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Abstract

We develop a new technique for analyzing linear independence of multivariate polynomials. One of
our main technical contributions is a Small Witness for Linear Independence (SWLI) lemma which states
the following. If the polynomials f1, f2, . . . , fk ∈ F[X] over X = {x1, . . . , xn} are F-linearly independent
then there exists a subset S ⊆ X of size at most k − 1 such that f1, f2, . . . , fk are also F(X \ S)-linearly
independent.

We show how to effectively combine this lemma with the use of the alternant matrix to analyze linear
independence of polynomials. We also give applications of our technique to the questions of polynomial
identity testing and arithmetic circuit reconstruction.

1. We give a general technique for lifting efficient polynomial identity testing algorithms from basic
classes of circuits, satisfying some closure properties, to more general classes of circuits. As one of
the corollaries of this result, we obtain the first algorithm for polynomial identity testing for depth-
4, constant-occur circuits that works over all fields. This strengthens a result by [ASSS16] (STOC
’12 ) that works in the case when the characteristic is 0 or sufficiently large. Another corollary is
an identity testing algorithm for a special case of depth-5 circuits. To the best of our knowledge,
this is the first algorithm for this class of circuits.

2. We give new and efficient black-box reconstruction algorithms for the class of set-multilinear depth-
3 circuits of constant top fan-in, where the set-multilinear variable partition is unknown. This
generalizes the results of [BSV21] (STOC ’21 ) and [PSV22] (ECCC ’22 ) which work in the case of
known variable partition, and correspond to tensor decomposition of constant-rank tensors.
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1 Introduction

Arithmetic circuits are directed acyclic graphs (DAG) computing multivariate polynomials succinctly, build-
ing up from variables using (+) addition and (×) multiplication operations. Two central algorithmic ques-
tions in the study of algebraic circuit complexity are those of polynomial identity testing (PIT) and arithmetic
circuit reconstruction.

Polynomial Identity Testing of arithmetic circuits is the following problem: Given an arithmetic circuit C
over a field F with input variables x1, x2, · · · , xn, can we check efficiently whether C computes the identically
zero polynomial in the polynomial ring F[x1, x2, · · · , xn]? The same question can be asked in the black-box
setting. There, C is accessed by via a black-box (i.e. oracle) where we are allowed to substitute field
elements ai ∈ F for xi and the black-box returns the value of C(a1, a2, · · · , an). A simple randomized
polynomial-time algorithm for this problem is known due to the Schwartz-Zippel Lemma [Sch80, Zip79].
However deterministic polynomial-time (or at least subexponential-time) algorithms for PIT are believed to
be quite challenging to obtain and are intimately connected with the question of obtaining lower bounds for
general arithmetic circuits [KI04, HS80].

Reconstruction of arithmetic circuits is the following problem: given black-box (a.k.a. oracle/ membership
query) access to a polynomial computed by a circuit C of size s from some class of circuits C, give an
efficient algorithm (deterministic or randomized) for recovering C or some circuit C ′ that computes the same
polynomial as C. This problem is the algebraic analogue of exact learning in Boolean circuit complexity
[Ang88]. If one additionally requires that the output circuit belongs to the same class C as the input circuit,
then it is called proper learning.

Reconstruction of arithmetic circuits is an extremely natural problem, but also a really hard one. Just like
PIT, much attention has focused on reconstruction algorithms for various interesting subclasses of arithmetic
circuits [BBB+00, KS01, KS06, FS12]. In particular, much attention has focused on depth-3 and depth-4
arithmetic circuits [KS09a, GKL12, Sin16, BSV20, Sin20, BSV21].

Given the depth reduction results of [AV08, Koi10, Tav13, GKKS13], we know that depth-3 and depth-4
arithmetic circuits are very expressive, and good enough PIT or reconstruction algorithms for these models
would have major implications for general circuits. Thus perhaps not surprisingly, we are quite far from
obtaining efficient reconstruction or PIT algorithms even for depth-3 circuits.

1.1 Our Methods: Algebraic Independence vs Linear Independence

One of the frontiers of our understanding of PIT algorithms is the work of Agrawal et al. [ASSS16] which
used the notion of algebraic independence to simultaneously unify and strengthen a wide variety of known
PIT results for different classes of bounded-depth circuits that had previously been analyzed using a diverse
set of techniques [GKPS11, BMS13, AvMV15, SV18]. Over fields of large characteristic, the notion of
algebraic independence of a collection of polynomials is captured by the Jacobian matrix (which is full rank
if the polynomials are algebraically independent). In several settings for which efficient deterministic PIT
algorithms were known, the underlying circuit class has some bounded parameters - bounded read, bounded
transcendence degree, bounded top fan-in etc. In these situations, the [ASSS16] work shows how to construct
a “bounded” Jacobian such that constructing a hitting set for the Jacobian would suffice for constructing
a hitting set for the underlying circuit class. It then analyzed properties of the Jacobian to construct the
hitting set.

One drawback of Jacobian-based algorithms is that they involve taking partial derivatives and they work
under the assumption that the field characteristic is zero or sufficiently large. In fact the Jacobian criterion
fails over low characteristic fields. For instance, the polynomials xp−1y, yp−1x are algebraically independent
over Fp but the Jacobian is not full-rank over Fp.

Our main contribution is to introduce and analyze another technique, very analogous to the Jacobian,
which instead captures linear independence of polynomials. Using this method, we are able to recover some of
the results that the Jacobian method was able to obtain. We are also able to obtain efficient PIT algorithms
for some other general classes of circuits for which, to the best of our knowledge, no such algorithms were
known prior to this work. Unlike the Jacobian method, our technique does not employ partial derivatives
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and works over all fields. Moreover, linear independence is a simpler notion than algebraic independence,
and hence the overall proof feels conceptually simpler.

We also demonstrate the potential of our technique with an application to arithmetic circuit recon-
struction and show how to obtain the first randomized polynomial-time algorithm for reconstruction of
set-multilinear ΣΠΣ(k) circuits of unknown variable partition.

Small Witness for Linear Independence (SWLI) Lemma: The starting point for our method for
analyzing linear independence of a collection of polynomials is what we call the SWLI Lemma. We prove
that if k multivariate polynomials in F[x1, . . . , xn] are linearly independent over the base field F, then there
exists a subset S ⊆ {x1, . . . , xn} of variables such that the polynomials remain linearly independent over the
extension field F(S̄). Here, S̄ is the complement of S. That is, if we keep just those k − 1 variables “alive”
and add the other variables to the extension field, then the polynomials continue to be linearly independent
over the extension field. For a formal statement, see Lemma 4.3.

Our results on PIT are obtained by combining the SWLI lemma with the notion of an alternant of a
collection of polynomials. The alternant is a well-known tool to check the linear independence of a collection
of functions f1, f2, . . . , fk in a function space, see [Ait17, Chapter 6].

Roughly, the alternant matrix for f1, f2, . . . , fk is a k × k matrix where each row is an independent
evaluation of the vector 〈f1, f2, . . . , fk〉. The alternant is full rank if and only if f1, f2, . . . , fk are linearly
independent. Combining the SWLI Lemma along with alternants allows us to obtain hitting sets in a
manner similar to the way the Jacobian was used in [ASSS16]. Our results on reconstruction are obtained
by combining the SWLI lemma with a notion of generalized alternants.

1.2 Our Results

In this paper, we develop methods for analyzing linear independence of multivariate polynomials and give
applications to polynomial identity testing and reconstruction that we describe below.

Let C be an arbitrary circuit class. We define two parametric families of associated circuit classes. For
k, ` ∈ N, we define the class of Σ[k]Π[`]C formulas as the class of polynomials f(x̄) that can be expressed as:

f(x̄) =

k∑
i=1

∏̀
j=1

Cij

where Cij ∈ C.

Note that k and ` are upper bounds since some Cij can be taken to be field constants. That is, Σ[k]Π[`]C
corresponds to taking a sum of (at most) k products of (at most) ` polynomials from C.

Next, we define the class occur-k ΣΠC formulas as the class of all the polynomials of the form:

f(x̄) =
∑
i

∏
j

Cij

where again Cij ∈ C and in addition each variable xt occurs in at most k of the sub-circuits Cij . That is,
for every xt at most k of the Cij-s depend on it.
Note that, unlike the previous definition, there is no restriction on the number of additions or multiplica-
tions taken.

Results for Polynomial Identity Testing Our main result here is a general technique for lifting efficient
polynomial identity testing algorithms from basic classes of circuits, satisfying some closure properties, to
more general classes of circuits. Informally, let C be any class of circuits such that we can efficiently do black-
box PIT for circuits from C. Moreover, assume that we can also efficiently get black-box PIT algorithms
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for constant-wise sums and products of circuits from C, i.e. for circuits from Σ[r]Π[`]C, where r and ` are
constant. Then we can “lift” this algorithm to an efficient black-box PIT algorithm for circuits from the
class occur-k ΣΠC (for any constant k). This class has unbounded fan-in sums of products of circuits from
C, but with the constraint that each variable appears in at most k of the circuits from C.

Theorem 1. Let n, k, s ∈ N and let F be an arbitrary field. Let H be a hitting set for Σ[(2k)!]Π[4k2]C formulas
of size s over F[x1, x2, . . . , xn]. Then there exists a deterministic algorithm that given n, k, s outputs a hitting

set H′ of size |H′| = |H|2 · sO(k) for occur-k ΣΠC formulas of size s over F[x1, x2, . . . , xn],

Once we have this general theorem, we immediately get some nice corollaries of this result by applying
it to circuit classes C where we have efficient PIT algorithms even for circuits from Σ[k]Π[`]C, where k and
` are constant. The first class we apply it to is that of sparse polynomials (a.k.a depth-2 circuits). Notice
that for this class, Σ[k]Π[`]C circuits are also reasonably sparse (when k and ` are constant) and we can use
the black-box PIT algorithm from [KS01].

Theorem 2. Let n, k, s ∈ N and let F be an arbitrary field. Suppose that f ∈ F[x1, x2, . . . , xn] is a polynomial
computed by an occur-k depth-4 ΣΠΣΠ formula of size s. Then there exists a deterministic algorithm that
given n, k, s and a black-box access to f decides if f ≡ 0, in time sO(k2).

A special case of Theorem 2 is when the underlying circuit class is that of depth-4 multilinear circuits of
top fan-in k. This special case was handled in [SV18] using very different techniques, and that proof does

work over all fields. Moreover, the time complexity of that algorithm was sO(k3), and hence slightly worse
than the running time bound we obtain here.

Prior to this work, this model (among others) was studied in a breakthrough work by [ASSS16] where
the authors used the Jacobian very effectively. One drawback of the Jacobian method is that it only works
over fields of characteristic 0 or large characteristic. Thus the above result was only known for char(F) = 0
or char(F) > s2k. It since has been an open question to extend the result to all fields, and indeed there
were other attempts in this direction [KS17, PSS18, CS19]. The Jacobian method captures the notion of
algebraic independence of polynomials. We sidestep the Jacobian by showing that it suffices to use just
linear independence.

An additional point of distinction is that one can also view the approach behind the result of [ASSS16]
as a way to “lift” efficient black-box PIT algorithms of a certain kind to an efficient black-box PIT algorithm
for circuits from the class occur-k ΣΠC. Yet, the assumption of [ASSS16] is arguably stronger: the assumed
PIT algorithms should, among other things, work not just for Σ[k]Π[`]C, where k and ` are constant, but also
for the class Σ[k]Π[`]∂C, i.e. for constant-wise sums and products of partial derivatives of circuits from C. It
is to be noted that not all circuit classes are closed under taking partial derivatives.

In particular, our weakened assumption allows us to prove Theorem 3, which is, to the best of our
knowledge, the first efficient PIT algorithm for this circuit class. We obtain this result by another interesting
instantiation of Theorem 1 when the circuit class C is that of depth-3 circuits of constant top fan-in, i.e.
ΣΠΣ(k) circuits. Since we have polynomial-time black-box PIT algorithms for this model for any constant
value of k [DS07, KS07, KS09b, SS12], we also have it for Σ[k]Π[`]C formulas, where k and ` are constant.
Thus, in this case, we get the following result.

Theorem 3. Let n, k1, k2, s ∈ N and let F be an arbitrary field. Suppose that f ∈ F[x1, x2, . . . , xn] is a
polynomial computed by an occur-k1 depth-5 ΣΠ(Σ[k2]ΠΣ) formula of size s. Then there exists a deterministic

algorithm that given n, k1, k2, s and a black-box access to f decides if f ≡ 0, in time sk
O(k2

1)

2 .

Remark 1.1. The Jacobian-based techniques of [ASSS16] were extended to handle the “bounded-depth and
bounded-occur” setting. Yet, the key difference is that in their model, the occurrence is “charged” for each
variable that occurs in the bottom two layers of the formula (i.e. how many of the bottom depth-2 sub-
formulas depend on each variable). Whereas in our model, the occurrence is “charged” for each variable that
occurs in the bottom three layers of the formula (i.e. how many of the bottom depth-3 sub-formulas depend
on each variable).
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It is not immediately clear whether the Jacobian-based techniques could be used to handle our way of
“charging” as it would require to hit the Jacobian of depth-3 ΣΠΣ(k) circuits. To the best our knowledge,
no efficient PIT algorithm is known for this model, partially due to the fact that a näıve computation of a
partial derivative of a depth-3 ΣΠΣ(k) circuit could, potentially, result in a depth-3 circuit with unbounded
top fan-in.

Results for Arithmetic Circuit Reconstruction We now describe our applications to the problem of
arithmetic circuit reconstruction.

A polynomial f ∈ F[X] is called set-multilinear, if there exists a partition X = ·∪j∈[d]Xj such that every
monomial that appears in f is of the form xi1xi2 · · ·xid where xij ∈ Xj . In other words, each monomial in
such f picks up exactly one variable from each part in the partition. We say that a ΣΠΣ(k) circuit C is
set-multilinear if there exists a partition X = ·∪j∈[d]Xj such that every gate in C computes a set-multilinear
polynomial w.r.t. this partition. In this case, C is a ΣΠΣ{tjXj}(k) circuit.

In this work we study the model of set-multilinear ΣΠΣ(k) circuits of unknown variable partition. Thus
the black-box reconstruction algorithm knows the set of variables X, but does not know the partition of
variables under which the polynomial can be represented as a ΣΠΣ{tjXj}(k) circuit. We obtain the first
polynomial or even subexponential-time proper learning algorithm for this model. Prior to our work, the
model of proper learning for ΣΠΣ{tjXj}(k) circuits with known variable partition was studied in the work
of [BSV21] as well as the recent work of [PSV22] where polynomial-time algorithms were obtained. These
works also gave efficient reconstruction algorithms for multilinear ΣΠΣ(k) circuits, a more general model.
However, this does not immediately imply a proper reconstruction model for simpler models, such as set-
multilinear ΣΠΣ(k). We would like to remark that [PSV22] did give a way to adapt the multilinear ΣΠΣ(k)
learning algorithm to proper learning set-multilinear circuit, but their argument crucially uses knowledge of
the variable partition (for instance, the step of “finding the basis of a particular vector space” in [PSV22,
Section 6.2]) and thus does not work in the unknown partition case.

Theorem 4. Let f ∈ F[x1, x2, . . . , xn] be a degree d polynomial computed by a set-multilinear ΣΠΣ(k)
circuit (of unknown partition) and char(F) > d or char(F) = 0. Then there exists a randomized algo-
rithm that given black-box access to f outputs a set-multilinear ΣΠΣ(k) circuit C that computes f , in time

poly(dk
O(1)

, kk
kO(1)

, n).

We would like to comment that given a set-multilinear ΣΠΣ circuit of an unknown partition (and arbitrary
top fan-in), the task of actually finding the set-multilinear partition is NP-hard! Indeed, one can embed the
problem of graph 3-coloring into a problem of recovering the partition. See Section 7.5 for more details.

Thus in general the task of proper reconstruction of set-multilinear circuits of known and unknown
partition (proper reconstruction is important here, since in this model we do need to compute the partition)
can potentially have vastly different complexities. In this paper we are able to give efficient algorithms in
the setting of unknown partition when the top fan-in is constant.

1.3 Related Work

Linear independence: Just like the alternant, there are other tools to study the linear independence
of functions. For instance, the Wronskian. The Wronskian is defined for a finite family f1, . . . , fn of
(k − 1)-times differentiable univariate functions, and is defined as the determinant of the Wronskian matrix
W = (∂=(i−1)fj)i,j∈[k]. If fi ∈ F[x1, . . . , xn] and F has characteristic 01, then a necessary and sufficient
criterion for the polynomials to be linearly dependent is that the Wronskian is the identically zero poly-
nomial. Again, this criterion fails for finite fields, since the derivatives of higher-degree polynomials might
be zero over low-characteristic. There have been works to adapt this criterion for low-characteristic fields
using “folded-Wronskian”. We refer the reader to [GK16] and the references therein for a detailed discussion
on Wronskian, folded Wronskian, and its applications. Note that, this criterion (as stated above) works

1or sufficiently large
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for univariate polynomials only2, as opposed to alternant which works for multivariate polynomials as well.
Also, the use of partial derivatives here can complicate simple models, for instance, derivatives of ΣΠΣ(k)
circuits. However, the alternant matrix which consists only of evaluations does not suffer from this fate.

Polynomial Identity Testing: In the constant depth regime, some of the major PIT results have been
the construction of poly-size hitting sets for ΣΠΣ(k) circuits [DS07, KS07, KS09b, SS12], hitting sets for
restricted ΣΠΣΠ(k) circuits [SV18, DDS21, PS21] and the recent breakthrough of [LST22] that gave sub-
exponential size hitting sets for constant-depth circuits. A striking fact about all these PIT results is the
diverse set of techniques used to prove them.

The result of [ASSS16] used the notion of algebraic independence to unify a number of PIT results proven
with completely different techniques [GKPS11, BMS13, AvMV15, SV18]. However, since the Jacobian cri-
teria fails over low-characteristic fields, [ASSS16] can only get PIT algorithms for large characteristic fields.
Nevertheless, there have been attempts to adapt the Jacobian criteria for finite fields, and further use it
for PIT. In particular, the work of [PSS18] adapted the Jacobian criteria in the special case when a certain
parameter called the inseparable degree of the underlying polynomials is bounded. Using these criteria,
[PSS18] (and later [CS19]) had applications in PIT for special models. We surpassed the intricate nature
of algebraic independence over low-characteristic altogether by working with linear independence. Thus our
PIT results work for fields of all characteristics.

Reconstruction: The work of [BSV21] studied proper-learning of set-multilinear depth-3 ΣΠΣ(k) circuits
for constant top fan-in. This work was further improved by [PSV22] from na(k) to poly(n) · b(k), for some
function a and b. The main motivation for studying this comes from its connection to tensor decomposition
[BSV21, Section 1.1].

In both of these works, the learning algorithms critically need the variable partition. For instance, the
“width-reduction” procedure in [BSV21] and the “finding the basis of a particular vector space” in [PSV22,
Section 6.2], both crucially use the variable partition.

As another application of our SWLI Lemma, we show an algorithm for learning set-multilinear ΣΠΣ(k)
circuits, with an unknown partition. In order to do this, we first prove a generalized version of Carlini’s
variable reduction [Car06]. Secondly, we introduce a new operator called the Generalized Alternant. Our
operator matrix has a specific decomposition when the input polynomial is a set-multilinear ΣΠΣ(k) circuit.
In fact, the matrix has a nice decomposition under a somewhat more general condition. We hope this operator
will be utilized for future purposes. (See Section 5 for more details). We would like to remark that similar
operator matrices (and their matrix decompositions) have been used in the literature for sparsity testing and
PIT algorithms for sparse polynomials [BOT88, GJR10]. Thus, our work can be seen as generalizing those
explicit decompositions to the case of set-multilinear ΣΠΣ circuits.

2 Proof Overview

The starting point of our results is a new method for analyzing linear independence of a collection of poly-
nomials. In Lemma 4.3 we show that if k multivariate polynomials over any field F are linearly independent
over the base field F, then there exists a subset of k−1 variables such that if we keep just those k−1 variables
“alive” and set the rest to random values, then the polynomials continue to be linearly independent with high
probability. More precisely, we show that if f1, . . . , fk ∈ F[X] are F-linearly independent polynomials, then
there exists a subset S ⊆ X of size |S| ≤ k− 1 such that the polynomials are F(X \S)-linearly independent.

To the best of our knowledge this result is new. Moreover, it seems like a valuable and fundamental tool
for analyzing arithmetic circuits. We demonstrate why such a result is so interesting by using it to obtain
new and efficient polynomial identity testing and reconstruction algorithms for some classes of circuits.

2There is a multivariate generalization of the Wronskian (see [BD10]), but this is a collection of exponentially many “deter-
minants” with a promise that at least one of them is non-zero. Thus, it is not clear how to use it efficiently.
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2.1 Application to PIT

One may wonder how to use such a result for PIT, since though when k is small we can efficiently “guess”
the set of k variables by going over all possibilities, setting the remaining variables to “random values” is
not really a luxury we can afford for a deterministic identity test. To harness the power of this lemma, we
couple it with the alternant - a well-known tool to check the linear independence of functions [Ait17].

Formally, let f = {f1(X), f2(X), . . . , fk(X)} ⊆ F[X] be a set of polynomials over F[X], where X is a set
of size n. Let X1, . . . , Xk be disjoint sets of variables each of size n. Then the polynomials in f are F-linearly
independent iff det(Altf (X1, X2, . . . , Xk)) 6≡ 0, where Altf (X1, X2, . . . , Xk) is defined to be the following
matrix:

Altf (X1, X2, . . . , Xk)
∆
=


f1(X1) f2(X1) · · · · · · fk(X1)
f1(X2) f2(X2) · · · · · · fk(X2)

...
...

...
...

...
f1(Xk) f2(Xk) · · · · · · fk(Xk)

 .

Now, if the number of polynomials, k, is constant and the number of variables, n, is large, then we can
couple these two lemmas very effectively in certain situations. Notice that to test F-linear independence
of f1, . . . , fk, the SWLI Lemma shows that it suffices to test F(X \ S)-linear independence of f1, . . . , fk.
In other words, we are viewing f1, . . . , fk as polynomials in just k − 1 variables, but over the larger field
of rational functions F(X \ S) and testing linear independence there. This in some sense is a “variable
reduction” procedure, though we have made our base field more complex.

Since we now have polynomials over just k− 1 variables, we can now use the above result but just make
multiple copies of the special k − 1 variables! We now have to test non-zeroness of the determinant over
F(X \ S), but what is very nice is that is just the same thing as being nonzero over F. To set up some
notation, let the set of variables X = Y ·∪Z where Y has size k − 1 and we are checking linear independence
over F(Z). Thus each fi is a member of F[Y,Z]. Let Y1, . . . , Yk be disjoint sets of variables each of size k−1.
These will be the multiple copies of the Y variables. Define:

AltYf (Y1, Y2, . . . , Yk, Z)
∆
=


f1(Y1, Z) f2(Y1, Z) · · · · · · fk(Y1, Z)
f1(Y2, Z) f2(Y2, Z) · · · · · · fk(Y2, Z)

...
...

...
...

...
f1(Yk, Z) f2(Yk, Z) · · · · · · fk(Yk, Z)

 .

Then it is not hard to see that the polynomials in f are F(Z)-linearly independent iff det(Altf (Y1, Y2, . . . , Yk, Z)) 6≡
0.

Thus our task of testing if f1, . . . , fk ∈ F[X] are F-linearly independent has reduced to testing if
det(AltYf (Y1, Y2, . . . , Yk, Z)) 6≡ 0. We now show how to do precisely this, if the fi-s satisfy some additional
“nice” properties.

To understand how our general PIT algorithms work, it will be instructive to focus on the special case
of depth-4 multilinear circuits of constant top fan-in. The first polynomial-time black-box hitting set for
this model was provided in [SV18]. In [ASSS16] this was simplified, generalized, and the parameters were
improved, though the results of [ASSS16] only work over fields of characteristic 03. Our work gives an
alternate simple proof, with the added benefit of working over all fields. Like the work of [ASSS16], we are
also able to generalize the hitting set result to work for the model of depth-4 occur-k formulas. Our proof
technique is arguably simpler and is the first work that gives an efficient black-box hitting set for depth-4
occur-k formulas that works over all fields.

Black-box PIT for Depth-4 Multilinear Circuits of Constant Top Fan-in Let k be the top fan-in.
In this model, we are looking at circuits of the form C =

∑k
i=1 fi, where each fi is of the form

∏d
j=1Aij .

Each Aij is a multilinear sparse polynomial and each fi is multilinear, and hence has factors that are variable

3Or sufficiently large characteristic.
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disjoint. First, we observe that if C is nonzero and is represented as a multilinear circuit with the smallest
top fan-in, then we can essentially assume that the fi-s are linearly independent: if there was a linear
dependency then we can use it to express the same polynomial as a depth-4 multilinear circuit of smaller
top fan-in. Thus, in order to certify the nonzeroness of C, it is sufficient to certify the linear independence of
the fi-s. Now, by the SWLI lemma (Lemma 4.3), there exists a subset Y ⊆ X of size k− 1 (and we can find
this subset by iterating over all possible subsets of this size) such that for Z = X \ Y the fi-s are linearly
independent iff det(AltYf (Y1, Y2, . . . , Yk, Z)) 6≡ 0.

Thus, all we need to do is to find a hitting set for det(AltYf (Y1, Y2, . . . , Yk, Z)). We will observe that
det(AltYf (Y1, Y2, . . . , Yk, Z)) can actually be written as the product of sparse polynomials. Hitting set gen-
erators for such polynomials are well-known (e.g. [KS01]). Consequently, this immediately gives a hitting
set generator for det(AltYf (Y1, Y2, . . . , Yk, Z)).

Here is why det(AltYf (Y1, Y2, . . . , Yk, Z)) is a product of sparse polynomials. Let us inspect any column of
AltYf (Y1, Y2, . . . , Yk, Z), say the first. We observe that only the Y variables vary in the different entries. And
while f1 might be a product of “many” sparse polynomials, the Y -variables “touch” only (at most) k− 1 of
them since f1 is multilinear and |Y | ≤ k − 1. The remaining factors of f1 remain unaffected and the same
holds true for all the entries of the first column. These factors can then be pulled out of the matrix and will
be factors of the determinant. We repeat this operation per column and pull out all factors of each column
that do not have the Y -variables. Then det(AltYf (Y1, Y2, . . . , Yk, Z)) is a product of all these sparse factors
and the determinant of the new “reduced” matrix D′. D′ is a k× k matrix and each entry is a product of at
most k − 1 sparse polynomials. Since each sparse polynomial has at most s monomials (where s is the size

of C) it is easy to see det(D′) has at most k!× sk2 monomials, which is still relatively sparse if k is constant.

Black-Box PIT for Constant-Occur Depth-4 Circuits The main observation here is that if C is a
occur-k depth-4 circuit then C is nonzero4 iff some discrete first order partial derivative5 of C is nonzero.
(We use discrete derivatives so that we do not run into issues with the characteristic of the underlying field).
Moreover, we have black-box access to these derivatives. Thus, it suffices to hit the first-order discrete
derivatives of C. Notice, however, that since C is occur-k, each discrete derivative of C is an occur-2k
depth-4 circuit of top fan-in at most 2k. Thus we have reduced our question to doing black-box PIT for
a circuit of the form C ′ =

∑2k
i=1 fi, where each fi is a product of sparse polynomials where each variable

occurs in only 2k of the sparse polynomials. Now the rest of the argument is almost identical to the that for
multilinear depth-4 circuits of top fan-in k. We analyze the analogous matrix AltYf (Y1, Y2, . . . , Yk, Z). The
only change now is that each Y variable might appear in up to 2k factors of any fi. However after pulling
out Y -untouched factors from each column, it is easy to see that the resulting determinant is still sparse,
albeit with slightly worse parameters.

PIT for Occur-k ΣΠC Circuits More generally, let C be any class of circuits for which there are efficient
black-box PIT algorithms even for constant-wise sums of constant-wise products of circuits from C, i.e. the
model of circuits from Σ[k]Π[`]C, when k and ` are constant. We show that we can also obtain efficient
black-box PIT algorithms for occur-k ΣΠC circuits. The skeleton of the proof is just like that for black-box
PIT for constant-occur depth-4 circuits (this is the special case when the class C is that of depth-2 circuits,
i.e. sparse polynomials). The key difference is in the structure of the matrix D′ after the common factors
are pulled out and in the structure of the factors themselves. Upon inspection, it is not hard to see that
det(AltYf (Y1, Y2, . . . , Yk, Z)) can be computed by a circuit of the form Ĉ · C ′ where Ĉ is a Σ[(2k)!]Π[4k2]C
circuit (for which we assumed there are efficient black-box PIT algorithms when k is constant) and C ′ is a
circuit from ΠC (and since we have efficient black-box PIT algorithms for circuits in C, we also have it for
ΠC using hitting set generators.) The formal argument is given in Lemma 6.5.

4In fact, non-constant.
5C′

m
∆
= C − C|xm=0
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2.2 Application to Reconstruction

We show how to use the SWLI lemma as well as a variant of alternants to obtain efficient proper recon-
struction algorithms for set-multilinear ΣΠΣ(k) circuits of unknown partition. Let C be a set-multilinear
ΣΠΣ(k) circuit to which we have black-box access. There are two cases to consider - when the underlying
linear forms have “low” linear rank (or dimension), and when they have “high” rank.

We handle the low-rank case by setting up a suitable system of polynomial equations whose solution
gives the circuit representation we are looking for. These equations need to be carefully set up to ensure
that their solution will correspond to a set-multilinear circuit representation. Moreover, we need to be able
to do this even without knowing the variable partition!

The high-rank case needs several additional ideas. At the heart of our algorithm is a procedure for
learning even just a few of the linear forms appearing in C. Once we have even one or two, we can then
leverage this information to learn many more of the linear forms by looking at a restriction where the known
linear forms are set to 0, and then inductively learning the restricted circuit (which has a smaller top fan-in).
A key observation is that since a set-multilinear circuit is a special case of a multilinear circuit, consequently,
using rank bounds for multilinear circuits one can then argue that (any representation of) the restricted
circuit that is learnt will have many linear forms in common with the original underlying circuit that we
were hoping to learn. There are several other additional details. Even once we learn many or most of the
linear forms, learning the last few can pose some challenges. We set up a suitable system of polynomial
equations in a few variables whose solution eventually gives us all the linear forms. For the purpose of this
proof overview, we will focus on what was the most challenging and interesting step – getting our hands on
at least one of the linear forms appearing in C.

Learning One or More Linear Forms of C using Generalized Alternants We introduce a novel,
alternant-based technique that would work for any polynomial F ∈ F[W ] of the following form. Suppose
there exists a partition W = X ·∪Y ·∪Z for which F can be written as

F (X,Y, Z) =

k∑
t=1

Rt(X) ·Qt(Y ) ·Ht(Z) (1)

and, in addition, the polynomials in R
∆
= {R1(X), . . . , Rk(X)} and Q

∆
= {Q1(Y ), . . . , Rk(Y )} are F-

linearly independent. (With a little bit of effort we show that set-multilinear ΣΠΣ(k) circuits in some sense
have this property.) We then show (see Theorem 5.3) how to output a list of polynomials that contains
(among other things) all the irreducible factors of H1(Z) · . . . ·Hk(Z).

As mentioned before, if our input polynomial F is computable by a set-multilinear ΣΠΣ(k) circuit C,
there are two cases to consider. If the set of all linear forms appearing in C (after stripping off the common
GCD of all product gates) has small rank, then we are in the “low-rank” case which we handle using systems
of polynomial equations (see above). Otherwise, we are in the “high-rank” case. We then show that if C
has “high rank” then there exists a partition of F ’s variables such that F can be expressed as in Equation
1 above when the Hi-s all appear in the original representation of C. Therefore, by learning the Hi-s, we
actually learn “many” linear forms of C! The proof of this fact is nontrivial and crucially uses the SWLI
Lemma. The precise technical details can be found in Lemma 7.4.

Let us now discuss the idea behind our technique. To achieve the goal, we introduce an operator that
we have called generalized alternant. See Section 5 for more details. Let F (X,Y, Z) ∈ F[X,Y, Z] and let
k ≥ 1. Let X1, . . . , Xk and Y1, . . . , Yk be disjoint copies of X and Y , respectively. Consider the following
matrix which we call the generalized alternant of F with respect to X and Y of order k. Notice that we can
simulate black-box access to the entries of this matrix if we know the variable partition.
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M =


F (X1, Y1, Z) F (X1, Y2, Z) · · · F (X1, Yk, Z)
F (X2, Y1, Z) F (X2, Y2, Z) · · · F (X2, Yk, Z)

...
...

...
...

F (Xk, Y1, Z) F (Xk, Y2, Z) · · · F (Xk, Yk, Z)

 . Formally, {Mij}{i,j∈[k]} = F (Xi, Yj , Z).

The main observation here is that if F can be expressed as in Equation 1 above, the matrix factors as

M =


R1(X1) R2(X1) · · · Rk(X1)
R1(X2) R2(X2) · · · Rk(X2)

...
...

...
...

R1(Xk) R2(Xk) · · · Rk(Xk)

·

H1(Z)

. . .

. . .

Hk(Z)

·

Q1(Y1) Q1(Y2) · · · Q1(Yk)
Q2(Y1) Q2(Y2) · · · Q2(Yk)

...
...

...
...

Qk(Y1) Qk(Y2) · · · Qk(Yk)


Observe that the first and third matrices are precisely the alternant for R and the transposed alternant for
Q, respectively. Consequently: det(M) = det(AltXR) · det(AltYQ) ·H1(Z) · . . . ·Hk(Z). The last piece of the
puzzle would be to recall that the polynomials in both R and Q are F-linearly independent and hence by
Lemma 4.7: det(AltXR),det(AltYQ) 6≡ 0 which in turn implies that det(M) 6≡ 0. As a result, we use the black-
box factorization algorithm of [KT90] (see Lemma 3.11) to learn the irreducible factors of H1(Z) · . . . ·Hk(Z).

What remains to discuss is how we find the appropriate variable partition as the algorithm operates
under the mere assumption that a partition W = X ·∪Y ·∪Z exists (but is not given as input). The näıve
approach of simply guessing a partition would be too costly since there are 3n possible options. Once again,
the SWLI lemma comes to our rescue.

Since the polynomials in both R and Q are F-linearly independent, by the SWLI lemma, we know that
there is a subset X ′ ⊆ X of k− 1 variables from X, and similarly a subset Y ′ ⊆ Y of k− 1 from Y such that
the polynomials in both R and Q remain linearly independent when regarded as polynomials in X ′ and Y ′,
respectively. Consequently, if we defined the generalized alternant M ′ only with respect to those variables,
the two alternant matrices will still remain full rank resulting in det(M ′) 6≡ 0. Yet, since X ′ and Y ′ are
“small”, we can “guess” them by iterating over all possibilities. For additional details, see Theorem 5.3.

3 Notations and Preliminaries

Throughout the paper, we use uppercase X,Y to denote sets of variables, lowercase xi to denote single
variables and x̄, ȳ to denote vector/tuple of variables and v̄ to denote a vector/tuple of field constants. We
sometimes abuse notations by referring to a circuit as a collection of multiplication ΣΠ gates. Let F denote
a field, finite or otherwise, and let F denote its algebraic closure

.

3.1 Polynomials

A polynomial f ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs ᾱ, β̄ ∈ F̄n differing only
in the ith coordinate for which f(ᾱ) 6= f(β̄). Equivalently, f depends on a variable xi if there is a monomial
in f which contains xi. We denote by var(f) the set of variables that f depends on.

For a polynomial f(x1, . . . , xn), a variable xi and a field element α, we denote with f |xi=α the polynomial
resulting from substituting α to xi. Similarly given a subset I ⊆ [n] and an assignment ā ∈ Fn, we define
f |x̄I=āI to be the polynomial resulting from substituting ai to xi for every i ∈ I.

Let f, g ∈ F[x1, x2, . . . , xn] be polynomials. We say that g divides f , or equivalently g is a factor of f ,
and denote it by g | f if there exists a polynomial h ∈ F[x1, x2, . . . , xn] such that f = g · h. We say that f is
irreducible if f is non-constant and cannot be written as a product of two non-constant polynomials.
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Given the notion of divisibility, we define the gcd of a set of polynomials in a natural way to be the
highest degree polynomial dividing them all (suitably scaled)6. A linear function is a polynomial of the form

L(X) =
n∑
i=1

aixi + a0 with ai ∈ F.

Inspired by a similar notion of [KS09a], in [BSV21] a distance measure between polynomials was defined.

Definition 3.1 ([BSV21]). For f, g ∈ F[x1, x2, . . . , xn], we define a distance function:

∆(f, g)
∆
=

max {deg(f),deg(g)}
deg(gcd(f, g))

.

3.2 Generators for Circuit Classes

In this section, we formally define the notion of generators and hitting sets for polynomials as well as describe
a few of their useful properties. For a further discussion see [SV15, SY10].

A map G = (G1, . . . ,Gn) : Fr → Fn is a generator for a circuit class C, if for every non-zero n-variate
polynomial P ∈ C, it holds that P (G) 6≡ 0. For Z ⊆ [n], we denote by GZ the projection of G to coordinates
that correspond to the variables in Z.

The image of the map G is denoted as Im (G)
∆
= G(Fr). Ideally, r should be very small compared to n. A

set H ⊆ Fn is a hitting set for a circuit class C, if for every non-zero polynomial P ∈ C, there exists ā ∈ H,
such that P (ā) 6= 0. A generator can also be viewed as a map containing a hitting set for C in its image.
That is, for every non-zero P ∈ C, there exists ā ∈ Im (G) such that P (ā) 6= 0. In identity testing, generators
and hitting sets play the same role. Given a generator one can easily construct a hitting set by evaluating
the generator on a large enough set of points (see Lemma 3.9 for more details). Conversely in [SV15], an
efficient method for constructing a generator from a hitting set was given.

Lemma 3.2 ([SV15]). There exists a deterministic algorithm that given a set H ⊆ Fn and δ > 1 runs in
time poly(|H| , δ) and constructs a map G(w̄) : Fr → Fn with r = dlogδ |H|e such that H ⊆ Im (G) and each
Gi has individual degree at most δ − 1.

Remark 3.3. Since polynomial rings over fields are integral domains, one very useful property of generators
is multiplicativity. That is, a generator for a class C is also a generator for the class ΠC.

Since generators are polynomial maps, it is natural to define the sum of two generators G1 and G2 by
their component-wise sum. We take the convention that for two generators G1 and G2 with the same output

length the sum G1 +G2 is defined over disjoint input variables. That is (G1 +G2)(X1, X2)
∆
= G1(X1)+G2(X2).

Intuitively, one can think of adding a sample from G1 to an independent sample from G2.

3.2.1 The Gn,k Generator of [SV15]

The Gn,k generator was defined in [SV15].

Definition 3.4 ([SV15]). Let a1, . . . , an denote n distinct elements from a field F and for i ∈ [n] let Li(x)
∆
=∏

j 6=i
x−aj
ai−aj denote the corresponding Lagrange interpolant. For every k ∈ N, define

Gn,k(y1, . . . , yk, z1, . . . , zk)
∆
=

 k∑
j=1

L1(yj)zj ,

k∑
j=1

L2(yj)zj , . . . ,

k∑
j=1

Ln(yj)zj

 .

Below are a number of useful properties that follow from its definition. For a formal proof see [SV15, Vol15].

6Such a polynomial is unique up to scaling, and one can fix a canonical polynomial in this class for instance by requiring
that the leading monomial has coefficient 1. With this definition, two polynomials are pairwise coprime if their gcd is of degree
0, and in particular the gcd equals 1.
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Lemma 3.5 ([SV15, Vol15]). Let k, k′ be positive integers, f ∈ F[X] and H : Fr → F|X| be a polynomial
map.

1. Variable “revival”: let X = Y ·∪Z such that |Y | ≤ k. Then there exists a substitution of field element
and polynomials to the variables of Gn,k for which the map Gn,k +H results in (Y,HZ).

2. Additivity: Gn,k +Gn,k′ = Gn,k+k′ .

3. Let xm ∈ X. Define fm
∆
= f − f |xm=0. Suppose fm(H) 6≡ 0. Then f(H +Gn,1) 6≡ 0.

3.3 Depth-3 Circuits & Our Models

In this section, we formally introduce the general model of depth-3 circuits and the specialization of set-
multilinear depth-3 circuits, which is the focus of our paper. It is to be noted that depth-3 circuits were a
subject of a long line of study [DS07, KS07, KS09b, SV15, AM10, KS11, SS11, SS12, SS13].

Definition 3.6. A depth-3 ΣΠΣ(k) circuit C computes a polynomial of the form

C(X) =
k∑
i=1

Ti(X) =

k∑
i=1

di∏
j=1

`i,j(X),

where the `i,j-s are linear functions; `i,j(X) =
n∑
t=1

ati,jxt + a0
i,j with ati,j ∈ F. A multilinear ΣΠΣ(k) circuit

is a ΣΠΣ(k) circuit in which each Ti is a multilinear polynomial. In particular, each such Ti is a product
of variable-disjoint linear functions. Given a partition X = ·∪j∈[d]Xj of X, a set-multilinear ΣΠΣ{tjXj}(k)
circuit is a further specialization of a multilinear circuit to the case when each `i,j is a linear form in F[Xj ].
That is, each `i,j is defined over the variables in Xj and a0

i,j = 0.

When the partition is unknown we will simply refer to them as set-multilinear ΣΠΣ circuits. It should be
noted that a polynomial (and its circuit representation) can be set-multilinear w.r.t. to numerous variable
partitions. For instance, f = x1x2 · · ·xn + y1y2 · · · yn.

Observe that if a polynomial f is computed by a set-multilinear circuit w.r.t (the partition) X = ·∪j∈[d]Xj ,
then every monomial that appears in f is of the form xi1xi2 · · ·xid . where xij ∈ Xj . In other words, each
monomial in such f picks up exactly one variable from each part in the partition.

We say that a set-multilinear depth-3 circuit is optimal if no circuit with a smaller fan-in (in that
respective class) can compute the same polynomial.

We say that C is minimal if no subset of the multiplication gates sums to zero. We define gcd(C) as the linear
product of all the non-constant linear functions that belong to all the Ti-s. I.e. gcd(C) = gcd(T1, . . . , Tk).
We say that C is simple if gcd(C) = 1. The simplification of C, denoted by sim(C), is defined as C/ gcd(C).
In other words, the circuit results upon the removal of all the linear functions that appear in gcd(C).

For a depth-3 circuit C, its rank is defined as rank(C) = dim(span{`i,j}). Observe that for a multilinear
circuit: d ≤ rank(C).

The following result known as the Rank Bound provides a structural property for multilinear depth-3
computing the zero polynomial, under some technical conditions.

Theorem 3.7 ([SS11]). There exists a monotone function RM (k) ≤ O(k3 log k) such that any simple and
minimal, multilinear ΣΠΣ(k) circuit C, computing the zero polynomial satisfies rank(C) ≤ RM (k).

Definition 3.8 (Parametric Families of Circuits). Let C be an arbitrary circuit class. For k, ` ∈ N, we define

the class of Σ[k]Π[`]C formulas as the class of polynomials of the form
k∑
i=1

∏̀
j=1

Cij where Cij ∈ C.
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We define the class occur-k ΣΠC formulas as the class of all the polynomials of the form:

f(x̄) =
∑
i

∏
j

Cij

where each variable xt occurs in at most k of the sub-circuits Cij. That is, for every xt at most k of the
Cij-s depend on it.

Remark: Note that unlike the definition of Σ[k]Π[`]C formulas, there is no restriction on the number of
additions or multiplications taken for occur-k ΣΠC formulas.
Remark: Note that k and ` are upper bounds since some Cij can be taken to be field elements. That is,
Σ[k]Π[`]C corresponds to taking sums of (at most) k products of (at most) ` polynomials from C.

3.3.1 Previous Results

We will now state a collection of known results/algorithms that will be useful in our final proof.

Lemma 3.9 ([Alo99]). Let f ∈ F[x1, x2, . . . , xn] be a polynomial. Suppose that for every i ∈ [n] the individual
degree of xi is bounded by di, and let Si ⊆ F be such that |Si| > di. We denote S = S1 × S2 × · · · × Sn.
Then, f ≡ 0 iff f |S ≡ 0.

Lemma 3.10 ([Sch80, Zip79, DL78]). Let f(x1, ..., xn) be a nonzero polynomial of degree at most d, and let
S ⊆ F. If we choose ā = (a1, . . . , an) ∈ Sn uniformly at random, then Pr[f(ā) = 0] ≤ d/ |S|.

Lemma 3.11 ([KT90]). There exists a randomized algorithm that given black-box access to a polynomial
f(x̄) ∈ F[x1, x2, . . . , xn] of degree d outputs its irreducible factors, in time poly(n, d).

Lemma 3.12. Set-multilinear ΣΠΣ(k) circuits are closed under factoring. Formally, if f = g · h and f
is a degree d polynomial computed by a ΣΠΣ{tjXj}(k) circuit. Then g (similarly h) is computed by a
set-multilinear ΣΠΣ(k) circuit. Also, there is a partition of [d] into two disjoint sets A1, A2 ⊆ s.t. g is
set-multilinear w.r.t to partition ·∪i∈A1Xi and h is set-multilinear w.r.t. to partition ·∪i∈A2Xi.

Proof. We have that f ∈ ΣΠΣ{tjXj}(k), and f = g · h. Let X = var(f), Y = var(g), and Z = var(h). Note
that, f is homogeneous by definition, and thus g, h are homogeneous as well. Further, Y ∩ Z = φ.

We claim that for all i ∈ [d] either Xi ∩ Y 6= ∅ or Xi ∩ Y 6= ∅. Note that, assuming the claim, the lemma
follows by restricting the ΣΠΣ{tjXj}(k)circuit computing f to Y (by setting Z variables randomly) to give
a circuit for g.

To prove the claim, suppose ∃i s.t. x1 ∈ Y ∩Xi and x2 ∈ Z ∩Xi. Let g = a1x1 + a0 and h = b1x2 + b0,
where a1, b1 ∈ F[X \ {x1, x2}] 6= 0. This gives that f = g · h has a monomial that depends on both x1, x2

which contradicts the set-multilinearity of f .

As a corollary, we can efficiently simulate a black-box access to sim(C) given a black-box access to a
multilinear or set-multilinear C. The reason this holds is that by the above lemma it follows that once we
strip away all the linear factors dividing the underlying polynomial, what remains is still a multilinear/set-
multilinear ΣΠΣ(k) circuit which is also now simple.

Corollary 3.13. There is a randomized algorithm that given a black-box access to a multilinear/set-multilinear
ΣΠΣ(k) circuit C outputs linear functions L1, . . . , Lr and black-box access to a simple multilinear/set-
multilinear ΣΠΣ(k) circuit Ĉ such that C =

∏r
i=1 Li · Ĉ, in time poly(n).
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3.3.2 Variable Reduction

In this section, we discuss how to reduce the number of variables in a polynomial. Before describing this
procedure we have to formally define the notion of the number of essential variables in a polynomial.

Definition 3.14 (Number of essential variables). For f(x̄) ∈ F[x̄], we will say that the number of essential
variables in f(x̄) is t if there exist an invertible linear transformation A ∈ Fn×n s.t. f(Ax̄) just depends on
t variables. Moreover any such transformation doesn’t exist for mapping to fewer than t variables.

The next lemma is from the work of Carlini [Car06], adopted by Kayal [Kay11] in the language of circuits.
This lemma eliminates redundant variables from a polynomial and plays a crucial role in our reconstruction
results.

We state the lemma below in the setting of black-box access to the input polynomial. The original version
of the lemma was in the white-box setting, but by inspecting the proof in [Kay11] one can see that it works
in the black-box setting as well by noting that given black-box access to a circuit computing a polynomial
f , one can get black-box access to the circuits computing its first order partial derivatives.

Lemma 3.15. [Kay11, Car06] Given black-box access to an n-variate polynomial f(X) ∈ F[X] of degree
d with m essential variables, s.t. char(F) > d or 0, there is a randomized poly(n, d) time algorithm that
computes an invertible linear transformation A ∈ F(n×n) such that f(A · x̄) depends on the first m-variables
only.

We will also need the following generalization of Carlini’s Lemma. The proof is similar to the proof of
previous lemma.

For any Y ⊆ X, and f(X) ∈ F[X] define 〈 ∂f∂Y 〉 := SpanF

(
∂f
∂xi
| xi ∈ Y

)
.

Lemma 3.16. Given black-box access to an n-variate, degree d polynomial f(X,Y ) ∈ F[X,Y ], s.t. X =

{x1, x2, . . . , xt} and char(F) > d or 0. Suppose dimF

(
〈 ∂f∂X 〉

)
= m ≤ t, then there is a randomized

poly(n, d) time algorithm that computes an invertible linear transformation A ∈ Ft×t such that f(A · x̄, Y ) ∈
F[x1, . . . , xm, Y ].

Proof. We have that dimF

(
〈 ∂f∂X 〉

)
= m. Let m < t, otherwise, we have nothing to show. Let um+1, , . . . , ut ∈

Ft be the basis vector of the null-space of 〈 ∂f∂X 〉. And, u1, u2, . . . ut ∈ Ft be vectors s.t. u1, u2, . . . , ut ∈ Ft is
a basis for Ft. Let A ∈ Ft×t be the matrix with i-th columns ui. Note that, we can compute the null-space
of 〈 ∂f∂X 〉 (and thus the matrix A) in poly(n, d)-time using Lemma 4.9.

By the chain rule we have, 
∂f(A·x̄,Y )

∂x1

...
∂f(A·x̄,Y )

∂xt

 = AT


∂f
∂x1

(AX,Y )
...

∂f
∂xt

(AX,Y )

 .

This gives that, ∂f(·x̄,Y )
∂xi

= ui ·
(
∂f
∂x1

(A · x̄, Y ), · · · , ∂f∂xt
(A · x̄, Y )

)
. Since A is invertible, we have that

ui ·
(
∂f
∂x1

(A · x̄, Y ), · · · , ∂f∂xt
(A · x̄, Y )

)
= 0⇐⇒ ui ·

(
∂f
∂x1

(X,Y ), · · · , ∂f∂xt
(X,Y )

)
= 0. Recall for i > m, ui ∈

null-space of 〈 ∂f∂X 〉. Thus, ∂f(A·x̄,Y )
∂xj

= 0, for j > m.

4 Polynomial Linear Dependence & Alternants

Definition 4.1 (Polynomial Linear Dependence). We say that the polynomials f1, . . . , fk ∈ F[X] are F-
linearly dependent, if there exist field constants α1, . . . , αk ∈ F, not all zeros, such that α1 ·f1 + . . .+αk ·fk ≡
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0. We define the notion of linear independence accordingly. In particular, note that a set of linearly-
independent polynomials cannot contain the identically zero polynomial.

We can extend this notion by considering linear dependence over a field of rational functions F(S) for some
set of variables S.

Let S be a set of variables. We say that the polynomials f1, . . . , fk ∈ F[X] are F(S)-linearly dependent, if
there exist rational functions H1(S), . . . ,Hk(S) ∈ F(S), not all zeros, such that H1(S)·f1+. . .+Hk(S)·fk ≡ 0.
We define linear independence accordingly.

The following properties are immediate extensions of the definition.

Lemma 4.2. Let f = {f1, . . . , fk} ⊆ F[X] be a set of F(S)-linearly independent polynomials for a set of
variables S (could be empty). Then

• Let T be a set of variables disjoint to X (i.e. X ∩ T = ∅). Then the polynomials in f are also
F(S ∪ T )-linearly independent.

• Let xj ∈ S. Then the polynomials f1, . . . , fk are also (F(S \ {xj})) (xj)-linearly independent and vice
versa.

We now state and prove our main technical result: any set of linearly independent polynomials has a
small “witness set” for their independence. More formally, a set of k linearly independent polynomials remain
linearly independent even if we regard them as polynomials in a chosen set S of (at most) k − 1 variables.
Equivalently, one can think about random projections. That is, for any set of k linearly independent
polynomials there exists a set S of at most k − 1 variables such that the polynomials remain linearly
independent, even if we sets all the variables outside of S to random values.

Lemma 4.3 (SWLI Lemma). Let F be an arbitrary field and let f = {f1, . . . , fk} ⊆ F[X] be a set of F-linearly
independent polynomials. Then there exists a subset S ⊆ X of size |S| ≤ k − 1 such that the polynomials in
f are (also) F(X \ S)-linearly independent.

To provide more intuition, we first prove a weaker statement. In fact, this statement will be used as a
“base case” subsequently.

Lemma 4.4. Let F be an arbitrary field and let f1, f2 ∈ F[X] such that |X| ≥ 2. Suppose that the polynomials
f1, f2 are F-linearly independent. Then there exists a variable xi ∈ X such that the polynomials are (also)
F(xi)-linearly independent.

Proof. We prove something somewhat stronger: for any pair of variables xi 6= xj ∈ X the polynomials f1

and f2 are either F(xi)-linearly independent or F(xj)-linearly independent or both. Assume the contrary.
By the definition, there exist u1(xi), u2(xi) ∈ F(xi) and v1(xj), v2(xj) ∈ F(xj), not all zeros, such that:

u1(xi) · f1 + u2(xi) · f2 ≡ 0

v1(xj) · f1 + v2(xj) · f2 ≡ 0

Further, observe that u1, u2, v1, v2 are all nonzero as otherwise f1 ≡ 0 or f2 ≡ 0 Hence, we obtain that:

−u1(xi)/u2(xi) · f1 = f2

−v1(xj)/v2(xj) · f1 = f2

As (again) f1 6≡ 0 we obtain that
u1(xi)/u2(xi) = v1(xj)/v2(xj).

As u1(xi)/u2(xi) ∈ F(xi) and v1(xj)/v2(xj) ∈ F(xj), both expressions must in fact lie in the base field F.
This, in turn, implies that f1 and f2 are F-linear dependent, leading to a contradiction.
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We now extend the claim to an arbitrary number of polynomials.

Lemma 4.5. Let F be an arbitrary field and let f1, . . . , fk ∈ F[X] such that |X| ≥ k ≥ 2. Suppose that
the polynomials f1, . . . , fk are F-linearly independent. Then there exists a variable xi ∈ X such that the
polynomials are (also) F(xi)-linearly independent.

Proof. The proof is by induction on k. The base case k = 2 is covered by Lemma 4.4. Suppose k ≥ 3 and
consider f1 . . . fk−1. As |X| ≥ k > k − 1, by the induction hypothesis, there exists xi ∈ X such that the
polynomials f1 . . . fk−1 F(xi)-linearly independent.

Set Y
∆
= X \ {xi} and E ∆

= F(xi) and let us now regard the polynomials f1 . . . fk−1 as polynomials in
the variables Y over the field E. That is, as polynomials over E[Y ]. From the above, the polynomials are
E-linearly independent. And now we make a crucial observation that |Y | = |X| − 1 ≥ k − 1 and since the
inductive hypothesis applies to all fields, we can invoke it again to obtain that there exists xj ∈ Y (different
from xi) such that the polynomials f1 . . . fk−1 are E(xj)-linearly independent. By Lemma 4.2, these poly-
nomials are (also) F(xi, xj)-linearly independent.

Now consider all k polynomials f1 . . . fk. To complete the argument, we claim that these polynomials are
either F(xi)-linearly independent or F(xj)-linearly independent (for the same choice of xi and xj above).
The proof is by contradiction and is similar to the proof of Lemma 4.4. We give it here for completeness.

If possible the k polynomials are linearly dependent over F(xi) and over F(xj). By the definition, there exist
u1(xi), . . . , uk(xi) ∈ F(xi) and v1(xj), . . . , vk(xj) ∈ F(xj), not all zeros, such that:

u1(xi) · f1 + . . .+ uk−1(xi) · fk−1 + uk(xi) · fk ≡ 0

v1(xj) · f1 + . . .+ vk−1(xj) · fk−1 + vk(xj) · fk ≡ 0

First, observe that uk(xi), vk(xj) 6≡ 0 as otherwise the polynomials f1 . . . fk−1 would be F(xi, xj)-linearly
dependent. Hence, we obtain:

−u1(xi)/uk(xi) · f1 − . . .− uk−1(xi)/uk(xi) · fk−1 = fk

−v1(xj)/vk(xj) · f1 − . . .− vk−1(xj)/vk(xj) · fk−1 = fk

As fk has a unique representation as a linear combination of F(xi, xj)-linearly independent polynomials
f1 . . . fk−1 we obtain that:

∀` ∈ [k − 1] : u`(xi)/uk(xi) = v`(xj)/vk(xj).

Consequently, all these expressions lie in the base field F. This, in turn, implies that f1, . . . , fk are F-linearly
dependent, leading to a contradiction.

Proof of Lemma 4.3. We will proceed by induction on |X|. The base case is when |X| < k. In this case we
can simply take S = X. Now suppose that |X| ≥ k. By Lemma 4.5, there exist a variable xi ∈ X such that

the polynomials in f are F(xi)-linearly independent. Set Y
∆
= X \ {xi} and E ∆

= F(xi) and let us now regard
the polynomials in f as polynomials in the variables Y over the field E. That is, as polynomials over E[Y ].
From the above, the polynomials are E-linearly independent. By the inductive hypothesis, there exists a
subset S ⊆ Y of size |S| ≤ k − 1 such that polynomials in f are E(Y \ S)-linearly independent. In other
words, the polynomials are (F(xi))(X \ (S ∪{xi})-linearly independent. By Lemma 4.2, this is equivalent to
being F(X \ S)-linearly independent.

4.1 Alternants

Alterant Matrices (or alternants, for short) have played an important role in many application such as the
alternant codes.
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Definition 4.6. Let f = (f1, f2, . . . fk), where fi(X) ∈ F[X], be a vector of polynomials over a field F and
let X1, . . . , Xk be disjoint sets of variables each of size |X| (i.e. k disjoint copies of X). We define the
corresponding alternate matrix (or alternant, for short) as:

Altf (X1, X2, . . . , Xk)
∆
=


f1(X1) f2(X1) · · · · · · fk(X1)
f1(X2) f2(X2) · · · · · · fk(X2)

...
...

...
...

...
f1(Xk) f2(Xk) · · · · · · fk(Xk)

 .

For our purposes, we would like to consider a simple extension of the alternant that can be thought of as
a “partial” alternant. That is, we treat a subset of the variable as field elements and regard the polynomials
as polynomials in the remaining variables. Formally, let f = (f1, f2, . . . fk), where fi(X,Z) ∈ F[X,Z], be a
vector of polynomials over a field F and let X1, . . . , Xk be disjoint sets of variables each of size |X| (i.e. k
disjoint copies of X). We define the corresponding partial alternate (or alternant, for short) as:

AltXf (X1, X2, . . . , Xk, Z)
∆
=


f1(X1, Z) f2(X1, Z) · · · · · · fk(X1, Z)
f1(X2, Z) f2(X2, Z) · · · · · · fk(X2, Z)

...
...

...
...

...
f1(Xk, Z) f2(Xk, Z) · · · · · · fk(Xk, Z)

 .

The following is a fundamental property of the alternant which captures linear (in)dependence of poly-
nomials. The special case where Z is the empty set is also very interesting. A proof can be found in [Kay11,
Claim 7]. For completeness, see Section A in the Appendix.

Lemma 4.7. Let f = {f1(X,Z), f2(X,Z), . . . , fk(X,Z)} ⊆ F[X,Z]. Then the polynomials in f are F(Z)-
linearly independent iff det(AltXf ) 6≡ 0.

4.2 F-Linear Dependencies

Definition 4.8. Let f := (f1, f2, . . . fm), where fi(X) ∈ F[X], be a vector of polynomials over a field F. The
set of F-linear dependencies in f , denoted f⊥, is the set of all vectors v ∈ Fm whose inner product with f is
the zero polynomial, i.e.,

f⊥ = {(a1, . . . , am) ∈ Fm : a1f1(X) + . . .+ amfm(X) = 0}.

The set f⊥ is clearly a linear subspace of Fm. This notion is helpful to state and prove some useful
lemmas. The main observation here is that given (by arithmetic circuits or black-box access) a collection
of polynomials, then in randomized polynomial time we can find the F-linear dependencies among these
polynomials. In order to show this, we will need the following technical lemma which we state without proof
but it can be found in [Kay11].

Lemma 4.9. [Kay11, Lem 4.1] Given m polynomials f = {f1, f2, . . . fm}, each in F[x1, . . . , xn] of degree at
most d, either by a circuit (or black-box access) 7, s.t. with rank(maximal number of linearly independent
fi-s) of f = k, and |F| >

(
m
k

)
· dnk (if |F| ≤

(
m
k

)
· dnk then we can work with an extension) then:

1. There is a randomized poly(m,n, k) time algorithm to compute a basis for the space F-span{f1, f2, . . . fm}.
Along with the basis(say fi1 , fi2 , . . . fik be a basis of linear space of fi-s), the aforementioned algorithm
also outputs a matrix M s.t.

M

fi1...
fik

 =

 f1

...
fm

 .

2. Also, there is a randomized poly(m,n, k) time algorithm that given a vector of these polynomials f =
(f1, f2, . . . , fm) computes a basis for the space f⊥.

7 The lemma statement in [Kay11] just mentions the case when a circuit is given explicitly, however it is easy to observe
that even black-box/oracle access suffices.
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5 Generalized Alternants

Definition 5.1. Generalized Alternant Let F (X,Y, Z) ∈ F[X,Y, Z] and let k ≥ 1. Let X1, . . . , Xk and
Y1, . . . , Yk be disjoint copies of X and Y , respectively. Define:

GAltX,Yk [F ] = M =


F (X1, Y1, Z) F (X1, Y2, Z) · · · F (X1, Yk, Z)
F (X2, Y1, Z) F (X2, Y2, Z) · · · F (X2, Yk, Z)

...
...

...
...

F (Xk, Y1, Z) F (Xk, Y2, Z) · · · F (Xk, Yk, Z)

 .

Formally, let {Mij}{i,j∈[k]} = F (Xi, Yj , Z).

The main property, as well as, the relation to the “classical” alternant is given in the following lemma.

Lemma 5.2. Let F (X,Y, Z) ∈ F[X,Y, Z] be a polynomial that can be expressed in the form:

F (X,Y, Z) =

k∑
t=1

Rt(X,Z) ·Qt(Y,Z) ·Ht(Z)

for some polynomials {Rt, Qt, Ht}t∈[k]. Let R
∆
= {R1(X,Z), . . . , Rk(X,Z)} and Q

∆
= {Q1(Y,Z), . . . , Rk(Y,Z)}.

Then

GAltX,Yk [F ] = AltXR ·


H1(Z)

. . .

. . .

Hk(Z)

 · (AltYQ)t

and consequently, det(GAltX,Yk [F ]) = det(AltXR) · det(AltYQ) ·H1(Z) · . . . ·Hk(Z).

Proof. By inspection.
R1(X1, Z) R2(X1, Z) · · · Rk(X1, Z)
R1(X2, Z) R2(X2, Z) · · · Rk(X2, Z)

...
...

...
...

R1(Xk, Z) R2(Xk, Z) · · · Rk(Xk, Z)

·

H1(Z)

. . .

. . .

Hk(Z)

·

Q1(Y1, Z) Q1(Y2, Z) · · · Q1(Yk, Z)
Q2(Y1, Z) Q2(Y2, Z) · · · Q2(Yk, Z)

...
...

...
...

Qk(Y1, Z) Qk(Y2, Z) · · · Qk(Yk, Z)



The following is our second technical contribution: an algorithm that can learn “many” parts of a hidden
circuit under some technical conditions.

Theorem 5.3. Suppose F (W ) ∈ F[W ], with |W | = n is a polynomial of degree d such there exists a partition
W = X ·∪Y ·∪Z for which F can be written as

F (X,Y, Z) =

k∑
t=1

Rt(X) ·Qt(Y ) ·Ht(Z)

In addition, suppose that the polynomials in R
∆
= {R1(X), . . . , Rk(X)} and Q

∆
= {Q1(Y ), . . . , Qk(Y )} are

F-linearly independent. Then there exists a randomized algorithm that given a black-box access to F and
k as input, outputs a list of polynomials that contains (among other things) all the irreducible factors of
H1(Z) · . . . ·Hk(Z), in time nO(k) · poly(d).
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Proof. Consider the following algorithm:

For each pair of subsets X ′, Y ′ ⊆W such that X ′ ∩ Y ′ = ∅ and |X ′| , |Y ′| ≤ k − 1 :

• Let Z ′
∆
= W \ {X ′ ∪ Y ′}. Write F as F (X ′, Y ′, Z ′)

• Compute GAltX
′,Y ′

k [F ]

• Factor det(GAltX
′,Y ′

k [F ]) as a multivariate polynomial over X ′1, . . . X
′
k, Y

′
1 , . . . , Y

′
k, Z

′ using the algo-
rithm from Lemma 3.11.

• Add factors to the list.

Analysis: By Lemma 4.3, there exist subsets S ⊆ X and T ⊆ Y of sizes |S| , |T | ≤ k − 1 such that the
polynomials in R and Q are F(X \ S)-linearly independent and F(Y \ T )-linearly independent, respectively.
By Lemma 4.2, the polynomials in both R and Q are F((X \ S) ∪ (Y \ T ) ∪ Z)-linearly independent.

Suppose that algorithm “guessed” the sets X ′ = S and Y ′ = T . By definition, Z ′ = W \ {X ′ ∪ Y ′} =
(X \ S) ∪ (Y \ T ) ∪ Z. Hence, we have that:

• X ⊆ S ∪ Z ′ = X ′ ∪ Z ′. Thus for all t ∈ [k] : Rt ∈ F[X ′, Z ′]

• Y ⊆ T ∪ Z ′ = Y ′ ∪ Z ′. Thus for all t ∈ [k] : Qt ∈ F[Y ′, Z ′]

• Z ⊆ Z ′. Thus for all t ∈ [k] : Ht ∈ F[Z ′]

Consequently, F can be expressed in the form: F (X ′, Y ′, Z ′) =
k∑
t=1

Rt(X
′, Z ′) ·Qt(Y ′, Z ′) ·Ht(Z

′) where the

polynomials in both R and Q are F(Z ′)-linearly independent. By Lemma 5.2:

det(GAltX
′,Y ′

k [F ]) = det(AltX
′

R ) · det(AltY
′

Q ) ·H1(Z ′) · . . . ·Hk(Z ′)

By Lemma 4.7: det(AltX
′

R ),det(AltY
′

Q ) 6≡ 0 and hence det(GAltX
′,Y ′

k [F ]) 6≡ 0. Hence the factoring algorithm
will output the irreducible factors of H1(Z) · . . . ·Hk(Z).

Runtime: There are at most
(
n
k

)2
choices forX ′ and Y ′. For each pairX ′ and Y ′, evaluating det(GAltX

′,Y ′

k [F ])
on an input can be carried out in time poly(n). Finally, by Lemma 3.11 each factorization takes poly(n, d)
time. In total, we get a nO(k) · poly(d)-time algorithm.

6 PIT via Alternants

Let T = {T1, . . . , Tk} ⊆ F[X] and let C = T1(X) + . . . + Tk(X) 6≡ 0. The main idea behind the alternants
approach to PIT is based on the following observations:

• We can assume wlog that the polynomials in T are F-linearly independent.

• If we project C(X) to a subset of variables while ensuring that the polynomials in T remain linearly
independent, the projected sum will be non-zero.

• Alternants capture linear independence of polynomials (see Lemma 4.7).

In conclusion, “all” we need to do is to hit the alternant. The next two lemmas formalize the above
intuition.
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Lemma 6.1. Let C(X) = T1(X) + . . . + Tk(X) be a circuit computing a non-zero polynomial. Then there
exists a non-empty subset A ⊆ [k] and non-zero field elements {αi}i∈A ⊆ F such that

1. C(X) =
∑
i∈A

αiTi(X)

2. The polynomials {αiTi(X)}i∈A are F-linearly independent.

Proof idea. Find a basis for T and express the polynomials as linear combinations in the basis.

Lemma 6.2. Let T = {T1(Y, Z), . . . , T`(Y,Z)} ⊆ F[Y,Z] and ā ∈ F|Z| such that det(AltYT|Z=ā) 6≡ 0. Then∑̀
i=1

Ti(Y, ā) 6≡ 0.

Before proceeding with the proof, we remark that the premise det(AltYT|Z=ā) 6≡ 0 in particular implies
that det(AltYT) 6≡ 0. By the main property of the alternant (Lemma 4.7) this means that the polynomials in
T are assumed to F-linearly independent.

Proof. Let T̃
∆
= {T1(Y, ā), . . . , T`(Y, ā)}. Observe that AltYT|Z=ā = AltT̃. Consequently, by Lemma 4.7, the

polynomials in T̃ are F-linearly independent. In other words, no F-linear combination of the polynomials in

T̃ results in the zero polynomial and in particular,
∑̀
i=1

1 · Ti(Y, ā) 6≡ 0.

Utilizing the properties of generators and the map Gn,k (see Lemma 3.5), we can extend the claim to the
case when the actual partition X = Y ·∪Z is unknown and we rather have an upper bound on the size of Y .

Lemma 6.3. Suppose X = Y ·∪Z such that |Y | ≤ b. Denote |X| = n. Let T = {T1(Y,Z), . . . , T`(Y, Z)} ⊆
F[Y, Z] and Gn = (GYn ,GZn ) : Fr → Fn be a polynomial map such that det(AltYT|Z=GZ

n
) 6≡ 0.

Then
∑̀
i=1

Ti(Gn +Gn,b) 6≡ 0.

Proof. By Lemma 3.5, there exist a substitution to the variables of Gn,b for which
∑̀
i=1

Ti(Gn +Gn,b) results

in
∑̀
i=1

Ti(Y,GZn ). Next, by definition, there exist ā ∈ Im (Gn) such that det(AltYT|Z=āZ ) 6≡ 0. Consequently,

there exists a substitution to the variables of
∑̀
i=1

Ti(Gn +Gn,b) that results in
∑̀
i=1

Ti(Y, ā
Z). By Lemma 6.2,∑̀

i=1

Ti(Y, ā
Z) 6≡ 0 and hence

∑̀
i=1

Ti(Gn +Gn,b) 6≡ 0.

6.1 Identity Testing for Occur-k Formulas

In this section we lay the foundations for the proof of our main result, Theorem 1, which states that for
any circuit class C, identity testing for occur-k ΣΠC formulas reduces to identity testing of Σ[(2k)!]Π[4k2]C
formulas. To this end, we fix an arbitrary circuit class C throughout this section. The main result follows as
a corollary of the following theorem given below, and the proof of the main result is given in Section 6.2.

Theorem 6.4. Let Gn : Fr → Fn be a generator for Σ[(2k)!]Π[4k2]C formulas. Then Gn+Gn,2k is a generator
for occur-k ΣΠC formulas.

We start by showing that a (partial) alternant of an occur-k ΣΠC formula can be computed by a
Σ[`!]Π[|Y |·k]C formula (for parameters |Y | and ` which we make explicit below), up to a product by cir-
cuits from C itself.
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Lemma 6.5. Let C(Y,Z) =
∑̀
i=1

Ti(Y, Z) =
∑̀
i=1

dj∏
j=1

Cij(Y,Z) be an occur-k ΣΠC circuit (i.e. Cij ∈ C).

Denote T
∆
= {T1, . . . , T`}. Then det(AltYT) can be computed by a circuit of the form C ′(Y1, . . . , Y`, Z) ·C ′′(Z)

where C ′ ∈ Σ[`!]Π[|Y |·k]C and C ′′ ∈
∏
C.

Proof. For each i ∈ [`] we can write Ti(Y,Z) = T ′i (Y, Z) · Ui(Z), where T ′i (Y,Z) is the product of all the
Cij-s in Ti that depend on the variables of Y . Formally:

T ′i (Y,Z)
∆
=

∏
{j | var(Cij)∩Y 6=∅}

Cij , Ui(Z)
∆
= Ti(Y,Z)/T ′i (Y, Z).

We obtain the following:

AltYT =


T1(Y1, Z) T2(Y1, Z) · · · · · · T`(Y1, Z)
T1(Y2, Z) T2(Y2, Z) · · · · · · T`(Y2, Z)

...
...

...
...

...
T1(Y`, Z) T2(Yk, Z) · · · · · · T`(Y`, Z)

 =

=


T ′1(Y1, Z) T ′2(Y1, Z) · · · T ′`(Y1, Z)
T ′1(Y2, Z) T ′2(Y2, Z) · · · T ′`(Y2, Z)

...
...

...
...

T ′1(Y`, Z) T ′2(Y`, Z) · · · T ′`(Y`, Z)

 ·

U1(Z)

. . .

. . .

U`(Z)

 =

= AltYT′ ·


U1(Z)

. . .

. . .

U`(Z)


Consequently, det(AltYT) = det(AltYT′) ·

∏`
i=1 U`(Z). Finally, by definition:

det(AltYT′) =
∑
σ∈S`

(
sign(σ)

∏̀
i=1

T ′i
(
Yσ(i), Z

))
.

Finally, observe that there are `! permutations and each product
∏`
i=1 T

′
i contains exactly all the Cij-s in C

that depend on variables of Y . Since C(X) is an occur-k formula, there are most |Y | · k such Cij-s.

Before we continue with the proof of Theorem 6.4, we note that the circuit C ′ actually depends on
multiple copies of the variables Y . At the same time, by Lemma 6.3, it is actually sufficient to hit the
Z variables. Hence, in order to maintain the same input size, for the sake of the analysis we consider C ′

restricted to a single copy of the Y .

Proof of Theorem 6.4. Let C(X) =
∑̀
i=1

Ti(X) =
∑̀
i=1

dj∏
j=1

Cij(X) be an occur-k ΣΠC circuit. If C(X) is a

constant, the claim follows immediately. Therefore, assume that var(C) 6= ∅. Pick xm ∈ var(C) and let
wlog T1, . . . , T`′ be the polynomials that depend on xm. Since C is an occur-k circuit, we have that `′ ≤ k.

Consider the circuit Cm
∆
= C − C|xm=0. Observe that

0 6≡ Cm =

`′∑
i=1

Ti −
`′∑
i=1

Ti|xm=0.

20



In addition, as each Ti appears at most twice in Cm, each variable occurs at most 2k times. Hence, Cm
is occur-2k. Finally, by Lemma 6.1, we can assume wlog that Cm(X) is computed by an occur-2k ΣΠC

formula: Cm(X) =
ˆ̀∑

i=1

T̂i(X) such that ˆ̀≤ 2k and the polynomials T̂
∆
=
{
T̂1(X), . . . , T̂ˆ̀(X)

}
are F-linearly

independent.
By Lemma 4.3, there exist a subset Y ⊆ X of variables of size |Y | ≤ ˆ̀−1 ≤ 2k−1 such the polynomials in

T̂ are F(X\Y )-linearly independent. Let us denote Z
∆
= X\Y . By Lemma 4.7, det

(
AltY

T̂
(Y1, . . . , Yˆ̀, Z)

)
6≡ 0.

Let (ā1, . . . , ā
ˆ̀−1) ∈

(
F|Y |

)ˆ̀−1
be an assignment such that det

(
AltY

T̂
(ā1, . . . , ā

ˆ̀−1, Yˆ̀, Z)
)
6≡ 0 8. Define:

f(X) = f(Y, Z)
∆
= det

(
AltY

T̂
(ā1, . . . , ā

ˆ̀−1, Y, Z)
)
.

By the above, f 6≡ 0. Furthermore, by Lemma 6.5, f(Y,Z) can be computed by a circuit of the form C ′(Y,Z)·
C ′′(Z) where C ′ ∈ Σ[ˆ̀!]Π[|Y |·2k]C and C ′′ ∈

∏
C. By the assumption, Gn = (GYn ,GZn ) is a generator for

Σ[(2k)!]Π[4k2]C formulas and hence, by the multiplicative properties of generators (see Remark 3.3), C ′′(GZn ) 6≡
0. In addition, as |Y | ≤ ˆ̀− 1 ≤ 2k − 1 we have that C ′ ∈ Σ[(2k)!]Π[4k2]C. This, in turn, implies that

det
(

AltY
T̂

(ā1, . . . , ā
ˆ̀−1,GYn ,GZn )

)
= f(GYn ,GZn ) = C ′(GYn ,GZn ) · C ′′(GZn ) 6≡ 0

and in particular that det(AltY
T̂
|Z=GZ

n
) 6≡ 0. Consequently, by Lemma 6.3:

Cm (Gn +Gn,2k−1) =

ˆ̀∑
i=1

T̂i(Gn +Gn,2k−1) 6≡ 0.

Finally, recall that Cm
∆
= C − C|xm=0 and hence by the properties of Gn,k (see Lemma 3.5): we have that

C(Gn +Gn,2k) = C(Gn +Gn,2k−1 +Gn,1) 6≡ 0

as required.

6.2 Proofs of Theorems 1,2 and 3

The proof of Theorem 1 follows from Theorem 6.4 by applying the standard connections between hitting
sets and generators. We provide a sketch of the proof below for completeness.

Theorem 6.6 (Theorem 1 restated). Let n, k, s ∈ N and let F be an arbitrary field. Let H be a hitting

set for Σ[(2k)!]Π[4k2]C formulas of size s over F[x1, x2, . . . , xn]. Then there exists a deterministic algorithm

that given n, k, s outputs a hitting set H′ of size |H′| = |H|2 · sO(k) for occur-k ΣΠC formulas of size s over
F[x1, x2, . . . , xn],

Proof. First, we invoke the algorithm from Lemma 3.2 with H and δ = s to construct a generator Gn : Fr →
Fn for Σ[(2k)!]Π[4k2]C formulas of size s such that r = dlogs |H|e and each Gin has individual degree at most
s−1. Let f be a polynomial computed by an occur-k ΣΠC formula. By Theorem 6.4, f(Gn+Gn,2k) 6≡ 0. The
individual degree of each of the r variables of Gn is at most s(s−1) < s2 and the individual degree of each of
the 4k variables of Gn,2k is at most ns < s2. Let H′ be a result of evaluating Gn+Gn,2k on a set V r+4k when

V ⊆ F is of size |V | = s2. By Lemma 3.9: f |H′ 6≡ 0. Finally, observe that |H′| =
∣∣s2
∣∣r+4k

= |H|2 · sO(k).

Theorems 2 and 3 follow from Theorem 1 by instantiating the black-box PIT results for sparse polynomials
[KS01] and ΣΠΣ(k) circuits [SS12], respectively.

8As was mentioned earlier, we are only using these āi-s for analysis and will not be required to find them explicitly.
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Theorem 6.7 (Theorem 2 restated). Let n, k, s ∈ N and let F be an arbitrary field. Suppose that f ∈
F[x1, x2, . . . , xn] is a polynomial computed by an occur-k depth-4 ΣΠΣΠ formula of size s. Then there exists

a deterministic algorithm that given n, k, s and black-box access to f decides if f ≡ 0, in time sO(k2).

Lemma 6.8 ([KS01]). There is a deterministic algorithm that given black-box access to a sparse polynomial
of size9 s decides if C ≡ 0, in time poly(s)

Proof of Theorem 2. If C is a sparse polynomial of size s then a Σ[(2k)!]Π[4k2]C formula is a sparse polynomial
of size at most sO(k2). By the above result, the appropriate hitting set H will be of size sO(k2). By Theorem
1: |H′| = |H|2 · sO(k) = sO(k2).

Theorem 6.9 (Theorem 3 restated). Let n, k1, k2, s ∈ N and let F be an arbitrary field. Suppose that
f ∈ F[x1, x2, . . . , xn] is a polynomial computed by an occur-k1 depth-5 ΣΠ(Σ[k2]ΠΣ) formula of size s. Then
there exists a deterministic algorithm that given n, k1, k2, s and a black-box access to f decides if f ≡ 0, in

time sk
O(k2

1)

2 .

Lemma 6.10 ([SS12]). There is a deterministic algorithm that given black-box access to a ΣΠΣ(k)10 circuit
C of size s decides if C ≡ 0, in time sO(k).

Proof of Theorem 3. The main observation is that, if C is a ΣΠΣ(k2) circuit of size s, then a Σ[(2k)!]Π[4k2]C
formula can expressed as a ΣΠΣ(k

O(k21)
2 ) circuit of size at most sO(k21). By the above result, the appropriate

hitting set H will be of size
(
sO(k21)

)(k
O(k2

1)

2 )

= sk
O(k2

1)

2 . By Theorem 1: |H′| = |H|2 · sO(k) = sk
O(k2

1)

2 .

7 Reconstructing Set-Multilinear ΣΠΣ(k) Circuits with Unknown
Variable Partition

In this section, we will show how to learn low-degree set-multilinear circuits with unknown partitions. The
following observation gives a necessary and sufficient polynomial system for a polynomial to have a set-
multilinear ΣΠΣ representation. We get these equations by adding the constraints that each product gate
has factors that are variable disjoint, and the variable partition is consistent across all product gates.

Observation 7.1. Let t, d, k, n ∈ N>0, and {C`}`∈[t] be a set of depth-3 circuits, such that C` ≡
∑
i∈[k]

∏
j∈[d]

∑
m∈[n]

a
(m)
i,j,`xm.

• For any fixed ` ∈ [t], if ∀i, i′, k, j 6= j′, a
(k)
ij a

(k)
i′j′ = 0. Then C` is a set-multilinear circuit. And, the

converse holds up to a relabelling of linear forms in each product gate.

• Further, if ∀i, i′, `, `′,m, j 6= j′, a
(m)
i,j,` · a

(m)
i′,j′,`′ = 0. Then, {C`}`∈[t] are set-multilinear circuits with

respect to a same partition of variables. Again, the converse holds up to a relabelling of linear forms
in each product gate (in each C`).

Note that the conditions for checking set-multilinearity are captured by at most k2 · t2 · n · d2 quadratic
equations in k · t · n · d unknowns.

Let SysF(n,m, d) denote the randomized time complexity of finding a solution ∈ Fn (or a suitable ex-
tension) to a system of m polynomial equations ∈ F[x1, . . . , xn] of total degree d (if one exists). This is a
well-studied problem and we refer the reader to Section 3.8 in [BSV21] for a detailed discussion. For our
purpose, we will use the following bound Sys(n,m, d) = poly((nmd)n

n

), which follows directly from Theorem
3.36 in [BSV21].

9A sparse polynomial of size s has at most s non-zero terms and is of degree at most s
10Also denoted as Σ[k]ΠΣ
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7.1 Reconstructing Low-Degree Set-Multilinear ΣΠΣ(k) Circuits

As a basic step in reconstructing general set-multilinear ΣΠΣ(k) circuits, we show how to reconstruct set-
multilinear ΣΠΣ(k) circuits efficiently when the degree of the computed polynomial is small.

Lemma 7.2. Given black-box access to a degree d polynomial f ∈ F[X] such that f is computable by
a set-multilinear ΣΠΣ(k) circuit Cf over the field F with characteristic 0 or > d, there is a randomized

poly(n, Sys(d2k2, k2d2n+
(
dk+d
k

)
, d)) ≤ (dkn)O(d2k3)

(d2k2)

time algorithm that outputs a ΣΠΣ{tjXj}(k) cir-
cuit computing f , where X = ·∪iXi.

Proof. Let m be the number of essential variables in f . Since there at most kd linear forms appearing in
C, it is easy to see that m ≤ kd. By Lemma 3.15, there is a polynomial-time randomized algorithm that
given black-box access to f , computes an invertible linear transformation A ∈ Fn×n such that f(A · x̄) only
depends on the first m variables.

Let g(X) = f(A · x̄). Observe that given black-box access to f , one can easily simulate black-box access
to g, since in order to evaluate g at any input α ∈ F[x1, x2, . . . , xn], one has to simply evaluate f at A · α.

Also observe that g(A−1 · x̄) = f(x̄). Thus any algorithm that can efficiently learn g can also efficiently
learn f in the following way. For each i ∈ [n], suppose that Ri denote the ith row of A−1. Then in the ith
input to g simply input the linear polynomial Li = 〈Ri, x̄〉, which is the inner product of Ri and the vector
x̄ of formal input variables. Since g only depends on the first m variables, we only really need to do this
operation for i ∈ [m].

Since f is computed by a degree d set-multilinear ΣΠΣ(k) circuit, hence g(x̄) = f(A · x̄) is also has a
natural degree d ΣΠΣ(k) circuit representation, where the linear forms of that representation are obtained
by applying the transformation A to corresponding linear forms of C. Let us call this circuit Cg. Notice that
Cg may not be set-multilinear (or even multilinear). However, if we’re somehow able to learn the precise
circuit Cg, then by substituting each variable xi to Li then we would recover the circuit Cf which is indeed
set-multilinear.

Thus our goal is now the following. We have black-box access to g which only depends on m variables.
We would like to devise an algorithm for reconstructing Cg. Note that, Cg is a particular degree d ΣΠΣ(k)
representation of g with a nice property that when we plug in xi = Li in this representation, then we recover
a set-multilinear ΣΠΣ(k) representation of f . Let us call the new object obtained by plugging in xi = Li
for each i, the “lift” of Cg.

However, g might have multiple representations as a degree d ΣΠΣ(k) circuit. And, there is no guarantee
that their lift will be set-multilinear. However the existence of Cg tells us that there exists a ΣΠΣ(k)
representation of g whose lift is a set-multilinear ΣΠΣ(k) circuit. Can we find such a representation of g?

We will now see that we can actually do this. In order to learn a degree d ΣΠΣ(k) representation of g we
will set up a system of polynomial equations whose solution will give as a degree d ΣΠΣ(k) representation.
We will be able to impose additional polynomial constraints to this system that will further ensure that
whatever ΣΠΣ(k) representation is learned will be such that its lift will be a set-multilinear ΣΠΣ(k) circuit.

The algorithm first learns g as a sum of monomials. Since g is of degree at most d and depends on at most

kd variable, such a representation of g can be found in time poly
((
kd+d
d

))
using known sparse polynomial

reconstruction algorithms [KS01, BOT88]. Let S be the set of m-tuples of non-negative integers that sum
to d. Then the algorithm finds a collection of coefficients {cē ∈ F|ē ∈ S} such that g =

∑
ē∈S cē · x̄ē.

Any degree d ΣΠΣ(k) representation of g looks like the following:

k∑
i=1

d∏
j=1

(a
(i)
j,1x1 + a

(i)
j,2x2 + . . .+ a

(i)
j,mxm + a

(i)
j,m+1) =

∑
ē∈S

cē · x̄ē.

The algorithm already knows the set of coefficients {cē ∈ F|ē ∈ S}. In order to learn a ΣΠΣ(k) represen-

tation it needs to learn values for the coefficients in the LHS, i.e. the a
(i)
j,r for various choices of i, j, r. These

a
(i)
j,r are the unknown variables.
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Now for each monomial xē that appears in g, we can compare the coefficient of it on the LHS and RHS of
the above expression, set them equal to each other, and get a polynomial equation in the unknown variables.
We do this for all the monomials and hence set up a system of polynomial equations in the unknown variables.
Each solution to this system of equations corresponds to a degree d ΣΠΣ(k) representation of g and vice
versa.

We are looking for a degree d ΣΠΣ(k) representation whose lift is set-multilinear. To ensure this, we will
add some additional polynomial constraints to our system of polynomial equations.

Now suppose that
k∑
i=1

d∏
j=1

(a
(i)
j,1x1 + a

(i)
j,2x2 + . . .+ a

(i)
j,mxm + a

(i)
j,m+1)

represents some degree d ΣΠΣ(k) representation of g. (We still treat the a
(i)
j,r as unknown variables). Also,

denote the linear polynomials

`
(i)
j := (a

(i)
j,1L1 + a

(i)
j,2L2 + . . .+ a

(i)
j,mLm + a

(i)
j,m+1)

appearing in the expression. Each Li is a linear form in x1, . . . , xn, and the algorithm knows what these Li
are. Further, let X = ·∪w∈[d]Xw be the variable partition of C (and f).

In order for its lift to be set-multilinear with respect to the variable partition ·∪w∈[d]Xw, we would need
to look at the expression

k∑
i=1

d∏
j=1

(a
(i)
j,1L1 + a

(i)
j,2L2 + . . .+ a

(i)
j,mLm + a

(i)
j,m+1)

and use Observation 7.1.
We add the polynomial equations given by Observation 7.1 to our system of polynomial equations.
Observe that any solution to the new system will have the property that the lift will be set-multilinear.

Moreover the existence of Cg guarantees that the system will have at least one solution, and hence it is

solvable in time Sys(mdk, k2d2n+
(
dk+d
k

)
, d). And the overall time complexity of the algorithm is bounded

by poly(n, Sys(d2k2, k2d2n+
(
dk+d
k

)
, d)) ≤ (dkn)O(d2k3)

(d2k2)

.

7.2 Reconstructing High-Degree Set-Multilinear ΣΠΣ(k) Circuits

In this section, we show how to apply the generalized alternant - a tool we have developed in Section 5,
to the scenario of set-multilinear polynomials. In what follows, we fix a partition X = ·∪j∈[d]Xj of X and
consider a polynomial F ∈ F[X] that can be written as

F (X) =

k∑
i=1

Fi(X) =

k∑
i=1

d∏
j=1

Pij(Xj).

We remark that we fix the partition for the purpose of analysis only. Indeed, knowing the partition is not
required to execute the algorithm.

Our main result in this section is a structural result that shows that a set-multilinear ΣΠΣ(k) circuit
with sufficiently many parts can be expressed in a form that satisfies the premises of Theorem 5.3. We first
prove a lemma that will be helpful.

Lemma 7.3. Suppose that rankF{F1, . . . , Fk} = r. Then there exists J ⊆ [d] of size |J | ≤ r − 1 such that

rankF

∏
j∈J

Pij(Xj) | i ∈ [k]

 = r.
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Proof. Assume w.l.o.g that rankF{F1, . . . , Fr} = r. By Lemma 4.3, there exists a subset S of variables of
size of |S| ≤ r− 1 such that the polynomials F1, . . . , Fr are F(X \ S)-linearly independent. Let J be the set
of parts that contain the variables of S. Formally:

J
∆
= {j | Xj ∩ S 6= ∅} and let XJ

∆
= ∪j∈JXj .

Observe that S ⊆ XJ and hence X \ XJ ⊆ X \ S. Furthermore, as Xj-s are disjoint, we have that
|J | ≤ |S| ≤ r − 1. For i ∈ [k] we define:

Qi(XJ)
∆
=
∏
j∈J

Pij(Xj) and Wi(X \XJ)
∆
=
Fi
Qi
.

We now claim that Q1, . . . , Qr are F-linearly independent. Consider an F-linear combination
r∑
i=1

βi ·Qi ≡ 0.

Let us multiply the equation by the product
∏r
i=tWt. We have that:

0 ≡
r∑
i=1

βi ·Qi ·
r∏
t=1

Wt =

r∑
i=1

βi · r∏
t 6=i

Wt

 · Fi
Hence, the RHS of the equation constitutes an F(X \ S)-linear combination of F1, . . . , Fr and consequently,

∀i ∈ [r] : βi ·
r∏
t6=i

Wt ≡ 0. As ∀t : Wt 6≡ 0, we obtain that ∀i ∈ [r] : βi = 0.

Lemma 7.4. Let d ≥ k and suppose that rankF{F1, . . . , Fk} = k. Then there exists r ∈ [k] and a partition

J ·∪J ′ ·∪J ′′ = [d] such that F (X) =
k∑
i=1

Fi(X) can also be written as

F (X) =

r∑
i=1

F ′i (X) =

r∑
i=1

Ri(XJ) ·Qi(XJ′) ·Hi(XJ′′)

where

1. |J | ≤ k − 1, |J ′| ≤ r − 1 and hence |J ′′| ≥ d− r − k + 2.

2. There exists a 1-1 mapping σ : [r]→ [k] such that ∀i ∈ [r] : Hi =
∏
j∈J′′ Pσ(i),j(Xj).

3. rankF{Ri | i ∈ [r]} = rankF{Qi | i ∈ [r]} = r.

Proof. By Lemma 7.3, there exists J ⊆ [d] of size |J | ≤ k − 1 such that

rankF

∏
j∈J

Pij(Xj) | i ∈ [k]

 = k.

Consider the “remaining” parts of F : J̄
∆
= [d] \ J and let r denote the corresponding rank. That is:

r
∆
= rankF

∏
j∈J̄

Pij(Xj) | i ∈ [k]

.
Observe that

∣∣J̄∣∣ ≥ 1. Hence, by definition, 1 ≤ r ≤ k. By Lemma 7.3 (again), there exists J ′ ⊆ J̄ of size
|J ′| ≤ r − 1 such that:

rankF

∏
j∈J′

Pij(Xj) | i ∈ [k]

 = r.
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Finally, let J ′′
∆
= [d] \ (J ∪ J ′). Observe that J, J ′ and J ′′ form a partition of [d]. For i ∈ [k] we define:

Ri
∆
=
∏
j∈J

Pij(Xj) , Qi
∆
=
∏
j∈J′

Pij(Xj) , Hi
∆
=
∏
j∈J′′

Pij(Xj).

That is, F =
k∑
i=1

Fi =
k∑
i=1

Ri ·Qi ·Hi where

rankF{Ri | i ∈ [k]} = k and rankF{Qi | i ∈ [k]} = rankF{Qi ·Hi | i ∈ [k]} = r.

If r = k then we are done. Otherwise, r < k. Assume w.l.o.g that rankF{Qi ·Hi | i ∈ [r]} = r. Otherwise, we

can relabel the terms. By definition, for any ` ≥ r+1 there exist α`,i ∈ F such that: Q` ·H` =
r∑
i=1

α`,i ·Qi ·Hi.

Hence, we can write:

F =

k∑
i=1

Fi =

k∑
i=1

Ri ·Qi ·Hi =

r∑
i=1

[
Ri +

k∑
`=r+1

α`,i ·R`

]
·Qi ·Hi.

It remains to show that

rankF

{
Ri +

k∑
`=r+1

α`,i ·R` | i ∈ [r]

}
= r.

Consider an F-linear combination

r∑
i=1

βi ·

[
Ri +

k∑
`=r+1

α`,i ·R`

]
≡ 0.

We can rewrite this as:
r∑
i=1

βi ·Ri +

k∑
`=r+1

(
r∑
i=1

βi · α`,i

)
·R` ≡ 0.

Hence, we have a linear combination ofR1, . . . Rk. As rankF{Ri | i ∈ [k]} = k we obtain that ∀i ∈ [r] : βi = 0,
as required.

7.2.1 Learning two Linear Forms appearing in the Circuit

As a first step towards learning a general (high degree) ΣΠΣ{tjXj}(k) circuit C, our algorithm will try to
learn a single linear form appearing in the circuit C. In fact, it will be convenient to learn 2 linear forms
appearing in C such that each multiplication gate of C contains at most one of them.

Lemma 7.5. Let f be a nonzero polynomial computable by a simple and minimal set-multilinear ΣΠΣ(k)
circuit such that k ≥ 2 and the degree d > 2k. Further, assume that there are no linear factors of f .
Then, given black-box access to f , there is a randomized algorithm that runs in time nO(k)poly(d), and does
the following. It outputs a set L of poly(d, k) pairs of linear forms which has the following property. Let

C ≡
∑k
i=1 Ti be any simple and minimal set-multilinear representation of f . One of the pairs (`1, `2) in L

is such that for some i ∈ [d], `1 and `2 are supported on the variables of Xi, and both `1 and `2 appear in C.

Proof. We know that f is computable by a set-multilinear ΣΠΣ circuit. Pick any optimal representation
(w.r.t top fan-in) f = T1 + T2 + . . . Tk, where Ti =

∏
j∈[d] `i,j(Xj) for some variable partition X = ·∪Xj .

By optimality of top fan-in, we have that rankF{T1, T2, . . . , Tk} = k. Using lemma 7.4 we can rewrite

f =
∑
i∈[k] Ti =

∑
i∈[r] T

′
i =

r∑
i=1

Ri(XJ) · Qi(XJ′) · Hi(XJ′′) where J ·∪J ′ ·∪J ′′ = [d] and |J | ≤ k − 1,

|J ′| ≤ r − 1. Recall for any set J , XJ = ∪j∈JXj . Further, there exists a 1-1 mapping σ : [r] → [k] such
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that ∀i ∈ [r] : Hi =
∏
j∈J′′ `σ(i),j(Xj) and rankF{Ri | i ∈ [r]} = rankF{Qi | i ∈ [r]} = r. Now, f satisfies

the premises of Theorem 5.3 and in nO(k)poly(d) we will get a list L′ which contains all the linear factors
of H1, H2, . . . ,Hk. As d > 2k, the number of Hi’s is non-trivial. Moreover, for any linear factor `(Xj)
appearing in any one of the Hi’s, there must exist another linear factor `′(Xj) appearing in one of the other
Hi′ ’s (and supported on the same variable set), otherwise f will have a linear factor, which we assumed is
not the case. The output set is simply the collection of all pairs of linear forms in L′ that are supported on
the same variable partition. Note that, |L′| ≤ poly(k, d) and the set L has the required property.

7.2.2 Learning most of the Linear Forms appearing in the Circuit

In this section, we will see how to use the two linear forms learnt in the previous subsection to learn a small
set S of multiplication gates, such that each multiplication gate Ti of C is very “close” to some gate of S.
From this, we will then see how to essentially learn most of the linear forms appearing in each gate of C.
Our approach is recursive, so we will assume using an induction hypothesis that there is A(n, k − 1, d) time
randomized algorithm for reconstructing degree d, set-multilinear ΣΠΣ(k − 1) circuits. Note that, the base
case of k = 1 follows directly from black-box factoring result of [KT90] i.e. A(n, 1, d) = poly(n, d).

Lemma 7.6. Let C ≡
∑k
i=1 Ti be a minimal ΣΠΣ{tjXj}(k) circuit of degree d and let `1 and `2 be two

distinct linear forms supported on variables of Xi for some i ∈ [d] such that each of `1 and `2 appears in C.
Then there is a randomized algorithm that given black-box access to C, given `1 and `2, and two oracle calls to
algorithm for learning set-multilinear ΣΠΣ(k−1) circuits, runs in time at most 2A(n, k−1, d)+poly(n, k, d)
and outputs a set S = {M1,M2 . . . ,M|S|} of at most 2k − 2 ΠΣ circuits of degree d− 1 such that with high
probability, for all i ∈ [k], there exists j ∈ [2k − 2] such that ∆(Ti,Mj) = O(k4).

The proof of the above lemma is almost identical to the proof of Lemma 5.7 in [BSV21] and thus omitted.
The only place where it differs is the use of multilinear rank bounds (Theorem 3.7) instead of set-multilinear
rank bounds, as the variable partition can be different across two representations.

Thus we can now assume that our algorithm can compute a set S consisting of multiplication gates such
that |S| ≤ 2(k − 1), and each gate of the circuit C that we are trying to learn is close to some element of
S. The next lemma shows how we can polish our set S to ensure that the multiplication gates we learned
divide the original gates and are supported on the same variable sets.

Lemma 7.7. Let C ≡
∑k
i=1 Ti be a ΣΠΣ{tjXj}(k) circuit of degree d and let S = {M1,M2 . . . ,M|S|} be a

set of at most 2k − 2 ΠΣ circuits of degree d− 1 such that for all i ∈ [k], there exists j ∈ [2k − 2] such that

∆(Ti,Mj) = O(k4). Then there is a poly((kdk
3

))-time algorithm for computing another set S̄ which has the
following properties.

1. |S̄| ≤
(
|S| ·

(
d−1
O(k5)

))k
2. The elements of S̄ are k-tuples of ΠΣ circuits of degree d−O(k5)

3. One of the elements of S̄ is of the form (G1, G2, . . . Gk) where for each i ∈ [k], Gi divides Ti. Moreover,
all of the Gis are set-multilinear ΠΣ circuits sharing the same variable partition.

Again, the proof of the above lemma is identical (with minor changes in parameters) to that of Lemma
5.8 in [BSV21] and thus omitted.

7.3 Learning the Full Circuit

This part of our learning algorithm differs substantially from that of [BSV21]. This is because we don’t have
the “width reduction” procedure (Section 5.1 [BSV21]), Lemma 5.9 from [BSV21] will no longer be efficient
(as width can be Ω(n)). Fortunately, there is a workaround using our generalization of Carlini’s variable
reduction lemma (Lemma 3.16).
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Lemma 7.8. Let C ≡
∑k
i=1 Ti be a ΣΠΣ{tjXj}(k) circuit of degree d computing a polynomial f(X) ∈ F[X],

where char(F) > d or char(F) = 0. Let (G1, G2, . . . Gk) be a k-tuple where for each i ∈ [k], Gi divides
Ti. Moreover, all of the Gis are set-multilinear ΠΣ circuits of degree d − O(k5), sharing the same variable
partition. Then, given black-box access to C and given the k-tuple (G1, G2, . . . Gk), there is a randomized

poly
(
n, kk

kO(1))
time algorithm that outputs a set-multilinear ΣΠΣ(k) representation of f .

Proof. We are given (G1, G2, . . . Gk) and our aim is to find Hi-s such that f =
∑
i∈[k]GiHi is a set-multilinear

ΣΠΣ(k) representation of f . Let Y = var(G1, G2, . . . Gk) and Z = X \Y . Note that, Hi ∈ F[Z]. Notice that,
if we have black-box access to the individual Hi’s, then we can learn them just by black-box factorization
followed by sparse reconstruction of the linear factors. We will achieve something close to this in principle.

As a first step, we find the linear dependency structure among theGi-s using Lemma 4.9. LetG1, G2, . . . Gc
be a basis of linear space of Gi-s (we can always ensure this by relabelling of gates). Also, let M be a k × c
matrix which is the corresponding linear dependence matrix we get from Lemma 4.9, that is,

Mk×c

G1

...
Gc

 =

G1

...
Gk

 . (2)

Note that,

f =
(
H1, · · · , Hk

)
·

G1

...
Gk

 =
(
H1, · · · , Hk

)
·M ·

G1

...
Gc


For i ∈ [c], define H̃i by the following equality

H̃1

...

H̃c

 := MT


H1

...

.
Hk

 . (3)

Thus,

f(Y, Z) =
∑
i∈[k]

Hi(Z)Gi(Y ) =
∑
i∈[c]

H̃i(Z)Gi(Y ). (4)

By the proof of Lemma 3.6 in [BSV21] we can get black-box access to H̃.
Note that, we can’t directly set up a system for Hi’s because they can potentially depend on Ω(n)

variables, and hence our system will have a large number of unknowns. Instead, we will apply an invertible
linear transformation on Z variables and reduce our variables to poly(k).

Observe that, 〈
∂f

∂Z

〉
⊆ G1(Y ) ·

〈
∂H1

∂Z

〉
+ · · ·+Gk(Y ) ·

〈
∂Hk

∂Z

〉
Thus,

dim

〈
∂f

∂Z

〉
≤ k · ev(Hi) = O(k6).

By Lemma 3.16 we can get an invertible linear transformation A s.t. f(AZ, Y ) ∈ F[z1, . . . , zm, Y ] and
m = O(k6).

Let Hi(AZ) =
∏
j∈[k5](ai,j,1z1 + ai,j,2z2 . . . ai,j,rzm), where ai,j,k are unknowns that we intend to find.
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And we have, the following equality along with BB access to H̃i(AZ)’s.H̃1(AZ)
...

H̃c(AZ)

 = MT

H1(AZ)
...

Hk(AZ)

 .

Now, we will set up a system of polynomial equations with O(k6) variables s.t. the lift to Hi(A
−1 ·AZ)

is set multilinear w.r.t to the same partition across all Hi’s (Observation 7.1). Note that, a solution exists
and every solution will give us a valid representation.

For time complexity analysis, we have linear-algebraic steps which can be done in poly(n)-time. And for
system-solving, we have O(k6) unknowns, with kO(k) equations of degree at most O(k5). This gives that the

total time complexity is bounded by poly
(
n, kk

kO(1))
.

7.4 Putting it All Together

We now show how to combine all the lemmas and subroutines developed so far to get the full reconstruction
algorithm for set-multilinear ΣΠΣ(k) circuits with an unknown partition. The theorem below is basically a
restatement of Theorem 3 (only for the randomized algorithm over general fields).

Theorem 7.9. Given black-box access to a degree d, n-variate polynomial f ∈ F[X] such that f is computable
by a set-multilinear ΣΠΣ(k) circuit Cf over the field F with char(F) > d or char(F) = 0, there is a randomized

poly(dk
3

, kk
k10

, n) time algorithm that outputs a ΣΠΣ{tjXj}(k) circuit computing f .

Proof. Our algorithm is recursive and we assume that we have an efficient algorithm for reconstructing a set-
multilinear ΣΠΣ(k−1) circuit that runs in time A(n, k−1, d). For the base case of k = 1, the reconstruction
algorithm follows directly from black-box factoring result of [KT90].

Now assume k ≥ 2. By stripping off all the linear factors Corollary 3.13, and closure of factoring Lemma
3.12, we can assume that Cf is simple and has f has no linear factors. We can also assume that Cf is
minimal. This is because if f has a ΣΠΣ{tjXj}(k) representation with a non-minimal circuit, then it also
has ΣΠΣ{tjXj}(k) representation with a minimal circuit, which is obtained by just deleting any subset of
multiplication gates in the non-minimal circuit which sums to zero.

If d = O(k5), then we invoke the algorithm in Lemma 7.2 to learn a ΣΠΣ{tjXj}(k) representation of C.
Otherwise, we invoke the algorithm from Lemma 7.5 to compute the set L of pairs of linear forms. For

each pair (`1, `2) ∈ L we do the following: We invoke Lemma 7.6 to compute a set S of at most 2k − 2
ΠΣ circuits and then invoke Lemma 7.7 to compute a set S̄ of k-tuples. Let us call this final set S̄(`1,`2).
For each k-tuple (G1, G2, . . . , Gk) ∈ S̄(`1,`2) we invoke the algorithm of Lemma 7.8 to output a circuit. We
then verify that the output circuit indeed has the ΣΠΣ{tjXj}(k) format and then we check (by running a
polynomial identity testing algorithm) if it computes f . If it passes both these verification steps then the
algorithm halts and outputs that circuit. By Lemmas 7.5, 7.6, 7.7 and 7.8, we do know that for some choice
of (`1, `2) and for some choice of (G1, G2, . . . , Gk) ∈ S̄(`1,`2), the algorithm will succeed with high probability.

Time complexity analysis: Recall, A(n, k, d) is the time complexity of learning degree d, set-multilinear
ΣΠΣ(k) circuit computing f . We now upper bound A(n, k, d). Note that,

A(n, k, d) ≤ 2 · A(n, k − 1, d) + poly

(
n, kk

kO(1)
)

+ dk
O(1)

.

≤ 2k · A(n, 1, d) + k · poly

(
n, kk

kO(1)

, dk
O(1)

)
≤ poly(dk

O(1)

, kk
kO(1)

, n).
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7.5 NP-Hardness

We complement our reconstruction algorithm by showing that given a polynomial computed by a set-
multilinear ΣΠΣ circuit of unknown partition (and of arbitrary top fan-in), the task of merely finding a
partition is already NP-hard! Indeed, one can embed the problem of graph 3-coloring into a problem of
recovering the partition. The intuition is that one can think of each part as a color.

Lemma 7.10. Let G = (V,E) be a graph. Assume wlog that V = [n]. Define fG
∆
=

∑
(u,v)∈E

xuxvyu,v. Then

fG is computable by set-multilinear ΣΠΣ circuit iff G is 3-colorable.

Proof. Suppose that G is 3-colorable and let c : V → [3] be a coloring function. For j ∈ [3], define

Xj
∆
= {xu | c(xu) = j } ∪ {yu,v | c(xu), c(xv) 6= j }

Pick an edge (u, v) ∈ E and consider the corresponding summand xuxvyu,v. Since G is 3-colorable, c(xu) 6=
c(xv) hence xu and xv will be assigned to different parts. In addition, the variable yu,v to the remaining
part X[3]\{c(xu),c(xv)} . Note that the variable yu,v appears only once. Consequently, fG is computable by a
set-multilinear ΣΠΣ circuit.

For the other direction, recall that if a polynomial is computed by a set-multilinear circuit, each monomial
should pick up exactly one variable from each part in the partition. That is, there exists a partition of all the
variables into X1, X2, X3 such that for every (u, v) ∈ E, each variable in xuxvyu,v should belong to different
parts. We can now define a coloring function c : V → [3] as: c(xu) = j iff xu ∈ Xj . This implies that u and
v should have different colors and hence c constitutes a 3-coloring of G.

8 Discussion & Open Questions

In this paper we introduced a new technique and showed applications for identity testing and circuit recon-
struction.

1. One can extend our technique to “lift” PIT algorithms for constant-wise sums and products of circuits
of a class C to occur-k formulas of higher, constant depth (in this paper we just mentioned it for depth
3 circuits, but this lifting process can be iterated) with the addition restriction that all the intermediate
addition gates must have bounded fan-in. It is an interesting question to try to remove this restriction
on fan-in.

2. In addition to characteristic requirements, a difference between the result of [ASSS16] and our result
is the ability of [ASSS16] to handle powers. In particular, consider the following “symmetric” version
of the sparsity testing problem of [GK85]: given two sparse polynomials f, g and an integer e, decide

if f = ge. In the setting of [ASSS16], C
∆
= f − ge is considered an occur-2 formula and hence can be

tested efficiently, albeit for a sufficiently large characteristic11. In our setting, C is an occur-(e + 1)-
formula hence rendering our PIT algorithms inefficient when e is super-constant. Can one leverage our
techniques to solve this problem for all fields?
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A The Fundamental Property of the Alternant

Lemma A.1. [Kay11, Claim 7] Let f = {f1(X), f2(X), . . . , fk(X)} ⊆ F[X]. Let X1, . . . , Xk be disjoint sets
of variables each of size n. Define:

Q
∆
=


f1(X1) f2(X1) · · · · · · fm(X1)
f1(X2) f2(X2) · · · · · · fm(X2)

...
...

...
...

...
f1(Xk) f2(Xk) · · · · · · fm(Xk)

 .

Then the polynomials in f are F-linearly independent iff det(Q) 6≡ 0.

Proof. We will show, via induction on k, that Q has full rank, or equivalently, the determinant of Q is a
non-zero polynomial. Note that k = 1 follows directly. On expanding Det(Q) along the first row we get,

Det(Q) =

k∑
j=1

(−1)j+1fj(X1)Q1j

where Qij is the determinant of the ij-th minor. Notice that every Q1j , j ∈ [k], is a polynomial in the set of
variables X2, ..., Xk. By induction, every Q1j is a nonzero polynomial (since every subset of a set of F-linearly
independent polynomials is also F-linearly independent). If Det(Q) was the zero polynomial then plugging in
random values for X2, ..., Xk would give us a nonzero F-linear dependence among f1(X1), f2(X1), ..., fk(X1),
which is a contradiction. Hence, Det(Q) must be nonzero.

To obtain the full version of Lemma 4.7 is obtained by treating a (different) set of variables Z as field
constants in F(Z).
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