1^p \)-formula \(\Phi \subseteq_c u \) with one free variable \(x \) such that \(|\Phi| \leq \log n \). (It is unique if it exists.)
 - If no such \(\Phi \) exists, output \(h_P(u) := \emptyset \in \{0,1\}^{n+1} \).
 - Otherwise go to 2.

2. Put \(c := |\Phi| + 1 \). Going through all \(w \in \{0,1\}^{c+1} \) in lexicographic order, do the following.

\(^3\)Note that the function \(\log \log n \) bounding \(\ell \) can be replaced by any \(\omega(1) \) time-constructible function, making the time needed to compute function \(h \) closer to quasi-polynomial.
Using trans compute formula $\varphi_{n,w}$. If the computation does not halt in time $\leq n^{\log n}$ stop and output $h_P(u) = 0 \in \{0,1\}^{n+1}$. Otherwise search for a P-proof of formula $\varphi_{n,w}$ by going systematically through all circuits D with $\leq \log n \cdot \log \log n$ inputs and of size $\leq (\log n)^{\log \log n}$ until some $tt(D)$ is a P-proof of $\varphi_{n,w}$.

- If a proof is found for all $w \in \{0,1\}^{c+1}$ output $h_P(u) := 0 \in \{0,1\}^{n+1}$.
- Otherwise let $w_0 \in \{0,1\}^{c+1}$ be the first such w such that no P-proof is found. Go to 3.

3. Output $h_P(u) := w_0u_0 \in \{0,1\}^{n+1}$, where $u = \Phi u_0$.

It is clear from the construction that function h_P stretches each input by one bit (and hence the complement of its range is infinite) and that

$$Rng(h_P) \cap \{x \in \{0,1\}^{n+1} \mid \Phi(x) \neq \emptyset\}$$

for any $\Phi(x) \in \Sigma^0_1$ and $n >> 1$.

The time needed for the computation of $h_P(u)$ is $O(n)$ for step 1 and for step 2 it is bounded above by

$$2^{c+1} \cdot n^{\log n} \cdot 2^{(\log n)^{\log \log n}} \cdot 2^{O((\log n)^{\log \log n})} \leq 2^{O((\log n)^{\log \log n})}.$$

The first factor bounds the number of w, the second bounds the time needed to compute $\varphi_{n,w}$, the third bounds the number of circuits D and the fourth one bounds the time needed to compute $tt(D)$ and to check whether it is a P-proof of $\varphi_{n,w}$ (this is p-time in $|tt(D)|$).

$$\text{q.e.d.}$$

Acknowledgments: Section 3 owns its existence to J.Pich (Oxford) who suggested I include some propositional version of the construction.

References

