
Fast Numerical Multivariate Multipoint Evaluation

Sumanta Ghosh * Prahladh Harsha† Simao Herdade‡ Mrinal Kumar†

Ramprasad Saptharishi†

Abstract

We design nearly-linear time numerical algorithms for the problem of multivariate multi-
point evaluation over the fields of rational, real and complex numbers. We consider both exact
and approximate versions of the algorithm. The input to the algorithms are (1) coefficients of an
m-variate polynomial f with degree d in each variable, and (2) points a1, . . . , aN each of whose
coordinate has value bounded by one and bit-complexity s.

Approximate version: Given additionally an accuracy parameter t, the algorithm computes
rational numbers β1, . . . , βN such that | f (ai)− βi| ≤ 1/2t for all i, and has a running time
of ((Nm + dm)(s + t))1+o(1) for all m and all sufficiently large d.

Exact version (when over rationals): Given additionally a bound c on the bit-complexity of
all evaluations, the algorithm computes the rational numbers f (a1), . . . , f (aN), in time
((Nm + dm)(s + c))1+o(1) for all m and all sufficiently large d. .

Our results also naturally extend to the case when the input is over the field of real or
complex numbers under an appropriate standard model of representation of field elements in
such fields.

Prior to this work, a nearly-linear time algorithm for multivariate multipoint evaluation
(exact or approximate) over any infinite field appears to be known only for the case of uni-
variate polynomials, and was discovered in a recent work of Moroz [Mor21]. In this work, we
extend this result from the univariate to the multivariate setting. However, our algorithm is
based on ideas that seem to be conceptually different from those of Moroz [Mor21] and cru-
cially relies on a recent algorithm of Bhargava, Ghosh, Guo, Kumar & Umans [BGGKU22] for
multivariate multipoint evaluation over finite fields, and known efficient algorithms for the
problems of rational number reconstruction and fast Chinese remaindering in computational
number theory.

*California Institute of Technology, Pasadena, USA. besusumanta@gmail.com
†Tata Institute of Fundamental Research, Mumbai, India. {prahladh, mrinal, ramprasad}@tifr.res.in. Research sup-

ported by the Department of Atomic Energy, Government of India, under project 12-R&D-TFR-5.01-0500. Research of
second author partially supported by Google India Research Award.

‡Yahoo Research, San Francisco, USA. simaoherdade@gmail.com
git info: 029a57e , (2023-03-24 08:00:28 -0700) (nothing to see here)

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 33 (2023)

mailto:besusumanta@gmail.com
mailto:\{prahladh, mrinal, ramprasad\}@tifr.res.in
mailto:simaoherdade@gmail.com

1 Introduction

In this paper, we study the problem of designing fast algorithms for the following natural compu-
tational problem.

Given an m variate polynomial f of degree less than d in each variable over an underly-
ing field F as a list of coefficients, and (arbitrary) evaluation points a1, a2, . . . , aN ∈ Fm,
output f (ai) for every i.

This computational task is referred to as Multivariate Multipoint Evaluation (MME) in literature
and fast algorithms for MME are of fundamental interest in computational algebra, not only due
to the evident natural appeal of the problem but also due to potential applications of MME as an
important subroutine for algorithms for many other algebraic problems (see [KU11] for a detailed
discussion on these applications).

The input for MME is specified by (dm + Nm) field elements, or alternatively (dm + Nm) · s bits,
where s is an upper bound on the bit complexity of any field constant in the input. For finite fields,
s can be taken to be log |F|. Clearly, there is an algorithm for this problem that takes roughly (dm ·
Nm)1+o(1) many field operations or about (dm ·Nm · s)1+o(1) bit operations: we iteratively evaluate
the polynomial one input point at a time. Obtaining significantly faster and ideally nearly-linear1

time algorithms for MME is the main question motivating this work. Here the time complexity
of an algorithm could be measured either in terms of the number of field operations (in case the
algorithm is “algebraic2” in the sense that only uses field operations over the underlying field, e.g.
like the trivial algorithm outlined above) or the number of bit operations.

1.1 Prior work

Before describing the precise problem studied in this work and our main results, we start with a
brief discussion of the current state of art of algorithms for MME. While the results in this paper
are over infinite fields like reals, rationals and complex numbers, we begin our discussion of prior
work on MME by recalling the state of affairs over finite fields.

1.1.1 Multipoint evaluation over finite fields

Multipoint evaluation of polynomials is a non-trivial problem even for the case of univariate poly-
nomials, and a non-trivial algorithm is unclear even for this case over any (sufficiently large) field.
When the set of input points have additional structure, for instance, they are all roots of unity of
some order over the underlying field, the Fast Fourier Transform (FFT) gives us a nearly-linear
time algorithm for this problem. However, it is not immediately clear whether ideas based on FFT
can be easily extended to the case of arbitrary evaluation points.

1We say that an algorithm has time complexity nearly-linear in the input size if for all sufficiently large n, the
algorithms runs on inputs of size n in time n1+o(1).

2Algorithms for MME that only need arithmetic over the underlying field in their execution, or in other words can
be modelled as an arithmetic circuit over the underlying field are referred to as algebraic.

2

In a beautiful work in 1974, Borodin and Moenck [BM74] designed a significantly faster algo-
rithm for univariate multipoint evaluation by building on FFT and a fast algorithm for division
with remainder for univariate polynomials. The algorithm of Borodin and Moenck worked over
all fields and was algebraic, in the sense mentioned earlier, the number of field operations needed
by the algorithm was (N + d)1+o(1), nearly-linear in the number of field elements in the input.

Extending these fast algorithms for multipoint evaluation from the univariate to the multivari-
ate case proved to be quite challenging, even for the bivariate case. Nüsken and Ziegler [NZ04]
gave a non-trivially fast algorithm for this problem over all fields, although the precise time com-
plexity of their algorithm was not nearly linear in the input size. The state of art for this problem
saw a significant improvement in the works of Umans [Uma08] and Kedlaya & Umans [KU08] (see
also [KU11]) who gave fast algorithms for MME for the case when the number of variables m is
significantly smaller than the degree parameter d, i.e. m = do(1), over fields of small characteristic
and all finite fields respectively.

This case of large number of variables was addressed recently in works of Bhargava, Ghosh,
Kumar & Mohapatra [BGKM22] and Bhargava, Ghosh, Guo, Kumar & Umans [BGGKU22] who
gave fast3 algorithms for MME over fields of small characteristic and over all finite fields respec-
tively, for all sufficiently large m, d.

We also note that the algorithms of Kedlaya & Umans [KU08] and those of Bhargava, Ghosh,
Guo, Kumar & Umans [BGGKU22] for MME over all finite fields are not algebraic, and in partic-
ular rely on bit access to the input field elements and bit operations on them. This is in contrast
to the algorithms of Umans [Uma08] and Bhargava, Ghosh, Kumar & Mohapatra [BGKM22] for
MME over finite fields of small characteristic that are algebraic in nature. Designing algebraic
algorithms for MME over all finite fields continues to be a very interesting open problem in this
line of research. ‘

1.1.2 Multipoint evaluation over infinite fields

As we shall see, our understanding of the problem here is rather limited compared to that over
finite fields. However, before moving on to the results, we first discuss some subtleties with the
definition of this problem itself over infinite fields.

Field operations vs bit complexity: Field arithmetic over finite fields preserves the worst case
bit complexity of the constants generated, but this is not the case over infinite fields. This increase
in bit-complexity in intermediate computations leads to some issues that we discuss next.

The first issue is that even the bit complexity of the output may not be nearly-linear in the
input bit complexity, thereby ruling out any hope of having an algorithm with time complexity
nearly-linear in the bit complexity of the input. The second issue is that even for inputs where the

3Strictly speaking, these algorithms do not run in nearly-linear time, since the running time has (log |F|)c factor
where c is a fixed constant that can be greater than one. However, the dependence of the running time on the term
(dm + Nm) is nearly-linear.

3

bit complexity of the input field elements and the output field elements are promised to be small,
it might be the case that in some intermediate stage of its run, an algorithm for MME generates
field elements of significantly large bit complexity. For instance, the classical algorithm of Borodin
& Moenck for univariate multipoint evaluation has near linear complexity in terms of the number
of field operations, but it is not clear if the bit complexity of the algorithm is also nearly-linear in
the input and output bit complexities.

The input and output model: For fields such as real or complex numbers, we need to specify a
model for providing the inputs which potentially require infinite precision. The standard model
used in numerical algorithms is via black-boxes that we refer to as approximation oracles (formally
defined in Definition 2.7). Informally an approximation oracle for a real number α ∈ (−1, 1)
provides, for every k ∈ N, access to the first k bits of α after the decimal, and its sign in time
Õ(k) (for complex numbers, we will assume the real and imaginary parts are provided via such
oracles).

For the output, we could either ask to compute the evaluations to the required precision, or
compute the evaluations exactly when, say, in the case of rational numbers. In this paper, we con-
sider both versions of these problems.

Note that computing a real number α ∈ (−1, 1) within a given error ε < 1 is essentially
the same as computing the most significant Ω(log 1/ε) bits of the output correctly. In this sense,
O(log 1/ε) provides a natural upper bound on the bit complexity of the output for an instance of
approximate multipoint evaluation. Perhaps a bit surprisingly, we did not know an algorithm
for multipoint evaluation with bit complexity nearly-linear in input size and (log 1/ε) even for
the setting of univariate polynomials till very recently. This is in contrast to the result of Borodin
& Moenck [BM74] that obtains an upper bound on the number of field operations (but not the
number of bit operations) for (exact) univariate multipoint evaluation over all fields.

In a beautiful recent work, Moroz [Mor21] designed such an algorithm for the approximation
version of univariate multipoint evaluation. Formally, he proved the following theorem.

Theorem 1.1 (Moroz [Mor21]). There is a deterministic algorithm that takes as input a univariate poly-
nomial f (x) = ∑d

i=0 fixi ∈ C[x] as a list of complex coefficients, with (| f |1 := ∑d
i=0 | fi| ≤ 2τ) and inputs

a1, a2, . . . , ad ∈ C of absolute value less than one, and outputs β1, β2, . . . , βd ∈ C such that for every i,

| f (ai)− βi| ≤ | f |1 · 2
−t ,

and has bit complexity at most Õ(d(τ + t)).

As our main result in this paper, we prove a generalization of Theorem 1.1 to the multivariate
setting.

4

1.2 Our results

Before stating our results, we formally define the problems that we study. The first question of
approximate-MME is essentially the generalization of the univariate version of the problem stud-
ied by Moroz [Mor21]. For convenience, we state the problem for the fields of rational and real
numbers, but they extend in a straightforward manner to complex numbers and other natural
subfields of it.

Problem 1.2 (Approximate multivariate multipoint evaluation (approximate-MME)). We are given
as input an m-variate polynomial f ∈ R[x] of degree at most (d− 1) in each variable as a list of coefficients,
points a1, . . . , aN ∈ Rm, and an accuracy parameter t ∈ N. Here every field element is assumed to be in
(−1, 1) and is given via an approximation oracle.

Compute rational numbers β1, . . . , βN such that | f (ai)− βi| < 1/2t for all i ∈ [N].

We also study the following variant of MME in the paper.

Problem 1.3 (Exact multivariate multipoint evaluation (exact-MME)). We are given as input an m-
variate polynomial f ∈ Q[x] of degree at most (d − 1) in each variable as a list of coefficients, points
a1, . . . , aN ∈ Qm and an integer parameter s > 0, such that all rational numbers in the input and output
are expressible in the form p/q for integers p, q with |p|, |q| < 2s and every rational number in the input
has absolute value less than one.

Compute f (a1), . . . , f (aN).

The restriction that the absolute value of all constants is at most one requires a short discussion.
The restriction on the coefficients of f is without loss of generality (by scaling) but the restriction
on the coordinates of points is not without loss of generality, but is nevertheless well-motived. See
Remark 5.1 for details.

Our main result is fast algorithms for Problem 1.2 and Problem 1.3 for all sufficiently large d.

Theorem 1.4 (Approximate multipoint evaluation - informal). There is a deterministic algorithm for
approximate-MME (Problem 1.2) that runs in time

((Nm + dm)t)1+o(1) ,

for all sufficiently large d, t and all m.

Theorem 1.5 (Exact multipoint evaluation - informal). There is a deterministic algorithm for exact-
MME over rational numbers (Problem 1.3) that runs in time

((Nm + dm)s)1+o(1)

for all sufficiently large d, s and all m.

5

Theorem 1.4 is a generalization (by scaling coefficients) of Theorem 1.1 of Moroz in the sense
that it handles an arbitrarily large number of variables. Interestingly, our proof is not an extension
of the proof of Theorem 1.1 to larger number of variables. It relies on a different set of ideas
and appears to be conceptually different from the proof of Moroz [Mor21]. Moroz’s algorithm
relies on geometric ideas, and does not involve any modular arithmetic, whereas ours crucially
relies on various reductions from an instance of MME (approximate or exact) over rational, real
or complex numbers to instances of MME over finite fields. In fact, a generalization of Moroz’s
univariate algorithm to higher dimensions is not immediately clear to us, and would be interesting
to understand.

As discussed in the introduction, while measuring the complexity of algorithms for MME
over the field of rational numbers in terms the number of bit operations, the dependence of the
running time on the bit complexity of the output, as in Theorem 1.5 is quite natural and essentially
unavoidable. However, the fact that Theorem 1.5 takes the bit complexity of the output as a part
of its input does not seem very natural and desirable. It would be very interesting to have an
algorithm for exact-MME over rationals that does not need a bound on the output complexity as
a part of the input, but runs in time nearly-linear in the input and output bit complexity.

1.3 Overview of the proofs

In this section, we outline the main ideas in the proofs of Theorem 1.4 and Theorem 1.5. For this
discussion, we assume for simplicity that the input is over the field of rational numbers, and the
field constants in the input are given to us exactly. The ideas here generalize to the setting of real
inputs (for approximate-MME) by some clean and simple properties of approximation oracles.

1.3.1 A naïve first attempt

We start by setting up some notation. Let f ∈ Q[x] be an m variate polynomial of degree at most
(d− 1) in each variable and let a1, a2, . . . , aN ∈ Qm be the input points of interest. For now, let us
assume that our goal is to output the value of f on each ai exactly. We are also given the positive
integer t such that the numerator and the denominator of each of the field constants in the input,
and the output are at most 2t.

From the prior work of Bhargava, Ghosh, Guo, Kumar and Umans [BGGKU22] we have fast
algorithms for MME over all finite fields. Therefore, a natural strategy for solving MME over
rational numbers is to somehow reduce the problem over rationals to instances of the problem
over finite fields, and use the known algorithms for this problem over finite fields to solve these
instances. A first step towards such a reduction would be to clear all the denominators in the
input instance by taking their LCM and obtain an instance of MME over the ring of integers, and
then work modulo a large enough prime (or several small enough primes if needed for efficiency
reasons), thereby reducing to instances of MME over finite fields. However, this seemingly natural
approach runs into fundamental issues even for the simpler setting where each evaluation point ai

6

has integer coordinates, and the only rational numbers appear in the coefficients of the polynomial
f . We now briefly elaborate on this issue.

Let us consider an input instance where every denominator in the coefficient vector of f is a
distinct prime. For instance, we can get such an instance where each of the first dm primes appears
as a denominator of some coefficient of f . Note that the input bit complexity parameter t needs
to be at most poly(log d, m) for this case. Since the length of this coefficient vector is dm, the LCM
of these denominators is a natural number that is at least as large as the product of the first dm

primes, which is at least 2dm
, and hence has bit complexity at least dm. Thus, if we clear out the

denominators of the coefficients of f to obtain a polynomial f̂ with integer coefficients, each of
the coefficients of f̂ can have bit complexity as large as dm. In this case, the total bit complexity of
the coefficient vector of f̂ is at least d2m, which is roughly quadratic in the original input size, and
thus, any algorithm obtained via this approach will have prohibitively large time complexity.

In both our algorithms for approximate-MME and exact-MME, we indeed crucially rely on the
algorithms for MME over finite fields due to Bhargava et al [BGGKU22]. However, this reduc-
tion is somewhat delicate and needs some care. On the way we rely on some well known tools
from computational algebra and number theory, like fast Chinese remaindering, fast rational re-
construction, Kronecker and inverse Kronecker maps. Perhaps a bit surprisingly, our algorithm
for exact-MME uses the algorithm for approximate-MME as a subroutine.

Figure 1: Overview of reductions

Exact-MME
over integers

Fast-CRT + Faster [BGGKU22]

truncate
+ scale

un-scale

Fast
continued
fractions

Approximate-MME

Exact-MME over rationals

We now give an overview of the main ideas in these algorithms. We start with a very simple
algorithm for exact-MME for the special case of integer inputs that serves as a crucial subroutine
for the algorithm for approximate-MME.

1.3.2 Algorithm for exact-MME over integers

For this problem, all the field elements in the input are integers and the absolute value of each of
these input field elements and those in the output is at most 2s for a given parameter s.

The algorithm for MME for this case simply does this computation by working modulo a large

7

enough prime (based on the given input and output complexities), thereby giving us a reduction
from the problem over integers to that over a large enough finite field. At this point, we essentially
invoke the algorithm of Bhargava et al for MME over finite fields to solve this problem. One
subtlety here is that as stated in their paper [BGGKU22], the algorithm does not quite run in
nearly-linear time due to two factors. The first issue is that the running time has a poly(log |F|)
term, where the degree of poly() term can be strictly larger than one. The other issue is that even
in terms of the dependence on d, m, their algorithm is nearly-linear time only when m is growing.
So, for constant m, we cannot directly invoke the algorithm in [BGGKU22] for our applications.

We get around both these issues using some simple ideas. To address the issue of a constant
number of variables, we artificially increase the number variables, while reducing the individual
degree bound by applying an inverse-Kronecker map to the polynomial. Then, to deal with the
issue of dependence of the running time on the field size, we first do a lift to integers and a Chinese
remaindering to reduce this problem to many such instances of MME over smaller finite fields.
This is essentially the same as the reduction used by Kedlaya & Umans in [KU11]. To keep the
running time nearly-linear, we do the Chinese remaindering using the well known nearly-linear
time algorithms. The details can be found in Section 3 and Section 4.

1.3.3 Algorithm for approximate-MME

Recall that for approximate-MME, we do not need to compute the value of the polynomial on the
input points exactly, but only require the outputs to be within some error of the actual evaluations.
For simplicity, let us assume that the input polynomial and the evaluation points are all rational
numbers, and are given exactly. As alluded to earlier in this section, it seems difficult to simply
clear the denominators (via an LCM) and reduce to the integer case since there are instances, like
when the denominators are all distinct primes, where this process prohibitively blows up the size
of the coefficients. However, working with approximations gives us the necessary wiggle room to
make something close to this idea work.

As the first step of the algorithm, we approximate all the field constants, the coefficients of the
given polynomial as well as the coordinates of the input points by truncating their decimal repre-
sentation to k bits after decimal (for some sufficiently large k to be chosen carefully). Rounding a
real number α of absolute value at most 1 like this gives us a rational number α̂ of the form a/2k for
some integer a with |a| ≤ 2k. Moreover, we have that |α− α̂| < 1/2k. We now solve MME on this
instance obtained after rounding. The crucial advantage now is that since all the denominators in
this rounded instance are 2k, their LCM is just 2k, and clearing the denominator no longer incurs a
prohibitive increase in the bit complexity. We now invoke the algorithm for exact-MME for integer
instances described in the earlier subsection. The details can be found in Section 5.

8

1.3.4 Algorithm for exact-MME over rationals

For our algorithm for exact-MME, we start by first invoking the algorithm for approximate-MME
on the instance for a sufficiently good accuracy parameter t. The choice of t depends upon the
output bit complexity that is given to us as a part of the input. From the guarantees on the out-
put of the approximate-MME algorithm, we know that the approximate-MME outputs rational
numbers that are at most 1/2t away from the true evaluations. If we can somehow recover the
true evaluations from these approximations, we would be done! What we have here are instances
of the following problem: our goal is to find a hidden rational number, denoted by a/b (the true
evaluation) and we have access to another rational number, denoted by A/B (an approximation
to the true evaluation), with the guarantee that |A/B− a/b| < 1/2t and |A|, |B| < 2O(t). Crucially,
we also have a parameter s (given to us as a part of the input) and a guarantee that |a|, |b| < 2s.

This is essentially an instance of rational number reconstruction, which is a well-studied and
classical problem of interest in computational algebra and number theory. We rely on these results
(essentially in a black-box manner), and in particular the notion and properties of continued frac-
tions to solve this problem efficiently. We observe that our choice of the parameter t (as a function
of s) implies that a/b is a convergent (a rational number obtained by a truncation of the continued
fraction representation of A/B). This observation along with some of the properties of convergents
lets us find a/b in nearly-linear time given A/B. The details can be found in Section 6.

2 Preliminaries

Notation

• We will use boldface letters a, b etc. for finite-dimensional vectors. We will also use this to
denote tuples of variables x = (x1, . . . , xn) etc. Usually the dimension of the vectors would
be clear from context.

• For exponent vectors e = (e1, . . . , en) ∈ Zn
≥0 and a vector x = (x1, . . . , xn), we will use xe to

denote the monomial xe1
1 · · · x

en
n .

• For a real number α, we use bαe to denote the closest integer to α. When α = a + 1
2 for some

integer a, bαe is defined as a.

2.1 Useful inequalities

Lemma 2.1 (Bounds on binomial series). For d ∈N and ε > 0 with |ε| < 1/d2, we have

1 + dε ≤ (1 + ε)d ≤ 1 + dε + d2ε2.

Proof. The inequalities are clearly true for d = 1, 2, so for the rest of this discussion, we assume
without loss of generality that d ≥ 3.

9

For any i ≥ 3, we have (d
i) ≤ (d

2) · di−2. Hence,∣∣∣∣∣ d

∑
i=3

(
d
i

)
εi

∣∣∣∣∣ ≤ d

∑
i=3

(
d
i

) ∣∣∣εi
∣∣∣ ≤ (d

2

)
· ε2 ·

d−2

∑
i=1
|dε|i <

(
d
2

)
· ε2

where the last inequality uses ε < 1/d2. Therefore,

(1 + ε)d = 1 + dε +

(
d
2

)
ε2 +

d

∑
i=3

(
d
i

)
εi ≥ 1 + dε

and

(1 + ε)d = 1 + dε +

(
d
2

)
ε2 +

d

∑
i=3

(
d
i

)
εi

≤ 1 + dε +

(
d
2

)
ε2 +

(
d
2

)
ε2

≤ 1 + dε + d2ε2.

2.2 Kronecker map for base-d

The Kronecker map is a commonly used tool used to perform a variable reduction without chang-
ing the underlying sparsity. This map is defined formally as follows.

Definition 2.2 (Kronecker map for base-d). The c-variate Kronecker map for base-d, denoted by
Φd,m;c maps cm-variate polynomials into a c-variate polynomials via

Φd,m;c(f (x1,1, . . . , x1,m, . . . , xc,1, . . . , xc,m)) = f
(

1, yd
1, yd2

1 , . . . , ydm−1
, . . . , 1, yd

c , yd2

c , . . . , ydm−1

c

)
.

If f is a polynomial of individual degree less than d, then the monomial xe1
1 · · · x

ec
c is mapped to the monomial

ye1
1 · · · y

ec
c where ei is the base-d representation of ei.

In the same spirit, we define the inverse Kronecker, denoted by Φ−1
d,m;c, that maps a c-variate polyno-

mial of individual degree less than dm into a cm-variate polynomial of individual degree less than d, given
via extending the following map linearly over monomials:

Φ−1
d,m;c(y

e1
1 · · · y

ec
c) = xe1

1 · · · x
em
m

where xi = (xi,1, . . . , xi,m) and ei ∈ {0, . . . , d− 1}m is the base-d representation of ei < dm.

Associated with the inverse Kronecker map, we also define ψd,m;c : Fc → Fcm that acts on points, given
by

ψd,m;c : (a1, . . . , ac) 7→ (1, ad
1, . . . , adm−1

1 , . . . , 1, ad
c , . . . , adm−1

c).

10

♦

The inverse Kronecker map is defined so that we have the following observation.

Observation 2.3 (Kronecker maps and evaluations). If f (x1, . . . , xc) is a polynomial of individual de-
gree less than dm, then for any a ∈ Fc, we have that Φ−1

d,m;c(f)(ψd,m;c(a)) = f (a).

The above observation would be useful to trade-off degree with the number of variables as
needed in some of our proofs.

2.3 Computing all primes less than a given number

The classical Prime Number Theorem [Had96, LVP97] asserts that there are Θ(N/ log N) primes
numbers less than N, asymptotically. We can compute all prime numbers less than N in determin-
istic Õ(N) time.

Algorithm 1: PrimeSieve
Input : An integer N > 1
Output: All prime numbers less than N.

1 Initialise an array S indexed with 2, 3, . . . , N with all values set to TRUE.
2 for i← 2 to

√
N do

3 if S[i] is TRUE then
4 Set j← 2i
5 while j ≤ N do
6 Set S[j] to FALSE.
7 j← j + i.

8 return {i : S[i] is TRUE}.

Lemma 2.4 (Computing primes less than a given number). There is a deterministic algorithm (Algo-
rithm 1) that computes the set of all primes less N in deterministic time Õ(N).

2.4 Fast Chinese Remaindering

We also rely on the following two theorems concerning fast algorithms for questions related to
the Chinese Remainder Theorem (CRT). We refer the reader to the book by von zur Gathen and
Gerhard [GG13] for proofs.

Lemma 2.5 (Fast-CRT: moduli computation). There is an algorithm that, when given as input coprime
positive integers p1, . . . , pr and a positive integer N with N < ∏ pi < 2c, computes the remainders
ai = N mod pi for i = 1, . . . , r in deterministic Õ(c) time.

For proof of the above lemma see [GG13, Theorem 10.24].

11

Lemma 2.6 (Fast-CRT: reconstruction). There is an algorithm that, when given as input coprime positive
integers p1, . . . , pr and a1, . . . , ar such that 0 ≤ ai < pi outputs the unique integer 0 ≤ N < ∏ pi such
that N = ai mod pi for i = 1, . . . , r in deterministic Õ(c) time where ∏ pi < 2c.

For proof of the above lemma see [GG13, Theorem 10.25]

2.5 Input model for arbitrary precision reals

Throughout this section, we will assume that all real numbers that are “inputs” (namely the co-
efficients of the polynomial and the coordinates of the evaluation points) are in the range (−1, 1)
and are provided via approximation oracles with the following guarantees:

Definition 2.7 (Approximation oracle). The approximation oracle for α ∈ (−1, 1), can provide the
“sign” α in O(1) time, and on input k returns an integer bk ∈ [−2k, 2k] satisfying

|α− bk/2k| < 1/2k.

We will use bαek to refer to the fraction bk/2k obtained from the approximation oracle.
The running time of the approximation oracle is the time taken to output bk. We will say that the

approximation oracle is efficient if the running time is Õ(k). ♦

Such efficient approximation oracles can be obtained for any “natural” real number from any
sufficiently convergent series. For algebriac reals of the form

√
2 etc., the standard Taylor series is

sufficient. Even for “natural” transcendental numbers, we may have such approximation oracles:

e = 1 +
1
1!

+
1
2!

+ · · · ,

π = 4 · tan−1(1)

= 4 ·
(

tan−1(1/2) + tan−1(1/3)
)

= 4 ·
(

1/2−
1/23

3
+

1/25

5
− · · · + 1/3−

1/33

3
+

1/35

5
− · · ·

)
.

Any explicit series with Õ(k) terms of the series having an error less than 1/2k would qualify as
an efficient approximation oracle for the purposes of the approximate-MME algorithm over reals.

Lemma 2.8 (Repeated exponentiation for approximation oracles). Given an approximation oracle A
for a real number α ∈ (−1, 1) with running time T(k), and any positive integer D, we can build an
approximation oracle AD for αD with running time T(k + O(log D)) + Õ(k log D).

Proof. On an input k, we wish to find an integer rk ∈ [−2k, 2k] such that
∣∣αD − rk/2k

∣∣ < 1/2k.
Let us first consider the case when D is even. Let t = k + 3 and suppose we recursively

compute an integer at ∈ [−2t, 2t] such that
∣∣αD/2 − at/2t

∣∣ < 1/2t. Let δ = at/2t − αD/2.∣∣∣αD − a2
t/22t

∣∣∣ = ∣∣∣(αD/2)2 − (αD/2 + δ)2
∣∣∣ < 4 · 1/2t ≤ 1/2k+1

12

Thus, if Rk = rk · 22t−k is the multiple of 22t−k that is closest to a2
t , then∣∣∣αD − rk/2k

∣∣∣ ≤ ∣∣∣αD − a2
t/22t

∣∣∣+ |a2
t/22t − rk22t−k/22t|

< 1/2k+1 + 22t−k−1/22t ≤ 1/2k.

If D is odd, then let t = k + 4. We use the approximation oracle A to obtain an integer bt ∈
[−2t, 2t] such that |α− bt/2t| < 1/2t, and recursively compute an integer at ∈ [−2t, 2t] such that∣∣α(D− 1)/2 − at/2t

∣∣ < 1/2t. Then,

∣∣∣αD − a2
t bt/23t

∣∣∣ ≤ |α| ∣∣∣∣(α
(D− 1)/2

)2
− a2

t/22t

∣∣∣∣+ |a2
t/22t| |α− bt/2t|

< 4 · 1/2t + 1/2t ≤ 1/2k+1.

Similarly, if Rt = rt · 23t−k is the multiple of 23t−k that is closest to a2
t bt, then∣∣∣αD − rt/2k

∣∣∣ < 1/2k.

If T (k, D) is the running time of this algorithm (namely Algorithm 2) to compute rk ∈ [−2k, 2k]

such that
∣∣αD − rk/2k

∣∣ ≤ 1/2k, then we have

T (k, D) ≤ T (k + 4, D/2) + Õ(k)

≤ T (k + O(log D), 1) + Õ(k log D)

= T(k + O(log D)) + Õ(k log D).

Algorithm 2: ApproximationOracle-Powering
Input : An approximation oracle A for a real number α, an integer D > 0, and an integer

k > 0.
Output: An integer rk ∈ [−2k, 2k] such that

∣∣αD − rk/2k
∣∣ < 1/2k.

1 if D = 1 then
2 return rk = A(k).

3 if D is even then
4 Let t = k + 3.
5 Compute at = ApproximationOracle-Powering(A, D/2, t).
6 return ba2

t/22t−ke.
7 else
8 Let t = k + 4.
9 Compute bt = A(t). Compute at = ApproximationOracle-Powering(A, (D− 1)/2, t).

10 return ba2
t · bt/23t−ke.

We also note that this notion of approximation oracles naturally extends to representation of

13

complex numbers. Here, each complex number is given by two such oracles, corresponding to the
real and the imaginary part respectively.

3 Revisiting MME over prime fields

We recall the result of Bhargava, Ghosh, Guo, Kumar and Umans [BGGKU22].

Theorem 3.1 (Fast multivariate multipoint evaluation over finite fields [BGGKU22]). There is a
deterministic algorithm that when given as input the coefficient vector of an m variate polynomial f of
degree less than d in each variable over some finite field F, and N points a1, a2, . . . , aN ∈ Fm outputs
f (a1), f (a2), . . . , f (aN) in time

(dm + Nm)1+o(1) · poly(m, d, log |F|),

for all m ∈N and sufficiently large d ∈N.

The above running time is not quite nearly-linear in the input considered as bits due to the
factor of poly(log |F|). Also, in the setting when m is a constant, we can no longer absorb poly(d)
within (Nm + dm)o(1). However, we show below that for the case of prime fields, we can get
around these issues and obtain the following nearly linear-time bound.

Theorem 3.2 (Nearly-linear time MME over prime fields). There is a deterministic algorithm (namely
Algorithm 3) that, when given as input the coefficient vector of an m-variate polynomial f of degree less than
d in each variable over a prime field Fp, and N points a(1), . . . , a(N) ∈ Fm, outputs f (a(1)), . . . , f (a(N)) in
time

((dm + Nm) · log p)1+o(1)

for all m ∈N and sufficiently large d ∈N.

We first discuss how we handle the two cases when the number of variables is constant and
growing with the input respectively in the following two subsections and then prove Theorem 3.2.

We first discuss how we handle the two cases when the number of variables is constant and
growing with the input respectively in the following two subsections and then prove Theorem 3.2.

3.1 Handling cases when the number of variables is too small

As mentioned above, in the setting when the number of variables is too small (say m ≤ c for
a constant c), we may no longer have that poly(d) = do(m). However, we can use the inverse-
Kronecker map (Definition 2.2) to trade-off degree with the number of variables.

To make the parameters more informative, we rename them and let f be a c-variate polynomial
of individual degree less than D, and let a(1), . . . , a(N) ∈ Fc

p be the points at which we wish to
evaluate the polynomial.

14

Let d = blog Dc and m be the smallest integer such that dm > D. Note that dm > D > dm−1

and m = Θ(log D/log log D). If f (x1, . . . , xc) = ∑e fe · xe, define the polynomial g(y1,1, . . . , yc,m) =

Φ−1
d,m;c(f), as defined in Definition 2.2.

For all i ∈ [N], define ã(i) = ψd,m;c(a(i)), as defined in Definition 2.2. Then, from Observa-
tion 2.3, we have that f (a(i)) = g(ã(i)) for all i ∈ [N]. The following observation shows that ã(i)

can be computed efficiently from a(i).

Observation 3.3. Given a ∈ Fc
p, the point ã := ψ

(c)
d,m(a) ∈ Fcm

p can be computed in poly(d, m, c) ·
Õ(log p) time.

Proof. The running time bound follows from repeated exponentiation as adk
mod p = (adk−1

mod
p)d mod p and the fact that additions and multiplications modulo p can be performed in Õ(log p)
time.

Thus, the task of computing f (a(1)), . . . , f (a(N)) reduces to the task of computing the evalu-
ations g(ã(1)), . . . , g(ã(N)) where ã(i) = ψ

(c)
d,m(a). Also, the reduction runs in time ((Dc + Nc) ·

log p)1+o(1) since d, m = Do(1).

3.2 When individual degree and number of variables are moderately growing

We return to the familiar variable convention of f (x1, . . . , xm) ∈ Fp[x1, . . . , xm] with degree in
each variable less than d. From the previous section, may assume without loss of generality that
d, m = ω(1) and hence poly(d, m) = (dm + Nm)o(1). Let f be written as a sum of monomials as
follows.

f (x1, . . . , xm) = ∑
e

fe · xe1
1 · · · x

em
m .

Interpreting the above as a polynomial over integers with each coefficient in {0, 1, . . . , p− 1}, and
for any a ∈ {0, . . . , p− 1}m, the integer f (a) is bounded by dm · p · pdm. The idea is to use Chinese
Remainder Theorem to reduce the problem to MME over smaller prime fields.

15

Algorithm 3: NearlyLinearTimeMME-PrimeFields
Input : f (x1, . . . , xm) ∈ Fp[x1, . . . , xm] with degree in each variable less than d, and

a(1), . . . , a(N) ∈ Fm
p .

Output: Evaluations bi = f (a(i)) for i ∈ [N].

1 if m < log log d then
2 Let d′ = blog dc and m′ be the smallest integer such that (d′)m′ > d.
3 Replace f by Φ−1

d′,m′;m(f) and each a(i) by ψd′,m′;m(a(i)).

4 Let L̃ = (dm + 1) log p + m log d. Compute the first L̃ primes numbers {p1, . . . , pL̃}.
5 Let L ≤ L̃ be the smallest integer such that p1 · · · pL =: M > dm · p · pdm.
6 for e ∈ {0, . . . , d− 1}m do

7 Compute f (`)e = fe mod p` for ` ∈ L via fast-CRT-moduli-computation (Lemma 2.5).

8 for i ∈ [N], k ∈ [m] do

9 Compute ai,k,` = a(i)k mod p` for ` ∈ L via fast-CRT-moduli-computation (Lemma 2.5).

10 for ` ∈ L do

11 Let f (`)(x1, . . . , xm) = ∑e f (`)e xe ∈ Fpi [x].
12 Let a(i,`) = (ai,1,`, . . . , ai,m,`) ∈ Fm

p` for each i ∈ [N].
13 Compute bi,` = f (`)(a(i,`)) for all i ∈ [N] using Theorem 3.1.

14 for i ∈ [N] do
15 Compute the unique bi ∈ [0, M) such that bi = bi,` mod p` for all ` ∈ [L], via

fast-CRT-reconstruction (Lemma 2.6).

16 return (b1 mod p, . . . , bN mod p).

Proof of Theorem 3.2. The correctness of Algorithm 3 is evident.
As for the running time, Lines 1 to 3 takes (dm + Nm)1+o(1) time by Observation 3.3 and reduces

to the case when m ≥ log log d. In this case, Lines 4 and 5 require Õ(L̃) time (Lemma 2.4), which
is Õ(log p) · poly(d, m).

Using Lemma 2.5, we have that Lines 6 to 9 require time (dm + Nm) · Õ(log M) = ((dm + Nm) ·
log p)1+o(1).

From Theorem 3.1, we have that Line 13 runs in time (dm + Nm)1+o(1) · poly(d, m, log pi), and
since pi < Õ(L̃) = Õ(dm log p), the entire loop in Lines 10 to 13 takes time (dm + Nm)1+o(1) ·
Õ(log p) = ((dm + Nm) log p)1+o(1).

And finally, from Lemma 2.6 we have that the entire loop in Lines 14 to 15 takes time (Nm) ·
Õ(log M) = ((dm + Nm) · log p)1+o(1). Hence, Algorithm 3 runs in time ((dm + Nm) log p)1+o(1).

4 Exact-MME over integers with known output bit complexity

In this section, we study the following version of MME over integers.

16

Input: An integer s > 0, a polynomial f (x1, . . . , xm) ∈ Z[x1, . . . , xm] of individual de-
gree less than d, given as a list of dm integer coefficients, a set of points a(1), . . . , a(N) ∈
Zm with each coordinate of magnitude at most 2s, with the guarantee that all coeffi-
cients of f , coordinates of a(i)’s, and evaluations f (a(i)) are bounded in magnitude by
2s.

Output: Integers b1, . . . , bN that are the evaluations, i.e. bi = f (a(i)) for i ∈ [N].

Theorem 4.1 (Exact-MME over integers). There is a deterministic algorithm (namely Algorithm 4) that
on input as mentioned above returns the required output as mentioned above and runs in deterministic time
((dm + Nm) · s)1+o(1) for all m ∈N and sufficiently large d ∈N.

The main idea is to use the Chinese Remainder Theorem and reduce to the case of MME over
finite fields. Since we wish to obtain a nearly-linear time algorithm, we would once again need
to use Chinese Remainder Theorem implemented in nearly-linear time (Lemmas 2.5 and 2.6) and
make use of the nearly-linear time algorithm for MME over prime fields (Theorem 3.2).

Algorithm 4: ExactMME-integers

Input : f (x1, . . . , xm) ∈ Z[x1, . . . , xm] and a(1), . . . , a(N) ∈ Zn, and an integer s > 0 such
that all coefficients of f , coordinates of a(i) and evaluations f (a(i)) have
magnitude bounded by 2s.

Output: Evaluations bi = f (a(i)) for i ∈ [N].

1 Compute the first s primes numbers {p1, . . . , ps}.
2 Let L ≤ s be the smallest integer such that p1 · · · pL =: M > 2s+1.
3 for e ∈ {0, . . . , d− 1}m do
4 Compute f (`)e = fe mod p` for ` ∈ L using Lemma 2.5.

5 for i ∈ [N], k ∈ [m] do
6 Compute ai,k,` = a(i)k mod p` for ` ∈ L using Lemma 2.5.

7 for ` ∈ [L] do
8 Let f (`)(x1, . . . , xm) = ∑e f (`)e xe ∈ Fpi [x].
9 Let a(i,`) = (ai,1,`, . . . , ai,m,`) ∈ Fm

p` for each i ∈ [N].
10 Compute bi,` = f (`)(a(i,`)) for all i ∈ [N] using Algorithm 3.

11 for i ∈ [N] do
12 Compute the unique bi ∈ [−M/2, M/2] such that bi = bi,` mod p` for all ` ∈ [L], using

Lemma 2.6.
13 return {bi : i ∈ [N]}.

Proof of Theorem 4.1. We are guaranteed that
∣∣∣ f (a(i))∣∣∣ < 2s for all i ∈ [N]. Hence, by the Chinese

Remainder Theorem, it is sufficient to compute f (a) mod pi for each i ∈ [L] since p1 · · · pL > 2s+1.
Hence, the correctness of Algorithm 4 is evident. As for the running time, we will do an analysis
very similar to the analysis for Algorithm 3.

17

Using Lemma 2.5, we have that Lines 1 to 2 require time O(s̃). By the Prime Number Theorem
[Had96, LVP97], we also have that each pi = Õ(s) and hence p1 · · · pL < 2s+1 · Õ(s).

From Theorem 3.1, we have that Line 10 runs in time ((dm + Nm) · log p`)1+o(1) the entire loop
in Lines 7 to 10 takes time ((dm + Nm)(∑` log p`))1+o(1) = ((dm + Nm) · s)1+o(1).

And finally, from Lemma 2.6 we have that the entire loop in Lines 11 to 12 takes time (Nm) ·
Õ(log M) = ((dm + Nm) · s)1+o(1). Hence, Algorithm 4 runs in time ((dm + Nm) · s)1+o(1) as
claimed.

Remark 4.2. If we are only given that all coefficients of f and all coordinates of the points are inte-
gers bounded in magnitude by 2s with no a-priori bound on the bit complexity of the evaluations,
a naïve bound on the size of evaluations is

| f (a)| ≤ dm · 2s · 2sdm ≤ 2sdm+s+m log d.

Thus, we may use s′ = (sdm + s + m log d) in Theorem 4.1 to get the time complexity bounded by
((dm + Nm) · (sdm))1+o(1). If m is a growing function, then the output complexity is nearly-linear
in the input complexity since poly(d) = (dm + Nm)o(1). But, in the regime when m is a constant,
this is super-linear in the input size (dm + Nm) · s because of the additional factor of d. However, a
slightly worse running time is to be expected in this case since the output complexity is Ω(N · sdm)

in the worst case. ♦

5 Approximate-MME over reals

Throughout this section, we will assume that all real numbers as part of the input are in the inter-
val (−1, 1).

Remark 5.1 (On the restriction on absolute value of constants). Given any arbitrary polynomial
f (x) ∈ R[x], we can scale the polynomial by the largest coefficient to obtain and run the approximate-MME
on the scaled polynomial f̃ . If we have

∣∣ f̃ (a)− βi
∣∣ ≤ ε, then we immediately have | f (a)− (max | fe|) βi| ≤

ε · (max | fe|). Thus, we may assume without loss of generality that all coefficients of f have absolute value
at most 1.

However, the assumption that coordinates of all evaluation points have absolute value bounded by one
is not without loss of generality but is well-motivated nevertheless. Even in the case of univariate integer
polynomials, the evaluation f (a) could be as large as |a|d where |a| = max |ai|. Therefore, the output
bit-complexity for MME is potentially O(d · N) which is super-linear in the input bit-complexity.

The restriction of insisting that evaluation points consist of coordinates with absolute value at most
1 ensures that the evaluations are never prohibitively large in magnitude, thereby making the quest for
approximate-MME in nearly-linear time more meaningful. ♦

18

5.1 The problem statement and algorithm

We now state the precise problem statement and our results for approximate-MME over the field
of real numbers.

Input: A polynomial f (x1, . . . , xm) ∈ R(−1,1)[x1, . . . , xm] of individual degree less than
d, given as a list of dm efficient approximation oracles for each coefficient, a set of points
a(1), . . . , a(N) ∈ (−1, 1)m each of whose coordinates are also provided via efficient ap-
proximation oracles, and an accuracy parameter t.

Output: Rational numbers b1, . . . , bN such that
∣∣∣ f (a(i))− bi

∣∣∣ < 1/2t for all i ∈ [N].

Theorem 5.2 (approximate-MME over reals). There is a deterministic algorithm (namely Algorithm 5)
that on input as mentioned above returns the required output as mentioned above and runs in time ((dm +

Nm) · t)1+o(1) for all m ∈N and sufficiently large d ∈N.

The rest of the section is devoted to the proof of the above theorem.

High-level idea: The algorithm is a suitable reduction to the task of exact-MME over integers
(Theorem 4.1). We will replace each of the real numbers by appropriately chosen approximations
of the form ai/2k (for a suitable large k = O(t)) so that the evaluations of the perturbed polyno-
mial at the perturbed points are not too far from the original evaluations. Since we now have all
denominators of the form 2k, we can clear the denominators and reduce to the case of computing
MME over integers.

As expected, there are some subtleties that need to be addressed to make sure that the entire
algorithm runs in nearly-linear time.

Rounding coefficients of f

Let k be a parameter to be chosen shortly. Define the polynomial b f ek as

b f ek(x1, . . . , xm) := ∑
e
b feek · x

e.

Observation 5.3 (Error due to rounding coefficients of f). For any a ∈ (−1, 1)m, we have that

| f (a)− b f ek(a)| ≤ 1/2k−m log d.

Proof.

f (a)− b f ek(a) = ∑
e
(fe − b feek) · a

e

=⇒ | f (a)− b f ek(a)| ≤∑
e
| fe − b feek| · |a

e| ≤ dm · 1/2k.

19

Rounding points

Let k be a parameter to be chosen shortly. For any a = (a1, . . . , am) ∈ (−1, 1)m, define baek as

baek := (ba1ek, . . . , bamek) .

Observation 5.4 (Error due to rounding points). Let e = (e1, . . . , em) ∈ {0, . . . , d− 1}m and a ∈
(−1, 1)m. Suppose k ∈N such that 2k > 4d2m2. Then,

∣∣ae − baeek
∣∣ ≤ 1/2k−log(4dm)

Proof. Note that all ai ∈ (−1, 1). Let δi = baiek − ai for i ∈ [m]; we have that |δi| ≤ 1/2k ≤ 1/4d2m2.
Hence,

ba1ee1
k · · · bameem

k = (a1 + δ1)
e1 · · · (am + δm)

em

= ae1
1 · · · a

em
m + ∑

j1≤e1,...,jm≤em
not all ji = 0

(
e1

j1

)
· · ·
(

em

jm

)
·

m

∏
i=1

(
aei−ji

i · δji
i

)

=⇒
∣∣ba1ee1

k · · · bameem
k − ae1

1 · · · a
em
m
∣∣ ≤

∣∣∣∣∣∣∣∣ ∑
j1≤e1,...,jm≤em

not all ji = 0

(
e1

j1

)
· · ·
(

em

jm

)
·

m

∏
i=1

δ
ji
i

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣ m

∏
i=1

(
1 + δji

)d − 1

∣∣∣∣∣
≤ (1 + 2d(1/2k))m − 1 ≤ 4dm(1/2k). (Lemma 2.1)

Handling the case when number of variables is too small

To make the variables suggestive, we will rename them and say f (x1, . . . , xc) is a c-variate poly-
nomial in R(−1,1)[x1, . . . , xc] with degree in each variable less than D. We wish to evaluate the
polynomial on points a(1), . . . , a(N) ∈ (−1, 1)c.

Once again, let d = blog Dc and let m be the smallest integer such that dm > D. Note that
dm > D ≥ dm−1 and m = Θ(log D/log log D). Define the polynomial g(y1,1, . . . , yc,m) = Φ−1

d,m;c(f), as

defined in Definition 2.2. Define ã(i) = ψd,m;c(a(i)). From Observation 2.3, we have that f (a(i)) =
g(ã(i)) for all i ∈ [N].

Even if a(i) consisted of only rational numbers, unlike the setting in Theorem 3.2 where we
could use Observation 3.3, the rational numbers in ã(i) have much larger bit complexity due to the
exponentiation. However, by Lemma 2.8, we have efficient approximation oracles for ã(i) and that
suffices for our algorithm.

20

5.2 Reduction to exact-MME over integers

From the previous subsection, we may now assume without loss of generality that we are working
with an m-variate polynomial f (x1, . . . , xn) of individual degree less than d, with both m, d as
growing parameters, and wish to evaluate this polynomial on N points a(1), . . . , a(N) ∈ (−1, 1)m,
with all coefficients and coordinates provided via approximation oracles running in time Õ(k +
O(m log d)). We wish to compute integers b1, . . . , bN such that

∣∣∣ f (a(i))− bi/2t

∣∣∣ < 1/2t. We now
describe the algorithm (Algorithm 5).

Algorithm 5: approximate-MME-Reals
Input : An m-variate polynomial f (x1, . . . , xm) ∈ R(−1,1)[x] of individual degree less than

d, and points a(1), . . . , a(N) ∈ Rm
(−1,1) (with all real numbers provided via

approximation oracles) and an integer t > 0.
Output: Integers b1, . . . , bN such that

∣∣∣ f (a(i))− bi/2t

∣∣∣ < 1/2t for all i ∈ [N].

1 if m < log log d then
2 Let d′ = blog dc and m′ be the smallest integer such that (d′)m′ > d.
3 Replace f by Φ−1

d′,m′;m(f) and each a(i) by ψd′,m′;m(a(i)).

4 Let k1 = dt + m log d + 2e and k2 = dt + m log d + log(4md) + 2e; let k = max(k1, k2) = k2.

5 Compute b f ek1
= ∑e ge,k1/2k1 · xe = 1/2k1 ·∑e ge,k1 · xe.

6 for i ∈ [N] do
7 Compute ba(i)ek2

= (ai,1,k2/2k2 , . . . , ai,m,k2/2k2) = 1/2k2 · (ai,1,k2 , . . . , ai,m,k2).

8 Let â(i) = (ai,1,k2 , . . . , ai,m,k2).

9 Compute the polynomial G(x1, . . . , xm) defined as

G(x1, . . . , xn) = ∑
e∈{0,...,d−1}m

ge,k1 · 2
(k2dm)−k2|e| · xe

where |e| refers to the sum of the coordinates (i.e., the degree of the monomial xe).
10 Run Algorithm 4 (Exact-MME-integers) with inputs

(
G,
(

â(1), . . . , â(N)
)

, s = 3kdm
)

to
obtain B1, . . . , BN such that, for all i ∈ [N], we have

Bi = G(â(i)).

Let bi = bBi/2k1+k2dm−te for each i ∈ [N].
11 return (b1, . . . , bN).

Proof of correctness: Without loss of generality, we may assume that d, m are growing parame-
ters (from Lines 1 to 3).

Note that for any a(i), we have∣∣∣ f (a(i))− b f ek1
(ba(i)ek2

)
∣∣∣ ≤ ∣∣∣ f (a(i))− b f ek1

(a(i))
∣∣∣+ ∣∣∣b f ek1

(a(i))− b f ek1
(ba(i)ek2

)
∣∣∣

21

≤ 1/2t+2 + 1/2t+2 ≤ 1/2t+1.

where the last inequality uses Observation 5.3 and Observation 5.4 with our choice of k1 and k2.
Thus, it suffices to compute b f ek1

(
ba(i)ek2

)
for each i ∈ [N]. The polynomial b f ek1

is computed

in Line 5 and the points ba(i)ek2
are computed in Lines 6 to 8. Let â(i) = 2k2ba(i)ek2

∈ (−2k2 , 2k2)m.
Since each coefficient of 2k1 · b f ek1

is bounded in magnitude by 2k1 , we have

∣∣∣G(â(i))
∣∣∣ =

∣∣∣∣∣∣ ∑
e∈{0,...,d−1}m

ge,k1 · 2
(k2dm)−k2|e| · â(i)

e

∣∣∣∣∣∣ ≤ dm · 2k1 · 2k2dm · 2k2dm ≤ 23kdm.

From the definition of G(x1, . . . , xm), note that

G(â(i)) = ∑
e∈{0,...,d−1}m

ge,k1 · 2
(k2dm)−k2|e| · â(i)

e

= ∑
e∈{0,...,d−1}m

ge,k1 · 2
(k2dm) ·

(
1/2k2 · â(i)

)e

= 2(k2·d·m) · ∑
e∈{0,...,d−1}m

ge,k1 · ba
(i)eek2

= 2k1+k2dm · b f ek1
(ba(i)ek2

).

Since Theorem 4.1 correctly computes the evaluations of G(x) on â(i)’s, we have we have for each
i ∈ [N]

1/2k1+k2dm · G
(

â(i)
)
= b f ek1

(ba(i)ek2
) = Bi/2k1+k2dm.

Finally, if bi = bBi/2k1+k2dm−te, then

|bi/2t − Bi/2k1+k2dm| = 1/2t · |bi − Bi/2k1+k2dm−t| ≤ 1/2t+1.

Hence, ∣∣∣ f (a(i))− bi/2t
∣∣∣ ≤ ∣∣∣ f (a(i))− b f ek1

(ba(i)ek2
)
∣∣∣+ ∣∣∣b f ek1

(ba(i)ek2
)− bi/2t

∣∣∣ ≤ 1/2t.

Running time analysis: After Lines 1 to 3, we may assume that d, m = ω(1) and all coefficients
of f and coordinates of points are provided via approximation oracles with running time Õ(r +
m log d) to compute an r-bit approximation.

Lines 5 to 8 overall takes time

(dm + Nm) · Õ(k + O(m log d)) = (dm + Nm) · Õ(t + O(m log d)) = ((dm + Nm) · t)1+o(1).

22

Computing the coefficients of G(x) takes time (dm) · Õ(kdm). By Theorem 4.1, Line 10 takes time

((dm + Nm) · 3kdm)1+o(1) = ((dm + Nm) · t)1+o(1).

Therefore, Algorithm 5 takes ((dm + Nm) · t)1+o(1) overall.

This completes the proof of Theorem 5.2.

6 Exact-MME over rationals with known output complexity

We now use our algorithm for approximate-MME over real numbers to obtain a fast algorithm for
exact-MME over the field of rational numbers. We start by formally stating the precise problem
that we solve and then build upon some necessary preliminaries that we need for our algorithm.

6.1 The problem statement

Input: A polynomial f (x1, . . . , xm) ∈ Q(−1,1)[x1, . . . , xm] of individual degree less than d, given as
a list of dm, a list of points a(1), . . . , a(N) ∈ Qm

(−1,1), an integer parameter s > 0 such that all rational
numbers in the coefficients of f , the coordinates of points and evaluations f (a(i)) are expressible
as rational numbers of the form p/q with |p| , |q| < 2s.

Output: Integers b1, . . . , bN , c1, . . . , cN such that f (a(i)) = bi/ci for all i ∈ [N].

Theorem 6.1 (Exact-MME over rationals). There is a deterministic algorithm (namely Algorithm 7)
that on input as mentioned above returns the required output as mentioned above and runs in time ((dm +

Nm) · s)1+o(1) for all m ∈N and sufficiently large d ∈N.

Main idea: The main idea would be a reduction to approximate-MME (Theorem 5.2) followed by
a rational number reconstruction step. If we can compute f (a(i)) to a reasonable degree of accuracy
(depending on the output guarantee s), we can recover the rational number exactly from it. Before
we present the algorithm for the above theorem, we discuss the notion of continued fractions
which would be the key to reconstructing the rational number of interest.

6.2 Continued fractions, rational approximations, and extended Euclid’s algorithm

Definition 6.2 (Continued fractions). A finite continued fraction expressed by a sequence of integers
[q1, . . . , qt] computes the rational number

q1 +
1

q2 +
1

. . .+ 1
qt−1+

1
qt

.

23

An infinite continued fraction expressed by an infinite sequence of integers [q1, q2, . . .] satisfying4

q2, . . . , qn > 0 is said to compute a real number α if

α = q1 +
1

q2 +
1

q3+
1

...

.

in the sense that limn→∞ |α− [q1, . . . , qn]| = 0. ♦

We note some basic properties of continued fractions which may be found in most standard
texts (cf. Schmidt [Sch80, Chapter 1]).

Proposition 6.3 (Uniqueness of continued fractions (Lemma 4C, 4D in [Sch80])). Every real number
has a unique continued fraction expansion up to the following exceptions:

1. If α is an integer, then there are exactly two continued fraction representations for α namely [α] and
[α− 1, 1].

2. If α is a non-integral rational number, then there are exactly two continued fraction representations
for α: one of the form [q1, . . . , qn] with qn ≥ 2, and [q1, . . . , qn − 1, 1] being the other.

3. If α is irrational, then there is exactly one continued fraction representation for α.

Definition 6.4 (Convergents). For a real number α with [q1, q2, . . .] being the unique5, the rational num-
ber ai/bi corresponding to the i-th prefix [q1, . . . , qi] is called the i-th convergent of α. ♦

Lemma 6.5 (Properties of convergents). Suppose {ai/bi}i be the convergents of a real number α =

[q1, q2, . . .]. Then

1. For any n ≥ 3, we have

an = qnan−1 + an−2,

bn = qnbn−1 + bn−2.

In particular, the denominator sequence {bn}n≥2 is increasing.

2. For all n ≥ 1,

an+1

bn+1
− an

bn
=

(−1)n−1

bn(qn+1bn + bn−1)
=

(−1)n−1

bnbn+1
.

3. For any n ≥ 1, unless α = an
bn

, we have

1
bn(bn + bn+1)

≤
∣∣∣∣α− an

bn

∣∣∣∣ ≤ 1
bnbn+1

.

4Traditionally, continued fractions with this condition are called ‘simple’ continued fractions but we will drop this
qualifier as we will only deal with continued fractions with this additional constraint.

5As a convention, for rational numbers, we will only consider continued fraction representations of the first form
described in Proposition 6.3 Items 1 and 2.

24

4. Suppose a/b is a rational number satisfying |α− a/b| < 1/2b2 Then, a/b is one of the convergents of α.

Proof. Items 1, 2 and 4 are just [Sch80, Lemma 3A, Lemma 3E, Theorem 5C] respectively.
For Item 3, if α 6= an/bn, we have that qn+1 exists. Let αn+1 = [qn+1, . . .]. Then, we may abuse

notation and express α as the “continued fraction” α = [q1, . . . , qn, αn+1]. Item 2 for this expression
yields∣∣∣∣α− an

bn

∣∣∣∣ = 1
bn(αn+1bn + bn−1)

.

Note that qn+1 ≤ αn+1 ≤ qn+1 + 1 and hence∣∣∣∣α− an

bn

∣∣∣∣ = 1
bn(αn+1bn + bn−1)

≤ 1
bn(qn+1bn + bn−1)

=
1

bnbn+1
, (by Item 1)

and
∣∣∣∣α− an

bn

∣∣∣∣ = 1
bn(αn+1bn + bn−1)

≥ 1
bn(qn+1bn + bn−1 + bn)

=
1

bn(bn + bn+1)
.

Extended Euclid’s Algorithm

Closely related to continued fractions is the classical Extended Euclid’s Algorithm for computing
the greatest common divisor of two numbers.

Definition 6.6 (Remainder and quotient sequences). For a pair of integers a, b > 0, we define the
remainder sequence {ri}i=0,...,t+1 and the quotient sequence {qi}i=1,...,t for the pair (a, b) as follows:

• r0 = a and r1 = b,

• For all i ≥ 1, define qi, ri+1 as the quotient and remainder respectively when ri−1 is divided by ri.
Thus,

ri+1 = ri−1 mod ri = ri−1 − qiri.

• rt+1 is the first element of the sequence that is equal to zero. ♦

Observation 6.7 (Continued fractions for a rational number and quotient sequences). Suppose
a, b > 0 are a pair of integers and {q1, . . . , qt} is the associated quotient sequence. Then, the continued
fraction representation of the rational number a/b is [q1, . . . , qt]:

a
b
= q1 +

1
q2 +

1
. . .+ 1

qt

.

25

Computing the gcd of two given integers, and more generally computing the entire quotient
sequence, can be done in deterministic nearly-linear time; this is attributed to Knuth and Schön-
hage (cf. Möller [Möl08] for a complete description and a detailed history).

Theorem 6.8 (Fast Extended Euclid Algorithm (cf. Möller [Möl08])). There is a deterministic algo-
rithm that, on input a pair of integers a > b > 0 with a, b ≤ 2s, computes the entire quotient sequence
q1, . . . , qt for the pair (a, b) in time Õ(s).

Corollary 6.9 (Fast computation of convergents). There is a deterministic algorithm that, on input a
pair of integers M, N > 0 with M, N ≤ 2s, and an integer i > 0 computes integers ai, bi such that ai/bi is
the i-th convergent of the rational number M/N, with running time Õ(s).

Proof. Let q1, . . . , qt be the quotient sequence for the pair (M, N), which may be computed using
Theorem 6.8 in Õ(s) time. By Observation 6.7, this is the continued fraction representation of M/N.
Thus, it is easy to note that[

ai ai−1

bi bi−1

]
=

[
q1 1
1 0

]
· · ·
[

qi 1
1 0

]

where aj/bj is the j-th convergent. Note that
∣∣qj
∣∣ < rj−1/rj where {r0, . . . , rt} is the associated remain-

der sequence and hence we have |q1 · · · qt| ≤ M ≤ 2s. Thus, this matrix product can be computed
in Õ(s) time.

6.3 Rational number reconstruction

Lemma 6.10 (Fast rational number reconstruction). There is a deterministic algorithm (namely Al-
gorithm 6) that, given as input an integer parameter s > 0 and integers A, B with the guarantee that
|B| < 22s+1 and there exist a unique rational number (in reduced form) a/b with |b| < 2s and∣∣∣∣A

B
− a

b

∣∣∣∣ < 1
22s+1 ,

finds the integers a, b in time Õ(s).

Proof. The algorithm is straightforward given Corollary 6.9 and Lemma 6.5.

Algorithm 6: Fast-Rational-Number-Reconstruction

Input : Integers A, B and an integer parameter s > 0 such that |A| , |B| ≤ 22s+1 and there
is some rational number a/b such that |b| < 2s and |A/B− a/b| < 1/22s+1.

Output: The integers a, b.

1 Using Theorem 6.8, compute the quotient sequence q1, . . . , q` for the pair A, B.
2 Using Corollary 6.9 and binary search, compute the largest index i such that the i-th

convergent ai/bi satisfies |bi| < 2s.
3 return ai, bi.

26

The running time of the algorithm is clearly Õ(s) as claimed as ` = O(log(A + B)) = O(s) and
thus we have at most O(log `) = O(log s) uses of Corollary 6.9 in Line 2.

For correctness, assume that A/B is in its reduced form. Since we know b1 = 1, let i be the
largest index with the denominator bi of the convergent ai/bi satisfies bi < 2s. If this is the last
convergent, then A/B = ai/bi and we are done. Thus, we may assume that A/B 6= ai/bi.

Since we are given that |A/B− a/b| < 1/22s+1 < 1/2b2, by Lemma 6.5 Item 4, a/b is one of the
convergents of A/B. For any ` > i, the `-th convergent a`/b` has denominator larger than 2s. For
any j < i, from Lemma 6.5 Item 3 and Item 1 we have∣∣∣∣A

B
−

aj

bj

∣∣∣∣ ≥ 1
bj(bj + bj+1)

>
1

2 · b2
i
≥ 1

22s+1 .

Thus, a/b must be the i-th convergent ai/bi.

6.4 Algorithm for exact-MME over rationals

We now have all the necessary ingredients to describe the algorithm to prove Theorem 6.1.

Algorithm 7: Exact-MME-Rationals

Input : A polynomial f (x1, . . . , xm) ∈ Q(−1,1)[x], points a(1), . . . , a(N) ∈ Qm
(−1,1), with all

rational numbers provided via the numerator and denominator, and an integer
parameter s such that all numerators and denominators of the coefficients of f ,
coordinates of the points, and evaluations f (a(i)) are at most 2s.

Output: Integers b1, . . . , bN and c1, . . . , cN such that f (a(i)) = bi/ci for all i ∈ [N].

1 Using the numerators and denominators for the required approximation oracles, run

approximate-MME-Reals
(

f ,
{

a(1), . . . , a(N)
}

, t = 2s + 1
)

(Algorithm 5) to obtain integers
(B1, . . . , BN) such that∣∣∣∣ f (a(i))− Bi

2t

∣∣∣∣ < 1
2t =

1
22s+1 .

2 for i ∈ N do
3 Run Fast-Rational-Number-Reconstruction

(
Bi, 22s+1, s

)
(Algorithm 6) to get bi, ci

with |ci| < 2s such that∣∣∣∣ Bi

22s+1 −
bi

ci

∣∣∣∣ < 1
22s+1 .

4 return (b1, . . . , bN) , (c1, . . . , cN) .

The correctness of Algorithm 7 is evident from Theorem 5.2 and Lemma 6.10. Theorem 5.2
asserts that Algorithm 5 correctly provides the required approximations for the evaluations, and

27

Lemma 6.10 asserts that Algorithm 6 reconstructs the correct rational number.
As for running time, given the numerator and denominators, we can build approximation or-

acles for each rational number with nearly-linear running time. Thus, Line 1 takes ((dm + Nm) ·
s)1+o(1) time and the loop in Lines 2 to 3 takes Õ(N · s) time. Thus, the total running time is
((dm + Nm) · s)1+o(1) as claimed.

This completes the proof of Theorem 6.1.

7 Approximate-MME over complex numbers

In this section, we briefly discuss the extension of Theorem 5.2 to the field of complex numbers.
As discussed in the preliminaries, the field constants in this case are given by two approximation
oracles, one for the real part of the complex number, and one for the imaginary part. The ideas
needed for this extension, on top of the ideas in the proof of Theorem 3.1 are quite standard
and were introduced by Kedlaya & Umans [KU11] for designing fast algorithms for MME for
finite fields that are not prime. This approach also found a subsequent application in the work
of Bhargava et al. [BGGKU22], again in the context of dealing with non-prime finite fields while
designing algorithms for MME. In the interest of keeping this discussion succinct and to avoid
repetition, we outline the main steps needed for this generalization, but skip the formal details.
The structure of the algorithm closely follows that of Algorithm 5, with some additional care.

As in the proof of Algorithm 5, we first make sure that the number of underlying variables is
growing. Next, we round each of the field constants (both the real and the imaginary parts) by
rational numbers with denominator 2k for some sufficiently large integer k to be chosen later. At
this point, we have introduced some error (which turns out to be small if k is sufficiently large),
but have reduced the problem instance over C to an instance over Q[ω], where ω is a square root
of −1. Moreover, all the denominators of the field constants in the problem are of the form 2k.
We now clear out the denominators, as in Algorithm 5, and get an instance of MME where the
constants in the problem are from the ring Z[ω]. At this point, we replace ω in the constants in
the input by a new formal variable z, and instead of working over the ring Z[ω], we work over
the ring Z[z]/〈z2 + 1〉. Note that this is sufficient, since given a solution to MME over this ring,
we can obtain a solution to the original problem by just replacing z by ω. Now, the idea is to
just invoke the algorithm for exact MME over integers (Algorithm 4) for this problem instance.
However, we cannot quite do that directly since the instance at hand is over Z[z]/〈z2 + 1〉 and
not over Z as desired. Nevertheless, we proceed as in Algorithm 4 by picking sufficiently many
primes p1, p2, . . . , ps and reducing the problem instance over Z[z]/〈z2 + 1〉 modulo these primes
to obtain instances over the rings Fpi [z]/〈z2 + 1〉 for every i. In Algorithm 4, we just invoked
the result of [BGGKU22] over prime fields at this stage, and then combined the outputs using
fast Chinese remaindering. However, in this case, what we have are instances over the finite
rings Fpi [z]/〈z2 + 1〉. But this does not turn out to be an issue as the algorithm of Bhargava et al

28

continues to work over such rings, and indeed the results and proofs in the [BGGKU22] are stated
in this form. One final thing to note is that the small optimizations that we do over the results
in [BGGKU22] in Section 3 to make sure that the dependence of the running time on the field
size is nearly-linear continues to be true for the extension rings that we have here. Once we have
solved all the instances over Fpi [z]/〈z2 + 1〉, we can recover the solution over Z[z]/〈z2 + 1〉 by an
application of fast Chinese remaindering as in Algorithm 4, and an appropriate scaling of these
evaluations (again, as in Algorithm 5) gives us approximations of the original evaluations over C.
The error analysis and the bound on the running time essentially the same as that in the analysis
of Algorithm 5. We skip the rest of the details.

8 Discussion and open problems

We conclude with some open problems.

1. Perhaps the most natural question here is to seek an algebraic algorithm for multivariate
multipoint evaluation over general fields, both finite and infinite. Currently, we only know
such algebraic algorithms over finite fields of small characteristic [Uma08, BGKM22].

2. The aforementioned question of having an algebraic algorithm for MME is also interesting
in the non-uniform setting. For instance, we do not know if the linear transformation given
by a multivariate Vandermonde matrices can be computed by an arithmetic circuit of nearly-
linear (or even sub-quadratic) size over fields other than finite fields of small characteristic.

3. It would be interesting to have additional applications of these faster algorithms and the
ideas therein, beyond the applications already mentioned by Kedlaya and Umans [KU11].

References

[BGGKU22] VISHWAS BHARGAVA, SUMANTA GHOSH, ZEYU GUO, MRINAL KUMAR, and CHRIS UMANS.
Fast multivariate multipoint evaluation over all finite fields. In JELANI NELSON, ed., Proc. 63rd
IEEE Symp. on Foundations of Comp. Science (FOCS), pages 221–232. 2022. arXiv:2205.00342,
eccc:2022/TR22-063.

[BGKM22] VISHWAS BHARGAVA, SUMANTA GHOSH, MRINAL KUMAR, and CHANDRA KANTA MOHA-
PATRA. Fast, algebraic multivariate multipoint evaluation in small characteristic and applications. In
STEFANO LEONARDI and ANUPAM GUPTA, eds., Proc. 54th ACM Symp. on Theory of Computing
(STOC), pages 403–415. 2022. arXiv:2111.07572, eccc:2021/TR21-162.

[BM74] ALLAN BORODIN and ROBERT THOMAS MOENCK. Fast modular transforms. J. Comput. Syst.
Sci., 8(3):366–386, 1974.

[GG13] JOACHIM VON ZUR GATHEN and JÜRGEN GERHARD. Modern Computer Algebra. Cambridge
University Press, 3 edition, 2013.

29

https://doi.org/10.1109/FOCS54457.2022.00028
http://arxiv.org/abs/2205.00342
https://eccc.weizmann.ac.il/eccc-reports/2022/TR22-063
https://doi.org/10.1145/3519935.3519968
http://arxiv.org/abs/2111.07572
https://eccc.weizmann.ac.il/eccc-reports/2021/TR21-162
https://doi.org/10.1016/S0022-0000(74)80029-2
https://doi.org/10.1017/CBO9781139856065

[Had96] JACQUES S. HADAMARD. Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arith-
métiques. Bulletin de la Société Mathématique de France, 24:199–220, 1896.

[KU08] KIRAN S. KEDLAYA and CHRISTOPHER UMANS. Fast modular composition in any characteristic.
In R. RAVI, ed., Proc. 49th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 146–155.
2008.

[KU11] ———. Fast polynomial factorization and modular composition. SIAM J. Comput., 40(6):1767–1802,
2011. (Preliminary version in 40th STOC, 2008 and 49th FOCS, 2008).

[LVP97] CHARLES JEAN DE LA VALLÉE POUSSIN. Recherches analytiques sur la théorie des nombres pre-
miers (French) [Analytical research on the theory of prime numbers], volume 1–5. Hayez, 1897.

[Möl08] NIELS MÖLLER. On Schönhage’s algorithm and subquadratic integer GCD computation. Math.
Comput., 77(261):589–607, 2008.

[Mor21] GUILLAUME MOROZ. New data structure for univariate polynomial approximation and applications
to root isolation, numerical multipoint evaluation, and other problems. In NISHEETH VISHNOI,
ed., Proc. 62nd IEEE Symp. on Foundations of Comp. Science (FOCS), pages 1090–1099. 2021.
arXiv:2106.02505.

[NZ04] MICHAEL NÜSKEN and MARTIN ZIEGLER. Fast multipoint evaluation of bivariate polynomials. In
SUSANNE ALBERS and TOMASZ RADZIK, eds., Proc. 12th Annual European Symp. of Algorithms
(ESA), volume 3221 of LNCS, pages 544–555. Springer, 2004. arXiv:cs/0403022.

[Sch80] WOLFGANG M. SCHMIDT. Diophantine Approximation, volume 785 of LNM. Springer, 1980.

[Uma08] CHRISTOPHER UMANS. Fast polynomial factorization and modular composition in small character-
istic. In CYNTHIA DWORK, ed., Proc. 40th ACM Symp. on Theory of Computing (STOC), pages
481–490. 2008.

30
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.24033/bsmf.545
https://doi.org/10.24033/bsmf.545
https://doi.org/10.1109/FOCS.2008.13
https://doi.org/10.1137/08073408X
https://books.google.co.in/books?id=7e0GAAAAYAAJ
https://books.google.co.in/books?id=7e0GAAAAYAAJ
https://doi.org/10.1090/S0025-5718-07-02017-0
https://doi.org/10.1109/FOCS52979.2021.00108
https://doi.org/10.1109/FOCS52979.2021.00108
http://arxiv.org/abs/2106.02505
https://doi.org/10.1007/978-3-540-30140-0_49
http://arxiv.org/abs/cs/0403022
https://doi.org/10.1007/978-3-540-38645-2
https://doi.org/10.1145/1374376.1374445
https://doi.org/10.1145/1374376.1374445

