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Abstract

A one-way function is a function that is easy to compute but hard to invert on average. We
establish the first characterization of a one-way function by worst-case hardness assumptions,
by introducing a natural meta-computational problem whose NP-hardness (and the worst-case
hardness of NP) characterizes the existence of a one-way function. Specifically, we generalize the
notion of time-bounded conditional Kolmogorov complexity to distributional Kolmogorov com-
plexity, and prove that a one-way function exists if and only if it is NP-hard to approximate the
distributional Kolmogorov complexity under randomized polynomial-time reductions and NP is
hard in the worst case. We also propose the Meta-Complexity Padding Conjecture, which pos-
tulates that distributional Kolmogorov complexity is paddable by an approximation-preserving
reduction. Under this conjecture, we prove that the worst-case hardness of an approximate
version of the Minimum Circuit Size Problem characterizes the existence of a one-way function.

Our results extend the emerging paradigm of meta-complexity, which suggests that proving
NP-hardness of meta-computational problems (i.e., problems that ask to compute complexity)
is sufficient to exclude errorless Heuristica and error-prone Pessiland from Impagliazzo’s five
worlds. The key technical contribution is to conditionally close the gap between errorless and
error-prone average-case complexities by combining Nanashima’s proof techniques of showing
“limits” of black-box reductions (ITCS’21) with non-black-box worst-case-to-average-case re-
ductions of Hirahara (FOCS’18).

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 37 (2023)

mailto:s_hirahara@nii.ac.jp


Contents

1 Introduction 1
1.1 Paradigm of Meta-Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Meta-Complexity Padding Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of Proof Techniques 7
2.1 Constructing One-Way Functions from NP-Hardness of dK . . . . . . . . . . . . . . 7

2.1.1 New Theory of Non-Black-Box Reductions . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Step 3: Auxiliary-Input One-Way Function to One-Way Function . . . . . . . 11
2.1.4 Step 2: Hitting Set Generator to Auxiliary-Input One-Way Function . . . . . 12
2.1.5 Step 1: NP to Hitting Set Generator . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Conditional NP-Hardness of dK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Are Meta-Computational Problems Paddable? 17

4 Related Work 18

5 Preliminaries 19

6 NP-Hardness of Distributional Kolmogorov Complexity 22
6.1 Minimum Monotone Satisfying Assignment . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Secret Sharing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 A Proof of NP-Hardness of Distributional Kolmogorov Complexity . . . . . . . . . . 24

7 Pseudorandom Generator Constructions 27
7.1 A New Property of the Direct Product Generator . . . . . . . . . . . . . . . . . . . . 27
7.2 An Extension of Symmetry of Information . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Input-Aware P/poly-Restricted Reduction 34
8.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Reductions to Avoiding the Universal Hitting Set Generator . . . . . . . . . . . . . . 37

8.2.1 Meta-complexity reduces to avoiding the universal hitting set generator . . . 38
8.2.2 An algorithmic proof of symmetry of information . . . . . . . . . . . . . . . . 40
8.2.3 Reductions from distributional Kolmogorov complexity . . . . . . . . . . . . 42

8.3 Slow Growth Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.4 Combining Size-Expanding Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Hitting Set Generator to Auxiliary-Input One-Way Function 48

10 Auxiliary-Input One-Way Function to One-Way Function 51

11 Proofs of Main Results 54
11.1 Generalizing Ostrovsky’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.2 On the Meta-Complexity Padding Conjecture . . . . . . . . . . . . . . . . . . . . . . 56



A Another Proof of HSG to Auxiliary-Input OWF 58

B Distributional randomized Kolmogorov complexity 62



1 Introduction

A one-way function is a function that is efficiently computable but hard to invert on average. This
is one of the most fundamental cryptographic primitives, as the existence of a one-way function
is both sufficient and necessary [IL89] for constructing various cryptographic primitives, such as
pseudorandom generators [HILL99], pseudorandom function generators [GGM86], digital signatures
[Rom90], and commitment schemes [Nao91].

What is a minimal complexity-theoretic assumption that implies the existence of a one-way
function? Clearly, no one-way function exists if NP is easy. A major challenge in theoretical com-
puter science is to prove the converse, which would characterize the existence of a one-way function
by the worst-case hardness of NP. In an influential paper of Impagliazzo [Imp95], he provided a
ramification of this question by proposing the notion of five possible worlds. Pessiland is a hypo-
thetical world in which one-way functions do not exist but NP is hard on average. Heuristica is a
hypothetical world in which NP is hard in the worst case but NP is easy on average. These hypo-
thetical worlds are consistent with our current knowledge of complexity theory and cryptography.
The open problem of basing the security of a one-way function on the worst-case hardness of NP is
equivalent to excluding both Heuristica and Pessiland from Impagliazzo’s five possible worlds—two
of the four central challenges in theoretical computer science.1

Because of the importance of the questions, a large body of work has been devoted to un-
derstanding what types of proof techniques can (or cannot) be used to exclude possible worlds.
Standard proof techniques, such as black-box reductions [FF93; BT06b; AGGM06; BB15; HW20],
hardness amplification procedures [Vio05] and relativizing proofs [Imp11; HN21], are incapable of
excluding Heuristica from Impagliazzo’s five worlds. Similarly, a relativizing proof technique is
incapable of excluding Pessiland from the five worlds [Wee06].

The main result of this paper is to capture the question of excluding Heuristica and Pessiland by
NP-hardness of approximating distributional Kolmogorov complexity under randomized reductions.
Informally, the distributional Kolmogorov complexity dKpoly(x | D) of a string x given a distribution
D is defined to be the length of an efficient shortest program that prints x given y as input
with high probability over a choice of y ∼ D. Note that NP-hardness is a notion of worst-case
hardness. Nevertheless, we present the first characterization of a one-way function, which is a
cryptographic primitive based on average-case hardness, by worst-case hardness assumptions. Our
characterization employs non-relativizing proof techniques and non-black-box reductions; thus, it
is unlikely that our proof techniques are subject to the aforementioned limits of the standard
proof techniques. The characterization provides a concrete and new approach towards the central
challenge of excluding Heuristica and Pessiland.

1.1 Paradigm of Meta-Complexity

Our results are inspired by the emerging paradigm of meta-complexity [All21; Hir22a]. Meta-
complexity is an informal phrase that refers to the computational complexity of problems that
themselves ask to compute complexity. For example, MINKT [Ko91] is the problem of computing
the t-time-bounded Kolmogorov complexity of a given string x, i.e., the minimum length of a program
that prints x in time t. Similarly, the Minimum Circuit Size Problem (MCSP [KC00]) is the problem

1The other two challenges are excluding Algorithmica (proving that NP is hard in the worst case; e.g., P 6= NP)
and excluding Minicrypt (proving that the existence of a one-way function implies the existence of a public-key
cryptosystem).
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of computing the circuit complexity of the truth table of a given Boolean function. It is easy to
observe that these meta-computational problems are in NP. Whether they are NP-complete or not
is a central open question in the field of meta-complexity.

Based on meta-complexity, Hirahara [Hir18] proposed an approach for excluding Heuristica.
He showed that the worst-case and average-case complexities of approximate versions of meta-
computational problems, such as MINKT and MCSP, are equivalent. In particular, if these prob-
lems are NP-hard, then Heuristica can be excluded from Impagliazzo’s five possible worlds, i.e.,
the worst-case and average-case complexities of NP are equivalent. What makes the approach
particularly appealing is that the reductions presented in [Hir18] are non-black-box, meaning that
the correctness of the reductions can be proved if an oracle is efficient (but may not be proved
otherwise). In contrast, in the standard notion of (black-box) reduction, the correctness of reduc-
tions can be proved without using the efficiency of an oracle. Bogdanov and Trevisan [BT06b]
showed that black-box reductions are too strong to be useful for excluding Heuristica, by proving
that NP cannot be reduced to DistNP under randomized nonadaptive polynomial-time reductions
unless PH collapses. Here, DistNP is an average-case analogue of NP [BT06a].2 In a subsequent line
of work (e.g., [Hir20a; Hir21; CHV22; GKLO22]), proof techniques that do not rely on hardness
amplification procedures were developed, and a strong variant of Heuristica was excluded [Hir21].

Moreover, there is a folklore approach for excluding Pessiland based on NP-hardness of meta-
computational problems. Impagliazzo and Levin [IL90, Proposition 1] characterized the existence of
a one-way function by the non-existence of an efficient algorithm that approximates a probabilistic
variant qt(x) of the time-bounded Kolmogorov complexity of an input x drawn from any unknown
t′-time samplable distribution, where t′ � t. Here, qt(x) is defined to be − log Qt(x), where Qt(x)
is the t-time-bounded universal a priori probability of x, which is the probability that a universal
Turing machine produces x given a uniformly random input in time t. In particular, if the problem
of approximating qt(x) is “NP-hard under t′-time reductions for t′ � t,”3 then the problem of
approximating qt(x) with respect to t′-time samplable distributions is DistNP-complete. By the
result of [IL90], this implies that Pessiland does not exist, i.e., the average-case hardness of NP
implies the existence of a one-way function.

These two results [Hir18; IL90] provide interesting approaches for excluding both Heuristica
and Pessiland using the meta-complexity of qt. Observing that the proof techniques of [Hir18] are
applicable to qt, if the problem of approximating qt is NP-hard under t′-time reductions for t′ � t,
then Heuristica and Pessiland can be excluded simultaneously. This appears to be a reasonable
approach for basing the security of a one-way function on the worst-case complexity of NP. However,
there are two important issues in this approach, as described below.

Errorless vs. error-prone average-case complexities. The first issue is that the notion of
average-case complexities of NP used in [Hir18; IL90] are different. On one hand, the result of
[IL90] refers to error-prone average-case complexity. An error-prone heuristic algorithm A is said
to solve a problem L with respect to an input distribution D if A computes the correct answer L(x)
for most instances x drawn from D. On the other hand, the results of [Hir18] refer to errorless
average-case complexity. An errorless heuristic algorithm A is a special case of an error-prone

2Specifically, DistNP consists of pairs (L,D) (called distributional problems) of languages L ∈ NP and polynomial-
time samplable distributions D.

3More formally, for an NP-complete problem L that is DistNP-complete with respect to the uniform distribution,
there exist a polynomial t′ and a t′-time reduction that reduces L to the problem of approximating qt(x) for all
sufficiently large polynomials t.
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heuristic algorithm in which for every input x, the algorithm A must output either the correct
answer L(x) or a special symbol ⊥, which indicates the failure of the algorithm A. Whether the
error-prone and errorless average-case complexities of NP are equivalent is a long-standing open
question [Lev86; Imp95; Imp11; HS22; HN22]. Thus, even if qt is shown to be NP-hard, the gap
between errorless and error-prone complexities prevents us from basing the security of a one-way
function on the worst-case complexity of NP.4

In terms of Impagliazzo’s five worlds, NP-hardness of qt under efficient reductions excludes an
errorless variant of Heuristica and an error-prone variant of Pessiland according to the results of
[Hir18] and [IL90], respectively. There are several ways to define Heuristica and Pessiland, as there
are several ways to define average-case complexity. Errorless Heuristica refers to a world in which
NP is hard in the worst case but easy on average in the sense of errorless average-case complexity
(e.g., DistNP ⊆ AvgBPP). Similarly, one may define errorless and error-prone versions of Pessiland.
To base the security of a one-way function on the worst-case complexity of NP, one must exclude
both errorless Heuristica and errorless Pessiland.

A fundamental obstacle. The second issue is that NP-hardness of qt under t′-time reductions
for t′ � t contradicts plausible complexity assumptions. Saks and Santhanam [SS22] recently
presented a significant barrier for proving NP-hardness of t-time-bounded Kolmogorov complexity
under efficient reductions. Under plausible complexity-theoretic assumptions, they showed that the
problem of approximating Kt(x) cannot be NP-hard under t′-time reductions if t′ � t. The same
proof techniques are applicable to the problem of approximating qt(x). Thus, it is unlikely that
the folklore approach towards excluding Pessiland can be realized.

In summary, the paradigm of meta-complexity suggests that NP-hardness of meta-computational
problems is sufficient to exclude errorless Heuristica and error-prone Pessiland. However, important
questions remain unanswered.

1. Is an approach based on meta-complexity necessary for excluding Heuristica and Pessiland?

2. NP-hardness of qt under efficient reductions contradicts plausible complexity-theoretic as-
sumptions [SS22]. Is there a variant of time-bounded Kolmogorov complexity whose NP-
hardness is plausible and sufficient to exclude Pessiland?

3. Can the gap between errorless and error-prone average-case complexities of NP be closed?

All of these questions are answered in this paper.

1.2 Our Results

We introduce the notion of distributional Kolmogorov complexity—a natural generalization of time-
bounded conditional Kolmogorov complexity. Let U be an efficient universal Turing machine. For
t ∈ N and d ∈ {0, 1}∗, we define U t(d) to be the output of the universal Turing machine U on input
d if it halts in time t, and a special symbol “⊥” otherwise.

4In more detail, NP 6⊆ BPP implies DistNP 6⊆ AvgBPP, and DistNP 6⊆ HeurBPP implies the existence of a one-way
function. However, there is a gap between DistNP 6⊆ AvgBPP and DistNP 6⊆ HeurBPP.
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Definition 1.1. For a string x ∈ {0, 1}∗, a time bound t ∈ N, a parameter λ ∈ (0, 1], and a
distribution D over {0, 1}m, the t-time-bounded distributional Kolmogorov complexity of x given
D is defined to be

dKt
λ(x | D) := min

{
|d|
∣∣∣∣ Pr
y∼D

[U t(d, y) = x] ≥ λ
}
,

where |d| denotes the length of a string d ∈ {0, 1}∗. For a function τ : N→ N, we define

dKτ
λ(x | D) := dK

τ(n+m)
λ (x | D),

where n := |x|. For an oracle A ⊆ {0, 1}∗, the notion can be naturally extended to an A-oracle
version dKτ,A by considering the A-oracle universal Turing machine UA.

This notion generalizes the notion of time-bounded conditional Kolmogorov complexity. For a
distribution Dy supported only on a string y ∈ {0, 1}∗, we have

dKt
λ(x | Dy) = Kt(x | y),

where Kt(x | y) is the t-time-bounded conditional Kolmogorov complexity of x given y, i.e., the
minimum length of a program that prints x on input y in time t. We often identify a string y with
the singleton distribution Dy on y.

The meta-complexity of dKpoly can be naturally considered as follows. For a polynomial τ ,
given a string x, a circuit D that represents a distribution D over {0, 1}m, a size parameter s ∈ N,
and a “confidence” parameter λ, does dKτ

λ(x | D) ≤ s hold? Here, we say that an m′-input circuit
D represents a distribution D if the distribution of the output D(r) of D over a random input
r ∼ {0, 1}m′ is identical to D. It is easy to observe that the problem of approximating dKτ

λ(x | D)
(in which λ has a small additive error) is in pr-MA—a randomized and promise variant of NP.

Our main result is to characterize the existence of a one-way function by NP-hardness of ap-
proximating dKpoly under the assumption that NP is hard in the worst case. For a technical reason,
we impose a mild restriction on NP-hardness reductions. We say that a reduction to dKpoly is
parametric honest [SS20] if there exists a constant γ > 0 such that the size parameter s in any
query of the reduction on inputs of length n satisfies s ≥ nγ .

Theorem 1.2 (informal; see Theorem 11.1 for a formal statement). Assume NP 6⊆ i.o.P/poly;
i.e., NP cannot be computed by polynomial-size circuits almost everywhere. Then, the following are
equivalent.

1. There exists a one-way function secure against polynomial-size circuits.

2. For some constant ε > 0, there exists a parametric-honest randomized polynomial-time non-
adaptive reduction from NP to a (1+ε)-factor approximation of dKτ,A for all large polynomials
τ and all oracles A ∈ P/poly.

3. For some g(n) = n1/(log logn)O(1)
, there exists a parametric-honest randomized polynomial-time

one-query reduction from NP to a g(n)-factor approximation of dKτ,A for all large polynomials
τ and all oracles A ∈ P/poly.

Item 2 states that for every L ∈ NP, there exists a single polynomial-time reduction M (inde-
pendent of τ and A) that, for all large polynomials τ and all oracles A, reduces L to the problem of
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approximating dKτ,A. Thus, it is implicit that the running time t′ of the reduction M is significantly
smaller than the time bound τ of dKτ,A, just as in the folklore approach for excluding Pessiland
based on [IL90]. For a technical reason, we consider the A-oracle distributional Kolmogorov com-
plexity for oracles A ∈ P/poly, which is used to show Item 2 ⇒ 1. Note that dKτ,A(x | D) is
approximately equal to dKτ (x | D, C), where C is the description of the polynomial-size circuit
that computes A.

The assumption that NP is hard in the worst case is necessary for any characterization of a one-
way function by NP-hardness. If NP is easy, then every problem in NP (or even PH) is NP-complete,
whereas no one-way function exists. This indicates that the existence of a one-way function cannot
be equivalent to NP-hardness in the case where NP is easy. Excluding this trivial case (in terms
of Impagliazzo’s five worlds, Algorithmica) from consideration, Theorem 1.2 shows that a one-
way function exists (Heuristica and Pessiland do not exist) if and only if the meta-computational
problem of approximating dKpoly is NP-hard.

Since the existence of a one-way function implies NP 6⊆ i.o.P/poly, Theorem 1.2 can be equiva-
lently rephrased as the following unconditional equivalence: There exists a one-way function if and
only if NP 6⊆ i.o.P/poly and it is NP-hard to approximate dKτ,A for any polynomial τ and for any
oracle A ∈ P/poly.

In general, our results suggest that NP-hardness of A-oracle distributional Kolmogorov complex-
ity dKpoly,A is closely related to the existence of a one-way function secure against A. For example,
we show that if a probabilistic variant dpKpoly of dKpoly is NP-hard to approximate, then NP 6⊆
i.o.BPP implies the existence of a one-way function secure against randomized polynomial-time
algorithms. Here, dpKt

λ(x | D) is defined to be min
{
s ∈ N

∣∣ Prr∼{0,1}t
[
dKt

λ(x | D, r) ≤ s
]
≥ 3

4

}
.

1.3 Meta-Complexity Padding Conjecture

Although Theorem 1.2 captures the existence of a one-way function by NP-hardness of dKpoly under
efficient reductions, whether the existence of a one-way function can be characterized by the worst-
case intractability of some (natural) computational problem remains an open question. Since the
worst-case hardness and errorless average-case hardness of qpoly are equivalent [Hir18] and the error-
prone average-case hardness of qpoly is equivalent to the existence of a one-way function [IL90], the
worst-case intractability of qpoly would characterize the existence of a one-way function. However,
the gap between errorless and error-prone average-case complexities prevents us from obtaining
such a characterization. A similar gap exists between [Hir18] and the recent characterization of
one-way functions by the error-prone average-case complexity of Kpoly with respect to the uniform
distribution [LP20]. The gap can be closed [HS22] if Kpoly is instance-checkable in the sense of
Blum and Kannan [BK95], which is open.

Our proof techniques provide a new approach for closing the gap between errorless and error-
prone average-case complexities of meta-computational problems. We conjecture that dKpoly is
paddable by an approximation-preserving reduction. Specifically, there exists an efficient random-
ized self-reduction that maps an instance ϕ = (x,D, s, λ) of dKpoly

λ to another instance (x′,D′, s′, λ)

of the problem of approximating dKpoly
λ such that s′ � |ϕ|, where |ϕ| denotes the length of the

binary encoding of the instance ϕ. Any natural NP-complete problem is paddable, and the property
of being paddable is far weaker than NP-completeness (under honest reductions5). Thus, without
resolving the NP-hardness of dKpoly, we expect that it is feasible to prove that dKpoly is paddable

5A reduction M is said to be honest if the length of any query of M on input length n is at least nΩ(1).
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with current proof techniques. We show that the paddability of dKpoly is sufficient for closing the
gap between errorless and error-prone average-case complexities of Kpoly.

In fact, an even weaker property is sufficient: we propose the Meta-Complexity Padding Conjec-
ture, which postulates that the problem Gap(Kpoly vs K) of approximating Kolmogorov complexity
is reducible to the problem of approximating dKpoly via a size-expanding reduction. Here, a reduc-
tion to dKpoly is said to be size-expanding [Hir22b] if on input ϕ, the size parameter s in any query
of the reduction satisfies s = ω(|ϕ|). The problem Gap(Kpoly vs K) is defined as follows.

Definition 1.3. For a constant ε > 0 and a polynomial p, we define Gapε(K
p vs K) = (ΠYes,ΠNo)

to be the following promise problem.

ΠYes :=
{
x ∈ {0, 1}∗

∣∣∣ Kp(|x|)(x) ≤ |x|ε
}
,

ΠNo := {x ∈ {0, 1}∗ | K(x) ≥ |x| − 3}.

Informally, this problem asks to approximate Kp(|x|)(x) to within a factor of |x|1−ε. Moreover,
in the No case, the input x has high resource-unbounded Kolmogorov complexity, which makes
the problem easier. We conjecture that it is feasible to reduce Gapε(K

p vs K) to dpKpoly via a
size-expanding reduction.

Conjecture 1.4 (The Meta-Complexity Padding Conjecture; informal; see also Conjecture 11.4).
For any polynomial p, there exist constants ε, δ > 0 such that there exists a randomized6 polynomial-
time size-expanding reduction from Gapδ(K

p vs K) to a (1 + ε)-factor approximation of dpKτ for
all large polynomials τ .

This conjecture captures the gap between errorless and error-prone average-case complexities of
qpoly, and makes it possible to base the security of a one-way function on the worst-case hardness
of approximating qpoly, the circuit complexity, and rKpoly. Here, rKt(x) is a randomized variant of
Kt(x), and is defined to be the length of a shortest randomized program that prints x in time t
with probability at least 3

4 .

Theorem 1.5 (informal; see Theorem 11.7 for a formal statement). Under the Meta-Complexity
Padding Conjecture, the following are equivalent.

1. There exists a one-way function secure against randomized polynomial-time algorithms in-
finitely often.

2. (The Minimum Circuit Size Problem is hard to approximate) For every constant ε > 0, no
randomized polynomial-time algorithm can approximate the circuit complexity of a given truth
table of length 2n to within a factor of 2(1−ε)n.

3. For every polynomial p, no randomized polynomial-time algorithm can distinguish qt(x) ≤ s
from qp(t)(x) > p(s) on input (x, 1t, 1s) such that t ≥ |x|.

4. For every polynomial p, no randomized polynomial-time algorithm can distinguish rKt(x) ≤ s
from rKp(t)(x) > p(s) on input (x, 1t, 1s) such that t ≥ |x|.

6The use of randomness is indispensable because there is no deterministic size-expanding reduction from non-trivial
languages to dpKτ .
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5. There exists a pseudorandom generator secure against randomized polynomial-time algorithms
infinitely often.

6. For every constant ε > 0, there exists a hitting set generator

H =
{
Hn : {0, 1}nε → {0, 1}n

}
n∈N

secure against randomized polynomial-time algorithms infinitely often.

Here, a family H of functions is called a hitting set generator against a class C if there exists
no algorithm A ∈ C that avoids H. An algorithm is said to avoid H if A accepts at least half
of the strings of length n and rejects every string of length n in the image of H for every n ∈ N.
The complexity of avoiding a hitting set generator is known to be equivalent to the complexity
of approximating time-bounded Kolmogorov complexity [Hir20a]. Similarly, the complexity of
breaking the security of a pseudorandom generator is equivalent to the error-prone average-case
complexity of time-bounded Kolmogorov complexity [LP20]. Theorem 1.5 shows that the gap
between these two results can be closed under the Meta-Complexity Padding Conjecture.

It is unlikely that the Meta-Complexity Padding Conjecture can be refuted because dpKpoly is
NP-hard under the existence of a one-way function secure against polynomial-size circuits, in which
case dpKpoly is paddable.

Proposition 1.6. If there exists a one-way function secure against polynomial-size circuits, then
the Meta-Complexity Padding Conjecture is true.

More broadly, we propose to study whether meta-computational problems are paddable by
approximation-preserving reductions. We defer details to Section 3.

2 Overview of Proof Techniques

We explain how to obtain the characterization of the existence of a one-way function by NP-hardness
of approximating distributional Kolmogorov complexity.

2.1 Constructing One-Way Functions from NP-Hardness of dK

Here, we explain the construction of a one-way function based on NP-hardness of distributional
Kolmogorov complexity under the assumption that NP is hard in the worst case.

The central idea of closing the gap between errorless and error-prone average-case complexities
of NP is based on the work of Nanashima [Nan21]. He showed that if there exists a randomized
polynomial-time reduction from NP to any oracle that avoids an auxiliary-input hitting set genera-
tor, then both Heuristica and Pessiland do not exist. This provide “limits” of black-box reductions
in the sense that constructing a black-box reduction from NP to avoiding an auxiliary-input hitting
set generator is at least as hard as resolving the central challenge of theoretical computer science.
The key insight in his work is to use the fact that a one-way function is testable [MX10], which is
closely related to the errorless versus error-prone average-case complexities [HS22].7

At a high level, we combine Nanashima’s “limits” of black-box reductions with the non-black-
box worst-case-to-average-case reduction of Hirahara [Hir18]. In fact, there is evidence [Hir18;

7More precisely, we use the fact that an auxiliary-input one-way function is instance-checkable.
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HW20] that Hirahara’s reduction is inherently non-black-box. The reduction of [Hir18] can be seen
as a reduction from (approximate variants of) meta-computational problems, such as MINKT and
MCSP, to any efficient oracle that avoids a hitting set generator. Hirahara and Watanabe [HW20]
showed that any language that can be reducible to any (not necessarily efficient) oracle that avoids
a hitting set generator must be in AM ∩ coAM. Since MINKT and MCSP are conjectured to be
outside AM ∩ coAM [Rud97], it is unlikely that the reduction of [Hir18] can be made black-box.
Nevertheless, we show that the reduction of [Hir18] is a “mildly” black-box reduction in a certain
technical sense, and show that Nanashima’s proof techniques are applicable to such a mildly black-
box reduction under the assumption that dKpoly is NP-hard.

2.1.1 New Theory of Non-Black-Box Reductions

To this end, we develop a new theory of mildly black-box reductions (or, equivalently, non-black-
box reductions). We introduce the notions of P/poly-restricted reduction and input-aware P/poly-
restricted reduction. These are new properties of non-black-box reductions for which proof tech-
niques of [Hir18] and [Nan21], respectively, are applicable.

Before presenting these notions, we explain why new notions are necessary and previous notions
are unsatisfactory. Previously, notions called size-restricted reduction [GV08] and class-specific
black-box reduction [GT07] were proposed to capture non-black-box reductions in the literature
[IW01; GST07]. For example, a size-restricted reduction from a language L to avoiding a hitting
set generator H is defined to be a reduction R such that for every oracle B that avoids H and is
computable by quadratic-size circuits, RB decides L with oracle access to B. That is, the reduction
works if the oracle B can be simulated by an efficient algorithm, but may not work otherwise.
Impagliazzo and Wigderson [IW01] used a non-black-box reduction to show that if EXP 6= BPP,
then BPP can be simulated in sub-exponential time on most inputs. It was shown in [GV08] that
the reduction of [IW01] is a size-restricted reduction from EXP to avoiding a hitting set generator
HIW, whereas there exists a black-box reduction from PSPACE to avoiding a hitting set generator
HTV [TV07]. We observe that the notion of size-restricted reduction is mathematically meaningful
only if a hitting set generator H is not secure. If there exists no polynomial-size circuit B that
avoids H, then the hypothesis of a size-restricted reduction is false; thus, any reduction becomes
vacuously a size-restricted reduction.8 Therefore, the notion of size-restricted reduction is too weak
to be useful in a variant of Pessiland in which a hitting set generator is secure (but one-way functions
do not exist). Just defining a useful subclass of non-black-box reductions is highly non-trivial. We
propose stronger notions of non-black-box reductions that are mathematically meaningful even if
a hitting set generator is secure.

For any complexity class B, such as P/poly, and any class A of problems, we introduce the
notion of B-restricted reduction to A. We say that an oracle machine M is a B-restricted reduction
from a language L to A if for every oracle B ∈ B, for all sufficiently long inputs x ∈ {0, 1}∗, for
every problem A ∈ A,

Pr
M

[A(q) = B(q) for every query q of M on input x] ≥ 1

2
(1)

implies

Pr
M

[
MB(x) = L(x)

]
≥ 3

4
. (2)

8Observe that a mathematical statement “∀B ∈ B, P (B)” is vacuously true if B = ∅.
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Here, the probabilities are taken over the internal randomness of M . If there exists a randomized
polynomial-time nonadaptive B-restricted reduction from L to A, we write9

L ≤BPP
tt A � B.

An example of A is {A | A avoids H} for a hitting set generator H, i.e., the class of the problems of
avoiding H. The idea behind the definition is that the condition Eq. (1) means that the reduction
M cannot distinguish an efficient algorithm B from an oracle A that avoids a hitting set generator,
under which the reduction works correctly. Note that the previous notion of size-restricted reduction
only considers the situation in which A = B, which makes the notion too weak to be useful for our
purpose.

This notion can be shown to be robust. For example, the notion remains unchanged even if
the constant 1

2 in Eq. (1) is changed to any constant in (0, 1). Similarly, the constant 3
4 in Eq. (2)

can be changed to any constant in (1
2 , 1) by a standard proof technique of amplifying the success

probability of BPP algorithms. Moreover, Eq. (2) can be changed to PrM
[
MA(x) = L(x)

]
≥ 3

4 ,
i.e., the reduction works under both of the oracles A and B.

A B-restricted reduction may make a query that does not affect the decision of the reduc-
tion. For example, by making a uniformly random query q ∼ {0, 1}n, we may assume that
Prq∼{0,1}n [A(q) = B(q)] ≥ 1

2 when we prove the correctness of the reduction. Even if the an-
swer B(q) from the oracle B may not be used by the reduction, making such a query is useful for
the proof of the correctness of the reduction. This differs from the standard notion of nonadaptive
reduction, in which any query that is not used to determine the output of the reduction can be
omitted.

The notion of P/poly-restricted reduction captures the non-black-box worst-case-to-average-case
reduction of [Hir18]. For example, we can show

GapMCSP ≤BPP
tt {A | A avoids H} � P/poly

for some hitting set generator H.
However, the proof technique of [Nan21] may not be applicable to P/poly-restricted reductions.

We need a stronger (i.e., more restrictive) notion, which we call input-aware P/poly-restricted
reduction. In a P/poly-restricted reduction, an efficient oracle B ∈ P/poly may not know the input
x to the reduction. In an input-aware P/poly-restricted reduction, we allow B to know the input to
the reduction.10 More generally, we provide B with (not only the input but also) input-dependent
advice, which is a short string that can depend arbitrarily on the input to the reduction. For a
function α : N→ N, we write

L ≤BPP
tt A � B � α(n)

if there exists a randomized polynomial-time nonadaptive oracle machine M such that for every or-
acle B ∈ B, for all but finitely many inputs x ∈ {0, 1}∗ and for every advice string a ∈ {0, 1}α(|x|),11

for every problem A ∈ A, if

Pr
M

[A(q) = B(a, q) for every query q of M on input x] ≥ 1

2
,

9The subscript “tt” denotes truth-table reductions, which are equivalent to nonadaptive reductions.
10The name is intended to be “(input-aware P/poly)-restricted reduction”; i.e., an efficient oracle in P/poly is

input-aware. Note that a reduction itself is always input-aware, as an input is given to the reduction by definition.
11We emphasize that the advice string is given to the oracle but not to the reduction, which makes the reduction

less powerful. This is in contrast to a complexity class with advice, in which an advice string is given to an algorithm
that computes a problem, which makes the computational model more powerful (e.g., P ⊆ P/poly).
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then

Pr
M

[
MBa(x) = L(x)

]
≥ 3

4
,

where Ba(q) := B(a, q). This notion naturally interpolates between P/poly-restricted reductions
and black-box reductions. In the extreme case where α is exponentially large, a (P/poly � α)-
restricted reduction is equivalent to the standard black-box reduction, as any function can be
computed with an exponential amount of advice. Note that an advice string is given to an oracle
but not to a reduction; thus, if an advice string becomes longer, the input-aware P/poly-restricted
reduction becomes stronger. The notation “�” of advice is borrowed from [TV07].12

By inspecting the proof of Nanashima [Nan21], we show that his proof is applicable to (P/poly�
2n)-restricted reductions. Although the reduction of [Hir18] is not a (P/poly�2n)-restricted reduc-
tion, by combining it with a size-expanding reduction from NP to dKpoly, we obtain a (P/poly�2n)-
restricted reduction.

2.1.2 Proof Overview

Equipped with the new notions of non-black-box reductions, we now explain our overall proof
strategy. The proof consists of three steps.

Step 1. Using the proof techniques of Hirahara [Hir18; Hir22c], we prove

dKpoly ≤BPP
tt {A | A avoids H} � P/poly

for a universal hitting set generator H.

By combining this with the assumption that dKpoly is NP-hard under size-expanding reduc-
tions,13 we obtain an input-aware P/poly-restricted reduction that shows

NP ≤BPP
tt {A | A avoids H} � P/poly � 2n.

Step 2. Using the proof techniques of Nanashima [Nan21] (which employ [IL90]), we prove that if

NP ≤BPP
tt {A | A avoids H} � P/poly � 2n,

then
NP ≤BPP

tt {I | I inverts f} � P/poly

for some auxiliary-input one-way function f .

Step 3. Using the fact that a one-way function is testable, we prove that if

NP ≤BPP
tt {I | I inverts f} � P/poly,

then
DistNP ≤AvgBPP

tt {I | I inverts g} � P/poly

for some one-way function g.

12In more detail, Trevisan and Vadhan [TV07] introduced the notion of advice that can depend on the internal
randomness of a randomized algorithm. Here, we consider the notion of advice that can depend on the input to a
reduction.

13Since there exists a paddable NP-complete problem, NP-hardness under parametric-honest reductions implies
NP-hardness under size-expanding reductions.

10



To complete the proof, we combine Steps 1 and 3 as follows. Step 1 shows that errorless Heuristica
does not exist, i.e., NP 6⊆ i.o.P/poly implies DistNP 6⊆ i.o.AvgP/poly. This follows from the fact that
the existence of a hitting set generator implies errorless average-case hardness of MCSP and MINKT
[HS17; Hir18]. Step 3 shows that errorless Pessiland does not exist, i.e., DistNP 6⊆ i.o.AvgP/poly
implies the existence of a one-way function.

We present details of the steps in the reverse order.

2.1.3 Step 3: Auxiliary-Input One-Way Function to One-Way Function

An auxiliary-input one-way function is a cryptographic primitive weaker than a one-way function
[Ost91]. For a family

f =
{
fx : {0, 1}s(|x|) → {0, 1}t(|x|)

}
x∈{0,1}∗

of functions indexed by auxiliary inputs x, we say that an algorithm I inverts f on auxiliary input
x if

Pr
y∼{0,1}s(|x|)

[
I(x, fx(y)) ∈ f−1

x (fx(y))
]
≥ 1

2
.

An algorithm I is said to invert f if it inverts f on every auxiliary input x. A family f of functions
is said to be an auxiliary-input one-way function secure against a class C if there exists no algorithm
in C that inverts f . Note that the standard one-way function corresponds to the special case that
the auxiliary input is unary, i.e.,

f =
{
f1n : {0, 1}s(n) → {0, 1}t(n)

}
n∈N

.

The existence of a one-way function implies the existence of an auxiliary-input one-way function,
but the converse is one of the fundamental open questions in cryptography [Ost91; OW93; Vad06].
However, when an auxiliary input is chosen randomly, the gap can be closed.

Let D be a polynomial-time samplable distribution. A well-known fact about auxiliary-input
one-way functions f is that if it is hard to invert f on an auxiliary input x chosen randomly from
D, then this naturally induces a one-way function g: We may define the output of g on input (r, y)
to be (x, fx(y)) for randomly chosen x ∼ D and y ∼ {0, 1}s(|x|), where r is a coin flip sequence to
generate x. It is not hard to see that if

L ≤BPP
tt {I | I inverts f} � P/poly,

then
(L,D) ≤HeurBPP

tt {I | I inverts g} � P/poly,

which means that the distributional problem (L,D) is reduced to inverting the one-way function g
via an error-prone average-case P/poly-restricted reduction.

We make this average-case reduction errorless by using the simple and crucial insight from
[Nan21]: a one-way function is testable. The original reduction M from L to {I | I inverts f} is
guaranteed to work correctly if the oracle I inverts f on auxiliary input q, where q is a query of M .
We can approximately check whether the oracle inverts f on q as follows: Sample y ∼ {0, 1}s(|q|)
randomly, and check whether fq(I(q, fq(y))) = y. If this does not hold, it is an indication that
the oracle I fails to invert f on auxiliary input q. Thus, in such a case, our errorless average-case
reduction can simply output the special failure symbol “⊥.” The probability that the reduction
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fails is small because we may assume that the oracle inverts f on most auxiliary inputs q by using
hardness amplification [Yao82; Gol01]. In summary, we obtain the following result, for which details
can be found in Section 10

Theorem 10.3. Let f be a polynomial-time-computable auxiliary-input family of functions. If

NP ≤BPP
tt {I | I inverts f} � P/poly,

then there exists a polynomial-time-computable family g = {gn : {0, 1}n → {0, 1}n}n∈N of functions
such that

DistNP ≤AvgBPP
tt {I | I inverts g} � P/poly.

Remark 2.1. In this step, we do not need our general theory of non-black-box reductions. In fact,
using the general notion of P/poly-restricted reduction makes a proof unnecessarily complicated. To
simplify the proof, we consider a P/poly-restricted fixed-auxiliary-input reduction,14 i.e., a special
case of a P/poly-restricted reduction in which any query of the reduction on input x is of the form
(x, z) for some z. See Section 9 for the formal definition.

2.1.4 Step 2: Hitting Set Generator to Auxiliary-Input One-Way Function

It is known that the existence of an auxiliary-input one-way function implies the existence of a
hitting set generator [Hir18; Nan21]. Accordingly, any oracle that avoids a hitting set generator
can be transformed into an oracle that inverts an auxiliary-input one-way function f . Thus, we see
that

L ≤BPP
tt {I | I inverts f}

implies
L ≤BPP

tt {A | A avoids H}

for some hitting set generator H. Surprisingly, Nanashima [Nan21] gave the converse for black-
box reductions. We show that Nanashima’s proof is applicable to non-black-box reductions. More
specifically, we show that an input-aware P/poly-restricted reduction to avoiding a hitting set
generator can be transformed into a P/poly-restricted reduction to inverting an auxiliary-input
one-way function.

Theorem 9.3. Let L be a language. Let

H =
{
Hn : {0, 1}s(n) → {0, 1}n

}
n∈N

be an arbitrary family of functions such that s(n) < n− ω(log n). If

L ≤BPP
tt {A | A avoids H} � P/poly � 2n

via an honest reduction, then there exists a polynomial-time-computable auxiliary-input function
f = {fx}x∈{0,1}∗ such that

L ≤BPP
tt {I | I inverts f} � P/poly

14The notion of fixed-auxiliary-input reduction is due to [ABX08].
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The proof of [Nan21] is based on the work of Impagliazzo and Levin [IL90] and Gutfreund and
Vadhan [GV08]. We explain the proof idea below and explain a technical challenge for extending
[Nan21] to non-black-box reductions.

Gutfreund and Vadhan [GV08] presented a limit of black-box reductions to avoiding a hitting
set generator: if there exists an efficient black-box reduction M from a language L to avoiding
a hitting set generator, then L ∈ BPPNP. In doing so, they presented a generic approach for
simulating the reduction to avoiding a hitting set generator. For an input x ∈ {0, 1}∗, consider an
oracle Ax such that q ∈ Ax if and only if the probability Qx(q) that q is queried by the reduction
M is at most θ, where θ is some parameter. Here, Qx denotes the query distribution of M , and
Qx(q) denotes the probability that q is sampled from Qx. Then, they observed that Qx(q) can be
estimated in BPPNP. Hirahara and Watanabe [HW20] improved this upper bound to AM ∩ coAM.

Under the non-existence of one-way functions, Impagliazzo and Levin [IL90] showed that for
every polynomial-time samplable distribution D, there exists a randomized polynomial-time algo-
rithm T that approximates D(x) with high probability over a choice of x ∼ D and the internal
randomness of T . This lemma was used to characterize the existence of a one-way function by
the average-case hardness of qpoly. By extending the lemma of [IL90] to auxiliary-input one-way
functions (as in [OW93]), the problem of approximating Qx(q) on average over a random choice of
q ∼ Qx for every x ∈ {0, 1}∗ is reduced to the task of inverting some auxiliary-input one-way func-
tion f = {fx}x∈{0,1}∗ . By combining this with [GV08], Nanashima [Nan21] obtained a black-box
reduction to inverting an auxiliary-input one-way function.

We now extend this argument to input-aware P/poly reductions. Observe that the oracle Ax
used in [GV08] depends on x; i.e., it is an input-aware oracle. We may simulate this oracle Ax
using an efficient algorithm B ∈ P/poly if B can invert f on auxiliary input x. In this case, since
the oracle Ax cannot be distinguished from some P/poly algorithm, the P/poly-restricted reduction
M to avoiding a hitting set generator works correctly. This is a high-level idea of the proof of
Theorem 9.3.

However, there is one important technical detail in the proof. Given a query q as input, it is
not possible to check whether q ∈ Ax or not exactly, as the algorithm of [IL90] cannot compute
Qx(q) exactly. There are two ways to circumvent this issue.

The first way is to use the idea of Hirahara and Watanabe [HW20]. They employed the proof
technique of Bogdanov and Trevisan [BT06b] that selects the threshold θ randomly, which makes it
possible to ensure that the probability that Qx(q) ≈ θ over a choice of q ∼ Qx is sufficiently small.
We then include θ as an input-dependent advice to the oracle, which costs the length of advice
O(log n) on inputs of length n. In total, the length of input-dependent advice is |x|+O(log n) ≤ 2n.
The proof is given in Appendix A.

The second way is to use the original idea of Gutfreund and Vadhan [GV08]. They considered
a promise problem Ax that avoids a hitting set generator, and showed that any oracle that is
consistent with Ax can be used to simulate the reduction M . To implement their approach in our
setting, we need to extend the notion of B-restricted reduction to A. We consider not only a class
of problems but also a class A of promise problems. In addition, we need to consider a class B
of randomized algorithms. The extended definition can be found in Section 8. The details of the
proof are presented in Section 9.

13



2.1.5 Step 1: NP to Hitting Set Generator

By generalizing the worst-case to average-case reduction for MINKT [Hir18], Hirahara [Hir22c]
showed that the problem of approximating the conditional time-bounded Kolmogorov complexity
is easy in Heuristica. We give a further generalization, by showing that approximating dKpoly is also
easy in Heuristica. Moreover, we show that these non-black-box reductions are P/poly-restricted.

Hirahara’s reductions are P/poly-restricted. To illustrate that Hirahara’s reductions are
P/poly-restricted, we review the proof of [Hir18; Hir20b]. Specifically, we reduce the problem of
approximating qt to avoiding a universal hitting set generator. Here, the universal hitting set
generator

Huniv =
{
Huniv
n : {0, 1}s(n) → {0, 1}n

}
n∈N

is defined as follows. Huniv
n takes a program of description length s(n), simulates the program for

poly(n) steps (e.g., n2 steps) and outputs the output of the program. We let s(n) := n− 1 in this
proof overview.15

The main technical building block is a pseudorandom generator construction [TV07]. We use
a simple pseudorandom generator construction with small advice complexity, which is called the
k-wise direct product generator

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

and is defined as
DPk(x; z1, · · · , zk) := (z1, · · · , zk, 〈x, z1〉, · · · , 〈x, zk〉).

The pseudorandom generator construction DPk satisfies the following pseudorandomness property:
there exists a polynomial p such that if qp(n/ε),D(x) > k + log p(n/ε), then∣∣∣Pr

z
[D(DPk(x; z)) = 1]− Pr

w
[D(w) = 1]

∣∣∣ ≤ ε.
Using this, we present a proof sketch of the following non-black-box worst-case to average-case
reduction for the problem of approximating qt.

Theorem 2.2. For a polynomial τ and an oracle B, let GapτMqPB = (ΠYes,Π
B
No) be the promise

problem defined as

ΠYes :=
{

(x, 1t, 1s)
∣∣ t ≥ |x| and qt(x) ≤ s

}
,

ΠB
No :=

{
(x, 1t, 1s)

∣∣∣ t ≥ |x| and qτ(t),B(x) > s+ log τ(t)
}
.

Then, there exists a polynomial τ such that for every oracle B,

GapτMqPB ≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� {B}.

Here is a proof sketch. Given an instance (x, 1t, 1s), consider a reduction MB that outputs 1 if
and only if B(DPk(x; z)) = 0 for a random z ∼ {0, 1}nk, where n := |x| and k ≈ s. The reduction
makes an additional query w ∼ {0, 1}nk+k, which ensures that the oracle B accepts many strings.

15For Step 2 to work, s(n) = n− ω(logn) must be satisfied.
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Recall that it suffices to prove the correctness of B-restricted reductions under the assumption that
B agrees with an oracle A that avoids Huniv. Let A be an arbitrary oracle that avoids Huniv. We
assume that

Pr
M

[
A(q) = B(q) for every query q of M on input (x, 1t, 1s)

]
≥ 1− ε

for a small constant ε > 0 and prove the correctness of MB under this assumption. Since MB

makes a query w ∼ {0, 1}nk+k, the assumption implies that

Pr
w∼{0,1}nk+k

[A(w) = B(w)] ≥ 1− ε.

Thus, since A accepts at least half of the strings, we obtain

Pr
w

[B(w) = 1] ≥ Pr
w

[A(w) = 1]− Pr
w

[A(w) 6= B(w)] ≥ 1

2
− ε.

This helps us to establish the correctness of MB in the No case. Assume that (x, 1t, 1s) is a
No instance, i.e., qτ(t),B(x) > s + log τ(t). Then, by the pseudorandomness property of DPk, B
cannot distinguish the output distribution of DPk(x; -) from the uniform distribution. Thus,

Pr
M

[
MB(x, 1t, 1s) = 0

]
= Pr

z
[B(DPk(x; z)) = 1] ≈ Pr

w
[B(w) = 1] ≥ 1

2
− ε,

which means that MB rejects with probability & 1
2 .

Similarly, since MB makes a query DPk(x; z) for a random z, we have

Pr[B(DPk(x; z)) = 1] ≤ Pr[A(DPk(x; z)) = 1] + ε.

In the Yes case, using the fact that the Kolmogorov complexity of DPk(x; z) is small, we can argue
that DPk(x; z) ∈ Im(Huniv).16 Since A rejects any string in the image of Huniv,

Pr
[
MB(x, 1t, 1s) = 0

]
= Pr[B(DPk(x; z)) = 1] ≤ ε,

implying that MB rejects with probability at most ε. This completes the proof sketch of Theo-
rem 2.2.

Details can be found in Section 8.

Symmetry of Information for distributional Kolmogorov complexity. Next, we explain
how to generalize the result of [Hir22c] to distributional Kolmogorov complexity. The main idea is
encapsulated in the following.

Theorem 7.8. If DistNP ⊆ AvgP, then there exists a polynomial τ such that for every x ∈ {0, 1}∗,
every distribution D over {0, 1}m, every λ ∈ [0, 1], every ε−1 ∈ N, and every t ≥ |x|+ m + ε−1, it
holds that

dK
τ(t)
λ−ε(x | D) ≤ min

{
s ∈ N

∣∣∣∣ Pr
y∼D

[
Kt(x, y)−Kτ(t)(y) ≤ s

]
≥ λ

}
+ log τ(t).

16In the actual proof, we show DPk(x; z) · r ∈ Im(Huniv) for a uniformly random string r.
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This generalizes symmetry of information for time-bounded Kolmogorov complexity in Heuris-
tica [Hir22c; GK22]. Here, symmetry of information refers to the statement that for some polyno-
mial τ , for every x, y ∈ {0, 1}∗ and every t ≥ |x|+ |y|,

Kτ(t)(x | y) ≤ Kt(x, y)−Kτ(t)(y) + log τ(t) (3)

This is the special case of Theorem 7.8 in which D is the singleton distribution on y. Symmetry
of information enables us to approximate time-bounded conditional Kolmogorov complexity by its
unconditional variant. Specifically, observing that (x, y) can be described by a program that prints
y and a program that prints x given y as input, we have

Kt(x, y)−Kτ(t)(y) ≤Kt/4(x | y) + Kt/4(y)−Kτ(t)(y) +O(1)

≤Kt/4(x | y) + cd
t/4
K (y) +O(1), (4)

where cd
t/4
K (y) := Kt/4(y)−K(y) denotes the computational depth of y [AFMV06], which is known

to be small for most strings. By combining this with Eq. (3), the conditional Kolmogorov complexity

Kpoly(x | y) can be approximated by Kpoly(x, y)−Kpoly(y) to within an additive error of cdpoly
K (y).

Similarly, Theorem 7.8 makes it possible to reduce the problem of approximating dKpoly to the

problem of approximating Kpoly. Let s = dK
τ(t)
λ−ε(x) and M be the program of size s that prints x

on input y ∼ D with probability at least λ− ε. Then, for every y such that M(y) = x, we have

Kpoly(t)(x, y) ≤ s+ Kt(y) +O(1).

Thus, we obtain the following lower bound on dKpoly:

min

{
s ∈ N

∣∣∣∣ Pr
y∼D

[
Kpoly(t)(x, y)−Kt(y) ≤ s+O(1)

]
≥ λ− ε

}
≤ dK

τ(t)
λ−ε(x | D).

Combining this with Theorem 7.8, we see that dKpoly can be approximated using Kpoly.
It is worth mentioning that Theorem 7.8 provides a computational analogue of the theorem

of Muchnik [Muc02], which shows that for any strings x, y, and z of length n, the length of a
shortest program M such that M(y) = x and M(z) = x is max{K(x | y),K(x | z)}+ Θ(log n). By
considering a distribution Dy,z that outputs y with probability 1

2 and outputs z with probability
1
2 , Theorem 7.8 shows that

dK
τ(t)
3
4

(x | Dy,z) ≤ max
{

Kt(x, y)−Kτ(t)(y),Kt(x, z)−Kτ(t)(z)
}

+ log τ(t) =: s′.

This implies that there exists a program M of length s′ ≈ max
{

Kt(x | y),Kt(x | z)
}

such that
M(y) = x and M(z) = x and that M runs in time τ(t).

We now explain a high-level proof idea of Theorem 7.8. The key ingredient of the proof is a new
property of DPk. The proof of the pseudorandomness property of DPk is given by constructing
a reconstruction procedure RD that takes an advice string of length ≈ k and reconstructs x.
Here, through a careful analysis, we present a reconstruction procedure RD with the following
property: for every D that distinguishes DPk(x; -) from the uniform distribution with advantage λ,
RD(DPk+`(x; z)) outputs x with probability λ− ε, where ` = O(log(n/δ)). Then, we can construct
a program that takes DPk+`(x; z) as hard-wired input and prints x on input y ∼ D, which suggests

that dKpoly
λ−ε(x | D) is small.

Details can be found in Section 7.
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2.2 Conditional NP-Hardness of dK

We explain how to prove NP-hardness of distributional Kolmogorov complexity under the assump-
tion that a one-way function exists. Our proof is inspired by the recent NP-hardness proofs of
learning programs and the partial function variant MCSP∗ of MCSP [Hir22b].

As in [Hir22c; Hir22b], we reduce the Minimum Monotone Satisfying Assignment problem
(MMSA) using a secret sharing scheme. Let ϕ be a monotone formula on n variables. The goal of
MMSA is to approximate the minimum weight of a satisfying assignment of ϕ by using an oracle
for computing dKpoly.

We use the secret sharing scheme (Share,Rec) for the monotone formula ϕ [BL88]. We say that
T ⊆ [n] is authorized if the characteristic vector of T satisfies ϕ. A secret sharing scheme enables
sharing a secret x ∼ {0, 1}` among n parties, so that any authorized set of parties can reconstruct
the secret, whereas any unauthorized set of parties has no information about the secret. Let
(s1, · · · , sn) := Share(x), where si is the share given to the i-th party.

We construct a distribution D such that ϕ is satisfiable by an assignment of small weight if
and only if dKpoly(x | D) is small. To this end, let GLk : {0, 1}λ × ({0, 1}λ)k → {0, 1}k denote the
Goldreich–Levin hard-core function [GL89]:

GLk(f ; z1, · · · , zk) := 〈f, z1〉 · · · 〈f, zk〉,

where 〈a, b〉 denotes the inner product of a and b mod 2. We choose f1, · · · , fn ∼ {0, 1}λ randomly.
The distribution D is constructed as follows. First, z1, · · · , zn ∼ {0, 1}λk is chosen randomly. Let
Gm : {0, 1}mε → {0, 1}m be a pseudorandom generator. Then, define

y := (z1, · · · , zn, Gm(GLk(f1; z1))⊕ s1, · · · , Gm(GLk(fn; zn))⊕ sn)

and the distribution outputs y. Here, we assume that the length of each share is m. This completes
the description of D.

To see why this works, let T ⊆ [n] be a small set whose characteristic vector satisfies ϕ.
Consider a program M that takes {fi | i ∈ T} as hard-wired input. Then, the program can compute
Gm(GLk(fi; zi)) for each i ∈ [n]. Thus, given y, the program M can compute {si | i ∈ T}, from
which the secret x can be reconstructed.

Conversely, assume that there exists a small program M that computes x from y ∼ D. Using the
algorithmic information extraction lemma of [Hir22b], one can extract from M a small set T ⊆ [n]
such that |T | ≤ (1 +o(1)) · |M |/λ and M cannot distinguish the distribution of (zi,GLk(fi; zi)⊕ si)
for zi ∼ {0, 1}λk from the uniform distribution for every i 6∈ T . Thus, the only information that M
can obtain from y is {si | i ∈ T}. If M can output x from such a set of shares, by the privacy of
the secret sharing scheme, T must be authorized. Thus, the characteristic vector of T satisfies ϕ.

3 Are Meta-Computational Problems Paddable?

Given that an approximation-preserving padding reduction for dKpoly has a significant consequence
(Theorem 1.5), we propose to study whether meta-computational problems are paddable.

For example, consider a formula variant of MCSP. For a Boolean function f : {0, 1}n → {0, 1},
let L(f) denote the minimum number of literals of a De Morgan formula that computes f . The
problem Formula-MCSP asks to decide whether L(f) ≤ s for a given truth table of f and a size
parameter s. The paddability of Formula-MCSP is closely related to the conjecture of Karchmer,
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Raz, and Wigderson [KRW95]. The KRW conjecture states that L(f � g) ≈ L(f) · L(g) for non-
constant functions f and g, where f � g denotes the block-composition of f and g. This provides a
way to map f to a function f � g whose complexity is larger than the complexity of f . Using the
fact that the special case of the KRW conjecture in which g = ⊕m is resolved [H̊as98; DM18], we
observe that Formula-MCSP has an approximation-preserving padding reduction.

Proposition 3.1. There exists a quasi-polynomial-time algorithm that takes the truth table of a
function f : {0, 1}n → {0, 1} and outputs the truth table of a function f ′ : {0, 1}n′ → {0, 1} such
that

L(f ′) = L(f) · Θ̃(s(n))

for some function s(n) = poly(n) ≥ ω(1).

Proof Sketch. It was shown in [H̊as98] (see also [DM18]) that

L(f) · L(⊕m)

poly(log n, logm)
≤ L(f � ⊕m) ≤ L(f) · L(⊕m).

Define f ′ := f � ⊕m for a sufficiently large m = poly(n). Since L(⊕m) = Θ(m2), we obtain

L(f) ·m2/poly(log n) ≤ L(f � ⊕m) ≤ L(f) ·O(m2).

The input length of f ′ is n·m ≤ poly(n). Thus, the size of the truth table of f ′ is a quasi-polynomial
in 2n.

It is interesting to see whether similar padding reductions exist for other meta-computational
problems, such as MCSP. We conjecture that a similar approximation-preserving reduction exists
for MCSP.

Conjecture 3.2 (MCSP Padding Conjecture). There exists an efficient algorithm that takes the
truth table of a function f : {0, 1}n → {0, 1} and outputs the truth table of a function f ′ : {0, 1}n′ →
{0, 1} such that

CC(f ′) ≈ CC(f) · s(n)

for some function s(n) = ω(1). Here, CC(f) denotes the size of a minimum circuit that computes
f .

Because paddability is a weaker property than NP-hardness, we expect that investigating Con-
jecture 3.2 would provide new insight into the complexity of MCSP as well as the Meta-Complexity
Padding Conjecture.

4 Related Work

In this section, we mention additional previous results related to our results.
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Cryptography from information loss. Ball, Boyle, Degwekar, Deshpande, Rosen, Vaikun-
tanathan, and Vasudevan [BBDDRVV20] showed that a reduction that loses the information about
inputs (a lossy reduction) can be used to construct a one-way function. For example, they showed
that if a language L is reduced to another language via a reduction that loses the information about
inputs, then there exists a one-way function whose security is based on the worst-case hardness
of L. Conceptually, our results are somewhat similar to theirs. A size-expanding reduction for
dKpoly enables us to construct reductions that work correctly under any input-aware oracles. This
is because a size-expanding reduction enables us to “hide” its input from input-aware oracles. The
property of having a lossy reduction is strong: NP-complete problems are unlikely to have a lossy
reduction because it implies an upper bound of SZK.

A comparison with the Universality Conjecture. Santhanam [San20] proposed the Univer-
sality Conjecture, under which the existence of a one-way function is equivalent to an average-case
hardness of MCSP. It is known that the Universality Conjecture cannot be resolved with rela-
tivizing proof techniques [RS22]. The consequences of the Universality Conjecture are similar to
the consequences of the Meta-Complexity Padding Conjecture (Theorem 1.5). The main ques-
tion is whether it is feasible to prove these conjectures with current proof techniques. The proof
techniques of [San20] are relativizing; thus, the current proof techniques seem to be far from re-
solving the Universality Conjecture. By contrast, the NP-hardness of dKpoly under the existence of
a one-way function provides evidence of the feasibility of resolving the Meta-Complexity Padding
Conjecture—particularly because the proof techniques do not relativize [Hir22b].

NP-complete problems and one-way functions. Allender, Cheraghchi, Myrisiotis, Tirumala,
and Volkovich [ACMTV21] and Liu and Pass [LP22] considered whether there exists a natural NP-
complete problem whose average-case complexity characterizes the existence of a one-way function,
and showed that the problem of computing sublinear-time-bounded conditional Kolmogorov com-
plexity has this property. Note that the naturalness of the problem is indispensable for their results
to be non-trivial, as the worst-case complexity (NP-completeness) and the average-case complexity
can differ significantly for artificial problems. By contrast, it is unclear whether a characterization
analogous to ours can be easily proved for artificial problems.

Whether NP-completeness of polynomial-time-bounded conditional Kolmogorov complexity char-
acterizes the existence of a one-way function (if NP is hard in the worst case) is an interesting open
question. To answer this question in the affirmative, it suffices to improve our NP-hardness of
distributional Kolmogorov complexity under the existence of a one-way function (Section 2.2) to
polynomial-time-bounded conditional Kolmogorov complexity. It is worth mentioning that Huang,
Ilango, and Ren [HIR23] recently proved NP-hardness of polynomial-time-bounded conditional Kol-
mogorov complexity under the existence of an indistinguishability obfuscation.

5 Preliminaries

Notation. [n] denotes {1, . . . , n}. For n strings x1, · · · , xn and a subset T ⊆ [n], let xT :=
(xi | i ∈ T ).

We often identify a language L ⊆ {0, 1}∗ with its characteristic function L : {0, 1}∗ → {0, 1}.
A promise problem Π is a pair (ΠYes,ΠNo) of languages. We identify Π with a function

Π: {0, 1}∗ → {0, 1, ∗} such that Π(x) := 1 if x ∈ ΠYes, Π(x) := 0 if x ∈ ΠNo and Π(x) := ∗
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otherwise. If ΠYes = {0, 1}∗ \ΠNo, we identify Π with the language ΠYes. A language L ⊆ {0, 1}∗
is said to be consistent with Π if ΠYes ⊆ L ⊆ {0, 1}∗ \ΠNo. Similarly, a distribution A over oracles
is said to be consistent with Π if every A ∈ A is consistent with Π.

A function A : {0, 1}∗ → {0, 1, ∗} is identified with a promise (AYes, ANo), where AYes = A−1(1)
and ANo = A−1(0). Let dom(A) denote the domain of A, i.e., A−1({0, 1}).

Nonadaptive Reductions. A randomized nonadaptive oracle machine M consists of two ran-
domized machines M = (QM , DM ). On input x and a coin flip sequence r, the machine QM
outputs a sequence QM (x; r) of queries.17 The output MA(x; r) of the reduction under an oracle
A is defined to be DM (x,A(q1), · · · , A(qm); r), where (q1, · · · , qm) := QM (x; r). We often omit the
coin flip sequence r from the notations and regard MA(x) and QM (x) as a random variable. For
example, QM (x) denotes the set of the queries that M makes on input x.

We may assume without loss of generality that for every randomized nonadaptive machine M ,
there exists a single distribution Qx such that the i-th query of M is identically distributed with Qx
for every i ∈ [m]. This is because the indices of the queries can be shuffled randomly, whose idea
is due to Szegedy [FF93]. Throughout this paper, we call the distribution the query distribution of
M on input x and denote it by Qx.

Randomized oracle. Consider a randomized reduction M and a randomized algorithm A. We
often combine them to obtain the randomized algorithm MA that, on input x ∈ {0, 1}∗, simulates
M on input x by answering any query q to an oracle with A(q; r), where r is a fresh random coin flip
sequence and A(q; r) denotes the output of the randomized algorithm A with a coin flip sequence r.
To emphasize that a fresh random coin flip is used for each invocation of an oracle,18 we introduce
the notion of randomized oracle, which abstracts the property of a randomized algorithm as an
oracle.

Definition 5.1. A randomized oracle B is a family of distributions Bq over {0, 1}∗ for each q ∈
{0, 1}∗. We regard B as an oracle that takes a query q as input and answers a string a independently
drawn from the distribution Bq. We identify a randomized algorithm M with a randomized oracle
B = {Bq}q∈{0,1}∗, where Bq is the distribution of M(q; r) over a random coin flip sequence r.

To emphasize the difference between the standard complexity class BPP and a class of random-
ized algorithms that are regarded as randomized oracles, let BPP denote the class of randomized
oracles constructed from randomized (multi-output) polynomial-time algorithms. Similarly, let
BPP/poly denote the class of randomized oracles constructed from randomized polynomial-time
algorithms that take poly(n) bits of advice on inputs of length n.

Kolmogorov Complexity. We fix an efficient universal Turing machine U . We extend Defini-
tion 1.1 to distributional Kolmogorov complexity with randomized oracles.

Definition 5.2. For a string x ∈ {0, 1}∗, a time bound t ∈ N, a parameter λ ∈ (0, 1], a distri-
bution A over randomized oracles, and a distribution D over {0, 1}∗, the A-oracle t-time-bounded
distributional Kolmogorov complexity of x given D is defined to be

dKt,A
λ (x | D) := min

{
|d|
∣∣∣∣ Pr
A∼A,A,y∼D

[UA outputs x on input (d, y) in time t] ≥ λ and d ∈ {0, 1}∗
}
,

17We often regard QM (x; r) as a multiset.
18This fact is important for the proof of Proposition 8.2.
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where the probability is taken over a choice of A ∼ A, the randomness of the randomized oracle A,
and y ∼ D. For a function τ : N→ N, we define

dKτ,A
λ (x | D) := dK

τ(n+m),A
λ (x | D),

where n := |x| and m := max{|y| | y ∈ supp(D)}. For a randomized oracle A, we define dKt,A
λ (x |

D) := dKt,AA
λ (x | D), where AA denotes the singleton distribution on A. We omit the superscript

A if A = ∅ and the subscript λ if λ = 1
10n .

The notion of distributional Kolmogorov complexity generalizes the notion of randomized time-
bounded Kolmogorov complexity.

Definition 5.3 (Randomized time-bounded Kolmogorov complexity). For strings x, y ∈ {0, 1}∗, a
time bound t ∈ N, a distribution A over randomized oracles, and a parameter λ > 0, the A-oracle
t-time-bounded Kolmogorov complexity of x given y is defined as

rKt,A
λ (x | y) := dKt,A

λ (x | y,Ut),

where Ut denotes the uniform distribution over {0, 1}t. We omit the subscript λ if λ = 3/4.

The following is immediate from the definition.

Fact 5.4. Let A ∈ BPP be a randomized oracle. Then, there exists a polynomial p such that for
every x ∈ {0, 1}∗, every t ≥ |x| and every λ ∈ (0, 1],

dK
p(t)
λ (x) ≤ dKt,A

λ (x) +O(1).

A simple counting argument implies the following basic fact of Kolmogorov-randomness.

Fact 5.5. For any integer s ≥ 1 and any string y ∈ {0, 1}∗, the number of strings x ∈ {0, 1}∗ such
that K(x | y) < s is less than 2s.

Proof. The number of programs of length less than s is at most
∑s−1

i=0 2i < 2s.

We introduce a variant of computational depth [AFMV06] defined by using the universal a
priori probability.

Definition 5.6. For a time bound t ∈ N, a string x ∈ {0, 1}∗, and an oracle A, the computational
depth of x is defined as

cdt,A(x) := qt(x)−KA(x).

Here, qt(x) := − log Prd∼{0,1}t
[
U t(d) = x

]
and KA(x) := min

{
|d|
∣∣ UA(d) = x

}
. We omit the

superscript A if A = ∅.

Cryptography. The existence of a one-way function is known to be equivalent to the existence
of a pseudorandom generator.

Lemma 5.7 (H̊astad, Impagliazzo, Levin, and Luby [HILL99]). There exists a one-way function
secure against polynomial-size circuits if and only if for any constant ε > 0, there exists a pseudo-
random generator

G =
{
Gn : {0, 1}nε → {0, 1}n

}
n∈N

secure against polynomial-size circuits.
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6 NP-Hardness of Distributional Kolmogorov Complexity

In this section, we prove NP-hardness of distributional Kolmogorov complexity under the existence
of a one-way function. We first introduce the notion of reduction to a family of problems.

Definition 6.1 (Reductions to a family of problems). For a promise problem Π and for a family F
of promise problems, we say that Π reduces to F and write Π ≤BPP

tt F if there exists a randomized
polynomial-time nonadaptive oracle machine M such that for all F ∈ F, for all but finitely many
x ∈ dom(Π), for all oracles A that are consistent with F ,

Pr
M

[
MA(x) = Π(x)

]
≥ 3

4
,

where the probability is taken over the internal randomness of M .

Definition 6.2. For a polynomial τ : N → N, functions ε : N → [0,∞), δ : N → (0, 1), and an
oracle A, let

ΠA
Yes :=

{
(x,D, 1s, λ)

∣∣∣ dKτ,A
λ (x | D) ≤ s

}
,

ΠA
No :=

{
(x,D, 1s, λ)

∣∣∣ dKτ,A
λ−δ(|x|)(x | D) > (1 + ε(|x|)) · s

}
.

We define Gapτ,ε,δMdKPA to be the promise problem (ΠA
Yes,Π

A
No). By default, we assume δ(n) :=

1/n and let Gapτ,εMdKP := Gapτ,ε,1/nMdKP. The promise problem Gapτ,εMdpKP is defined by

using dpKτ,A
λ instead of dKτ,A

λ (see Definition 7.2 for the definition of dpKτ,A
λ ).

Theorem 6.3. If a one-way function secure against polynomial-size circuits exists, then

NP ≤coRP
m

{
Gapτ,αMdKPA | τ : a polynomial, A ∈ P/poly

}
for some α(n) = n1/(log logn)O(1)

. Here, ≤coRP
m refers to a randomized polynomial-time reduction that

maps Yes instances to Yes instances with probability 1 and maps No instances to No instances
with probability at least 1

2 . Moreover, the reduction is size-expanding.

Here, we say that a function τ is polynomial if τ(n) = nc + c for some constant c ≥ 1. In
particular, we assume that τ(n) ≥ n for any n ∈ N. By padding, we may assume that the time
bound τ of dKτ is sufficiently large.

6.1 Minimum Monotone Satisfying Assignment

We reduce the Minimum Monotone Satisfying Assignment (MMSA) problem to GapMdKP

Definition 6.4 (Minimum Monotone Satisfying Assignment; MMSA). For a monotone formula ϕ
on n variables, the weight of an assignment α ∈ {0, 1}n is defined to be

∑n
i=1 αi. Let MMSA(ϕ)

denote the minimum weight of α ∈ {0, 1}n such that ϕ(α) = 1.

It is known that MMSA is NP-hard to approximate:
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Lemma 6.5 ([DS04; DHK15]). For some function g(n) = n1/(log logn)O(1)
, it is NP-hard under

polynomial-time deterministic reductions to solve the promise problem GapgMMSA = (ΠYes,ΠNo)
defined as follows:

ΠYes := {(ϕ, s) | MMSA(ϕ) ≤ s},
ΠNo := {(ϕ, s) | MMSA(ϕ) > s · g(|ϕ|)},

where |ϕ| denotes the length of the binary string that represents ϕ.

6.2 Secret Sharing Scheme

We review the notion of secret sharing scheme. Whether a party is authorized or not is determined
by an access structure.

Definition 6.6 (Access Structure). An access structure A ⊆ 2[n] is a “monotone” collection of
subsets of [n]; that is, for every T ⊇ S ∈ A, we have T ∈ A.

Definition 6.7 (Secret Sharing [Bei11]). A secret sharing scheme for A is a pair (Share,Rec) of
a randomized algorithm Share and a deterministic algorithm Rec with the following properties for
every ` ∈ N:

1. Correctness: For every T ∈ A and for every string x ∈ {0, 1}`, any output of Share(x) is a
sequence (y1, . . . , yn) of n strings that satisfies

Rec(T, yT ) = x.

2. Privacy: For every T 6∈ A and for every random variable X on {0, 1}`, the random variables
X and Share(X)T are statistically independent.

The privacy condition can be stated in terms of Kolmogorov complexity.

Lemma 6.8 ([Hir22c, Lemma 6.9]). Let (Share,Rec) be a secret sharing scheme for an access
structure A over [n]. Then, for every ` and k ∈ N, it holds that

Pr

[
min
T 6∈A

K(X | Share(X)T ) ≥ `− n− k
]
≥ 1− 2−k,

where X is the uniform distribution over {0, 1}` and the probability is taken over X as well as the
internal randomness of Share.

The “efficiency” of a secret sharing scheme is defined as follows.

Definition 6.9. A family A = {Aϕ}ϕ∈{0,1}∗ of access structures is said to admit efficient se-
cret sharing schemes if there exists a pair (Share,Rec) of a randomized polynomial-time algorithm
Share and a deterministic polynomial-time algorithm Rec such that for every ϕ ∈ {0, 1}∗, the pair
(Share(ϕ, -),Rec(ϕ, -)) is a secret sharing scheme for the access structure Aϕ.

Benaloh and Leichter [BL88] showed that access structures represented by monotone formulas
admit efficient secret sharing schemes.

Lemma 6.10 ([BL88]). Let A := {Aϕ}ϕ∈{0,1}∗ be the family of access structures Aϕ := {T ⊆
[n] | ϕ(χT ) = 1}, where ϕ is a monotone formula on n variables and χT ∈ {0, 1}n denotes the
characteristic vector of T ⊆ [n]. Then, A admits efficient secret sharing schemes.
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6.3 A Proof of NP-Hardness of Distributional Kolmogorov Complexity

Let A ∈ P/poly be an oracle and τ be a polynomial. Using Lemma 5.7, let

G =
{
Gn : {0, 1}nε → {0, 1}n

}
n∈N

be a pseudorandom generator secure against polynomial-size circuits, where ε > 0 is a parameter
chosen later.

It suffices to present a randomized polynomial-time reduction R from MMSA to GapMdKP.
Let (ϕ, s) be an instance of MMSA, where ϕ is a monotone formula on n variables. Let (Share,Rec)
be the secret sharing scheme of Lemma 6.10.

The reduction first chooses x ∼ {0, 1}` uniformly at random. Then, x is shared to n parties.
Let (s1, · · · , sn) := Share(ϕ, x), where si is the share given to the i-th party. Let m be the length
of each share. By the efficiency of the secret sharing scheme, there exists a constant ε−1 ∈ N such
that m ≤ (` · |ϕ|)1/2ε. The reduction also chooses f1, . . . , fn ∼ {0, 1}λ uniformly at random.

We now describe the construction of a distribution D. Define k := mε. Let GLk : {0, 1}λ ×
({0, 1}λ)k → {0, 1}k be the Goldreich–Levin hard-core function, i.e.,

GLk(x; (z1, · · · , zk)) := 〈x, z1〉 · · · 〈x, zk〉,

where 〈x, zi〉 denotes the inner product between x and zi over GF(2). To sample a string y from
the distribution D, pick uniformly random strings z1, . . . , zn ∼ {0, 1}λk and define

y := (z1, · · · , zn, Gm(GLk(f1; z1))⊕ s1, · · · , Gm(GLk(fn; zn))⊕ sn).

This completes the definition of D.
Define λ := n4 · |ϕ|, and ` := n6 · |ϕ|. It is easy to verify that nk = o(λ) and nλ = o(`). Let

`′ := |x|+ |y|.
We prove the completeness of the reduction.

Claim 6.11. Assume that there exists a satisfying assignment for ϕ of weight θ. Then,

dKt
1(x | D) ≤ 2θλ,

where t is some universal polynomial.

Proof. Let T ⊆ [n] be a set whose characteristic function is a satisfying assignment for ϕ of
weight θ. Let M be a program that takes {fi | i ∈ T} and ϕ as hard-wired input, takes y =
(z1, · · · , zn, ξ1, · · · , ξn) as input, computes si := ξi ⊕Gm(GLk(fi; zi)) for every i ∈ T , and outputs
Rec(ϕ, T, sT ). By the correctness of the secret sharing scheme, this program outputs x for every y
in the support of D. The size of the program is at most∑

i∈T
|fi|+O(|T |+ |ϕ|) ≤ θλ+O(|ϕ|) ≤ 2θλ.

�

To prove the soundness of the reduction, we clarify the condition under which the reduction is
successful.
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Claim 6.12. With probability 1 − o(1) over the internal randomness of the reduction R, it holds
that

K(fB | x, s[n]) ≥ λ · |B| − 2n

for every B ⊆ [n] and
K(x | sT , fT ) ≥ `− 2n

for every T 6∈ Aϕ.

Proof. The second item follows from Lemma 6.8. To see the first item, fix any B ⊆ [n]. Since f[n]

is chosen independently of x and s[n], we obtain

K(fB | x) ≥ λ · |B| − 2n

with probability at least 1 − 2−2n over a random choice of fB. Taking a union bound over all
B ⊆ [n], with probability at least 1− 2−n, for every B, it holds that K(fB | x) ≥ λ · |B| − 2n. �

Claim 6.13. Assume MMSA(ϕ) > 2θ and the event of Claim 6.12 holds. Then,

dKτ,A
1/τ(`′)(x | D) ≥ θλ.

To prove this claim, we use the algorithmic information extraction lemma from [Hir22b].

Lemma 6.14 ([Hir22b, Lemma 6.1]). Let r, k, ε−1 ∈ N, f1, · · · , fn ∈ {0, 1}λ, and D : {0, 1}r ×(
{0, 1}λk

)n × ({0, 1}k)n → {0, 1} be a function. Then, there exists a set B ⊆ [n] such that

KD(fB) ≤ |B| · (nk +O(log(nλkr/ε)))

and ∣∣Pr[D(R,Z1, · · · , Zn, X1, · · · , Xn) = 1]− Pr
[
D(R,Z1, · · · , Zn, X ′1, · · · , X ′n) = 1

]∣∣ ≤ ε.
Here, R ∼ {0, 1}r, Zi ∼ {0, 1}λk, Xi := GLk(fi;Zi), and X ′i is identical to Xi if i ∈ B and to the
uniform distribution if i ∈ [n] \B.

Proof of Claim 6.13. Let MA be an arbitrary A-oracle τ(`′)-time program of size θλ. Our goal is
to prove

δ := Pr
y∼D

[
MA(y) = x

]
≤ 1

τ(`′)
.

Let D be the Boolean function (that depends on M) such that

D(z1, · · · , zn, η1, · · · , ηn) = 1

if and only if M(z1, · · · , zn, Gm(η1)⊕s1, · · · , Gm(ηn)⊕sn) outputs x in time τ(`′). Let ε := 1/2τ(`′).
By Lemma 6.14, there exists a set B ⊆ [n] such that

KD(fB) ≤ |B| · 2nk

and ∣∣Pr[D(Z1, · · · , Zn, X1, · · · , Xn) = 1]− Pr
[
D(Z1, · · · , Zn, X ′1, · · · , X ′n) = 1

]∣∣ ≤ ε,
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where Zi, Xi, and X ′i are the random variables defined in Lemma 6.14.
We give an upper bound of the size of B. Since D can be simulated by using M , s[n], and x,

we have

K(fB | x, s[n])− |M | −O(1) ≤ K(fB |M,x, s[n]) ≤ KD(fB) +O(1) ≤ |B| · 2nk.

Thus, we obtain
λ|B| ≤ K(fB | x, s[n]) + 2n ≤ |M |+O(|B| · nk)

and therefore
|B| · λ(1− o(1)) ≤ |B| · (λ−O(nk)) ≤ |M | ≤ θλ.

We conclude that
|B| ≤ 2θ.

By assumption, this implies that B is not authorized.
Since Xi = GLk(fi;Zi), we have

Pr[D(Z1, · · · , Zn, X1, · · · , Xn) = 1] = Pr
y∼D

[
MA(y) = x

]
.

On the other hand,

Pr
[
D(Z1, · · · , Zn, X ′1, · · · , X ′n) = 1

]
= Pr

[
MA(Z1, · · · , Zn, Gm(X ′1)⊕ s1, · · · , Gm(X ′n)⊕ sn) = x

]
.

For every i ∈ [n] \ B, X ′i is identical to the uniform distribution; thus, using the security of the
pseudorandom generator Gm and a hybrid argument, Gm(X ′i) ⊕ si is indistinguishable from the
uniform distribution Yi by MA. It follows that∣∣∣Pr

[
MA(y) = x

]
− Pr

[
MA(Z[n], Y

′
[n]) = x

]∣∣∣ ≤ ε+
1

mω(1)
,

where Y ′i is identical to the uniform distribution Yi if i ∈ [n]\B and is identical to Gm(GLk(fi;Zi))⊕
si if i ∈ B. Since Y ′[n] can be computed from sB and fB, the secret x can be described by MA, sB

and fB with probability at least δ′ = δ − ε− 1
mω(1) . Therefore, we obtain

K(x | sB, fB) ≤ |M |+O(log(1/δ′)) ≤ θλ+O(log `′).

Since B is not authorized, using Claim 6.12, we have

`− 2n ≤ K(x | sB, fB).

Combining these inequalities, we conclude that

` ≤ θλ+O(n) ≤ O(nλ).

This is a contradiction to the choice of `. �

We note that the inapproximability factor can be improved by using computational secret
sharing schemes. We omit the details in this version.
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7 Pseudorandom Generator Constructions

We use two pseudorandom generator constructions. The first one is due to Raz, Reingold, and
Vadhan [RRV02], which has small advice complexity with respect to randomized algorithms.

Lemma 7.1 (see the proof of [Hir20a, Theorem 4.7] and [Hir22c]). For all sufficiently large n,m ∈ N
such that m ≤ 2n and for any δ ∈ (0, 1),19 there exists a family of functions

Gm : {0, 1}n × {0, 1}d → {0, 1}m,

such that for every x ∈ {0, 1}n and every distribution D over functions D : {0, 1}m → {0, 1} such
that

Pr
z∼{0,1}d
D∼D

[D(Gm(x; z)) = 1]− Pr
w∼{0,1}m
D∼D

[D(w) = 1] ≥ δ,

it holds that
drK

poly(n),D
δ/2m (x) := dK

poly(n),D
δ/2m (x | Ut) ≤ m+O(log3 n).

Here, d = O(log3 n) and Ut denotes the uniform distribution over {0, 1}t. Moreover, if D is a
randomized oracle, then it holds that

rK
poly(n),D
3/4 (x) ≤ m+O(log3 n).

We note that the parameter δ/2m in dK
poly(n),D
δ/2m (x) is significantly smaller than δ. This loss is

due to the loss in the hybrid argument, and appears to be inherent for Nisan–Wigderson pseudo-
random generator constructions [NW94].

7.1 A New Property of the Direct Product Generator

The second one is the k-wise direct product generator [Hir20c]. Although the seed length of this
construction is large, we prove that the construction has a special property that the loss of the
parameter λ of dKpoly

λ is small.
To state the result, we introduce the notion of distributional probabilistic Kolmogorov com-

plexity, which generalizes probabilistic Kolmogorov complexity [GKLO22].

Definition 7.2. For parameters λ, δ ∈ [0, 1], for a string x ∈ {0, 1}∗, a distribution D, and a time
bound t ∈ N, the t-time-bounded distributional probabilistic Kolmogorov of x given D is defined to
be

dpKt
λ,δ(x | D) = min

{
k ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
dKt

λ(x | D, r) ≤ k
]
≥ δ
}
.

We omit the subscript δ if δ = 3
4 .

It is easy to amplify the parameter δ.

Fact 7.3. There exists a polynomial p such that for every δ ∈ (0, 1],

dpK
p(t/δ)
λ (x | D) ≤ dpKt

λ,δ(x | D) +O(log(1/δ)).

19Note that Lemma 7.1 is interesting only if m� 2n.
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Proof. Let k := dpKt
λ,δ(x | D). With probability at least δ over a coin flip sequence r ∼ {0, 1}t,

it holds that dKt(x | D, r) ≤ k. By picking m = O(1/δ) coin flip sequences r1, · · · , rm ∼ {0, 1}t
independently, with probability at least 3

4 , there exists i ∈ [m] such that dKt(x | D, ri) ≤ k.
Under this event, there exists a program M of length k that prints x given (y, ri) as input with
probability λ over a choice of y ∼ D. Consider a program M ′ that takes M and i as hard-wired
input, (y, (r1, · · · , rm)) as input, and simulates M on input (y, ri). Then, the size of M ′ is at most
k+O(logm) = k+O(log(1/δ)) and M ′ runs in time p(t/δ) for some polynomial p. Thus, we obtain

dpK
p(t/δ)
λ (x | D) ≤ k +O(log(1/δ)).

Definition 7.4 (k-wise direct product generator [Hir20c; Hir21]). For every n, k ∈ N, we define
the k-wise direct product generator to be a function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

such that
DPk(x; z1, · · · , zk) := (z1, · · · , zk, 〈x, z1〉, · · · , 〈x, zk〉).

We also define the Goldreich–Levin hard-core function

GLk(x; z1, · · · , zk) := 〈x, z1〉, · · · , 〈x, zk〉.

Goldreich and Levin [GL89] showed that the Hadamard code is locally list-decodable.

Lemma 7.5. There exists a deterministic oracle algorithm M such that for every n ∈ N, every
x ∈ {0, 1}n, and every function f : {0, 1}n → {0, 1} such that

Pr
z∼{0,1}n

[f(z) = 〈x, z〉] ≥ 1

2
+ ε,

on input (DPk(x; z), n), the algorithm Mf outputs x in time poly(n/εδ) with probability at least
1− δ over a random choice of z = (z1, · · · , zk) ∼ ({0, 1}n)k, where k = O(log(n/εδ)).

Proof. Fix any j ∈ [n]. Let αi := 〈x, zi〉 be the advice bit for each i ∈ [k]. The j-th bit of the
output of the algorithm Mf is defined to be the majority, over all nonempty subsets T ⊆ [k], of
f(zT ⊕ ej) ⊕ αT , where zT :=

∑
i∈T z

i, αT :=
∑

i∈T α
i = 〈x, zT 〉, and ej ∈ {0, 1}n is the binary

string whose j-th entry is 1 and other entries are 0.
Let K := 2k − 1. We assume that K ≥ n/(ε2δ). For any nonempty subset T ⊆ [k], let yT be

the random variable that takes 1 if f(zT ⊕ ej) = 〈x, zT ⊕ ej〉 and 0 otherwise. Observe that

E[yT ] = Pr
z

[f(z) = 〈x, z〉] ≥ 1

2
+ ε.

Since
{
zT
}
∅(T⊆[k]

is pairwise independent, by Chebyshev’s inequality, we have
∑

T 6=∅ yT ≤ K/2

with probability at most 1/(Kε2) ≤ δ/n. Note that if yT = 1, then f(zT ⊕ ej) ⊕ αT = 〈x, zT ⊕
ej〉 ⊕ 〈x, zT 〉 = 〈x, ej〉 = xj , where xj denotes the j-th bit of x. Under the assumption that∑

T 6=∅ yT > K/2, we get that the majority is xj .
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Theorem 7.6. For any parameters n, k ∈ N, and ε, δ > 0 with k ≤ 2n, there exists a randomized
oracle algorithm R(-) satisfying the following: For any string x ∈ {0, 1}n and any distribution D
over functions such that

Pr
z∼{0,1}nk
D∼D

[D(DPk(x; z)) = 1]− Pr
w∼{0,1}nk+k

D∼D

[D(w) = 1] ≥ ε,

it holds that
Pr

D∼D,z,R

[
RD(DPk+`(x; z), n, k) = x

]
≥ ε− δ

for some ` = O(log(n/δ)), where RD runs in time poly(n/δ). In particular,

dpK
poly(n/δ),D
ε−δ (x) ≤ k +O(log(n/δ)).

Proof. We use a standard hybrid argument (as in [NW94; Vad12]). Fix any string x ∈ {0, 1}n. By
an averaging argument, with probability at least ε− δ over a choice of D ∼ D, it holds that

Pr
z̄

[D(z1, . . . , zk, 〈x, z1〉, . . . , 〈x, zk〉) = 1]− Pr
z̄,b

[D(z1, . . . , zk, b1, . . . , bk) = 1] ≥ δ,

where z̄ = (z1, . . . , zk) ∼ ({0, 1}n)k and b ∼ {0, 1}k. For every i ∈ {0, . . . , k}, define the i-th hybrid
distribution Hi as the distribution of

(z1, . . . , zk, 〈x, z1〉, . . . , 〈x, zi〉, bi+1, . . . , bk),

where z̄ = (z1, . . . , zk) ∼ ({0, 1}n)k and bi+1, . . . , bk ∼ {0, 1}. By this definition, H0 is identically
distributed with the uniform distribution, and Hk is a distribution identical to DPk(x; z̄). Thus,
there exists i ∈ [k] such that

Pr
z̄,b

[D(Hi) = 1]− Pr
z̄,b

[D(Hi−1) = 1] ≥ δ

k
. (5)

By a standard calculation (see, e.g., [Vad12, Proposition 7.16]), we prove the following claim.

Claim 7.7. There exists i ∈ [k] such that

Pr
z̄,b

[D(Hi−1)⊕ 1⊕ bi = 〈x, zi〉] ≥ 1

2
+
δ

k
.

Proof. If we pick bi ∼ {0, 1} randomly, there are two cases: (1) bi = 〈x, zi〉 or (2) bi 6= 〈x, zi〉, each
of which happens with probability 1

2 . In particular, we have

Pr[D(Hi−1) = 1] =
1

2
· Pr[D(Hi) = 1] +

1

2
· Pr
[
D(H ′i) = 1

]
,

where H ′i := (z1, · · · , zk, 〈x, z1〉, · · · , 〈x, zi−1〉, 〈x, zi〉 ⊕ 1, bi+1, · · · , bk). By Eq. (5), we obtain that

δ

k
≤ 1

2
· Pr[D(Hi) = 1]− 1

2
· Pr
[
D(H ′i) = 1

]
.
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Therefore, we conclude that

Pr
z̄,b

[D(Hi−1)⊕ 1⊕ bi = 〈x, zi〉]

=
1

2
· Pr[D(Hi) = 1] +

1

2
· Pr
[
D(H ′i) = 0

]
=

1

2
+

1

2
· Pr[D(Hi) = 1]− 1

2
· Pr
[
D(H ′i) = 1

]
≥ 1

2
+
δ

k
.

�

LetM be the list-decoding algorithm of Lemma 7.5. For each i ∈ [k] (and z1, . . . , zi−1, zi+1, . . . , zk ∼
{0, 1}n, b ∼ {0, 1}k), define a function fi : {0, 1}n → {0, 1} as

fi(z
i) := D(Hi−1)⊕ 1⊕ bi = D(z1, · · · , zk, 〈x, z1〉, · · · , 〈x, zi−1〉, bi, · · · , bk)⊕ 1⊕ bi

for every zi ∈ {0, 1}n. Under the event of Claim 7.7,

Pr
z′

[
Mfi(DP`0(x; z′), n) = x

]
≥ 1− δ

for some `0 = O(log(n/δ)). Let f̄ := (f1, · · · , fk). Consider an algorithm Rf̄0 that takes DP`0(x; z′)
and DP`1(x; z′′) as input, finds i ∈ [k] such that GL`1(x; z′′) = GL`1(xi; z′′), where xi := Mfi(DP`0(x; z′′), n),
and outputs xi. Since GL`1(x; z′′) serves as a hash function, for `1 = O(log(k/δ)), with probability
at least 1− δ over z′′ ∼ {0, 1}n`1 , the algorithm R0 outputs x. Thus, we obtain

Pr
z′,z′′

[
Rf̄0 (DP`0(x; z′),DP`1(x; z′′)) = x

]
≥ 1− 2δ.

Since f̄ can be simulated by using DPk(x; z), combining these algorithms, we obtain an oracle
algorithm RD that takes DPk+`0+`1(x; z) as input and prints x. More specifically, since the event
of Claim 7.7 holds with probability at least ε− δ over a choice of D ∼ D, we obtain

Pr
z,D,R

[
RD(DPk+`0+`1(x; z)) = x

]
≥ ε− 3δ.

To see the “In particular” part, by an averaging argument, we also have

Pr
D∼D

[
RD(DPk+`0+`1(x; z)) = x

]
≥ ε− 4δ

with probability at least δ over a choice of z and the internal randomness of R. Under this event,
there exists a program (depending on z and the internal randomness ofR) that takes GLk+`0+`1(x; z)
as hard-wired input and outputs x given a random oracle D ∼ D. The success probability δ can
be amplified by Fact 7.3.
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7.2 An Extension of Symmetry of Information

Using the new property of a k-wise direct product generator, we prove “symmetry of information”
for dKpoly.

Theorem 7.8. If DistNP ⊆ AvgP, then there exists a polynomial τ such that for every x ∈ {0, 1}∗,
every distribution D over {0, 1}m, every λ ∈ [0, 1], every ε−1 ∈ N, and every t ≥ |x|+ m + ε−1, it
holds that

dK
τ(t)
λ−ε(x | D) ≤ min

{
s ∈ N

∣∣∣∣ Pr
y∼D

[
Kt(x, y)−Kτ(t)(y) ≤ s

]
≥ λ

}
+ log τ(t).

We first present an algorithmic proof of symmetry of information. Under the assumption that
DistNP ⊆ AvgP, symmetry of information for time-bounded Kolmogorov complexity was proved in
[Hir22c]. Here, following [Hir20b], we prove that a “non-disjoint” promise problem can be solved
by a meta-computational view of the proof of [Hir22c].

Lemma 7.9 (implicit in [Hir22c]). If DistNP ⊆ AvgP, then GapτMINcKT ∈ P for some polynomial
τ . Here, the promise problem GapτMINcKT := (ΠYes,ΠNo) is defined as

ΠYes :=
{

(x, y, 1t, 1s)
∣∣∣ t ≥ |x|+ |y| and Kt(x, y)−Kτ(t)(y) ≤ s

}
,

ΠNo :=
{

(x, y, 1t, 1s)
∣∣∣ t ≥ |x|+ |y| and Kτ(t)(x | y) > s+ log τ(t)

}
.

Observe that the disjointness of GapτMINcKT implies symmetry of information for time-
bounded Kolmogorov complexity.

Proof of Lemma 7.9. Using the assumption that DistNP ⊆ AvgP, by [Hir18; Hir20b], there exist a
polynomial-time algorithm K̃ and a polynomial τ such that for every x ∈ {0, 1}∗ and every t ≥ |x|,

Kτ(t)(x)− log τ(t) ≤ K̃(x; 1t) ≤ Kt(x). (6)

Let (x, y, 1t, 1s) be an input such that t ≥ |x|+ |y|. Let n := |x| and m := |y|. Let k (≈ s) be a
parameter chosen later. By Fact 5.5, we have

K(w,w′) ≥ |w|+ |w′| − log τ(t)

with probability at least 1 − o(1) over a random choice of w ∼ {0, 1}nk+k and w′ ∼ {0, 1}m`+`.
Since K̃(w,w′; 1t

′
) ≥ K(w,w′)− log τ(t′), we obtain

Pr
w,w′

[
K̃(w,w′; 1t

′
) ≥ |w|+ |w′| − 2 log τ(t′)

]
≥ 1− o(1) ≥ 1

2
, (7)

where t′ = poly(t) is a sufficiently large polynomial. Define θk,` := |w| + |w′| − 2 log τ(t′) =
nk + k +m`+ `− 2 log τ(t′).

Next, we define ` to be the maximum integer ` ∈ N such that

Pr
[
K̃(w,DP`(y; z′); 1t

′
) ≥ θk,`

]
≥ 1

4
. (8)
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We claim that ` is well defined. Eq. (8) is satisfied for ` = 0 by Eq. (7), and is not satisfied for
some `∞ = m+O(log t) because

K̃(w,DP`∞(y; z′); 1t
′
) ≤Kt′(w,DP`∞(y; z′))

≤ |w|+ |z′|+m+O(log `∞).

< |w|+ |z′|+ `∞ − 2 log τ(t) = θk,`∞ ,

where the second inequality holds because (w,DP`∞(y; z′)) can be efficiently computed from w, z′,
y ∈ {0, 1}m, and `∞ ∈ N.

Since `+1 does not satisfy Eq. (8), the negation of Eq. (8) and Eq. (7) indicate that DP`+1(y; -)
can be distinguished from the uniform distribution by a circuit D that takes w′ and a coin flip se-
quence w as input and outputs 1 if and only if K̃(w,w′; 1t

′
) ≥ θk,`. It follows from the reconstruction

property of DP`+1 [Hir21, Theorem 3.2] that

Kp(t′)(y) ≤ `+ 1 +O(log t)

for some polynomial p.
We now describe a randomized polynomial-time algorithm M that decides the promise problem

Gapτ ′MINcKT for some polynomial τ ′. On input (x, y, 1t, 1s), M computes `, picks z ∼ {0, 1}nk
and z′ ∼ {0, 1}m` randomly, and outputs 1 if and only if

K̃(DPk(x; z),DP`(y; z′); 1t
′
) < θk,`.

Consider the case in which the input is a Yes instance, i.e., Kt(x, y) − Kτ ′(t)(y) ≤ s. Since
(DPk(x; z),DP`(y; z′)) can be computed from a description for (x, y) and z and z′, we obtain

K̃(DPk(x; z),DP`(y; z′); 1t
′
) ≤Kt′(DPk(x; z),DP`(y; z′))

≤Kt(x, y) + |z|+ |z′|+O(log t),

≤ s+ Kτ ′(t)(y) + |z|+ |z′|+O(log t)

<k + `+ |z|+ |z′| − 2 log τ(t′) = θk,`

where the last inequality holds by choosing k := s + O(log t) and τ ′(t) ≥ p(t′). Thus, M accepts
with probability 1.

Conversely, assume that M accepts with probability at least 7
8 . We claim that the input is not

a No instance. Under assumption, we have

Pr
z,z′

[
K̃(DPk(x; z),DP`(y; z′); 1t

′
) ≥ θk,`

]
≤ 1

8
.

Combining this inequality with Eq. (8), we observe that DPk(x; -) can be distinguished from the
uniform distribution by a circuit Dy that takes w and a coin flip sequence z′ and outputs 1 if and

only if K̃(w,DP`(y; z′); 1t
′
) ≥ θk,`. Thus, by the reconstruction property of DPk, we obtain

Kpoly(t),Dy(x) ≤ k +O(log t).

Since Dy can be computed from y and O(log t) bits of information, we conclude that

Kτ ′(t)(x | y) ≤ Kpoly(t),Dy(x) +O(log t) ≤ k + log τ ′(t)
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for a sufficiently large polynomial τ ′. This means that the input is not a No instance. Taking the
contrapositive, any No instance is rejected by M with probability at least 1

8 .
Finally, since pr-P = pr-BPP under the assumption that DistNP ⊆ AvgP [BFP05], the random-

ized algorithm M can be derandomized, which completes the proof.

Proof of Theorem 7.8. Let M be the polynomial-time algorithm that decides GapτMINcKT for
some polynomial τ . Let s ∈ N be an integer such that

Pr
y∼D

[
Kt(x, y)−Kτ ′(t)(y) ≤ s

]
≥ λ,

where τ ′ is a sufficiently large polynomial chosen later.
We claim that

Pr
z,y

[
M(DPk(x; z), y, 1t

′
, 1s
′+nk) = 1

]
− Pr
w,y

[
M(w, y, 1t

′
, 1s
′+nk) = 1

]
≥ λ− ε, (9)

where k, t′ and s′ are parameters chosen later and z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, and y ∼ D.
By the definition of s, with probability at least λ over a choice of y ∼ D, it holds that

Kt(x, y)−Kτ ′(t)(y) ≤ s

Under this event, since DPk(x; z) can be computed from x, z, and k in time t′ = poly(t),

Kt′(DPk(x; z), y)−Kτ(t′)(y) ≤ Kt(x, y) + |z|+O(log n)−Kτ(t′)(y) ≤ s+ |z|+O(log n),

where the last inequality holds for any sufficiently large τ ′(t) ≥ τ(t′). By defining s′ := s+O(log n),
this shows that (DPk(x; z), y, 1t

′
, 1s
′+nk) is a Yes instance of GapτMINcKT. Thus, we obtain

Pr
z,y

[
M(DPk(x; z), y, 1t

′
, 1s
′+nk) = 1

]
≥ λ.

By Fact 5.5, with probability at least 1− ε over a choice of w ∼ {0, 1}nk+k and y ∼ D, it holds
that

K(w | y) ≥ nk + k −O(log(1/ε)).

Under this event, we have

Kτ(t)(w | y) ≥ nk + k −O(log(1/ε)) > nk + s′ + log τ(t),

where the last inequality holds by defining k := s′ + O(log t) and using that t ≥ ε−1. This shows
that (w, y, 1t

′
, 1s
′+nk) is a No instance of GapτMINcKT. Thus, we obtain

Pr
w,y

[
M(w, y, 1t

′
, 1s
′+nk) = 1

]
≤ ε.

The two inequalities above complete the proof of Eq. (9). Define the function Dy such that
Dy(w) := M(w, y, 1t

′
, 1s
′+nk). By Theorem 7.6, we obtain

Pr
y∼D,z′,R

[
RDy(DPk+`(x; z′), n, k) = x

]
≥ λ− 2ε (10)
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for some ` = O(log(n/ε)). By using the pseudorandom generator of logarithmic seed length secure
against linear-sized circuits [BFP05], the randomness of R and z′ can be replaced with a pseu-
dorandom sequence whose time-bounded Kolmogorov complexity is logarithmic by reducing the
success probability of Eq. (10) to λ− 3ε. For a pseudorandom sequence z′, consider a program R′

that takes GLk+`(x; z′) as hard-wired input and simulates RDy(DPk+`(x; z′), n, k). The program
R′ outputs x with probability at least λ−3ε over a choice of y ∼ D and is of length k+ `+O(log t).
Thus, we obtain

dK
τ ′(t)
λ−3ε(x | D) ≤ k + `+O(log t) ≤ s+O(log t).

8 Input-Aware P/poly-Restricted Reduction

In this section, we present P/poly-restricted reductions to avoiding a hitting set generator.

8.1 Definitions and Basic Properties

Definition 8.1 (B-restricted reductions). Let Π be a promise problem. Let A be the class of promise
problems. Let B be the class of randomized oracles. For functions ε : N→ (0, 1) and δ : N→ (0, 1),
a randomized nonadaptive oracle machine M is said to be a B-restricted reduction from Π to A
with parameters (ε, δ) if for every B ∈ B and for all but finitely many x ∈ dom(Π), for every A ∈ A,
if

Pr
M,B

[A(q) = B(q) for every q ∈ QM (x) ∩ dom(A)] ≥ ε(n),

then

Pr
M,B

[
MB(x) = Π(x)

]
≥ 1− δ(n)

2
,

where the probabilities are taken over the internal randomness of M . By default, we assume ε ≡ 1
2

and δ ≡ 1
2 . If there exists a polynomial-time B-restricted reduction from Π to A, we denote it by

Π ≤BPP
tt A � B. If A = {Π′} for some promise problem Π′ and B = {B} for some randomized

oracle, then we simply write

Π ≤BPP
tt Π′ � B and Π ≤BPP

tt A � B,

respectively.

For notational simplicity, we denote the hypothesis in Definition 8.1 by

Pr
M,B

[
A�QM (x) ⊆ B�QM (x)

]
≥ ε(n).

This notation can be justified by regarding a partial function A : {0, 1}∗ → {0, 1, ∗} as a graph
{(q, A(q)) | q ∈ dom(A)}.

Proposition 8.2. The following are equivalent for any polynomials p and q.

1. Π ≤BPP
tt A � B with parameters ε(n) = 1− 1/p(n) and δ(n) = 1− 1/p(n).

2. Π ≤BPP
tt A � B with parameters ε(n) = 2−q(n) and δ(n) = 2−q(n).
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Proof. Using 1− 1/p(n) ≥ 2−q(n), it is easy to see that the second item implies the first item.
To see the converse, let M be a B-restricted reduction from Π to A. Let k(n) := 2p(n)q(n).

We define M ′ to be a randomized nonadaptive oracle machine that, given x ∈ dom(Π) as input,
simulates M ′ on input x independently k(|x|) times and outputs the majority vote of the outcome
of M ′.

We claim that M ′ is a reduction with exponentially small error parameters. Assume

Pr
M ′,B

[
A�QM′ (x) ⊆ B�QM′ (x)

]
≥ 2−q(n).

By the definition of M ′, we have

Pr
M ′,B

[
A�QM′ (x) ⊆ B�QM′ (x)

]
= Pr

M,B

[
A�QM (x) ⊆ B�QM (x)

]k(n)
.

Thus, we have

Pr
M,B

[
A�QM (x) ⊆ B�QM (x)

]
≥ 2−q(n)/k(n) ≥ 1− 1

p(n)
.

By the property of M , we obtain

Pr
M,B

[
MB(x) = Π(x)

]
≥ 1

2
+

1

2 · p(n)
.

It follows from Hoeffding’s inequality that

Pr
M ′,B

[
M ′B(x) = Π(x)

]
≥ 1− 2−q(n).

Equivalently, we may define the notion of B-restricted reduction as follows.

Proposition 8.3. For every constant δ ∈ (0, 1/2) the following are equivalent.

1. Π ≤BPP
tt A � B.

2. There exists a randomized nonadaptive oracle machine M such that for every B ∈ B and for
all sufficiently long x ∈ dom(Π), for every A ∈ A, it holds that

Pr
M,B

[
A�QM (x) ⊆ B�QM (x) =⇒MB(x) = Π(x)

]
≥ 1− δ.

Proof. To see the first item implies the second item, let M be a reduction such that if

Pr
M,B

[
A�QM (x) ⊆ B�QM (x)

]
≥ δ,

then
Pr
M,B

[
MB(x) = Π(x)

]
≥ 1− δ.

There are two cases. Either PrM,B

[
A�QM (x) ⊆ B�QM (x)

]
≥ δ or not. In the former case, we have

Pr
M,B

[
A�QM (x) ⊆ B�QM (x) =⇒MB(x) = Π(x)

]
≥ 1− δ
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because the conclusion in this event is satisfied with probability 1 − δ. In the latter case, the
hypothesis is false with probability 1− δ, which means that M satisfies the second item.

To see the converse, let M be the reduction that satisfies the second item. Let ε := 1−2δ
4 > 0.

Assume that
Pr
M,B

[
A�QM (x) ⊆ B�QM (x)

]
≥ 1− ε.

By the property of M , we have

1− δ ≤ Pr
M,B

[
A�QM (x) ⊆ B�QM (x) =⇒MB(x) = Π(x)

]
≤ Pr

M,B

[
A�QM (x) 6⊆ B�QM (x)

]
+ Pr
M,B

[
MB(x) = Π(x)

]
≤ ε+ Pr

M,B

[
MB(x) = Π(x)

]
.

Thus, we obtain

Pr
M,B

[
MB(x) = Π(x)

]
≥ 1− δ − ε =

1

2
+ ε.

This success probability can be amplified as in Proposition 8.2.

B-restricted reductions can be composed naturally.

Proposition 8.4 (composition). Let B be a randomized oracle, and let Π1,Π2 be promise problems.
If Π1 ≤BPP

tt Π2 � BPPB and Π2 ≤BPP
tt A � B, then Π1 ≤BPP

tt A � B.

Proof. Let M1 be the BPPB-restricted reduction from Π1 to Π2, and M2 be the B-restricted re-

duction from Π2 to A. We define a reduction M such that MB(x) := M
MB

2
1 (x) and QM (x) :=⋃

q∈QM1
(x)QM2(q).

We claim that M is a B-restricted reduction from Π1 to A. Let x ∈ dom(Π1) be an input of
length n. Assume that

Pr
M,B

[
A�QM (x) ⊆ B�QM (x)

]
≥ 1− ε

for some small constant ε > 0. By the definition of the query set QM (x), we have

Pr
M1,M2,B

[
A�QM2

(q) ⊆ B�QM2
(q) for all q ∈ QM1(x)

]
≥ 1− ε.

By an averaging argument, with probability at least 1− 2ε over the internal randomness of M1, it
holds that

Pr
M2,B

[
A�QM2

(q) ⊆ B�QM2
(q) for all q ∈ QM1(x)

]
≥ 1

2
.

By the property of M2, under this event, if q ∈ dom(Π2), then

Pr
M2,B

[
MB

2 (q) = Π2(q)
]
≥ 1− 2−n.

By a union bound, it holds that

Pr
M2,B

[
MB

2 (q) = Π2(q) for every q ∈ dom(Π2) ∩QM1(x)
]
≥ 1− 2−n · nO(1) ≥ 1− ε.
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By regarding MB
2 as a randomized oracle, this means that

Pr
M2,B

[
Π2�QM1

(x) ⊆MB
2 �QM1

(x)

]
≥ 1− ε.

Since this holds with probability at least 1− 2ε over the internal randomness of M1, we obtain

Pr
M1,M2,B

[
Π2�QM1

(x) ⊆MB
2 �QM1

(x)

]
≥ 1− 3ε ≥ 1

2
.

Thus, by the property of M1, we obtain

Pr
M1,M2,B

[
M

MB
2

1 (x) = Π1(x)
]
≥ 3

4
.

We now introduce the notion of input-aware B-restricted reduction.

Definition 8.5. For a function α : N → N, a promise problem Π, a class A of promise problems,
and a class B of randomized oracles, we write L ≤BPP

tt A � B � α if there exists a randomized
nonadaptive oracle machine M such that, for every randomized oracle B ∈ B, for all but finitely
many x ∈ dom(Π), for every advice string a ∈ {0, 1}α(|x|) and every promise problem A ∈ A, if

Pr
M,B

[A(q) = B(a, q) for every q ∈ QM (x) ∩ dom(A)] ≥ 1

2
,

then

Pr
M,B

[
MBa(x) = Π(x)

]
≥ 3

4
,

where Ba is the randomized oracle such that Ba(q) := B(a, q) and the probabilities are taken over
the internal randomness of M and B.

8.2 Reductions to Avoiding the Universal Hitting Set Generator

The universal hitting set generator is formally defined as follows.

Definition 8.6. We define

Huniv :=
{
Huniv
n : {0, 1}n−log2 n → {0, 1}n

}
n∈N

,

where Huniv
n (d) is defined to be the output of the n2-time simulation of the universal Turing machine

on input d (and 1n if the simulation does not halt in time n2).

Here, we chose the seed length s(n) := n− log2 n because of the following reasons.

1. On one hand, we will need s(n) = n − ω(log n) in the transformation from the reduction
to avoiding a hitting set generator to inverting an auxiliary-input one-way function (Theo-
rem 9.3).

2. On the other hand, the seed expansion n− s(n) should be small because n− s(n) determines
the approximation error of the non-black-box reduction of [Hir18].
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Definition 8.7. For a family H =
{
Hn : {0, 1}s(n) → {0, 1}n

}
n∈N of functions, a promise problem

A is said to avoid H if for any n ∈ N such that s(n) ≤ n− 1,

Pr[A(w) = 1] ≥ 1

2

and for every w ∈ Im(Hn),
A(w) = 0,

where Im(Hn) denotes the image of Hn, i.e.,
{
Hn(z)

∣∣ z ∈ {0, 1}s(n)
}

8.2.1 Meta-complexity reduces to avoiding the universal hitting set generator

We now present the non-black-box worst-case to average-case reduction of [Hir18] in terms of B-
restricted reductions.

Theorem 8.8. Let A denote the class of the promise problems A that avoid Huniv. There exists
a polynomial τ such that for every randomized oracle B, the promise problem Gapτ (q vs rKB) =
(ΠYes,Π

B
No) defined as

ΠYes :=
{

(x, 1t, 1s)
∣∣ t ≥ |x| and qt(x) ≤ s

}
,

ΠB
No :=

{
(x, 1t, 1s)

∣∣∣ t ≥ |x| and rKτ(t),B(x) > s+ log3 τ(t)
}

satisfies
Gapτ (q vs rKB) ≤BPP

tt A � B.

Moreover, the reduction is independent of B.20

We need the following lemma for the proof.

Lemma 8.9 ([AF09; AGMMM18]; see also [Hir21, Lemma 9.7]). There exists a polynomial p such
that for every x ∈ {0, 1}∗ and every t ≥ |x|,

Pr
r∼{0,1}p(t)

[
Kp(t)2

(x, r) ≤ qt(x) + |r|+ log p(t)
]
≥ 1− o(1).

Proof of Theorem 8.8. We describe a B-restricted reduction M to A. Let Gk be the pseudorandom
generator construction of Lemma 7.1. Let (x, 1t, 1s) be an input. The reduction MB chooses z and
r ∼ {0, 1}t′ randomly and outputs 1 if and only if

B(Gk(x; z) · r) = 0,

where a · b denotes the concatenation of two strings a and b ∈ {0, 1}∗, t′ = poly(t), and k is a
parameter chosen later. The reduction also makes an additional query w · r in order to ensure that
A and B are close. This completes the description of M .

Assume that
Pr
M,B

[
A�QM (x) ⊆ B�QM (x)

]
≥ 1− ε

20That is, there exists a reduction M such that for every B, the reduction M is B-restricted reduction from
Gapτ (q vs rKB) to A.
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for a small constant ε > 0 chosen later. Under this assumption, we have

Pr
w,r

[A(w · r) = 1]− Pr
w,r,B

[B(w · r) = 1]

≤ Pr
w,r,B

[w · r ∈ dom(A) and A(w · r) 6= B(w · r)]

≤ Pr
M,B

[
A�QM (x) 6⊆ B�QM (x)

]
≤ ε,

where the second inequality holds because M makes a query w · r. Since A avoids Huniv, it follows
that

Pr
w,r,B

[B(w · r) = 1] ≥ Pr
w,r

[A(w · r) = 1]− ε

≥ 1

2
− ε. (11)

Similarly, we have
Pr
z,r

[A(Gk(x; z), r) = 0]− Pr
z,r

[B(G(x; z), r) = 0] ≤ ε. (12)

Now, we prove the correctness of M . Let (x, 1t, 1s) be a Yes instance. Since qt(x) ≤ s and Gk
is efficiently computable, we have

qpoly(t)(Gk(x; z)) ≤ s+ |z|+O(log k) ≤ k −O(log2 t),

where we choose a sufficiently large k = s + |z| + O(log2 t) so that the last inequality holds. By
Lemma 8.9, we obtain

Pr
r∼{0,1}t′

[
Kt′2(Gk(x; z) · r) ≤ k + |r| −O(log2 t)

]
≥ 1− ε.

Under this event, by the definition of the universal hitting set generator, we have Gk(x; z) · r ∈
Im(Huniv

k+t′). Since A avoids Huniv, it holds that

Pr
z,r

[A(Gk(x; z) · r) = 0] ≥ 1− ε.

By Eq. (12), we obtain

Pr
M,B

[
MB(x, 1t, 1s) = 1

]
= Pr

z,r,B
[B(Gk(x; z) · r) = 0] ≥ 1− 2ε.

We now prove that any No instance is accepted by M with probability at most 3
4 . This is

sufficient, as the gap between the probabilities 1− 2ε and 3
4 can be amplified by using a standard

technique of repetition. We prove the contrapositive. Assume that

Pr
M,B

[
MB(x, 1t, 1s) = 1

]
= Pr

z,r,B
[B(Gk(x; z) · r) = 0] ≥ 3

4
.

By Eq. (11), we also have

Pr
w,r,B

[B(w · r) = 0] = 1− Pr
w,r,B

[B(w · r) 6= 0] ≤ 1

2
+ ε.

These two inequalities indicate that B can distinguish Gk(x; -) from the uniform distribution; thus,
by Lemma 7.1, we obtain

rKτ(t),B(x) ≤ k +O(log3 n) ≤ s+ log3 τ(t),

where τ is some sufficiently large polynomial. This means that the input is not a No instance.
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8.2.2 An algorithmic proof of symmetry of information

Hirahara [Hir22c] showed the equivalence between the meta-complexity of the conditional time-
bounded Kolmogorov complexity and the (unconditional) time-bounded Kolmogorov complexity
via a non-black-box reduction. We show that this reduction can be regarded as a B-restricted
reduction.

Theorem 8.10. For every polynomial p, there exists a polynomial τ such that for any randomized
oracles B and B′, the promise problem Gapτ (q− rKB vs crKB) = (ΠB

Yes,Π
B
No) defined as

ΠB
Yes :=

{
(x, y, 1t, 1s)

∣∣∣ t ≥ |x|+ |y| and qt(x, y)− rKτ(t),B(y) ≤ s
}
,

ΠB
No :=

{
(x, y, 1t, 1s)

∣∣∣ t ≥ |x|+ |y| and rKτ(t),B(x | y) > s+ log3 τ(t)
}

satisfies
Gapτ (q− rKB vs crKB) ≤BPP

tt Gapp(q vs rKB′) � B.

Moreover, the reduction is independent of B and B′.21

Proof. We describe a B-restricted reduction M to the promise problem Π := Gapp(q vs rKB′).

The reduction MB takes an instance (x,D, 1t, 1s) of Gapτ,α(q − rKB vs crKB) as input. Let
n := |x|+ |y|. Let ε > 0 be a sufficiently small constant. For any randomized oracle B (as well as

any promise problem), define B̂ to be the oracle such that B̂(w) := B(w, 1t
′
, 1|w|−2 log3 p(t′)) for any

w ∈ {0, 1}∗, where t′ = poly(t) is chosen later. Let k (≈ s) be a parameter chosen later. Let G` be
the pseudorandom generator construction of Lemma 7.1. For each ` ∈ N, the reduction estimates

v` := Pr
w,z′,B

[
B̂(w ·G`(y; z′)) = 0

]
using random sampling, where w ∼ {0, 1}k and z′ ∼ {0, 1}O(log3 n). Let v̂` be the estimated value
of v`. By a concentration inequality, we can make sure that |v̂` − v`| ≤ ε with probability at least
1− 2−t over the internal randomness of M . Let `∗ := min

{
`
∣∣ v̂` ≥ 3

4

}
. Note that such `∗ (≤ 2|y|)

exists because qt
′
(w ·G`(y; z′)) ≤ |w|+ |y| � |w|+ `− 2 log3 p(t′) for ` := 2|y|. Then, the reduction

MB outputs 1 if and only if B̂(Gk(x; z) ·G`∗(y; z′)) = 0 for random choices of z, z′ ∼ {0, 1}O(log3 n).
Finally, the reduction makes an additional query w · w′ to B̂ for w ∼ {0, 1}k and w ∼ {0, 1}`∗−1.
Note that M can be implemented as a nonadaptive reduction because the number of candidates of
the value ` is at most O(n).

We prove the correctness of M . Assume that

Pr
M,B

[
Π�QM (x) ⊆ B�QM (x)

]
≥ 1− ε.

Let B be any distribution over oracles consistent with B. Let E be the event that |v̂` − v`| ≤ ε for
all `. Since the probability that E fails is exponentially small, we assume E in what follows and
analyze the success probability of M under the event E.

By a counting argument (Fact 5.5), with probability at least 1 − ε over a choice of w ∼
{0, 1}k, w′ ∼ {0, 1}`∗−1, it holds that

KB′(w · w′) ≥ k + `∗ −O(1) > k + `∗ − log3 p(t′),

21crK stands for conditional randomized Kolmogorov complexity.
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under which (w · w′, 1t′ , 1s′) is a No instance of Π, where s′ := k + `∗ − 2 log3 p(t′). It follows that

Pr
w,w′,B

[
B̂(w · w′) = 1

]
≤ Pr

w,w′

[
Π̂(w · w′) 6= 0

]
+ Pr

[
Π�QM (x) 6⊆ B�QM (x)

]
≤ 2ε,

where the first inequality holds because M makes a query w·w′. On the other hand, since v̂`∗−1 <
3
4 ,

we have v`∗−1 ≤ 3
4 + ε under the event E; thus,

Pr
B,w,z′

[
B̂(w ·G`∗−1(y; z′)) = 1

]
= 1− v`∗−1 ≥

1

4
− ε.

These two inequalities indicate that the oracle B̂(w · -) can distinguish G`∗−1 from the uniform
distribution. Thus, by Lemma 7.1, we obtain

rKτ(t),B(y) ≤ `∗ +O(log3 n) +O(log t)

for a sufficiently large polynomial τ .
Now, assume that (x, y, 1t, 1s) is a Yes instance, i.e. qt(x, y)− rKτ(t),B(y) ≤ s. Since Gk(x; z) ·

G`∗(y; z′) can be efficiently computed from (x, y), we have

qt
′
(Gk(x; z) ·G`∗(y; z′)) ≤ qt(x, y) + |z|+ |z′|+O(log k`∗)

≤ s+ rKτ(t),B(y) +O(log3 n)

≤ s+ `∗ +O(log3 n)

≤ k + `∗ − 2 log3 p(t′),

where the last inequality holds by choosing k := s+O(log3 n)+2 log3 p(t′). Thus, Gk(x; z)·G`∗(y; z′)
is a Yes instance of Π with probability 1. It follows that

Pr
[
MB(x, y, 1t, 1s) = 0

]
= Pr

[
B̂(Gk(x; z) ·G`∗(y; z′)) = 0

]
= Pr

[
Π̂(Gk(x; z) ·G`∗(y; z′)) = 0

]
+ Pr

[
Π�QM (x) 6⊆ B�QM (x)

]
≤ ε.

Conversely, assume that MB accepts with probability at least 1
2 . That is,

Pr
[
B̂(Gk(x; z) ·G`(y; z′)) = 0

]
≤ 1

2
.

By the definition of `∗, we have

v`∗ = Pr
[
B̂(w ·G`∗(y; z′)) = 0

]
≥ v̂`∗ − ε ≥

3

4
− ε.

These two inequalities imply

Pr
[
B̂(Gk(x; z) ·G`∗(y; z′)) = 1

]
− Pr

[
B̂(w ·G`∗(y; z′)) = 1

]
≥ 1

4
− ε.

This indicates that an oracle B(- · G`∗(y; z′)) can distinguish the output distribution of Gk(x; -)
from the uniform distribution. Thus, by Lemma 7.1, we obtain

rKτ(t),B(x | y) ≤ k +O(log3 n) ≤ s+O(log3 t) ≤ s+ log3 τ(t)

for a sufficiently large polynomial τ . This implies that the input is not a No instance of Π.
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8.2.3 Reductions from distributional Kolmogorov complexity

We reduce a “non-disjoint” promise problem that asks to approximate dpKpoly to the “non-disjoint”
promise problem of approximating conditional Kolmogorov complexity.

Theorem 8.11. For every polynomial p, there exists a polynomial τ satisfying the following. For
randomized oracles B and B′, define the promise problem Gapτ (q− rKB′ vs dpKB) as follows.

Input: a string x, a distribution D over {0, 1}m, parameters t, s, ε−1 ∈ N (encoded in unary),
λ ∈ (0, 1) (encoded in binary).

Promise: t ≥ |x|+m+ ε−1.

Yes: Pry∼D

[
qt(x, y)− rKτ(t),B′(y) ≤ s

]
≥ λ.

No: dpK
τ(t),B
λ−ε (x | D) > s+ log3 τ(t).

Then, we have

Gapτ (q− rKB′ vs dpKB) ≤BPP
tt Gapp(q− rKB′ vs crKB′) � B.

Moreover, the reduction is independent of B and B′.

Proof. Let Π := Gapp(q− rKB′ vs crKB′). We describe a B-restricted reduction M from Gapτ (q−
rKB vs drKB) to Π. The reduction MB takes ϕ = (x,D, 1t, 1s, 1ε−1

, λ) as input. Let n := |x|.
Define

v := Pr
z,y

[
B(DPk(x; z), y, 1t

′
, 1s
′
) = 1

]
,

where k, t′ and s′ are parameters chosen later and z ∼ {0, 1}nk and y ∼ D. The reduction MB

estimates v by random sampling. Let ṽ be the estimated value of v such that v ≤ ṽ ≤ v + ε with
high probability over the internal randomness of M . The output of the reduction is defined to be 1
if and only if ṽ ≥ λ− ε. The reduction makes an additional query (w, y, 1t

′
, 1s
′
) for w ∼ {0, 1}nk+k.

To prove the correctness of M , assume that

Pr
M

[
Π�QM (ϕ) ⊆ B�QM (ϕ)

]
≥ 1− ε.

Consider any Yes instance ϕ of Gapτ (q − rKB′ vs dpKB). Then, with probability at least λ
over a choice of y ∼ D, we have qt(x, y)− rKτ(t),B′(y) ≤ s. Under this event, we also have

qt
′
(DPk(x; z), y)− rKp(t′),B′(y) ≤ qt(x, y) + |z|+O(log k)− rKp(t′),B′(y)

≤ s+ nk +O(log n),

where the last inequality holds for τ(t) ≥ v(t′). Choosing s′ := s+ nk+O(log n), this implies that
Π(DPk(x; z), y, 1t

′
, 1s
′
) = 1. It follows that

v = Pr
z,y∼D

[
B(DPk(x; z), y, 1t

′
, 1s
′
) = 1

]
≥ Pr

z,y∼D

[
Π(DPk(x; z), y, 1t

′
, 1s
′
) = 1

]
− ε ≥ λ− ε.

With high probability over the internal randomness of M , we have ṽ ≥ v ≥ λ− ε, under which MB

accepts.
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Conversely, assume that v ≥ λ− 2ε. By a counting argument, for every y ∈ supp(D) and every
z ∈ {0, 1}nk, with probability at least 1− ε over w ∼ {0, 1}nk+k, it holds that

KB′(w | y, z) ≥ nk + k −O(log(1/ε)) > s′ + log3 p(t′),

where we choose k := s′ + 2 log3 p(t′). Under this event, we have Π(w, y, 1t
′
, 1s
′
) = 0. Thus,

Pr
[
B(w, y, 1t

′
, 1s
′
) = 0

]
≥ 1− ε− Pr

[
Π�QM (ϕ) 6⊆ B�QM (ϕ)

]
≥ 1− 2ε.

Combining this with the assumption that v ≥ λ− 2ε, we obtain

Pr
[
B(w, y, 1t

′
, 1s
′
) = 0

]
− Pr

[
B(DPk(x; z), y, 1t

′
, 1s
′
) = 0

]
≥ λ− 4ε.

By Theorem 7.6, we obtain

dpK
poly(t′),B
λ−5ε (x | D, r) ≤ k +O(log(n/ε)).

This means that the input is not a No instance. Taking the contrapositive, for any No instance, we
have v < λ− 2ε. Since ṽ ≤ v + ε ≤ λ− ε holds with high probability over the internal randomness
of MB, any No instance is rejected with high probability.

Corollary 8.12. For a polynomial τ , define the promise problem Gapτ (dK vs dpKB) as follows.

Input: a string x, a distribution D over {0, 1}m, parameters t, s, ε−1 ∈ N (encoded in unary),
λ ∈ (0, 1) (encoded in binary).

Promise: t ≥ |x|+m+ ε−1.

Yes: dKt
λ(x | D) ≤ s−max

{
cdt,B(y)

∣∣ y ∈ supp(D)
}

.

No: dpK
τ(t),B
λ−ε (x | D) > s+ log3 τ(t).

Then, there exists a polynomial τ such that

Gapτ (dK vs dpKB) ≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� B.

Similarly, we also have

Gapτ (q− rKB vs dpKB) ≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� B.

Moreover, the reduction is independent of B.

Proof. Let A =
{
A
∣∣ A avoids Huniv

}
. We use Proposition 8.4 to combing the following reductions.

We will observe
Gapτ (dK vs dpKB) ≤BPP

tt Gapτ (q− rKB vs dpKB)

By Theorem 8.11,

Gapτ (q− rKB vs dpKB) ≤BPP
tt Gapp(q− rKB vs crKB) � BPPB.
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By Theorem 8.10,

Gapτ (q− rKB vs crKB) ≤BPP
tt Gapp(q vs rKB) � BPPB.

By Theorem 8.8,
Gapτ (q vs rKB) ≤BPP

tt A � B.

To show the first reduction, we reduce an instance of (x,D, 1t, 1s, 1ε−1
, λ) of Gapτ (dK vs dpKB)

to an instance (x,D, 1t, 1s′ , 1ε−1
, λ) of Gapτ (q − rKB vs dpKB) for some parameter s′. If dKt

λ(x |
D) ≤ s−max

{
cdt,B(y)

∣∣ y ∈ supp(D)
}

, then with probability at least λ over a choice of y ∼ D, it
holds that

qt(x, y)− rKτ(t),B(y) ≤ s− cdt,B(y) + qt(y)− rKτ(t),B(y) +O(log t) ≤ s+O(log t).

We define s′ := s+O(log t) so that this can be bounded by s′.

8.3 Slow Growth Law

Note that the promise problem in Corollary 8.12 has an additive error term of cdt,B(y). In order
to remove the error term, we use the slow growth law of computational depth [Ben88; AFPS12].

Lemma 8.13 (Slow growth law). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. Let B be any randomized oracle. Then, there exists a polynomial p such that for every
x ∈ {0, 1}∗ and for every t ≥ |x|,

cdp(t),B(f(x)) ≤ cdt,B(x) + log p(t).

Proof. We extend the notion of the universal a priori probability to a set. For a set A ⊆ {0, 1}∗,
let

Qt(A) := Pr
d∼{0,1}t

[
U t(d) ∈ A

]
and

qt(A) := − log Qt(A).

Consider

Qt(x)

Qt(f−1(f(x)))
=

Prd∼{0,1}t
[
U t(d) = x

]
Prd∼{0,1}t [U t(d) ∈ f−1(f(x))]

= Pr
d∼{0,1}t

[
U t(d) = x

∣∣ U t(d) ∈ f−1(f(x))
]
.

Observe that the probability distribution of the random variable U t(d) under the event that U t(d) ∈
f−1(f(x)) is computable given f(x) and t. Thus, by a coding theorem,

K(x | f(x)) ≤ − log Pr
d∼{0,1}t

[
U t(d) = x

∣∣ U t(d) ∈ f−1(f(x))
]

+O(log t).

By the symmetry of information for Kolmogorov complexity [ZL70], we have

KB(x | f(x)) ≥ KB(x, f(x))−KB(f(x))−O(log n) ≥ KB(x)−KB(f(x))−O(log n).

Observe that KB(x | f(x)) ≤ K(x | f(x)) +O(1). Combining these inequalities, we obtain

Qt(f−1(f(x))) ≥ 2−qt(x)+KB(x)−KB(f(x))−O(log t) =: a.
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This implies that the output of the universal Turing machine on a random input is in f−1(f(x))
with probability a. By applying f to the output of the universal Turing machine, we obtain a
constant-size sampling procedure that outputs f(x) with probability a. Thus, we conclude that

qp(t)(f(x)) ≤ − log a = qt(x)−KB(x) + KB(f(x)) +O(log t)

for some large polynomial p.

Corollary 8.14. Let M be a randomized polynomial-time algorithm. Then, there exists a polyno-
mial p such that for every x ∈ {0, 1}∗ and every ε−1 ∈ N,

Pr
M

[
cdp(|x|),B(M(x)) ≤ |x|+ log p(|x|) + log(1/ε)

]
≥ 1− ε.

Proof. Let M(x; r) denote the output of the randomized algorithm M on input x and random bits
r. By Fact 5.5, for a uniformly random sequence r ∼ {0, 1}m, we have KB(r) ≥ m− log(1/ε) with
probability 1− ε. Under this event, since q|x|

2
(r) ≤ m+O(1), we obtain

cd|x|
2,B(r) ≤ m+O(1)−m+ log(1/ε) ≤ log(1/ε) +O(1).

By Lemma 8.13, for some polynomial p, we have

cdp(|x|),B(M(x; r)) ≤ cd|x|
3,B(x, r) + log p(|x|)

≤ |x|+ cd|x|
2,B(r) +O(log |x|)

≤ |x|+ log(1/ε) +O(log |x|).

8.4 Combining Size-Expanding Reductions

We observe that a lower bound for P/poly-oracle dKpoly implies a lower bound for dpKpoly.

Lemma 8.15. For every randomized oracle B ∈ BPP/poly, there exists an oracle B′ ∈ P/poly such
that for every t ≥ |x|+ K(D) + ε−1 + K(λ),

dK
τ(t),B′

λ−ε (x | D) ≤ dpKt,B
λ (x | D) + log τ(t).

Proof. The idea is to hard-wire a pseudorandom generator secure against linear-size programs in
B′. Let s := dpKt,B

λ (x | D). Then, we have

Pr
r∼{0,1}t

[
dKt,B

λ (x | D, r) ≤ s
]
≥ 3

4
.

Let f = {fn ∈ {0, 1}n}n∈N be a sequence of strings such that K(fn) ≥ n/2. Such a sequence

exists by Fact 5.5. Using [IW97], we construct a pseudorandom generator Gfn : {0, 1}O(logn) →
{0, 1}n that is computable by an f -oracle polynomial-time deterministic algorithm and is secure
against linear-size (time-unbounded) programs. Since B ∈ BPP/poly, there exists a polynomial-
size circuit C such that C takes q and a coin flip sequence w and the distribution of C(q;w) over
w ∼ {0, 1}poly(|q|) is identical to the distribution of B(x). We define B′ to be an oracle that can
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answer queries about C and f . Specifically, B′ answers the i-th bit of fn on query (1n, i), and
answers C(q;w) on query (0, q, w).

Consider an arbitrary r ∈ {0, 1}t such that dKt,B
λ (x | D, r) ≤ s. We claim

dK
p(t),B′

λ−ε (x | D, r) ≤ s+O(log t)

for some polynomial p. By assumption, there exists a B-oracle program MB that takes y ∼ D and
r and prints x with probability at least λ. Now, we simulate MB on input (y, r) by a C-oracle
algorithm M ′C that takes a coin flip sequence r′ as follows. The i-th query q of MB to B is answered
with C(q;w), where w is the i-th block of r′. (In other words, each time B is queried, fresh random
bits are used.) Let M ′C(y, r; r′) denote the output of this simulation. Since M ′C simulates MB,
with probability at least λ over a random choice of r′ and y ∼ D, we have M ′C(y, r; r′) = x. Since
this condition can be checked by a t′ = poly(t)-size program given r′ as input, we can replace r′

with Gft′(σ) for some seed σ by reducing the success probability to λ− ε. Thus, we obtain

Pr
y∼D

[
M ′C(y, r;Gft′(σ)) = x

]
≥ λ− ε.

Since σ ∈ {0, 1}O(log t′) can be hard-wired in a machine, it follows that

dK
p(t),B′

λ−ε (x | D, r) ≤ s+O(log t)

for some sufficiently large polynomial p.
Thus, we have

Pr
r∼{0,1}t

[
dK

p(t),B′

λ−ε (x | D, r) ≤ s+O(log t)
]
≥ 3

4
.

Given r ∈ {0, 1}t, it is possible to check whether dK
p(t),B′

λ−ε (x | D, r) ≤ s or not by a program of size

t′′ = poly(t). Thus, by the security of the pseudorandom generator Gft′′ , there exists a seed σ such
that

dK
p(t),B′

λ−ε (x | D, Gft′′(σ)) ≤ s+O(log t).

Let MB′ be a B′-oracle program that witnesses this inequality. Consider a B′-oracle program that
takes an input y ∼ D and simulates MB′(y,Gft′′(σ)), where σ ∈ {0, 1}O(log t′′) is hard-wired. Then,
this program outputs x with probability at least λ− ε. Therefore, we obtain

dK
τ(t),B′

λ−ε (x | D) ≤ s+O(log t) ≤ s+ log τ(t)

for a sufficiently large polynomial τ .

We note that the reductions presented so far may not be input-aware P/poly-restricted reduc-
tions. However, by combining them with a size-expanding reduction, we obtain an input-aware
P/poly-restricted reduction.

Theorem 8.16. Let Π be a promise problem. Assume that

Π ≤BPP
m

{
Gapτ,εMdKPB

∣∣ τ ∈ poly, B ∈ P/poly
}

via a size-expanding reduction for some constant ε > 0. Then, it holds that

Π ≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� BPP/poly � 2n.

Moreover, the reduction is honest.
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Proof. At a high level, we compose the following reductions:

Π ≤BPP
tt

{
Gapτ,εMdKPB

′
∣∣∣ τ : a polynomial, B′ ∈ P/poly

}
≤BPP

m Gapτ ′(q− rKBa vs dpKBa)

≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� BPP/poly � 2n,

where the first reduction is due to the assumption, the second reduction is a slight modification
of the identity map, and the third reduction is due to Corollary 8.12. The randomized oracle Ba
denotes an input-aware oracle, and B′ ∈ P/poly denotes the oracle of Lemma 8.15. Details follow.

Let M be the reduction from Π to Gapτ,εMdKPB for any oracle B and any polynomial τ . Let
τ be a polynomial sufficiently larger than the running time of M . Let M ′ be the reduction of
Corollary 8.12.

We describe a (BPP/poly � 2n)-restricted reduction M from Π to
{
A
∣∣ A avoids Huniv

}
. Let

B ∈ BPP/poly be a randomized oracle. Let B′ ∈ P/poly be the oracle of Lemma 8.15. Let ϕ be an
input. Let a ∈ {0, 1}2n be an advice string, and let Ba(q) := B(a, q). We simulate the reduction
M on input ϕ as follows. Given a query q = (x,D, 1s, λ) to the oracle Gapτ,εMdKPB

′
, we reduce q

to q′ = (x,D, 1t′ , 1s′ , λ), which we regard as an instance of Gapτ ′(q− rKBa vs drKBa). (We choose
t′ and s′ later.) Finally, we simulate the reduction M ′ on input q′ using the oracle Ba and answer
the query q using the output of M ′.

To see the correctness ofM, we claim that any instance q of Gapτ,εMdKPB
′
is correctly mapped

to an instance q′ of Gapτ ′(q − rKBa vs drKBa). Let q be a Yes instance of Gapτ,εMdKPB
′
, i.e.,

dKτ,B′

λ (x | D) ≤ s. Then, there exists a B′-oracle program M of size s that outputs x in time t on
input y ∼ D with probability λ, where t := τ(|x| + |y|). In particular, with probability at least λ
over a choice of y ∼ D, it holds that qt,B

′
(x | y) ≤ s. Since qt(x, y) = KB′(x, y) + cdt,B

′
(x, y) and

KB′(x, y) ≤ qt,B
′
(y) + qt,B

′
(x | y) +O(1) ≤ qt,B

′
(y) + s+O(1), we obtain

qt(x, y)− rKτ(t),Ba(y) ≤ s+ cdt,B
′
(x, y) + qt,B

′
(y)− rKτ(t),Ba(y)

By Corollary 8.14,
cdt,B

′
(x, y) ≤ |ϕ|+O(|ϕ|1/2)

holds with probability 1 − 2−|ϕ|
1/2

over the internal randomness of M . Here, we used that t =
τ(|x|+ |y|) is sufficiently larger than the running time of M on input ϕ.22 Since

KB′(y) ≤ rKτ(t),Ba(y) + |a|+O(1),

we also have
qt,B

′
(y)− rKτ(t),Ba(y) ≤ cdt,B

′
(y) + |a|+O(1),

which can be bounded by |ϕ|+ |a|+O(1) Thus, we obtain

qt(x, y)− rKτ(t),Ba(y) ≤ s+O(|ϕ|) ≤ (1 + ε/4) · s =: s′.

This shows that q′ is a Yes instance of Gapτ ′(q− rKBa vs drKBa).

22We may assume without loss of generality that |x| ≥ |ϕ| because M is size-expanding.
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Conversely, let q be a No instance of Gapτ,εMdKPB
′
, i.e., dKτ,B′

λ−δ(x | D) ≥ (1 + ε) · s. By
Lemma 8.15, we have

dpKτ,B
λ′ (x | D) ≥ (1 + 3ε/4) · s,

where λ′ := λ− δ/2. Thus, we obtain

dKτ,Ba
λ′ (x | D) ≥ dKτ,B

λ′ (x | D)−O(|ϕ|) ≥ (1 + ε/2) · s ≥ s′ + log3 τ(|x|+ |y|),

which implies that q′ is a No instance of Gapτ ′(q− rKBa vs drKBa).

We also have a dpKpoly version of Theorem 8.16.

Theorem 8.17. Let Π be a promise problem. Assume that Π ≤BPP
tt

{
Gapτ,εMdpKP

}
τ∈poly via a

size-expanding reduction for some constant ε > 0. Then, it holds that

Π ≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� BPP � 2n.

9 Hitting Set Generator to Auxiliary-Input One-Way Function

In this section, we show that an input-aware P/poly-restricted reduction to an arbitrary oracle that
avoids a hitting set generator can be converted into a reduction to an arbitrary inverter of some
auxiliary-input one-way function.

Definition 9.1. Let s, t : N→ N be polynomials. For an auxiliary-input function

f =
{
fx : {0, 1}s(|x|) → {0, 1}t(|x|)

}
x∈{0,1}∗

,

a randomized oracle I is said to invert f on auxiliary input x with success probability ε if

Pr
y∼{0,1}s(|x|),I

[
I(x, fx(y)) ∈ f−1

x (fx(y))
]
≥ ε,

where the probability is over y as well as the randomness of I. By default, we assume ε := 1
2 . We

say that I inverts f if I inverts f on every auxiliary input x ∈ {0, 1}∗.

We consider a stronger notion of fixed-auxiliary-input reduction.

Definition 9.2. We say that M is a I-restricted fixed-auxiliary-input reduction from Π to inverting
f if for every randomized oracle I ∈ I, for all but finitely many x ∈ dom(Π) such that I inverts f
on auxiliary input x, it holds that

Pr
M,I

[
M I(x) = Π(x)

]
≥ 3

4
,

where the probability is taken over the internal randomness of M and I, and any query of M can be
written as (x, q) for some q ∈ {0, 1}∗. If M is a randomized polynomial-time nonadaptive reduction,
then we denote it by

Π ≤BPP
tt {I | I inverts f} � I.
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Note that we use the same notation with P/poly-restricted reductions. An I-restricted fixed-
auxiliary-input reduction is stronger than an I-restricted reduction. Using the stronger notion
makes the subsequent proofs simpler.

Theorem 9.3. Let Π be a promise problem. Let I be a class of randomized oracles. Let

H =
{
Hn : {0, 1}s(n) → {0, 1}n

}
n∈N

be an arbitrary family of functions such that s(n) < n− ω(log n). If

Π ≤BPP
tt {A | A avoids H} � BPPI � n

via an honest reduction, then there exists a polynomial-time-computable auxiliary-input function
f = {fx}x∈{0,1}∗ such that

Π ≤BPP
tt {I | I inverts f} � I.

Under the non-existence of a one-way function, one can estimate the probability that a string is
sampled from a polynomial-time samplable distribution. Here, we use its auxiliary-input variant.

Lemma 9.4 (Impagliazzo and Levin [IL90]). Let Q = {Qx}x∈{0,1}∗ be a polynomial-time-samplable

family of distributions. Let δ : N → (0, 1) be a function such that (δ(n))−1 = nO(1). Then, there
exist a polynomial-time-computable auxiliary-input function f = {fx}x∈{0,1}∗ and a randomized
polynomial-time nonadaptive oracle machine T such that for every oracle I and every x ∈ {0, 1}∗
such that I inverts f on auxiliary input x,

Pr
q∼Qx,T

[
(1− δ(|x|)) · Qx(q) ≤ T I(x, q) ≤ (1 + δ(|x|)) · Qx(q)

]
≥ 1− δ(|x|),

where the probability is taken over q ∼ Qx and the internal randomness of T .

We now present a proof of Theorem 9.3.

Proof of Theorem 9.3. Let ε > 0 be a sufficiently small constant. By assumption, there exists a
randomized polynomial-time nonadaptive machine M such that for any B ∈ BPPI and for all but
finitely many x ∈ {0, 1}∗, for any oracle A that avoids H, if

Pr
M,B

[
A�QM (x) ⊆ Bx�QM (x)

]
≥ 1

2
,

where Bx(q) := B(x, q), then
Pr
M,B

[
MB(x) = Π(x)

]
≥ 1− ε.

Let p(n) be a polynomial that bounds the running time of M on inputs of length n. Let δ(n) :=
ε/2p(n).

For any x ∈ {0, 1}∗, let Qx denote the query distribution of M on input x. Applying Qx to
Lemma 9.4, let f be the auxiliary-input function and let T I be the approximation algorithm of
Qx(-) that takes an inverter I of f as oracle.

Fix any input x ∈ dom(Π) and let n := |x|. Let θ = θ(n) be a polynomial chosen later. We say
that a string q ∈ {0, 1}∗ is light (with respect to Qx) if

Qx(q) ≤ θ(n) · 2−|q|.
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Similarly, we say that q is heavy if

Qx(q) ≥ 4θ(n) · 2−|q|.

If q is neither heavy nor light, then q is said to be undetermined. Define

L := {q ∈ {0, 1}∗ | q is light}.

We now construct a promise problem A that avoids H. For a query q ∈ {0, 1}∗, we define the
output A(q) of A on input q as follows. Since M is an honest reduction, M makes no query of
length nγ on inputs of length n for some constant γ > 0. If |q| < nγ , then we define A(q) := 1 if
and only if q 6∈ Im(H). If |q| ≥ nγ , then we define

A(q) :=


1 if q is light and q 6∈ Im(H),

0 if q is heavy or q ∈ Im(H),

∗ otherwise.

For a randomized oracle I and an auxiliary input x ∈ {0, 1}∗, define RIx to be the randomized
algorithm that takes q as input, simulates T I on input (x, q), and outputs 1 if and only if T I(x, q) <
2θ(|x|) · 2−|q|.

We now describe a reduction M ′. The reduction M ′ takes x as input and oracle access to an
inverter I of f , and outputs

M ′I(x) := MRIx(x).

That is, M ′ simulates M on input x and answers any query q using the randomized algorithm RIx.
We establish the correctness of the reduction M ′ via a sequence of claims. Let I ∈ I be any

randomized oracle. We define the randomized oracle B ∈ BPPI such that B(x, q) := RIx(q) for
every x ∈ {0, 1}∗ and every q ∈ {0, 1}∗. Fix any input x ∈ dom(Π) and assume that I inverts f on
auxiliary input x.

Claim 9.5. A avoids H.

Proof. It is evident from the definition of A that A(q) = 0 for every q ∈ Im(H). We claim that for
every ` ∈ N such that s(`) ≤ `− 1, the probability that A(w) = 1 over w ∼ {0, 1}` is at least 1

2 . If
` < nγ , the claim is obvious from the definition of A. If ` ≥ nγ , then

Pr
w∼{0,1}`

[A(w) 6= 1] ≤ Pr
w

[w ∈ Im(H)] + Pr
w

[w is not light]

≤ 2s(`)−` +
1

θ
≤ 1

2
,

where the second inequality holds because

Pr
w∼{0,1}`

[w is not light] · θ ≤
∑

w∈{0,1}`\L

Qx(w) = Pr
q∼Qx

[
q ∈ {0, 1}` \ L

]
≤ 1.

�

Next, we prove that the reduction M cannot distinguish A from Bx.
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Claim 9.6.
Pr
M,B

[
A�QM (x) 6⊆ Bx�QM (x)

]
≤ ε.

Proof. We first bound the probability that a single query q ∼ Qx satisfies that q ∈ dom(A) and
A(q) 6= Bx(q). Since M is honest, the length of q is at least nγ . Thus, if q ∈ dom(A) and
A(q) 6= Bx(q), then one of the following must be true.

1. T I(x, q) 6∈ (1± 1
2) · Qx(q), or

2. q ∈ Im(H) and q is not heavy.

The first event happens with probability at most δ by Lemma 9.4. The probability of the second
event is

Pr
q

[q ∈ Im(H) and q is not heavy]

= Pr
q

[q = h for some h ∈ Im(H) that is not heavy]

≤
∑

` : nγ≤`≤p(n)

|Im(H)| · 4θ · 2−` ≤ p(n) · n−ω(1) · θ,

where the last inequality holds because `− s(`) ≥ ω(log `).
By a union bound, we obtain

Pr
M,B

[
A�QM (x) 6⊆ Bx�QM (x)

]
≤ p(n) ·

(
δ + n−ω(1)

)
≤ ε

for all sufficiently large n. �

By Claim A.4 and the assumption on M , we obtain

Pr
M,B

[
MBx(x) = Π(x)

]
≥ 1− ε.

We conclude that

Pr
M ′,I

[
M ′I(x) 6= Π(x)

]
= Pr

M,Rx,I

[
MRIx(x) 6= Π(x)

]
= Pr

M,B

[
MBx(x) 6= Π(x)

]
≤ ε.

10 Auxiliary-Input One-Way Function to One-Way Function

We need the notion of errorless average-case easiness. The standard notion of average-case com-
plexity classes is defined only for languages [BT06a]. We extend the notion to promise problems.

Definition 10.1. Let Π be a promise problem and D be a family {Dn}n∈N of distributions. We
call (Π,D) a distributional (promise) problem. For a parameter ε > 0, we write (Π,D) ∈ AvgεBPP
if there exists a randomized polynomial-time algorithm M such that for all sufficiently large n ∈ N,

Pr
x∼Dn,M

[M(1n, x) = ⊥] ≤ ε
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and for every x ∈ supp(Dn) ∩ dom(Π),

Pr
M

[M(1n, x) ∈ {Π(x),⊥}] ≥ 1− ε.

Similarly, i.o.AvgεP/poly denotes the class of distributional problems for which there exists a polynomial-
size circuit that computes Π with respect to Dn for infinitely many n ∈ N.

Using this notion, we may define an average-case analogue of I-restricted reductions.

Definition 10.2. Let I be a class of randomized oracles. For a family of functions

g =
{
gn : {0, 1}s(n) → {0, 1}t(n)

}
n∈N

,

we write
(Π,D) ≤AvgεBPP

tt {I | I inverts g} � I

if there exists a randomized polynomial-time nonadaptive reduction M such that for any I ∈ I, for
all sufficiently large n ∈ N, for all x ∈ supp(Dn) ∩ dom(Π),

Pr
M,I

[
M I(1n, x) ∈ {Π(x),⊥}

]
≥ 1− ε

and if I inverts g on 1n, then

Pr
M,I,x∼Dn

[
M I(1n, x) = ⊥

]
≤ ε.

Theorem 10.3. Let Π be a promise problem and f be a polynomial-time-computable auxiliary-input
family of functions. Let I be a class of randomized oracles. Assume that

Π ≤BPP
tt {I | I inverts f} � BPPI.

Then, there exists a polynomial-time-computable family g = {gn : {0, 1}n → {0, 1}n}n∈N of func-
tions such that

(Π,D) ≤AvgεBPP
tt {I | I inverts g} � I

for every polynomial-time samplable distribution D and every constant ε > 0.

Proof. Let

f =
{
fx : {0, 1}s(|x|) → {0, 1}t(|x|)

}
x∈{0,1}∗

.

We construct a candidate one-way function

g =
{
gn : {0, 1}s′(n) → {0, 1}t′(n)

}
n∈N

based on the auxiliary-input one-way function f . Let M be the I-restricted reduction from Π
to any inverter for f . For every n ∈ N, the output of gn is defined by the following sampling
procedure: Pick x ∼ Dn and z ∼ {0, 1}s(|x|) randomly and output (x, fx(z)). The input of gn is
uniformly random bits that are used to simulate this sampling procedure. For an input r of gn, let
zr ∈ {0, 1}s(x) denote the input for fx(-).
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Let gkn denote the k-wise direct product of gn. By the hardness amplification theorem for a
one-way function [Yao82; Gol01], there exists a randomized polynomial-time oracle algorithm R
such that RI inverts gn with success probability 1− δ(n)2 for any randomized oracle I that inverts
gkn with success probability 1

2 , where k = k(n) = poly(1/δ(n)). Here, δ = δ(n) is a parameter such

that 1/δ(n) ≤ nO(1). The parameter will be chosen later.
Let I ∈ I. Fix n ∈ N such that I inverts gkn. By hardness amplification, RI inverts gn with

success probability at least 1− δ(n)2. Let Î denote RI . Then, we have

Pr
r,Î

[
Î(1n, gn(r)) ∈ g−1

n (gn(r))
]
≥ 1− δ(n)2.

By the definition of gn, we obtain

Pr
x∼Dn,z∼{0,1}s(|x|),Î

[
Î(1n, x, fx(z)) ∈ f−1

x (fx(z))
]
≥ 1− δ(n)2.

We now describe an average-case reduction H from (Π,D) to I. On input (1n, x), where
x ∈ supp(Dn), HI simulates M I on input x. Let b ∈ {0, 1} be the output of M I(x). Using random
sampling, HI estimates

v := Pr
z∼{0,1}s(|x|),Î

[
Î(1n, x, fx(z)) ∈ f−1

x (fx(z))
]
.

Let ṽ denote the estimated value. By a concentration inequality, with probability at least 1− δ, it
holds that |ṽ − v| ≤ ε. If ṽ ≥ 1− 2ε, then HI outputs b. Otherwise, HI outputs ⊥.

Assume that I inverts gk on 1n. We claim that

Pr
x∼Dn,H,I

[
HI(1n, x) = ⊥

]
≤ 2δ.

By Markov’s inequality, with probability at least 1− δ over a choice of x ∼ Dn, it holds that

v = Pr
z,Î

[
Î(1n, x, fx(z)) ∈ f−1

x (fx(z))
]
≥ 1− δ.

Moreover, with probability at least 1 − δ over the internal randomness of H, we have |ṽ − v| ≤ ε.
Thus, with probability at least 1− 2δ, we have ṽ ≥ 1− 2ε. The claim follows.

Next, we claim that for every x ∈ dom(Π) ∩ supp(Dn), if

Pr
H,I

[
HI(1n, x) 6= ⊥

]
≥ ε,

then
Pr
H,I

[
HI(1n, x) = Π(x)

]
≥ 1− ε.

Note that |ṽ − v| ≤ ε with probability at least 1 − δ over the internal randomness of H. Thus,
under assumption, with probability at least ε− δ ≥ ε/2, it holds that HI outputs ⊥ and ṽ− v ≤ ε;
thus, v ≥ ṽ − ε ≥ 1− 3ε. Thus,

v = Pr
z,Î

[
Î(1n, x, fx(z)) ∈ f−1

x (fx(z))
]
≥ 1− 3ε.
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It follows from the property of M that

Pr
M,I

[
M I(x) = Π(x)

]
≥ 1− ε.

Thus, we also have
Pr
H,I

[
HI(x) ∈ {Π(x),⊥}

]
≥ 1− ε.

To complete the proof, we prove

Pr
H,I

[
HI(x) 6∈ {Π(x),⊥}

]
≤ ε

by analyzing the following two cases. If Pr
[
HI(1n, x) 6= ⊥

]
≥ ε, then the argument above shows

Pr
[
HI(1n, x) = Π(x)

]
≥ 1 − ε. If Pr

[
HI(1n, x) 6= ⊥

]
≤ ε, then we have Pr

[
HI(1n, x) = ⊥

]
≥

1− ε.

Corollary 10.4. Under the same assumption with Theorem 10.3, the following hold for every
constant ε > 0 and every polynomial-time samplable distribution D.

1. If I = P/poly and (Π,D) 6∈ i.o.AvgεP/poly, then there exists a one-way function secure against
polynomial-size circuits.

2. If I = BPP and (Π,D) 6∈ AvgεBPP, then there exists a one-way function secure against BPP
infinitely often.

Proof. We prove the contrapositive. Since

(Π,D) ≤AvgεBPP
tt {I | I inverts g} � I,

if there exists a P/poly algorithm I that inverts g on 1n for infinitely many n, then combining I
with the reduction, we obtain (Π,D) ∈ AvgεP/poly.

Similarly, if there exists a randomized polynomial-time algorithm that inverts I on 1n for all
but finitely many n, then (Π,D) ∈ AvgεBPP.

11 Proofs of Main Results

The main result of this paper is formally stated as follows.

Theorem 11.1. The following are equivalent.

1. There exists a one-way function secure against polynomial-size circuits.

2. NP 6⊆ i.o.P/poly and NP ≤BPP
tt

{
Gapτ,εMdKPA | τ : a polynomial, A ∈ P/poly

}
with parametric-

honest reductions for some constant ε > 0.

3. NP 6⊆ i.o.P/poly and NP ≤coRP
m

{
Gapτ,εMdKPA | τ : a polynomial, A ∈ P/poly

}
with parametric-

honest reductions for some ε(n) = n1/(log logn)O(1)
.

We need a simple proposition that transforms parametric-honest reductions into size-expanding
reductions.
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Proposition 11.2. If Gapτ,εMdKP is NP-hard under parametric-honest reductions, then Gapτ,εMdKP
is NP-hard under size-expanding reductions.

Proof. Let L =
{
ϕ01t

∣∣ ϕ ∈ SAT, t ∈ N
}

be a paddable NP-complete problem. By assumption, L
is reducible to Gapτ,εMdKP via a parametric-honest reduction M . The size parameter s in any

query of M on input ϕ01t is at least |ϕ01t|γ for some constant γ > 0. Choosing t := |ϕ|2/γ , we
obtain a size-expanding reduction.

Proof of Theorem 11.1. Item 1 ⇒ 3 follows from Theorem 6.3. Item 3 ⇒ 2 is obvious.
We prove Item 2 ⇒ 1. By Proposition 11.2, parametric-honest reductions can be made size-

expanding reductions. By Theorem 8.16, we have

NP ≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� BPP/poly � n.

By Theorem 9.3, there exists a polynomial-time-computable auxiliary-input function f = {fx}x∈{0,1}∗
such that

NP ≤BPP
tt {I | I inverts f} � BPP/poly.

Since NP 6⊆ i.o.P/poly, this induces the existence of an auxiliary-input one-way function. In particu-
lar, this implies the existence of a hitting set generator [Hir18; Nan21]. Let L be the image of Huniv.
Then, using that the number of Yes instances in L is small, we obtain (L,U) 6∈ i.o.AvgεP/poly for
some constant ε > 0 [HS17; Hir18] (see also Proposition 11.8). Since L ∈ NP, we have

L ≤BPP
tt {I | I inverts f} � BPP/poly.

By Corollary 10.4, there exists a one-way function secure against polynomial-size circuits.

11.1 Generalizing Ostrovsky’s Theorem

Ostrovsky [Ost91] showed that for every promise problem Π ∈ SZK, the worst-case hardness of
Π implies the existence of an auxiliary-input one-way function. We extend this to every promise
problem Π that is reducible to GapMdpKP via a size-expanding reduction.

Theorem 11.3. Let Π be a promise problem such that

Π ≤BPP
tt

{
Gapτ,εMdpKP

}
τ∈poly

under size-expanding reductions for some constant ε > 0. Then,

Π ≤BPP
tt {I | I inverts f} � BPP.

for some auxiliary-input family f of functions.

Proof. By Theorem 8.17, we obtain

Π ≤BPP
tt

{
A
∣∣ A avoids Huniv

}
� BPP � n.

It follows from Theorem 9.3 that

Π ≤BPP
tt {I | I inverts f} � BPP

for some auxiliary-input family f of functions.

Since SZK is reducible to Kpoly [AGHR21], Theorem 11.3 generalizes [Ost91].
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11.2 On the Meta-Complexity Padding Conjecture

Next, we give a formal statement of the Meta-Complexity Padding Conjecture.

Conjecture 11.4 (The Meta-Complexity Padding Conjecture). For any polynomial p, there exist
constants ε, δ > 0 such that

Gapδ(K
p vs K) ≤BPP

tt

{
Gapτ,εMdpKP

∣∣ τ : a polynomial
}

via a size-expanding reduction.

Definition 11.5. For a constant ε > 0, the promise problem GapεMCSP = (ΠYes,ΠNo) is defined
as follows.

ΠYes := {(f, 1s) | CC(f) ≤ s},
ΠNo :=

{
(f, 1s)

∣∣ CC(f) ≥ s · |f |1−ε
}
,

where |f | denotes the length 2n of the truth table of f : {0, 1}n → {0, 1}. For a polynomial p, the
promise problem Gap(qt vs rKp(t)) = (ΠYes,ΠNo) is defined as follows.

ΠYes :=
{

(x, 1t, 1s)
∣∣ t ≥ |x| and qt(x) ≤ s

}
,

ΠNo :=
{

(x, 1t, 1s)
∣∣∣ t ≥ |x| and rKp(t)(x) ≥ p(s)

}
.

We define Gap(qt vs qp(t)) and Gap(rKt vs rKp(t)) in a similar way.

These problems can be reduced to DistNP.

Lemma 11.6 ([Hir18]). If there exists no hitting set generator of seed length nδ secure against
randomized polynomial-time infinitely often for some constant δ > 0, then GapεMCSP ∈ pr-BPP
for some constant ε > 0 and Gap(qt vs rKp(t)) ∈ pr-BPP for some polynomial p.

We are ready to state the consequence of the Meta-Complexity Padding Conjecture formally.

Theorem 11.7. Under the Meta-Complexity Padding Conjecture, the following are equivalent.

1. There exists a one-way function secure against randomized polynomial-time algorithms in-
finitely often.

2. GapεMCSP 6∈ pr-BPP for every constant ε > 0.

3. Gap(qt vs rKp(t)) 6∈ pr-BPP for every polynomial p.

4. Gap(qt vs qp(t)) 6∈ pr-BPP for every polynomial p.

5. Gap(rKt vs rKp(t)) 6∈ pr-BPP for every polynomial p.

6. For every constant ε > 0, there exists a polynomial-time-computable hitting set generator

H =
{
Hn : {0, 1}nε → {0, 1}n

}
n∈N

secure against randomized polynomial-time algorithms infinitely often.
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7. There exists a pseudorandom generator secure against randomized polynomial-time algorithms
infinitely often.

8. Natural properties useful against SIZE(2εn) do not exist for every constant ε > 0.

We recall the fact that the existence of a hitting set generator implies the errorless average-case
hardness of Kpoly.

Proposition 11.8 ([Hir18]). Let H =
{
Hn : {0, 1}nδ0 → {0, 1}n

}
n∈N

be a polynomial-time com-

putable family of functions for some constant δ0 ∈ (0, 1). Then, there exist constants δ, ε ∈ (0, 1)
and a polynomial p such that for any polynomial q ≥ p, if (Gapδ(K

q vs K),U) ∈ AvgεBPP, then
there exists a promise problem Π ∈ pr-BPP such that Π avoids H.

Proof. Let p be a polynomial such that Kp(n)(x) ≤ nδ for any x ∈ Im(Hn). Let ε := 1
16 .

Let M be the randomized polynomial-time errorless heuristic algorithm for (Gapδ(K
q vs K),U).

Define a randomized algorithm M ′ as follows. For n ∈ N and x ∈ {0, 1}n, we define M ′(x) := 1 if
M(1n, x) = 0 and M ′(x) := 0 if M(1n, x) ∈ {1,⊥}.

Consider any x ∈ Im(Hn). Then, x is a Yes instance of Gapδ(K
p vs K). Thus, it holds that

Pr
M

[M(1n, x) ∈ {1,⊥}] ≥ 1− ε,

which implies that
Pr
M ′

[
M ′(x) = 0

]
≥ 1− ε.

Now, for a random x ∼ {0, 1}n, we would like to bound the probability that M ′(x) = 0. This
event is equivalent to M(1n, x) ∈ {1,⊥}. Thus, we have

Pr
x∼{0,1}n,M ′

[
M ′(x) = 0

]
≤ Pr

x∼{0,1}n,M
[M(1n, x) = ⊥] + Pr

x∼{0,1}n,M
[M(1n, x) = 1].

The first term is at most ε. To bound the second term, observe that the event of the second term
happens only if either Π(x) ∈ {1, ∗} or Π(x) = 0 and M(1n, x) = 1. The first event happens with
probability at most 1

4 by Fact 5.5. The second event happens only if M(1n, x) 6∈ {Π(x),⊥}, which
happens with probability at most ε by the property of M . Overall, we obtain

Pr
x∼{0,1}n,M ′

[
M ′(x) = 0

]
≤ 2ε+

1

4
≤ 3

8
.

By an averaging argument, it holds that

Pr
x∼{0,1}n

[
Pr
M ′

[
M ′(x) = 1

]
≥ 1

8

]
≥ 1

2
. (13)

We define a promise problem Π = (ΠYes,ΠNo) as follows. ΠNo consists of x ∈ {0, 1}∗ such that
Kp(n)(x) ≤ |x|δ. ΠYes consists of x ∈ {0, 1}∗ such that

Pr
M ′

[
M ′(x) = 1

]
≥ 1

8
.

Then, by Eq. (13), we have

Pr
x∼{0,1}n

[Π(x) = 1] ≥ 1

2
.
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The arguments above show that any x ∈ ΠYes is accepted by M ′ with probability at least 1
8

and that any x ∈ ΠNo is accepted by M ′ with probability at most ε. The gap between ε and 1
8 can

be amplified by a standard proof technique. Thus, we obtain Π ∈ pr-BPP.

Proof of Theorem 11.7. Using the Meta-Complexity Padding Conjecture, let Π := Gapδ(K
t vs K)

such that
Π ≤BPP

tt

{
Gapτ,εMdpKP

}
τ∈poly.

via a size-expanding reduction for some constant ε > 0. By Theorem 11.3,

Π ≤BPP
tt {I | I inverts f} � BPP

for some auxiliary-input family f of functions. By Theorem 10.3, we obtain

(Π,U) ≤AvgεBPP
tt {I | I inverts g} � BPP (14)

for some polynomial-time-computable function g.
Item 1 ⇒ 2 is proved by [ABKMR06] (based on the proof techniques of [GGM86; RR97]).

Item 1 ⇒ 4 and Item 1 ⇒ 5 can be proved in a similar way.
Item 4 ⇒ 3 and Item 5 ⇒ 3 are obvious.
Item 2 ⇒ 6 and Item 3 ⇒ 6 is due to Lemma 11.6.
We prove Item 6 ⇒ 1. By Proposition 11.8, for every constant ε > 0, (Gapε(K

t vs K),U) 6∈
Avgε0BPP. In particular, we have

(Π,U) 6∈ Avgε0BPP

for some constant ε0 > 0. By Eq. (14), this implies that g is a one-way function.
The equivalence between Items 1 and 7 is due to [HILL99]. The equivalence between Items 2

and 8 is due to [Hir18].

Finally, we prove the Meta-Complexity Padding Conjecture under the existence of a one-way
function.

Reminder of Proposition 1.6. If there exists a one-way function secure against polynomial-size
circuits, then the Meta-Complexity Padding Conjecture is true.

Proof Sketch. By Theorem 6.3, Gapτ,αMdKPA is NP-hard under size-expanding reductions for all
polynomials τ , all constants α, and all oracles A ∈ P/poly. By Lemma 8.15, the same NP-hardness
reduction shows NP-hardness of Gapτ,αMdpKP for all polynomials τ and constants α.

A Another Proof of HSG to Auxiliary-Input OWF

In this appendix, we present an alternative approach of transforming a reduction to avoiding a
hitting set generator into a reduction to inverting an auxiliary-input one-way function. Theorem 9.3
shows that a reduction to the class of promise problems that avoid a hitting set generator can be
transformed. Here, we show that P/poly-restricted reductions to the class of oracles that avoid H
can be transformed.
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Theorem A.1. Let A be the class of oracles A ⊆ {0, 1}∗ that avoid H. Let Π be a promise problem
and

H =
{
Hn : {0, 1}s(n) → {0, 1}n

}
n∈N

be an arbitrary family of functions such that s(n) < n− ω(log n). If

Π ≤BPP
tt A � P/poly � 2n

via an honest reduction, then there exists a polynomial-time-computable auxiliary-input function
f = {fx}x∈{0,1}∗ such that

Π ≤BPP
tt {I | I inverts f} � FP/poly.

Here, FP/poly denotes the class of multi-output polynomial-size circuits.

Proof of Theorem 9.3. Let ε > 0 be a sufficiently small constant. LetM be a randomized polynomial-
time B-restricted reduction from Π to A with success probability 1 − ε. Let p(n) be a polynomial
that bounds the running time of M on inputs of length n. Let δ(n) := (ε/p(n))2.

For any x ∈ {0, 1}∗, let Qx denote the query distribution of M on input x. Applying Qx to
Lemma 9.4, let f be the auxiliary-input function and let T I be the approximation algorithm of
Qx(-) that takes an inverter I of f as oracle.

Fix any input x ∈ dom(Π) and let n := |x|. For a threshold θ ∈ R, we say that a string
q ∈ {0, 1}∗ is θ-light (with respect to Qx) if

Qx(q) ≤ θ · 2−|q|.

Otherwise, q is said to be θ-heavy.
Let θ0 := p(n)/ε and let δ denote δ(n). Let An :=

{
θ0 · (1 + 6δ)i

∣∣ i ≤ 1/δ
}

. We choose a
threshold θ ∼ An randomly. Then, as in [BT06b; HW20], it follows from Markov’s inequality that
with probability at least 1−

√
δ over a choice of θ ∼ An,

Pr
q∼Qx

[
Qx(q) ∈ (1± 2δ) · θ2−|q|

]
≤
√
δ. (15)

Note that θ ≤ O(θ0). In what follows, we fix θ such that Eq. (15) holds.
Fix any I ∈ FP/poly. Let GI ⊆ {0, 1}∗ be the set of instances x such that I inverts f on

auxiliary input x.

Claim A.2. There exists B ∈ P/poly such that for every x ∈ GI , with probability at least 1− δ(|x|)
over a random choice of q ∼ Qx, for every θ ∈ An,

1. if Qx(q) ≤ (1− 2δ) · θ2−|q|, then B(x, θ, q) = 1 and

2. if Qx(q) ≥ (1 + 2δ) · θ2−|q|, then B(x, θ, q) = 0.

Proof. By Lemma 9.4, for every x ∈ G, it holds that

Pr
q∼Qx,T,I

[
T I(x, q) ∈ (1± δ(|x|)) · Qx(q)

]
≥ 1− δ(|x|).
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Using a standard technique of amplifying the success probability of randomized approximation
algorithms, the success probability with respect to the randomness of T can be amplified to expo-
nentially close to 1. By a union bound over all x ∈ G, we obtain a deterministic polynomial-size
circuit T∗ ∈ P/poly such that for all x ∈ G,

Pr
q∼Qx

[T∗(x, q) ∈ (1± δ(|x|)) · Qx(q)] ≥ 1− δ(|x|).

Define B to be the oracle such that

B :=
{

(x, θ, q)
∣∣∣ T∗(x, q) ≤ θ · 2−|q|}.

Since T∗ ∈ P/poly, we also have B ∈ P/poly.
Assuming that T∗(x, q) ∈ (1± δ) ·Qx(q), we observe that the two items are satisfied: If Qx(q) ≤

(1− 2δ) · θ2−|q|, then we obtain

T∗(x, q) ≤ (1 + δ) · (1− 2δ) · θ2−|q| ≤ θ2−|q|.

Similarly, if Qx(q) ≥ (1 + 2δ) · θ2−|q|, then we obtain

T∗(x, q) ≥ (1− δ) · (1 + 2δ) · θ2−|q| > θ2−|q|.

This completes the proof of the claim. �

Note that θ can be encoded as a binary string of length O(log |An|) = O(log n). Thus, in total,
the advice string a := (x, θ) can be encoded with at most |x|+O(log n) ≤ 2n bits.

Let G′x denote the set of (θ, q) such that the two items of Claim A.2 are satisfied.
Define

Lθ := {q ∈ {0, 1}∗ | q is θ-light }.

We now construct an oracle A that avoids H. For a query q ∈ {0, 1}∗, we define the output A(q)
of A on input q as follows. Since M is an honest reduction, M makes no query of length nγ on
inputs of length n for some constant γ > 0. If |q| < nγ , then A(q) := 1 if and only if q 6∈ Im(H). If
|q| ≥ nγ , then we define

q ∈ A ⇐⇒ q ∈ Lθ \ Im(H).

For a randomized algorithm T0, define RT0 to be the randomized algorithm that takes q as
input, simulates T0 on input (x, q), and outputs 1 if and only if T0(x, q) ≤ θ · 2−|q|.

We now describe a reduction M ′. The reduction M ′ takes x as input and oracle access to an
inverter I of f , and outputs

M ′I(x) := MRT
I

(x).

That is, M ′ simulates M on input x and answers any query q using the randomized algorithm RT
I
.

We establish the correctness of the reduction M ′ via a sequence of claims.

Claim A.3. A avoids H.
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Proof. It is evident from the definition of A that A∩Im(H) = ∅. We claim that the size of A∩{0, 1}`
is at least 2`−1 for every ` ∈ N such that s(`) ≤ ` − 1. If ` < nγ , the claim is obvious from the
definition of A. If ` ≥ nγ , then

Pr
w∼{0,1}`

[w 6∈ A] ≤ Pr[w ∈ Im(H)] + Pr[w : θ-heavy]

≤ 2s(`)−` +
1

θ
≤ 1

2
,

where the second inequality holds because

Pr
w∼{0,1}`

[w : θ-heavy] · θ ≤
∑

w∈{0,1}`\Lθ

Qx(w) = Pr
q∼Qx

[
q ∈ {0, 1}` \ Lθ

]
≤ 1.

�

Next, we prove that the reduction M cannot distinguish A from Bx,θ.

Claim A.4. If x ∈ G, then

Pr
M

[
A�QM (x) 6⊆ Bx,θ�QM (x)

]
≤ ε.

Similarly,

Pr
M,T,I

[
MRT

I

(x) 6= MA(x)

]
≤ ε.

Proof. We first bound the probability that a single query q ∼ Qx satisfies A(q) 6= Bx,θ(q). Let q
be any query of length at least nγ . If A(q) 6= Bx,θ(q), then one of the following must be true.

1. (θ, q) 6∈ G′x,

2. Qx(q) ∈ (1± 2δ) · θ2−|q|, or

3. q ∈ Im(H) and q is θ-light.

The first event happens with probability at most δ by Claim A.2. The second event happens with
probability at most

√
δ by Eq. (15). The probability of the third event is

Pr
q

[q ∈ Im(H) and q ∈ Lθ]

= Pr
q

[q = h for some h ∈ Im(H) ∩ Lθ]

≤
∑

` : nγ≤`≤p(n)

|Im(H)| · θ · 2−` ≤ p(n) · n−ω(1) · θ,

where the last inequality holds because `− s(`) ≥ ω(log `).
By a union bound, we obtain

Pr
[
A�QM (x) 6⊆ Bx,θ�QM (x)

]
≤ p(n) ·

(
δ +
√
δ + n−ω(1)

)
≤ ε

for all sufficiently large n.
To see the “similarly” part, observe that the event happens only if RT

I
(q) 6= A(q) for some

q ∈ QM (x). The probability that this event happens can be bounded in the same way. �
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By Claim A.4 and the assumption on M , we obtain

Pr
M

[
MA(x) = Π(x)

]
≥ 1− ε.

Now, we have

Pr
M ′,I

[
M ′I(x) 6= Π(x)

]
= Pr

M,T,I

[
MRT

I

(x) 6= Π(x)

]
≤ Pr

M,T,I

[
MRT

I

(x) 6= MA(x)

]
+ Pr

M

[
MA(x) 6= Π(x)

]
≤ 2ε.

B Distributional randomized Kolmogorov complexity

In this appendix, we present a non-black-box reduction from the problem of approximating drKpoly
λ

to Gapτ,α(q− rKB vs crKB). The parameter λ of this reduction has a large error.

Theorem B.1. For every polynomial p, there exists a polynomial τ such that for any randomized
oracles B and B′, the promise problem Gapτ (q− rKB vs drKB) = (ΠB′

Yes,Π
B
No) defined as

ΠB′
Yes :=

{
(x,D, 1t, 1s)

∣∣∣ t ≥ |x|+ |y| and qt(x, y)− rKτ(t),B′(y) ≤ s for every y ∈ supp(D)
}
,

ΠB
No :=

{
(x,D, 1t, 1s)

∣∣∣ t ≥ |x|+ |y| and drK
τ(t),B
1/8|x| (x | D) > s+ log3 τ(t) for every y ∈ supp(D)

}
satisfies

Gapτ (q− rKB vs drKB) ≤BPP
tt Gapp(q− rKB′ vs crKB′) � B.

Moreover, the reduction is independent of B and B′.

Proof. Let Π := Gapp(q− rKB′ vs crKB′). We describe a B-restricted reduction M from Gapτ (q−
rKB vs drKB) to Π. The reduction MB takes (x,D, 1t, 1s) as input, picks y ∼ D and z ∼ {0, 1}d
randomly, and accepts if and only if

B(Gk(x; z), y, 1t
′
, 1s
′
) = 1

for some parameters k, t′ and s′. The reduction makes an additional query (w, y, 1t
′
, 1s
′
) for a

random w ∼ {0, 1}k.
To prove the correctness of M , assume that

Pr
M

[
Π�QM (x) ⊆ B�QM (x)

]
≥ 1− ε

for a small constant ε > 0.
Consider any Yes instance (x,D, 1t, 1s) of Gapτ (q−rKB vs drKB). Then, for every y ∈ supp(D),

we have qt(x, y)− rKτ(t),B′(y) ≤ s. Thus, we obtain

qt
′
(Gk(x; z), y)− rKp(t′),B′(y) ≤ qt(x, y) + |z|+O(log k)− rKp(t′),B′(y)

≤ s+O(log3 n),
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where the last inequality holds for τ(t) ≥ p(t′). Choosing s′ := s + O(log3 n), this implies that
Π(Gk(x; z), y, 1t

′
, 1s
′
) = 1. It follows that

Pr
[
MB(x,D, 1t, 1s) = 1

]
≥ 1− ε.

Conversely, assume that

Pr
[
MB(x,D, 1t, 1s) = 1

]
≥ 1− 2ε.

By a counting argument, for every y ∈ supp(D), with probability at least 1− ε, it holds that

KB′(w | y) ≥ k −O(1) > s′ + log3 p(t′),

where we choose k := s′ + 2 log3 p(t′). Under this event, we have Π(w, y, 1t
′
, 1s
′
) = 0. Thus,

Pr
[
B(w, y, 1t

′
, 1s
′
) = 0

]
≥ 1− 2ε.

Combining the above inequalities, we get

Pr
[
B(Gk(x; z), y, 1t

′
, 1s
′
) = 1

]
− Pr

[
B(w, y, 1t

′
, 1s
′
) = 1

]
≥ 1− 4ε.

By Lemma 7.1, we obtain

drK
poly(t′),B
(1−4ε)/2k(x | D) ≤ k +O(log3 n).

This means that the input is not a No instance.
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