
Derandomization with Minimal Memory Footprint

Dean Doron
Ben Gurion University

deand@bgu.ac.il

Roei Tell*

IAS and DIMACS
roeitell@gmail.com

Abstract

Existing proofs that deduce BPL = L from circuit lower bounds convert ran-
domized algorithms into deterministic algorithms with large constant overhead in
space. We study space-bounded derandomization with minimal footprint, and ask
what is the minimal possible space overhead for derandomization. We show that
BPSPACE[S] ⊆ DSPACE[c · S] for c ≈ 2, assuming space-efficient cryptographic
PRGs, and, either: (1) lower bounds against bounded-space algorithms with advice,
or: (2) lower bounds against certain uniform compression algorithms. Under addi-
tional assumptions regarding the power of catalytic computation, in a new setting of
parameters that was not studied before, we are even able to get c ≈ 1.

Our results are constructive: Given a candidate hard function (and a candidate
cryptographic PRG) we show how to transform the randomized algorithm into an
efficient deterministic one. This follows from new PRGs and targeted PRGs for space-
bounded algorithms, which we combine with novel space-efficient evaluation meth-
ods. A central ingredient in all our constructions is hardness amplification reductions
in logspace-uniform TC0, that were not known before.

*Part of this work was done while visiting the Simons Institute for the Theory of Computing. Supported
in part by the National Science Foundation under grant number CCF-1900460.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 36 (2023)

Contents
1 Introduction 2

1.1 Setting the stage: A tighter hypothesis and improved local list decoding 3
1.2 Black-box derandomization with minimal footprint 4
1.3 Non black-box derandomization with minimal footprint 5
1.4 Catalytic computation towards an even smaller footprint 7

2 Technical Overview 8
2.1 Warm-up: Hardness amplification for TC0 circuits in linear space 8
2.2 Derandomization with minimal footprint using PRGs 9
2.3 Non black-box derandomization with minimal memory footprint 13

3 Preliminaries 15
3.1 Space-bounded computation . 15
3.2 Additional complexity classes, and branching programs 17
3.3 Error-correcting codes . 18
3.4 Samplers . 19
3.5 Combinatorial designs . 20

4 Hardness Amplification for Space-Bounded Computation 20
4.1 Known code constructions . 21
4.2 Proof of Theorem 4.2 . 23

5 Black-Box Derandomization with Minimal Memory Footprint 25
5.1 A logspace generator with TC0 reconstruction . 26
5.2 Warm-up: BPL = L from weaker assumptions . 27
5.3 Minimal-footprint derandomization results . 28

6 Non Black-Box Derandomization with Minimal Memory Footprint 35
6.1 A logspace generator with logspace-uniform TC0 reconstruction 35
6.2 Minimal-footprint derandomization results . 40

A The Impagliazzo–Wigderson Derandomized Direct Product 51
A.1 A direct product theorem for smaller values of δ . 58

B Deferred Proofs of Technical Statements 59
B.1 The uniform complexity of GGHKR′ . 59
B.2 The uniform decoding of GGHKR′ . 61
B.3 A logspace computable lossless expander . 64

1 Introduction

One of the greatest challenges in complexity theory is the derandomization of efficient
algorithms, or more broadly, understanding to what extent is randomness necessary or
useful for algorithms. In the time-bounded setting, can we simulate any randomized
algorithm by a deterministic one with a roughly similar runtime? In the space-bounded
setting, can we derandomize with only a small factor blowup in space?

Classical hardness-to-pseudorandomness results tell us that under plausible circuit
lower bounds, any randomized algorithm that runs in time T can be be simulated de-
terministically by an algorithm running in time T c [NW94; IW97], and any randomized
algorithm that uses S space can be simulated deterministically in space c·S [KM02], where
c is a large constant. In the terminology of complexity classes, BPP = P and BPL = L
follow from circuit lower bounds.1

The constant c in the foregoing classical results can indeed be large to the point of
impracticality, for reasons that are inherent to the proof techniques. Therefore, a natural
question is whether these results can be made more efficient, by providing an explicit small
bound on the time or space overhead in derandomization. In other words, we ask what
is the actual, fine-grained value of randomness in various computational settings. Note that
this question is likely to be relevant even when the great goal of establishing BPP = P
and BPL = L without relying on hardness assumptions is achieved.

In recent years, starting with the work of Doron, Moshkovitz, Oh, and Zuckerman
[DMO+20] and continuing with the works of Chen and Tell [CT21b; CT21a; CT22], a
study of fine-grained derandomization led to a series of results:2

• BPTIME[T] ⊆ DTIME[T 2+α] assuming there exists a language in DTIME[2(1+α)n]
that is hard for certain randomized, non-deterministic circuits of size 2(1−α)n [DMO+20].
Chen and Tell [CT21b] showed that one can get rid of the circuits’ randomness by
assuming that the language is batch-computable.

• BPTIME[T] ⊆ DTIME[n1+α · T], where n denotes the length of the input, assum-
ing that one-way functions exist, and there exists a language in DTIME[2k·n] that
is hard for DTIME[2(k−α)·n]/2(1−α)·n [CT21b]. In a followup work, Chen and Tell
[CT22] showed that one can forgo the cryptographic assumption and replace it with
[DMO+20]-style ones.

• BPTIME[T] ⊆ heurDTIME[nα · T], meaning that the derandomization fails with
negligible probability with respect to all efficiently-samplable distributions [CT21b].
This result follows from uniform cryptographic assumptions and certain uniform
hardness assumptions for multi-bit output functions.

1We also have equality between the promise classes. In fact, all our results in this paper will hold for the
corresponding promise classes as well, but for readability we will omit the promise problems notation.

2In what follows, α > 0 is an arbitrarily small constant, but different appearances of α may (or should)
not be the same. We refer the reader to the relevant papers for the precise statements.

2

• Derandomization of interactive proof systems with constantly many rounds, that ei-
ther has a (bounded) polynomial time overhead that depends on the number of
rounds, or has only nα time overhead and yields a deterministic (NP-style) argu-
ment system [CT22].

These results are often complemented with nearly matching conditional lower bounds
(i.e., lower bounds assuming certain complexity-theoretic assumptions). In addition to
derandomization in nearly no cost, those results gave rise to new notions, tools, and tech-
niques in derandomization.

The space-bounded setting. In this work, we study efficient space-bounded derandom-
ization under hardness assumptions, asking what is the minimal possible space overhead
for derandomization. That is, can we transform randomized algorithms into determinis-
tic ones that use roughly the same amount of memory?

We note that unlike the time-bounded setting, wherein unconditional derandomiza-
tion results would lead to lower bounds that currently seem out of reach (see, e.g., [IKW02;
KI04; KMS12; Wil11; MW18; Tel19; Che19; CLW20]), in the space-bounded setting we
do have unconditional partial derandomization results. Savitch’s theorem [Sav70] can
be extended to show that BPSPACE[S] ⊆ DSPACE[O(S2)] (see also [BCP83]). Nisan
[Nis92; Nis94] devised a time-efficient derandomization with a quadratic overhead in
space, namely, BPL ⊆ DTISP[poly(n), O(log2 n)]. Focusing solely on space, Saks and
Zhou [SZ99] cleverly built on Nisan’s work to deterministically simulate space-S ran-
domized algorithms in DSPACE[O(S2/3)]. The state-of-the-art is a recent improvement
by Hoza [Hoz21], giving a deterministic simulation in space O(S2/3/

√
logS).

Still, even when BPL = L is proven, it is very likely that the minimal-footprint deran-
domization question would remain: What is the minimal c for which

BPSPACE[S] ⊆ DSPACE[c · S]?

We will give assumptions under which c approaches 2, and further assumptions under
which c approaches 1! Moreover, the results in this paper are constructive. Namely, given a
candidate hard function (and a candidate cryptographic PRG), we show how to transform
the randomized algorithm into an efficient deterministic one.

We proceed to give an overview of our results.

1.1 Setting the stage: A tighter hypothesis and improved local list de-
coding

We first revisit the Klivans–van-Malkebeek result [KM02] that establishes BPL = L from
standard, nonuniform hardness assumptions. The [KM02] result, which goes along the
line of [NW94], states that given a language in DSPACE[O(n)] that is hard for circuits

3

of size 2εn, then BPL = L.3 Can we do better? In particular, can we work with a more
restricted class of circuits? We show:

Theorem 1 (see also Theorem 5.2). Assume there exists a language L ∈ DSPACE[O(n)] that
is hard for TC0 circuits of size 2εn, for some ε ∈ (0, 1), with oracle access to read-once branching
programs of length and width 2εn. Then, for S = Ω(log n),

BPSPACE[S] ⊆ DSPACE[O(S)].

While Theorem 1 is not needed for our minimal-footprint results, the main ingredient
that goes into the proof of Theorem 1 is a basic component in all of our results: We give a
new hardness amplification result in TC0, or equivalently, a new locally list decodable code
with TC0 decoding. We elaborate on it in Section 2.1.

1.2 Black-box derandomization with minimal footprint

Our first derandomization result follows from worst-case nonuniform hardness assumptions
and cryptographic assumptions. We begin with our standard hardness assumption, against
small-space algorithms that use non-uniformity.

Assumption 1 (nonuniform hardness assumption). For a sufficiently large constant C there
exists a language L computable in deterministic space (C + 1) · n that is hard for algorithms that
run in deterministic space C · n with 2n/2 bits of advice.

We note that the gap of C +1 vs. C can be replaced by any constant gap (i.e., C + k vs.
C for any small constant k), at the cost of allowing a relatively minor additional overhead
in the derandomization; for the precise statement, see Theorem 5.5. We note that a small
gap between the space complexity of L and the space for which it is hard for, is inherent
for “super efficient” derandomization results merely due to space hierarchy theorems.

We continue with our cryptographic PRG.

Assumption 2. There exists a polynomial-stretch PRG fooling circuits of arbitrary polynomial
size, computable in logarithmic space.4

One appealing candidate for a cryptographic PRG satisfying Assumption 2 is Goldre-
ich’s expander-based PRG [Gol11b], instantiated with expanders whose neighbor func-
tion is logspace-computable; we elaborate on this below. However, in the assumption we
can use any cryptographic PRG with polynomial stretch, as long as its space complexity
is as described.

Equipped with those two assumptions, we can state our efficient derandomization
from worst case hardness assumptions.

3In [KM02] it is also stated that one can obtain BPL = L from a size-2εn lower bound on branching
programs. The proof of this statement is not spelled out there in full detail, and as far as we understand,
the branching programs referred to in the statement are non oblivious and non read once – a model that
lies between NC1 and AC1. Theorem 1 gives a stronger statement.

4That is, for any constants η and C we have a PRG Ccry : {0, 1}nη → {0, 1}nC

computable in space
O(log(nη) + log log(nC)).

4

Theorem 2 (see also Theorem 5.5). Suppose that Assumption 1 and Assumption 2 hold. Then,
for S(n) = Ω(log n), we have that

BPSPACE[S] ⊆ DSPACE
[(

2 +
c

C

)
S
]
,

where c > 1 is some fixed universal constant.

As the section’s name suggests, the above result uses a space-efficient pseudorandom
generator (along the lines of [CT21b]), which we combine with a new method to space-
efficiently evaluate a space-bounded machine over the PRG’s image, utilizing the ma-
chine’s own configuration. See Section 2.2 for a discussion about the techniques.

On the hardness assumptions. The combination of two assumptions – one asserting
hardness for non-uniform machines, and an additional one that is either cryptographic or
follows [DMO+20] – is in line with previous works in the area (see [CT21b; CT22]). How-
ever, previous works focused on time bounded algorithms, whereas the space bounded
model turns out to be more subtle, posing several additional challenges. Thus, the partic-
ular hardness assumptions that we use above are more specialized. Let us elaborate.

First, note that the hypothesized lower bound in Assumption 1 holds for probabilistic
space-bounded machines. One could have hoped for a hardness assumption that is even
closer to Theorem 1, namely, for read-once branching programs (or for TC0 circuits with
oracle access to such programs). In the technical section we show that Assumption 1 can
indeed be relaxed to a seemingly weaker, branching programs based assumption, which
is a bit more involved to state (see Section 5.3.2 for details).

Secondly, our cryptographic PRG is not just an arbitrary one, but has to be logspace-
computable. However, as mentioned above, we propose Goldreich’s PRG [Gol11b] as a
natural and well-studied candidate, that works as follows. Let Γ: [nC]× [d]→ [nη] be the
neighbor function of a suitable lossless expander, and let P : {0, 1}d → {0, 1} be a predicate.
Then, given s ∈ {0, 1}nη and i ∈ [nC], we define

Gexp(s)i = P
(
s↾Γ(i)

)
,

where s↾Γ(i) is the restriction of s to the set of right-neighbors of i the lossless expander.
For Γ, we use an explicit, space-efficient expander [GUV09; KT22]. We further discuss
Goldreich’s PRG and its security, including possible choices for P , in Section 5.3.1.

1.3 Non black-box derandomization with minimal footprint

Next, we turn to minimal-footprint derandomization under uniform hardness assump-
tions. Roughly speaking, we assume the existence of a function computable in space
(C + 1) · n that cannot be probabilistically “compressed” (even in slightly larger space)
into a small Turing machine that uses only C · n space and computes the function. For-
mally:

5

Definition 1.1. We say that P ∈ {0, 1}⋆ is an S-space compressed version of f ∈ {0, 1}⋆ if
P is a description, of length

√
|f |, of a Turing machine M that satisfies the following: On input

x ∈ [|f |], the machine M runs in space S(|x|) and outputs fx.

Assumption 3. For a sufficiently large constant C, there exists a function f : {0, 1}⋆ → {0, 1}⋆
mapping n bits to n2 bits, that is computable in space (C + 1) · log n, and satisfies the following.
For every probabilistic algorithm R running in space C · log n+O(log n)5 there are at most finitely
many x ∈ {0, 1}⋆ for which

Pr [R(x) prints a (C · log n)-space compressed version of f(x)] ≥ 2

3
.

Again, similarly to our comments after Assumption 1, the precise difference of C+1 vs.
C is not crucial (i.e., we can use C+k vs. C for a fixed small universal k), and moreover the
precise “amount of compression” can also be relaxed (e.g., compressing to |f |0.01 instead
of to

√
|f |); see Section 6 for the precise details.

Theorem 3 (see also Theorem 6.5). Suppose that Assumption 3 and Assumption 2 hold. Then,
for S(n) = Ω(log n) we have that

BPSPACE[S] ∈ DSPACE
[(

2 +
c

C

)
S
]
,

where c > 1 is some fixed universal constant.

The derandomization algorithm in Theorem 3 does not rely on a pseudorandom gen-
erator, but instead works in a “non black-box” way that depends on the input. This fol-
lows an approach in a recent line of works initiated in [CT21a] (with origins dating back
to [GW02; Gol11c]). As in previous works, the underlying hardness-to-randomness trade-
off is instance-wise, in the sense that for every space-S machine M and any fixed input x, if a
certain machine RM(x) fails to print a compressed version of f(x), then the deterministic
simulation of M succeeds at the particular input x.

On the hardness assumption. The hardness assumption in Theorem 3 is different than
the one in Theorem 2, but the conclusion is identical. This lends additional support for
the possibility of derandomization with small footprint. Moreover, assuming hardness
only for uniform algorithms (as in Theorem 3) is preferable, and the notion of hardness
on all but finitely many inputs is necessary for derandomization and was used in several
recent works (see, e.g., [CT21a; LP22a; LP22b]).

Nevertheless, the particular notion of hardness of compressing f(x) is non standard,
and we elaborate on it. Recall that, by Kolmogorov-complexity-type arguments, almost
all strings do not have any concise representation, let alone one that represents a space-
bounded machine. (In particular, since such a representation does not exist, then certainly
it is impossible to efficiently find it as in Assumption 3.) The crux of the assumption is

5The constant hidden in the O() does not depend on C.

6

that such representations are infeasible to find even for the outputs of the efficiently-
computable function f(x). We also note that an assumption reminiscent of “hardness of
compressing f(x) on all but finitely many inputs x” was recently used to characterize time-
bounded derandomization (i.e., it is equivalent to the statement prBPP = prP); see [LP22a]
for precise details.

Lastly, since the underlying hardness-vs.-randomness tradeoff is instance-wise, the
statement of Theorem 3 is robust, in the following sense: If the hardness holds not on all
n-bit inputs, but rather only on 1−µ(n) fraction of the n-bit inputs over some distribution
xn, then the derandomization succeeds with precisely the same probability and over the
same distribution. Further details appear in Section 6.

1.4 Catalytic computation towards an even smaller footprint

In the model of catalytic computation, introduced by Buhrman et al. [BCK+14], we enrich
the space-bounded model with an auxiliary memory, that initially already stores some data.
While we are allowed to use the auxiliary memory for our computation, in addition to the
standard work tape, the auxiliary memory needs to be restored to its original content
after use. Can such a seemingly restrictive usage be useful for computation? The work of
[BCK+14] and followup works showed that it is indeed the case. Here, we give a possible
application of catalytic space to derandomization, a connection that as far as we know, was
not suggested before.

Suppose that our hard language from Assumption 4 can be computed catalytically,
that is, most of the space used to compute it can be eventually restored. More concretely,
consider the following assumption:

Assumption 4. The language from Assumption 1 is computable in space n using additional C ·n
auxiliary catalytic space.

Then, we can show:

Theorem 4. Suppose that Assumption 4 and Assumption 2 hold. Then, for S(n) = Ω(log n), we
have that

BPSPACE[S] ⊆ DSPACE
[(

1 +
c

C

)
S
]

for some fixed universal constant c.

A similar result also holds in the non black-box setting.
Theorem 4 brings us tantalizingly close to derandomization without added memory

footprint. Interestingly, the regime of parameters in Assumption 4, where the work space
is only a small constant fraction of the catalytic space, has not been studied in the cat-
alytic computation literature. (So far, the focus has been on the particular case where the
catalytic space is exponential in the working space.) We thus view Assumption 3 also as
a motivation to study catalytic computation in other regimes of parameters, which are
useful for the study of derandomization.

7

2 Technical Overview

In Section 2.1 we describe the proof of Theorem 1, the main component of which (a new
error-correcting code – see Theorem 2.1) will be used in the subsequent proofs. Then, in
Section 2.2 we describe the proofs of Theorem 2 and Theorem 4. In particular, we show
how to eliminate derandomization overheads, using a new algorithmic idea for deran-
domization, a particular type of cryptographic PRG, and an assumption about catalytic
space. The proof of Theorem 3 is described in Section 2.3, and requires the strengthening
of all the components described in Sections 2.1 and 2.2.

2.1 Warm-up: Hardness amplification for TC0 circuits in linear space

The proof of Theorem 1 relies on the standard hardness-vs.-randomness approach, fol-
lowing [NW94; IW97; STV01]: Given an input x ∈ {0, 1}n the derandomization algo-
rithm first computes the truth-table f ∈ {0, 1}poly(n) of the hard function (on input length
O(log n)); then it transforms f into a truth-table f̄ ∈ {0, 1}poly(|f |) of a function that is
hard on average, using a locally list-decodable error-correcting code; and finally it uses
the Nisan–Wigderson generator to transform f̄ into pseudorandom strings on which the
probabilistic machine is evaluated with input x (see, e.g., [Gol08, Chapters 7, 8], [AB09,
Chapters 19, 20]).

The bottleneck in this approach is the worst-case to average-case reduction underly-
ing the transformation of f to f̄ . To prove that the derandomization works for logspace
machines, it suffices for f̄ to be hard on 1/2 − 2−ε·m fraction of its inputs for ROBPs of
width 2ε·m, for some ε > 0 and where m = log(|f̄ |).6 In order to deduce this conclusion
using the standard argument of [STV01], we need to assume that f itself is hard (in the
worst-case) for C-procedures with oracle access to ROBPs of linear width, where C is the
complexity of the local list-decoding algorithm of the code.

Loosely speaking, to decode from distance 1/2 − δ (and deduce hardness on 1/2 − δ
fraction of the inputs), the procedure C needs to be able to compute the majority function
(on Θ(1/δ) bits, which in our setting would be Θ(2ε·m) bits; see [GGH+07]).7 Unfortu-
nately, even when allowing C = TC0, the best known decoder, from [GGH+07], only
handles δ = 2−

√
m, which is too large for us. The codes that are typically used for hard-

ness amplification with δ = 2−ε·m (i.e., the ones from [IW97; STV01]) are not known to be
locally list-decodable in complexity as low as TC0.8

6This is actually an over-simplification, and what we actually need is for f̄ to be hard on 1/2 − 2−ε·m

fraction of the its inputs for AC0 circuits that have oracle access to an ROBPs of width 2ε·m (this follows
from the standard reconstruction argument of [NW94]). In this high-level overview we ignore the AC0

overhead, for simplicity of presentation.
7In fact, a similar statement holds for any “black-box” worst-case to average-case hardness amplifica-

tion [Vio03; SV08; GSV18].
8The bottleneck in both cases is local list-decoding of the Reed-Muller code; see [CT21a] for a recent

construction of a decoder in logspace-uniform NC.

8

The key observation allowing us to bridge this gap is that for our application of hard-
ness amplification, we do not have to insist on the TC0 circuit being of size poly(ℓ), where
ℓ = log(|f |), as in the standard setting of local coding. In fact, in our setting we can allow
a circuit of size 2ε·ℓ. Given this relaxation, we construct the following suitable code.

Theorem 2.1 (see also Theorem 4.2). There exists a universal constant c > 1 such that for any
constant γ ∈ (0, 1) the following holds. For every k ∈ N and ε > 0, there exists a logspace-
computable code C : {0, 1}k → {0, 1}n, for n = (k

ε
)c/γ , that is locally list decodable from 1/2 + ε

fraction of agreement by constant-depth threshold circuits of size kγ · (1/ε)c.

At a high level, the proof of Theorem 2.1 (wherein one should think of k = 2m) com-
bines three known code constructions:

1. A small modification of the code of [GGH+07], which uniquely decodes from agree-
ment 1− 1

25
using TC0 circuits;

2. the derandomized direct-product code of [IW97], which (1− 1
25
)-approximately list-

decodes from agreement η = 2−O(ε·m) using a TC0 circuit of size 2O(ε·m); and,

3. the Hadamard code, which we concatenate with the direct product code and is list-
decodable from agreement 1

2
+ 2−ε·m by TC0 circuits of size poly(m).

As a corollary, we obtain a TC0-computable worst-case to average-case reduction for
computing functions in DSPACE[O(n)]; see Corollary 4.1. This reduction handles the
“high-end” parameter regime, which previous reductions for functions in DSPACE[O(n)]
did not handle (see [Spi96; GK08; GGH+07]), and is incomparable to reductions com-
putable by probabilistic (uniform) algorithms [TV07; CRT22].

The decoder’s complexity. For our results we crucially rely on the fact that the de-
coder can be implemented in TC0 (e.g., when deducing black-box derandomization from
hardness for TC0 circuits with oracle access to branching programs, or when deducing
non-black-box derandomization). We suspect that it is possible to construct a code with
weaker guarantees – namely, a logspace decoder, rather than a TC0 decoder – using sim-
pler techniques (i.e., replacing the “outer” code of [GGH+07] by more classical tools).

2.2 Derandomization with minimal footprint using PRGs

Let S = C · log n denote the space complexity of the machine M we wish to derandomize
(the result for arbitrary S will follow from padding). At a high-level, our construction
follows an approach first introduced in [CT21b], which composes two “low-cost” PRGs:

• An inner PRG that stretches O(log n) bits to nη bits for some tiny constant η > 0,
and,

• an outer PRG that stretches nη bits to nC bits.

9

Specifically, as in [CT21a], we take the inner PRG, denoted by NW, to be an appropriately
parameterized Nisan-Wigderson PRG [NW94] with a hard truth-table f ∈ {0, 1}n2 , and
the outer PRG, denoted by Gcry, to be one that relies on a cryptographic assumption.

Unfortunately, materializing this approach in the current setting turns out to be sig-
nificantly more subtle than in [CT21b]. To see this, observe that the final computation
iterates over seeds s ∈ {0, 1}O(logn), and for each s computes

M(x,Gcry(NWf (s))),

where f is the truth-table of the hypothesized hard function. To compute this using space-
efficient composition, we use the following chain of simulations:

1. Simulate M(x, ·), and whenever it queries its second input –

2. Simulate Gcry, and whenever it queries its input –

3. Simulate NWf (s), and whenever it queries f –

4. Compute the corresponding bit of f .

Recall that, using space-efficient (emulative) composition, the complexity of the final
construction is additive in the space complexity of each of its components, plus additional
overheads that are logarithmic in the output length of each component. (The latter loga-
rithmic overhead is caused by the fact that we are simulating a virtual input head for each
component. See Proposition 3.2.) A naive implementation of this approach yields space
complexity of 3S+Space(Gcry)+Space(NW), where Space(·) denotes the space complexity
of the corresponding algorithm, and we ignore factors of the form c · log n where c > 1 is
a universal constant that doesn’t depend on S.

A more efficient derandomization. Our first observation is that the standard way of
derandomizing probabilistic space-S machine is wasteful. There, we think of the prob-
abilistic machine as reading a tape of random bits, sequentially; and when simulating it
deterministically, we keep track of a counter i ∈ [2S], and whenever the machine wishes
to read a random bit, we answer using the i-th bit in the pseudorandom output of the
generator, and update i← i+ 1.

It might (mistakenly) seem that using a dedicated counter is necessary, because we
must ensure that the machine reads each bit in the random (or pseudorandom) sequence
exactly once. However, this intuition turns out to be false: Instead of keeping a dedicated
counter i ∈ [2S], we can use the machine’s own configuration as a counter. Specifically, recall
that at each step the machine has some configuration σ ∈ {0, 1}S describing the contents
of its work tapes, its current state, and the locations of its heads.9 Moreover, since for
every input x and fixed sequence r of coins, the execution of M(x, r) halts, any configu-
ration σ ∈ {0, 1}S is encountered at most once during the execution of M (see Claim 3.3).

9Indeed, we count the location of the heads and the state in the configuration of the machine, and in fact
assume that they are written on dedicated worktapes; see Section 3 for the precise details.

10

Thus, we consider the following machine M̄ , which simulates M using oracle access to a
sequence of random coins but without the overhead of keeping a counter:

Simulate M , and whenever M tries to flip a random coin, access the sequence
of random coins at location σ, where σ is M ’s current configuration.

Since the functionality of M̄ and of M at any input x, with uniform coins, is identical,
it suffices to faithfully simulate M̄ with pseudorandom coins.

At this point the space complexity of the derandomization is essentially

2S + Space(Gcry) + Space(NW).

Since NW maps a truth-table f of length n2 to pseudorandom strings of length nη, it can
be computed in space c′ · log n for a universal c′ > 1 (see Section 5.1). Thus, our last step
is to bound the space complexity of Gcry.

We do so by relying on a specific PRG whose space complexity is logarithmic in its
input length nη and sub-logarithmic in its output length nC . A natural candidate for
such a PRG arises from the “cryptography in NC0” literature (see, e.g., [AIK06; IKO+08;
App14; RS21]), and in particular we can use Goldreich’s PRG [Gol11b]. The latter PRG
relies on a bipartite lossless expander Γ: [nC] × [d] → [nη] with a small left-degree d, and
on a predicate P : {0, 1}d → {0, 1}. For s ∈ {0, 1}nη and i ∈ [nC], the i-th output of Gcry(s)
is

P
(
sΓ(i,1), ..., sΓ(i,d)

)
,

where Γ(i, 1), . . . ,Γ(i, d) are the d neighbors of i in the expander.
In the cryptography literature, the graph is often taken to be a random one, but in

our setting we need a lossless expander whose neighbor function is computable in space
c′′ · log n, and also a predicate known to withstand existing attacks that is computable in
space c′′ · log n, where in both cases c′′ > 1 is a universal constant. We use the recent
expander construction of Kalev and Ta-Shma [KT22], whose degree is d = polylog(n) and
whose neighbor function is computable in space O(loglogn), and a predicate introduced
by Applebaum and Raykov [AR16] that is computable in space O(log d) = O(loglogn).
See Section 5.3.1 for further details.

This brings the complexity of the deterministic simulation of M on each particular
seed to be 2S+c · log n for some universal constant c, and after enumerating over all seeds
and taking the majority output, the space complexity increases only by an additive factor
of, say, at most c · log n.

The reconstruction argument. We prove that the derandomization works using a recon-
struction argument. Specifically, in the derandomization, we instantiate the NW generator
with the code from Theorem 2.1, and rely on the reconstruction argument of NW and on
the local list-decoding algorithm of the code to transform any ROBP distinguisher for the
PRG (which arises from the computation of the space-S machine M on a fixed input x)
into an efficient procedure that computes f .

11

The details of the reconstruction procedure appear in Theorem 5.1, so let us only high-
light the important points in the argument. First, our distinguisher is actually derived
from M̄ , the machine that reads bits according to its configuration. Secondly, by a stan-
dard analysis of PRG composition, the distinguisher for NWf is not just the ROBP derived
from M̄ and x, but actually the composed procedure

D(r) = M̄Gcry(r)(x).

This increases the complexity of the distinguisher from a simple ROBP to a bounded-
space machine. Lastly, while the machine implementing D uses space at least S = C ·log n,
the amount of non-uniform advice that it uses is much smaller than 2S = nC . Specifically,
it uses only |x| = n = 2log(|f |)/2 bits of advice.

To sum up, if the derandomization fails on some input x, then there exists a TC0

circuit C of size nε, and a function D that is computable in space ≈ C · log n with n bits of
advice,10 such that CD(i) = fi for all i ∈ [n2]. Finally, using the fact that C is a TC0 circuit,
we show that CD itself can be computed by a TM with advice, whose space complexity is
only slightly larger than the space complexity of D. This contradicts the hardness of f .

Obtaining a sub-double space overhead. The derandomization above takes 2S+c·log n
space, where the increase from S to 2S is caused by the space complexity of computing f .
Indeed, it seems unavoidable that we will need space larger than S to compute f , because
we are assuming that it is hard for algorithms running in space S.

The key observation to reducing this overhead is that if f is computable in catalytic
space S, we can roughly use the existing used worktape cells – which, at any point in time,
contain the current configuration of the derandomized machine – in order to compute
each query of NW to f . Specifically, whenever the derandomization machine queries f
at location i ∈ [n2], we compute fi using (mostly) the existing space in a catalytic way.
After the computation of the bit fi ends, the original content of the worktapes is restored.
The key point is that since the configuration of the machine does not change during the
computation of i 7→ fi, nor is this computation dependent on the configuration in any
way, the correctness of the procedure is maintained.

Thus, under this strengthened hypothesis that f is computable in small catalytic space,
the final space complexity of the derandomization algorithm is just S + c · log n.

An alternative to Assumption 1. Recall that D(r) above can be computed by a bounded-
space machine that uses |x| bits of advice. While indeed D is not a read-once branching
program, the computation of D(r) is oblivious. Namely, computing Ccry can be done by a
bounded-width branching program that at each layer queries several locations of r, how-
ever these locations are determined only by the underlying expander Γ. Thus, we can
model CD as a TC0 circuit with (non-adaptive) oracle access to branching programs of

10The precise complexity of D is (C + 1+ ε) · log n, but in the high-level overview we ignore these minor
overheads, for simplicity of presentation.

12

the aforementioned type. Moreover, we will later see that the TC0 circuit can be space-
efficiently generated using a short advice. The formal assumption is given in Assump-
tion 5.10, and can replace Assumption 1 for both the double and sub-double overhead
results.

2.3 Non black-box derandomization with minimal memory footprint

Set S = C · log n and recall that we wish to obtain the same conclusions for BPSPACE[S]
as in Section 2.2, but from different assumptions. Specifically, we assume the existence of
a function f : {0, 1}n → {0, 1}n2 computable in space S ′ = S+O(log n) such that for every
probabilistic algorithm R running in space SR = S ′ + O(log n), and every x ∈ {0, 1}n, the
algorithm R(x) fails to print a compressed version of f(x) (except with small probability).
In this context, a compressed version means a Turing machine of description size O(n) =

O(
√
|f(x)|) that runs in space roughly S + log n < S ′.

Following ideas from [CT21a; LP22a], we will construct a targeted PRG, which is an al-
gorithm that maps any input x to a set of pseudorandom strings that will fool the machine
M with this particular input x. As in those previous works, our targeted PRG is based
on the Nisan–Wigderson generator, and we analyze it using an instance-wise hardness vs.
randomness tradeoff. Specifically, we show that if the derandomization fails on an input
x, then a probabilistic space-SR machine R succeeds in mapping the same fixed x to a
compressed version of f(x). This yields Theorem 3, and also the more general version
mentioned after the theorem’s statement: For every distribution x over the inputs, if the
probability over x ∼ x that R fails to print compressed version of f(x) is 1 − µ, then the
derandomization succeeds on 1− µ of the inputs x ∼ x.

The derandomization itself is similar to the one from Section 2.2, with a minor differ-
ence that is nevertheless crucial. Instead of instantiating NW with f that is the truth-table
of a hypothesized hard function, we instantiate NW with f = f(x) obtained from the
input x. That is, we compute the majority, over seeds s ∈ {0, 1}O(logn), of

M̄Gcry(NWf(x)(s))(x) .

Note that the complexity of the derandomization algorithm is essentially identical to that
of the algorithm from Section 2.2. Thus, the only question is – why does it work?

Analysis. The main argument underlying Theorem 3 is proving that there exists a space-
SR algorithm R = RM satisfying the following: For any fixed x ∈ {0, 1}n, when NW is
instantiated with the code from Theorem 2.1, if NWf(x) does not fool M , then R(x) prints
a compressed version of f(x).

The intuition for why this might be possible dates back to [IW01], who showed that
the reconstruction algorithm of NW, which maps a distinguisher to a small circuit for the
hard truth-table, can be made uniform – as long as it is allowed to make queries to the
hard truth-table. Recall that in our setting, the algorithm R explicitly gets the input x,
and we are allowing R to run in space that is slightly larger than the space complexity of

13

computing f(x). Therefore, R can simulate the reconstruction algorithm, and whenever
the latter queries an index i of f(x), the algorithm R simply computes f(x) and returns
the relevant bit.

The main technical challenge that we are faced with is making the algorithm R not
only uniform, but also a small-space algorithm, and doing so when the underlying code for
hardness amplification is the one from Theorem 2.1. The resulting statement appears in
Theorem 6.1, and its proof is the most technically subtle argument in this paper. In the
rest of the section we describe the proof, at a high-level.

Low-space uniform reconstruction and decoding. We first strengthen the analysis of
the code C from Theorem 2.1, to show that not only is it locally list-decodable, but that it
also has a probabilistic space-O(log n) uniform decoder, which does not need non-uniform advice
(but rather uses queries to the corrupt codeword). The algorithm R will answer this
decoder’s queries to the corrupt codeword C(f(x)) by computing f(x) and then C, which
it can do in its allotted space. We compose this uniform decoder for C with a space-
O(log n) reconstruction algorithm for NW.

We stress that the two algorithms underlying R – the decoder, and the NW reconstruc-
tion – run in space O(log n), but print a procedure of description size nΩ(1). Thus, not only
do the two algorithms need to print a description of a procedure without remembering
most of the functionality of the machine that they printed so far – but also the algorithms
cannot even evaluate the procedures that they print.

The key observation is that in both cases, the decoding/reconstruction prints a proce-
dure almost all of which is a large, static, truth-table. To see this, let us focus for simplicity
on the NW reconstruction algorithm.11 Recall that this algorithm implements very sim-
ple functionality, which can be described by a logspace-uniform constant-depth circuit of
size polylog(n), and that is hard-wired with “static” information of size nε that is mostly
obtained from queries to C(f(x)).12 With some low-level care, we can design an algo-
rithm that queries C(f(x)) and prints a machine that implements that functionality, and
has states encoding the foregoing static information. Thus, the algorithm which prints
the machine does not need to remember static information that is already printed.

A related complication arises because both the decoding algorithm of C and the re-
construction algorithm of NW actually succeed only with small probability. The standard
approach (e.g., in [IW01; CT21a; LP22a]) is for R to use queries to C(f(x)) to estimate the
agreement of the procedure that it outputs with C(f(x)), repeating the experiment until
it gets a procedure with sufficiently large agreement. Since in our case R cannot evaluate
the procedure that it prints, it cannot take this approach. Instead, R prints a procedure
that performs this “success amplification” functionality by itself. We leave the details to
the technical section.

11The computational bottleneck in the decoder for C is the decoder for the derandomized direct product
code of [IW97], which acts in a similar way to the reconstruction of NW. Thus, we use similar ideas to
handle both the reconstruction of NW and the decoder of C.

12The information consists of an index i (used for a hybrid argument), of a combinatorial design, of values
for the seed outside the i-th set in the design, and of nη partial truth-tables.

14

Composing the two algorithms. The description above refers vaguely to “the proce-
dure” that R print, and being more accurate, this procedure is a TC0 circuit C of size nε

making queries to a space-S machine D that uses n bits of advice. This is not enough, since
our goal is for R to print a single Turing machine of description size O(

√
|f(x)|) = O(n)

running in space S + log n < S ′.
Bridging this gap requires more care in composing the two algorithms. Specifically,

our algorithm R prints a machine whose states encode the circuit C, and that implements
the standard DFS-style emulation of NC1 ⊇ TC0 circuits in logspace, while reading the
description of the hard-coded C out of its own states. The space overhead of the emula-
tion itself is O(log |C|) = O(log(nε)), and the machine also needs to compute the values of
the gates along each DFS path. In particular, this means that we need to ensure that each
path contains at most one oracle call to D (otherwise the machine’s space complexity will
be larger than 2S). For this purpose, in our strengthened analysis of C we ensure that its
decoding procedure only makes non-adaptive queries. This allows us to bound the space
complexity of the machine that R prints by S +O(ε · log n) ≤ S + log n, as desired.

3 Preliminaries

3.1 Space-bounded computation

We use the standard model of space-bounded computation (see also [Gol08, Section 5] or
[AB09, Section 4]). A deterministic space-bounded Turing machine has three semi infi-
nite tapes: an input tape (that is read-only); a work tape (that is read/write) and an output
tape (that is write-only and uni-directional). The machine’s alphabet is {0, 1}. The space
complexity of the machine is the number of used cells on the work tape. We say that a
language is in DSPACE(s(n)) if it is accepted by a space bounded TM with space com-
plexity s(n) on inputs of length n. Naturally, space-bounded machines can also compute
functions on the output tape.

A probabilistic space-bounded Turing machine is similar to the deterministic machine
except that it can also toss random coins. We also require a space-s(n) probabilistic ma-
chine to always halts within 2s

′(n) steps, where s′(n) = s(n) + O(log s(n)) + log n is the
number of possible configurations.13 Note that this bound on the runtime always holds
for (halting) space-s(n) deterministic machines.

One convenient way to formulate this is by adding a fourth semi-infinite tape, the
random-coins tape, that is read-only, uni-directional and is initialized with perfectly uni-
form bits. We are concerned with bounded-error computation: We say a language is
accepted by a probabilistic Turing machine if for every input in the language the accep-
tance probability is at least 2/3, and for every input not in the language it is at most 1/3.

13The machine’s configuration includes the content of its work tapes, its current state, and the location
of its heads, including the head on the input tape. For convenience, we can assume that the heads location
and current state are written on dedicated worktapes.

15

Similarly, we denote by BPSPACE(s(n)) the set of languages accepted by a probabilistic
space-bounded TM with space complexity s(n).

On multi-tape machines. While we defined the space bounded complexity class with
respect to a single work tape, throughout the paper we often describe computations done
on multiple work tapes. As long as the number of work tapes is some universal constant,
which will indeed be the case, the simulation loss is negligible and we will ignore it.
Formally, it follows from the following simple observation.

Claim 3.1. Let M be a (deterministic or probabilistic) space-bounded TM with C > 1 work tapes,
such that on input of length n uses space s(n) ≥ log n (in total over all its work tapes). Then, M
can be simulated by a TM with a single work tape that uses s(n) +O(C · log(s(n))) space.

Composition of space-bounded algorithms. We will heavily use space-efficient com-
position of functions computable by space-bounded TMs.

Proposition 3.2 ([Gol08], Lemma 5.2). Let f1, f2 : {0, 1}⋆ → {0, 1}⋆ be functions that are
computable in space s1, s2 : N→ N. Then, f2 ◦ f1 : {0, 1}⋆ → {0, 1}⋆ can be computed in space

s(n) = s2(ℓ1(n)) + s1(n) + log(ℓ1(n)) +O(1)

where ℓ1(n) is a bound on the output length of f1 (i.e., the cells used on the work tape) on inputs
of length n.

We note that the bound in Proposition 3.2 assumes two work tapes, and as we stated
above, simulating f2 ◦ f1 on a single work tape incurs an additional O(log s(n)) additive
factor in space.

When we say that a function f : {0, 1}n → {0, 1}m, which can be viewed as f : {0, 1}n×
[m]→ {0, 1}, is logspace computable if it is computable in space O(log n+ log logm). When
we compute a function using an oracle machine, we account for the space needed to pre-
pare the input to the oracle (unless stated otherwise, we write the entire input to the tape).

Configurations of space-bounded machines. A space-s machine (let it be deterministic
or probabilistic) has 2s′ possible configurations, where s′ = s+O(log s). Given a TM M , it
is possible to convert it into another machine M ′ that prints its (original) configuration on
a dedicated worktape, paying at most a constant factor blowup in the number of states.
(This conversion is explicit.)

Given a probabilistic TM M(x, r), instead of reading the bits of r in the standard uni-
directional manner, we can think of an oracle TM M̄ r′(x) that simulates M , and whenever
M reads a random bit, M̄ queries r′ in location q, where q denotes M ’s corresponding
configuration. The key point is that while the bits of r′ are read out of order, each one will
only be read at most once. This follows from the fact that M itself always halts (within 2s

′

steps).

16

Claim 3.3. Let M and M̄ as above. Then, for sufficiently long independent and uniform r, r′, and
any x, it holds that Pr[M(x, r) = 1] = Pr[M̄ r′(x) = 1].

Proof Sketch. It suffices to show that for each r′, M̄(x) reads each bit of r′ at most once.
This follows from the fact that M̄ never repeats a configuration. Indeed, suppose that
it visits some configuration c twice upon reading x with oracle access to some r′. Thus,
since M̄ will then read the same bits in r′, M̄ r′(x) will never halt. This means that there
exists some string r (determined by r′) on which M(x, r) will never halt, but M halts on
every input and randomness string.

Throughout the paper, we will freely use a description of TMs as strings. We thus fix
any canonical standard way of doing so (i.e., by fixing some universal Turing machine).

3.2 Additional complexity classes, and branching programs

We will use the standard definitions of circuit classes. In particular, an ACi circuit is a
Boolean circuit with depth O(logi n) over the De Morgan basis with unbounded fan-in
gates. In TCi, we allow Majority gates in addition to NOT, OR, and AND. We define the
size of the circuit to be its number of wires. We say that an oracle circuit is non-adaptive if
each computation path contains at most one oracle call.

Throughout the paper, we fix the following standard way of describing circuits as
strings. Specifically, the description consists of a list of gates, where the description of
each gate consists of its type (i.e., the function that it computes) and of the indices of gates
that feed into it. Observe that the description length of a circuit with s gates and w ≥ s
wires is O(w log s).

Read-once branching programs. We use the standard definition of layered read-once
branching programs. For a length parameter n ∈ N, a width parameter w ∈ N, and an
alphabet Σ, an [n,w]Σ ROBP B is specified by an initial state v0 ∈ [w], a set of accepting
states Vacc ⊆ [w] and a sequence of transition functions Bi : [w] × Σ → [w] for i ∈ [n]. The
ROBP naturally defines a function B : Σn → {0, 1}: Start at v0, and then for i = 1, . . . , n,
read the input symbol xi and transition to the state vi = Bi(vi−1, xi). The ROBP accepts x
if vn ∈ Vacc, and rejects otherwise.

Next, we define constant-depth circuits with oracle access to functions computable by
bounded-width ROBPs.

Definition 3.4. We say that a Boolean circuit C is an TC0
robp circuit is there exists an [M,M]{0,1}

ROBP B, for M ≤ size(C), such that C is a TC0 circuit with oracle calls to B.

Catalytic computation. Catalytic computation, defined by Buhrman et al. [BCK+14] (see
also [Kou+16]) asks whether an auxiliary memory, that already stores some data that
should be restored for later use, can be useful for computation. That is, can we make
computations more efficient if in addition to a standard clean worktape, we have access

17

to additional space which is initially in an arbitrary state and must be returned to that
state when our computation is finished?

Formally, we enrich our model of (deterministic) space-bounded Turing machine with
an auxiliary tape. For every possible initial setting of the auxiliary tape, at the end of the
computation the Turing machine must have returned the tape to its initial contents. We
denote by CSPACE[s(n), sA(n)] to be the set of all languages that can be decided by a
catalytic TM that runs in (standard) space s(n) and uses sA(n) cells of the auxiliary tape.
Clearly, a catalytic TM can compute a function (in working space s and catalytic space sA)
of the input rather accept or reject.

In the catalytic computation literature, the common setting is sA = 2O(s). We will work
with a more fine-grained separation, and consider the case when catalytic computation
offers an advantage over standard space-bounded computation for sA being only slightly
larger than s.

3.3 Error-correcting codes

We say that an error correcting code C : Σk → Σn has relative distance δ if for any distinct
codewords x, y ∈ C, it holds that δ(x, y) = Pri∈[n][xi ̸= yi] ≤ δ. As customary, we often use
C to simply denote Im(C) ⊆ Σn. If one corrupts a codeword in less than δ/2 fraction of its
coordinates, unique decoding is possible. Otherwise, one can resort to list decoding. We say
that C is (ρ, L) list decodable if for any w ∈ Σn there are at most L codewords c ∈ C that
satisfy δ(w, c) ≤ 1− ρ. We refer to ρ as the agreement parameter.

We will be interested in the local variants of unique and list decoding, wherein the
algorithmic task of decoding a single coordinate can be done very efficiently. Moreover,
we will sometimes need the approximate variant, in which we allow the returned words to
only agree with some corresponding codewords in a large fraction of the coordinates.

Definition 3.5 (locally approximately list-decodable code). We say that a code C : Σk → Σn

is (ρ → 1 − δ,Q, L, ξ) locally approximately list decodable by circuits of size s if there exist
randomized circuits Dec1, . . . ,DecL, each of size s, that satisfy the following.

• Each Deci has oracle access to a received word r ∈ Σn, and makes at most Q queries to the
coordinates of r.

• For every r ∈ Σn, and c = C(x) that agrees with r in at least ρ-fraction of its coordinates,
there exists j ∈ [L] such that

Pr
i∈[n]

[
Pr
Decj

[
Decrj(i) = xi

]
≥ ξ

]
≥ 1− δ.

When δ = 0, we say that C is locally list decodable. When L = 1, we say that C is locally
(approximately) uniquely decodable.

18

We note that when we do not pose any uniformity constraints, the output list size
parameter L may only implicit, in the sense that each Deci is of size at least logL and
we will sometimes omit it from the above notation. Similarly, when we do not insist on
a uniform generation of the Deci-s, by standard error reduction, we can take ξ = 1 and
incur only a minor loss in parameters. This leads us to the following, shorter definition:

Definition 3.6 (locally approximately list-decodable code). We say that a code C : Σk → Σn

is (ρ → 1 − δ,Q) locally approximate list decodable by circuits of size s if there exist circuits
Dec1, . . . ,DecL for some L ≤ 2s, each of size, that satisfy the following. For every r ∈ Σn, and
c = C(x) that agrees with r in at least ρ-fraction of its coordinates, there exists j ∈ [L] such that

Pr
i∈[n]

[
Decrj(i) = xi

]
≥ 1− δ.

When δ = 0, we say that C is locally list decodable, and use the notation (ρ,Q). When L = 1, we
say that C is locally (approximately) uniquely decodable.

3.4 Samplers

Definition 3.7 (strong sampler). A function Samp : {0, 1}m × [k]→ {0, 1}n is a strong (η, µ)
(oblivious) sampler if for any H1, . . . , Hk ⊆ {0, 1}n it holds that

Pr
x∈{0,1}m

[∣∣∣∣ Pri∈[k]
[Samp(x, i) ∈ Hi]− E

i∈[k]
[ρ(Hi)]

∣∣∣∣ ≤ η

]
≥ 1− µ,

where we denote by ρ(Hi) =
|Hi|
2n

the density of a set.

Random walks on expanders give strong samplers, with the following parameters.

Theorem 3.8 ([Hea08, Theorem 1.3]). For every n ∈ N and any η, µ > 0 there exists an
explicit strong (η, µ) sampler Samp : {0, 1}m × [k] → {0, 1}n where k = O(log(1/µ)/η2) and
m = n + O(k) that is computable in linear space. That is, given x ∈ {0, 1}m and y ∈ [k],
Samp(x, y) is computable in space O(m).

We will also use the following strong sampler, that has better randomness complexity
at the expense of worse sampling complexity.14

Theorem 3.9 ([Gol11a; CL20]). For every n ∈ N and any η, µ > 0 there exists an explicit
strong (η, µ) sampler Samp : {0, 1}m × [k] → {0, 1}n where k = poly(log(1/µ), 1/η) and m =
n + O(log(1/(ηµ))) that is computable in linear space. That is, given x ∈ {0, 1}m and y ∈ [k],
Samp(x, y) is computable in space O(m).

14We note that the “strongness” property does not appear in [RVW02; Gol11a; CL20] (the standard, non-
strong, definition assumes H1 = . . . = Hk). However, the seeded extractor that is used to construct the
sampler can be made strong with essentially no loss in parameters, and strong extractors yield strong sam-
plers (see [Zuc97]).

19

3.5 Combinatorial designs

Definition 3.10 (combinatorial design). A family of sets S1, ..., Sk ⊆ [d] is called an (n, a)-
design if each of the sets is of size |Si| = n, and any two distinct sets Si, Sj satisfy |Si ∩ Sj| ≤ a.
The corresponding design function Des : {0, 1}d × [k]→ {0, 1}n takes an input z ∈ {0, 1}d and
an index i ∈ [k] and outputs the projection of z to the coordinates in Si.

We will make use of logspace computable designs.15

Theorem 3.11 ([KM02, Lemma 5.19]). There is a universal constant c̄ ≥ 1 such that for any
constant α ∈ (0, 1) the following holds for every sufficiently large n ∈ N. There exists an algo-
rithm that outputs an (n, α·n)-design S1, ..., Sk ⊆ [d], where k =

⌈
2(α/c̄)·n

⌉
, and d ≤ (c̄/α)·n. On

input i ∈ [k], the algorithm runs in space O(n) and outputs Si. In particular, the corresponding
design function Des : {0, 1}d × [k]→ {0, 1}n is computable in space O(n).

4 Hardness Amplification for Space-Bounded Computation

Our goal in this section is to prove the following hardness amplification result: If there
exists a language L ∈ DSPACE[O(n)] that is hard for a class C of non-uniform circuits in
the worst-case, then there exists another language L′ ∈ DSPACE[O(n)] that is hard for
a related circuits class C ′ on 1

2
+ 2−Ω(n) fraction of the n-bit inputs. In the transformation

of f into f̄ , we want to maintain the complexity of the hard function, while minimizing
the difference between C and C ′. In particular, we want C to consist of constant-depth
threshold circuits of size 2γ·n with oracle access to C ′, for an arbitrarily small constant
γ > 0. More formally:

Corollary 4.1 (hardness amplification in linear space). Let F be a class of Boolean functions.
Assume that for some constant ε > 0 there exists L ∈ DSPACE[O(n)] that is hard on all but
finitely many input lengths for TC0 circuits of size 2ε·n with oracle access to F .16 Then, there
exists L′ ∈ DSPACE[O(n)] such that for every f ∈ F and sufficiently large n ∈ N, it holds that
Prx∈{0,1}n [f(x) = L′(x)] ≤ 1

2
+ 2−δ·n, where δ = δ(ε) > 0.

Following the (by now standard) idea introduced in [STV01], we use locally list de-
codable codes for hardness amplification, treating the local list decoding algorithm as a
worst-case to average-case hardness reduction. Specifically, the main technical tool will
be the construction of the following locally list-decodable code.

15The [KM02] result only guarantees the existence of designs for infinitely many n-s (more formally, for
each n there exists some n′ = O(n) for which the statement holds). This issue is resolved in [CT21a],
following [HR03].

16That is, for every f ∈ F and every family C of TC0 oracle circuits of size 2ε·n and every sufficiently
large n ∈ N there is x ∈ {0, 1}n such that Cf (x) ̸= L(x).

20

Theorem 4.2 (locally list-decodable code). There exists a universal constant c > 1 such that
for any constant γ ∈ (0, 1) the following holds. For every k ∈ N and ε > 0, there exists a
logspace-computable code C : {0, 1}k → {0, 1}n, for n = (k

ε
)c/γ , that is(

ρ =
1

2
+ ε,Q =

(
log k

ε

)c)
locally list decodable TC0 circuits of size kγ · (1/ε)c that make non-adaptive queries.

Most of this section will be devoted to the proof of Theorem 4.2. Before turning to
the proof itself, let us state the worst-case to average-case reduction that follows from the
local decoding algorithm (following [STV01]).

Proposition 4.3 (hardness amplification in linear space). There exists a universal constant
c > 1 such that the following holds. Let f : {0, 1}ℓ → {0, 1}, and let γ ∈ (0, 1). For k = 2ℓ,
identify f ∈ {0, 1}k with the truth table of f , and let C : {0, 1}k → {0, 1}k′ be the code from
Theorem 4.2 instantiated with parameter γ and to be locally list decode from agreement 1

2
+ ε for

some ε > 0. Then, for any function O : {0, 1}ℓ′ → {0, 1} satisfying

Pr
x∈{0,1}ℓ′

[O(x) = C(f)(x)] ≥ 1

2
+ ε,

there exists a TC0 oracle circuit A : {0, 1}ℓ → {0, 1} of depth c and size 2γ·ℓ/εc such that AO

computes f exactly and makes at most (ℓ/ε)c oracle queries.

Corollary 4.1 can now be easily established.

Proof of Corollary 4.1. Let f be the truth table of L on inputs of length ℓ, and set k = 2ℓ,
γ = 2ε, and δ = ε/c where c is the constant from Proposition 4.3. Let C : {0, 1}k → {0, 1}k′

be the code from Theorem 4.2 set with agreement parameter 1
2
+ 2−δ·ℓ. The language L′

on inputs of length ℓ′ = log k′ is determined by the truth table C(fℓ).17 The function C
is computable in space O(log k) = O(ℓ), so indeed f ′ is computable in linear space, and
L′ ∈ DSPACE[O(n)].

Next, fix some large enough ℓ′ ∈ N and assume towards a contradiction that there
exists f ′ ∈ F on inputs of length ℓ′ such that Prx∈{0,1}ℓ′ [f

′(x) = L′(x)] > 1
2
+ 2−δ·ℓ. By our

construction, L′(x) = C(f)(x) for some f : {0, 1}ℓ → {0, 1}. Then, Proposition 4.3 tells us
that there exists a TC0 oracle circuit A : {0, 1}ℓ → {0, 1} of size 2γ·ℓ/2−cδℓ = 2ε·ℓ so that Af ′

computes f exactly. This contradicts our hardness assumption on L.

4.1 Known code constructions

The code underlying Theorem 4.2 will be a composition of three different (known) error-
correcting codes. The first one is the code of Goldwasser et al. [GGH+07], which is locally
uniquely decodable from a (1/25)-fraction of errors by TC0 circuits. That is:

17We can extend L′ to all large enough inputs lengths while retaining its properties given in the proof.
We omit the details.

21

Theorem 4.4 (locally uniquely decodable code with an TC0 decoder [GGH+07]). There
exists a logspace-computable code

GGHKR′ : {0, 1}k → {0, 1}k′ ,

where k′ = poly(k), such that GGHKR′ is locally unique decodable from ρ = 24
25

fraction of
agreement by TC0 circuits of size 2polyloglog(k) making non-adaptive queries.

The fact that GGHKR′ is computable in logspace is not explicit in [GGH+07], so we give
the proof in Appendix B.1. Moreover, the code underlying Theorem 4.4 differs slightly
from the original construction in [GGH+07] (which is why we denote it by GGHKR′ rather
than just GGHKR), and moreover they prove that it’s decodable in (adaptive) AC0 of size
polylog(k) whereas we prove that it’s decodable in non-adaptive TC0 of size 2polyloglog(k);
we elaborate on the construction and the difference in Appendices B.1 and B.2.

The next ingredient is the derandomized direct-product code of Impagliazzo and Wigder-
son [IW97], which is locally approximately list-decodable. Specifically, the local list decoding
algorithm of this code is a TC0 circuit, and it takes a messages that agrees with a code-
word on ε > 0 of the entries, and recovers a message that agrees with the codeword on
1 − δ of the entries (we will use this with δ = 1/25, to compose this code with the one in
Theorem 4.4).

Theorem 4.5 (locally approximately list-decodable code with a TC0 decoder [IW97]).
There exists a constant cIW > 1 such that for any two constants δIW, γIW > 0, and every space-
computable εIW : N→ (0, 1), the following holds. There exists a logspace-computable code

IW : {0, 1}k′ → ({0, 1}r)k′′ ,

where k′′ = (k′/εIW)cIW·(1/γIW+1/δIW
2) and r = (cIW/δIW

2) · log(1/εIW), such that IW is(
εIW → 1− δIW, Q =

(
log k′

εIW2

)cIW
)

locally approximately list-decodable by constant-depth oracle circuits of size (k′)γIW/εIW
2. Each

decoding circuit has one majority gate of fan-in at most Q, and makes at most Q non-adaptive
oracle queries.

The statement above does not explicitly appear in [IW97], but their proof already sup-
ports this statement. For completeness, we include a full proof in Appendix A.

The last code is simply the Hadamard code, whose list-decodability is established by
the Goldreich-Levin algorithm [GL89].

Theorem 4.6 (list-decodable code [GL89]). For every r ∈ N and any ε < 1
2
, the Hadamard

code

Had : {0, 1}r → {0, 1}2r

22

is (ρ = 1
2
+ ε,Q = O(1/ε2), L = O(1/ε2), ξ = 2

3
) locally list decodable by constant-depth

oracle circuits of size poly(r, 1/ε) that use majority gates of fan-in O(1/ε) and make non-adaptive
queries.

By a standard amplification argument, using a construction of approximate majority in AC0

(see [ABO84]), the code Had is (
ρ,Q = O

(r

ε2

)
, L

)
locally list decodable by constant-depth circuits of size poly(r, 1/ε) that use majority gates of fan-
in O(1/ε) and make non-adaptive queries.

4.2 Proof of Theorem 4.2

We now present the proof of Theorem 4.2. Recall that we are given k, ε, and γ. Set
δ = 1

25
, εHad = ε

2
, LHad = O(1/ε2Had) where the constant hidden inside the O-notation is

universal and sufficiently large, and εIW = εHad
LHad

= Θ(ε3).We use the following three codes.

1. GGHKR′ : {0, 1}k → {0, 1}k′ is the code given in Theorem 4.4, with k′ = kc1 for some
universal constant c1 > 1, such that GGHKR′ is locally uniquely decodable from
1− δ fraction of agreement by TC0 circuits of size sGGM = 2polyloglog(k). Note that the
decoder circuit makes at most QGGM = sGGM queries.

2. IW : {0, 1}k′ → ({0, 1}r)k′′ is the code given in Theorem 4.5, set with the parameter
δIW = δ, γIW = γ/2c1, and εIW. Note that we can take k′′ = (k′/εIW)c2/γ and r = c2 log

1
ε

for some universal constant c2 > 1. Also, recall that IW is(
εIW → 1− δ,QIW = poly

(
log k,

1

ε

))
locally approximately list decodable by circuits of size

sIW = O

(
(k′)γIW

εIW2

)
= O

(
kγ/2

ε6

)
that have one majority gate of fan-in at most QIW.

3. Had : {0, 1}r → {0, 1}2r is the Hadamard code. Recall that Had is(
1

2
+ εHad, QHad = O

(
r

ε2Had

)
= O

(
log 1

ε

ε2

)
, LHad

)
locally list decodable by AC0 circuits of size sHad = poly(r/εHad) = poly(1/ε) that
use majority gates of fan-in O(1/ε).

23

Our code C : {0, 1}k → {0, 1}n is the concatenation of IW ◦GGHKR′ with the Hadamard
code. Namely, given x ∈ {0, 1}k, write y = IW (GGHKR′(x)) ∈ Σk′′ for Σ = {0, 1}r, and
encode each symbol of y with Had. That is,

C(x) = Had(y1) ◦ . . . ◦ Had(yk′′) ∈ {0, 1}n.

Note that the output length of C is indeed

n = k′′ · 2r =
(

k′

εIW

)c2/γ

· 1

εc2
≤

(
k

ε

)c3/γ

for a universal constant c3 > 1.

4.2.1 Local list decodability of C

We denote the code concatenation of IW and Had by C ′ : {0, 1}k′ → {0, 1}n. We first show:

Lemma 4.7. There is a constant c4 such that the code C ′ is(
1

2
+ ε→ 1− δ,Q′ =

(
log k

ε

)c4)
locally approximately list decodable by constant-depth oracle circuits of size s′ = kγ/2 · (1/ε)c4
each having at most Q′ majority gates of fan-in at most Q′ and makes non-adaptive queries.

Proof. Let A1, . . . , ALIW
and B1, . . . , BLHad

be the decoding circuits that correspond to both
codes. For each j1 ∈ [LIW] and j2 = [LHad], we let Cj=(j1,j2) be the following decoding
circuit, that on input i ∈ {0, 1}k′ and query access to w ∈ {0, 1}n, acts as follows.

• Cj applies the decoding procedure Aj1 on i.

• Whenever Aj1 queries an element i′ ∈ [k′′] expecting an answer in {0, 1}r, the circuit
Cj invokes Bj2(·) over all its r inputs, giving it oracle access to the corresponding 2r

positions in w, to get a guess for the i′-th symbol.

Note that we apply the decoder of Had with the same advice j2 for each query of Aj1 . The
size of each Cj is thus bounded by

O(sIW +Q′ · r · sHad) = kγ/2 · poly(1/ε).

For correctness, let y ∈ {0, 1}n and x ∈ {0, 1}k′ be such that y and C ′(x) agree on at least
1/2 + ε fraction of their coordinates. Denote z = IW(x) ∈ Σk′′ . By an averaging argument,
there exists a set I ⊆ [k′′] of density at least ε/2 such that for each i ∈ I , Had(zi) has at least
1/2 + εHad agreement with the corresponding position in y.

By the list decoding property of the Hadamard code, for every i ∈ I there exists j2(i) ∈
[LHad] such that Bj2(i) returns the correct symbol. Thus, by another averaging argument,
there exists j⋆2 ∈ [LHad] for which at least ε

2
· 1
LHad

= εIW fraction of the symbols of z are
such that the Bj⋆2

(·) agrees with the corresponding symbols in y. Since there exists j⋆1 ∈
[LIW] such that Aj⋆1

can δ-approximately decode from agreement εIW, we get that Cj=(j⋆1 ,j
⋆
2)

recovers x′ that has 1− δ agreement with x.

24

We now describe the decoders for C = C ′ ◦ GGHKR′. Each decoding circuit Dj is pa-
rameterized by j ∈ [L′] and works as follows. Given i ∈ [k], and oracle access to a string
y ∈ {0, 1}n,

• We run the local unique decoder of GGHKR′ on input i.

• Whenever the local unique decoder wishes to query some index z ∈ [k′], we run the
approximate local list decoder of C ′, namely Cj(z), having query access to y.

Assume that x ∈ {0, 1}k is such that y agrees with C(x) in at least 1/2 + ε fraction of
coordinates. We are guaranteed that for some j⋆ ∈ [L′], Cj⋆ decodes correctly at least 1− δ
fraction of the symbols of GGHKR′(x). Thus, when the local unique decoder is given the
word (Cj⋆(1), . . . , Cj⋆(k

′)) as its noisy codeword, it essentially queries a word with 1 − δ
agreement with GGHKR′(x) and so it correctly decodes every bit in x.

For the complexity of each Dj , note that its size is bounded by

O (sGGM +QGGM · s′) = kγ · poly(1/ε).

Finally, note that the total number of queries made is QGGM ·Q′ = poly(log k, 1/ε), and that
since all the decoders are non-adaptive, their composition is also non-adaptive.

4.2.2 The complexity of C

Finally, we establish the uniform complexity of C.

Claim 4.8. The code C is computable in logspace. Namely, for any x ∈ {0, 1}k and agreement
parameter ε > 0, C(x) is computable in space O(log n) = O(log(k/ε)).

Proof. Recall that C is the concatenation of IW◦GGHKR′ with the Hadamard code. By The-
orem 4.4 (proven in Appendix B.1), GGHKR′ is computable in space O(log k′) = O(log k).
By Theorem 4.5, IW is computable in space O(log(rk′′)) = O(log(k/ε)). By composi-
tion of space-bounded algorithms (Proposition 3.2), IW ◦ GGHKR′ is computable in space
O(log(k/ε)). Finally, note that each coordinate of C(x) is simply a bit in the encoding of
Had(yj) for some j ∈ [k′′], where y = (IW ◦ GGHKR′)(x). So overall (again using composi-
tion of space-bounded algorithms), C is logspace computable.

5 Black-Box Derandomization with Minimal Memory Foot-
print

In this section we give our black-box derandomization result we outlined in Sections 1.2
and 2.2. In Section 5.2 we prove that BPL = L (or alternatively, that BPSPACE[S] ⊆
DSPACE[O(S)]) follows from hardness against shallow circuits (as described in Sections 1.1
and 2.1). Section 5.3 is devoted to the efficient derandomization result, which will start
with a discussion on our cryptographic hardness assumptions.

25

5.1 A logspace generator with TC0 reconstruction

We give the standard Nisan–Wigderson generator [NW94], in the standard terminology
of reconstructive PRGs. We put emphasis on both the uniform complexity of the generator
and on the nonuniform complexity of the reconstruction circuit.

Theorem 5.1 (Nisan–Wigderson PRG with TC0 reconstruction). There exists a universal
constant cNW > 1 such that for every sufficiently small constant εNW > 0 the following holds.
There exist two algorithms G,R, that for any f ∈ {0, 1}N and for M = N εNW , satisfy:

1. (Generator.) When given input s ∈ {0, 1}(cNW/εNW)·logN and oracle access to f , the gener-
ator outputs an M -bit string Gf (s). On input s and i ∈ [M], Gf (s)i can be computed in
space (cNW/εNW) · logN .

2. (Reconstruction.) For any 1
M

-distinguisher D : {0, 1}M → {0, 1} for Gf there exists a
constant-depth oracle circuit R of size M cNW that has majority gates, makes non-adaptive
queries, and satisfies the following: When given input x ∈ [N] and oracle access to D, the
circuit R outputs fx.

Proof. Let f̄ be the encoding of f by the code from Theorem 4.2, set with parameters
ε = 1/O(M2) and γ = εNW, and note that f̄ is of length N̄ = N c/εNW for some universal
constant c > 1. Without loss of generality, we can assume that N̄ is a power of two (by
padding N̄ appropriately).

Let S1, . . . , Sk ⊆ [d] be the logspace-computable (ℓ = log N̄ , αℓ)-design for α = (c̄/c)εNW
2,

guaranteed to us by Theorem 3.11, where c̄ is the universal constant given in that theorem.
Note that

k = 2(α/c̄)·ℓ = N̄α/c̄ = M,

and

d =
c̄

α
· ℓ = c2

εNW3
· logN.

The generator G gets a seed s ∈ {0, 1}d, and for each output index i ∈ [M] is defined
by

Gf (s)i = f̄s↾Si
,

where s↾Si
= Des(s, i) is the projection of s to the ℓ coordinates specified by Si ⊆ [d].

Complexity of computing each output bit. To compute the function (s, i) 7→ Gf (s)i,
the oracle machine (which has access to f) acts as follows. First, it computes the string
q = Des(s, i) ∈ {0, 1}ℓ to the work tape.18 Then, computing f̄q = C(f)q is done as follows.
We maintain, on a dedicated worktape, the location of the required bit to be read from f .

18Note that we could have also used space-efficient composition and not store the entire q on the work
tape, but we won’t need this saving.

26

Whenever the (logspace) encoding function queries the input, we update that worktape
to some k ∈ [N] and query the oracle for fk.

The foregoing procedure can be implemented in space complexity O((logN)/εNW).
To see this, note that Des is computable in space O(ℓ) = O((logN)/εNW) and we keep
those ℓ bits on the worktape. The encoding function C is computable in space O(log N̄) =
O((logN)/εNW), and maintaining the oracle queries, using composition of space-bounded
algorithms, takes another O(log ℓ+ logN) space.

Reconstruction. Let D be a 1
M

-distinguisher for Gf (s). By a standard analysis follow-
ing [NW94], there exists an algorithm RNW that gets advice adv (that we will specify be-
low) and satisfies

Pr
x∈{0,1}ℓ

[
RD,adv

NW (x) = f̄x

]
≥ 1

2
+ ε,

and RNW can be implemented by an AC0 circuit of size poly(ℓ). The advice adv consists
of the combinatorial design, an index i ∈ [M], values z ∈ {0, 1}d−ℓ, a bit σ ∈ {0, 1}, and
the (at most) M − 1 partial truth-tables of f̄ defined by (i, z), where each truth-table is of
length at most 2α·ℓ.

Let f̃ : {0, 1}ℓ → {0, 1} be the function computed by RD,adv
NW (·). By Theorem 4.2, there

exists a constant-depth circuit of size Nγ · (1/ε)c = M3c with majority gates that computes
f when given non-adaptive oracle access to f̃ .Plugging in RNW and adv into this circuit,
we obtain an oracle circuit (that makes queries only to D) of size at most

M3c︸︷︷︸
threshold circuit

+poly(ℓ)︸ ︷︷ ︸
RNW

+M · ℓ · log d︸ ︷︷ ︸
design

+ M · 2α·ℓ︸ ︷︷ ︸
partial truth-tables of f̄

+ d+ logM︸ ︷︷ ︸
values z, index i

which is at most M c′ for a sufficiently large universal constant c′ > 1.

5.2 Warm-up: BPL = L from weaker assumptions

We are now ready to establish our hardness-to-pseudorandomness result, which follows
the standard Nisan–Wigderson analysis. We will mostly emphasize where our new hard-
ness assumptions come into play, and only sketch the rest of the argument.

Theorem 5.2. Assume there exists a language L ∈ DSPACE[O(n)] that is hard for TC0
robp

circuits of size 2γn, where γ ∈ (0, 1) is some constant. Then, BPL = L.

Proof. Let A ∈ BPL and fix any x ∈ {0, 1}n for a large enough n ∈ N. Then, there
exists a constant a > 0 and an ROBP Cx : {0, 1}M=na → {0, 1} of width M such that
Prz∈{0,1}M [Cx(z) = 1] ≥ 2/3 if x ∈ A, and at most 1/3 otherwise. Set εNW = γ/cNW

where cNW is the constant from Theorem 5.1, let N = M1/εNW , and let f : {0, 1}logN →

27

{0, 1} compute L on inputs of length logN . By our assumption, f is computable in space
O(logN) = O(log n). Let

Gf : {0, 1}(cNW/εNW) logN=O(logn) → {0, 1}M

be the NW PRG given in Theorem 5.1, and assume towards a contradiction that Cx is an
1
M

-distinguisher for Gf . Then, there exists a constant-depth threshold oracle circuit RCx

of size M cNW = Nγ that computes f . Observing that RCx ∈ TC0
robp, this contradicts the

hardness of f . Hence, Gf fools Cx and we can estimate Prz∈{0,1}M [Cx(z) = 1] in space
O(log n), using the fact that Gf (s) is computable in logspace and the seed of the PRG is
logarithmic.

5.3 Minimal-footprint derandomization results

5.3.1 A logspace-computable cryptographic PRG with polynomial stretch

For our efficient derandomization result, we will use a cryptographic PRG computable in
logarithmic space.19

Assumption 5.3 (a PRG computable in space sub-logarithmic in the output length). There
exists a constant ccry > 1 such that for every η > 0 and C ∈ N there exists an algorithm Gcry that
gets input s̄ ∈ {0, 1}nη and outputs Gcry(s̄) ∈ {0, 1}nC such that:

1. (Efficiency.) The mapping of (s̄, i) ∈ {0, 1}nη × [nC] to Gcry(s̄)i is computable in space
ccry · log |s̄|+ o(log n).

2. (Pseudorandomness.) For every circuit D : {0, 1}nC → {0, 1} of size polynomial in n it
holds that Prs∈{0,1}nη [D(Gcry(s̄)) = 1] ∈ Prx∈{0,1}nC [D(x) = 1]± 1/N .

A candidate PRG. A candidate construction of such a PRG follows from Goldreich’s
candidate of one-way functions based on expander graphs [Gol11d], with an appropriate
choice of expander and of predicate. The candidate PRG Gexp : {0, 1}nη → {0, 1}nC is
constructed as follows. Let Γ: [nC] × [d] → [nη] be the neighbor function of a lossless
expander with the following guarantee: For any set S ⊆ [nC] of size at most |S| ≤ n(1−α)C ,
it holds that |Γ(S)| ≥ (1−α)d|S|, where α > 0 is a small enough constant. Let P : {0, 1}d →
{0, 1} be a predicate. Then, given s ∈ {0, 1}nη and i ∈ [nC],

Gexp(s)i = P
(
s↾Γ(i)

)
,

where s↾Γ(i) is the restriction of s to the set of right-neighbors of i in Γ.
An extensive line of research discovered conditions that are necessary for Goldre-

ich’s construction to be pseudorandom (see [Ale11; MST06; ABW10; BQ12; ABR16; BR13;

19Recall that when we say a function f : {0, 1}n → {0, 1}m ≡ {0, 1}n × [m] → {0, 1} is computable in
logspace, we mean that it is computable in deterministic space O(log n+ log logm).

28

CEM+14; OW14; FPV15; AL18; AR16]). For example, the stretch nC must satisfy (roughly)
C ≤ d/3 (see [MST06; OW14]); the predicate P needs to have degree Ω(ℓ) as a polynomial,
and all of its Fourier coefficients of degree ≤ d must be zero (see [AL18]); and either the
predicate P or the neighbor functions Γi (for i ∈ [d]) must have sufficiently high circuit
complexity (see [OST22]).

For our derandomization result, we need an explicit, space-efficient Γ, and we take
Γ to be the recent construction by Kalev and Ta-Shma [KT22]. The parameters of their
construction matches the well-known GUV lossless expander [GUV09], but we choose to
use [KT22] since its logspace computability follows quite easily. We also note that weaker
space requirement from Γ would also suffice, namely any sub-linear space complexity.

We state the expander’s parameters already with respect to the designated parameters
of the PRG.

Theorem 5.4 ([GUV09; KT22]). For any constants 0 < η < C and α ∈ (0, 1), and for every
n ∈ N, there exists an expander Γ: [nC] × [d] → [nη] with d = polylog(n), such that for any set
S ⊆ [nC] of size at most |S| ≤ n(1−α)C , it holds that |Γ(S)| ≥ (1 − α)d|S|. Furthermore, the
function Γ is computable in logarithmic space (namely in O(log log n) space).

We will analyze the space complexity of Γ in Appendix B.3. Thus, given Theorem 5.4,
computing Gexp(s̄)i takes O(log d+log log n+ sP) space (following Proposition 3.2), where
sP is the space required to compute P on inputs of length d = polylog(n). Hence, for any
suitable P that is computable in a small enough sub-linear space, the efficiently require-
ment of Assumption 5.3 holds.

In particular, we can take the following candidate of P from [AR16]

P (x1, ..., xd) = (⊕i∈[⌊d/2⌋]xi)⊕ (MAJ {xi : i ∈ {⌊d/2⌋+ 1, ..., d}}) ,

which has high enough degree as a rational function, high enough Fourier degree, and
large enough circuit complexity (see [AR16; OST22]).

5.3.2 Derandomization that doubles the memory footprint

We are now ready to state and prove our derandomization result that doubles the memory
footprint, from non-uniform hardness assumptions, whose informal version was given in
Theorem 2.

Theorem 5.5 (derandomization that doubles the memory footprint). There exists a univer-
sal constant c > 1 such that for any two constants ε ∈ (0, 1) and C ∈ N the following holds.
Suppose that Assumption 5.3 is true, and that there exists

Lhard ∈ DSPACE

[
C + 1 + ε+ δ

2
· n

]
for some constant δ > 0 that is hard for constant-depth threshold circuits of size 2ε·n with non-
adaptive oracle access to algorithms that get 2n/2 bits of non-uniformity and run in space C+1+ε

2
·n.

29

Then, for S(n) = C · log n, we have that

BPSPACE[S] ⊆ DSPACE
[
2S +

(c
ε
+ δ

)
log n

]
.

Proof. Let L ∈ BPSPACE[S(n)], and let M be a randomized space-S machine that de-
cides L. For any n ∈ N, let N = n2, and let f ∈ {0, 1}N be the truth-table of Lhard on inputs
of length ℓ = logN . Let

NWf : {0, 1}(cNW/εNW)ℓ → {0, 1}NεNW

be the generator from Theorem 5.1, instantiated with εNW = ε
2cNW·ccry . Let

Gcry : {0, 1}NεNW → {0, 1}nC

be the generator from Assumption 5.3, instantiated with the parameters η = 2εNW and C.
Denoting the number of seeds of NWf by N̄ = N cNW/εNW = n4cNW

2·ccry/ε, we define
Gf : {0, 1}log N̄ → {0, 1} by

G(s) = Gcry
(
NWf (s)

)
.

We define the following oracle machine M̄ : Given input x ∈ {0, 1}n and oracle access
to r′ ∈ {0, 1}nC ,

• The machine M̄ simulates M on input x.

• Whenever M enters a state that flips a random coin, the machine M̄ queries the
oracle r′ in a location corresponding to the current contents of its worktape; that is,
M̄ writes its current configuration to the oracle tape, and uses it to query a bit in
r′ ∈ {0, 1}nC .20

By Claim 3.3, for any x ∈ {0, 1}n it holds that Prr[M(x, r) = 1] = Prr′ [M̄
r′(x) = 1], where

r, r′ ∼ unC , and that M̄ uses S +O(logS) space.
Our deterministic algorithm A = AL for L gets input x, and outputs

MAJs∈{0,1}log N̄

{
M̄G(s)(x)

}
. (5.1)

Space complexity of A. The algorithm enumerates over seeds s ∈ [N̄], while also main-
taining an integer counter in [N̄] for the majority outcome. For every fixed seed s it sim-
ulates M̄ on the input x with oracle access to G(s). The oracle is implemented by space-
bounded composition of Gcry, of NWf , and of the machine for Lhard; that is, whenever M̄
queries the oracle at location i ∈ [nC], the algorithm A:

20The number of configurations of M̄ is slightly larger than nC , namely nC ·polylog(n). Naturally, this can
be remedied by slightly increasing the output length of Gcry, even by taking C +1 instead of C whenever n
is large enough. This does not change the theorem’s statement, so for the sake of readability we assume nC

configurations.

30

1. Simulates the algorithm Mcry that computes (s̄, i) 7→ Gcry(s̄)i, giving it virtual access
to s̄ = NWf (s) ∈ {0, 1}NεNW and direct access to i (i.e., using the content of the
relevant worktape of M).

2. Whenever Mcry queries s̄ at location j ∈ [N εNW], the algorithm A simulates the algo-
rithm MNW that computes NWf (s)j , giving it direct access to j. Finally,

3. Whenever MNW queries f at location q ∈ [N], the algorithm A runs the machine for
Lhard, giving it direct access to q.

The space complexity of A follows from Proposition 3.2, but for concreteness we spell
out the details. Denoting the space complexity of f by S ′ = (C + 1 + ε + δ)/2 · logN =
(C + 1 + ε+ δ) · log n, we have

log N̄︸ ︷︷ ︸
enumerating s

+ S +O(logS)︸ ︷︷ ︸
M̄

+ ccry · log(N εNW) + o(log n)︸ ︷︷ ︸
Mcry

+
cNW
εNW

· logN︸ ︷︷ ︸
MNW

+ S ′︸︷︷︸
computing f

+ log N̄︸ ︷︷ ︸
counting the outcomes of M

+ c0 · (logN + log(N εNW))︸ ︷︷ ︸
composition overhead

= S + S ′ +
c1
ε
· log n =

(
2C +

c

ε
+ δ

)
· log n,

where c0, c1, c > 1 are sufficiently large universal constants.

Correctness of A. Fix any x ∈ {0, 1}n, and let D0 = D0,x be defined by D0(r) = M̄ r(x).
Recall that

Pr
r
[D0(r) = 1] = Pr

r
[M(x, r) = 1].

Since Gcry is (1/nC)-pseudorandom for all circuits of size poly(n), and in particular for
D0, we have that

Pr
r
[D0(r) = 1] ∈ Pr

s̄
[D0(G

cry(s̄)) = 1]± 1

nC
.

Now, let D1 : {0, 1}N
εNW → {0, 1} be defined by D1(s̄) = D0(G

cry(s̄)). Assume towards
a contradiction that

Pr
s̄
[D1(s̄) = 1] /∈ Pr

s

[
D1

(
NWf (s)

)
= 1

]
± 1

10
.

By Theorem 5.1, there exists a constant-depth threshold circuit R of size N cNW·εNW < N ε

that, when given oracle to D1, computes the mapping of x ∈ [N] to fx, so overall, A
decides L.

31

Claim 5.6. D1 can be computed by a machine running in space C+1+ε
2
·logN with n bits of advice.

Proof. The n bits of advice will simply be the value of x. We begin the proof by noting
that using standard space-efficient composition of D0 and Gcry will be too wasteful, since
it would take

S +O(logS)︸ ︷︷ ︸
M̄

+ ccry · log(N εNW) + o(log n)︸ ︷︷ ︸
Mcry

+ log n+ c0 · log(nC)︸ ︷︷ ︸
composition overhead

space, where:

• The second-to-last term, log n, follows from the need to maintain access to x. Recall
that x is an advice string, and the space complexity bound on the simulation of M̄
assumes that x is given on the input tape. We will not try to reuse any of the other
cells in the computation, and simply allocate log n dedicated bits.21

• The last term c0 ·S, which is too much for us, follows from the fact that we seemingly
need to store the coordinate that D0 wishes to read from Gcry(s̄).

To address the second bullet point, recall that we know the coordinates are read according
to the configuration of M̄ (i.e., M on x). Thus, whenever D1, while simulating D0(·),
needs access to a coordinate i ∈ [nC] of Gcry(s̄), it will run the mapping (s̄, i) 7→ Gcry(s̄)i.
To provide the foregoing mapping with access to (s̄, i), recall that s̄ is written on the
worktape; and whenever the mapping needs to access a bit in i (i.e., in the string i ∈
{0, 1}log(nC)), M̄ will provide it. Specifically, recall that i is the current configuration of
M̄ . We simulate the mapping using a virtual input head, while storing its location using
log(|s̄| + |i|) < log(n) bits; and whenever the mapping queries a bit j ∈ log(|i|) of i, we
answer with the j-th bit in the configuration of M̄ (by moving the worktape head to the
corresponding location and answering appropriately).

The subtle point is that the stated space complexity of computing Gcry(s̄)i assumes that
we have a bi-directional access to i. In Section 3.1, we explained that printing the current i
can be done with essentially no loss in parameters, but printing i entirely is too costly for
us! Instead, to mimic such a bi-directional access, D1 will be able to query a specific index
of the current configuration of M . Luckily, the configuration does not change until until
the query to Gcry(s)i is answered and the execution of M̄ continues, so consistency is guar-
anteed. Overall, such an implementation, in which D1 is also responsible for supplying
the bits of each configuration on demand, can be done in space

S +O(logS) + ccry · log(N εNW) + o(log n) + log n+O(log log(nC))

<
C

2
logN + (1 + ε) log n,

where the negligible O(log log(nC)) term, together with the O(logS) term, is the space we
allocate for the configurations mechanism. □

21One can also consider a model in which these log n bits are not a part of the overall space, but it won’t
significantly matter to us.

32

To conclude, note that D1 uses less than C+1+ε
2

logN space and n bits of non-uniformity
and computes Lhard, thus contradicting its hardness. The non adaptivity follow directly
from Theorem 5.1.

By a standard padding argument, we can conclude:

Corollary 5.7. Under the assumptions and notation of Theorem 5.5, for any S(n) = Ω(log n),
we have that

BPSPACE[S] ⊆ DSPACE

[(
2 +

c/ε+ δ

C

)
S

]
.

In particular, if for example the assumptions of Theorem 5.5 hold for an arbitrarily large constant
C, ε = 1/4 and δ = 4, we have

BPSPACE[S] ⊆ DSPACE[(2 + τ)S]

where τ > 0 is arbitrarily small.

To conclude, observe that space-bounded algorithms with advice can simulate the TC0

computation as long as the circuit’s size is not too large, so hardness against small TC0

with non-adaptive oracle access to space-bounded algorithms with advice is implied by
hardness against space-bounded algorithm with (a slightly longer) advice. Indeed, this is
how we stated Assumption 1. Formally:

Claim 5.8. Let L be a language that on inputs of length n can be computed by a constant-depth
threshold circuit of size 2εn with non-adaptive oracle access to an algorithm that gets 2n/2 bits
of non-uniformity and runs in deterministic space C+1+ε

2
· n. Then, L is also computable in

deterministic space C+1+O(ε)
2

· n with 2n/2 + 2εn bits of advice.

Proof. The space-bounded algorithm will simply simulate the circuit C, whose encoding
will be given to it as advice. A bit more formally, let F be a TM that gets 2n/2 + 2εn bits of
advice, where the latter term is the encoding of C. Then, F runs the DFS-style algorithm
for evaluating a constant-depth circuit. Starting from the output gate, F recursively eval-
uate each of its children. For each evaluated gate, it simulates a machine implementing
the functionality of the gate, while answering its queries to the children (feeding into the
gate) by space-bounded composition. Handling MAJ, AND, OR, and NOT, is straightfor-
ward. When the evaluated gate is an oracle gate to the algorithm A that get 2n/2 bits of
non-uniformity and runs in space C+1+ε

2
·n, F simulates it using its first 2n/2 bits of advice

and the values of the oracle gate’s children.
Implementing the above emulation requires recursion of constant depth. The non-

adaptivity means that in each path there will be at most one oracle gate. Thus, we need
to allocate space for constantly many layers of AND, OR, and MAJ, and one layer for the
evaluation of the oracle. As the maximal fan-in over all gates is 2εn, the computation of
AND and OR requires O(1) additional space, and the computation of MAJ requires εn
additional space. Evaluating the oracle takes C+1+ε

2
· n space, plus an additive factor of

O(εn) to maintain access to the algorithm’s input. For bookkeeping, we need to keep a
constant number of gate pointers, each of which takes εn space.

33

Using an alternative hardness assumption. Let us take a closer look at D1 from the
proof above, when applied with our specific candidate construction for Gcry – the expander-
based PRG. Without the cryptographic PRG, we could model D1 simply as an ROBP. Given
Gcry and an input s̄, however, we can model the computation D1(s̄) by a read-many branch-
ing program in the following manner.

Letting Σ = {0, 1}d, in our notion of read-many branching programs (RMBPs) we will
allow each layer to query d bits of the BP’s input. Formally, in an [n, T, w]Σ (oblivious)
RMBP B, each of the branching program’s T layers is still described by Bi : [w]×Σ→ [w],
but B is also equipped with an assignment aB : [T] → [n]d indicating which bits of the
input should be read at each time step. Then, B computes a function on n bits as follows:
Start at v0, and then for i = 1, . . . , T , read the input symbol σ = x↾aB(i) and transition to
the state vi = Bi(vi−1, σ).

Using the notation of the proof of Theorem 5.5, we start by the simple observation
that D0 can be computed by a [2S, 2S]{0,1} ROBP, denote it by B0. That is, at each layer,
the input the the BP is some rij ∈ {0, 1} for distinct i1, . . . , inC . For D1, we need to read
Gcry(s̄)i1 , . . . , G

cry(s̄)i
nC

. Recalling our candidate construction for Gcry, this amounts to
querying the input s̄ at d = polylog(n) coordinates at each layer. Thus, we can compute
B0 by another BP B1 over the alphabet Σ = {0, 1}d. However, B1 is not read-once. In
particular, B1 is an RMBP of length 2S and width 2S that gets inputs of length N εNW .

However, without any uniformity constraints, the RMBP can simply compute the hard
function, since 2S ≥ 2n, so we need to be more careful. In particular, we can require
that the TC0 circuit can be generated by uniform machines with some a ≪ 2n bits of advice.
That is, we separate the space complexity (represented by the width of the BP) from the
amount of non-uniformity a. Formally:

Definition 5.9. We say that L ∈ TC0[s]∥BP[w]/a if there exists a TM M that, on input 1n and
a(n) bits of advice, runs in space O(log s(n)) and prints a TC0 oracle circuit C of size s(n)
and an RMBP P of width w(n) that satisfies the following: For every x ∈ {0, 1}n it holds that
C∥P (x) = L(x) (that is, the calls to P are non adaptive).

In Section 6.1 we discuss the uniformity of the TC0 decoder and the number of ran-
dom bits needed to generate it (see Theorem 6.1). Fixing them as advice, we can refine
the hardness assumption from Theorem 5.5 to the following one:

Assumption 5.10. For any two constants ε ∈ (0, 1) and C ∈ N, there exists

Lhard ∈ DSPACE

[
C + 1 + ε+ δ

2
· n

]
for some small constant δ > 0 hard is hard for TC0[2εn]∥BP[w]/a, where w = 2(C/2)n and a = 2n/2.

We stress that using Assumption 5.10 requires using our candidate Goldreich’s PRG
in Assumption 5.3.

34

5.3.3 More efficient derandomization from catalytic assumptions

The 2 · S term of Theorem 5.5 comes from simulating M̄ (which in turn simulates M) and
computing the hard function f . What if those two computations could “share” computa-
tion space? A catalytic assumption on f would allow us to compute f using the cells used
for the computation of M̄ . Once the specific location of f is computed, the worktape used
to simulate M̄ is returned to its previous content, and the simulation continues. In order
to enact this plan, we will assume the following.

Assumption 5.11. For any two constants ε ∈ (0, 1) and C ∈ N there exists a constant δ > 0
and a language

Lhard ∈ CSPACE

[
δ

2
· n, C + 1 + ε+ δ

2
· n

]
that is hard for constant-depth threshold circuits of size 2εn with oracle access to a language in
DSPACE[C+1+ε

2
· n]/2n/2.

Theorem 5.12 (derandomization with nearly no additional footprint). Suppose that As-
sumption 5.3 and Assumption 5.11 are true. Then, for S(n) = C · log(n), we have that

BPSPACE[S] ⊆ DSPACE
[
S +

(c
ε
+ 2δ

)
log n

]
.

Proof sketch. We follow the same simulation as in Theorem 5.5, but replace the simulation
of f with a catalytic simulation of f . Towards that end, we will use an additional work
tape for the non-catalytic space required to compute f .

The correctness readily follows from the proof of Theorem 5.5. For the space complex-
ity, keeping the notation of the proof of Theorem 5.5, we use additional δ

2
logN = δ log n

space for the non-catalytic space, and for the simulation of M̄ we allocate

max{S +O(logS), S ′} = S ′

cells, that would also suffice for the catalytic computation of f .

Again, a padding argument shows that under the above assumptions, it holds that

BPSPACE[S] ⊆ DSPACE

[(
1 +

c/ε+ 2δ

C

)
S

]
for all S(n) ≥ C log n.

6 Non Black-Box Derandomization with Minimal Memory
Footprint

6.1 A logspace generator with logspace-uniform TC0 reconstruction

We now prove a more refined version of Theorem 5.1. There, we asserted that any distin-
guisher for the PRG can be transformed into a relatively small circuit that computes the

35

hard function. The following refined version asserts that this transformation is efficient.
Namely, there exists a probabilistic logspace algorithm that prints the circuit. Recall that
in terms of parameters, this means that the algorithm runs in space O(logN) and prints a
circuit of size NΩ(1).

Theorem 6.1 (NW PRG with logspace-uniform TC0 reconstruction). There exists a univer-
sal constant cNW > 1 such that for every sufficiently small constant εNW > 0 the following holds.
There exist two algorithms G,R, that for any f ∈ {0, 1}N and for M = N εNW , satisfy:

1. (Generator.) When given input s ∈ {0, 1}(cNW/εNW)·logN and oracle access to f , the gener-
ator outputs an M -bit string Gf (s). On input s and i ∈ [M], Gf (s)i can be computed in
space (cNW/εNW) · logN .

2. (Reconstruction.) Let D : {0, 1}M → {0, 1} be a 1
M

-distinguisher for Gf . Then, when
given input 1N and oracle access to f , the algorithm R runs in space (cNW/εNW) · logN ,
uses Õ(M5) random coins, and with probability at least 2/3 prints a constant-depth oracle
circuit C of size M cNW that has majority gates, makes non-adaptive queries, and satisfies the
following: When C gets input x ∈ [N] and oracle access to D it outputs fx.

To prove Theorem 6.1 we reanalyze both the Nisan-Wigderson PRG and the code from
Theorem 4.2. In what comes next, we first state some necessary technical tools, and then
prove the theorem.

6.1.1 Refined versions of the codes used in Section 4

Recall that, as described in Section 4, the code underlying Theorem 4.2 combines the
codes from [GGH+07] and from [IW97] as well as the Hadamard encoding. We will use
the following results about those three codes.

Proposition 6.2 (uniform decoding of [GGH+07]). The code GGHKR′ of Theorem 4.4 is locally
decodable by logspace uniform TC0 circuits. Namely, there is a deterministic TM that runs in
space polyloglog(k) and outputs a randomized TC0 oracle circuit D′ of size 2polyloglog(k) that
locally uniquely decodes GGHKR′ : {0, 1}k → {0, 1}k′ from ρ = 24

25
fraction of agreement with

probability at least 1 − 1
k

(over the circuit’s internal randomness), while making non-adaptive
queries.

Proposition 6.3 (uniform decoding of [IW97]). There exists a constant cIW > 1 such that for
any two constants δIW, γIW > 0, and every εIW > 0, the following holds. Let

IW : {0, 1}k → ({0, 1}r)k′

be the code from Theorem 4.5. Then, there exists a randomized oracle machine RIW that, on input
1k and oracle access to f ∈ {0, 1}k, runs in space c

γIW
log k, uses c

ε2IWγIW
log k bits of randomness,

makes at most kγIW queries to f , and prints a constant-depth oracle circuit CIW of size kγIW/ε2IW
that has one majority gate, makes non-adaptive queries, and such that the following holds: For
any f̃ ∈ ({0, 1}r)k′ satisfying Prz∈[k′][f̃z = IW(f)z] ≥ εIW, with probability at least 0.99 over the
randomness of RIW it holds that Prx∈[k]

[
C f̃

IW(x) = f(x)
]
≥ 1− δ.

36

Proposition 6.4 (uniform decoding of Hadamard [GL89]). For any space-computable k : N→
N such that k(ℓ0) ≤ ℓ0 and ε : N→ (0, 1), the following holds.

• Encoding. Let Had be the transformation that maps any function g : {0, 1}ℓ0 → {0, 1}k(ℓ0)
to the function Had(g) : {0, 1}ℓ0+k(ℓ0) → {0, 1} such that (Had(g))(x, z) = ⊕ig(x)i · zi.

• Decoding. There exists an algorithm RHad that, on input 1ℓ0 runs in probabilistic space
O(log(ℓ0/ε)), where ε = ε(ℓ0), uses poly(ℓ0/ε) random coins, and with probability at least
1 − 2−ℓ0 prints an oracle circuit CHad of constant depth, and size poly(ℓ0/ε), that has a
majority gate, makes non-adaptive queries, and satisfies the following. For every H̃ad(g)
that agrees with Had(g) on 1/2 + ε fraction of the inputs, there is a set X ⊆ {0, 1}ℓ0 of
density ρ(X) ≥ ε/2 satisfying: For every x ∈ X there exists i(x) ∈ [O(1/ε2)] such that

C
H̃ad(g),i(x)
Had (x) = g(x).

The proof of Proposition 6.2 appears in Appendix B.2. The proof of Proposition 6.3 ap-
pears in Appendix A. The proof of Proposition 6.4 follows from [GL89] (see, e.g., [AB09,
Proof of Theorem 9.12] or [CT21b, Theorem A.7] for an explanation).22 Given these state-
ments, we are now ready to prove Theorem 6.1.

6.1.2 Proof of Theorem 6.1

We follow the proof of Theorem 5.1 and mention the necessary changes. The construction
of the generator G is precisely the same, except that we instantiate the code from Theo-
rem 4.2 with parameter values ε/2 instead of ε (recall that ε = 1/O(M2)) and δ = 1/50
instead of δ = 1/25. These changes do not meaningfully affect the construction or anal-
ysis of G, and thus we only need to prove the claim about the uniform reconstruction
algorithm R.

Unraveling the proofs of Theorem 5.1 and Theorem 4.2, the generator G uses the fol-
lowing mappings. Given a function f ∈ {0, 1}N , it first maps it to f1 = GGHKR′(f) ∈
{0, 1}N ′ , where N ′ = N c1 for a universal constant c1 > 1. Then, it maps f1 to f2 = IW(f1) ∈
({0, 1}r)N ′′ , where N ′′ = (N ′/ε3)

c2/εNW and r = c2 · log(1/ε) where c2 > 1 is also universal.
Next, it maps f2 to f3 ∈ {0, 1}N̄ , where N̄ = (N/ε)c3/εNW , by encoding each of the N ′′ sym-
bols with the Hadamard code. And finally, it uses the generator of [NW94] to map f3 into
a set of pseudorandom strings.

In what follows, whenever we say “with high probability”, we mean “with probability
at least 1− ζ” where ζ > 0 is a sufficiently small universal constant.

22The only part in the statement of Proposition 6.4 that is not standard is that the algorithm RHad that
constructs CHad is probabilistic, whereas CHad is deterministic and succeeds on all inputs in X . In standard
presentations of [GL89] (e.g., in [AB09]), the procedure is deterministic, and yields a probabilistic circuit

CHad such that Pr[CH̃ad(g),i(x)
Had (x) = g(x)] ≥ 2/3 for every x ∈ X . To obtain an algorithm RHad as in the

proposition’s statement, we consider an algorithm that prints a version of CHad with error 2−2ℓ0 instead of
1/3 (i.e., the circuit performs naive error-reduction, which does not significantly affect its complexity), and
then choose fixed random coins and hard-wires them into the error-reduced circuit.

37

Step 1: NW reconstruction. Let ℓ, d, α be as in the proof of Theorem 5.1.23 Recall that a
standard analysis of [NW94] implies the following. When choosing at random i ∈ [M],
values z ∈ {0, 1}d−ℓ, and a bit σ ∈ {0, 1}, with probability at least 1/O(M) it holds that
Prx∈{0,1}ℓ

[
CD

NW(x) = (f3)x
]
≥ 1/2+ε, where CNW is a constant-depth circuit of size at most

O(M · 2α·ℓ) = O(M · N̄α) = O(M ·N/ε)α·c3/εNW < M c′ ,

and c′ > 1 is a sufficiently large universal constant. Moreover, the circuit CNW can be
printed in space O(logN) given oracle access to f (see below).

For t = 1, ..., O(M), the algorithm R runs the following procedure: Choose (i, z, σ)
at random and print the corresponding circuit, denoted Ct

NW. (All the Ct
NW-s are part of

the larger overall circuit that R prints.) Now, the algorithm R prints another part of the
circuit, which tests the agreement of each Ct

NW with f̄ , using random sampling of points in
[N̄] and the circuit’s oracle to D (which allows it to simulate (Ct

NW)D), up to accuracy ε/2
and with confidence 1/M2. In more detail, R chooses the randomness for this sampling
procedure and hard-wires it into the circuit, and uses its query access to f in order to
compute the relevant points in f3 and hard-wire them into the circuit. The final part of
the circuit that R prints in this step chooses t such that the agreement of Ct

NW with f3 is
maximal (breaking ties arbitrarily). In the rest of the proof, we denote the chosen circuit
by CNW.

Turning to the analysis of this step, note that with high probability there exists j such
that Pr[(Cj

NW)D(x) = (f3)x] ≥ 1/2 + ε (since the success probability of the reconstruction
of [NW94] is 1/O(M), and R repeats it for O(M) times). Conditioned on that, with high
probability over the coins of R, all the estimations by random samplings are correct up
to accuracy ε/2 (this uses a union-bound over all j). In this case, the output circuit CNW

satisfies Prx
[
CD

NW(x) = (f3)x
]
≥ 1/2 + ε/2. We condition on this event.

The complexity of printing each Ct
NW. We argue that for each t, the algorithm R can print

Ct
NW in space O(log(N)/εNW) with oracle access to f , as follows. After choosing (i, z, σ) ∈
{0, 1}O(logN) and storing them on its work tapes, the algorithm R iterates over choices for
j ∈ [M], and for each j computes the set Si ∩ Sj (using the fact that the mapping f j 7→ Sj

can be done in space O(logN); see Theorem 3.11). Then, it iterates over all possible choices
for x(j) ∈ {0, 1}|Si∩Sj |, in lexicographical order, and for each fixed (j, x(j)), it computes the
(ℓ = log N̄)-bit string yj,x(j) that is obtained by placing x(j) in the locations Si ∩ Sj and
α↾Sj\Si

in the locations Sj \ Si.
Now, recall that circuits are described as lists of gates, where the description of each

gate contains its index, its type, and the names of at most two gates that feed into to it.
For each (j, x(j) and corresponding y = yj,x(j) , the algorithm R queries f3 at location y, and
prints to its output an additional gate in the description of the circuit: The index of this
gate is (j, x(j)) ∈ [O(M)] × [M], its type is the constant (f3)y, and it has no gates feeding
into it. Note that R does not have direct access to f3, but it can compute f3 using its oracle
access to f (because f3 is simply the encoding of f by the code from Theorem 4.2). Since

23That is, ℓ = log N̄ and α = (c̄/c) · ε2NW for universal constants c, c̄ > 1, and d = (c2/ε2NW) · logN .

38

there are less than O(M2) choices for j and x(j), and the code from Theorem 4.2 is com-
putable in space O(log(N)/εNW), this entire step can be done in space O(log(N)/εNW).24

Next, the algorithm R prints another set of M · d constant gates, which describe the
sets S1, ..., SM ⊆ [d] in the design (i.e., the description of each Si is the indicator vector
of the ℓ-bit set Si ⊆ [d]). This can be done in space O(d) = O(log(N)/εNW), relying on
Theorem 3.11 and Theorem 3.9. Finally, the algorithm R prints gates that implement
the functionality of the standard reconstruction circuit of the Nisan-Wigderson [NW94]
generator (given the fixed choices of (z, i, σ)), where these gates answer the queries that
the standard reconstruction makes to f3 by looking the relevant value up in the j-th set of
M constant gates.

The final complexity of R in this step. Printing each Ct
NW can be done in O(log(N)/εNW)

space, and there are O(M) values for t, so printing all of these circuits can be done in space
O(log(N)/εNW). The space complexity of the last set of gates, which tests the agreement
of each Ct

NW with a predetermined sample of values of f3 (that R chooses in advance and
hard-wires into the circuit) and chooses the t that maximizes the agreement, can also be
done in space O(log(N)/εNW) with oracle access to f (i.e., as above, we compute values of
f3 using oracle access to f , in space O(log(N)/εNW)). The overall number of coins that R
uses in this step is M · (O(log(N)) + (1/ε2) · polylog(M)) = Õ(M5).

Step 2: Decoding of IW concatenated with Had. Recall that LHad = O(1/ε2Had) = O(M4).25

For every j ∈ [LHad], the algorithm R prints a circuit Cj that acts as follows. The circuit Cj

runs the circuit CIW from Proposition 6.3, and whenever the latter accesses a symbol (i.e.,
queries a location in [N ′′] and expects to get back a string in {0, 1}r), the circuit answers
using the circuit CHad from Proposition 6.4, when oracle queries of CHad are answered by
the circuit CNW (for the first oracle function) and by the fixed index j (for the second or-
acle function). In more detail, for every j ∈ [LHad] the algorithm runs the algorithms RIW

and RHad to print such circuits, and points the queries of the oracle gates of RHad to be
answered by CNW.

Then, the algorithm R prints a circuit that, for every j ∈ [LHad], estimates the value
Prx∈[N ′′]

[
CCNW

j (x) = f2(x)
]

up to an additive error of δ/2 and with confidence 1/M5. (In

the notation CCNW
j we omit the distinguisher D, for simplicity. We remind the reader that

CNW is an oracle circuit and that we analyze it when given access to D.) Specifically, R
chooses random sample points in [N ′′] in advance, queries f2 at these points (this can be
done by querying f – see below), and hard-wires the result into the circuit, to estimate
the agreement of each Cj with f2. The circuit chooses j̄ ∈ [LHad] such that the agreement
of Cj̄ with f2 on the sample is maximal.

24Note that, when computing f3 from f , the algorithm R does not have direct access to f as an input,
but only oracle access to f . Simulating input access to f in this setting requires only O(log(|f |)) = O(logN)
additional bits of space, to store the location of the head on the simulated input tape.

25In the notation of Theorem 4.6 LHad denotes the list size for local decoding of the Hadamard code, and
in the notation of Proposition 6.4 LHad denotes the number of possible choices of i(x) for every x ∈ {0, 1}ℓ0 .
In both cases, LHad is exactly the same value.

39

Turning to the analysis, by Proposition 6.4 there is a set X ⊆ [N ′′] (where X depends
on CNW) of density at least εHad/2 such that with high probability over the coins of RHad,
for every x ∈ X there is some j(x) ∈ [LHad] for which C

CNW,j(x)
Had (x) = f2(x). Conditioned on

the latter event, for some j⋆ ∈ [LHad] there is a set X ′ ⊆ [N ′′] of density at least εIW such that
for every x′ ∈ X ′ it holds that CCNW,j⋆

Had (x) = f2(x). In this case, with high probability over
the coins of RIW it holds that, when CIW is given access to CCNW,j⋆

Had , it computes f1 correctly
on at least 1 − δ of the inputs in [k′]. Conditioned on this event, with high probability
over the coins of R, the circuit finds j̄ such that Prx∈[N ′′][Cj̄CNW (x) = f2(x)] ≥ 1− 1/25. We
condition on this event too.

Since RIW and RHad run in space O(log(N/ε)) = O(logN), the space complexity of R
is also O(logN). Also, R needs query access to f2 (to run RIW, and when constructing
the circuit that estimates the agreement of each Cj with f2), and it can simulate such
query access in space O(logN) using its oracle access to f (since the mapping of f to f2
is computable in space O(logN), as part of the encoding algorithm of Theorem 4.2 that
computes the mapping f 7→ f1 7→ f2 7→ f3 in space O(logN)26). The number of random
coins that R uses in this step is M4 · polylog(N), and the size of the circuit that R prints is

LHad ·
(
(N ′)γIW/ε2IW + (N ′)γIW · poly(r/εHad)

)
+ poly(LHad) < M c′′ ,

where c′′ > 1 is a sufficiently large universal constant.

Step 3: Decoding of GGHKR′. Finally, the algorithm R runs the machine from Propo-
sition 6.2, which prints an oracle TC0 circuit D′, and replaces the oracle calls of D′ by
queries to the circuit CIW. Moreover, R chooses in advance randomness for D′, and hard-
wires it into the circuit. The output of D′ will be the final output of the overall circuit that
R prints. By a union-bound over the N coordinates of f , with high probability it holds
that the overall circuit computes f correctly on all N coordinates.

The space complexity of R in this step is O(logN) (the machine from Proposition 6.2
runs in even smaller space), the number of random coins that it uses is polylog(N), and
the last part of the circuit that is printed at this step is just of size polylog(N). Thus, the
overall size of the circuit is bounded by M c′′′ for a universal constant c′′′ > 1. Note that
since each of the components in the circuit makes non-adaptive queries, the overall circuit
also makes non-adaptive queries.

6.2 Minimal-footprint derandomization results

Theorem 6.5 (non-black-box derandomization that doubles the memory footprint). There
exist universal constants c, c′′, cD > 1 such that for any two constants ε ∈ (0, 1) and C ∈ N the
following holds. Let x = {xn}n∈N be a sequence of distributions, where each xn is over {0, 1}n,

26As in the analysis of Step 1, indeed R does not have input access to f but rather only oracle access, but
it can simulate input access using oracle access (i.e., track the location of the input head) with additional
O(log |f |) = O(logN) bits of memory.

40

and let µ : N → [0, 1). Suppose that Assumption 5.3 is true, and that there exist δ > 0 and a
function f : {0, 1}⋆ → {0, 1}⋆ mapping n bits to N = n2 bits that satisfy the following.

1. (Upper bound.) The function f is computable on inputs of length n in deterministic space
(C + 1 + cε+ δ) · log n.

2. (Lower bound.) For every probabilistic algorithm R running in space (C+1+ δ) · log n+
(c′′/ε) · log n, and every sufficiently large n ∈ N, with probability at least 1 − µ(n) over
x ∼ xn the following holds: The probability over the randomness of R that it prints a Turing
machine of description length

√
N that, when given input i ∈ [N] outputs f(x)i in space

(C + 1 + cε) · log n, is less than 2/3.

Then, for S(n) = C · log n, for every L ∈ BPSPACE[S] there exists

L′ ∈ DSPACE
[
2S +

(cD
ε

+ δ
)
· log n

]
such that for all sufficiently large n ∈ N,

Pr
x∼xn

[L′(x) ̸= L(x)] ≤ µ(n) .

Note that Theorem 3 is the special case of Theorem 6.5 obtained by using any distri-
bution x with full support (say, the uniform one) and µ ≡ 0.

Proof. Let L ∈ BPSPACE[S(n)], and let M be a randomized space-S machine that de-
cides L. Given input x ∈ {0, 1}n, the derandomization algorithm A = AL computes
f = f(x) ∈ {0, 1}N , lets NWf and Gcry be exactly as in the proof of Theorem 5.5 (except
that now they are defined with respect to f = f(x)), and outputs

MAJs∈{0,1}log N̄

{
M̄G(s)(x)

}
,

where the definitions of M̄, N̄ , G are as in the proof of Theorem 5.5.27

Analysis. To bound the space complexity of A, we follow the same argument as in the
proof of Theorem 5.5, with the following modification: Whenever MNW queries f at loca-
tion q ∈ [N], the algorithm A computes f = f(x) and outputs the q-th bit. By our bound
on the space complexity of f (i.e., (C + 1 + cε + δ) · log n), this change does not affect the
overall calculation, and thus A runs in space (2C + (cA/ε) + δ) · log n for some universal
constant cA.

27Formally, here we use the generator from Theorem 6.1 whereas in Theorem 5.5 we used the generator
from Theorem 5.1, but (as mentioned in the proof of Theorem 6.1) this is precisely the same generator.
Indeed, the only difference between the derandomization in Theorem 5.5 and the current derandomization
is that in the former, f was the truth-table of a hypothesized hard function, whereas in the latter, f = f(x)
is the evaluation of a hypothesized hard function at the specific input x.

41

Now let us prove the correctness of the derandomization. Recall that (by the proper-
ties of Gcry, and as in the proof of Theorem 5.5), for every x ∈ {0, 1}n it holds that

Pr
r
[M(x, r) = 1] ∈ Pr

s̄
[M(x,Gcry(s̄)) = 1]± 1

nC
.

For every x ∈ {0, 1}n, we define Dx(s̄) = M(x,Gcry(s̄)). We say that x ∈ {0, 1}n is
useful if it satisfies

Pr
s̄
[Dx(s̄) = 1] /∈ Pr

s

[
Dx

(
NWf (s)

)
= 1

]
± 1

10
.

We construct a probabilistic algorithm R′ that is an input x ∈ {0, 1}n, and – when x is
useful – prints, with high probability, a Turing machine F that computes the function i 7→
f(x)i. Informally and at a high-level, the algorithm R′ runs the reconstruction algorithm
R from Theorem 6.1, whose output is a circuit C, while answering the queries of C to
f = f(x) by directly computing f(x) from the input x. The Turing machine F has C
“hard-coded” into its description. Given input q ∈ [N], F evaluates C using the standard
simulation of NC1 ⊇ TC0 in space O(log |C|), and whenever C queries the distinguisher,
the machine F computes the distinguisher D above (i.e., it simulates Gcry and M). The
computational bottleneck of F in terms of space complexity is computing M , and the
main information needed to be encoded in the description of F is x itself (which is of size
n =
√
N), and the encoding of C (which is of size N cNW·εNW ≪ n). Details follow.

Description of R′. Given x ∈ {0, 1}n, the algorithm R′ simulates the algorithm R from
Theorem 6.1, and whenever R queries a location q ∈ [N], the algorithm R′ computes
the mapping x 7→ f(x) and answers with the q-th coordinate. Recall that R outputs an
oracle circuit C of size N cNW·εNW ; the algorithm R′ prints special states of the machine F
that encode the gates of C.

We will now specify precisely how the foregoing special states are printed. Our goal
is to print them in a way that the transition function of the machine will be easily com-
putable; that is, a priori, the transition function could be any function [N cNW·εNW]→ [N cNW·εNW],
but we would like this function to have a concise representation that we can easily print.
Thus, for every gate g that R prints, R′ prints a sequence of O(logN) states of F that satisfy
the following. When F enters into this sequence, it reads the content λ ∈ [N cNW·εNW +O(1)]
of a dedicated worktape, and depending on λ, writes down (on another dedicated work-
tape) either the index and type of g, or the λ-th gate that feeds into g. The index of each
state in the sequence is a string with prefix g ∈ [N cNW·εNW] and a suffix in [N cNW·εNW +
O(logN)], indicating its position in the sequence. Note that the part of the transition
function corresponding to these states is indeed easily computable: When the machine
enters the sequence corresponding to g, the transition reads λ bit-by-bit, and with each
bit updates the index of the current state according to λ; after it reaches the state indexed
by (g, λ) and a trivial suffix 1 ∈ [O(logN)], it enters a fixed sequence of O(log(N)) steps
indexed by (g, λ, 1), ..., (g, λ,O(log(N))) (with a transition function that does not depend
on the input) that prints the appropriate string (i.e., either the name of the λ-th child of g,
or the type and index of g).

42

Next, the algorithm R′ prints another set of states, which, loosely speaking, encode
the input x. Specifically, it prints n sequences of states, whose indices are in the range
[N cNW·εNW ·O(log n), N cNW·εNW ·O(log n)+O(n)], such that for j ∈ [n], when entering the j-th
sequence, the machine writes down xj on a dedicated worktape. This is done using the
same approach as above.

Having printed the two special sets of states of F described above, the algorithm R′

prints the main functionality of F , which is specified by the following uniform algorithm.
The machine F runs the DFS-style algorithm for evaluating a constant-depth threshold
circuit of the dimensions (i.e., size and depth) of C. Starting from the output gate,28 the
machine F recursively evaluates each of its children. For each evaluated gate g, it simu-
lates a machine implementing the functionality of the gate, while answering its queries to
the children (feeding into the gate) by space-bounded composition; that is:

1. If g is a Majority gate, then the machine F maintains an integer S at this level of
recursion, which is initiated to zero. The machine F enumerates over λ ∈ [N cNW·εNW]
(which represents the potential children of the gate) and for each λ, it enters the se-
quence of states corresponding to g in order to deduce the index and type of the λ-th
child, then recurses into evaluating this child of g. When returning from recursion,
it adds the value of the child to S. After enumerating over all children, it checks
whether S exceeds half the number of children of g (i.e., the last value of λ for which
a child existed, divided by two) and returns the corresponding answer.

2. If g is an AND gate (resp., an OR gate), then the machine F acts exactly as above,
except that in the end it checks whether the value of S is λ (resp., is positive).

3. When the evaluated gate g is an oracle call, the machine F simulates the machine
D computing s̄ 7→ M(x,Gcry(s̄)). Whenever D tries to access a location in x, the
machine F computes the mapping j 7→ xj using the special states described above.
Whenever D accesses its input (i.e., the query made to the oracle gate) at location
λ ∈ [N cNW·εNW], the machine F uses space-bounded composition to evaluate the λ-th
child of g.

Analysis of R′. The space complexity of R′ is dominated by the first step, where it simu-
lates R and answers its queries to f = f(x). Since R runs in space (cNW/εNW) · logN , and
using space-bounded composition, the space complexity of R′ is

c′

ε
· log n+ (C + 1 + cε+ δ) · log n ≤

(
C + 1 +

c′′

ε
+ δ

)
log n,

where c′, c′′ > 1 are universal constants. The complexity of printing the states of F upon
reading the gates of C, as well as the complexity of “hard-wiring” x, is absorbed in the
first term by taking a slightly larger c′′.

28We can assume that the output gate was found when running R in the first step of R′, and that the first
states of F write down its index on a dedicated worktape.

43

Analysis of F . Note that the number of states in F is dominated by the set of states that
implement the functionality j 7→ xj . This is because the number of states required for en-
coding C is Õ(|C|) = Õ(N cNW·εNW)≪ n, and since the main functionality of F is completely
uniform. Thus, the description of F is of size O(n) = O(

√
N).

Let us now analyze the space complexity of F . On input q ∈ [N], implementing
the DFS-style algorithm requires recursion of constant depth. Since the circuit is non-
adaptive, in each path in the recursion there will be at most one oracle gate. Thus, to
implement the recursion, we need to allocate space for constantly many layers of AND,
OR, and MAJ, and for one layer where the mapping s̄ 7→M(x,Gcry(s̄)), which we denoted
by Dx(·), will be computed. In more details, let t ≤ N εNW be the maximal fan-in over all
the gates encoded in F . Then:

• The computation of AND and OR requires O(1) additional space, and the computa-
tion of MAJ requires log t additional space.

• The computation of Dx(s̄), following Theorem 5.5, takes C
2
logN + ε log n space. To

that, we need to add an additive log n+O(1) factor to simulate the access to x (which
unlike s, is not fed to the computation by previous layers).

• For bookkeeping, we need to keep a constant number of gate pointers.

Denoting the depth of the circuit by cd (which is independent of the constant C), the space
required to compute F (j) is at most

O(εNW logN) + cd · log t+
C

2
logN + (1 + ε) log n <

C + 1 + c′′′ε

2
· logN

for a universal constant c′′′ > 0, independent of the constants C, c so in particular we can
assume that c ≥ c′′′. Lastly, note that we need to verify that we embed C (i.e., the output
of R) as states in F in a way that allows us to run the simulation while only querying
one Dx gate per path. It will be more convenient to require this from R itself, namely that
the circuit that R outputs is non adaptive, and indeed this is one of the guaranteed of the
reconstruction procedure.

Wrapping up. By the above, if Prx∼xn [x is useful] > µ(n), then with probability greater
than µ(n) over choice of x ∼ xn the following holds: With probability at least 2/3 over the
random coins of R′, it prints a Turing machine whose description is of size O(

√
N) and

that computes the function j 7→ f(x)j in space (C + 1 + c′′′ε) log n. This contradicts the
hardness of f , and thus we conclude that Prx∼xn [x is useful] ≤ µ(n). It follows that

Pr
x∼xn

[A(x) ̸= L(x)] ≤ µ(n) ,

which concludes the proof.

44

Recall that in Assumption 3, the compressed version of f was taken to be of length√
|f |. Inspecting the above proof, it is clear that we can change

√
|f | to, say, |f |0.01, by

increasing the length of f(x) (i.e., the length of the truth table we work with) from n2 to
n100. For a large enough C, this results in a negligible overhead in the derandomization
result.

Similar to Section 5.3, by a simple padding argument, we can conclude:

Corollary 6.6. Under the assumptions and notation of Theorem 6.5, for any S(n) = Ω(log n),
we have that

BPSPACE[S] ⊆ DSPACE

[(
2 +

cD/ε+ δ

C

)
S

]
.

In particular, if for example the assumptions of Theorem 5.5 hold for an arbitrarily large constant
C, ε = 1/4 and δ = 4, we have

BPSPACE[S] ⊆ DSPACE[(2 + τ)S]

where τ > 0 is arbitrarily small.

Assuming, furthermore, that f is computable using mostly catalytic space, along the
line of Section 5.3.3, we can reduce the 2S factor down to S. We omit the details.

Acknowledgements

We are grateful to Avi Wigderson for several useful conversations regarding the gap be-
tween double space blow-up and single space blow-up. We thank Lijie Chen for suggest-
ing the idea of using catalytic space to save on complexity, early in this work, and for
pointing out a gap in a previous version of the proof of Theorem 4.2. We also thank Ian
Mertz for several useful conversations exploring the abilities of catalytic space.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth.
“Construction of asymptotically good low-rate error-correcting codes through
pseudo-random graphs”. In: IEEE Transactions on Information Theory 38.2 (1992),
pp. 509–516.

[ABO84] Miklos Ajtai and Michael Ben-Or. “A theorem on probabilistic constant depth
computations”. In: Proc. 16th Annual ACM Symposium on Theory of Computing
(STOC). 1984, pp. 471–474.

45

[ABR16] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. “A dichotomy for
local small-bias generators”. In: Journal of Cryptology 29.3 (2016), pp. 577–
596.

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. “Public-key cryptogra-
phy from different assumptions”. In: Proc. 42nd Annual ACM Symposium on
Theory of Computing (STOC). 2010, pp. 171–180.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “Cryptography in
NC0”. In: SIAM Journal on Computing 36.4 (2006), pp. 845–888.

[AL18] Benny Applebaum and Shachar Lovett. “Algebraic attacks against random
local functions and their countermeasures”. In: SIAM Journal of Computing
47 (1 2018), pp. 52–79.

[Ale11] Michael Alekhnovich. “More on average case vs. approximation complex-
ity”. In: Computational Complexity 20.4 (2011), pp. 755–786.

[App14] Benny Applebaum. Cryptography in constant parallel time. Information Secu-
rity and Cryptography. 2014, pp. xvi+193.

[AR16] Benny Applebaum and Pavel Raykov. “Fast pseudorandom functions based
on expander graphs”. In: Theory of Cryptography. Part I. Vol. 9985. 2016, pp. 27–
56.

[Bar89] David A. Mix Barrington. “Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1”. In: Journal of Computer and
System Sciences 38.1 (1989), pp. 150–164.

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian
Speelman. “Computing with a full memory: catalytic space”. In: Proc. 46th
Annual ACM Symposium on Theory of Computing (STOC). 2014, pp. 857–866.

[BCP83] Allan Borodin, Stephen Cook, and Nicholas Pippenger. “Parallel computa-
tion for well-endowed rings and space-bounded probabilistic machines”. In:
Information and Control 58.1-3 (1983), pp. 113–136.

[BQ12] Andrej Bogdanov and Youming Qiao. “On the security of Goldreich’s one-
way function”. In: Computational Complexity 21.1 (2012), pp. 83–127.

[BR13] Andrej Bogdanov and Alon Rosen. “Input locality and hardness amplifica-
tion”. In: Journal of Cryptology 26.1 (2013), pp. 144–171.

[CEM+14] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. “On the one-
way function candidate proposed by Goldreich”. In: ACM Transactions on
Computation Theory 6.3 (2014), Art. 14, 35.

[Che19] Lijie Chen. “Non-deterministic quasi-polynomial time is average-case hard
for ACC Circuits”. In: Proc. 60th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2019.

46

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. “Optimal error pseudodistribu-
tions for read-once branching programs”. In: Proc. 35th Annual IEEE Con-
ference on Computational Complexity (CCC). 2020, 25:1–25:27.

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. “Almost-everywhere circuit lower
bounds from non-trivial derandomization”. In: Proc. 61st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS). 2020.

[CRT22] Lijie Chen, Ron D. Rothblum, and Roei Tell. “Unstructured hardness to average-
case randomness”. In: Proc. 63rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2022, pp. 429–437.

[CT21a] Lijie Chen and Roei Tell. “Hardness vs. randomness, revised: uniform, non-
black-box, and instance-wise”. In: Proc. 62nd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). 2021.

[CT21b] Lijie Chen and Roei Tell. “Simple and fast derandomization from very hard
functions: Eliminating randomness at almost no cost”. In: Proc. 53st Annual
ACM Symposium on Theory of Computing (STOC). 2021.

[CT22] Lijie Chen and Roei Tell. “When Arthur has neither random coins nor time
to spare: Superfast derandomization of proof systems”. In: Electronic Collo-
quium on Computational Complexity: ECCC (2022).

[DMO+20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly
optimal pseudorandomness From hardness”. In: Proc. 61st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS). 2020.

[FPV15] Vitaly Feldman, Will Perkins, and Santosh Vempala. “On the complexity of
random satisfiability problems with planted solutions”. In: Proc. 47th Annual
ACM Symposium on Theory of Computing (STOC). 2015, pp. 77–86.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy
N. Rothblum. “Verifying and decoding in constant depth”. In: Proc. 39th An-
nual ACM Symposium on Theory of Computing (STOC). 2007, pp. 440–449.

[GK08] Venkatesan Guruswami and Valentine Kabanets. “Hardness amplification
via space-efficient direct products”. In: Computational Complexity 17.4 (2008),
pp. 475–500.

[GL89] Oded Goldreich and Leonid A. Levin. “A hard-core predicate for all one-
way functions”. In: Proc. 21st Annual ACM Symposium on Theory of Computing
(STOC). 1989, pp. 25–32.

[Gol08] Oded Goldreich. Computational complexity: A conceptual perspective. New York,
NY, USA: Cambridge University Press, 2008.

[Gol11a] Oded Goldreich. “A Sample of Samplers: A Computational Perspective on
Sampling”. In: Studies in Complexity and Cryptography 6650 (2011), pp. 302–
332.

47

[Gol11b] Oded Goldreich. “Candidate one-way functions based on expander graphs”.
In: Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation. 2011, pp. 76–87.

[Gol11c] Oded Goldreich. “In a world of P = BPP”. In: Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computation. 2011,
pp. 191–232.

[Gol11d] Oded Goldreich. “Introduction to Testing Graph Properties”. In: Studies in
Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation. 2011, pp. 470–506.

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. “Indistinguishability
by adaptive procedures with advice, and lower bounds on hardness am-
plification proofs”. In: Proc. 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2018, pp. 956–966.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. “Unbalanced
expanders and randomness extractors from Parvaresh-Vardy codes”. In: Jour-
nal of the ACM 56.4 (2009), Art. 20, 34.

[GV04] Dan Gutfreund and Emanuele Viola. “Fooling parity tests with parity gates”.
In: Proc. 7th International Workshop on Randomization and Approximation Tech-
niques in Computer Science (RANDOM). 2004, pp. 381–392.

[GW02] Oded Goldreich and Avi Wigderson. “Derandomization that is rarely wrong
from short advice that is typically good”. In: Proc. 6th International Workshop
on Randomization and Approximation Techniques in Computer Science (RAN-
DOM). 2002, pp. 209–223.

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. “Uniform constant-
depth threshold circuits for division and iterated multiplication”. In: Journal
of Computer and System Sciences 65.4 (2002), pp. 695–716.

[Hea08] Alexander D. Healy. “Randomness-efficient sampling within NC1”. In: Com-
putational Complexity 17.1 (2008), pp. 3–37.

[Hoz21] William M. Hoza. “Better pseudodistributions and derandomization for space-
bounded computation”. In: Proc. 25th International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science (RANDOM). 2021, 28:1–
28:23.

[HR03] Tzvika Hartman and Ran Raz. “On the distribution of the number of roots of
polynomials and explicit weak designs”. In: Random Structures & Algorithms
23.3 (2003), pp. 235–263.

[HV06] Alexander Healy and Emanuele Viola. “Constant-depth circuits for arith-
metic in finite fields of characteristic two”. In: Proc. 23rd Symposium on Theo-
retical Aspects of Computer Science (STACS). 2006, pp. 672–683.

48

[IKO+08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Cryptog-
raphy with constant computational overhead”. In: Proc. 40th Annual ACM
Symposium on Theory of Computing (STOC). 2008, pp. 433–442.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search
of an easy witness: exponential time vs. probabilistic polynomial time”. In:
Journal of Computer and System Sciences 65.4 (2002), pp. 672–694.

[IW01] Russel Impagliazzo and Avi Wigderson. “Randomness vs. time: Derandom-
ization under a uniform assumption”. In: Journal of Computer and System Sci-
ences 63.4 (2001), pp. 672–688.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC). 1997, pp. 220–229.

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing polynomial
identity tests means proving circuit lower bounds”. In: Computational Com-
plexity 13.1-2 (2004), pp. 1–46.

[KM02] Adam Klivans and Dieter van Melkebeek. “Graph nonisomorphism has subex-
ponential size proofs unless the polynomial-time hierarchy collapses”. In:
SIAM Journal on Computing 31.5 (2002), pp. 1501–1526.

[KMS12] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. “Pseudorandom gen-
erators, typically-correct derandomization, and circuit lower bounds”. In:
Computational Complexity 21.1 (2012), pp. 3–61.

[Kou+16] Michal Koucký et al. “Catalytic computation”. In: Bulletin of the European
Association for Theoretical Computer Science (EATCS) 1.118 (2016).

[KT22] Itay Kalev and Amnon Ta-Shma. “Unbalanced expanders from multiplicity
codes”. In: Proc. 26th International Workshop on Randomization and Approxima-
tion Techniques in Computer Science (RANDOM). 2022, 12:1–12:14.

[LP22a] Yanyi Liu and Rafael Pass. “Characterizing derandomization through hard-
ness of Levin-Kolmogorov complexity”. In: Proc. 37th Annual IEEE Confer-
ence on Computational Complexity (CCC). 2022, Art. No. 35, 17.

[LP22b] Yanyi Liu and Rafael Pass. “Leakage-resilient hardness vs. randomness”. In:
Electronic Colloquium on Computational Complexity: ECCC 30 (2022), p. 113.

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. “On ε-biased generators
in NC0”. In: Random Structures & Algorithms 29.1 (2006), pp. 56–81.

[MW18] Cody Murray and R. Ryan Williams. “Circuit lower bounds for nondeter-
ministic quasi-polytime: An easy witness lemma for NP and NQP”. In: Proc.
50th Annual ACM Symposium on Theory of Computing (STOC). 2018.

[Nis92] Noam Nisan. “Pseudorandom generators for space-bounded computation”.
In: Combinatorica 12.4 (1992), pp. 449–461.

49

[Nis94] Noam Nisan. “RL ⊆ SC”. In: Computational Complexity 4.1 (1994), pp. 1–11.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal of
Computer and System Sciences 49.2 (1994), pp. 149–167.

[OST22] Igor C. Oliveira, Rahul Santhanam, and Roei Tell. “Expander-based cryptog-
raphy meets natural proofs”. In: Computational Complexity 31.1 (2022), pp. 1–
60.

[OW14] Ryan O’Donnell and David Witmer. “Goldreich’s PRG: evidence for near-
optimal polynomial stretch”. In: Proc. 29th Annual IEEE Conference on Com-
putational Complexity (CCC). 2014, pp. 1–12.

[RS21] Hanlin Ren and Rahul Santhanam. “Hardness of KT characterizes parallel
cryptography”. In: Proc. 36th Annual IEEE Conference on Computational Com-
plexity (CCC). 2021.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. “Entropy waves, the zig-
zag graph product, and new constant-degree expanders”. In: Annals of Math-
ematics 155 (2002), pp. 157–187.

[Sav70] Walter J. Savitch. “Relationships between nondeterministic and determinis-
tic tape complexities”. In: Journal of Computer and System Sciences 4.2 (1970),
pp. 177–192.

[Spi96] Daniel A. Spielman. “Linear-time encodable and decodable error-correcting
codes”. In: vol. 42. 6, part 1. Codes and complexity. 1996, pp. 1723–1731.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom generators
without the XOR lemma”. In: Journal of Computer and System Sciences 62.2
(2001), pp. 236–266.

[SV08] Ronen Shaltiel and Emanuele Viola. “Hardness amplification proofs require
majority”. In: Proc. 40th Annual ACM Symposium on Theory of Computing (STOC).
2008, pp. 589–598.

[SZ99] Michael E. Saks and Shiyu Zhou. “BPHSPACE(S) ⊆ DSPACE(S2/3)”. In:
Journal of Computer and System Sciences 58.2 (1999), pp. 376–403.

[Tel19] Roei Tell. “Proving that prBPP = P is as hard as proving that “almost
NP” is not contained in P/poly”. In: Information Processing Letters 152 (2019),
p. 105841.

[Tel20] Roei Tell. “On implications of better sub-exponential lower bounds for AC0”.
Manuscript. 2020. URL: https : / / sites . google . com / site / roeitell /
Expositions.

[TV07] Luca Trevisan and Salil Vadhan. “Pseudorandomness and average-case com-
plexity via uniform reductions”. In: Computational Complexity 16.4 (2007),
pp. 331–364.

50

https://sites.google.com/site/roeitell/Expositions
https://sites.google.com/site/roeitell/Expositions

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

[VDHS13] Joris Van Der Hoeven and Éric Schost. “Multi-point evaluation in higher
dimensions”. In: Applicable Algebra in Engineering, Communication and Com-
puting 24.1 (2013), pp. 37–52.

[Vio03] Emanuele Viola. “Hardness vs. randomness within alternating time”. In:
Proc. 18th Annual IEEE Conference on Computational Complexity (CCC). 2003,
pp. 53–69.

[Wil11] R. Ryan Williams. “Non-uniform ACC circuit lower bounds”. In: Proc. 26th
Annual IEEE Conference on Computational Complexity (CCC). 2011, pp. 115–
125.

[Zuc97] David Zuckerman. “Randomness-optimal oblivious sampling”. In: Random
Structures & Algorithms 11.4 (1997), pp. 345–367.

A The Impagliazzo–Wigderson Derandomized Direct Prod-
uct

In this appendix we include a full proof of Theorem 4.5, for completeness. The proof
is a fleshing out and an elaboration of the proof that already appears in the original
work [IW97], while verifying that their construction has the properties that we need.

Theorem A.1 (Theorem 4.5, restated). There exists a constant c > 1 such that for any two con-
stants δ, γ > 0, and every ε : N→ (0, 1), the following holds. There exists a logspace-computable,(

ε→ 1− δ,Q =

(
logN

ε2

)c)
locally approximately lost-decodable code

IW : {0, 1}N → ({0, 1}k)N̄ ,

where N̄ = (N/ε)c·(1/γ+1/δ2) and k = (c/δ2) · log(1/ε), such that each local decoder Deci is a
constant-depth oracle circuit of size Nγ/ε2 that makes non-adaptive queries and has a top majority
gate of fan-in Q.

Moreover, there exists a randomized oracle machine R such that the following holds. On input
1N and oracle access to f ∈ {0, 1}N , R runs in space c

γ
logN , uses c

ε2γ
logN bits of randomness,

makes at most Nγ queries to f , and prints a constant-depth oracle circuit C of size Nγ/ε2 that
makes non-adaptive queries and has a top majority gate of fan-in Q such that the following holds.
For any f̃ ∈ ΣN̄ such that Prz∈[N̄][f̃z = IW(f)z] ≥ ε, with probability at least 0.99 it holds that

Prx∈[N]

[
C f̃ (x) = f(x)

]
≥ 1− δ.

51

Proof. We are given a string f ∈ {0, 1}N and encode it to f̄ ∈ ΣN̄ , where N̄ = poly(N)
and Σ = {0, 1}k; the precise values of both N̄ and k will be specified below. We use the
following two ingredients.

• The strong sampler Samp : {0, 1}m1 × [k] → {0, 1}n from Theorem 3.8, using pa-
rameters n = logN and η = δ/2 and µ = ε/8. With these parameters we have
k = O(log(1/ε)/δ2) and m1 = n+O(k).

• The (n, ρ)-design Des : {0, 1}m2 × [k]→ {0, 1}n from Theorem 3.11, set with α = γ/2.
By our choice of parameters, ρ = 2(γ/2)n, m2 = O(n/γ) and k can be as large as
2(γ/2ck)n for some universal constant ck. Indeed, the latter fits the constraint regard-
ing the sampler’s degree, as δ and γ are constants.

Let n̄ = m1 + m2 = O(n/γ + log(1/ε)/δ2) = Oδ,γ(n + log(1/ε)) and N̄ = 2n̄. Given
z̄ = (z1, z2) ∈ {0, 1}n̄ and i ∈ [k], we define

Loc(z̄, i) = Samp(z1, i)⊕ Des(z2, i) ∈ {0, 1}n .

Then, the code IW : {0, 1}N →
(
{0, 1}k

)N̄ maps f to f̄ = IW(f), where for every z̄ ∈ [N̄],

f̄z̄ =
(
fLoc(z̄,1), . . . , fLoc(z̄,k)

)
.

Local list-decoding. The proof follows the standard reconstruction approach: We show
an oracle circuit that gets access to a “corrupted” codeword C̄ (i.e., C̄ computes a function
that agrees with f̄ on ε fraction of the inputs) and computes f correctly on 1 − δ of the
inputs. The main step in the proof is showing the following lemma.

Lemma A.2. There exists a randomized procedure P that uses n̄ − n + log(k) + k + 1 random
coins, makes (k − 1) · 2(γ/2)·n queries to f , and prints an oracle circuit F0 : {0, 1}n → {0, 1} such
that the following holds:

1. For any C̄ : {0, 1}n̄ → Σ computing f̄ correctly on at least an ε fraction of its inputs, for at
least 1− δ of the inputs x ∈ {0, 1}n it holds that Pr[F C̄

0 (x) = fx] ≥ 1/2 + ε/64, where the
probability is over the internal randomness of P .

2. The circuit F0 is a constant-depth oracle circuit of size O(k · 2(γ/2)·n) (over the De Morgan
basis) making a single queries.

Establishing the lemma will suffice to prove the theorem. To see this, let P̄ be the
procedure that runs P for Q = O(n/ε2) times and prints a circuit Dec : {0, 1}n → {0, 1}
that computes the majority vote among the circuits F0 that were printed. Note that:

1. For every fixed C̄ that agrees with f̄ on at least ε inputs, with high probability over
the coins of P̄ we have that DecC̄ succeeds in computing f on 1 − δ of the inputs
x ∈ {0, 1}n.

52

2. The circuit Dec has constant depth and size O
(
(n/ε2) · k · 2(γ/2)·n

)
< 2γ·n/ε2, and it

uses Q non-adaptive oracle queries and a top majority gate of fan-in Q.

Denote by Dec1, ...,DecL the circuits that are obtained by enumerating over the possible
choices of P̄ . By the above, the circuits Deci have complexity as asserted in the theorem,
and for every C̄ that agrees with f̄ on ε of the inputs there is i ∈ [L] such that DecC̄i
computes f correctly on 1 − δ of the inputs. The rest of the proof is therefore devoted to
establishing Lemma A.2.

The randomized procedure P . We choose uniformly at random the following:

• A seed z1 ∈ {0, 1}m1 for the sampler,

• An index i ∈ [k], and,

• Values α ∈ {0, 1}m2−n for the entries of z2 ∈ {0, 1}m2 on the coordinates outside Si

(i.e., outside the i-th set in the design that Des computes).

Recall that F0 will get an input x ∈ {0, 1}n; given any such x, it is possible to combine it
with α into z2 ∈ {0, 1}m2 (i.e., z2↾Si

= x and z2↾[m2]\Si
= α). For each j ∈ [k] different from

i, note that when iterating over all inputs x ∈ {0, 1}n to F0 and combining α and x into
z2, there are at most 2(γ/2)·n possible outputs for Des(z2, j). Thus, when iterating over all
possible x and completing x to a corresponding z̄ = (z1, z2), there are at most ρ = 2(γ/2)·n

possible values for Loc(z̄, j) given that α, i, and z1 are fixed.
The procedure P queries f at the (k − 1) · 2(γ/2)·n locations Loc(z̄, j) above, and hard-

wires into F0 the choices of (z1, i, α), the answers to the queries, the values

Samp(z1, 1), . . . , Samp(z1, k),

and the design underlying Des. Given x ∈ {0, 1}n, the circuit F0:

1. Shifts x to x′ = x ⊕ Samp(z1, i), completes x′ (using α) to z2 ∈ {0, 1}m2 , and queries
C̄ on input z̄ = (z1, z2).

(To parse the meaning of this step, note that Loc(z̄, i) = Samp(z1, i) ⊕ x′ = x, so we
hope to have C̄(z̄)i = (f̄z̄)i = fx.)

2. For each j ∈ [k], j ̸= i, let cj ∈ {0, 1} equal zero iff C̄(z̄)j = (f̄z̄)j = fLoc(z̄,j).

3. For ℓ =
∑

j ̸=i cj , output C̄(z̄)i with probability 2−ℓ and a random bit otherwise.

Note that the description above is of a probabilistic circuit F0, which uses random coins
r ∈ {0, 1}k+1 in Step (3). However, we can choose these coins r in advance and hard-wire
them into F0.

The complexity of F0. The number of non-uniform advice bits for F0 is m1+log(k)+(m2−
n)+ (k− 1) · 2(γ/2)·n + k ·n+ k ·m2 = O(k · 2(γ/2)·n). Computationally, in Step (2) the circuit

53

F0 needs to compute Loc(z̄, j) = Samp(z1, j) ⊕ Des(z2, j) for all j ̸= i. This reduces to
computing Des(z2, j), which is trivial since we hard-wired the design.

To see how to compute Step (3), denote the sequence of random coins by r̄ = r1, ..., rk
and the sequence of bits computed in Step (2) by c̄ = c1, ..., ck. Then, for each j ∈ [k] \ {i}
let dj = 1 ⇐⇒ (cj = 0) ∨ (cj = 1 ∧ rj = 1), and let D = ∧j∈[k]\{i}dj . Observe that over a
random choice of r̄, the probability that D = 1 is precisely 2−

∑
j ̸=i cj . Thus, Step (3) can be

computed in constant depth over the De Morgan basis.

The complexity of P . We argue that P can be implemented by a probabilistic algorithm
using space O(n/γ) = O(n). Towards doing so, we describe the execution of P and the
way it prints the circuit F0 in more detail.

In the first step, P randomly chooses z1, i, α and stores them on its work tapes. This
can be done using O(n) space. Then, P iterates over all choices for j ∈ [k]. For each j,
it computes the set Si ∩ Sj (using the fact that the mapping of j 7→ Sj can be done in
space Oγ(n); see Theorem 3.11) and stores it. Then, it iterates over all possible choices for
x(j) ∈ {0, 1}|Si∩Sj |, in lexicographical order. For every fixed j and x(j), it computes the n-bit
string ℓ that is obtained by placing x(j) in the locations Si ∩ Sj and α↾Sj\Si

in the locations
Sj \ Si, and XORing the result with Samp(z1, j). Note that, by definition, ℓ = Loc(z̄, j),
where z̄ = (z1, z2) and z2 depends on x(j) as in the first description of P above.

For each choice of (j, x(j) and a corresponding Loc(z̄, j), the algorithm P queries f
at location Loc(z̄, j), and prints to its output an additional gate in the description of the
circuit: The index of this gate is (j, x(j)) ∈ [2γ·n], its type is the constant fLoc(z̄,j), and it has
no gates feeding into it. Since there are less than k · 2γ·n < 22n choices for j and x(j), this
entire step can be done in space O(n).

Next, the algorithm P prints another set of k·m2 constant gates, which describe the sets
S1, ..., Sk ⊆ [m2] in the design (i.e., the description of each Si is the indicator vector of the
n-bit set Si ⊆ [m2]). Then, P prints yet another set of k · n constant gates, which describe
the values of Samp(z1, j) for the fixed z1 chosen in advance and for all j ∈ [k]. This step
can also be done in space O(m2) = O(n/γ), relying on Theorem 3.11 and Theorem 3.9.

Finally, the algorithm P prints gates that implement the rest of the functionality of
F0. Specifically, it prints n input gates, then prints gates that shift any input x to x′ =
x⊕ Samp(z1, i), and that complete x′ to z2. Then, it prints gates that, in parallel, query the
oracle (given to the circuit) in location z̄, and for every j ∈ [k], query the constant gates to
obtain fLoc(z̄,j). (Note that the indices of these constant gates are computable by the circuit
in constant depth, given that the values Samp(z1, j) for all j ∈ [k] and the sets Sj, j ∈ [k]
are also stored in constant gates in the circuit.) It then prints gates that for each j ∈ [k]
check whether C̄(z̄)j = fLoc(z̄, j), and gates that sum the results into an integer ℓ. The last
set of constant gates are k + 1 constants that P chooses at random “on the fly”, to serve
as randomness r for the circuit. The last set of gates in the circuit implement Step (3) in
the functionality of F0, and we already showed above (when describing the complexity
of F0) an explicit way to do so. Note that printing the entire functionality of the circuit
never requires storing more than O(n) bits on the work tapes of P , and thus overall the
space complexity of P is O(n).

54

Correctness. Fix any C̄ : {0, 1}n̄ → {0, 1} that agrees with f̄ on at least ε fraction of the
inputs. We show that for any H ⊆ {0, 1}n of density |H| ≥ δ · 2n it holds that

Pr
i,z1,α,r,x∈H

[F0(x) = fx] ≥ 1/2 + ε/64 .

Establishing this claim sufices for the proof, since it implies that the set of “bad” inputs
{x ∈ {0, 1}n : Ei,z1,α,r [F0(x) = fx] < 1/2 + ε/64} has density less than δ.

We introduce additional notation. For any fixed z̄ ∈ {0, 1}n̄, let

Loc(z̄) = (Loc(z̄, 1), . . . , Loc(z̄, k)).

We denote by z̄ the uniform distribution over un̄. For any fixed i ∈ [k], let z̄|i∈H denote
the distribution z̄ conditioned on Loc(z̄, i) ∈ H . Finally, denote by z̄|u[k]∈H the distribution
z̄|i∈H when i ∈ [k] is chosen at random (i.e., first uniformly choose i ∈ [k] and then draw a
sample from z|i∈H).

We need the following claim that relies on the properties of the sampler:

Claim A.3. The probability over z̄ ∼ z̄ that Prj∈[k] [Loc(z̄, j) ∈ H] < δ/2 is at most ε/8.

Proof. For any fixed z2 ∈ {0, 1}m2 , the distribution Loc(z̄) conditioned on the second part
of z̄ being z2 is

Loc(um1 , z2) = (Samp(um1)1, ..., Samp(um1)k)⊕ (Des(z2)1, ...,Des(z2)k) ,

where the k mentions of um1 in the expression above all represent a single instance of the
random variable (i.e., a single choice of z1 ∼ um1 that is reused k times). For each fixed
z2 ∈ {0, 1}m2 and j ∈ [k], denote Hz2

j = {h⊕ Des(z2)j : h ∈ H}. By the properties of the
sampler, for every z2 we have

Pr
z1∼um1

[∣∣∣∣ Prj∈[k]

[
Samp(z1, j) ∈ Hz2

j

]
− E

j∈[k]

[
ρ(Hz2

j)
]∣∣∣∣ ≤ δ

2

]
≥ 7ε

8
,

so with probability at least 7ε/8 over z1 ∼ um1 we have Prj∈[k]
[
Samp(z1, j) ∈ Hz2

j

]
≥ δ/2,

which readily implies that Pri∈[k][Loc((z1, z2), j) ∈ H] ≥ δ/2. As this is true for any z2, the
claim follows. □

Relying on Claim A.3, we now argue the following.

Lemma A.4. There exists X̄ ⊆ ({0, 1}n)k such that Pr
[
Loc(z̄|u[k]∈H) ∈ X̄

]
= ε/4, and for any

z̄ such that Loc(z̄) ∈ X̄ it holds that C̄(z̄) = f̄z̄.

55

Proof. For any fixed x̄ = (x1, ..., xk) ∈ ({0, 1}n)k, let h(x̄) = |{i ∈ [k] : xi ∈ H}|. Then, we
have that

Pr
[
Loc(z̄|u[k]∈H) = x̄

]
= E

i∈[k]

[
Pr

[
Loc(z̄|i∈H) = x̄

]]
= E

i∈[k]

[
Pr[Loc(z̄) = x̄ ∧ xi ∈ H]

Pr[Loc(z̄, i) ∈ H]

]
≥ (1/δ) · E

i∈[k]

[
Pr[Loc(z̄) = x̄ ∧ xi ∈ H]

]
= (h(x̄)/δk) · Pr[Loc(z̄) = x̄] . (A.1)

By Claim A.3 we have that Pr[h(Loc(z̄)) < (δ/2) · k] < ε/8, and by a union-bound,

Pr
z̄∼z̄

[
C̄(z̄) ̸= f̄z̄ ∨ h(x̄) <

δ

2
· k

]
≤ (1− ε) +

ε

8
= 1− 7ε

8
.

Denote by Z̄ ⊆ {0, 1}n̄ the set of z̄-s such that C̄(z̄) = f̄z̄ and h(x̄) ≥ (δ/2) · k, and denote
X̄ =

{
Loc(z̄) : z̄ ∈ Z̄

}
. By Equation (A.1),

Pr
[
Loc(z̄|u[k]∈H) ∈ X̄

]
≥ 1

2
· Pr

[
Loc(z̄) ∈ X̄

]
>

ε

4
.

Finally, we take X̄ to be a subset of the above set that has weight exactly ε/4 (rather than
at least ε/4) under Loc(z̄|u[k]∈H). □

We now consider a choice of (i, z1, α, r) as before for constructing F0, and a random
choice of input x ∈ H for F0. For a given choice of (i, z1, α, x) (that will typically be clear
from context), we denote by z̄ = z̄(i, z1, α, x) the string that is obtained by combining
(i, z1, α, x) into z̄ in the same way F0 combines them (i.e., the string obtained by shifting x
to x′ = x⊕ Samp(z1, i), completing x′ to z2 using α, and concatenating z̄ = (z1, z2)). Then,
we have that

Pr
i,z1,α,r,x∈H

[
F C̄
0 (x) = fx

]
= Pr

i,z1,α,x∈H

[
Loc(z̄) ∈ X̄

]
· E
i,z1,α,x∈H

[
Pr
r

[
F C̄
0 (x) = fx

]
|Loc(z̄) ∈ X̄

]
+ Pr

i,z1,α,x∈H

[
Loc(z̄) /∈ X̄

]
· E
i,z1,α,x∈H

[
Pr
r

[
F C̄
0 (x) = fx

]
|Loc(z̄) /∈ X̄

]
= Pr

[
Loc(z̄|u[k]∈H) ∈ X̄

]
· E
i,z1,α,x∈H

[
Pr
r

[
F C̄
0 (x) = fx

]
|Loc(z̄) ∈ X̄

]
+ Pr

[
Loc(z̄|u[k]∈H) /∈ X̄

]
· E
i,z1,α,x∈H

[
Pr
r

[
F C̄
0 (x) = fx

]
|Loc(z̄) /∈ X̄

]
, (A.2)

where the last equality is a bit subtle. To see that it holds, first note that a choice of
z̄ = z̄(i, z1, α, x) according to a uniform choice of (i, z1, α, x ∈ H) can be thought of as
uniformly choosing z1 ∈ {0, 1}m1 , i ∈ [k], and x ∈ H , then putting x′ = x ⊕ Samp(z1)i

56

in the positions of the i-th subset in z2, and finally completing the rest of the positions in
z2 according to α and concatenating z̄ = (z1, z2). This process, in turn, is equivalent to a
uniform choice of z̄ ∼ z̄ conditioned on Loc(z̄)i ∈ H for a random i ∈ [k].

Now, plugging Lemma A.4 into Equation (A.2), we have that

Pr
i,z1,α,r,x∈H

[
F C̄
0 (x) = fx

]
≥ ε

4
+
(
1− ε

4

)
· E
i,z1,α,x∈H

[
Pr
r

[
F C̄
0 (x) = fx

]
|Loc(z̄) /∈ X̄

]
. (A.3)

To further lower-bound the RHS in Equation (A.3), denote byH the event

Pr
j∈[k]

[Loc(z̄, j) ∈ H] ≥ δ/2,

and note that

E
i,z1,α,x∈H

[
Pr
r

[
F C̄
0 (x) = fx

]
|Loc(z̄) /∈ X̄

]
≥

(
1− (1 + 2ε)

ε

8

)
· E
i,z1,α,x∈H

[
Pr
r

[
F C̄
0 (x) = fx

]
|Loc(z̄) /∈ X̄,H

]
(see below)

=
(
1− (1 + 2ε)

ε

8

)
· E
ẑ∼ẑ

[
Pr

i∈{j∈[k]:x̄j∈H},z1,α,r

[
F C̄
0 (x̄i) = fx̄i

|z̄(i, z1, α, Loc(ẑ, i)) = ẑ
]]

, (A.4)

where ẑ is the distribution obtained by choosing (i, z1, α, x ∈ H) conditioned on the event
z̄(i, z1, α, x) /∈ X̄ and on H.29 Now, to see that the inequality above is true, recall that by
Claim A.3 we have that Prz̄∼z̄[H] ≥ 1 − ε/8. The choice of z̄ according to (i, z1, α, x ∈ H)
is not uniform, but it is equivalent to a uniform choice conditioned on some location of
x̄ being in H , and on x̄ /∈ X̄ ; these two events happen with probability at least 1 − ε/4 −
ε/8 ≥ 1 − ε, conditioning on them can increase the probability of the bad event ¬H by a
multiplicative factor of at most 1 + 2ε for ε ≤ 1/2, which we can assume without loss of
generality.

The final claim in the proof will allow us to lower bound Pr[F C̄
0 (x̄i) = fx̄i

|Loc(z̄) = x̄]
in Equation (A.4) for any fixed x̄ for whichH holds. Specifically:

Lemma A.5. For every fixed ẑ ∈ {0, 1}n̄ and x̄ = Loc(ẑ) it holds that

Pr
i∈{j∈[k]:x̄j∈H},z1,α,r

[
F C̄
0 (x̄i) = fx̄i

|z̄(i, z1, α, Loc(ẑ, i)) = ẑ
]
≥ 1

2
− 2−|I|/3 ,

where I = {j ∈ [k] : x̄j ∈ H}.

Proof. By the definition of F0, when we condition on z̄(i, z1, α, Loc(ẑ, i)) = ẑ, the output
of F C̄

0 depends only on the choices of i and of r. For every j ∈ I , let cj ∈ {0, 1} equal zero

29Indeed, the equality relies on the fact that the choice of (i, z1, α, x ∈ H) conditioned on x̄ /∈ X̄ and onH
induces a probability distribution over (x̄, i), and that conditioning on a fixed x̄ in this distribution yields a
uniform choice of i ∈ {j ∈ [k] : x̄j ∈ H}.

57

iff C̄(ẑ)j = fLoc(ẑ,j). Finally, let ℓ̄I =
∑

j∈I cj and ℓ =
∑

j∈[k]\{i} ci (note that in ℓ̄I we are also
counting ci at the “chosen” index i). Then, we have that

Pr
i∈I,r

[
F C̄
0 (x) = fx

]
= Pr

i
[ci = 1] · Pr

r,i

[
F C̄
0 (x) = fx|ci = 1

]
+ Pr

i
[ci = 0] · Pr

r,i

[
F C̄
0 (x) = fx|ci = 0

]
= Pr

i
[ci = 1] · Pr

r,i

[
F C̄
0 (x) ̸= C̄(ẑ)i

]
+ Pr

i
[ci = 0] · Pr

r,i

[
F C̄
0 (x) = C̄(ẑ)i|ci = 0

]
=

ℓ̄I
|I|
· 1− 2−ℓ+1

2
+

(
1− ℓ̄I
|I|

)
·
(
2−ℓ +

1− 2−ℓ

2

)
=

1

2
·
(
1 + 2−ℓ ·

(
1− 3

ℓ̄I
|I|

))
≥ 1

2
− 2−|I|/3 ,

where the last inequality follows by a case-analysis of the two cases ℓ̄I ≤ |I|/3 and ℓ̄I >
|I|/3 (in the latter case we have ℓ ≥ ℓ̄I > |I|/3).

Plugging the above claim into Equation (A.4) and plugging the latter into Equation (A.3),
and recalling the definition ofH, we have that

Pr
i,z1,α,r,x∈H

[
F C̄
0 (x) = fx

]
≥ ε

4
+
(
1− ε

4

)
·
(
1− (1 + 2ε)

ε

8

)
· (1/2− 2−δk/6)

>
ε

4
+

(
1− 7ε

16

)
·
(
1

2
− 2−δk/6

)
>

1

2
+

ε

64
,

where again, we assumed ε is bounded from above by a small enough constant, and the
last inequality relies on the fact that k = poly(log(1/ε)/δ).

Finally, we argue that IW is computable in logspace. Indeed, given f ∈ {0, 1}N , recall
that each symbol z̄ ∈ [N̄] in f̄ = IW(f) is given by

f̄z̄ =
(
fLoc(z̄,1), . . . , fLoc(z̄,k)

)
where Loc(z̄ = (z1, z2), i) = Samp(z1, i)⊕Des(z2, i). We know that Samp(z1, i) is computable
in space O(m1) and Des(z2, i) is computable in space O(m2). Altogether, f̄ is computable
in space

O(log k + log N̄ +m1 +m2) = O(n+ log(1/ε)) = O(log N̄),

as desired.

A.1 A direct product theorem for smaller values of δ

As long as we want to maintain a polynomially small rate, the above code of Theorem 4.5
can support a constant, or slightly sub-constant δ. To see why this is the case, note that

58

while the random walks sampler of Theorem 3.8 has an optimal number of samples (i.e.,
k = O(log(1/ε)/δ2)), its randomness complexity, namely m1 = n+O(k), is relatively high.
Working out the parameters for a non-constant δ, we get N̄ = (1/ε)O(1/δ2) · poly(N).

Using the samplers of Theorem 3.9 instead of those coming from random walks, we
get better randomness complexity, at the expense of slightly more samples. In terms of
parameters, k becomes poly(log(1/ε), 1/δ), but now m1 = n + O(log(1/εδ)). Thus, we can
get approximate local list decodability, where the “approximate” parameter δ is small.

Although we will not use this fact, it may be of independent interest and we state it
here; the proof is nearly identical to the one above, where the only difference being using
a different sampler and adjusting the number of sets in the design.

Theorem A.6 (the derandomized direct product code of [IW97], instantiated with dif-
ferent samplers). There exists a constant c > 1 such that for any constant γ > 0, and ev-
ery ε, δ : N → (0, 1) such that δ(N) ≥ log(1/ε(N))N−cγ , the following holds. There exists a
logspace-computable, (

ε→ 1− δ,Q = poly

(
logN

ε

))
locally approximately list-decodable code

IW : {0, 1}N → ({0, 1}k)N̄

where N̄ = poly(N/ε) and k = poly(log(1/ε), 1/δ), such that each local decoder Deci is a
constant-depth oracle circuit of size Nγ/ε2 that makes non-adaptive queries and has a top ma-
jority gate of fan-in Q.

Note that compared to Theorem 4.5, the “symbol length” k has worse dependence on
ε, namely poly(log(1/ε)) instead of O(log(1/ε)).30

B Deferred Proofs of Technical Statements

B.1 The uniform complexity of GGHKR′

We prove that GGHKR′ is logspace computable, following the notation of Theorem 4.4. We
note that in [GGH+07], the encoding comprises two parts: The first part is an encoding of
an error-correcting code, whereas the second part is a truth table of an NC1-complete lan-
guage with nice properties (or more accurately, a “randomized image” of one), following
[Bar89]. The second part is used, in [GGH+07], to reduce NC1 local decoding to an AC0

30We remark that going forward, using Theorem A.6 instead of Theorem 4.5 would have created an ob-
stacle for us since we will eventually use a Hadamard encoding with blocklength 2k. However, a different,
more efficient, inner code would improve the parameters, possibly at the expense of less efficient decoding.
We do not delve into these trade-offs here.

59

local decoding. In Appendix B.2 we will establish TC0 local decoding (albeit by larger
circuits) without resorting to [Bar89], so we can dispense with the second part.31

Given x ∈ {0, 1}k, our encoding returns GGHKR′(x) ∈ {0, 1}k′ as follows.

• For an appropriate choice of parameters, we encode x ∈ {0, 1}k into x(1) ∈ F|F|m via
the low-degree extension view of the Reed–Muller code. Specifically, for |F| = log2 k,
H = log k, and m = log k

logH
, we interpret x as an m-variate polynomial Fm → F of

individual degree at most H over a field of size |F|, and output its evaluations over
Fm.

Note that x(1) ∈ Fk1 where k1 = k2, and that each symbol in x(1) can be computed
from x in space O(log |F| + log(Hm)) = O(log k) via multivariate polynomial inter-
polation (see, e.g., [VDHS13]). We denote by C1 : {0, 1}k → Fk1 the corresponding
mapping.

• We employ an ABNNR-like distance amplification step [ABN+92] to map x(1) ∈ Fk1

into x(2) ∈ (Fd)k1 by aggregating symbols according to a bipartite expander of degree
d = poly(|F|). Appropriate expanders exist with strongly explicit neighbors function
(we will use ones with AC0 neighbor functions, see Appendix B.2), and in particular
each symbol of x(2) can be computed from x(1) in space O(log(k1 log |F|) + log d +
log |F|) = O(log k).

We let C2 : Fk1 → (Fd)k1 denote the distance-amplification mapping.

We denote by C ′ : {0, 1}k → Σk1 the composition C2 ◦C1, where Σ = Fd and |Σ| = |F|d =
2polylog(k).

• Next, we concatenate C ′ with itself (with the appropriate parameters). Namely, let

C ′(1) : {0, 1}k → Σk2

be the code C ′ set with message length k as above, and let

C ′(2) : {0, 1}log |Σ| → Σ
log2 |Σ|

be the code C ′ set with message length log |Σ|, where |Σ| = 2polylog(log |Σ|) = 2polyloglog(k).
Then, we let C ′′ be the code concatenation of C ′(1) and C ′(2). That is, C ′′ gets x ∈ {0, 1}k,
computes x(2) ∈ Σk2 , and outputs x′′ ∈ (Σ̄log2 Σ)k

2 , wherein for all (i, j) ∈ [k2] ×
[log2 |Σ|], x′′

(i,j) = C ′(2)(x
(2)
i)j . Clearly,

C ′′ : {0, 1}k → Σ
k2·log2 |Σ|

= Σ
Õ(k2)

.

By composition of space-bounded functions, both C ′ and C ′′ are computable in space
O(log k).

31We could follow [GGH+07] and get an AC0 circuit, however their technique seems to hinder the non-
adaptivity of the local decoding.

60

Thus, x′′ = C ′(1)(x) ∈ (Fd)k1 above is mapped to x′′′ ∈ Σ
Õ(k2)

by the concatenation
with C ′(2).

• Finally, we map x′′ to the binary x′′′ ∈ {0, 1}k′ by another code concatenation, specif-
ically encoding each symbol in Σ ≡ {0, 1}polyloglog(k) by the Reed–Muller code (in its
low-degree extension variant) concatenated with Hadamard [STV01], denoted by
C3 : Σ → {0, 1}polyloglog(k). As the block length of C3 is very small, a naive implemen-
tation of each invocation of C3 takes polyloglog(k) space.

Overall, using space-efficient composition (see Proposition 3.2), we get that GGHKR′(x)
is computable in space O(log k).

We note that [GGH+07] does not use C ′′ before transforming to binary, but rather con-
catenates C ′ with C3. We choose to make an additional concatenation step in order to
further reduce the message length of C3 (for a reason that will become apparent soon in
Appendix B.2). In terms of parameters, due to the additional concatenation, one needs
to set C ′ to decode from a larger (yet still constant) distance, compared to the parame-
ters used in [GGH+07]. Inspecting their proof, this can easily be achieved by taking the
expander’s degree d to be larger by a constant factor.32

B.2 The uniform decoding of GGHKR′

We now show that our variant of GGHKR′ is locally decodable by a uniform local decoder,
in the sense that there exists a small-space oracle machine that outputs the description
of the (randomized) decoding circuit. (The correctness of the local decoding itself will
mostly follow [GGH+07], up to the additional concatenation step which we will specifi-
cally address.)

Claim B.1 (uniform decoding of GGHKR′). The code GGHKR′ of Theorem 4.4 is locally decod-
able by logspace uniform TC0 circuits. Namely, there is a deterministic Turing machine that runs
in space polyloglog(k) and outputs a randomized TC0 oracle circuit D′ of size 2polyloglog(k) that
locally uniquely decodes GGHKR′ : {0, 1}k → {0, 1}k′ with non-adaptive queries, from ρ = 24

25

fraction of agreement and with success probability at least 1 − 1
k

(over the circuit’s internal ran-
domness).

Proof. We start by setting some notations, and follow Appendix B.1. For encoding

GGHKR′ : {0, 1}k → {0, 1}k′ ,

let C1, C2, C ′, C ′′, and C3 as above. We describe the generation of a TC0 decoding circuit for
GGHKR′.

32Their code description and analysis can be found in the extended version of [GGH+07] titled “List
Decoding in Constant Depth”.

61

The code C1. For C1, following [GGH+07], we need to locally (uniquely) decode from
very small distance, say δ1 = 1

100|F| . Recall that in local decoding of such RM codes,
we pass a random line through the desired point and query the coordinates (or some
of them) along the function’s restriction to that line. In the small distance regime, with
high probability (over the choice of the line), we only query points that agree with the
low-degree polynomial. Thus, to locally decode, [GGH+07] apply standard interpola-
tion. Outputting an oracle circuit that performs Lagrange interpolation can be done in
logarithmic space, noting that constant-depth threshold circuits for field arithmetics are
logspace-uniform (see, e.g., [HV06]). Thus, the local decoder circuit for C1 is a TC0 circuit
of size poly(|F|) = polylog(k) and can be generated in space O(log |F|) = O(log log k). (The
non-adaptivity readily follows from the non-adaptivity of the interpolation.)

The code C2. The decoding algorithm for C2 goes as follows. Let Γ: [k1]×[d]→ [k1] be the
expander used for the symbol aggregation. As observed in [GGH+07] (following [GV04]),
appropriate expanders exist with strongly explicit neighbours function, and in particular
we can generate in space O(log log k) an AC0 circuit of size polylog(k) that computes

Γ(v, 1), . . . ,Γ(v, d)

given any v ∈ [k1]. On oracle access to a word y ∈ (Fd)k1 for which there exists x ∈ Fk1

that satisfies ∆(y, C2(x)) ≤ β1k1 for some predetermined β1, and an index i ∈ [k1], the
decoder queries y at locations Γ(i, 1), . . . ,Γ(i, d). Then, its guess for xi is the prediction
that appears most often in the d queries.33 The latter can be done by a non-adaptive TC0

circuit of size poly(d) = polylog(k).34 Overall, the decoding circuit is a non-adaptive TC0

circuit of size polylog(k). To generate the circuit, once we have the circuit for Γ, we can
output the decoding circuit in additional O(log |F|) = O(log log k) space.

The code C ′. Composing C1 and C2 into C ′, we get a local (unique) decoder for C ′, from
constant error, in the standard manner: We first apply the local decoder for C1 to produce
the query locations, which are then passed to the local decoder of C2. The decoder of C2
retrieves the values in the requested locations and passes them back to the decoder of
C1, that computes the requested location. All queries are done in parallel, so we get a
TC0 oracle circuit of size polylog(k). By simple manipulations and composition of space-
bounded functions, the local decoder for C ′ can be printed in O(log log k) space.

The code C ′′. We need C ′′ to be locally decodable from constant relative distance, say β =
1/5. Towards this end, we set the decoding distance of C ′(1) and C ′(2) accordingly, say

√
β for

33In more detail, note that for each j ∈ [d], every z(j) = yΓ(i,j) is a d-tuple. Thus, if i is the j′-th left-
neighbor of Γ(i, j) then we take z(j)j′ to be the j-th candidate for xi. The prediction for xi is then the
candidate that appears most often out of the d candidates.

34To see this, one can use iterated integer addition (which is in logspace-uniform TC0) to compute the
number of occurrences of each element, followed by standard comparisons which can be done in AC0.

62

both. Then, to get a local decoder for C ′′, we employ standard decoding of concatenated
codes. Namely, we first run the decoder for C ′(1) to compute the query locations. For
every such query, we use the decoder for C ′2 to decode the relevant Σ-symbol by going
over all log |Σ| locations. All queries are done in parallel, so the resulting decoder is a
non-adaptive TC0 circuit of size

polylog(k) + polylog(k) · log |Σ| · polylog(log |Σ|) = polylog(k),

where we used polylog(k) as an upper bound on the number of queries made by the
decoder for C ′(1), and polylog(log |Σ|) as an upper bound on the size of the decoder for C ′(2).
The correctness follows from a standard averaging argument, and is given, say, in [Vad12,
Problem 5.2].35 In terms of uniformity, again we can generate the local decoder for C ′′ in
O(log log k) space.

The code C3. Recall that C3 is the STV code [STV01] that maps Σ ≡ {0, 1}polyloglog(k) into a
binary string of length polyloglog(k). We don’t need local decoding here, since the block-
length is very small and the most naive decoding will suffice: To uniquely decode (from
constant distance), we just go over all messages and check them one by one. Specifi-
cally, for all z ∈ Σ, let Dz be the circuit that has C(z) hard-coded, gets oracle access to
some y (of length polyloglog(k)) and returns the Hamming distance between y and C(z).
Each Dz is a (multi output-bit) TC0 circuit of size poly(log log k) that can be generated in
polylog(log log k) = O(log log k) space (which is the space required to compute the encod-
ing C3, see [CT21a]). Now, the decoder for C3, given access to y, simply needs to choose
the z for which Dz gives the maximal value. This can be implemented by a non-adaptive
TC0 circuit of size poly(|Σ|) = 2polyloglog(k) that can be generated in space polyloglog(k).

Concatenating C ′′ and C3. Finally, recall that we apply code concatenation to get our
final code GGHKR′. The analysis here goes along the line of the analysis of C ′′ above (and
in fact is almost the same as in [GGH+07]) so we omit it. Overall, the code GGHKR′ can be
locally decodable by non-adaptive TC0 circuits of size 2polyloglog(k) that can be generated
in space polyloglog(k).

The correctness of the decoding itself is established in [GGH+07] (up to the slight
change of parameters needed in order to support the additional concatenation step).
We also omitted the success probability analysis, which is standard (and closely follows
[GGH+07]).

We conclude with two alternative approaches to modifying GGHKR′ and its decoding.
Those would not change our main result, and only affect Proposition 6.2.

35The only non-standard part is that we need to reduce the error of the decoder for C′2 so that whenever a
block of length log(Σ) is of distance at most

√
β from the correct symbol, the decoder succeeds in decoding

each symbol of the block with probability at least (say) 1
10Q·log(|Σ|) , where Q ≤ polylog(k) is the query com-

plexity of C′1. This increases the size complexity of the decoder for C′2 by polyloglog(k), which is insignificant
in our setting.

63

• By concatenating with C ′ three times instead of twice, we can get the overall decoder
size to polylog(k), generated in space O(loglogk).

• Similarly to [GGH+07], we can simulate the TC0 decoder by an AC0 decoder using
an NC1-complete problem, in the spirit of Barrington [Bar89]. However, one must
do it carefully, in a way that preserves the non-adaptivity of the decoding procedure.
One option is to use Barrington’s reduction and sub-exponential AC0 circuits for the
semigroup problem (see [Tel20]). While this would give us an AC0 decoder, its size
will be kΩ(1) rather than 2polyloglog(k).

Employing either of the above would also allow us to bound the number of majority gates
in our locally list-decodable code’s decoder from Theorem 4.2 by Q = poly(log k, 1/ε).

B.3 A logspace computable lossless expander

Claim B.2. Given positive integers N and K ≤ N , and any ε > 0 and a constant α > 0, let
Γ: [N] × [D] → [M] be the (K, ε) lossless expander of Theorem 5.4. Then, given f ∈ [N] and
y ∈ [D], Γ(x, y) can be computed in space O(log logN + log log(1/ε)).

Proof. We first recall the construction and parameters of [KT22]. Denoting n = logN , they
set a prime field Fq for q = polyα(n/ε). Also, m ∈ N is such that M = qm+2, and [D] ≡ Fq.
The parameters are set so that we can identify f as a univariate polynomial over Fq with
degree at most n− 1. The output Γ(f, y) is given by

Γ(f, y) =
(
y, f(y), f ′(y), . . . , f (m+1)(y)

)
∈ Fm+2

q .

where f (i) is the (formal) i-th derivative of f . Fix some i ∈ [m + 1], and consider the
computation of some f (i)(y). It is known that iterated addition and multiplication can be
done by logspace-uniform (and even logtime uniform) TC0 circuits, so in particular in L.
More concretely, adding and multiplying t Fq-elements can be done by poly(t log q)-sized
TC0 circuits (see, e.g., [HAB02]).36 Computing f (i)(y) amounts to:

1. Computing f (i): Each coefficient of f (i) is a multiplication of O(m) field elements,
which can be computed in space O(logm+ log log q).

2. Evaluating f (i)(y): Amounts to computing exponentiation up to an n-th power,
and performing addition of up to n elements. This can be done in space O(log n +
log log q).

By composition of space bounded functions, Proposition 3.2, the overall space require-
ment of computing the m field elements of Γ(f, y) is

O(log n+ log log q + logm) = O

(
log logN + log log

1

ε

)
.

36Computing a field element to the t-th power can even be done in size poly(log t, log q) for specific real-
izations of Fq , see [HV06], but we won’t need this fact.

64

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

